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Foreword 

Without a doubt the idea of object-oriented programming has 
brought some motion into the field of programming methodology 
and enlarged the set of programming languages. Object-oriented 
programming is nothing new—it first arose in the sixties. The 
motivation came from the simulation of discrete event systems. 
The concept first manifested itself in the language Simula 67. It 
took nearly two decades for the method to gain impetus, and 
today object-oriented programming is an important concept and a 
powerful technique. Meanwhile, we can even speak of an over-
reaction, for the concept has become a buzzword. But buzzwords 
always appear where there is the hope of exploiting ill-informed 
clients because they see the new approach as the solution to all 
their problems. Thus object-oriented programming is often hailed 
as a panacea. And so the question is justified: What is really 
behind it? 

To let the cat out of the bag: There is more to object-oriented 
programming than merely putting data as objects in the fore-
ground, instead of algorithms to which the data are subject. It is 
more than purely an alternative view of programmed systems. To 
identify the essence of object-oriented programming, is the subject 
of this book. This is a textbook that shows in a didactically skillful 
way which concepts and constructs are new, where they can be 
employed reasonably, and what advantages they offer. For, not all 
programs are automatically improved by merely recasting them in 
an object-oriented style. On the contrary, the new method can only 
be applied sensibly where complex data structures are present. It 
would be unwise to prematurely discard the conventional view. 

It is to the author's credit that he introduces the concepts of 
object-oriented programming in a constructive way, demonstrates 
them in an evolutionary manner, and uses suitable examples to 
show how these concepts can be employed judiciously. The pro-
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gramming language Oberon-2 provides an excellent foundation 
because it adds only the few typically object-oriented concepts to 
those of conventional procedural programming but no more. The 
reader should always be aware that not the language but the 
methodology and discipline constitute the essential concern of the 
book. The language only serves the purpose of formulation in a 
clear and concise manner. We speak of a language supporting a 
method; Oberon-2 supports object-oriented programming. 

The object-oriented paradigm holds so much promise especi-
ally for complex systems, because the technique of object-oriented 
programming makes it possible to create modular systems that are 
truly extensible. By extensible we mean that not only new opera-
tions can be added that build on old ones, but that the same is true 
for data types and their instances. These comments indicate that 
object orientation comes to full fruition only when combined with 
modularity and strict typing of data. 

This book is a well-organized introduction to this new field. It 
is obvious that the author draws on a wealth of experience gained 
in years of intensive work in the area and in successful teaching. 
The book is an enrichment for anyone interested in modern pro-
gramming techniques. 
 
 

Niklaus Wirth, Zurich, 1993 



 

Preface 

Object-oriented programming (OOP) has become a buzzword that 
is prominently displayed in numerous journals and advertise-
ments. What is OOP all about? Is it merely a marketing fad, or 
does it really denote something new and useful, perhaps even a 
new panacea? 

To be short, OOP is no panacea. Contrary to the claims made 
by some vendors, it does not make programming a trivial task. 
OOP requires a sizable portion of ability and experience—perhaps 
even more than traditional programming techniques do. However, 
OOP definitely has its strengths: it often permits more elegant 
solutions than are possible with conventional techniques; it pro-
motes modularity and thus readability and maintainability of 
programs; and it contributes to the extensibility and reusability of 
software. 

This book is aimed at students of computer science as well as 
at practitioners who want to gain a perspective on new software 
development methods. Since more and more languages are being 
extended to include object-oriented features, this book also 
addresses programmers who want to make better use of these new 
features. 

The goal of this book is to convey the fundamentals of OOP, 
namely classes, inheritance and dynamic binding. The emphasis is 
on the concepts rather than on the specifics of a particular pro-
gramming language. In addition, readers should learn to 
determine for which problems OOP is most suitable, and which 
problems would be better solved with conventional means. 

Object-oriented programming is programming in the large. 
Although its principles can be explained on the basis of small 
examples, wider reaching examples are necessary in order to 
convey the power and elegance of this technique. This is precisely 
what is missing in most books on the subject. Chapter 11 thus 
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presents the design and implementation of an adequately large 
system, including source code, in order to drive home the ideas 
behind object-oriented programming. 

The examples in this book are not coded in any of the 
widespread languages such as Smalltalk or C++. Instead, Oberon-2, 
a language in the tradition of Pascal and Modula-2, was selected. 
The reason for this choice is that Oberon-2 is more compact than 
most of the other object-oriented languages; in fact, it is even 
smaller than Pascal, which makes it possible to master the lan-
guage quickly. Object-oriented elements are smoothly integrated 
into the language without displacing proven constructs such as 
records, arrays and procedures. Once the reader has understood 
the concepts presented in this book, it should be easy to transfer 
them to any other language. 

However, if the reader takes a liking to Oberon-2, the Oberon 
System, complete with compiler, editor and several other tools, can 
be obtained at no charge. Implementations are available for several 
platforms (see Appendix D). The case study printed in Chapter 11 
is also available as source code. 

The Oberon System was developed by Professors Niklaus 
Wirth and Jürg Gutknecht 1985-1987 at ETH Zürich [WiG92]. It 
consists not only of the Oberon language, but also of an operating 
system with the same name. The design of Oberon reflects the 
experience of the man who developed Algol W, Pascal and 
Modula-2. In Oberon-2, the author of this book added several 
extensions to the Oberon language that make it more suitable for 
object-oriented programming. 

This book is neither a general introduction to programming 
nor a handbook for Oberon-2; these tasks are covered by other 
texts [ReW92, Rei91]. The reader is assumed to be familiar with an 
imperative language such as Pascal or Modula-2. Chapter 2 
explains Oberon-2 only enough to enable comprehension of the 
examples in this book. Appendix A contains the complete 
language definition. 

I want to express both gratitude and admiration for the two 
designers of Oberon for their elegant design of the operating 
system and the language, as well as for the ergonomic and efficient 
implementation that makes working with Oberon a pleasure. 

I owe many of the examples to my assistants, Robert Griesemer, 
Clemens Szyperski and Josef Templ. Josef Templ also contributed 
valuable ideas for Oberon-2. 
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Last but not least, I want to thank Prof. Peter Rechenberg, Prof. 
Jörg R. Mühlbacher, Dr. Martin Reiser, Dr. Günther Blaschek, and Dr. 
Erich Gamma for their careful reading of the manuscript and for 
their numerous suggested improvements. 
 
Zürich, 1993 Hanspeter Mössenböck 



 

1 Overview 

What is the essence of object-oriented programming? What are its 
typical applications, and what benefits can we expect from it? How 
does object-oriented thinking differ from traditional, procedure-
oriented thinking? These are the questions that will be explored in 
this chapter. 

1.1 Procedure-Oriented Thinking 

Since the beginnings of programming we have been used to 
thinking in a procedure-oriented way. We decompose programs 
into procedures that transform input data into output data (Fig. 
1.1). 

Decomposing 
programs into 
procedures 

ProcedureData Data
 

Fig. 1.1  Procedure-oriented thinking 

In order to compute the area of a figure f, we write 
 
a := Area(f) 
 

The procedure Area is the focus of attention, while the data a and f 
tend to be relegated to the background. 

This approach is quite practical and usually leads to good 
programs. However, problems arise when a program has to deal 
with several kinds of figures (e.g., rectangles, triangles, circles, etc.). 
In conventional languages, it is not possible to use the same 
procedure for different figure types; instead, a separate procedure 
is required for each kind of figure (e.g., RectangleArea, TriangleArea, 
CircleArea, etc.). 

Problems 
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Furthermore, wherever a surface area is to be computed, the 
various kinds of figures must be differentiated and the respective 
procedure must be invoked. We have to write something like 

 
IF f is rectangle THEN a := RectangleArea(f) 
ELSIF f is triangle THEN a := TriangleArea(f) 
ELSIF f is circle THEN a := CircleArea(f) 
END 
 

This means that we have to perform an extensive case analysis, 
which not only inflates the code but also causes the types of 
figures to be statically bound to the program. If later on ellipses are 
to be handled due to changed requirements, a new case will have 
to be inserted at every location where the computation of an area 
occurs: 

 
… 
ELSIF f is ellipse THEN a := EllipseArea(f) 
… 
 

Modifications of this nature are troublesome and easy to overlook. 
Finally, the data type for figures would also need to be 

changed in order to accommodate ellipses. This could mean that 
all programs that use figures would have to be adapted to the new 
type or at least to be recompiled. 

1.2 Object-Oriented Thinking 

The object-oriented way of thinking focuses on the data rather than 
on the procedures. The data and the operations applicable to them 
constitute objects that can be asked to handle certain requests and 
to return data as their result (Fig. 1.2). 

Decomposition 
into objects that 
fulfill contracts 

ObjectRequest Data
  

Fig. 1.2  Object-oriented thinking 

The point here is that one does not have to bother about the type of 
the object to which a request is sent. Every type of object handles 
the request in its own way and carries out the correct operation: 
rectangles handle Area by computing the area of a rectangle, circles 
by computing the area of a circle, etc. Special notation is used to 
express this view. The statement 
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a := f.Area() 

means that figure f is asked to handle an Area request. We also say 
that we send f the message Area. It does not matter whether f is a 
rectangle, a triangle, or a circle. Even if we later add ellipses as an 
additional type of object and then assume that f is an ellipse, the 
statement a := f.Area() remains unchanged. The statement is 
properly executed as long as ellipses understand the message Area. 
This means that the introduction of ellipses does not affect existing 
code. 

Our small example already suggests some of the advantages 
of object-oriented programming: Object-oriented programs have to 
contend less with case analysis and are more extensible than 
procedure-oriented programs. 

1.3 Object-Oriented Languages 

Our next question is: What is an object-oriented programming 
language? This is not as easy to answer as it seems. Common OOP 
languages differ in many details that are not by any means all 
necessary for object-oriented programming. Which minimum set 
of features must a language provide in order to qualify as object-
oriented? The most significant features are information hiding, 
data abstraction, inheritance, and dynamic binding. 

Information hiding means that the implementation of complex 
data is encapsulated in objects and that clients have access only to 
an abstract view of it (Fig. 1.3). Clients cannot directly access the 
encapsulated data, but must use procedures that are part of the 
respective object. Thus clients are not troubled with implemen-
tation details and are not affected by later changes in the imple-
mentation of the object. 

Information hiding

Encapsulated data

Proc Proc Proc

 

Fig. 1.3  An object with encapsulated data and a procedural interface 

Information hiding was propagated by David Parnas [Par72]. It is 
not restricted to object-oriented languages but also supported by 
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numerous other modular languages such as Modula-2 with its 
modules and Ada with its packages. 

Data abstraction is the next step after information hiding. The 
objects described above exist only once, yet sometimes multiple 
copies of them are needed (Fig. 1.4). 

Data abstraction 

Proc ProcProc ProcProc Proc

Variable a Variable b  

Fig. 1.4  Two variables a and b of an abstract data type 

Just as we can declare any number of variables of a specific data 
type Integer, we want to be able to declare multiple variables of an 
abstract data type Binary Tree. As the operations +, -, * and DIV 
belong to Integer, a Binary Tree should provide operations such as 
insertion, deletion and searching for elements. 

 
 Integer +, -, *, DIV, MOD, =, #, <, <=, >, >= 
 Binary tree Insert, Delete, Search, Traverse, ... 

 
An abstract data type is thus a unit consisting of data and the 
operations applicable to them. Multiple variables of such a type 
can be declared. Abstract data types are likewise not an invention 
of the object-oriented camp; they also can be realized in Modula-2 
and Ada. 

Inheritance is a concept not found in any conventional 
programming language. It means that an existing abstract data 
type can be extended to a new one that inherits all the data and 
operations of the existing type. The new type can include 
additional data and operations and can even modify inherited 
operations. This makes it possible to design a type as a semi-
finished product, store it in a library, and later extend it to produce 
various final products (Fig. 1.5). 

Inheritance 

An important consequence of inheritance is that the extended 
type is compatible with the original one. All algorithms that work 
with objects of the original type can also work with objects of the 
new type. This greatly promotes the reusability of existing 
algorithms. 
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The fourth characteristic of object-oriented programming 
languages is dynamic binding of messages (requests) to procedures. 
When the message Area is sent to an object, the decision regarding 
which procedure is to carry out the request is made at run time, 
i.e., dynamically. 

Dynamic binding 

Button

RectButton RoundButton OvalButton  

Fig. 1.5  A base type Button and various extensions 

The compatibility between a type and its extensions makes it 
possible to store in a variable of type T not only objects of type T, 
but also objects of any extension of T. Thus a variable can be 
polymorphic (i.e., containing objects of multiple types). Depending 
on the type of the object stored in a variable at run time, messages 
are carried out differently. If variable f contains a Rectangle object, 
f.Area invokes the Area procedure for rectangles (Fig. 1.6 a); if f 
contains a Circle object, f.Area invokes the Area procedure for 
circles (Fig. 1.6 b). 

Area

Area

Variable f Variable f 

f.Area f.Area

containing a rectangle object containing a circle object

a) b)  

Fig. 1.6  Dynamic binding: the message f.Area is carried out by the  
Area procedure of the object that is stored in the variable f at run time 

Dynamic binding has also been known for a long time in the form 
of procedure variables. The activation of a procedure variable 
causes the invocation of the procedure contained in it at run time. 
Working with procedure variables, however, is troublesome and 
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error-prone, while dynamic binding in object-oriented languages 
represents an elegant and reliable solution. 

Extensible abstract data types with dynamically bound 
messages are called classes. Classes are the basic building blocks of 
object-oriented programming. They will be treated in detail 
beginning in Chapter 4. In summary we can say: 

Object-oriented programming means programming with abstract 
data types (classes) using inheritance and dynamic binding. 

1.4 How OOP Differs from  
Conventional Programming 

Upon first contact with OOP, one immediately notices its 
unaccustomed terminology. We work with classes instead of data 
types, and we send messages instead of calling procedures. These 
terms were introduced in Smalltalk [GoR83], one of the first object-
oriented languages, and have gained widespread acceptance 
despite the fact that (apart from subtle differences) conventional 
terminology would have sufficed. 

Object-oriented 
terminology 

Table 1.7 translates the most important terms of object-
oriented languages into conventional terminology. The object-
oriented terms are usually more concise and handier than their 
conventional counterparts. Therefore we will use them throughout 
this book. The reader should be aware, however, that these terms 
do not represent radically new concepts, but have their 
corresponding terms in conventional programming. 

Object-oriented term 
 

Conventional term 
 

Class 
Object 
Message 
Method

Extensible abstract data type 
Instance of a class 
Procedure call (dynamically bound) 
Procedure of a class

 

Table 1.7  Object-oriented terminology 

Another difference is the unaccustomed syntax of procedure calls 
in object-oriented languages. In order to invoke a procedure that 
draws a circle with a given color , we write: 

 
circle.Draw(color) 
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We say that we send the message Draw to the object stored in circle 
(or simply to the object circle). The message merely represents a 
request rather than a procedure. It is the object that determines 
which procedure is to carry out the request. Because the object is 
the focus of attention, circle is written in front of the message name. 

These differences, however, are of minor importance. Instead, 
the following properties are more essential: 

 
• concentration on the data 
• emphasis on reusability 
• programming by extension 
• distributed state and distributed responsibilities 
 
Object-oriented programming focuses on the objects rather than on 
the procedures. In fact, there are programmers who insist that no 
procedure should exist that is not associated with some object. This 
goes too far, for there are certainly situations in which the 
algorithm bears more weight than the data. Nevertheless, data are 
usually the central points of object-oriented design around which 
the procedures crystallize. 

Object-oriented design strives harder to achieve reusability 
than conventional design does. The goal of most conventional 
design methods, such as stepwise refinement [Wir71], is to find a 
customized solution to a specific problem. This results in tailored 
programs that are usually correct and efficient but very sensitive to 
changes in the requirements. Even a small change in the specifi-
cations could scrap the entire design. 

Concentration on 
the data 

Emphasis on 
reusability 

In object-oriented design, the goal is not to tailor the classes to 
the clients, but rather to design the classes independently of their 
context and adapt the clients to the classes. One strives to make the 
classes more general than would be necessary for a specific 
application. This requires additional time during development, but 
pays off long term: the classes can be reused in other programs for 
which they were not originally designed. 

Object-oriented software is seldom written from scratch. OOP 
typically means extending existing software. Components such as 
windows, menus and switches are usually available as 
semifinished products in a library; they can be extended to meet 
specific requirements. Whole frameworks of classes can be taken 
from such libraries and extended to a complete program. 

Programming by 
extension 
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In conventional programs the program state is stored in the 
global variables of the main program. Although the main program 
invokes procedures, the procedures usually do not have a state of 
their own, but either transform input data into output data, or 
work on global data (Fig. 1.8). 

Distributed state 
and distributed 
responsibilities 

Procedures

Global data  

Fig. 1.8  Calling graph of procedures working on a set of global data 

In object-oriented programs the state is distributed among 
multiple objects. Each object has its own state (its own data) and a 
set of procedures working on that state. The object is responsible 
not only for a single computation, but for a whole set of services. 

Both state and responsibilities are more distributed in object-
oriented programs. The main program and its global data are less 
important and often do not even exist. Objects communicate with 
one another in order to perform a specific task (Fig. 1.9). An object 
knows what other objects are responsible for, but does not know 
how they fulfill these responsibilities. 

 

Fig. 1.9  Objects communicate by means of messages. Each object is 
responsible for a set of services that it provides to other objects. 

Let us examine the example of a window system that, among other 
things, processes mouse clicks. An object-oriented window system 
registers such clicks, but it does not process them itself. It is not 
aware of the specific window types and hence does not know how 
they would react to mouse clicks (perhaps by positioning an 
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insertion point, by marking selected text, by drawing a figure, etc.). 
Thus it passes the click on to the respective window object and 
leaves further processing to that window. Processing mouse clicks 
is not the responsibility of the window system, but of the window 
in which the mouse key was pressed. 

1.5 Classes as Abstraction Mechanisms 

Classes allow the modeling of real world entities. It is interesting 
to look at their history in programming languages. The driving 
force behind the introduction of classes was the striving for 
abstraction and the desire to bridge the semantic gap between 
problem-oriented specifications and machine-oriented programs. 

Semantic gap 

Initially, abstractions for data and for operations were 
developed independently, but for some years there has been the 
tendency to combine them. Object-oriented programming is a 
consequence of this trend (Fig. 1.10). 
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Machine instructions

Assembler instructions

Standard statements 
(Assignment, If, Loop)

Procedures

Modules

Abstract data types

Classes

Standard types 
(Integer, Char, Real)

User-defined data types

Named memory cells

Memory addresses

Readability

Improvement

Machine 
independence

Virtual 
languages

Information 
hiding

Multiple 
instances

Inheritance, 
dynamic binding

Data Operations

 

Fig. 1.10  The development of abstractions in programming languages 

The earliest programs used memory cells as data and machine 
instructions as operations. The greatest problem in programming 
was to map real-world entities such as a customer or an account 
onto the machine level. There was a broad gap between the 
problem domain and the program. 

The first improvement came with assemblers, which made it 
possible to give memory cells a name and a primitive structure, 
and replaced binary instruction codes with mnemonic instruction 
names. This improved the readability of programs, but contributed 
little to reducing the semantic gap. 

Only with the advent of higher programming languages such 
as Fortran could the semantic gap be reduced. Now arithmetic 
expressions could be written in common mathematical notation 
rather than needing to be reduced to a sequence of machine 
instructions. The first simple data types such as Integer and Real 
were introduced along with a set of operations that could be 
applied to them. Although the data types and operations were 

Variable names 
and mnemonic 
operation names 

Standard types 
and standard 
operations 
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determined by the programming language, the machine indepen-
dence that was achieved represented immense progress in the 
level of abstraction. 

Note that Integer has almost all the properties of an abstract 
data type. Users of Integer variables do not need to know whether 
the most significant bit is left or right, or which machine 
instructions are used to realize the + operation. The only difference 
with regard to abstract data types is that Integer is built into the 
programming language, while abstract data types are defined by 
the programmer. 

In the 1960s languages like Pascal were developed that 
allowed the programmer to create a virtual language. One no 
longer had to restrict oneself to the data types and operations of a 
particular language; instead, the programmer could define custom 
data types and custom operations in the form of procedures. The 
resulting virtual language was tailored to a specific problem 
domain and thus more problem-oriented than a concrete language. 

So far, data and operations had developed separately, 
although it is interesting to note that similar developments took 
place almost simultaneously in the two branches. First they 
achieved better readability, then machine independence, and 
finally more problem orientation. At the end of the 1970s it was 
recognized that data and their associated operations should be 
combined into modules. This brought more order into programs. 
Being collections of data and operations, modules are better suited 
to modeling real-world entities than procedures are. Modules are 
taken for granted in most modern programming languages; 
without them the development of large program systems would be 
much more complicated and error-prone. 

The problem with modules is that there is only one instance of 
them. If multiple copies are needed, one has to use abstract data 
types which, like modules, consist of data and operations, but can 
be used to declare several variables of this type. Abstract data 
types already existed in languages such as Modula-2 and Ada. 

Object-oriented languages introduced the concept of classes. 
Classes are abstract data types supporting inheritance and 
dynamic binding. They are perfectly suitable to modeling real-
world entities such as sensors, switches, or displays in software. 
The semantic gap between the problem domain and the program 
nearly disappears. 

User-defined data 
types and 
procedures 

Modules 

Abstract data 
types 

Classes 



 

1.6 History of Object-Oriented Languages 

Object-oriented programming is by no means new. The term was 
coined in the early 1970s in connection with Smalltalk [GoR83], a 
programming language developed by a research group at Xerox 
PARC. The roots of OOP, however, go back even farther to the 
language Simula [BDMN79], which was developed at the 
University of Oslo in 1967. Simula already had, in essence, all the 
properties of today's object-oriented languages. Thus OOP was 
around already a quarter of a century ago, which makes it even 
more surprising that the approach only recently began to gain 
widespread acceptance. This probably stems from the fact that 
Simula and Smalltalk were considered specialized languages: 
Simula was designed as a simulation language, and Smalltalk was 
viewed as a toy by many computer scientists. The value of classes 
for general programming was recognized only later. 

Smalltalk became the prototype of object-oriented languages. 
It still is one of the most consistent OOP languages, for all its data 
types are classes and all its operations are messages. Smalltalk is 
usually interpreted, making its execution slow. Although newer 
Smalltalk systems do generate machine code, message dispatching 
is still interpretative. Furthermore, Smalltalk does not allow static 
type checking. This limits its suitability for larger software 
systems. 

Smalltalk 

In the mid-1980s many new object-oriented languages 
emerged; most of them were hybrid in nature and were extensions 
of existing languages such as Pascal and C. Hybrid languages 
include conventional data types (such as Integer and arrays) in 
addition to classes, and procedures in addition to messages. These 
languages permit type checking at compile time. Programs are 
translated into machine code, improving their efficiency over 
interpreted systems. The ease of switching from a familiar 
language like Pascal to a dialect like Object-Pascal [Sch86] 
contributed to the acceptance of such extensions and thus of object-
oriented programming in general. Object-oriented dialects are now 
available for a wide range of languages. 

Hybrid languages 

Oberon-2, the language used in this book, is also a hybrid. In 
fact, Oberon-2 is even closer to conventional languages because it 
does not have a special class construct: Classes are simply records 
that contain procedures in addition to data. 

Oberon-2 

 



 

1.7 Summary 

The most significant properties of OOP are the following: 
 

(1) Data and operations are combined into classes that serve as 
types for objects. 

(2) Classes can be extended to create new classes containing 
additional data and operations. Objects of an extended class 
can be used wherever objects of their base class are permitted. 

(3) Operations on objects are usually not performed by procedure 
calls; instead, objects are sent messages. A message is a 
request, and it is up to the receiving object to determine which 
procedure is to handle the request. Objects communicating via 
messages are more loosely coupled than software components 
statically connected via procedure calls. 

 



2 Oberon-2 

Throughout this book we will use the programming language 
Oberon-2, an object-oriented language in the tradition of Pascal 
and Modula-2 

This chapter introduces the reader to Oberon-2. We do not 
provide an introduction to programming, but assume that the 
reader is already able to read and write programs. Anyone who 
understands Pascal or, better yet, Modula-2 can read Oberon-2 
programs without difficulty. Thus Oberon-2 is only described 
informally on the basis of several examples. Answers to more 
detailed questions can be found in the language definition in 
Appendix A. 

Oberon-2 evolved from Oberon, which, like its predecessors 
Pascal and Modula-2, was developed by Niklaus Wirth [ReW92]. 
Several features of Modula-2 such as variant records, enumeration 
types and subrange types were omitted in Oberon. The language 
concentrates on the essentials and is thus well suited for both 
education and practice. New features in Oberon include the 
concept of type extension (inheritance); Oberon-2 finally adds 
type-bound procedures (methods). 

Oberon is not only a programming language, but also an 
operating system that provides a run-time environment with 
command activation, garbage collection, dynamic loading of 
modules, and certain run-time data structures [Rei91, WiG92; see 
also Appendix A.12.4]. In Oberon the language is interwoven with 
the operating system. For the user to fully enjoy the power of 
Oberon, the language needs to be combined with the Oberon 
System, under which both Oberon and Oberon-2 programs run. 
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2.1 Features of Oberon-2 

Oberon-2's most important features are block structure, modu-
larity, separate compilation, strong type checking at compile time, 
type extension, and type-bound procedures. 

Block structure allows nested procedures with separate scopes 
for identifiers. Modules permit the decomposition of large 
programs into smaller, comprehensible parts that can be compiled 
separately. The compiler ensures that their interfaces match. This 
is called separate compilation to distinguish it from independent 
compilation, in which no interface checking takes place (such as in 
Fortran or C). 

Strong type checking means that the compiler checks at every 
operation (assignment, arithmetic, relational, etc.) whether 
variables are used according to their declaration and hence 
according to the intentions of the programmer. In this way many 
errors can already be detected at compile time, which drastically 
reduces the cost of corrections.  

The object-oriented features of Oberon-2 are not yet treated in 
this chapter. They are described in Chapters 4 to 6 and then used 
extensively throughout the rest of this book. 

2.2 Declarations 

All identifiers appearing in a program (i.e., all names of constants, 
types, variables, and procedures) must be declared before they are 
used. In their declaration they are assigned a data type. Oberon-2 
has basic types and composite types. The basic types are listed in 
Table 2.1. 

Data types 

Integer numbers 
 
  
Real numbers 
 
ASCII characters 
Boolean values  
Sets

Type name 
 
SHORTINT 
INTEGER 
LONGINT 
REAL 
LONGREAL 
CHAR 
BOOLEAN 
SET

Typical range 
 
-128..127 
-32768..32767 
-2147483648..2147483647 
±3.40282E38 (4 bytes) 
 ±1.79769D308 (8 bytes) 
0X..0FFX (0..255 hexadecimal) 
TRUE, FALSE 
Sets of numbers in the range 0..31

 

Table 2.1  Basic types in Oberon-2 
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The ranges of the basic types are not defined by the language. On 
most machines, however, the values given in the right column of 
Fig. 2.1 apply. Composite data types are arrays, records, pointers and 
procedure types. 

An array is a collection of elements all of the same type (the 
element type). The elements do not have individual names, but are 
selected via an index. Examples of array variables are: 

Arrays 

 
VAR 
 a: ARRAY 10 OF CHAR;  (* a has 10 elements: a[0], …, a[9] *) 
 b: ARRAY 100, 100 OF INTEGER; 
 

Arrays are indexed with integers, the first element having the 
index 0. The elements are referenced as a[i] and b[i, j], whereby the 
index values are checked to assure that they are within the 
declared range. 

A record is a collection of named fields of arbitrary type, for 
example: 

Records 

 
TYPE 
 Person = RECORD 
  name: ARRAY 32 OF CHAR; 
  idNumber: INTEGER; 
  salary: REAL 
 END; 
 

IF r is a variable of type Person, its fields can be referenced as 
r.name, r.idNumber and r.salary. Records can be extended to create 
new types (see Chapter 5). 

A pointer variable contains the address of a record or an array, 
or it has the value NIL, which means that it does not point to any 
record or array. Examples of pointer types are: 

Pointers 

 
TYPE 
 PersonPtr = POINTER TO Person; 
 Box = POINTER TO RECORD x, y, width, height: INTEGER END; 
 Vector = POINTER TO ARRAY 100 OF INTEGER; 
 String = POINTER TO ARRAY OF CHAR; 
 

If p is a variable of type PersonPtr, then p^ is the (nameless) record 
of type Person (the pointer base type) to which p points. The field 
name is referenced with p^.name. For the sake of simplicity the 
symbol ^ can be omitted, leaving p.name. This is an abstraction 
from the fact that p is only a pointer to a record and not the record 
itself. However, one must be aware that in the assignment q:=p 
only the pointer p is assigned and not the record p^. The 
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invocation of the predeclared procedure NEW(p) allocates memory 
for p^. 

If s is a variable of type String, then s^ is the array to which s 
points. The array has been declared without length and is thus 
called an open array. Its length is specified at run time. s^[i] denotes 
the element with index i. Here, too, the symbol ^ can be omitted, 
leaving s[i]. NEW(s, n) allocates memory for the array s^ with n 
elements. 

In Oberon, dynamically allocated memory is never explicitly 
deallocated. Instead, the Oberon System features a garbage collector 
that collects and recycles regions of memory that are no longer 
referenced by a pointer. This resolves a frequent source of errors: 
The programmer could deallocate memory to which some pointer 
still refers. Dereferencing via such a dangling pointer would lead 
to an error. 

Variables of type procedure (procedure variables) contain as 
their value either a procedure or NIL (no procedure). When a 
procedure variable is invoked, the procedure currently stored in it 
is activated. In the following example the procedure WriteTerminal 
is assigned to the procedure variable write: 

Procedure types 

 
VAR write: PROCEDURE (ch: CHAR); 
 
PROCEDURE WriteTerminal (ch: CHAR); 
BEGIN … 
END WriteTerminal; 
 
write := WriteTerminal; 
write(ch);   (*activates WriteTerminal*)  

2.3 Expressions 

Expressions describe the computation of values and consist of 
operators and operands. There are four kinds of expressions, 
which are shown in Table 2.2. 

Arithmetic expressions 
Boolean expressions 
Relational expressions 
Set expressions

Operators 
 
+, -, *, /, DIV, MOD 
&, OR, ~ 
=, #, <, <=, >, >=, IN 
+, -, *, /

Result type 
 
Numeric 
BOOLEAN 
BOOLEAN 
SET

 

Table 2.2  Kinds of expressions in Oberon-2 
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The meaning of the arithmetic and relational operators is obvious. 
It should be noted, however, that the compatibility rules in 
Oberon-2 are less restrictive than in Pascal or Modula-2. In 
particular, numeric types (INTEGER, REAL, etc.) can be mixed in 
arithmetic expressions, and character arrays can be compared. The 
following examples will answer most questions. The detailed 
compatibility rules can be found in the language definition in 
Appendix A. 

Arithmetic 
expressions and 
relational 
expressions 

 
VAR 
 i: INTEGER; j: LONGINT; r: REAL; 
 set: SET; 
 s: ARRAY 32 OF CHAR; 
 sp: POINTER TO ARRAY OF CHAR; 
 p, p1: PersonPtr;  (*see declaration in previous section*) 
 proc: PROCEDURE (x: INTEGER); 
 
Expression Result type 
 
3 SHORTINT 
300 INTEGER 
100000 LONGINT 
0X CHAR 
i + j LONGINT 
i + 3*(r-j) REAL 
i DIV j LONGINT 
i / j REAL 
(s > "John") OR (s = sp^) BOOLEAN 
s = "a" BOOLEAN 
p # p1 BOOLEAN 
proc = NIL BOOLEAN 
~ (i IN set) BOOLEAN 
 

The expression ~x means the negation of x. The operators & and 
OR are not commutative and are evaluated as follows: 

Boolean 
expressions 

 
a & b if a then b else false end 
a OR b if a then true else b end 
 

This is called short circuit evaluation because the evaluation of the 
expression stops as soon as its value is known; this proves 
especially useful for expressions like the following: 

 
IF (p # NIL) & (p.name = "John") THEN … END 
 

If p = NIL, the second part of the expression is not evaluated; thus 
improper dereferencing of p is avoided. 
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The set operators have the following meanings: Set expressions 
 
+ Union {0..7} + {5..9}  = {0..9} 
- Difference (x-y = x*(-y)) {0..7} - {5..9}  = {0..4} 
* Intersection {0..7} * {5..9}  = {5..7} 
/ Symmetric difference {0..7} / {5..9}  = {0..4, 8..9} 
 (x/y = (x-y)+(y-x)) 

 
The expression i IN s tests whether the number i is contained in the 
set s. 

2.4 Statements 

Oberon-2 provides elementary statements (assignment, procedure 
call, return, exit), as well as structured statements for selection (if, 
case) and iteration (while, repeat, for, loop). The meanings of these 
statements are so common that the following examples should 
suffice. The reader can find details as well as the meanings of the 
predeclared procedures (ORD, CHR, etc.) in the language 
definition (Appendix A). 

 
p.name := "John" (*assignment*) 
i := 10*i + ORD(ch)-ORD("0") 
 
WriteInt(i, 10) (*procedure call*) 
i := Length(text) 
 
r := p MOD q; (*while*) 
WHILE r # 0 DO 
 p := q; q := r; r := p MOD q 
END 
 
i := 0; (*repeat*) 
REPEAT 
 s[i] := CHR(ORD("0") + n MOD 10); 
 n := n DIV 10; 
 INC(i) 
UNTIL n = 0 
 
FOR i := 0 TO LEN(s)-1 DO s[i] := 0X END (*for*) 
 
i := 0; (*loop, exit, if, return*) 
LOOP 
 ReadChar(ch); 
 IF i = LEN(s) THEN Error; RETURN 
 ELSIF ch = 0X THEN EXIT 
 END; 
 s[i] := ch; INC(i) 
END 
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CASE ch OF (*case*) 
 "a".."z", "A".."Z": ReadIdentifier 
| "0".."9": ReadNumber 
| " ' ", ' " ': ReadString 
ELSE ReadSpecial 
END 
 

Note that string constants can be assigned to a character array of 
fixed length as long as the array is sufficiently long to hold the 
string and the terminal character 0X that is automatically inserted 
during the assignment. 

Also note that every structured statement ends with a 
keyword (usually END) and may contain a whole sequence of 
statements. Contrary to Pascal, the statement sequence need not be 
bracketed in BEGIN … END. 

2.5 Procedures 

For procedures, an example will also suffice. The procedure below 
converts a number n to a character array hex that represents the 
hexadecimal representation of the number. 

 
PROCEDURE IntToHex (n: LONGINT; VAR hex: ARRAY OF CHAR); 
 VAR i, k: INTEGER; s: ARRAY 8 OF CHAR; 
 
 PROCEDURE Hex (i: LONGINT): CHAR; 
 BEGIN (*0 <= i <= 15*) 
  IF i < 10 THEN RETURN CHR(i + ORD("0")) 
  ELSE RETURN CHR(i-10 + ORD("A")) 
  END 
 END Hex; 
 
BEGIN (*IntToHex: assumes n >= 0*) 
 i := 0; 
 REPEAT s[i] := Hex(n MOD 16); INC(i); n := n DIV 16 UNTIL n = 0; 
 k := 0; 
 REPEAT DEC(i); hex[k] := s[i]; INC(k) UNTIL i = 0; 
 hex[k] := 0X 
END IntToHex; 
 

Procedures consist of a declaration part, in which constants, types, 
variables and further procedures can be declared locally, and a 
statement part (the body), which is executed when the procedure 
is invoked. The parameters declared in the procedure heading (n 
and hex) are called formal parameters. They are considered local to 
the procedure. The parameters specified at the procedure call are 
termed actual parameters. 
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The scope of an identifier, i.e., the range in which the identifier 
can be used, extends textually from its declaration to the end of the 
block (procedure or module) in which it is declared. It overrides 
the scope of any identically named identifier declared in an outer 
block. The scope of the parameter i in Hex overrides the scope of 
the variable i in IntToHex. Nested scopes allow the declaration of 
arbitrary identifiers in every procedure without having to bother 
about whether an identifier was already declared outside the 
procedure. Good programming style suggests that a procedure 
work only with its own local variables (including its parameters) 
and that it not use global variables or—even worse—local variab-
les of an enclosing procedure. 

In the procedure IntToHex, hex is called a variable parameter 
because it is declared with the symbol VAR. A variable parameter 
has the same address as its corresponding actual parameter, which 
must be a variable. Thus if hex is modified in the procedure, the 
actual parameter is modified, too. Variable parameters are used as 
output parameters. 

Scope 

Parameters 

n is a value parameter because during the procedure invocation 
the value of the actual parameter is assigned to n. Thus n contains 
a local copy of the actual parameter. Changing the value of n does 
not affect the value of the actual parameter. Value parameters are 
used as input parameters. 

hex is an open array parameter. Its length is determined at run 
time and is equal to the length of the actual parameter, which must 
likewise be an array. 

IntToHex is a procedure that is invoked as a statement. Hex, on 
the other hand, is a function procedure that is invoked as part of 
an expression. It returns a value that is used in the evaluation of 
the expression. The value that a function procedure is to return 
must be specified in a return statement. A function procedure is 
characterized by the declaration of a result type following its 
formal parameter list. 

Procedures can invoke themselves recursively. With each 
invocation, a new set of local variables is allocated, so that every 
invocation of the procedure works with its own local variables. 

A number of standard procedures such as ORD, CHR, LEN 
and COPY are predeclared. Their descriptions are given in 
Appendix A.10.3. 

Function 
procedures 

Recursion 

Standard 
procedures 
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2.6 Modules 

Large programs are normally decomposed into smaller units, 
called modules. A compiler, for example, consists of a scanner, a 
parser, a code generator, and a table handler (Fig. 2.3). Each of 
these modules works on a well-defined subdomain of the problem 
and is easier to understand than the compiler as a whole. 

Parser

Scanner Code generator

Table handler
 

Fig. 2.3  Modules of a compilers: Arrows indicate the "is used by" 
relationship 

A module is a unit with a clearly defined interface; it can be used 
without knowledge of how it is implemented, and it can be 
implemented without knowledge of the context in which it might 
later be used. 

The module 
interface 

In line with this definition, a module in Oberon-2 is a 
collection of constants, types, variables, and procedures that form 
a logical and syntactical entity. Its interface consists of the 
declarations of the identifiers that can be used by other modules. 
The module is said to export these identifiers. 

Let us take the example of a module that represents the 
implementation of a dictionary in which word pairs can be entered 
and looked up. The first word serves as the key and the second as 
the value. 

When designing a module like this, we first define its interface 
by writing a skeletal module consisting only of the declarations of 
the exported identifiers. For the dictionary this could be: 

 
MODULE Dictionary; 
 TYPE String* = ARRAY 32 OF CHAR; 
 PROCEDURE Clear*; END Clear; 
 PROCEDURE Enter* (key, value: String); END Enter; 
 PROCEDURE Lookup* (key: String; VAR value: String); END Lookup; 
 PROCEDURE Print*; END Print; 
END Dictionary. 
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An identifier is marked as exported by adding an asterisk (*) after 
its name in its declarations. Thus the module exports the type 
String, as well as the procedures Clear for erasing the dictionary, 
Enter for entering a new word pair, Lookup to search for a word 
pair with a given key, and Print to output the dictionary on the 
terminal. 

This skeleton is later complemented by further declarations 
and statements until the implementation is complete. Now let us 
tackle the full implementation of module Dictionary. For the sake 
of simplicity, it is implemented using an unsorted linked list. 

Implementation 

 
MODULE Dictionary; 
IMPORT IO; 
 
TYPE 
 String* = ARRAY 32 OF CHAR; 
 Node = POINTER TO NodeDesc; 
 NodeDesc = RECORD 
  key, value: String; 
  next: Node 
 END; 
 
VAR root: Node; 
 
PROCEDURE Clear*; 
BEGIN root := NIL 
END Clear; 
 
PROCEDURE Enter* (key, value: String); 
 VAR p: Node; 
BEGIN 
 NEW(p); p.next := root; root := p; p.key := key; p.value := value 
END Enter; 
 
PROCEDURE Lookup* (key: String; VAR value: String); 
 VAR p: Node; 
BEGIN p := root; 
 WHILE (p # NIL) & (p.key # key) DO p := p.next END; 
 IF p # NIL THEN value := p.value ELSE value := "" END 
END Lookup; 
 
PROCEDURE Print*; 
 VAR p: Node; 
BEGIN p := root; 
 WHILE p # NIL DO 
  IO.Str(p.key); IO.Str("   "); IO.Str(p.value); IO.NL; 
  p := p.next 
 END 
END Print; 
 
BEGIN Clear 
END Dictionary. 
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Note that the types Node and NodeDesc as well as the variable root 
are declared without an export mark and are therefore not visible 
outside Dictionary. 

The interface of the module can be extracted from the 
implementation at any time using a browser (see Section 2.6). The 
browser simply collects the declarations of all exported identifiers 
and shows them in the following form: 

 
DEFINITION Dictionary; 
 TYPE String = ARRAY 32 OF CHAR; 
 PROCEDURE Clear; 
 PROCEDURE Enter (key, value: String); 
 PROCEDURE Lookup (key: String; VAR value: String); 
 PROCEDURE Print; 
END Dictionary. 
 

Note that this is not an Oberon-2 module, but only a special view 
of it, namely its interface. In languages like Modula-2 the pro-
grammer has to write the interface description (the definition 
module) manually and separately from the implementation of the 
module. Consistency between the two documents must be main-
tained manually. In Oberon-2 there is only one document per 
module: the implementation. The interface is only a special view 
on it; it is extracted automatically and therefore always consistent 
with the implementation. This is significant progress over the 
Modula-2 approach. 

For the output of words, Dictionary uses the module IO, which 
is imported at the beginning of Dictionary. IO's interface looks like 
this: 

Import 

 
DEFINITION IO; 
 PROCEDURE Str (s: ARRAY OF CHAR); 
 PROCEDURE Int (i: LONGINT; w: INTEGER); 
 PROCEDURE NL;  (*skip to next line*) 
 … 
END IO. 
 

All identifiers exported by IO can be used in Dictionary or any 
other module that imports IO. They only need to be qualified with 
the name of the exporting module. The procedure Dictionary.Print 
contains invocations of IO.Str and IO.NL, for example. 

An important feature of Oberon-2 is that the compiler checks 
the correct use of interfaces. When a module is compiled, a 
description of its interface is written to a symbol file in machine-
readable form. During the compilation of a client module, the 
compiler obtains the symbol files of the imported modules and 

Separate 
compilation with 
interface checking
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thus knows the identifiers exported by those modules as well as 
their types. This permits type checking as if the exported identi-
fiers had been declared in the importing module itself. 

This is called separate compilation, in contrast to independent 
compilation, in which modules can be individually compiled, but 
the compiler does not check the interfaces. 

During the compilation of Dictionary the compiler checks 
whether IO is used in accordance with its interface. If this interface 
happens to be modified later, then the previous check is no longer 
valid, and Dictionary has to be recompiled to recheck the correct 
use of IO. Meanwhile the operating system makes sure that 
Dictionary cannot be executed until it has been recompiled. Thus 
any modification in the interface of a module M would also 
require the recompilation of all its clients (all modules that import 
M). 

In addition to its procedures a module can also contain its 
own code. This code is called the module body (the statement 
sequence at the end of Dictionary). The module body primarily 
serves to initialize the global data of the module. It is executed as 
soon as the module is loaded. Prior to that, however, the bodies of 
all imported modules are executed. (The imported modules need 
to be initialized before the importing module, or they could not be 
used in the body of the importing module.) This means that 
Oberon-2 does not permit cyclic import relationships among 
modules. The initialization sequence would otherwise be 
undefined. 

A variable or a record field can be exported as read-only so 
that clients can read its data, but they cannot make modifications. 
This increases the reliability of the system, because the exporting 
module can be sure that clients will not destroy its data. Read-only 
variables and fields are marked with a minus sign (-) instead of an 
asterisk (*) in their declaration. A file system, for example, could 
write-protect its data as follows: 

Module body 

Read-only export 

 
MODULE FileSystem; 
TYPE 
 File* = POINTER TO FileDesc; 
 FileDesc* = RECORD 
  name-: ARRAY 32 OF CHAR; 
  length-: LONGINT; 
  … 
 END; 
 
VAR resultCode-: INTEGER; 
… 
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END FileSystem. 
 

The fields name and length as well as the variable resultCode can be 
read but not modified by clients. Only the exporting module 
FileSystem can modify them, because they are declared in that 
module. If a structured variable is read-only, this also applies to its 
components. Not only file.name but also file.name[i] is read-only. 

In languages such as Modula-2, data that are not to be modi-
fied must be made available via access procedures. Read-only 
export is a more efficient solution. 

What are modules for? First of all, they are a structuring 
medium. They group data and their associated operations together 
and help to create order in a program. 

The purpose of 
modules 

Modules are also an abstraction medium. They hide implemen-
tation details from other modules and provide their services via a 
simple interface. A module forms a wall. Identifiers declared 
within a module are visible outside only if they are exported. 
Identifiers exported by a module A are visible within a module B 
only if A is imported by B. Import and export make the coupling 
between modules visible. 

Finally, a module is a compilation unit. Its source code is stored 
in a file and the resulting object code is written to another file. 
Thus modules are the smallest interchangeable components in a 
system. The code generator in Fig. 2.3 can be replaced with another 
one without recompilation, but not an individual procedure of the 
code generator. 

2.7 Commands 

The explanations thus far referred to the language Oberon-2; this 
section treats features of the Oberon operating system. 

In most operating systems the smallest units that can be 
invoked in dialog with the computer are programs. In the Oberon 
System these units are commands. A command is any parameterless 
procedure P that is exported by a module M. In a typical Oberon 
environment a command is activated by typing its name (M.P) in a 
window and clicking it with the middle mouse button. Usually the 
name of the command is already displayed in some window and 
only needs to be clicked.  

When the command M.P is activated, the module M and all 
modules imported by M are loaded (if they are not already in 
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memory) and the procedure P is executed. After P terminates, M 
remains loaded with all its global data and their values. If M.P (or 
another command from M) is invoked again, M is not loaded 
anew. P finds the values of the global data just as they were left 
after P's last invocation.  

Commands can thus communicate with one another via data 
structures in main memory rather than via files. This is simpler 
and more efficient and makes it possible to hide the data structure 
within the module to which the commands belong. 

Let us now rewrite the Dictionary example of Section 2.6 so 
that Clear, Enter, Lookup and Print can be invoked as commands by 
the user. The interface of Dictionary would look like this: 

 
DEFINITION Dictionary; 
 PROCEDURE Clear; 
 PROCEDURE Enter; 
 PROCEDURE Lookup; 
 PROCEDURE Print; 
END Dictionary. 
 

All four procedures are now commands and can be invoked like 
programs. But how do they obtain their arguments? 

Each command can decide itself what kind of data it accepts 
as arguments: the text following the command name, the text in 
the current selection, the text at the insertion point, or some other 
marked object on the screen. The Oberon System provides 
appropriate procedures to read such arguments. 

Command 
arguments 

In our example, we obtain the arguments from the text follow-
ing the command. The user activates the commands as follows: 

 
Dictionary.Enter  book Buch 
Dictionary.Lookup book 
 

Enter takes the word pair "book Buch" as its parameter and enters 
it in the dictionary. Lookup takes the word "book", searches for it in 
the dictionary, and returns the word "Buch". The command Enter is 
implemented as follows: 

 
PROCEDURE Enter*;  (*read two words following the command text*) 
 VAR s: IO.Scanner; p: Node; 
BEGIN NEW(p); 
 s.SetToParameters; s.Read; (*read first word*) 
 IF s.class = IO.name THEN 
  COPY(s.str, p.key ); s.Read; (*read second word*) 
  IF s.class = IO.name THEN 
   COPY(s.str, p.value); 
   p.next := root; root := p  (*link p to the dictionary*) 
  END 
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 END 
END Enter; 

IO.Scanner is a data type that allows convenient reading of names, 
numbers, characters, and strings (see Appendix C). The Scanner 
variable s is set to the text immediately following the command 
name by s.SetToParameters. s.Read reads the next symbol. Thus the 
command obtains its arguments and can proceed as in Section 2.6. 

Note that Dictionary remains loaded after Enter terminates and 
the data of the dictionary thus retain their values. Succeeding 
invocations of Enter permit additional words to be entered, and 
with Lookup words can be searched for. 

When is Dictionary removed from memory? Oberon's solution 
is that modules must be explicitly unloaded on user demand. The 
Oberon System provides a command for that purpose. After 
Dictionary is unloaded, a new version of it can be loaded. 

It should be noted that Oberon has a linking loader that links 
object modules with other modules only upon loading. There are 
no prelinked object files; rather, each object module is its own file. 

Unloading 
modules 

Linking loader 

The loader also makes sure that each module is in memory 
only once. If module A is loaded that imports an already loaded 
module B, then A is linked to the loaded B and B is not loaded 
anew. Since modules remain in memory after being loaded the 
first time, modules seldom have to be afterloaded. This reduces 
loading time and memory requirements for Oberon programs. 

Commands are a useful language construct. They permit the 
creation of programs with multiple entry points. Commands can 
be invoked interactively without needing a main program. They 
prove especially practical in the creation of large systems 
consisting of several equally important services, such as an 
electronic mail system with services such as sending mail, reading 
mail, deleting mail, etc. Which of these services should become the 
main program and which should be subordinate? Commands 
allow offering all these services on the same level without the need 
to create an artificial superordinate main program. 

Purpose of 
commands 
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Abstraction is the most effective weapon against complexity. It 
means concentrating on the essentials and ignoring the details. 
Large systems can only be made comprehensible by decomposing 
them into modules that are simple from the outside and hide all 
complexity within. 

The principle of abstraction has been successfully applied to 
many technical things; e.g., anybody can operate a television set 
without understanding the circuitry within the device. The same 
should also apply to software. We strive for modules with simple 
interfaces that can be used without knowing their implementation. 
In other words, we want to abstract from concrete data structures 
and attain abstract data structures, or, even better, abstract data 
types or classes. 

3.1 Concrete Data Structures 

In older programming languages like Pascal, all data structures are 
visible. A programmer can define custom data types, yet their 
structure is known to other parts of the program; indeed, the 
structure must be known in order for the programmer to work 
with these data. We call these concrete data structures. 

Let us consider an example of a nontrivial data structure, a 
priority queue, to which elements can be added in any order and 
then retrieved in the order of their priority. For the sake of 
simplicity, we assume that the elements are numbers that simul-
taneously express their priority (smaller numbers representing 
higher priority). One efficient data structure for the implemen-
tation of priority queues is the heap [Sed88]. A heap is a binary tree 
with n elements that are arranged in the tree such that the value of 
the parent is always less than or equal to the value of its two 

Concrete data 
structure for a 
priority queue 
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children. The tree is almost balanced: there exists a number h such 
that all nodes have height h or h-1 (Fig. 3.1). 

1
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9 7 8

3 4 5

4

 

Fig. 3.1 Heap with 10 elements 

Contrary to binary trees, there is no ordering between the two 
children of a node. The value of the left child could be smaller 
than, equal to, or greater than the value of the right child. 
However, the value of the parent is always less than or equal to the 
value of the children, which means that the root has the smallest 
value of the entire structure. 

Fig. 3.1 shows that all levels of the tree except the last one are 
completely filled. The first level contains the element 1; the second 
level the elements 3 and 4; the third level 7, 3, 4 and 5; and so on. If 
the elements are stored in this sequence, an array can be used as 
concrete data structure, as shown in Fig. 3.2. 
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Fig. 3.2 Array representation of the heap in Fig. 3.1 

The advantage of this implementation is that pointers do not need 
to be stored; the children of elements a[i] (if they exist) are located 
at a[2*i] and a[2*i+1]. For a given element a[i], the parent (if it 
exists) is located at a[i DIV 2]. The concrete data structure of a heap 
that can hold up to 127 numbers takes the following form: 

 
VAR 
 a: ARRAY 128 OF INTEGER; 
 n: INTEGER; (*number of elements in the heap*) 
 

A new element is inserted by storing it at the end of the heap (in 
a[n+1]) and then swapping places with its parent (propagating it 
upward) as long as the value of the new element is less than the 
value of its parent. As Fig. 3.3 shows, the number of swaps is of 
order O(log n). 
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Fig. 3.3 Element 2 is appended to the end of the heap and then moved 
upwards until its parent element is of lesser or equal value 

The following statements insert element x in heap a (we assume 
that the value MIN(INTEGER) is stored in a[0] as a sentinel): 

 
(*virtually insert x at a[n]*) 
n := n + 1; 
(*propagate x from a[n] upwards*) 
i := n; 
WHILE x < a[i DIV 2] DO 
 a[i] := a[i DIV 2]; i := i DIV 2 
END; 
a[i] := x 
 

A heap is used in situations that require elements to be removed 
from a set in ascending order of value beginning with the smallest. 
A typical example is a set of processes that are to be ordered 
according to time or priority. 

The smallest element is always located at a[1]. When it is 
removed, the heap must be adjusted. This is done by moving the 
last element a[n] to a[1] and then swapping places with the smaller 
of its children (propagating it downward) as long as it is larger 
than (both) its child(ren) (Fig. 3.4). 
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Fig. 3.4 Element a[1] was removed. Element a[n] = 8 was moved  
to a[1] and is now propagated downward in the tree 

The following code segment removes the smallest element x from 
heap a: 
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x := a[1]; 
(*propagate a[n] from a[1] downwards*) 
y := a[n]; n := n - 1; i := 1; ready := FALSE; 
WHILE (i <= n DIV 2) & ~ ready DO 
 j := i + i; 
 IF (j < n) & (a[j] > a[j+1]) THEN j := j + 1 END;  (*select smaller child*) 
 IF y > a[j] THEN a[i] := a[j]; i := j ELSE ready := TRUE END 
END; 
a[i] := y 
 

Heap a and its number of elements n make up the concrete data 
structure for the priority queue. Clients can access the concrete 
data structure directly, but this is not recommended because of the 
following problems: 

Clients must be familiar with both the declaration of the data 
structure and the algorithms for inserting and removing elements. 
This complicates working with the data and bothers clients with 
unnecessary details. The same code for accessing the data is often 
present in every module that uses the data, thus leading to 
duplication of code. Finally, clients may inadvartently destroy the 
consistency of the data (the heap order). 

Working with concrete data structures further has the 
disadvantage that modifications in the data affect the clients. If the 
implementation of the heap is changed from a fixed-length array 
to a tree in order to allow an arbitrary number of elements to be 
stored in it, then the access algorithms also change and all clients 
must be adapted. This is unpleasant because it requires knowing 
all locations where the data structure is used. It is easy to miss one. 

Clients are 
bothered with 
details 

Modifications in 
the data affect the 
clients 

The clients actually do not care how the priority queue is 
implemented. They simply want to use it as a black box. More 
important, they do not want to be affected by changes in its 
implementation. The concrete data structure thus needs to be 
hidden. 

3.2 Abstract Data Structures 

An abstract data structure is a unit consisting of data and 
procedures. The data are hidden within the unit and can only be 
accessed by means of dedicated procedures (Fig. 3.5). The data 
structure is termed abstract because only its name and its interface, 
but not its implementation, are known. 
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Fig. 3.5 Abstract data structure:  
Heap a is accessible only via dedicated procedures 

Abstract data structures support information hiding [Par72]. Their 
implementation is hidden behind an interface that remains un-
changed, even if the implementation changes. 

Abstract data structures have a state that can be modified by 
means of access procedures. The state is expressed in the values of 
the data structure and serves to store values between successive 
procedure invocations. 

Information hiding

State 

In Oberon-2, abstract data structures are implemented as 
modules that hide the data from clients by not exporting them. The 
priority queue thus becomes the module PriorityQueue with the 
following interface: 

 
DEFINITION PriorityQueue; 
 VAR n-: INTEGER;  (*number of elements*) 
 PROCEDURE Insert (x: INTEGER); 
 PROCEDURE Remove (VAR x: INTEGER); 
 PROCEDURE Clear; 
END PriorityQueue. 
 

The module's three procedures Insert an element, Remove the 
smallest element, and Clear the queue, respectively. The number of 
elements is not provided by an access procedure, but directly as 
variable n. It is unlikely that its implementation will change, thus 
its type need not be hidden behind an access procedure. The 
variable is exported read-only, however, because clients could 
otherwise destroy the correctness of the module. The imple-
mentation of PriorityQueue takes the following form: 

 
MODULE PriorityQueue; Priority queue as 

an abstract data 
structure 

CONST length = 128; 
VAR 
 n-: LONGINT; (*number of elements*) 
 a: ARRAY length OF INTEGER; 
 
PROCEDURE Clear*; 
BEGIN n := 0, a[0] := MIN(INTEGER) 
END Clear; 
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PROCEDURE Insert* (x: INTEGER); 
 VAR i: INTEGER; 
BEGIN 
 IF n < length - 1 THEN 
  n := n + 1; i := n; 
  WHILE x < a[i DIV 2] DO  
   a[i] := a[i DIV 2]; i := i DIV 2  
  END; 
  a[i] := x 
 END 
END Insert; 
 
PROCEDURE Remove* (VAR x: INTEGER); 
 VAR y, i, j: INTEGER; ready: BOOLEAN; 
BEGIN 
 IF n > 0 THEN 
  x := a[1]; y := a[n];  
  n := n - 1; i := 1; ready := FALSE; 
  WHILE (i <= n DIV 2) & ~ ready DO 
   j := i + i; 
   IF (j < n) & (a[j] > a[j+1]) THEN j := j + 1 END; 
   IF y > a[j] THEN a[i] := a[j]; i := j ELSE ready := TRUE END 
  END; 
  a[i] := y 
 END 
END Remove; 
 
BEGIN Clear 
END PriorityQueue. 
 

The implementation of the data and the access algorithms is now 
hidden. Clients see PriorityQueue as a black box that is easy to use 
via its procedures Clear, Insert and Remove. 

 
This solution has several advantages: Advantages 

 
(1) Clients do not need to be familiar with the implementation of 

PriorityQueue, which makes it easier for them to use the data 
structure. 

(2) The implementation can be changed later without needing to 
adapt the clients. If a is implemented as a tree rather than as 
an array (Fig. 3.6), the clients do not notice anything as long as 
the interface of PriorityQueue remains unchanged. 

(3) The data are encapsulated in the module PriorityQueue and 
protected there against inadvertent destruction. 



 3.2 Abstract Data Structures 35 

a

Remove ClearInsert

 

Fig. 3.6 Priority queue with modified implementation  
but unchanged interface  

Data abstraction also has some disadvantages: Drawbacks 
 

(1) Using PriorityQueue is less efficient than using a concrete data 
structure because access to the data is now channelled 
through procedures. However, the cost of a procedure 
invocation is usually low in relation to the cost of the access 
algorithm. 

(2) The data can only be accessed by the operations specified in 
the interface. If we later need to search for a particular element 
in the priority queue, say, this would be impossible because 
the module lacks an appropriate access procedure. 

 
Information hiding should always be used with care and never for 
its own sake. If all data are hidden as a matter of principle, the 
simplicity, the flexibility and the extensibility of a module may 
suffer. One should always be aware of the actual goal: to make the 
use of a module as easy as possible and to hide changes in its 
implementation from clients. The module PriorityQueue would not 
have been simplified if n had been exported as an access procedure 
rather than as a variable. The point is not that clients must not 
access private data, but that they need not do so in order to use the 
module. 

Information hiding

3.3 Abstract Data Types 

Of an abstract data structure there is only one instance. If we need 
multiple instances, we must use abstract data types. An abstract 
data type is likewise a unit consisting of data and procedures, but 
contrary to an abstract data structure, it can be used as a type; i.e., 
multiple variables of this type can be declared. 
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In Oberon-2 an abstract data type is implemented as a record 
whose fields can individually be hidden by not exporting them. 
The priority queue in our example can be implemented as an 
abstract data type as follows: 

 
DEFINITION PriorityQueues; 
 TYPE 
  Queue = RECORD 
   n-: INTEGER  (*number of elements*) 
  END; 
 PROCEDURE Insert (VAR q: Queue; x: INTEGER); 
 PROCEDURE Remove (VAR q: Queue; VAR x: INTEGER); 
 PROCEDURE Clear (VAR q: Queue); 
END PriorityQueues. 
 

Queue is a record whose fields represent the data of the priority 
queue. Among these fields, n is exported read-only, while other 
fields are hidden (not exported). Note that each variable of type 
Queue has its own set of data. 

The access procedures have an additional parameter q of type 
Queue designating the record to which the procedures refer. 
Because the data of the priority queue are changed by the pro-
cedures, q must be a variable parameter. The implementation of 
PriorityQueues looks like this: 
 

MODULE PriorityQueues; Priority queue as 
an abstract data 
type 

CONST length = 128; 
TYPE 
 Queue* = RECORD 
  n-: LONGINT; (*number of elements*) 
  a: ARRAY length OF INTEGER 
 END; 
 
PROCEDURE Clear* (VAR q: Queue); 
BEGIN q.n := 0, q.a[0] := MIN(INTEGER) 
END Clear; 
 
PROCEDURE Insert* (VAR q: Queue; x: INTEGER); 
 VAR i: INTEGER; 
BEGIN 
 IF q.n < length - 1 THEN 
  q.n := q.n + 1; i := q.n; 
  WHILE x < q.a[i DIV 2] DO q.a[i] := q.a[i DIV 2]; i := i DIV 2 END; 
  q.a[i] := x 
 END 
END Insert; 
 



 3.3 Abstract Data Types 37 

PROCEDURE Remove* (VAR q: Queue; VAR x: INTEGER); 
 VAR y, i, j: INTEGER; ready: BOOLEAN; 
BEGIN 
 IF q.n > 0 THEN 
  x := q.a[1]; y := q.a[n]; q.n := q.n - 1; i := 1; ready := FALSE; 
  WHILE (i <= q.n DIV 2) & ~ ready DO 
   j := i + i; 
   IF (j < q.n) & (q.a[j] > q.a[j+1] THEN j := j + 1 END; 
   IF y > q.a[j] THEN q.a[i] := q.a[j]; i := j ELSE ready := TRUE END 
  END; 
  q.a[i] := y 
 END 
END Remove; 
 
END PriorityQueues. 
 

Clients can now create multiple Queue variables, e.g.: 
 
VAR negNumbers, posNumbers: PriorityQueues.Queue; 
 

and use them separately: 
 
PriorityQueues.Clear(negNumbers); PriorityQueues.Clear(posNumbers); 
… 
IF x < 0 THEN PriorityQueues.Insert(negNumbers, x) 
ELSE PriorityQueues.Insert(posNumbers, x) 
END 
 

The abstract data type Queue can be used like any concrete data 
type (e.g., INTEGER). The language has been extended by a new 
data type and thus made better suited to solving a particular 
problem. 

Extending the 
language by a 
new data type 

However, abstract data types are again slightly less efficient 
than abstract data structures, because for each operation the object 
to which the operation refers has to be passed as a parameter. One 
should thus give consideration to when an abstract data type (i.e., 
multiple variables of this type) is needed and when an abstract 
data structure suffices. Examples of abstract data types include 
Stack, Queue, Set, File, Window and Text. On the other hand, for 
Mouse and Terminal, abstract data structures suffice because there 
is normally only one instance of them. 

Abstract data types are often implemented not as records, but 
as pointers to records. Here, too, individual fields of a record can 
be hidden. The interface of the priority queue then takes the 
following form: 

Abstract data 
types are often 
pointers 
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DEFINITION PriorityQueues1; 
 TYPE 
  Queue = POINTER TO QueueDesc; 
  QueueDesc = RECORD 
   n-: INTEGER;  (*number of elements*) 
  END; 
 PROCEDURE Insert (q: Queue; x: INTEGER); 
 PROCEDURE Remove (q: Queue; VAR x: INTEGER); 
 PROCEDURE Clear (q: Queue); 
END PriorityQueues1. 
 

The parameter q can be a value parameter here because it is not the 
pointer that is modified by the procedures, but only the fields of 
the record referenced by the pointer. 



4 Classes 

A problem with the notation for abstract data types is that data 
and procedures do not form a syntactic entity. Procedures are 
declared outside the record and without visible connection to it. 
Thus it is not immediately clear which procedures belong to a data 
type. 

Therefore, Oberon-2 permits the declaration of special pro-
cedures (methods) that are syntactically connected to a record. 
Records that contain methods in addition to data fields are called 
classes. Values whose type is a class are termed objects. 

Classes differ from abstract data types in that they are 
extensible and support the dynamic binding of messages to 
methods. We postpone the discussion of extensibility and dynamic 
binding to Chapters 5 and 6, respectively. 

4.1 Methods 

The procedures associated with a class are termed methods or type-
bound procedures in order to distinguish them from ordinary pro-
cedures. 

Methods 

The type Queue in Section 3.3, for example, could be imple-
mented as a class with the following interface: 

 
DEFINITION PriorityQueues; 
TYPE 
 Queue = RECORD 
  n-: LONGINT; 
  PROCEDURE (VAR q: Queue) Insert (x: INTEGER); 
  PROCEDURE (VAR q: Queue) Remove (VAR x: INTEGER); 
  PROCEDURE (VAR q: Queue) Clear; 
 END; 
END PriorityQueues. 
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Methods are considered (constant) record fields whose type is a 
procedure type. At invocation they are accessed like record fields, 
e.g.: 

  
q.Insert(x) 
 

We say that we send the message Insert to the object designated by 
q. The terminology should make clear that this is not a procedure 
call, but a request to an object. Only at run time will it be decided 
which method is to handle the request. 

The object to which a message is sent is called the receiver. 
Thus the object designated by q is the receiver of the message 
Insert. It reacts by invoking the Insert method of its class. Since the 
variable q can contain objects of various classes (see Chapter 5) the 
Insert message can lead to the invocation of different methods. 

Messages 

Receiver 

The receiver is a parameter of every method. In order to 
distinguish it from other parameters, it is declared in front of the 
method name: 

 
PROCEDURE (VAR q: Queue) Insert (x: INTEGER); 
 

Separating the receiver from the other formal parameter seems 
justified since the corresponding actual receiver parameter is also 
written in front of the message name when the message is sent: 

 
q.Insert(x) 
 

Note that the receiver plays a double role: Firstly, it is passed as a 
parameter to the method, and secondly, the object stored in it 
determines which method is invoked at run time (see Chapter 6). 

Let us now look at the implementation of methods. Although 
they belong to records, it would be unwise to implement them 
directly in the record declaration. Statements would be in the 
midst of declarations. Thus in Oberon-2 methods are implemented 
outside records, but in the same module. Nevertheless, they are 
considered local to their record. To which record a method belongs 
can be seen from the type of its formal receiver parameter. 

Implementation of 
methods 

Oberon-2 goes even further and omits the procedure headings 
in the record declaration. The class interface at the beginning of 
this section is not an Oberon-2 program, but a piece of docu-
mentation created by the browser (see Section 2.6). The actual 
implementation of PriorityQueues takes the following form: 

 
MODULE PriorityQueues; 
CONST length = 128; 
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TYPE 
 Queue* = RECORD 
  n-: LONGINT; (*number of elements*) 
  a: ARRAY length OF INTEGER 
 END; 
 
PROCEDURE (VAR q: Queue) Clear*; 
BEGIN q.n := 0, q.a[0] := MIN(INTEGER) 
END Clear; 
 
PROCEDURE (VAR q: Queue) Insert* (x: INTEGER); 
 VAR i: INTEGER; 
BEGIN 
 IF q.n < length - 1 THEN 
  q.n := q.n + 1; i := q.n; 
  WHILE x < q.a[i DIV 2] DO q.a[i] := q.a[i DIV 2]; i := i DIV 2 END; 
  q.a[i] := x 
 END 
END Insert; 
 
PROCEDURE (VAR q: Queue) Remove* (VAR x: INTEGER); 
 VAR y, i, j: INTEGER; ready: BOOLEAN; 
BEGIN 
 IF q.n > 0 THEN 
  x := q.a[1]; y := q.a[n];  
  q.n := q.n - 1; i := 1; ready := FALSE; 
  WHILE (i <= q.n DIV 2) & ~ ready DO 
   j := i + i; 
   IF (j < q.n) & (q.a[j] > q.a[j+1] THEN j := j + 1 END; 
   IF y > q.a[j] THEN q.a[i] := q.a[j]; i := j ELSE ready := TRUE END 
  END; 
  q.a[i] := y 
 END 
END Remove; 
 
END PriorityQueues. 
 

The receiver parameters in the procedure headings of Clear, Insert 
and Remove indicate that these are not ordinary procedures, but 
methods of the class Queue. 

Why do we actually need a special method notation, since the 
operations of a class could also be implemented as procedure 
variables? For example: 

Methods and 
procedure 
variables 

 
TYPE 
 Queue = RECORD 
  n-: INTEGER; 
  a: ARRAY length OF INTEGER; 
  Insert: PROCEDURE (VAR q: Queue; x: INTEGER); 
  Remove: PROCEDURE (VAR q: Queue; VAR x: INTEGER); 
  Clear: PROCEDURE (VAR q: Queue); 
 END; 
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This is a possible solution, but it has the following drawbacks: 
 
(1) Procedure variables occupy storage in every object, although 

their values are the same for all objects of a class. Methods, on 
the other hand, belong to the class and are not stored in 
objects. 

(2) Procedure variables must be initialized in each object; this 
means that they must be assigned procedures whenever an 
object is created. This is easy to forget. Methods need not be 
initialized. 

(3) The operations of a class should be procedure constants rather 
than procedure variables. It should not be possible to exchange 
them at run time. Methods are constants while procedure 
variables are not. 

 
Many object-oriented programs do not work with records, but 
with pointers to records. These are actually pointer-to-class types. 
For the sake of simplicity, we also refer to these pointer types as 
classes as long as this does not lead to confusion. Variables of these 
types point to objects. In the following example Queue1 is declared 
as a pointer type: 

Pointer types 

 
DEFINITION PriorityQueues1; 
TYPE 
 Queue1 = POINTER TO QueueDesc; 
 Queue1Desc = RECORD 
  n-: LONGINT; 
  PROCEDURE (q: Queue1) Insert (x: INTEGER); 
  PROCEDURE (q: Queue1) Remove (VAR x: INTEGER); 
  PROCEDURE (q: Queue1) Clear; 
 END; 
END PriorityQueues1. 
 

If the type of the formal receiver parameter is a pointer type, the 
receiver must be a value parameter, whereas in the case of records 
it must be a variable parameter. The use of Queue1 is analogous to 
Queue: 

 
VAR q: Queue1; 
… 
NEW(q); … q.Insert(x); … 
 

Oberon-2 differs from most object-oriented languages in its 
notation for methods. Other languages pass the receiver as a 
hidden parameter with the predefined names self or this. Oberon-2 
avoids hidden mechanisms and requires that the receiver be 

Comments on the 
notation for 
methods 
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explicitly declared as a parameter. The declaration of the receiver 
also has the advantage that it can be given an expressive name. A 
name like q or queue provides better readability than self. 

When the fields and methods of a receiver are referenced in 
Oberon-2, they must be qualified with the name of the receiver 
(e.g., q.a). Most object-oriented languages allow the programmer 
the option of referencing a field as self.a or only as a. This may be 
confusing since a could be a local or global variable as well. 

Omitting the method headings in the record declaration 
avoids redundancy. The type declaration is kept short. 
Modifications cannot lead to inconsistent method headings. The 
browser permits viewing the class with all its methods by 
extracting this information from the program. This proves faster 
than flipping through pages of source code. 

The fact that the class and module interfaces are not manually 
written by the programmer, but extracted from the source code, 
requires some readjustment, especially on the part of Modula-2 
programmers. After getting used to the idea, however, anything 
else seems inconvenient. Programs increasingly tend to be read 
and written directly on the screen, which makes it practical to 
enjoy the screen's advantages over paper. Of course, the extracted 
information can also be printed to hardcopy. 

4.2 Classes and Modules 

Classes and modules bear certain similarities: they encapsulate 
data and make them available via access procedures. Are both 
constructs necessary, or could we scrap modules and employ 
classes as compilation units? 

The question is justified, and some languages, such as 
Smalltalk, actually use only classes and not modules. Closer 
examination, however, reveals that using both constructs does 
make sense. They are complementary. 

Classes are expected to support information hiding. In 
Oberon-2, however, classes are records; access to their fields is 
unrestricted. How does this agree? 

Information hiding

In Oberon-2, not a class but the module in which the class is 
implemented is responsible for information hiding. Within a 
module all fields of private classes are visible, but other modules 
see only the exported fields. Within PriorityQueues, field a of class 
Queue is visible, but it is not visible for client modules. This makes 
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sense because a module should only contain related data and 
procedures anyway. Why should we want to hide information 
among them? 

For reasons of efficiency, it is sometimes necessary for a 
procedure to have direct access to the data of two or more classes. If 
the data were not visible outside the classes, an ordinary 
procedure could not access them. It would not help to make the 
procedure a method of one class, for then it still would not have 
access to the data of the other class. In Oberon-2 the procedure 
along with the classes to which it must have efficient access can be 
wrapped in one module. This allows the procedure to access the 
data of both classes while still keeping the data hidden from other 
modules. Thus modules permit the grouping of several classes and 
procedures to a subsystem. 

Not all programs can be forced into the scheme of classes and 
methods. There are procedures (e.g., numeric functions) that are 
neither dependent on any state nor modify a state and thus cannot 
be naturally associated with any class. Modules make it possible to 
group such functions together, without having to resort to classes 
which would be an artificial imposition. 

Modules allow the use of global variables and procedures in 
connection with classes. Values that must be accessible for all 
objects of a class can be stored in global variables of a module 
without requiring storage in each object. Global procedures permit 
the execution of operations on a class; for example, a procedure 
could be used to create a new object of a class. Such operations 
cannot be implemented as methods because an object cannot be 
sent a message before it is created. 

Modules as 
collections of 
functions 

Global variables 
and procedures 

4.3 Examples 

The following examples are intended to give the reader a better 
feel for working with classes. 

The standard type SET provides sets of integers between 0 
and MAX(SET). If sets of arbitrary integers are needed, a class Set 
can be defined: 

The class Set 

 
DEFINITION Sets; 
TYPE 
 Set = RECORD 
  PROCEDURE (VAR s: Set) Init (max: INTEGER); 
  PROCEDURE (VAR s: Set) CopyTo (VAR s1: Set); 
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  PROCEDURE (VAR s: Set) Clear; 
  PROCEDURE (VAR s: Set) Incl (x: INTEGER); 
  PROCEDURE (VAR s: Set) Excl (x: INTEGER); 
  PROCEDURE (VAR s: Set) Contains (x: INTEGER): BOOLEAN; 
  PROCEDURE (VAR s: Set) Add (s1: Set); 
  PROCEDURE (VAR s: Set) Subtract (s1: Set); 
  PROCEDURE (VAR s: Set) Intersect (s1: Set); 
 END; 
END Sets. 
 

Note that Set is a record type, and thus the receiver parameter of 
the methods must be a variable parameter. The meaning of the 
operations is obvious, so that we can immediately go on to their 
implementation. 

 
MODULE Sets; 
CONST setSize = 32;  (*size of type SET*) 
TYPE 
 Set* = RECORD 
  max-: INTEGER;  (*largest element allowed*) 
  val: POINTER TO ARRAY OF SET 
 END; 
 
PROCEDURE (VAR s: Set) Init* (max: INTEGER); 
BEGIN  
 s.max := max;  
 NEW(s.val, (max + setSize) DIV setSize) 
END Init; 
 
PROCEDURE (VAR s: Set) CopyTo* (VAR s1: Set); 
 VAR i: INTEGER; 
BEGIN 
 s1.Init(s.max); 
 FOR i := 0 TO s.max DIV setSize DO s1.val[i] := s.val[i] END 
END CopyTo; 
 
PROCEDURE (VAR s: Set) Clear*; 
 VAR i: INTEGER; 
BEGIN 
 FOR i := 0 TO s.max DIV setSize DO s.val[i] := {} END 
END Clear; 
 
PROCEDURE (VAR s: Set) Incl* (x: INTEGER); 
BEGIN 
 IF (x > 0) & (x <= s.max) THEN 
  INCL(s.val[x DIV setSize], x MOD setSize) 
 END 
END Incl; 
 
PROCEDURE (VAR s: Set) Excl* (x: INTEGER); 
BEGIN 
 IF (x > 0) & (x <= s.max) THEN 
  EXCL(s.val[x DIV setSize], x MOD setSize) 
 END 
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END Excl; 
PROCEDURE (VAR s: Set) Contains* (x: INTEGER): BOOLEAN; 
BEGIN 
 RETURN (x > 0) & (x <= s.max) 
 & (x MOD setSize IN s.val[x DIV setSize]) 
END Contains; 
 
PROCEDURE (VAR s: Set) Add* (s1: Set); 
 VAR i, max: INTEGER; 
BEGIN 
 max := s.max; IF s1.max < max THEN max := s1.max END; 
 FOR i := 0 TO max DIV setSize DO  
  s.val[i] := s.val[i] + s1.val[i] END 
END Add; 
 
PROCEDURE (VAR s: Set) Subtract* (s1: Set); 
 VAR i, max: INTEGER; 
BEGIN 
 max := s.max; IF s1.max < max THEN max := s1.max END; 
 FOR i := 0 TO max DIV setSize DO  
  s.val[i] := s.val[i] - s1.val[i] END 
END Subtract; 
 
PROCEDURE (VAR s: Set) Intersect* (s1: Set); 
 VAR i, max: INTEGER; 
BEGIN 
 max := s.max; IF s1.max < max THEN max := s1.max END; 
 FOR i := 0 TO max DIV setSize DO  
  s.val[i] := s.val[i] * s1.val[i] END 
END Intersect; 
 
END Sets. 
 

The field val of the class Set is not exported. Clients can modify it 
only by means of methods. val contains the actual sets of numbers; 
it is implemented as a dynamic array of sets that is allocated the 
necessary storage at run time. max is the largest element that can 
be stored in a Set object. 

As a second example, let us consider a class for figures in a 
graphics editor. Here we only describe the interface (the module 
OS, which is used in the interface, is described in Appendix B): 

Class Figure 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD 
  selected: BOOLEAN; 
  next: Figure; 
  PROCEDURE (Q: Figure) Draw; 
  PROCEDURE (Q: Figure) Move (dx, dy: INTEGER); 
  PROCEDURE (Q: Figure) Select (x, y, w, h: INTEGER); 
  PROCEDURE (Q: Figure) Deselect; 
  PROCEDURE (Q: Figure) Load (VAR r: OS.Rider); 
  PROCEDURE (Q: Figure) Store (VAR r: OS.Rider); 
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 END; 
The class Figure is implemented as a pointer to a record. Thus the 
formal receiver parameters of the methods must be value 
parameters. 

4.4 Common Questions 

This section answers some questions that might have arisen in 
reading Chapter 4. 

 
Q: Can a method and a procedure declared in the same module 

share the same name? 
A: Yes. A method is local to the class to which it belongs. There is 

no name conflict with globally declared names or with names 
in other classes. 

 
Q: Can a method be bound to a class that is declared in another 

module? 
A: No. The locality of code and data is an important principle 

that makes maintenance of software easier. If the methods of a 
class were distributed among various modules, this would 
violate the principle of locality. 

 
Q: Can a message be sent to a pointer object if the formal receiver 

parameter of the method is a record? I.e.: 
 
 TYPE 
  Ptr = POINTER TO Rec; 
  Rec = RECORD … END; 
 VAR 
  p: Ptr; 
 
PROCEDURE (VAR r: Rec) M; … END M; 
 
 … p.M …  (*is this message legal?*) 
 

A: Yes. The record referenced by p is passed as a variable 
parameter to M. On the other hand, a message must not be 
sent to a record object if the formal receiver parameter is a 
pointer. This means that the following situation is forbidden: 
 
 VAR r: Rec; 
 
 PROCEDURE (p: Ptr) M1; … END M1; 
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 … r.M1 …  (*this is illegal*) 
 A record cannot be passed to a pointer. When both variables 

of type Ptr and variables of type Rec are used and messages 
are to be sent to both, the formal receiver parameter of the 
methods must be declared as a record. 



 

5 Inheritance 

So far we have used classes only as abstract data types. The 
remarkable feature of classes, however, is that they can be 
extended. The extensibility of classes is the new aspect of object-
oriented programming and the reason that OOP proves superior to 
conventional programming in many situations. 

5.1 Type Extension 

In Oberon-2 a record type can be extended to a new type that 
contains new fields and methods, yet maintains its compatibility 
with the original type. In the declarations 

Base type and 
extended type 

 
TYPE 
 T0 = RECORD … END 
 T1 = RECORD (T0) … END 
 

T1 is a (direct) extension of T0, and T0 is the (direct) base type of T1. 
In the case of classes, the base type is also called base class or 
superclass, while the extension is called subclass. 

Specifying the name of the base type in parentheses after the 
symbol RECORD means that the new type is an extension of the 
base type and thus contains, in addition to its own fields and 
methods, all fields and methods of the base type, as though they 
had been explicitly declared here. We say that the extended type 
inherits the fields and methods of the base type and thus also refer 
to type extension as inheritance. Type extension also works for 
pointer types. If we have 

 
TYPE 
 P0 = POINTER TO T0; 
 P1 = POINTER TO T1; 
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and if T1 is an extension of T0, then P1 is also an extension of P0 
and P0 is the base type of P1. 

In the following example RectangleDesc is an extension of 
FigureDesc and Rectangle is thus an extension of Figure. 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD 
  selected: BOOLEAN; 
  PROCEDURE (f: Figure) Draw; 
  PROCEDURE (f: Figure) Move (dx, dy: INTEGER); 
  PROCEDURE (f: Figure) Store (VAR rider: OS.Rider); 
 END; 
 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD (FigureDesc) 
  x, y, w, h: INTEGER; 
  PROCEDURE (r: Rectangle) Fill (pat: Pattern) 
 END; 
 

Figure 5.1 shows that RectangleDesc contains all the fields and 
methods of its base type FigureDesc in addition to those declared 
directly in RectangleDesc. 

selected
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Move

Draw
Move

Store Store

Fill

selected

x
y
w

h

figure rectangle

VAR
figure: Figure;
rectangle: Rectangle;

FigureDesc object RectangleDesc object

 

 Fig. 5.1 Variables of types Figure and Rectangle 

The fields and methods of the variable rectangle can be referenced 
as rectangle.selected, rectangle.Draw, rectangle.x or rectangle.Fill, for 
example. 

In Fig. 5.1 the methods are represented as record fields in 
order to indicate that the first part of a RectangleDesc object is 
identical with a FigureDesc object. However, methods are actually 
not stored in each object, but only once per class (see Appendix 
A.12.4). 

For the sake of simplicity, we subsequently also refer to the 
values of pointer variables as objects. When we speak of objects of 
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class Figure or Rectangle, we actually mean objects of class 
FigureDesc or RectangleDesc. 

Extensibility is transitive, so the type TextBox below is an 
extension of Rectangle and thus indirectly also of Figure. 

Transitivity 

 
TYPE 
 TextBox = POINTER TO TextBoxDesc; 
 TextBoxDesc = RECORD (RectangleDesc) 
  text: ARRAY 32 OF CHAR 
 END; 
 

In addition to Rectangle any number of other types can be derived 
from Figure, e.g.: 

 
TYPE 
 Circle = POINTER TO CircleDesc; 
 CircleDesc = RECORD (FigureDesc) 
  x, y, radius: INTEGER 
 END; 
 

The inheritance relationship can be depicted graphically as follows 
(Fig. 5.2): 

Graphical 
representation of 
a type hierarchy 

Figure
Figure

Rectangle RectangleCircle
Circle

TextBox

Hierarchy diagram Set diagram

TextBox

 

Fig. 5.2 Graphical representation of a type hierarchy 

The set diagram in Fig. 5.2 shows clearly that every TextBox is also 
a Rectangle and every Rectangle is also a Figure. Inversely, however, 
not every Figure is a Rectangle for it could also be a Circle. 

Is-a relationship 

An extended type is a specialization of the base type: rectangles 
are specialized figures. We call this an Is-a relationship. 

Subclasses allow not only the addition of new methods but 
also the redefinition of inherited methods. An inherited method 
can be redefined (overridden) by redeclaring it with the same name 
and with an identical parameter list in the subclass. Note that only 
methods, not data fields, can be overridden. 

Overriding 

The class Figure, for example, contains the method Store, 
which writes the fields of a figure to a file. When this method is 
inherited in Rectangle, it should also write the Rectangle fields x, y, 
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w and h to the file. Thus Store must be overridden in Rectangle as 
follows: 

 
PROCEDURE (r: Rectangle) Store (VAR rider: OS.Rider); 
BEGIN 
 r.Store^ (rider); 
 … write r.x, r.y, r.w, r.h to rider … 
END Store; 
 

Of course we do not want to rewrite Store from scratch; instead, we 
would like to reuse the inherited (and overridden) Store. However, 
this method can no longer be referenced as r.Store, for r.Store now 
designates the new Store of Rectangle. Therefore, it is referenced as 

 
r.Store^ (rider) 
 

The symbol ^ after the method name indicates that the Store 
method of the immediate superclass of Rectangle (the type of r) is 
to be invoked. Note that the meaning of ^ after a method name is 
different from its meaning after a pointer variable p, where p^ 
designates the variable to which p points. 

5.2 Compatibility of a Base Type  
and Its Extension 

The reader might wonder whether type extension is only a way to 
reduce the writing effort. Is there a difference between Rectangle 
and the following type NewRectangle, in which the fields and 
methods are explicitly redeclared instead of being inherited from 
Figure? 

  
TYPE 
 NewRectangle = POINTER TO NewRectangleDesc; 
 NewRectangleDesc = RECORD 
  selected: BOOLEAN; 
  x, y, w, h: INTEGER; 
  PROCEDURE (r: NewRectangle) Draw; 
  PROCEDURE (r: NewRectangle) Move (dx, dy: INTEGER); 
  PROCEDURE (r: NewRectangle) Store (VAR rider: OS.Rider); 
  PROCEDURE (r: NewRectangle) Fill (pat: Pattern) 
 END 
 

There is a very important difference: Rectangle is compatible with 
Figure because it is an extension of Figure, while NewRectangle is 
not compatible with Figure although it contains the same fields and 
methods as Rectangle. NewRectangle is a completely different type. 
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Every Rectangle object is also a Figure object! This is the 
revolutionary aspect of object-oriented programming. It means 
that all algorithms that work with Figure objects can also work 
with Rectangle objects. 

The compatibility between a base type and its extensions is 
particularly used in assignments. If figureDesc is a variable of type 
FigureDesc and rectangleDesc is a variable of type RectangleDesc, 
then the assignment 

Record 
assignment 

  
figureDesc := rectangleDesc 
 

is permitted because RectangleDesc objects are (extended) 
FigureDesc objects and thus can be assigned to FigureDesc 
variables. The assignment works like a projection. That is, only 
those fields of RectangleDesc are assigned that also exist in 
FigureDesc. 

The inverse assignment rectangleDesc := figureDesc is not 
permitted because a FigureDesc object is not a RectangleDesc object. 
(rectangleDesc contains more fields than figureDesc; the assignment 
would leave these fields undefined.) This error would be detected 
at compile time. 

Passing an object as a value parameter is also an assignment. 
A procedures with a formal parameter of type FigureDesc can be 
invoked with a RectangleDesc object as its actual parameter. 

The assignment compatibility between records is hardly ever 
used. Who wants to lose data in an assignment? Pointers, however, 
are another matter. If figure is of type Figure and rectangle of type 
Rectangle, then the assignment 

Pointer 
assignments 

  
figure := rectangle 
 

is permitted because a Rectangle is an extended Figure. Here no 
data of the object rectangle^ are lost; instead, after the assignment 
figure simply points to rectangle^, whose first part is interpreted as 
an object of type FigureDesc (Fig. 5.3). 
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 Fig. 5.3 Result of the assignment figure := rectangle 
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The fields x, y, w and h are still there in the object to which figure 
points after the assignment, but they cannot be referenced via 
figure because figure was declared as a variable of type POINTER 
TO FigureDesc, and FigureDesc contains no such fields. 

The inverse assignment rectangle := figure is not permitted. 
rectangle would point to a FigureDesc object, and the fields x, y, w, 
and h would be undefined (Fig. 5.4). This kind of error is again 
detected by the compiler. 
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rectangle
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FigureDesc

 

Fig. 5.4 Hypothetical effect of the assignment rectangle := figure 

There is another situation in which a base type and its extension 
are compatible: when a record is passed as a variable parameter. 
Let P be a procedure with the following interface: 

Records as 
variable 
parameters 

  
PROCEDURE P (VAR figureDesc: FigureDesc); 
 

This procedure can be invoked with a parameter of type 
RectangleDesc: 

  
P(rectangleDesc) 
 

With variable parameters no assignment takes place; instead the 
formal parameter figureDesc simply has the same address as the 
actual parameter rectangleDesc. No fields of rectangleDesc are 
truncated. As in a pointer assignment, the fields of the extension 
(e.g., rectangleDesc.x) are still there when P is executed, but they 
cannot be accessed via figureDesc. Passing records as variable 
parameters is used in Section 6.3 for message records. 

 
To discuss some more examples, let us return to the type hierarchy 
diagram of Fig. 5.2. 

Other examples of 
assignment 
compatibility 
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Figure

Rectangle Circle

TextBox

VAR
figure: Figure;
rectangle: Rectangle;
circle: Circle;
textBox: TextBox;

 
Which of the following assignments is legal? 

 
a) figure := rectangle e) rectangle := circle 
b) rectangle := figure f) circle := rectangle 
c) figure := circle g) rectangle := textBox 
d) figure := textBox h) circle := textBox 
 

Only assignments a), c), d) and g) are correct. Variables of an 
extended type can be assigned to variables of its base type, but not 
the other way around, as in b). In e), f) and h) the types of the 
variables are not derived from one another and thus are 
incompatible. All these errors are detected at compile time. 

5.3 Static and Dynamic Type 

In languages with type extension, record and pointer variables 
have a dynamic type in addition to their static type. The static type is 
the type with which the variable is declared. The dynamic type is 
the type of the object that the variable holds at run time; it can be 
an extension of the static type. The static type is used by the 
compiler for type checking, while the dynamic type is used for the 
selection of methods at run time (see Chapter 6). 

Dynamic type 

Thus objects must contain type information at run time. This 
is typical of object-oriented languages and does not occur in 
conventional languages. When the object rectangle^ is created with 
NEW(rectangle), it has the dynamic type RectangleDesc, which it 
retains during its whole life. The variable rectangle thus has the 
dynamic type Rectangle (POINTER TO RectangleDesc). 

After the assignment figure := rectangle, figure also points to an 
object of type RectangleDesc. The dynamic type of figure is thus 
Rectangle (Fig. 5.5), but its static type remains Figure. 

Pointer 
assignment 
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Fig. 5.5 The static type of figure is Figure;  
the dynamic type of figure is Rectangle 

In the record assignment figureDesc := rectangleDesc, only those 
fields of RectangleDesc are transferred that also belong to 
FigureDesc. figureDesc does not contain the complete value of 
rectangleDesc; thus its dynamic type is not RectangleDesc, but only 
FigureDesc. For record variables the static and dynamic types are 
always the same. 

One exception is records that are passed as variable para-
meters. A formal variable parameter has the same address as the 
respective actual parameter. Thus it behaves as with pointers: its 
dynamic type can be an extension of its static type. 

Record 
assignment 

Records as 
variable 
parameters 

In the following procedure P, assume that f has the dynamic 
type RectangleDesc. 

 
PROCEDURE P (VAR f: FigureDesc); 
 VAR g: FigureDesc; 
BEGIN 
 f := g 
END P; 
 

What happens in the assignment f := g? Both variables have the 
same (static) type, thus the assignment should be possible. 
However, since f has the dynamic type RectangleDesc and g only 
the dynamic type FigureDesc, the fields x, y, w and h in the actual 
parameter corresponding to f would remain undefined. 

Oberon-2 solves this problem by permitting the assignment to 
a variable parameter record only if its dynamic type is the same as 
its static type. The dynamic type of f is RectangleDesc; its static type 
is FigureDesc; thus the assignment f := g is not permitted. This 
check is done at run time. 
 
Let us summarize: 

 
• A variable of a record type T can only contain values of type 

T. 
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• A formal variable parameter of a record type T can contain 
values of type T or an extension thereof. 

• A variable of type POINTER TO T can contain pointers to 
values of type T or an extension thereof. 

 
The concept of dynamic type is central to object-oriented 
languages and distinguishes them from conventional languages. 
The static type is needed for static type checking (i.e., type 
checking at compile time), while the dynamic type is needed for 
the interpretation of messages. 

Conventional languages with static type checking (e.g., 
Pascal) have only static types. In object-oriented languages without 
static type checking (e.g., Smalltalk), there are only dynamic types: 
variables are declared without type. Object-oriented languages 
with static type checking (e.g., Oberon-2, C++, Eiffel) employ both 
static and dynamic types. 

5.4 Run-Time Type Checking 

The dynamic type of a record or pointer variable can be tested at 
run time. The type test  

Type test 

 
figure IS Rectangle 
 

returns TRUE if figure has the dynamic type Rectangle (or an 
extension thereof), otherwise FALSE. 

If figure has the dynamic type Rectangle, it should be possible 
to assign it to rectangle. This is possible if a type guard is specified 
for figure. The type guard 

Type guard  

 
figure (Rectangle) 
 

checks at run time whether figure has the dynamic type Rectangle. 
If so, the variable figure is treated within this designator as if its 
static type were Rectangle; if not, there is a run-time error. The 
following examples show uses for a type guard. 
 

rectangle := figure(Rectangle) (*establishes assignment compatibility*) 
figure(Rectangle).x := 0 (*field x can be referenced*) 
figure(Rectangle).Fill(pat) (*method Fill can be referenced*) 
 

The type guard figure(Rectangle) plays a double role: It checks 
whether figure has the dynamic type Rectangle, and it temporarily 
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changes the static type of figure to Rectangle (it widens it to 
Rectangle, as seen in Fig. 5.6). The type guard is thus a kind of type 
conversion. However, Oberon-2 checks at run time whether the 
conversion is legal, in contrast to many other languages in which 
types can be converted without type checking. 
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Fig. 5.6 figure(Rectangle) widens the static type of figure to Rectangle  

A run-time error due to a failed type guard can be avoided by 
preceding the type guard by a type test: 
 

IF figure IS Rectangle THEN rectangle := figure(Rectangle) END 
 

To improve the understanding of run-time type tests, we will look 
at a few examples. Which of the following statements are correct 
(see the type hierarchy in Fig. 5.2)? 

 
a) textBox := rectangle (TextBox) 
b) rectangle := figure (TextBox) 
c) rectangle := circle (Rectangle) 
d) figure := circle; rectangle := figure (Rectangle) 
 

Statement a) is correct if the dynamic type of rectangle is TextBox or 
an extension thereof. If not, the type guard causes a run-time error. 
For b) the same applies as for a): If figure is at least of dynamic type 
TextBox, the designator figure(TextBox) is treated as if it were of 
static type TextBox. Thus it can be assigned to the variable 
rectangle. Statement c) is illegal because the dynamic type of circle 
can never be Rectangle. This error is detected by the compiler. Case 
d) is interesting: Here we attempt to smuggle circle to rectangle via 
figure. figure := circle is correct; rectangle := figure (Rectangle) is also 
correct as far as the compiler is concerned, but the type guard 
causes a run-time error because figure is of dynamic type Circle and 
not Rectangle. 

Which of the following type tests return TRUE if figure is of 
dynamic type TextBox? 

 
a) figure IS Figure 
b) figure IS Rectangle 
c) figure IS TextBox 
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All three type tests return TRUE: figure contains a TextBox object, 
which is also a(n extended) Rectangle and Figure object. 

 
Sometimes we want to apply a type guard to multiple occurrences 
of a variable, but we do not want to write it each time. In this case 
we can use the with statement: If f is a formal variable parameter of 
static type FigureDesc, then instead of writing 

With statement 

 
f(RectangleDesc).x := …; 
f(RectangleDesc).y := …; 
f(RectangleDesc).Fill(…) 
 

we can write 
 
WITH f: RectangleDesc DO 
 f.x := …; 
 f.y := …; 
 f.Fill(…) 
END 
 

The meaning of this with statement is: if f is of dynamic type 
RectangleDesc, it is handled in the with statement as if its static type 
were also RectangleDesc. Thus the fields and methods of 
RectangleDesc can be referenced as f.x, f.y and f.Fill. If f is not of 
dynamic type RectangleDesc, a run-time error results. A with 
statement is a regional type guard. The type test is performed only 
once, when the with statement is entered. With statements can also 
be applied to pointers, e.g.: 

 
WITH figure: Rectangle DO  
 figure.x := …;  
 figure.y := …  
END 

5.5 Extensibility in an  
Object-Oriented Sense 

At first glance it seems that extensibility of software is not 
something made possible only by object-oriented programming. In 
practice software systems were always extended and modified. So 
what is special about object-oriented extensibility? The special 
aspect is that object-oriented programming makes it possible to 
extend systems in such a way that existing program parts are not 
affected. 
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Meyer [Mey87] explains the open/closed principle in terms of 
open and closed modules. A module is open if it is still being 
developed. Its interface is still immature and subject to frequent 
correction. It is used by few clients, which means that a 
modification in the interface does not have dramatic consequences: 
few clients are affected by these changes. At some point, however, 
every module must be closed. Its interface is frozen then and the 
module is released for general use. Now a modification in the 
interface would have more serious consequences since the module 
is used by many clients. 

Open and closed 
modules 

The dilemma is that project management requires both 
properties: A module should remain open as long as possible so 
that it can mature; on the other hand, at some point clients must be 
able to rely on a stable interface. The goal would be to have a 
module closed for its current clients, yet open for new clients (Fig. 
5.7). 

A B

M M

C D

M1
 

Fig. 5.7 M remains closed for A, B and C and is reopened for D . 

How can this be achieved? There are four basic ways to extend the 
module M: 

 
(1) The source code of M is changed. This causes problems for 

various reasons: First, it assumes the availability of the source 
code. Second, if the changes affect the interface, all clients 
have to be recompiled. Third, the clients are bogged down 
with the extension even though only a few actually use it. 

Modify the original 

 
(2) The source code of M is copied and changes are made on the 

copy M1. This spares the trouble of recompiling existing 
clients and avoids bogging them down with unnecessary 
functionality. The drawback is its redundancy. The module 
now exists in two variants. Whenever an error is detected, it 
must be corrected at two locations. In addition, the source 
code of M is again required. 

Modify a duplicate 
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(3) M is embedded in M1 in the sense that M is used by M1. 
Assume that M is a module: 

Embedding in 
another module 

 
 MODULE M; 
  … 
  PROCEDURE P (x: INTEGER); 
  … 
 END M. 
 

 It is now simple to implement a new module M1 that has the 
same interface and imports M: 
 
 MODULE M1; 
 
  IMPORT M; 
 
  PROCEDURE P (x: INTEGER); 
  BEGIN  
   … (*new functionality*) … 
   M.P(x) 
  END P; 
  … 
 END M1. 
 

 This solution does not require the source code of M. The 
existing clients can continue to use M and are not troubled 
with the extensions of M1. However, one small problem 
remains: The clients of M cannot optionally use M1 because 
they are statically bound to M. Each invocation of M.P in their 
source code would have to be replaced with M1.P. But even 
that would not allow the substitution of M1 for M at run time. 

 
(4) If M is a class, it can be extended by creating the subclass M1, 

in which the inherited methods can be overridden. As with 
embedding, the source code of M is not needed; M's clients do 
not need to be recompiled and are not bothered with the 
extensions in M1. In addition, programs that work with M can 
automatically also work with M1; their source code need not 
be modified, and M can be replaced with M1 at run time. 
Clients are dynamically bound to M or M1 (see Chapter 6). 

Extension by 
inheritance 

 
Extensibility in an object-oriented sense thus means: a class is 
reused in the form of object code, but it can still be extended in 
such a way that existing clients can also work with the extension 
without having to be modified. 
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However, inheritance is not intended to correct poor design. If 
a method of a class really was forgotten, there is no option but to 
reopen the class and to add the forgotten method. 
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5.6 Common Questions 

Q: Why is it not possible to override inherited data fields in a 
subclass? 

A: If it were permitted that a field f of an object a were of type 
INTEGER in the superclass A and of type CHAR in its sub-
class B, then the compiler would not be able to perform a type 
check for a.f := a.f + 1. If a were of dynamic type A, then a.f 
would be of type INTEGER and the addition would be legal; 
but if a were of dynamic type B, then a.f would be of type 
CHAR and the addition would be illegal. The type check 
could only be carried out at run time. 

 
Q: Can a class be derived from more than one base class? 
A: This is not possible in Oberon-2. In languages like C++ and 

Eiffel, such multiple inheritance is possible. Section 8.6 
explains why multiple inheritance is not permitted in Oberon-
2 and how to survive without it. 

 
Q: Can a subclass access fields and methods of its superclass if 

these are declared in another module and not exported? 
A: No. In Oberon-2 it is the module, not the class, that is 

responsible for information hiding. Even subclasses cannot 
break through the module wall. 

 
Q: Must an exported method be reexported each time it is 

overridden? 
A: When it is overridden, an exported method must be provided 

with an export mark if the subclass to which it belongs is also 
exported. 

 



 

5 Inheritance 

So far we have used classes only as abstract data types. The 
remarkable feature of classes, however, is that they can be 
extended. The extensibility of classes is the new aspect of object-
oriented programming and the reason that OOP proves superior to 
conventional programming in many situations. 

5.1 Type Extension 

In Oberon-2 a record type can be extended to a new type that 
contains new fields and methods, yet maintains its compatibility 
with the original type. In the declarations 

Base type and 
extended type 

 
TYPE 
 T0 = RECORD … END 
 T1 = RECORD (T0) … END 
 

T1 is a (direct) extension of T0, and T0 is the (direct) base type of T1. 
In the case of classes, the base type is also called base class or 
superclass, while the extension is called subclass. 

Specifying the name of the base type in parentheses after the 
symbol RECORD means that the new type is an extension of the 
base type and thus contains, in addition to its own fields and 
methods, all fields and methods of the base type, as though they 
had been explicitly declared here. We say that the extended type 
inherits the fields and methods of the base type and thus also refer 
to type extension as inheritance. Type extension also works for 
pointer types. If we have 

 
TYPE 
 P0 = POINTER TO T0; 
 P1 = POINTER TO T1; 
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and if T1 is an extension of T0, then P1 is also an extension of P0 
and P0 is the base type of P1. 

In the following example RectangleDesc is an extension of 
FigureDesc and Rectangle is thus an extension of Figure. 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD 
  selected: BOOLEAN; 
  PROCEDURE (f: Figure) Draw; 
  PROCEDURE (f: Figure) Move (dx, dy: INTEGER); 
  PROCEDURE (f: Figure) Store (VAR rider: OS.Rider); 
 END; 
 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD (FigureDesc) 
  x, y, w, h: INTEGER; 
  PROCEDURE (r: Rectangle) Fill (pat: Pattern) 
 END; 
 

Figure 5.1 shows that RectangleDesc contains all the fields and 
methods of its base type FigureDesc in addition to those declared 
directly in RectangleDesc. 
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Store Store
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h

figure rectangle

VAR
figure: Figure;
rectangle: Rectangle;

FigureDesc object RectangleDesc object

 

 Fig. 5.1 Variables of types Figure and Rectangle 

The fields and methods of the variable rectangle can be referenced 
as rectangle.selected, rectangle.Draw, rectangle.x or rectangle.Fill, for 
example. 

In Fig. 5.1 the methods are represented as record fields in 
order to indicate that the first part of a RectangleDesc object is 
identical with a FigureDesc object. However, methods are actually 
not stored in each object, but only once per class (see Appendix 
A.12.4). 

For the sake of simplicity, we subsequently also refer to the 
values of pointer variables as objects. When we speak of objects of 
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class Figure or Rectangle, we actually mean objects of class 
FigureDesc or RectangleDesc. 

Extensibility is transitive, so the type TextBox below is an 
extension of Rectangle and thus indirectly also of Figure. 

Transitivity 

 
TYPE 
 TextBox = POINTER TO TextBoxDesc; 
 TextBoxDesc = RECORD (RectangleDesc) 
  text: ARRAY 32 OF CHAR 
 END; 
 

In addition to Rectangle any number of other types can be derived 
from Figure, e.g.: 

 
TYPE 
 Circle = POINTER TO CircleDesc; 
 CircleDesc = RECORD (FigureDesc) 
  x, y, radius: INTEGER 
 END; 
 

The inheritance relationship can be depicted graphically as follows 
(Fig. 5.2): 

Graphical 
representation of 
a type hierarchy 

Figure
Figure

Rectangle RectangleCircle
Circle

TextBox

Hierarchy diagram Set diagram

TextBox

 

Fig. 5.2 Graphical representation of a type hierarchy 

The set diagram in Fig. 5.2 shows clearly that every TextBox is also 
a Rectangle and every Rectangle is also a Figure. Inversely, however, 
not every Figure is a Rectangle for it could also be a Circle. 

Is-a relationship 

An extended type is a specialization of the base type: rectangles 
are specialized figures. We call this an Is-a relationship. 

Subclasses allow not only the addition of new methods but 
also the redefinition of inherited methods. An inherited method 
can be redefined (overridden) by redeclaring it with the same name 
and with an identical parameter list in the subclass. Note that only 
methods, not data fields, can be overridden. 

Overriding 

The class Figure, for example, contains the method Store, 
which writes the fields of a figure to a file. When this method is 
inherited in Rectangle, it should also write the Rectangle fields x, y, 
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w and h to the file. Thus Store must be overridden in Rectangle as 
follows: 

 
PROCEDURE (r: Rectangle) Store (VAR rider: OS.Rider); 
BEGIN 
 r.Store^ (rider); 
 … write r.x, r.y, r.w, r.h to rider … 
END Store; 
 

Of course we do not want to rewrite Store from scratch; instead, we 
would like to reuse the inherited (and overridden) Store. However, 
this method can no longer be referenced as r.Store, for r.Store now 
designates the new Store of Rectangle. Therefore, it is referenced as 

 
r.Store^ (rider) 
 

The symbol ^ after the method name indicates that the Store 
method of the immediate superclass of Rectangle (the type of r) is 
to be invoked. Note that the meaning of ^ after a method name is 
different from its meaning after a pointer variable p, where p^ 
designates the variable to which p points. 

5.2 Compatibility of a Base Type  
and Its Extension 

The reader might wonder whether type extension is only a way to 
reduce the writing effort. Is there a difference between Rectangle 
and the following type NewRectangle, in which the fields and 
methods are explicitly redeclared instead of being inherited from 
Figure? 

  
TYPE 
 NewRectangle = POINTER TO NewRectangleDesc; 
 NewRectangleDesc = RECORD 
  selected: BOOLEAN; 
  x, y, w, h: INTEGER; 
  PROCEDURE (r: NewRectangle) Draw; 
  PROCEDURE (r: NewRectangle) Move (dx, dy: INTEGER); 
  PROCEDURE (r: NewRectangle) Store (VAR rider: OS.Rider); 
  PROCEDURE (r: NewRectangle) Fill (pat: Pattern) 
 END 
 

There is a very important difference: Rectangle is compatible with 
Figure because it is an extension of Figure, while NewRectangle is 
not compatible with Figure although it contains the same fields and 
methods as Rectangle. NewRectangle is a completely different type. 
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Every Rectangle object is also a Figure object! This is the 
revolutionary aspect of object-oriented programming. It means 
that all algorithms that work with Figure objects can also work 
with Rectangle objects. 

The compatibility between a base type and its extensions is 
particularly used in assignments. If figureDesc is a variable of type 
FigureDesc and rectangleDesc is a variable of type RectangleDesc, 
then the assignment 

Record 
assignment 

  
figureDesc := rectangleDesc 
 

is permitted because RectangleDesc objects are (extended) 
FigureDesc objects and thus can be assigned to FigureDesc 
variables. The assignment works like a projection. That is, only 
those fields of RectangleDesc are assigned that also exist in 
FigureDesc. 

The inverse assignment rectangleDesc := figureDesc is not 
permitted because a FigureDesc object is not a RectangleDesc object. 
(rectangleDesc contains more fields than figureDesc; the assignment 
would leave these fields undefined.) This error would be detected 
at compile time. 

Passing an object as a value parameter is also an assignment. 
A procedures with a formal parameter of type FigureDesc can be 
invoked with a RectangleDesc object as its actual parameter. 

The assignment compatibility between records is hardly ever 
used. Who wants to lose data in an assignment? Pointers, however, 
are another matter. If figure is of type Figure and rectangle of type 
Rectangle, then the assignment 

Pointer 
assignments 

  
figure := rectangle 
 

is permitted because a Rectangle is an extended Figure. Here no 
data of the object rectangle^ are lost; instead, after the assignment 
figure simply points to rectangle^, whose first part is interpreted as 
an object of type FigureDesc (Fig. 5.3). 
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 Fig. 5.3 Result of the assignment figure := rectangle 

 



54  5 Inheritance 

The fields x, y, w and h are still there in the object to which figure 
points after the assignment, but they cannot be referenced via 
figure because figure was declared as a variable of type POINTER 
TO FigureDesc, and FigureDesc contains no such fields. 

The inverse assignment rectangle := figure is not permitted. 
rectangle would point to a FigureDesc object, and the fields x, y, w, 
and h would be undefined (Fig. 5.4). This kind of error is again 
detected by the compiler. 
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Fig. 5.4 Hypothetical effect of the assignment rectangle := figure 

There is another situation in which a base type and its extension 
are compatible: when a record is passed as a variable parameter. 
Let P be a procedure with the following interface: 

Records as 
variable 
parameters 

  
PROCEDURE P (VAR figureDesc: FigureDesc); 
 

This procedure can be invoked with a parameter of type 
RectangleDesc: 

  
P(rectangleDesc) 
 

With variable parameters no assignment takes place; instead the 
formal parameter figureDesc simply has the same address as the 
actual parameter rectangleDesc. No fields of rectangleDesc are 
truncated. As in a pointer assignment, the fields of the extension 
(e.g., rectangleDesc.x) are still there when P is executed, but they 
cannot be accessed via figureDesc. Passing records as variable 
parameters is used in Section 6.3 for message records. 

 
To discuss some more examples, let us return to the type hierarchy 
diagram of Fig. 5.2. 

Other examples of 
assignment 
compatibility 
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Figure

Rectangle Circle

TextBox

VAR
figure: Figure;
rectangle: Rectangle;
circle: Circle;
textBox: TextBox;

 
Which of the following assignments is legal? 

 
a) figure := rectangle e) rectangle := circle 
b) rectangle := figure f) circle := rectangle 
c) figure := circle g) rectangle := textBox 
d) figure := textBox h) circle := textBox 
 

Only assignments a), c), d) and g) are correct. Variables of an 
extended type can be assigned to variables of its base type, but not 
the other way around, as in b). In e), f) and h) the types of the 
variables are not derived from one another and thus are 
incompatible. All these errors are detected at compile time. 

5.3 Static and Dynamic Type 

In languages with type extension, record and pointer variables 
have a dynamic type in addition to their static type. The static type is 
the type with which the variable is declared. The dynamic type is 
the type of the object that the variable holds at run time; it can be 
an extension of the static type. The static type is used by the 
compiler for type checking, while the dynamic type is used for the 
selection of methods at run time (see Chapter 6). 

Dynamic type 

Thus objects must contain type information at run time. This 
is typical of object-oriented languages and does not occur in 
conventional languages. When the object rectangle^ is created with 
NEW(rectangle), it has the dynamic type RectangleDesc, which it 
retains during its whole life. The variable rectangle thus has the 
dynamic type Rectangle (POINTER TO RectangleDesc). 

After the assignment figure := rectangle, figure also points to an 
object of type RectangleDesc. The dynamic type of figure is thus 
Rectangle (Fig. 5.5), but its static type remains Figure. 

Pointer 
assignment 
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Fig. 5.5 The static type of figure is Figure;  
the dynamic type of figure is Rectangle 

In the record assignment figureDesc := rectangleDesc, only those 
fields of RectangleDesc are transferred that also belong to 
FigureDesc. figureDesc does not contain the complete value of 
rectangleDesc; thus its dynamic type is not RectangleDesc, but only 
FigureDesc. For record variables the static and dynamic types are 
always the same. 

One exception is records that are passed as variable para-
meters. A formal variable parameter has the same address as the 
respective actual parameter. Thus it behaves as with pointers: its 
dynamic type can be an extension of its static type. 

Record 
assignment 

Records as 
variable 
parameters 

In the following procedure P, assume that f has the dynamic 
type RectangleDesc. 

 
PROCEDURE P (VAR f: FigureDesc); 
 VAR g: FigureDesc; 
BEGIN 
 f := g 
END P; 
 

What happens in the assignment f := g? Both variables have the 
same (static) type, thus the assignment should be possible. 
However, since f has the dynamic type RectangleDesc and g only 
the dynamic type FigureDesc, the fields x, y, w and h in the actual 
parameter corresponding to f would remain undefined. 

Oberon-2 solves this problem by permitting the assignment to 
a variable parameter record only if its dynamic type is the same as 
its static type. The dynamic type of f is RectangleDesc; its static type 
is FigureDesc; thus the assignment f := g is not permitted. This 
check is done at run time. 
 
Let us summarize: 

 
• A variable of a record type T can only contain values of type 

T. 
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• A formal variable parameter of a record type T can contain 
values of type T or an extension thereof. 

• A variable of type POINTER TO T can contain pointers to 
values of type T or an extension thereof. 

 
The concept of dynamic type is central to object-oriented 
languages and distinguishes them from conventional languages. 
The static type is needed for static type checking (i.e., type 
checking at compile time), while the dynamic type is needed for 
the interpretation of messages. 

Conventional languages with static type checking (e.g., 
Pascal) have only static types. In object-oriented languages without 
static type checking (e.g., Smalltalk), there are only dynamic types: 
variables are declared without type. Object-oriented languages 
with static type checking (e.g., Oberon-2, C++, Eiffel) employ both 
static and dynamic types. 

5.4 Run-Time Type Checking 

The dynamic type of a record or pointer variable can be tested at 
run time. The type test  

Type test 

 
figure IS Rectangle 
 

returns TRUE if figure has the dynamic type Rectangle (or an 
extension thereof), otherwise FALSE. 

If figure has the dynamic type Rectangle, it should be possible 
to assign it to rectangle. This is possible if a type guard is specified 
for figure. The type guard 

Type guard  

 
figure (Rectangle) 
 

checks at run time whether figure has the dynamic type Rectangle. 
If so, the variable figure is treated within this designator as if its 
static type were Rectangle; if not, there is a run-time error. The 
following examples show uses for a type guard. 
 

rectangle := figure(Rectangle) (*establishes assignment compatibility*) 
figure(Rectangle).x := 0 (*field x can be referenced*) 
figure(Rectangle).Fill(pat) (*method Fill can be referenced*) 
 

The type guard figure(Rectangle) plays a double role: It checks 
whether figure has the dynamic type Rectangle, and it temporarily 
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changes the static type of figure to Rectangle (it widens it to 
Rectangle, as seen in Fig. 5.6). The type guard is thus a kind of type 
conversion. However, Oberon-2 checks at run time whether the 
conversion is legal, in contrast to many other languages in which 
types can be converted without type checking. 
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figure figure(Rectangle)

 

Fig. 5.6 figure(Rectangle) widens the static type of figure to Rectangle  

A run-time error due to a failed type guard can be avoided by 
preceding the type guard by a type test: 
 

IF figure IS Rectangle THEN rectangle := figure(Rectangle) END 
 

To improve the understanding of run-time type tests, we will look 
at a few examples. Which of the following statements are correct 
(see the type hierarchy in Fig. 5.2)? 

 
a) textBox := rectangle (TextBox) 
b) rectangle := figure (TextBox) 
c) rectangle := circle (Rectangle) 
d) figure := circle; rectangle := figure (Rectangle) 
 

Statement a) is correct if the dynamic type of rectangle is TextBox or 
an extension thereof. If not, the type guard causes a run-time error. 
For b) the same applies as for a): If figure is at least of dynamic type 
TextBox, the designator figure(TextBox) is treated as if it were of 
static type TextBox. Thus it can be assigned to the variable 
rectangle. Statement c) is illegal because the dynamic type of circle 
can never be Rectangle. This error is detected by the compiler. Case 
d) is interesting: Here we attempt to smuggle circle to rectangle via 
figure. figure := circle is correct; rectangle := figure (Rectangle) is also 
correct as far as the compiler is concerned, but the type guard 
causes a run-time error because figure is of dynamic type Circle and 
not Rectangle. 

Which of the following type tests return TRUE if figure is of 
dynamic type TextBox? 

 
a) figure IS Figure 
b) figure IS Rectangle 
c) figure IS TextBox 
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All three type tests return TRUE: figure contains a TextBox object, 
which is also a(n extended) Rectangle and Figure object. 

 
Sometimes we want to apply a type guard to multiple occurrences 
of a variable, but we do not want to write it each time. In this case 
we can use the with statement: If f is a formal variable parameter of 
static type FigureDesc, then instead of writing 

With statement 

 
f(RectangleDesc).x := …; 
f(RectangleDesc).y := …; 
f(RectangleDesc).Fill(…) 
 

we can write 
 
WITH f: RectangleDesc DO 
 f.x := …; 
 f.y := …; 
 f.Fill(…) 
END 
 

The meaning of this with statement is: if f is of dynamic type 
RectangleDesc, it is handled in the with statement as if its static type 
were also RectangleDesc. Thus the fields and methods of 
RectangleDesc can be referenced as f.x, f.y and f.Fill. If f is not of 
dynamic type RectangleDesc, a run-time error results. A with 
statement is a regional type guard. The type test is performed only 
once, when the with statement is entered. With statements can also 
be applied to pointers, e.g.: 

 
WITH figure: Rectangle DO  
 figure.x := …;  
 figure.y := …  
END 

5.5 Extensibility in an  
Object-Oriented Sense 

At first glance it seems that extensibility of software is not 
something made possible only by object-oriented programming. In 
practice software systems were always extended and modified. So 
what is special about object-oriented extensibility? The special 
aspect is that object-oriented programming makes it possible to 
extend systems in such a way that existing program parts are not 
affected. 
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Meyer [Mey87] explains the open/closed principle in terms of 
open and closed modules. A module is open if it is still being 
developed. Its interface is still immature and subject to frequent 
correction. It is used by few clients, which means that a 
modification in the interface does not have dramatic consequences: 
few clients are affected by these changes. At some point, however, 
every module must be closed. Its interface is frozen then and the 
module is released for general use. Now a modification in the 
interface would have more serious consequences since the module 
is used by many clients. 

Open and closed 
modules 

The dilemma is that project management requires both 
properties: A module should remain open as long as possible so 
that it can mature; on the other hand, at some point clients must be 
able to rely on a stable interface. The goal would be to have a 
module closed for its current clients, yet open for new clients (Fig. 
5.7). 

A B

M M

C D

M1
 

Fig. 5.7 M remains closed for A, B and C and is reopened for D . 

How can this be achieved? There are four basic ways to extend the 
module M: 

 
(1) The source code of M is changed. This causes problems for 

various reasons: First, it assumes the availability of the source 
code. Second, if the changes affect the interface, all clients 
have to be recompiled. Third, the clients are bogged down 
with the extension even though only a few actually use it. 

Modify the original 

 
(2) The source code of M is copied and changes are made on the 

copy M1. This spares the trouble of recompiling existing 
clients and avoids bogging them down with unnecessary 
functionality. The drawback is its redundancy. The module 
now exists in two variants. Whenever an error is detected, it 
must be corrected at two locations. In addition, the source 
code of M is again required. 

Modify a duplicate 
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(3) M is embedded in M1 in the sense that M is used by M1. 
Assume that M is a module: 

Embedding in 
another module 

 
 MODULE M; 
  … 
  PROCEDURE P (x: INTEGER); 
  … 
 END M. 
 

 It is now simple to implement a new module M1 that has the 
same interface and imports M: 
 
 MODULE M1; 
 
  IMPORT M; 
 
  PROCEDURE P (x: INTEGER); 
  BEGIN  
   … (*new functionality*) … 
   M.P(x) 
  END P; 
  … 
 END M1. 
 

 This solution does not require the source code of M. The 
existing clients can continue to use M and are not troubled 
with the extensions of M1. However, one small problem 
remains: The clients of M cannot optionally use M1 because 
they are statically bound to M. Each invocation of M.P in their 
source code would have to be replaced with M1.P. But even 
that would not allow the substitution of M1 for M at run time. 

 
(4) If M is a class, it can be extended by creating the subclass M1, 

in which the inherited methods can be overridden. As with 
embedding, the source code of M is not needed; M's clients do 
not need to be recompiled and are not bothered with the 
extensions in M1. In addition, programs that work with M can 
automatically also work with M1; their source code need not 
be modified, and M can be replaced with M1 at run time. 
Clients are dynamically bound to M or M1 (see Chapter 6). 

Extension by 
inheritance 

 
Extensibility in an object-oriented sense thus means: a class is 
reused in the form of object code, but it can still be extended in 
such a way that existing clients can also work with the extension 
without having to be modified. 
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However, inheritance is not intended to correct poor design. If 
a method of a class really was forgotten, there is no option but to 
reopen the class and to add the forgotten method. 
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5.6 Common Questions 

Q: Why is it not possible to override inherited data fields in a 
subclass? 

A: If it were permitted that a field f of an object a were of type 
INTEGER in the superclass A and of type CHAR in its sub-
class B, then the compiler would not be able to perform a type 
check for a.f := a.f + 1. If a were of dynamic type A, then a.f 
would be of type INTEGER and the addition would be legal; 
but if a were of dynamic type B, then a.f would be of type 
CHAR and the addition would be illegal. The type check 
could only be carried out at run time. 

 
Q: Can a class be derived from more than one base class? 
A: This is not possible in Oberon-2. In languages like C++ and 

Eiffel, such multiple inheritance is possible. Section 8.6 
explains why multiple inheritance is not permitted in Oberon-
2 and how to survive without it. 

 
Q: Can a subclass access fields and methods of its superclass if 

these are declared in another module and not exported? 
A: No. In Oberon-2 it is the module, not the class, that is 

responsible for information hiding. Even subclasses cannot 
break through the module wall. 

 
Q: Must an exported method be reexported each time it is 

overridden? 
A: When it is overridden, an exported method must be provided 

with an export mark if the subclass to which it belongs is also 
exported. 
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In Chapter 5 we saw that a subclass inherits code from its base 
class. However, code reuse is not the primary goal of inheritance. 
More important is the fact that a subclass inherits the interface, i.e., 
that it understands the same messages as its base class, although it 
may implement them differently. The compatibility between a 
subclass and its base class makes it possible for a variable at run 
time to contain objects of various types that react differently to a 
message. 

6.1 Messages 

A variable of static type Figure can assume various dynamic types, 
e.g., Rectangle, Circle, Button, etc. If it is of dynamic type Rectangle, 
the message Draw causes the invocation of the Draw method from 
Rectangle; if it is of dynamic type Circle, the same message causes 
the invocation of the Draw method from Circle. This mechanism is 
called dynamic binding: A message obj.M causes the invocation of 
the method M that belongs to the dynamic type of obj. The 
message is dynamically bound to a certain method (i.e., at the time 
it is sent). 

Dynamic or late binding contrasts with static or early binding, 
which happens in conventional procedure invocations. With static 
binding, the compiler knows the address of the procedure to be 
invoked and generates a direct call. With dynamic binding, the 
compiler does not know the address of the corresponding method. 
This address must be determined at run time using the dynamic 
type of the receiver. Message sending is thus somewhat slower 
than calling a procedure. Over an entire program, however, this 
difference is hardly measurable. 

Dynamic binding 

Static binding 
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Dynamic binding is central to object-oriented programming. It 
makes it possible to work with variables whose dynamic type is 
unknown and irrelevant at compile time. If an operation is to be 
applied to such a variable, one does not have to care about its 
actual dynamic type. One simply sends a message to the variable 
and lets the object interpret it. The message tells what is to be done. 
The object determines how it is done, i.e., which method is to be 
invoked. 

Let us look at an example. A class Terminal includes methods 
for printing characters, strings, and numbers on the screen: 

Clients do not 
need to 
distinguish object 
variants 

Example 

 
TYPE 
 Terminal = POINTER TO TerminalDesc; 
 TerminalDesc = RECORD 
  PROCEDURE (t: Terminal) Write (ch: CHAR); 
  PROCEDURE (t: Terminal) WriteString (a: ARRAY OF CHAR); 
  PROCEDURE (t: Terminal) WriteInt (value, width: INTEGER); 
 END; 
 

Assume that we need a variant of Terminal that converts all lower-
case letters to upper-case letters before printing them. We imple-
ment a subclass CapTerminal in which we override the method 
Write so that it makes the required conversion using the 
predefined function CAP. WriteString and WriteInt are 
implemented in terms of Write; thus they do not have to be 
overridden for our purpose. 

 
TYPE 
 CapTerminal = POINTER TO CapTerminalDesc; 
 CapTerminalDesc = RECORD (TerminalDesc) END; 
 
PROCEDURE (t: CapTerminal) Write (ch: CHAR); 
BEGIN 
 IF (ch >= "a") OR (ch <= "z") THEN ch := CAP(ch) END; 
 t.Write^ (ch) 
END Write; 
 

Every algorithm that works with Terminal can now also work with 
CapTerminal. For example, if terminal is a variable of type Terminal 
and capTerminal a variable of type CapTerminal, then the following 
procedure 

 
PROCEDURE WriteOn (t: Terminal); 
BEGIN 
 … t.Write(ch) … 
END WriteOn; 
 

can be invoked not only as 
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WriteOn (terminal) 

but also as 
 
WriteOn (capTerminal) 
 

The procedure does not need to know whether t is of dynamic type 
Terminal or CapTerminal. It need only know that Terminal objects 
understand a Write message. Due to dynamic binding, this 
message is handled either by the Write method of Terminal or by 
that of CapTerminal, depending on the current dynamic type of t. 

6.2 Abstract Classes 

Assume that there are other output classes beside Terminal: one for 
hard disk files, one for floppy disk files, and one for the network. 
These classes are similar: they all write data to some medium. It 
should be possible to exchange objects of these classes, that is, to 
use a hard disk file instead of a floppy disk file or vice versa. To 
achieve this, the classes must be compatible in the sense of type 
extension. But which class should serve as base class and which as 
subclass? Actually they are all at the same level. 

A clean solution is to factor out the common behavior of all 
classes and to create a new base class Stream, from which all the 
other classes are derived (Fig. 6.1). Since there are no objects of 
type Stream, but only objects of type Terminal, DiskFile, FloppyFile 
or NetFile, we call Stream an abstract class. 

Factoring out 
common behavior

 

Stream

Terminal DiskFile FloppyFile NetFile  

Fig. 6.1 Abstract class Stream and several concrete subclasses 

What should the abstract class Stream look like? It certainly must 
contain methods like Write, WriteString and WriteInt. But how 
should these methods be implemented? Write cannot be 
implemented yet, because it differs from subclass to subclass; its 
implementation in Stream can only be empty. An empty method is 
called an abstract method, and classes that contain abstract methods 

Implementing 
abstract classes 
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are called abstract classes. The abstract class Stream is thus 
implemented as follows: 

 
TYPE 
 Stream = POINTER TO StreamDesc; 
 StreamDesc = RECORD END; (*abstract*) 
 
PROCEDURE (s: Stream) Write (ch: CHAR);  (*abstract*) 
END Write; 
 
PROCEDURE (s: Stream) WriteString (a: ARRAY OF CHAR); 
 VAR i: INTEGER; 
BEGIN 
 i := 0; 
 WHILE a[i] # 0X DO s.Write(a[i]); i := i + 1 END 
END WriteString; 
 
PROCEDURE (s: Stream) WriteInt (value, width: INTEGER); 
 VAR n: LONGINT; i, k: INTEGER; neg: BOOLEAN; d: ARRAY 5 OF CHAR; 
BEGIN 
 n := value; neg := n < 0; i := 0; 
 IF neg THEN n := - n; width := width - 1 END; 
 REPEAT 
  d[i] := CHR(ORD("0") + n MOD 10);  
  n := n DIV 10; i := i + 1 
 UNTIL n = 0; 
 FOR k := i TO width DO s.Write(" ") END; 
 IF neg THEN s.Write("-") END; 
 REPEAT i := i - 1; s.Write(d[i]) UNTIL i = 0 
END WriteInt; 
 

Stream includes one abstract method, Write, and two concrete 
methods, WriteString and WriteInt, whose implementation is based 
on Write. Thus Stream is only partially abstract. In WriteString and 
WriteInt, standard behavior is implemented that is inherited by 
subclasses, but can be overridden. 

Abstract methods such as Write must be overridden in 
subclasses. It is good practice not to leave them empty but to 
implement them with a HALT statement (see Appendix A) that 
terminates execution. In case the programmer forgets to override 
them, the HALT statement reveals that error. 

One concrete subclass of Stream is DiskFile. It is implemented 
as follows: 

 
TYPE 
 DiskFile = POINTER TO DiskFileDesc; 
 DiskFileDesc = RECORD (StreamDesc) … END; 
 
PROCEDURE (f: DiskFile) Write (ch: CHAR); 
BEGIN  
 … (*code to write ch to file f *) 
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END Write; 
 

Write is the only method to override because WriteString and 
WriteInt are based on it. 

If abstract methods have to be overridden anyway, what is the 
sense of declaring them already in the base class? Could they not 
be omitted in the base class and implemented only in the 
subclasses? 

Interfaces of 
abstract classes 

Abstract methods must not be omitted in the base class. The 
purpose of an abstract class is not to provide code that can be 
inherited, but to establish a common interface for all future 
subclasses. Establishing this interface in the base class is necessary 
to make dynamic binding work. A Stream variable can contain a 
DiskFile object at run time. If this object is to be sent an Open 
message, this is possible only if the interface of Stream permits an 
Open message. 

Establishing a common interface is more important than 
inheriting code. Classes are often implemented as extensions of an 
abstract class. In these cases an interface is inherited, but no code. 
Code reuse is not important here; the common interface, however, 
is necessary in order to work with multiple subclasses without 
having to distinguish them in the program. 

It does not make sense to create objects of an abstract class 
Stream. Nothing could be done with such objects. It does, however, 
make sense to work with variables whose static type is Stream and 
whose dynamic type is some extension of Stream. In many object-
oriented programs, this is the normal case. 

An abstract class is the design of its subclasses—a template 
that indicates which methods must be provided in the subclasses. 
This can be helpful. If a new Stream variant is to be implemented, 
most of its methods are already known. 

Abstract classes 
are design 

While we recommend moving as many methods as possible 
from the subclasses to the abstract class, it is usually unwise to do 
the same with data fields. Which fields are needed in a subclass 
depends on its implementation. The fields of the base class usually 
cannot be reused in subclasses. They often even impede 
extensibility [WiW89]. 

6.3 Examples 

Let us recall the declaration of the class Stream from Section 6.2: 
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TYPE 
 Stream = POINTER TO StreamDesc; 
 StreamDesc = RECORD END;  (*abstract*) 
 
PROCEDURE (s: Stream) Write (ch: CHAR);  (*abstract*) 
BEGIN 
 HALT(99) (*this method should be overridden*) 
END Write; 
 
PROCEDURE (s: Stream) WriteString (a: ARRAY OF CHAR); 
 VAR i: INTEGER; 
BEGIN 
 i := 0; 
 WHILE a[i] # 0X DO s.Write(a[i]); i := i + 1 END 
END WriteString; 
 

The subclass DiskFile was derived from Stream: 
 
TYPE 
 DiskFile = POINTER TO DiskFileDesc; 
 DiskFileDesc = RECORD (StreamDesc) … END; 
 
PROCEDURE (f: DiskFile) Write (ch: CHAR); 
BEGIN 
 … (*write ch to file f*) … 
END Write; 
 

What are the results of the following statements? Compare your 
answers with those in the right column. The notation Stream.Write 
means the invocation of the method Write in the class Stream. 

  
VAR stream: Stream; file: DiskFile; 
 
 NEW(stream); … 
(*a*) stream.Write(ch); (*Stream.Write*) 
(*b*) stream.WriteString("abc"); (*Stream.WriteString  -> Stream.Write*) 
 
 NEW(file); … 
(*c*) file.Write(ch); (*DiskFile.Write*) 
(*d*) file.WriteString("abc"); (*Stream.WriteString  -> DiskFile.Write*) 
 
 stream := file; 
(*e*) stream.Write(ch); (*DiskFile.Write*) 
(*f*) stream.WriteString("abc"); (*Stream.WriteString  -> DiskFile.Write*) 
 

Cases a and b are clear. Since stream is of dynamic type Stream, 
Write and WriteString are invoked from Stream. WriteString itself 
invokes Write. 

Case c is also clear. The dynamic type of file is DiskFile, so 
DiskFile.Write is invoked. Case d is more interesting. The dynamic 
type of file is DiskFile, but the WriteString method was not 
overridden there. Thus the inherited method from Stream is 
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invoked, which in turn sends a Write message to its receiver. Since 
the receiver is of dynamic type DiskFile, DiskFile.Write is invoked. 

Cases e and f are textually the same as a and b, but they yield 
the same results as c and d because stream is now of dynamic type 
DiskFile. Here we clearly see the dynamic binding. 

 
Let us consider another example. A class CryptFile is to be 
implemented to encrypt an output before writing it to a file. This 
class is derived from DiskFile and the method WriteString is 
overridden. 

 
TYPE 
 CryptFile = POINTER TO CryptFileDesc; 
 CryptFileDesc = RECORD (DiskFileDesc) END; 
 
PROCEDURE (crypt: CryptFile) WriteString (a: ARRAY OF CHAR); 
 VAR b: ARRAY 256 OF CHAR; 
BEGIN 
 Encrypt(a, b);  (*b is an encryption of a*) 
 crypt.WriteString^ (b)  (*call WriteString from the base class*) 
END WriteString; 
 

What are the results of the following statements? 
 
VAR crypt: CryptFile; 
…  
NEW(crypt); 
stream := crypt; 
stream.WriteString("abc"); 
(*  CryptFile.WriteString -> Stream.WriteString -> DiskFile.Write*) 
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Fig. 6.2 Effects of the statement stream.WriteString("abc") 

Figure 6.2 shows the results. Since stream is of dynamic type 
CryptFile, CryptFile.WriteString is invoked (1). This method calls the 
method with the same name in the base class of CryptFile, i.e., 
DiskFile. This is the inherited method Stream.WriteString (2). There 
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the receiver is sent the message Write. The receiver is still of 
dynamic type CryptFile; thus the respective Write is invoked, i.e., 
the Write method inherited from DiskFile (3). 

6.4 Message Records 

Methods are only one possibility to handle messages. Another 
possibility is to take the expression "sending a message" literally. 
Then a message is a data package (a message record) that is passed 
to an object for handling. All we need for that is various message 
records, as well as one method per class that interprets the 
message records. 

Message records 

Let us return to our example with figures, rectangles and 
circles from Chapter 5. Figures can be sent the messages Draw, 
Store or Move. If these messages are implemented as records, we 
have: 

 
TYPE 
 Message = RECORD END; (*base type of all messages*) 
 
 DrawMsg = RECORD (Message) END; 
 StoreMsg = RECORD (Message) rider: OS.Rider END; 
 MoveMsg = RECORD (Message) dx, dy: INTEGER END; 
 

The concrete message types are extensions of the empty type 
Message and contain their parameters as record fields. Records of 
this type can be passed to a message handler, which is a method as 
in the following: 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD 
  selected: BOOLEAN; 
  PROCEDURE (f: Figure) Handle (VAR m: Message); 
 END; 
 

The message handler interprets message records based on their 
dynamic type and reacts accordingly. It has to be overridden in 
every class. For the class Rectangle it takes the following form: 

Message handler 

 
TYPE 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD (FigureDesc) 
  x, y, w, h: INTEGER 
 END; 
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PROCEDURE (r: Rectangle) Handle (VAR m: Message); 
BEGIN 
 WITH 
  m: DrawMsg DO … (*draw rectangle r*) 
 | m: MoveMsg DO … (*move rectangle r by m.dx, m.dy*) 
 | m: StoreMsg DO … (*store rectangle r on m.rider*) 
 | … 
 ELSE (*ignore m*) 
 END 
END HandleRectangle; 
 

The message m is analyzed using a with statement with variants 
(see Appendix A). The above with statement is to be read as 
follows: If m is of dynamic type DrawMsg, the statement sequence 
after the first DO symbol is executed and m is handled as a 
variable with static type DrawMsg; if m is of dynamic type 
MoveMsg, the statement sequence after the second DO symbol is 
executed and m is handled as a variable with static type MoveMsg 
(hence access to m.dx and m.dy is permitted); if none of the variants 
applies, the else branch is executed, and if there is no else branch, a 
run-time error results. 

With statement 
with variants 

In this example, Handle ignores unknown messages: the else 
branch of the with statement is empty. It would also be possible to 
react to unknown messages with an error message or to forward 
them to the handler of the base type. 

To send a message to an object, an appropriate message 
record is filled and is passed to the handler of the object: 

Using message 
records 

 
VAR f: Figure; move: MoveMsg; 
… 
move.dx := 10; move.dy := 20; 
f.Handle(move) 
 

Depending on the dynamic type of f, a different message handler 
will be invoked that reacts to the move message in its own way. 

Result parameters of a message are returned in the message 
record. To compute the area of a figure, say, the figure can be sent 
a message getArea. The message handler returns the area in 
getArea.value: 

 
TYPE  
 GetAreaMsg = RECORD (Message) value: LONGINT END; 
VAR  
 getArea: GetAreaMsg; 
 area: LONGINT; 
 
f.Handle(getArea); 
area := getArea.value 
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Message records are similar to Smalltalk messages, which are also 
analyzed at run time by a handler that invokes the appropriate 
method. In Smalltalk, however, the message handler is built into 
the system, while in Oberon it is implemented by the programmer. 

The Oberon system itself was implemented with message 
records. Likewise the Oberon0 system described in Chapter 11 
uses message records in connection with viewers (windows). 

 
Message records have several advantages over methods: Advantages 
 
• Messages are data packages that can be stored and sent later. 
 
• A message can easily be distributed to more than one object. 

This is called a broadcast. Consider a list of figures that have to 
be moved on the screen. With methods, the caller would have 
to traverse the list and send a Move message to every figure: 
 
 f := firstFigure; WHILE f # NIL DO f.Move(dx, dy); f := f.next END 
 

 The structure of the list must be known to the caller (which is 
not always the case) and the code for the traversal is 
duplicated in every client. With message records one can 
implement the list traversal in a procedure Broadcast to which 
the message is passed as a parameter: 
 
 PROCEDURE Broadcast (VAR m: Message); 
  VAR f: Figure; 
 BEGIN 
  f := firstFigure; WHILE f # NIL DO f.Handle(m); f := f.next END 
 END Broadcast; 
 

 This allows hiding the list structure and keeping the code for 
the list traversal localized. 

 
• An object can be sent a message that it does not understand. It 

may ignore the message or forward it to another object. For 
example, a fill message can be broadcast to all figures 
although only rectangles and circles understand it, but not 
lines. With methods this is not possible because the compiler 
checks if a message is understood by the receiver. 

 
• It is possible to implement the message handler as a 

procedure variable rather than as a method. Then it can be 
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exchanged at run time to dynamically change the behavior of 
an object. 

 
Message records also have some disadvantages: Drawbacks 
 
• It is not immediately clear which operations belong to a class, 

i.e., which messages an object understands. To find that out, 
one has to look at the implementation of the message handler. 

 
• Messages are interpreted at run time using a with statement 

whose variants are processed sequentially. This is slower than 
a method invocation, which can be implemented with a single 
table lookup (see Appendix A.12.4). 

 
• Message sending is somewhat clumsy. First the input 

parameters have to be packaged in the record, then the 
message handler has to be invoked, and finally the output 
parameters can be obtained from the record: 
  
 msg.inPar := …; 
 obj.Handle(msg); 
 … := msg.outPar 

 
• What was considered an advantage above can also be a 

drawback: the compiler cannot check whether an object 
understands a message. For example, the following program 
would be correct for the compiler: 
  
 TYPE 
  NonsenseMsg = RECORD (Message) END; 
 VAR 
  f: Figure; 
  nonsense: NonsenseMsg; 
 … 
 f.Handle(nonsense) 
 

 At run time f would not understand nonsense. The object 
would ignore the message or the program would be 
terminated with a run-time error. The error might arise only 
after months and is difficult to find then. 

 
Thus message records have advantages and disadvantages. In 
general, methods are preferable because they are more efficient, 
safer, and more readable. To implement broadcasts, however, it 

 



74  6 Dynamic Binding 

makes sense to employ the greater flexibility of message records 
(see also Chapter 8.7). 

6.5 Common Questions 

Q: Can a class be restricted rather than extended, i.e., can 
inherited methods and fields be removed in a subclass? 

A: No. If a method M inherited from class A were removed from 
a subclass B, it would still be possible to send M to a B object 
stored in a variable of type A. What would that message 
yield? However, to prevent the invocation of M for B, one can 
override B with a method that generates an error message. 

 
Q: In overriding a method, can the parameter types be an 

extension of the parameter types in the base method; i.e., if B 
is a subclass of A, are the following declarations permitted? 
 
 PROCEDURE (x: A) M (y: A); … 
 PROCEDURE (x: B) M (y: B); … 
 

A: No. The types of the formal parameters in the two methods 
must match (except for the receiver). Otherwise the following 
could occur: 
 
 VAR a, a1: A; 
 … 
 a.M(a1) 
 

 If a is of dynamic type B, method M of B is invoked, which 
requires a parameter that is at least of type B. If the dynamic 
type of the actual parameter a1 is only A rather than B, M is 
invoked with a parameter of the wrong type. The compiler 
would have to generate a run-time test in M that would report 
an error if the parameter were not of type B. This would be 
costly. 

 
Q: Does obj.M^ invoke the method M from the base class of the 

static or the dynamic type of obj? 
A: The method from the base class of the static type of the 

receiver is invoked. 



7 Typical Applications 

Object-oriented programming yields very elegant solutions in 
some cases; in others it is of almost no use and can even add 
complexity. Applications that profit from object-oriented pro-
gramming are the following: 

 
• abstract data types 
• generic components 
• heterogeneous data structures 
• replaceable behavior 
• adaptable components 
• semifinished products 
 
Whenever a situation requires generic components, heterogeneous 
data structures or replaceable behavior, classes are the approach of 
choice. An experienced programmer recognizes such situations 
and employs classes then (and only then). 

7.1 Abstract Data Types 

Classes are an excellent structuring medium. They group asso-
ciated data and operations and bring order to programs. They help 
to hide unimportant details from clients and thus reduce the 
complexity of software. 

Classes as a 
structuring 
medium 

Even if inheritance and dynamic binding are not used, it can 
make sense to implement a data type as a class in order to make it 
an identifiable, self-contained entity. An example is a class to 
control an RS232 interface. Details such as interface registers, 
handshake protocol and signals, can be hidden behind the follow-
ing interface: 

 



76 7 Typical Applications 

TYPE 
 RS232 = RECORD 
  PROCEDURE (VAR x: RS232) Init (address, bitRate, dataBits,  
   stopBits, parity: LONGINT); 
  PROCEDURE (VAR x: RS232) Send (ch: CHAR); 
  PROCEDURE (VAR x: RS232) Receive (VAR ch: CHAR); 
 END; 
 

This interface is simple, hardware independent, and stable with 
regard to modifications of the implementation. However, it should 
be considered whether the component is really needed as a type. If 
not, a module like the following is the simpler and more efficient 
solution: 

 
DEFINITION RS232; 
 PROCEDURE Init (bitRate, dataBits, stopBits, parity: INTEGER); 
 PROCEDURE Send (ch: CHAR); 
 PROCEDURE Receive (VAR ch: CHAR); 
END RS232. 
 

Data abstraction is not for free. Although a class usually eliminates 
complexity, it also adds a certain amount of new complexity. After 
all, a new component is defined with operations whose syntax and 
semantics must be kept in mind. Data abstraction is only justified 
if the simplification is substantially higher that the newly 
introduced complexity. For example, it would not make sense to 
define the following class for a person's salary: 

The cost of data 
abstraction 

 
TYPE 
 Salary = RECORD 
  amount: INTEGER; 
  PROCEDURE (s: Salary) Set (value: INTEGER); 
  PROCEDURE (s: Salary) Get (VAR value: INTEGER); 
  PROCEDURE (s: Salary) Increment (value: INTEGER); 
 END; 
 

The class Salary introduces more complexity than it eliminates. 
Instead, the standard type INTEGER would be perfectly adequate. 
The example may be exaggerated, but such errors occur frequently 
among programmers who feel the need to express everything with 
classes. 

Among all features of object-oriented programming, data 
abstraction is the one that is least novel, yet most frequently 
applicable. Inheritance and dynamic binding are applicable in some 
programs; data abstraction is useful in almost all. 

Data abstraction and the structuring possibilities that it 
provides are a major reason for the popularity of object-oriented 
languages. For Modula-2 programmers, data abstraction is a well-
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known technique. For Cobol or C programmers it constitutes 
substantial progress. This also explains why some view object-
oriented programming as revolutionary, while others find it less 
spectacular. 

7.2 Generic Components 

A component is called generic if it can work with various types of 
objects. Languages like Ada [DoD83] and Eiffel [Mey87] offer 
genericity as a language construct. Genericity can also be 
simulated with inheritance, as we will see in this section. 

Consider a generic binary tree. The algorithms for inserting or 
searching for objects in the tree are independent of whether the 
objects are numbers, character strings, or more complex data. It is 
wise to implement them so that they are not tailored to a certain 
type of object, but work with generalized objects that can later be 
replaced with numbers, character strings, etc. Such a binary tree 
could have the following interface: 

A generic binary 
tree 

 
TYPE 
 Tree = RECORD 
  PROCEDURE (VAR t: Tree) Init; 
  PROCEDURE (VAR t: Tree) Insert (x: Node); 
  PROCEDURE (VAR t: Tree) Delete (x: Node); 
  PROCEDURE (VAR t: Tree) Search (x: Node): Node; 
 END; 
 

Instead of numbers or character strings, this tree handles objects of 
the abstract type Node. Although the structure of the nodes is 
unknown, the tree must make certain assumptions about them: 
Every node must have a left and a right child, and it must be 
possible to compare nodes in order to locate them in the tree. 
These assumptions are expressed in the following interface of 
Node: 

 
TYPE 
 Node = POINTER TO NodeDesc; 
 NodeDesc = RECORD 
  left, right: Node; 
  PROCEDURE (x: Node) EqualTo (y: Node): BOOLEAN; 
  PROCEDURE (x: Node) LessThan (y: Node): BOOLEAN; 
 END; 
 

These assumptions suffice for implementing the methods of class 
Tree. 
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TYPE 
 Tree = RECORD 
  root: Node 
 END; 
 
PROCEDURE (VAR t: Tree) Init; 
BEGIN root := NIL 
END Init; 
 
PROCEDURE (VAR t: Tree) Insert (x: Node); 
 VAR this, parent: Node; 
BEGIN 
 this := t.root; x.left := NIL; x.right := NIL; 
 WHILE this # NIL DO 
  parent := this; 
  IF x.EqualTo(this) THEN RETURN (*don't insert duplicates*) END; 
  IF x.LessThan(this) THEN this := this.left ELSE this := this.right END 
 END; 
 IF t.root = NIL THEN t.root := x 
 ELSIF x.LessThan(parent) THEN parent.left := x 
 ELSE parent.right := x 
 END 
END Insert; 
 
PROCEDURE (VAR t: Tree) Search (x: Node): Node; 
 VAR this: Node; 
BEGIN 
 this := t.root; 
 WHILE (this # NIL) & ~ x.EqualTo(this) DO 
  IF x.LessThan(this) THEN this := this.left ELSE this := this.right END 
 END; 
 RETURN this 
END Search; 
 
PROCEDURE (VAR t: Tree) Delete (x: Node); 
 VAR this, parent, p, q: Node; 
BEGIN 
 this := t.root; 
 WHILE (this # NIL) & ~ x.EqualTo(this) DO 
  parent := this; 
  IF x.LessThan(this) THEN this := this.left ELSE this := this.right END 
 END; 
 IF this # NIL THEN (*x.EqualTo(this); find a node p that can replace this*) 
  IF this.right = NIL THEN p := this.left 
  ELSIF this.right.left = NIL THEN p := this.right; p.left := this.left 
  ELSE (*p := smallest node greater than this*) 
   p := this.right; WHILE p.left # NIL DO q := p; p := p.left END; 
   q.left := p.right; p.left := this.left; p.right := this.right 
  END; 
  IF this = t.root THEN t.root := p 
  ELSIF this.LessThan(parent) THEN parent.left := p 
  ELSE parent.right := p 
  END 
 END 
END Delete; 
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How can a binary tree that handles objects of type Node be used to 
store character strings? This is simple if character strings are made 
compatible to Node. In order to do that, a subclass StringNode is 
derived from Node containing a character string as data field and 
overriding the methods EqualTo and LessThan: 

Storing character 
strings in the 
binary tree 

 
TYPE 
 StringNode = POINTER TO StringNodeDesc; 
 StringNodeDesc = RECORD (NodeDesc) 
  s: POINTER TO ARRAY OF CHAR 
 END; 
 
PROCEDURE (x: StringNode) EqualTo (y: Node): BOOLEAN; 
BEGIN RETURN x.s^ = y(StringNode).s^ 
END EqualTo; 
 
PROCEDURE (x: StringNode) LessThan (y: Node): BOOLEAN; 
BEGIN RETURN x.s^ < y(StringNode).s^ 
END LessThan; 
 

Note that parameter y of both methods is of type Node (overridden 
methods must have the same parameter types as the respective 
method of the base class). Thus a type guard y(StringNode) is 
necessary in order to access y.s. Character strings are inserted in 
the tree as follows:  

 
VAR t: Tree; s: StringNode; 
… 
NEW(s); … t.Insert(s); 
 

The method Insert compares nodes using the messages EqualTo 
and LessThan, which are dynamically bound to the respective 
methods of StringNode. In a similar way, it is possible to store 
numbers in the tree by deriving a type IntegerNode and overriding 
the methods EqualTo and LessThan. What have we achieved with 
the generic type Tree ? 
 
• Tree can work with all objects whose type is derived from 

Node and that can be compared with EqualTo and LessThan. 
• Node serves as a design pattern for future node classes. 
• Tree can be reused without modification or recompilation. 
 
Languages like Ada, C++ and Eiffel include genericity as a 
language construct. In Eiffel, for example, a class can be para-
meterized with a type T that follows the class name in square 
brackets. A generic stack in Eiffel takes the following form: 

Genericity as a 
language 
construct 
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class Stack [T] 
 … 
 Push (x: T) is do … end; 
 Pop: T is do … end; 
end 
 

The operations Push and Pop work with objects of type T. In the 
declaration of a stack variable, T can be replaced with a concrete 
type such as INTEGER, resulting in a stack of integer numbers: 

 
intStack: Stack[INTEGER]; 
i: INTEGER; 
… 
intStack.Push(3); … i := intStack.Pop 
 

Stack can be used for any types of elements without needing an 
element base class such as Node. This kind of genericity, however, 
is suited only for simple data structures that make no assumptions 
about the elements they maintain, e.g., stacks, queues or unsorted 
lists. Most useful data structures such as trees, sets or sorted lists 
require at least that their elements can be compared. Eiffel thus 
permits a more detailed specification of the generic class Tree, 
called constrained genericity. The class declaration 

 
class Tree [T -> Node] 
 … 
end 
 

specifies that the concrete type corresponding to T must be a Node 
or an extension thereof. Here, too, an abstract class Node has to be 
used to define the required behavior of all future nodes. 

An important aspect of genericity in Eiffel is that the compiler 
enforces that all objects managed by Stack have the same type, i.e., 
that they are homogeneous. Inheritance, on the other hand, allows 
Stack to manage a heterogeneous set of elements, e.g., numbers 
mixed with character strings. This might or might not be desirable 
(see Section 7.3), but with inheritance the homogeneity of the 
element set can only be checked at run time.  

With genericity we can write i := intStack.Pop. If Stack is 
parameterized with INTEGER, then Pop always returns INTEGER 
objects. Type checks can be done at compile time. However, if the 
stack is implemented using inheritance from an abstract class Node, 
then Pop returns Node objects that must first be converted to 
IntegerNode objects with a type guard. The type guard requires a 
type check at run time. 
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Note that inheritance can be used to simulate genericity, but 
not vice versa. Genericity cannot replace inheritance [Mey86]. 
Inheritance is the more powerful and more fundamental concept. 

 
The example of the class Tree calls attention to another important 
fact: Many classes have not only an interface to their clients, but 
usually also one or more interfaces to their components, in this 
case to Node (Fig. 7.1). A programmer using the class Tree must 
also know the interface of Node, because an extension of Node must 
be implemented. 

Classes usually 
have multiple 
interfaces 

Init

EqualTo LessThan

Insert Delete Search

Tree

Node

Interface to clients:
which services are offered?

Interface to components:
which services are expected?

Framework  

Fig. 7.1 Interfaces of a class to its clients and components 

When a class like Tree is designed, it is not enough to consider just 
the services that the class itself will offer. It is equally important to 
decide which objects the class needs in order to do its job and 
which services are expected from these objects. This leads to a set 
of classes that work together to carry out a certain task. Such a 
system of classes is called a framework (see Chapter 10). Tree and 
Node form a framework for binary trees. A framework represents a 
semifinished product that can later be extended for various 
purposes. 

 
Genericity is applicable whenever an object has to manage a set of 
components. If this object is to be kept so general that it can work 
with various component types, an implementation with classes is 
appropriate. One proceeds as follows: 

Summary 
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(1) Consider which services are expected from the components. 
(2) Design one or more abstract classes that offer these services. 
(3) Implement the generic object using the abstract component 

class(es). 

7.3 Heterogeneous Data Structures 

One of the most useful applications of object-oriented program-
ming is the management of heterogeneous data structures. 
Situation of this kind have the following characteristics: 
 
(1) Objects occur in variants. 
(2) The program using the objects does not want to distinguish 

the variants. 
(3) The number of future variants is unknown; new ones can be 

added later. 
 
Table 7.2 gives examples of such situations. 

Objects in a graphics editor 
(lines, rectangles, circles, …) 
 
Objects on a screen 
(windows, icons, menus, …) 
 
Objects in a dialog window 
(buttons, texts, scroll bars, …) 
 
Objects in a game 
(hunter, prey, walls, …)  
 
Objects in a simulation 
(cars, persons, traffic lights, …) 

Variants Operations

draw, move, click, … 
 
 
draw, move, click, … 
 
 
draw, move, click, … 
 
 
draw, move, collide, … 
 
 
activate, delay, … 

 

Table 7.2 Examples of objects that occur in variants 

Let us examine a graphics editor that supports the drawing, 
selection and moving of lines, rectangles and circles. In 
conventional languages like Modula-2, the various kinds of figures 
would be implemented as a variant record: 

Conventional 
implementation of 
a graphics editor 



 7.3 Heterogeneous Data Structures 83 

TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD 
  next: Figure; 
  CASE kind: FigureKind OF 
   line: x0, y0, x1, y1: INTEGER 
  | rect: x, y, w, h: INTEGER 
  | circle: mx, my, radius: INTEGER 
  END 
 END; 
 

Using this record type, a list can be created that contains figures of 
various kinds: 

next nextnext next

y0
x

my my
x0

rect
mx mx

circlecircleline

x1
y

radius radius
y1

w
h  

Fig. 7.3 Heterogeneous data structure with variant records 

Variant records are dangerous, however, because most compilers 
do not generate code to check whether the program uses the 
correct variant of an object at run time. Furthermore, whenever an 
operation is applied to a figure, its possible variants must be 
distinguished in the program code. In order to draw all the figures 
in a list, say, we would have to write: 

 
figure := firstFigure; 
WHILE figure # NIL DO (*draw all figures*) 
 CASE figure^.kind OF 
  line: … (*draw line*) 
 | rect: … (*draw rectangle*) 
 | circle: … (*draw circle*) 
 END; 
 figure := figure^.next 
END 
 

The places requiring case analysis are usually scattered over the 
whole program. What is even worse is that the introduction of a 
new kind of figure (e.g., splines) requires the modification of the 
data type Figure which can in turn require the recompilation of 
client modules. Furthermore, each case statement must be 
modified to accommodate spline objects as well. This is tedious 
and error-prone. Software of this sort tends to be messy and 
difficult to extend. 
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Object-oriented languages permit a more elegant approach. 
Figures are viewed as abstract objects (black boxes) about which 
certain assumptions are made: they can be linked into a list, and 
they can be drawn, moved, read and stored. This is all the editor 
has to know in order to be able to work with figures. It need not 
know that there are rectangles, circles, lines, and all the other 
concrete figure kinds; and it need not know how to draw, move 
and store them. 

These considerations lead to the declaration of the abstract 
class Figure below. (The module OS used in this declaration is 
described in Appendix B). 

Object-oriented 
implementation of 
a graphics editor 

Abstract figures 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD (*abstract*) 
  next: Figure; 
  selected: BOOLEAN; 
  PROCEDURE (f: Figure) Draw; 
  PROCEDURE (f: Figure) Move (dx, dy: BOOLEAN); 
  PROCEDURE (f: Figure) HandleMouse (x, y: INTEGER;  
   buttons:SET); 
  PROCEDURE (f: Figure) Load (VAR r: OS.Rider); 
  PROCEDURE (f: Figure) Store (VAR r: OS.Rider); 
  … 
 END 
 

The concrete figure types are subclasses of Figure. They include 
additional fields and override the abstract methods of Figure. 

Concrete figures 

 
TYPE 
 Line = POINTER TO LineDesc; 
 LineDesc = RECORD (FigureDesc) 
  x0, y0, x1, y1: INTEGER; 
  PROCEDURE (ln: Line) Draw; 
  PROCEDURE (ln: Line) Move (dx, dy: BOOLEAN); 
  … 
 END; 
 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD (FigureDesc) 
  x, y, w, h: INTEGER 
  PROCEDURE (r: Rectangle) Draw; 
  PROCEDURE (r: Rectangle) Move (dx, dy: BOOLEAN); 
  … 
 END; 
 
 Circle = POINTER TO CircleDesc; 
 CircleDesc = RECORD (FigureDesc) 
  mx, my, radius: INTEGER 
  PROCEDURE (c: Circle) Draw; 
  PROCEDURE (c: Circle) Move (dx, dy: BOOLEAN); 
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  … 
 END; 
 

Objects of this kind again permit the construction of a heteroge-
neous list (Fig. 7.4). 
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Fig. 7.4 Heterogeneous data structure composed of objects 

For the editor, all the figures in the list are of static type Figure; i.e., 
the editor sees only the fields and methods of class Figure (the 
shaded parts in Fig. 7.4). Actually, however, behind each object 
there is a line, a rectangle or a circle. To draw all figures, the editor 
need only do the following: 

 
figure := firstFigure; 
WHILE figure # NIL DO 
 figure.Draw; 
 figure := figure.next 
END 
 

The editor no longer has to distinguish the variants. It simply 
sends each figure a Draw message, trusting that the figure, 
regardless of its type, will correctly handle the message. The 
introduction of a new figure type Spline does not affect the editor. 
It is able to store spline objects like all the other figures in its data 
structure, and if the object to which it sends a Draw message 
happens to be a spline object, then a spline is drawn without the 
editor being aware of it. 

The operations on objects are no longer scattered over the 
whole program, but collected in the figure classes. This simplifies 
maintenance. The introduction of a spline class requires only the 
implementation of this single class; the rest of the program 
remains unchanged. 

Note that two kinds of extensions occur in this example. First, 
the class Figure was extended to Line, Rectangle and Circle. Second, 
the entire editor was extended. Originally it could only work with 
abstract figures; now it can draw lines, rectangles and circles. It 
can be extended at any time to draw new types of figures. 

No more case 
distinctions 

Better localization

Extensibility 



86 7 Typical Applications 

The graphics editor will have to store the figures to a file 
occasionally. The input/output of heterogeneous data structures is 
a nontrivial problem. The editor itself cannot load and store 
figures because it does not know their data fields. It must leave 
this task to the figures, which override the methods Load and Store 
inherited from Figure. But before the editor can send a figure a 
Load message it must first create the figure object. How does the 
editor know what type the object must be? This is a tricky problem 
and we will come back to it in Section 8.3. 

A remarkable feature of the Oberon system is that progams 
can be extended at run time. Assume that the kernel of the editor 
consists of a module Figures defining the abstract class Figure, and 
a module Editor that handles windows and contains general 
editing commands. Each subclass of Figure is implemented in its 
own module (i.e, modules Lines, Rectangles, Circles, etc.). Now, the 
editor can be loaded so that at first only the kernel modules Editor 
and Figures are in memory. This makes for a compact program and 
short loading times. In this configuration, the editor does not know 
about any concrete kinds of figure. 

Input/output of 
figures 

Loading 
extensions at run 
time 

Figures

Editor Lines Rectangles Circles Splines …

 

Fig. 7.5 Extensibility of programs by dynamic loading of modules 

While the editor is running, the user can decide to load Lines or 
Circles. These modules are linked to the already loaded modules 
then and give the editor the ability to draw lines or circles. Each 
user can load those modules as needed. It is not necessary to 
always use the editor with its full functionality. Each user can load 
customized functionality without bothering others (see Section 
8.2). 

Actually, a system is really extensible only if anyone (not just 
the author) can extend a program at any time (even while it is 
loaded). This is the case in Oberon. New modules, and thus new 
classes, can be implemented and loaded whose existence is 
unknown to the program, yet the program can still use them. The 
graphics editor knows nothing of a Splines module; still, this 
module can be added—without modifying or relinking the editor. 
In interpretative object-oriented systems like Smalltalk, this is also 
possible, but not so in most compilative systems. Oberon is an 
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exception: it is a compilative system that offers a degree of exten-
sibility similar to that of Smalltalk. 

In summary, if a program is to work with multiple variants of 
a class, it should not distinguish them, but view them as various 
extensions of an abstract class. The procedure is similar to that for 
generic components: 

Summary 

 
(1) Consider which operations and data are common to all 

variants. 
(2) Define an abstract class with these features and a subclass for 

each variant. 
(3) Work with variables of the abstract class without considering 

which object variants might be stored in them at run time. 

7.4 Replaceable Behavior 

If an object or an algorithm is to change its behavior at run time, 
this can also be implemented elegantly with classes. 

Let us look at an example: Editors normally display data in 
frames on the screen. A frame is a rectangular area into which text 
and graphics can be drawn. It provides operations such as 
DrawLine or DrawChar causing a line or a character to be drawn on 
the screen. To output the frame contents to a printer, we have to 
use print operations instead of display operation for every piece of 
text or graphics displayed in the frame.  

Uniform output on 
screen and printer

Of course, we would like to avoid having different output 
operations for the screen and for the printer, and choosing 
between them every time a figure has to be drawn. Therefore, a 
frame should not direct output immediately to the screen or to the 
printer, but to an abstract output medium that we call Port. At run 
time the abstract port can be replaced with a screen port, a printer 
port, or any other concrete output medium. The interface of the 
abstract class Port takes the following form: 

 
TYPE 
 Port = POINTER TO PortDesc; 
 PortDesc = RECORD 
  x, y, w, h: INTEGER; (*clipping rectangle*) 
  PROCEDURE (p: Port) DrawLine (x0, y0, x1, y1: INTEGER); 
  PROCEDURE (p: Port) DrawChar (ch: CHAR); 
  … 
 END; 
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The screen port and the printer port are subclasses of Port that 
override the abstract methods so that output appears on the screen 
or on the printer, repectively. 

 
TYPE 
 ScreenPort = POINTER TO ScreenPortDesc; 
 ScreenPortDesc = RECORD (PortDesc) 
  PROCEDURE (p: ScreenPort) DrawLine  (x0, y0, x1, y1: INTEGER); 
  PROCEDURE (p: ScreenPort) DrawChar  (ch: CHAR); 
  … 
 END; 
 
 Printer Port = POINTER TO PrinterPortDesc; 
 PrinterPortDesc = RECORD (PortDesc) 
  PROCEDURE (p: PrinterPort) DrawLine  (x0, y0, x1, y1: INTEGER); 
  PROCEDURE (p: PrinterPort) DrawChar  (ch: CHAR); 
  … 
 END; 
 

Every frame has a data field of type Port to which all output 
operations are directed by the frame's methods (e.g., DrawLine). 
The clients of the frame are usually unaware of this redirection. 

 
TYPE 
 Frame = POINTER TO FrameDesc; 
 FrameDesc = RECORD 
  port: Port; 
  … 
 END; 
 
PROCEDURE (f: Frame) DrawLine (x0, y0, x1, y1: INTEGER); 
BEGIN 
 f.port.DrawLine(x0, y0, x1, y1) 
END DrawLine; 
… 
 

Depending on which concrete port is installed in f.port, output 
goes to the screen or to the printer. The port can be changed at run 
time, thus changing the behavior of the frame. All clients of f that 
output to the screen can now print as well without having to be 
modified. 

Note that the screen and the printer usually have different 
coordinate systems and different resolutions. The normal 
approach to handle this problem is to use a virtual coordinate 
system with a very high resolution in the interface of Port and to 
convert it in the methods of the respective port to the screen or 
printer coordinate system with the resolution of the respective 
device. 
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Another example of replaceable behavior is a parameterized 
process scheduler. Parallel processes can be handled in 
chronological order (first in, first out, FIFO) or by priority. In order 
to be able to change the strategy at run time, it is useful to 
implement the scheduler as a variable of an abstract class 
Scheduler; at run time the variable could contain an object of the 
concrete class FIFOScheduler or PriorityScheduler. 

Other examples 

Summary In summary, to change behavior at run time, proceed as 
follows: 

 
(1) Consider which operations make up the replaceable behavior. 
(2) Define an abstract class that provides these operations as 

methods. Implement concrete behavior in subclasses. 
(3) Work with variables of the abstract class; these can contain 

objects of concrete subclasses with differing behavior at run 
time. 

7.5 Adaptable Components 

The reuse of components such as procedures or modules is often 
prevented by the lack of a proper fit. We all know the situation 
where we have a component with certain functionality, but we 
cannot use it because slightly different functionality is needed. 
Object-oriented programming offers a solution: If the component is 
a class, it can be extended and adapted by deriving a subclass, 
possibly with new data fields, and overriding inherited methods. 
Neither the original class nor its existing clients need to be 
adapted. 

Consider the example of a text class: Assume that we need 
texts with various fonts and the usual operations such as insertion 
and deletion of characters. We have a class Text that meets most of 
the requirements, but does not support fonts: 

Extending a text 
class 

 
TYPE 
 Text = POINTER TO TextDesc; 
 TextDesc = RECORD 
  … (*data*) 
  PROCEDURE (t: Text) Length (): LONGINT; 
  PROCEDURE (t: Text) Insert (pos: LONGINT; s: ARRAY OF CHAR); 
  PROCEDURE (t: Text) Delete (from, to: LONGINT); 
  … (*other methods*) 
 END; 
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Although we cannot use Text directly, it is certainly an advantage 
to not have to write the required text class from scratch, but to base 
it on Text. This reduces the implementation and testing effort. 

In order to support fonts, Text is extended to a new class 
StyledText. The text is considered to consist of a sequence of 
segments. A segment is a sequence of characters of the same font 
and is represented by a node of type Style that contains the length 
and font of the respective segment. The fonts of the whole text are 
stored in a list of Style nodes (also see Fig. 7.6): 

 
TYPE 
 Style = POINTER TO StyleDesc; 
 StyleDesc = RECORD 
  font: OS.Font; (*font of text segment*) 
  len: LONGINT; (*length of text segment*) 
  next: Style 
 END; 
 
 StyledText = POINTER TO StyledTextDesc; 
 StyledTextDesc = RECORD (TextDesc) 
  styles: Style; 
  PROCEDURE (t: StyledText) Insert (pos: LONGINT; 
   s: ARRAY OF CHAR); 
  PROCEDURE (t: StyledText) Delete (from, to: LONGINT); 
  PROCEDURE (t: StyledText) SetStyle (from, to: LONGINT; 
   font: OS.Font); 
  … 
 END; 
 

Font 1 Font 1Font 2

11 321

…

… Text

Styles

xxxxxxxxxxx xxx iiiiiibbbbbbbbbbbbbbbbbbbbb

 

Fig. 7.6 Data structures of StyledText 

The methods Insert and Delete must also update the style list now, 
so they are overridden: 

 
PROCEDURE (t: StyledText) Insert (pos: LONGINT; s: ARRAY OF CHAR); 
BEGIN 
 … (*update style list*) 
 t.Insert^ (pos, s)  (*call Insert method from the base class*) 
END Insert; 
 
PROCEDURE (t: StyledText) Delete (from, to: LONGINT); 
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BEGIN 
 … (*update style list*) 
 t.Delete^ (from, to)  (*call Delete method from the base class*) 
END Delete; 

The method Length is independent of the fonts and does not need 
to be modified. A new method, SetStyle, is necessary to modify the 
font of a text segment. 

What has been achieved with this extension? The existing 
class Text was adapted to special needs by adding a new layer, 
StyledText (Fig. 7.7). 

Insert
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Delete SetStyle

Length
Text

StyledText
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Fig. 7.7 StyledText as a new layer around Text 

From the outside the class maintains the appearance of a Text. 
Thus all existing clients of Text can also work with StyledText. An 
editor designed for Text does not notice the difference if StyledText 
is substituted for Text, but it now automatically manipulates fonts 
when Insert or Delete are invoked. 

Figure 7.7 should not be confused with a set diagram, which 
would reflect the is-a relationship between classes and would have 
the opposite appearance: Here StyledText is enclosed in Text 
because every StyledText object is also a Text object (Fig. 7.8). 

Text

StyledText

 

Fig. 7.8 Set diagram to represent the is-a relationship 

While so far we have only considered the extension of abstract 
classes, StyledText represents the extension of a concrete class. The 
extension of concrete classes normally occurs when extensibility 
was not planned from the beginning. We must warn the reader: 
Although reasonable in certain situations, ad hoc extensions can 

Extending 
concrete classes 
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lead to unclean solutions, particularly when extension is abused to 
add forgotten features to a class. 

Extensibility should be planned from the beginning. This does 
not mean that all kinds of future extensions must be foreseen. It 
simply means that extensibility in a particular direction should be 
planned by working not with concrete objects, but with variables 
of abstract classes that can later contain arbitrary concrete objects. 

7.6 Semifinished Products 

A class can deliberately be kept in a raw state. Avoiding appli-
cation-specific features increases the chances of reusing the class in 
other programs. Such a class contains only those parts that are 
needed in all foreseeable contexts. It is a semifinished product that 
can be extended to a finished product by adding application-
specific features. 

An example of a semifinished product is the class Frame that 
we encountered in Section 7.4. In Oberon a frame is a rectangular 
drawing plane for the representation of text, graphics, or other 
data. It is also responsible for interpreting user input such as 
mouse clicks or keyboard input. 

Frames as 
semifinished 
products 

Concrete frame classes are application-specific; i.e., they can 
often be used only in a certain context: a text frame can be used for 
representing text, but not for drawing graphics. Likewise graphic 
frames are inappropriate in a spreadsheet program. The generally 
reusable parts of frames are only those that appear in all contexts 
in which a frame can be used, i.e.: 
 
(1) A frame can be installed in a viewer (window), moved on the 

screen, and resized. 
(2) A frame can be told to redraw its contents, regardless of what 

the contents might be. 
(3) A frame can be given mouse clicks or keyboard input for 

processing, although it is left open how this input is processed 
by a concrete frame. 

 
Such a general frame can be extended to a text frame, a graphic 
frame, or a spreadsheet frame. It is a semifinished product that 
factors out the application-independent aspects of various concrete 
frames and specifies a common interface for all future frame 
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variants. The interface of an abstract class Frame could take the 
following form: 

 
TYPE 
 Frame = POINTER TO FrameDesc; 
 FrameDesc = RECORD 
  x, y, w, h: INTEGER;  (*position on screen*) 
  … 
  PROCEDURE (f: Frame) MoveBy (dx, dy: INTEGER); 
  PROCEDURE (f: Frame) Resize (dw, dh: INTEGER); 
  PROCEDURE (f: Frame) Redraw (x, y, w, h: INTEGER); 
  PROCEDURE (f: Frame) HandleMouse  
   (x, y: INTEGER; buttons: SET); 
  PROCEDURE (f: Frame) HandleKey (ch: CHAR); 
  … 
 END; 
 

MoveBy is a concrete method. Its implementation is the same for all 
frame variants and thus can already be given in the class Frame. 
Redraw is an abstract method: since an abstract frame does not yet 
know what it is to display, it remains empty. HandleMouse and 
HandleKey are also abstract, for an abstract frame does not know 
how to handle user input. Resize is a semiabstract method: it moves 
the lower right corner of a frame and invokes Redraw in order to 
redraw frame parts that have not been visible before. Although 
Resize does not need to be overridden in subclasses, it is only 
operational after Redraw has been overridden. 

Now let us examine how to make a finished product 
TextFrame out of the semifinished product Frame. We have to 
declare TextFrame as a subclass of Frame and include fields and 
methods necessary for displaying text; the abstract methods of 
Frame have to be overridden. 

Extending a frame 
to a text frame 

 
TYPE 
 TextFrame = POINTER TO TextFrameDesc; 
 TextFrameDesc = RECORD (FrameDesc) 
  text: Text; 
  origin: LONGINT; 
  … 
  (*overridden methods*) 
  PROCEDURE (f: TextFrame) Redraw (x, y, w, h: INTEGER); 
  PROCEDURE (f: TextFrame) HandleMouse 
   (x, y: INTEGER; buttons: SET); 
  PROCEDURE (f: TextFrame) HandleKey (ch: CHAR); 
 
  (*text-specific methods*) 
  PROCEDURE (f: TextFrame) Init (t: Text; origin: LONGINT); 
  PROCEDURE (f: TextFrame) Scroll (newOrigin: LONGINT); 
 END; 
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Text frames inherit all the behavior of frames: they can be installed 
in a viewer, redraw themselves upon request, and handle user 
input. 

In the same way as TextFrame, a class GraphicFrame or 
TableFrame could be created. Rather than starting from scratch, the 
design and implementation of Frame could be reused. When 
extending a semifinished product, however, it is important to have 
documentation that tells which methods must be made concrete 
and which not. 

7.7 Summary 

This chapter has shown situations in which classes are useful. The 
reader should remember these situations and their solutions. They 
represent reusable design. 

To know such design patterns is more important than to use a 
specific design method or notation. Design requires experience 
and skill. It cannot be canned in a single method. Examples are the 
best teachers, and giving examples was the purpose of this 
chapter. Almost all of these design patterns can be found again in 
the case study in Chapter 11. 

In summary, we can say that object-oriented programming is 
best suited when the problem involves complex objects, especially 
when these occur in variants that should be operated upon 
without distinguishing them. 

Object-oriented programming is also suited to systems that 
demand a high degree of extensibility. In a graphics editor, it must 
be possible at any time to add a new kind of figure whose 
instances are displayed and moved like all other figures—without 
modifying existing software. 

Finally, object-oriented programming is suited to implemen-
ting library components. If components are being collected in a 
library, it can only be an advantage if these are made extensible 
and adaptable in the form of classes. 

The goal of object-oriented programming is not to produce 
customized components for a specific application, but classes or 
frameworks for repeated reuse. It is especially important to find 
good abstractions from which many concrete classes can be 
derived. 
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This chapter shows several techniques that are useful for writing 
object-oriented programs: 
 
• initialization of objects 
• extension of a system at run time 
• persistent objects 
• embedding classes in other classes 
• extension of a class in multiple directions 
• handling multiple inheritance 
• models and views 
• iterators 
• modifying inherited methods 

8.1 Initialization of Objects 

Most objects must be initialized before they can be used. Their data 
fields need to obtain values, and auxiliary objects must often be 
created that the new object needs for its work. 

Oberon-2 does not have a special language construct for the 
initialization of objects; ordinary procedures are used instead. For 
every class T a procedure InitT is written that handles all initia-
lization tasks for T objects. If T is declared as: 

Initialization 
procedures 

 
TYPE 
 T = POINTER TO TDesc; 
 TDesc = RECORD 
  x: INTEGER; 
  y: REAL 
 END; 
 

its initialization procedure could be: 
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PROCEDURE InitT (t: T; x: INTEGER; y: REAL); 
BEGIN 
 t.x := x; t.y := y 
END T; 
 

Every newly created T object must be initialized with InitT: 
 
NEW(t); InitT(t, x, y); 
 

We recommend implementing InitT as a procedure rather than as 
a method. Assume the following subclass T1: 

Initialization 
procedures are 
better than 
initialization 
methods 

 
TYPE 
 T1 = POINTER TO TDesc1; 
 TDesc1 = RECORD (TDesc) 
  z: CHAR 
 END; 
 

If InitT were a method, it would have to be overridden in T1, and 
with an additional parameter to initialize z. However, this is not 
permitted, for overriding methods does not allow adding para-
meters. If the initialization is implemented as a procedure, there is 
no problem with additional parameters: 

 
PROCEDURE InitT1 (t: T1; x: INTEGER; y: REAL; z: CHAR); 
BEGIN 
 InitT(t, x, y); t.z := z 
END InitT1; 
 

The fields of the base class T are initialized by invoking InitT. 
It is tempting to implement the initialization so that the object 

to be initialized is created in the process, as in the following 
example: 

Initialization 
procedures should 
not create the 
objects to be 
initialized 

 
PROCEDURE NewT (x: INTEGER; y: REAL): T; 
 VAR t: T; 
BEGIN 
 NEW(t); t.x := x; t.y := y; RETURN t 
END NewT; 
 

This is not recommended, however, because NewT can no longer 
be used as above in a procedure NewT1 in order to initialize T 
objects. 

 
PROCEDURE NewT1(x: INTEGER; y: REAL; z: CHAR): T1; 
 VAR t1: T1; 
BEGIN 
 t1 := NewT(x, y);  (*error: NewT returns a T object and not a T1 object*) 
 t1.z := z 
 RETURN t1 



 8.1 Initialization of Objects 97 

 

END NewT1; 

8.2 Extending a System at Run Time 

Section 7.3 showed that a graphics editor could be extended at run 
time with new objects (rectangles, circles, lines) that were not 
known when the editor was implemented. This section explains 
how to do this. 

Let us review the graphics editor example: The editor does not 
work directly with rectangles or circles, but with variables of the 
abstract class Figure, which is declared in the module Figures and 
establishes the interface of all future figure classes: 

Extending a 
graphics editor 

 
DEFINITION Figures; 
 TYPE 
  Figure = POINTER TO FigureDesc; 
  FigureDesc = RECORD 
   selected: BOOLEAN; 
   PROCEDURE (f: Figure) Draw; 
   PROCEDURE (f: Figure) Move (dx, dy: INTEGER); 
   … 
  END; 
 … 
END Figures. 
 

Another module of the editor is FigureFrames, which contains the 
class Frame for displaying figures and reacting to user input. Frame 
holds a list of all figures displayed in it; new figures can be 
inserted with the message Install: 

 
DEFINITION FigureFrames; 
 IMPORT Figures, Viewers; 
 
 TYPE 
  Frame = POINTER TO FrameDesc; 
  FrameDesc = RECORD (Viewers.FrameDesc) 
   figures: Figures.Figure;  (*list of all figures in this frame*) 
   … 
   PROCEDURE (f: Frame) Install (x: Figures.Figure); 
   … 
  END; 
 
 VAR 
  currentFrame: Frame;  (*currently edited Frame*) 
 … 
END FigureFrames. 
 

This is the kernel of the editor. During its implementation it is not 
necessary to know which figures will exist later. The editor can 
work with any subclass of Figure. 
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In order to extend the editor to accommodate ellipses, the 
following steps are taken: 

Adding ellipses 

 
(1) Define a class Ellipse as a subclass of Figure. 

 
TYPE 
 Ellipse = POINTER TO EllipseDesc; 
 EllipseDesc = RECORD (Figures.Figure) 
  x, y: INTEGER; (*center*) 
  a, b: INTEGER  (*axes*) 
 END; 
 

(2) Override the abstract methods inherited from Figure. 
 
PROCEDURE (e: Ellipse) Draw; 
BEGIN … (*draw ellipse e*) 
END Draw; 
… 
 

(3) Implement a command New that creates an ellipse object and 
adds it to the list of figures in the current frame, 
FigureFrames.currentFrame. 
 
PROCEDURE New; 
 VAR e: Ellipse; 
BEGIN 
 NEW(e); 
 …  (*get e.x, e.y, e.a, and e.b as arguments of the command New*) … 
 FigureFrames.currentFrame.Install(e) 
END New; 
 

All this is packaged in a new module Ellipses. Existing modules of 
the editor are not touched. In order to draw a new ellipse object, 
the command Ellipses.New is invoked. The following occurs: 
 
(1) If the module Ellipses is not already loaded, it is loaded and 

linked to the editor. 
(2) The command New is executed. It creates an ellipse object and 

installs it in the list of figures in the current frame. 
(3) The frame sends a Draw message to the newly inserted figure 

(without knowing its type); this causes the ellipse to be drawn. 
 
Figure 8.1 shows the relationship between the modules and the 
data structures they contain. 

Note that the module Ellipses is loaded and linked to the 
editor only on demand. Neither Figures nor FigureFrames know 
(i.e., import) Ellipses. They can thus be compiled and used long 

Dynamic loading 
of the module 
Ellipses 
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before Ellipses exists. Ellipses, on the other hand, imports the 
modules Figures and FigureFrames and uses them. 

Rect Circle Ellipse

TYPE

TYPE

Ellipse = POINTER TO EllipseDesc;

Figure = POINTER TO FigureDesc;

TYPE Frame …

Figures

FigureFrames

Ellipses

figures
currentFrame

EllipseDesc = RECORD (FigureDesc)

FigureDesc = RECORD

...

...

PROC (e: Ellipse) Draw;

PROC (f: Figure) Draw;

END

END  

Fig. 8.1 The module Ellipses is loaded at run time and linked to the kernel 
of the editor. It installs ellipse objects in the editor kernel. 

The editor kernel can work with ellipses due to dynamic binding. 
In the ellipse object the editor sees an instance of the abstract class 
Figure and communicates with it via messages that invoke 
methods from the class Ellipse, which is higher in the import 
hierarchy. Such invocations are therefore termed up-calls. The 
editor invokes methods that it does not know. Only the user, who 
executes the command Ellipses.New, is aware of them. 

Up-calls 

8.3 Persistent Objects 

An object is termed persistent if it survives the program that 
created it. Later invocations of the program or other programs 
(possibly on other computers) find the object in the same state in 
which the creating program left it. 



100  8 Useful Techniques 

One way to make objects persistent is to write them to a file 
and to read them as needed. This is simple as long as the structure 
of the objects is known. However, if the structure of the objects is 
unknown to the writing or reading program, as in Section 8.2, 
matters are more complicated. The question is how to load and 
store objects whose structure is unknown. 

To store an object of unknown type is pretty easy: The object is 
sent a Store message and reacts by writing its data to the 
designated file. After all, each object knows its own structure. 

Input/output of 
objects of 
unknown type 

In order to load an object, however, it cannot simply be sent a 
Load message. The object does not exist yet; it must first be created. 
But in order to do so its type must be known. How can this be 
done? 

The solution is to store not only the value of an object, but also 
the name of its type. Fig. 8.2 shows an example of two figures in 
memory and their representation in a file. The linking of the 
objects results implicitly from their order in the file. 

next next

my y10 0

selected selectedFALSE FALSE
mx x

…

10 0

radius a 
b

20 5
2

CircleDesc object EllipseDesc object

Representation in memory

Representation in a file

Circles.CircleDesc FALSE 10 10 20   Ellipses.EllipseDesc FALSE 0 0 5 2 …

Type name Value  

Fig. 8.2 Representation of objects in memory and in a file 

Now we only need a way to extract the type name of an object in 
order to store it to the file and, given a type name, to create an 
object of this type. 

In Oberon each object contains a pointer to its type descriptor, 
which is invisible to the ordinary programmer. The type descriptor 
holds run-time type information such as the name of the object's 
type (Fig. 8.3). All objects of a class have the same type descriptor. 

Type descriptors 
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my my

selected selected
mx mx

radius radius

next next

CircleDesc object CircleDesc object

Type descriptor of CircleDesc

"Circles.CircleDesc" ……

 

Fig. 8.3 Objects and their type descriptors (with type names) 

With the help of the type descriptors, we can implement a 
procedure ObjToName to retrieve the type name of a given object 
and a procedure NameToObj to create an object of a given type 
name. (Module OS, which is used in the following interface, is 
described in Appendix B.) 

 
DEFINITION Objects; 
 
 TYPE 
  Object = POINTER TO ObjectDesc; 
  ObjectDesc = RECORD 
   PROCEDURE (x: Object) Load  (VAR r: OS.Rider); (*abstract*) 
   PROCEDURE (x: Object) Store  (VAR r: OS.Rider); (*abstract*) 
  END; 
 
 PROCEDURE ObjToName  (x: Object; VAR name: ARRAY OF CHAR); 
 PROCEDURE NameToObj  (name: ARRAY OF CHAR; VAR x: Object); 
 
END Objects. 
 

Figure must be derived from Object so that ObjToName and 
NameToObj can be applied to Figure objects and Load and Store 
messages can be sent to them. 

 
TYPE 
 Figure = POINTER TO FigureDesc; 
 FigureDesc = RECORD (Objects.Object.Object) 
  next: Figure; 
  … 
  PROCEDURE (f: Figure) Load (VAR r: OS.Rider); 
  PROCEDURE (f: Figure) Store (VAR r: OS.Rider); 
  … 
 END; 
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Now we are ready to write figures to a file and to read them again. 
The following procedures handle these tasks: 

Input/output 
procedures for 
figures  

PROCEDURE WriteFigure (VAR r: OS.Rider; x: Figure); 
 VAR name: ARRAY 64 OF CHAR; 
BEGIN 
 IF x = NIL THEN r.WriteString("")     (*NIL = empty type name, no value*) 
 ELSE Objects.ObjToName(x, name); r.WriteString(name); x.Store(r) 
 END 
END WriteFigure; 
 
PROCEDURE ReadFigure (VAR r: OS.Rider; VAR x: Figure); 
 VAR name: ARRAY 64 OF CHAR; y: Objects.Objects 
BEGIN 
 r.ReadString(name); 
 IF name = "" THEN x := NIL 
 ELSE Objects.NameToObj(name, x); x.Load(r) 
 END 
END ReadFigure; 
 

If x is the head of a list of figures, the whole list is stored as 
follows: 

 
WHILE x # NIL DO WriteFigure(r, x); x := x.next END; 
WriteFigure(r, NIL) 
 

The following statements read a list of figures with the head head. 
 
ReadFigure(r, x); head := x; 
WHILE x # NIL DO ReadFigure(r, x.next); x := x.next END 
 

The input and output of figures is now symmetrical and 
completely generic [PHT91]. Any future extension of figures can 
be stored with WriteFigure and loaded with ReadFigure without 
changing anything in these procedures. In new Figure classes only 
the methods Load and Store have to be overridden. 

In systems in which accessing type names is not possible at 
run time, the following option remains: Before an object is stored, 
it is sent a message GetTypeName. The object returns its type name. 
This name can now be stored with the object's value. For loading 
objects, a table is created with type names and a prototype object 
of each type. When a type name is read from the file, it is located 
in the table and a copy of the corresponding prototype object is 
created. For each type, its name and a prototype object must be 
entered in the table at the start of the program. 

If the name of a type is read that is declared in a module that 
has not yet been loaded, nameToObj causes this module to be 
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loaded. If a type table with prototype objects is used, loading of 
modules should also be built in if the operating system permits it. 

 
Type names can consume quite a bit of space in a file. It is 
therefore reasonable to store them in compressed form. This can be 
implemented as follows: With the first occurrence of a type name, 
it is written in full length and entered at the end of a table. For 
further occurrences the index in the table is written instead of the 
full name. Reading takes place in the opposite order: With the first 
occurrence the full name is read and entered at the end of a table. 
For further occurrences only the index is read, which is used to 
extract the name from the table. The methods WriteString and 
ReadString of the class OS.Rider (see Appendix B) read and write 
character strings in compressed form. The table for converting 
character strings to indices and vice verse is a data field of Rider. 
At the start of input/output, the Rider object is initialized with 
InitRider. 

Compressed 
storage of type 
names 

 
TYPE 
 String = ARRAY 32 OF CHAR; 
 Rider = RECORD 
  … 
  tab: ARRAY maxnames OF String;  (*tab[0] = ""  (for NIL)*) 
  end: INTEGER  (*tab[0..end-1] are filled*) 
 END; 
 
PROCEDURE InitRider (VAR r: Rider); 
BEGIN r.tab[0] := ""; r.end := 1 
END InitRider; 
 
PROCEDURE (VAR r: Rider) WriteString (s: ARRAY OF CHAR); 
 VAR i: INTEGER; 
BEGIN i := 0; 
 LOOP (*search s in r.tab*) 
  IF i = r.end THEN (*not found -> first occurrence of s*) 
   r.Write(CHR(i)); 
   i := -1; REPEAT INC(i); r.Write(s[i]) UNTIL s[i] = 0X; 
   COPY(s, r.tab[r.end]); INC(r.end); EXIT 
  ELSIF s = r.tab[i] THEN r.Write(CHR(i)); EXIT 
  ELSE INC(i) 
  END 
 END 
END WriteString; 
 
PROCEDURE (VAR r: Rider) ReadString (VAR s: ARRAY OF CHAR); 
 VAR i: INTEGER; ch: CHAR; 
BEGIN r.Read(ch); 
 IF ORD(ch) = r.end THEN (*full text follows*) 
  i := -1; REPEAT INC(i); r.Read(s[i]) UNTIL s[i] = 0X; 
  COPY(s, r.tab[r.end]); INC(r.end) 
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 ELSE COPY(r.tab[ORD(ch)], s) 
 END 
END ReadString; 

Figure 8.4 shows a text with and without type name compression . 
 

Full text 
CircleDesc…EllipseDesc…EllipseDesc…CircleDesc…EllipseDesc… 
 
Compressed text 
1CircleDesc…2EllipseDesc…2…1…2… 

Fig. 8.4 Text with and without compression of type names 

8.4 Wrapping Classes in Other Classes 

Consider two classes A and B that are not compatible. We want to 
use B wherever A is currently used. However, B cannot become a 
subclass of A because it already exists and we cannot or do not 
want to change the existing class hierarchy. 

For example, our graphics editor from Section 8.2 is to be 
extended to handle text pieces like figures, allowing them to be 
moved, selected, and deleted. Using class Text for this would be 
fine, but the problem is that Text already exists and thus cannot be 
made a subclass of Figure. Furthermore, this would violate the is-a 
relationship, for a text is not a figure. 

The solution is to wrap Text in a new class TextFigure that is a 
subclass of Figure. Wrapping means that the text becomes a field of 
class TextFigure: 

 
TYPE 
 TextFigure = POINTER TO TextFigureDesc; 
 TextFigureDesc = RECORD (FigureDesc) 
  t: Text; 
  … 
 END; 
 

Now the graphics editor can handle TextFigure objects like 
rectangles, circles and other figures. It can add them to the list of 
figures and send them any messages that figures understand 
(Draw, Store, etc.). TextFigure objects must translate these messages 
into Text messages and forward them to their field t. The following 
example assumes that texts understand a Store message. 

 
PROCEDURE (f: TextFigures) Store (VAR r: OS.Rider); 
BEGIN 
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 f.Store^ (r);  (*store fields of base class Figures*) 
 f.t.Store (r)  (*store text of this figure*) 
END Store; 

This simple technique is useful in many situations: If B must be 
compatible with A, but cannot become a subclass, it is wrapped in 
a new subclass of A that forwards all A messages to B. 

8.5 Extensibility in Multiple Dimensions 

In Section 6.2 the abstract class Stream was described; it was 
extended to various subclasses like DiskFile, FloppyFile and NetFile, 
which were variants with respect to the output medium. Variants 
could also be created with respect to another criterion such as the 
encryption technique: there could be a plain character stream, a 
stream encrypted with the DES method (e.g., see [Sed88]), and a 
stream encrypted with the RSA method. Thus the class Stream can 
be extended in multiple dimensions (Fig. 8.5). 

DiskFile

PlainStream

DESStream

RSAStream

…

FloppyFile NetFile Output medium

Encryption technique

…  

Fig. 8.5 Extension of the class Stream in two dimensions 

Each variant of the output medium should be combinable with 
each variant of the encryption technique, giving a DESDiskFile, a 
DESFloppyFile, etc. With n variants of the output medium and m 
variants of the encryption technique, we obtain n*m classes (Fig. 
8.6). 

Cartesian product 
of two attributes 
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Stream

DiskFile

FloppyFile

NetFile

PlainDiskFile

PlainFloppyFile

PlainNetFile

DESDiskFile
RSADiskFile

DESFloppyFile
RSAFloppyFile

DESNetFile
RSANetFile  

Fig. 8.6 Subclasses of Stream 

How can this explosion of the number of classes be avoided 
without sacrificing the possibility to combine the output medium 
and the encryption technique? There is a simple method based on 
wrapping classes: Define a new class EncryptionStream as a 
subclass of Stream; give it a data field of type Stream containing 
one particular variant of the output medium (DiskFile, FloppyFile, 
etc.). EncryptionStream can now be extended to cover the various 
encryption techniques. By plugging a certain output medium into 
the desired encryption technique, the two dimensions can be 
combined, resulting in only n+m+1 (instead of n*m) classes (Fig. 
8.7). 

Stream

DiskFile FloppyFile NetFile EncryptionStream 
                         s: Stream

PlainStream DESStream RSAStream

Various output media

Various encryption techniques  

Fig. 8.7 Field s of EncryptionStream can contain DiskFile, FloppyFile or 
NetFile 

The method Write in EncryptionStream is overridden so that the 
Write message is forwarded to field s: 

Implementing 
EncryptionStream 

 
TYPE 
 EncryptionStream = POINTER TO EncryptionStreamDesc; 
 EncryptionStreamDesc = RECORD (StreamDesc) 
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  s: Stream  (*DiskFile, FloppyFile, NetFile*) 
 END; 
 
PROCEDURE (e: EncryptionStream) Write (ch: CHAR); 
BEGIN 
 e.s.Write(ch) 
END Write; 
 

In the subclasses of EncryptionStream the Write method is also over-
ridden and the respective encryption algorithm is implemented: 

 
TYPE 
 DESStream = POINTER TO DESStreamDesc; 
 DESStreamDesc = RECORD (EncryptionStreamDesc) … END; 
PROCEDURE (d: DESStream) Write (ch: CHAR); 
 VAR ch1: CHAR; 
BEGIN 
 …  (*enccrypt ch giving ch1*) 
 d.Write^ (ch1) 
END Write; 
 

To combine DES encryption with output to disk, a variable d is 
created as follows: 

Combining DES 
encryption with 
output to disk  

VAR d: DESStream; f: DiskFile; 
… 
NEW(d); NEW(f); d.s := f 
 

The message d.WriteString(string) is now processed as follows (Fig. 
8.8): 

WriteString Write

Write

Write

Write

Write

Stream

Stream
DiskFile

EncryptionStream

DESStream

e.s.Write

 

Fig. 8.8 Processing the message d.WriteString(string) 

WriteString is sent to d and handled by the WriteString method 
inherited from Stream. This method sends its receiver a Write 
message for every character in string (see Section 6.2). Since the 
dynamic type of the receiver is DESStream, the Write method of 
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DESStream is invoked; there the character is encrypted and 
forwarded to the Write method of the base class EncryptionStream. 
This forwards the message to its field e.s, which invokes the Write 
method of DiskFile, where the character is output. 

The programmer does not need to keep this message sequence 
in mind. How the messages are forwarded is an implementation 
detail. The programmer, who in this case is the user of DESStream, 
only needs to know the interface and the specification the class. It 
suffices to know that all output to d finally reaches the correct 
output medium in encrypted form. 

Every program that can work with Stream can also work with 
DESStream, RSAStream or any other encryption variant. Every 
encryption technique can be combined with every output medium. 

Extensibility in multiple dimensions only works if the abstract 
base class (here Stream) already establishes the entire interface of 
the subclasses. Every message to an encryption variant must be 
mapable onto a message with the same name in the output 
medium variant. In addition, an output medium variant cannot 
send itself messages because the dynamic type of its receiver is no 
longer EncryptionStream but, for example, DiskFile. 

Despite this constraint, the technique of extending a class in 
multiple dimensions is useful in some situations. 

8.6 Multiple Inheritance 

If it is possible to derive a class from one superclass, why should it 
not be possible to derive it from two or more superclasses? If a 
class has more than one superclass, we call this multiple inheritance. 

Multiple inheritance is not supported in Oberon-2. This 
section explains why and shows how multiple inheritance can be 
attained with single inheritance. 

A B

C  

Fig. 8.9 Multiple inheritance: C inherits from A and B 

In Fig. 8.9 class C is derived from both A and B. C inherits all fields 
and methods from A and B. Every C object is both an A object and a 
B object; thus it is compatible with both. 
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At first glance multiple inheritance seems simple and natural. 
On closer inspection, however, it suffers from various problems: 

 
• If A and B contain fields or methods with identical names, a 

name clash results in C: the names are inherited from both 
superclasses and become ambiguous. Languages that support 
multiple inheritance must provide a means to resolve such 
name clashes. 

Name clashes 

 
• If A and B are extensions of a class D, the repeated inheritance 

results in a diamond structure (Fig. 8.10). 
Diamond structure

A B

C

D

 

Fig. 8.10 Diamond structure 

 All methods of D are inherited from both A and B. This 
inevitably leads to name clashes in C. But worse yet, all data 
fields of D are present in both A objects and B objects. Should 
they be present twice in C objects, or only once? 

 
• Multiple inheritance leads to class libraries that are not trees, 

but directed acyclic graphs. This results in more complex 
dependencies in the library and makes it less comprehensible. 

Complex class 
libraries 

 
• Multiple inheritance also leads to less efficient code. For 

example, in C++ a method invocation causes additional run-
time costs because of the overhead involved with multiple 
inheritance—even if the program uses only single inheritance 
[Str89]. 

Run-time costs 

 
Most well-known class libraries (e.g., Smalltalk's) do without 
multiple inheritance. For this reason, and because of the problems 
mentioned above, Oberon-2 was designed without multiple 
inheritance. 

 
If multiple inheritance is not available, how can we make a class C 
compatible with both A and B? Fortunately the classes can often be 
reorganized to avoid the need for multiple inheritance. 

Avoiding multiple 
inheritance 
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In the simplest case the class hierarchy can be designed so that 
A is derived from B or vice versa (Fig. 8.11). This is possible 
especially if A and B do not exist yet, but are designed along with 
C. In Fig. 8.11 C objects are both A objects and B objects. 

A B

B Aor

C C  

Fig. 8.11 One superclass of C is derived from the other 

If this does not work, we can attempt to wrap B in C and to inherit 
only from A or vice versa (Fig. 8.12). The fields and methods of B 
can now be used in C objects via the field b. However, we lose the 
compatibility of C objects with B objects. 

A

b: B

A = POINTER TO ADesc;

C

ADesc = RECORD … END;

C = POINTER TO CDesc;
CDesc = RECORD (ADesc)
   b: B
END;  

Fig. 8.12 One superclass becomes a component of the subclass 

An entirely satisfactory solution can be found by extending A and 
B to subclasses CA and CB and to link these via data fields (Fig. 
8.13). 

CA and CB must be viewed as a twin class with two ends. The 
CA end is compatible with A, the CB end with B. For example, a 
CA object can be inserted in a list of A objects, a CB object in a list 
of B objects. CA objects handle A messages and forward B 
messages to their field b. CB objects do exactly the opposite. Note 
that in this solution no name clashes occur and the problems of the 
diamond structure disappear. 
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A B

b: CB a: CA

CA = POINTER TO CADesc;

CA CB

"Twin class"

CADesc = RECORD (ADesc)
   b: CB
END;

CB = POINTER TO CBDesc;
CBDesc = RECORD (BDesc)
   a: CA
END;  

Fig. 8.13 Resolving multiple inheritance with a twin class 

Let us look at a concrete example: a computer game in which balls 
move on a playing field and thereby bounce off surrounding walls. 
Balls and walls are displayable game objects derived from a 
common base class Item. Balls are also active objects (processes) 
that gain control every few milliseconds to move themselves a bit 
on the playing field. Assume the existence of a class Process from 
which all classes of active objects are derived (Fig. 8.14). 

Example 

Item Process

Wall Ball  

Fig. 8.14 Class hierarchy of a computer game 

Ball must be compatible with Item so that balls can be inserted in a 
list of game objects; Ball must also be compatible with Process so 
that the operating system can handle balls like other processes. 

Using the technique described above, Ball is implemented as a 
twin class BallItem and BallProcess (Fig. 8.15): 

 
TYPE 
 BallItem = POINTER TO BallItemDesc; 
 BallItemDesc = RECORD (ItemDesc) 
  process: BallProcess; 
  … 
  PROCEDURE (f: BallItem) Draw; 
  PROCEDURE (f: BallItem) Move (dx, dy: INTEGER); 
  … 
 END; 
 
 BallProcess = POINTER TO BallProcessDesc; 
 BallProcessDesc = RECORD (ProcessDesc) 
  item: BallItem; 
  … 
  PROCEDURE (p: BallProcess) Activate; 
  PROCEDURE (p: BallProcess) Passivate; 
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  … 
 END; 
 

Item Process

BallItem BallProcess
process: BallProcess item: BallItem  

Fig. 8.15 Balls are modelled as a twin class BallItem/BallProcess. 

A new ball is created and initialized as follows: 
 
VAR ball: BallItem; ballProcess: BallProcess; 
 
NEW(ball); NEW(ballProcess); 
ball.process := ballProcess; ballProcess.item := ball; 
… 
 

The variable ball can be inserted into the list of game objects, the 
variable ballProcess into the list of processes. If a ball process p 
becomes active and wants to move its ball, it calls p.item.Move. If 
the program wants to stop a moving ball b, it invokes 
b.process.Passivate. 

8.7 Models and Views 

Interactive programs usually consist of three parts: 
 
(1) The Model maintains the central data structure, e.g., text, 

graphics, tables, etc. 
MVC concept 

(2) The View is responsible for displaying the data on the screen. 
(3) The Controller handles user input such as mouse clicks or 

keyboard input. 
 
How the three parts interact in order to manipulate and display 
data is called the Model/View/Controller (MVC) concept [KrP88]. 
This is a reusable pattern that occurs in almost all interactive 
programs. Figure 8.16 shows the interaction of the three parts. 
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Controller View

Model

modifies
notifies notifies

reads

restores

1

2 2

3

4

 

Fig. 8.16 The MVC concept: Arrows indicate the flow of messages.  
The numbers are explained below. 

A model may be shown in multiple views. For example, there 
could be two views of a text showing different portions of it; or a 
sequence of numbers could have one view that shows it as a text 
and another that shows it as a chart. All views show the same 
model. If the model changes, all views must be updated. 

Views and controllers occur pairwise; each view has its own 
controller since the same input directed to various views can have 
different effects. A mouse click in the text view of a number 
sequence might cause selection of the text, while a mouse click in 
the chart view might cause the chart to be moved. 

The following messages flow between model, view and 
controller (numbers refer to Fig. 8.16): 

Messages in the 
MVC concept 

 
(1) The controller reacts to keyboard input or mouse clicks by 

modifying the model (e.g., inserting characters in a text). 
(2) The model notifies its views that it has been modified and 

thus its views must be updated. Even controllers are notified, 
for it is possible that the modification of the model requires 
different interpretation of subsequent input. 

(3) The view was instructed to update the model (e.g., to draw an 
inserted text stretch). It acquires the necessary data from the 
model and displays them on the screen. 

(4) Sometimes the controller accesses the view directly, for 
example, if the contents of the view are to be scrolled. Here 
the model is not modified, but only one particular view is 
shifted. 

 
The program that modifies the model must not simultaneously 
update the view because then only this particular view would be 
up to date. Other views of the same model would be inconsistent. 
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The correct way is to modify only the model, which tells all its 
views to update themselves. 

View and model need to be clearly separate. If they are com-
bined to a single class, there can be only one view of the model. 
Usually this is an unnecessary restriction. 

The Oberon System also employs the MVC concept, but in a 
somewhat different form. View and controller are combined to a 
single class Frame (Fig. 8.17), which makes sense because view and 
controller always occur pairwise. This combination reduces the 
number of messages for updating views and controllers. 

Implementation in 
the Oberon 
System 

View + Controller
(Frame)

Model

modifies
notifies

reads

1
2

3

 

Fig. 8.17 The MVC concept in Oberon 

In the original MVC concept the model knows its views and 
controllers. It maintains a list of these objects and sends them 
notify messages whenever it is modified. In the Oberon System the 
model does not know its views. When the model is modified, it 
broadcasts a notify message to all frames on the screen. The frames 
themselves know whether they belong to the broadcasting model 
and thus whether they need to react to the message. In this way, 
more messages are sent than necessary, but the handling of 
dependent views becomes easier. 

 
Let us look at an example that shows how model, view and 
controller interact in the Oberon System. Assume that an insertion 
mark (caret) is in a text frame and the user presses a key. What 
happens? The Oberon System determines the frame containing the 
insertion mark and sends it the message HandleKey along with the 
value of the pressed key. This invokes the following method: 

Example of the 
MVC concept 

 
PROCEDURE (f: Frame) HandleKey (ch: CHAR); 
BEGIN 
 IF ch = DEL THEN … (*delete character to the left of the caret*) 
 ELSE f.text.Write(ch) … (*insert ch into the text*) 
 END 
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END HandleKey; 
 

The frame plays the role of the controller. It does not directly 
display ch on the screen, but only modifies the model (the text). 
The text must then notify all frames in which it is displayed. It 
sends a message record of type NotifyInsMsg to the viewer system 
(module Viewers), which broadcasts it to all viewers on the screen, 
which in turn broadcast it to all frames they contain.  

 
TYPE 
 NotifyInsMsg = RECORD (OS.Message) 
  t: Text; 
  beg, end: LONGINT 
 END; 
 
PROCEDURE (t: Text) Write (ch: CHAR); 
 VAR msg: NotifyInsMsg; 
BEGIN 
 … (*insert ch at t.pos; t.pos := t.pos + 1*) 
 msg.t := t; msg.beg := t.pos-1; msg.end := t.pos; 
 Viewers.Broadcast(msg) 
END Write; 
 

Viewers and frames have a message handler (in the sense of 
Section 6.4) that analyzes the message at run time and either reacts 
to it or ignores it. The message handler for text frames looks like 
this: 

 
PROCEDURE (f: Frame) Handle (VAR m: OS.Message); 
BEGIN 
 WITH 
  m: Texts.NotifyInsMsg DO 
   IF m.t = f.text THEN (*frame shows the modified text*) 
    … (*read m.t from m.beg to m.end*) 
    … (*and draw it on the screen*) 
   END 
 | m: Texts.NotifyDelMsg DO 
  … 
 ELSE (*ignore the message*) 
 END 
END Handle; 
 

Only if the message handler understands the NotifyInsMsg 
message and only if the frame is displaying the modified model 
(i.e., if m.t = f.text) is the update made on the screen. In all other 
cases the message is ignored. Fig. 8.18 shows this process. There 
are two viewers, each containing two frames. The shaded frames 
are those that belong to the modified model and react to 
NotifyInsMsg.  
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Viewer

Viewer

Frame Frame

Frame Frame

Text

HandleKey

Write

NotifyInsMsg
 

Fig. 8.18 Message distribution in the MVC concept 

Broadcasts like this are the most important application of message 
records. Since the sender does not know the receivers, the message 
is simply sent to all possible receivers. Only those for which the 
message is intended react. A broadcast of this type would hardly 
be possible without message records. 



 8.8 Iterators 117 

8.8 Iterators 

We often have a number of objects and want to carry out an 
operation on each of them, but we do not know how to access the 
objects. Because of data abstraction, the implementation of the data 
structure containing the objects is hidden; it could be an array, a 
linear list, or a tree. Consider the following class Dictionary, whose 
interface looks like this: 

 
DEFINITION Dictionaries; 
TYPE 
 Elem = POINTER TO ElemDesc; 
 ElemDesc = RECORD 
  PROCEDURE (x: Elem) EqualTo (y: Elem): BOOLEAN; 
  PROCEDURE (x: Elem) LessThan (y: Elem): BOOLEAN; 
  PROCEDURE (x: Elem) Print; 
 END; 
 
 Dictionary = RECORD 
  PROCEDURE (VAR d: Dictionary) Enter (x: Elem); 
  PROCEDURE (VAR d: Dictionary) Retrieve (x: Elem; VAR y: Elem); 
 END; 
 
PROCEDURE Init (VAR d: Dictionary); 
END Dictionaries; 
 

The implementation of Dictionary is hidden. Assume that we want 
to print a list of all elements of Dictionary. What possibilities do we 
have? 

The simplest possibility is to provide a method PrintAll that 
prints all elements: 

A separate 
method for each 
operation  

PROCEDURE (VAR d: Dictionary) PrintAll; 
 VAR e: Elem; 
BEGIN 
 e := d.firstElem; 
 WHILE e # NIL DO e.Print; e := e.next END 
END PrintAll; 
 

This solution is unsatisfactory. Each operation on Element requires 
a method in Dictionary, for example, StoreAll to write all elements 
to a file or SelectAll to find all elements whose key matches a 
certain criterion. Furthermore, the implementation of Dictionary 
requires the knowledge of which operations will later be applied 
to the elements or extensions thereof (e.g., e.Print, e.Store, e.Select, 
etc.). 

Another possibility is to declare an iterator class in the same 
module as Dictionary as follows: 

Iterator class 
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TYPE 
 Iterator = RECORD 
  PROCEDURE (VAR it: Iterator) SetTo (d: Dictionary); 
  PROCEDURE (VAR it: Iterator) Next(): Elem; 
 END; 
 

An iterator is an object that moves over a data structure. SetTo sets 
the iterator to the beginning of the dictionary; Next returns the next 
element. The iterator makes it possible to traverse the elements of 
Dictionary sequentially and to apply some operation to them: 

 
iterator.SetTo(d); e := iterator.Next(); 
WHILE e # NIL DO e.Print; e := iterator.Next() END 
 

This solution is general enough, but requires that the code for 
traversing the elements be present in each client. Besides, if the 
data structure is a tree, which can best be traversed recursively, 
Next cannot be implemented efficiently. 

The result type of Next is Elem, but the actual type of the 
returned objects can be an extension thereof (e.g., MyElem). Using 
a type guard makes it possible to send the object returned by Next 
a MyElem message that is not accommodated in Elem: 

 
iterator.SetTo(d); e := iterator.Next(); 
WHILE e # NIL DO 
 IF e IS MyElem THEN e(MyElem).Store(rider) END; 
 e := iterator.Next() 
END 
 

A third possibility is to work with message records. A message 
record is passed to Dictionary, which broadcasts it to all elements. 
Every element must have a message handler that reacts to the 
message record. However, for simple tasks like printing Dictionary 
elements, this solution is too heavy-duty. 

Finally, Dictionary can provide a universal method ForAll that 
takes a procedure as parameter and calls it for all elements: 

Operations as 
message records 

Operations as 
procedure 
variables  

PROCEDURE (VAR d: Dictionary) ForAll (P: PROCEDURE (e: Elem)); 
BEGIN 
 e := d.firstElem; 
 WHILE e # NIL DO P(e); e := e.next END 
END ForAll; 
 

The method could be invoked as 
 
d.ForAll(Print) 
 

where Print is a client's procedure: 
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PROCEDURE Print (e: Elem); 
BEGIN 
 e.Print 
END Print; 
 

In Oberon-2 this solution is usually the simplest and most 
readable. Several other languages have special iterator constructs 
or block objects that permit a more comfortable implementation of 
iterators. 

8.9 Modifying Inherited Methods 

In order to modify an inherited method in a subclass, it must be 
overridden there. Assume a class Frame containing a method 
TrackMouse that tracks mouse movements and moves the cursor 
accordingly: 

 
PROCEDURE (f: Frame) TrackMouse; 
 VAR x, y: INTEGER; buttons: SET; 
BEGIN 
 LOOP 
  OS.GetMouse(x, y, buttons);  (*get mouse position and buttons*) 
  IF buttons = {} THEN EXIT END; 
  OS.DrawCursor(x, y)  (*move cursor to new position *) 
 END 
END TrackMouse; 
 

In a subclass MyFrame we want the mouse pointer (cursor) to 
change its form as long as a mouse button is pressed. This is easy 
to implement by overriding TrackMouse in MyFrame and changing 
the cursor form before and after the invocation of the inherited 
method (see also Fig. 8.19): 

 
PROCEDURE (f: MyFrame) TrackMouse; 
BEGIN 
 SaveCursor; 
 ChangeCursorTo(crossHair); 
 f.TrackMouse ^;  (*calls TrackMouse from Frame*) 
 RestoreCursor 
END TrackMouse; 

MyFrame.TrackMouse

Frame.TrackMouse  

Fig. 8.19 Overriding allows adding behavior to the beginning  
and the end of an inherited method 
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It is easy to add behavior to the beginning and the end of an 
inherited method. But how can we add something to the middle of 
such a method, e.g., how can we modify TrackMouse so that the 
cursor moves on a grid instead of continuously? We can do so by 
letting the TrackMouse method of the base class pass control to the 
programmer immediately before the cursor is drawn. More 
specifically, TrackMouse calls an empty method Constrain (a hook) 
that can be overridden to add new behavior: 

 
PROCEDURE (f: Frame) TrackMouse; 
 VAR x, y: INTEGER; buttons: SET; 
BEGIN 
 LOOP 
  OS.GetMouse(x, y, buttons); 
  IF buttons = {} THEN EXIT END; 
  f.Constrain(x, y); 
  OS.DrawCursor(x, y) 
 END 
END TrackMouse; 
 
PROCEDURE (f: Frame) Constrain (VAR x, y: INTEGER); 
END Constrain; 
 

If a subclass like MyFrame does not override Constrain, the empty 
method is invoked with no effect. But if Constrain is overridden, it 
is called every time before the cursor is drawn, thus giving control 
to the subclass (Fig. 8.20). 

 
PROCEDURE (f: MyFrame) Constrain (VAR x, y: INTEGER); 
BEGIN 
 x := (x + grid DIV 2) DIV grid * grid; 
 y := (y + grid DIV 2) DIV grid * grid 
END Constrain; 

MyFrame.Constrain

Frame.TrackMouse  

Fig. 8.20 Adding behavior to an inherited method  
by overriding a hook method 

By invoking hook methods, the superclass allows the subclass to 
intervene in the algorithm. This technique is often used to make 
algorithms more adaptable. Sometimes a complete algorithm 
consists solely of invocations of such empty hook methods. The 
redrawing of a frame, for example, could consist of the removal of 
the selection, the setting of a clipping rectangle, and the proper 
drawing of the frame. 
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PROCEDURE (f: Frame) Redraw; 
BEGIN 
 f.RemoveSelection; 
 f.SetClippingRect(f.X, f.Y, f.W, f.H); 
 f.Draw 
END Redraw; 
 

The operations RemoveSelection, SetClippingRect and Draw are diffe-
rent in graphic frames and text frames. Thus the methods cannot 
be implemented in the abstract class Frame. But Redraw establishes 
the right order of the operations and thus provides the outline of 
an algorithm that can be filled out in subclasses. 



9 Object-Oriented Design 

Designing a program means decomposing it into smaller, more 
comprehensible parts and describing their interactions. The parts 
can be modules, procedures, files, or classes. In object-oriented 
design we are interested primarily in classes. Our question is thus: 
How can we find the classes required for the implementation of a 
system? 

9.1 Functional Design 

Conventional program design begins with the question: What is 
the program supposed to do? The orientation is towards the tasks 
that are to be solved. We begin with the overall task and 
decompose it into subtasks, then reduce the subtasks to smaller 
subtasks, and so on until the subtasks are so simple that they can 
be formulated directly in a programming language. 

This approach is called stepwise refinement [Wir71]. We 
advance from the abstract to the concrete, from the overall task to 
the details. Stepwise refinement is a top-down method that leads to 
an hierarchy of procedures or functions (Fig. 9.1). It is therefore 
also called functional decomposition. 

Stepwise 
refinement 

Overall task

Subtasks at level 1

Subtasks at level 2
 

Fig. 9.1  Program hierarchy in functional design:  
Arrows indicate the uses relationship. 
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Stepwise refinement has many advantages: It is easy to use and 
systematic, and it leads to well-structured programs. Important 
parts (e.g., the top-level logic) are designed first and less important 
details later; the design of the control logic shapes the rest of the 
program. 

But stepwise refinement also has drawbacks: It is precisely the 
control logic that is the most sensitive part of a program. In the 
early stages of design, the form of the control logic is often still in 
the dark. In fact, sometimes it is not even clear whether there 
should be a single main function or multiple functions at the same 
level. In an operating system, for example, it is difficult to tell 
which part is the main function. Where should refinement begin? 
Of course, each part can be refined independently, but this leads to 
separate program hierarchies without common parts at the base. 

Advantages 

Drawbacks 

Stepwise refinement does not promote software reuse. All 
subtasks are tailored to the requirements of the main function, so 
the resulting program is a customized work of craftsmanship. Its 
parts are hardly usable in other programs. 

Finally, software designed by stepwise refinement is sensitive 
to modifications. If the requirements on the main function change, 
the decomposition often has to be rethought, which can render 
large parts of the program design disposable. 

Although stepwise refinement is a technique that works per-
fectly for the design of small programs or algorithms, it is less 
suitable for the design of large systems. 

9.2 Object-Oriented Design 

In object-oriented design the main question is not what the system 
is to do, but with which objects it is to work. This approach con-
centrates on the data and the operations applied to them. Since the 
objects can hardly be viewed as the top of the system, object-
oriented design is more of a bottom-up technique. 

Concentration on 
abstractions 

The system is organized as a set of objects that can be operated 
like independent machines via clearly defined operations. The 
control logic can later be built on these objects in such a way that 
the resulting system can have multiple functions at the top (Fig. 
9.2). 

Object-oriented design has at least the following advantages: 
The resulting classes reflect the entities in the respective appli-
cation; programs thus become more problem-oriented and more 
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comprehensible. Object-oriented design permits systems with mul-
tiple functions at the top. New software components are easier to 
add than in task-oriented design. The classes at the base were not 
tailored to one specific application and can more readily be reused 
in other programs. 

Class Class
 

Fig. 9.2  Program hierarchy in object-oriented design. Arrows indicate the 
uses relationship. 

A drawback of object-oriented design is that the classes at the base 
are often too general. If an application needs binary trees that 
provide only insertion and searching, then operations like storing, 
reading and merging of trees are superfluous. The extra functio-
nality has to be carried along although it is not needed. This is the 
price paid for reusability. 

Object-oriented design is mainly a bottom-up technique. How-
ever, this does not mean that programs should be designed 
exclusively bottom-up. In practice, design is both bottom-up and 
top-down, depending on which technique is most suitable at the 
moment. For example, if we are designing software for the control 
of a computer network, we first design the basic classes that model 
the network, its layers, and its protocols. Then we build on these 
classes to design the control logic of the system top-down. At some 
point, we might observe that we need an address service. We go 
back and design a class at the base to offer this service. Then we 
continue the top-down design process. 

Advantages 
Drawbacks 

In practice, design 
is a mixture of  
top-down and 
bottom-up 

Some authors recommend that object-oriented design be 
neither top-down nor bottom-up, but from the known to the un-
known parts of a system [Bud91]. 

9.3 Identifying the Classes 

The starting point for every design is a requirements definition 
that specifies what requirements the program is to fulfill. Since it is 

Requirements 
definition 
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independent of any later implementation, classes, methods and 
other object-oriented aspects do not need to be considered yet. Any 
familiar notation is suitable. 

We use the requirements definition to identify the classes of 
the system. Although it would be naive to believe that a certain 
method can automatically lead to good designs, the ever recurring 
question is how we should proceed when trying to identify the 
classes. We cannot prescribe a mechanical technique for that; 
designing a system requires experience and skill. The only advice 
we can give is to use the following considerations as a guideline in 
the design process. 

9.3.1 Basic Design Considerations 

The goal of object-oriented design is to establish a one-to-one 
relationship between the real-world entities and the classes in the 
program. In the design of a text editor, for example, texts should be 
represented by a class Text and windows by a class Window. In a 
traffic simulation system the objects should be cars, roads and 
traffic lights. We therefore start the design process with the follow-
ing three questions: 

Classes model 
real-world entities 

 
(1) What are the physical and logical entities of the real-world system? Identifying classes 
 This question leads to the classes. Physical entities could be 

switches, sensors or displays. Logical entities could be a 
process, a measurement, or a command. Any concept that is 
central to the system, represents important data, or can 
assume various states is a candidate for a class. 

 
(2) Which operations can be carried out with these objects? Identifying 

methods  This question leads to the methods. The operations of a class 
Sensor, for example, could be turning it on, turning it off, 
reading its value, etc. The search for methods should not be 
restricted by the current requirements, but should be carried 
out with the reusability of the class in mind. Any reasonable 
operation is a candidate for a method. 

 One approach that has proved useful is to simulate 
various scenarios in which the class appears and to ask: 
Which events could occur? Which objects will react to these 
events and how? Which other actions or events are triggered? 
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(3) Which data must be stored in an object to allow the operations to do 
their tasks? 

Identifying data 
fields 

 This question leads to the data fields of a class. The data fields 
represent the state of an object, which can be modified and 
read via methods. They form the concrete data structure that 
is hidden from the clients of the class. The data of a class 
Sensor, for example, could be its current value and the 
sampling interval. 

 
These three questions help to find the classes and to specify their 
interfaces. For example, by applying these questions we might 
create a class Sensor that looks like this: 

 
TYPE 
 Sensor = RECORD 
  value, interval: REAL; 
  … 
  PROCEDURE (VAR s: Sensor) Switch (on: BOOLEAN); 
  PROCEDURE (VAR s: Sensor) Value (): REAL; 
  … 
 END; 

 
What has been achieved so far? With each class, some behavior has 
been extracted from the program and has been concentrated in one 
place. The remaining program is leaner and less complex. It can 
work with the classes at a higher level. Once sufficiently many 
classes have been created in this way, the remaining control logic 
is often relatively simple. 

However, there is a danger of creating too many classes. This 
makes the program complex, not because of its inpenetrable 
control structure, but because of its many (and often irrelevant) 
components and their interactions. 

Concentrating 
behavior 

Mistakes 

Another mistake is to build everything with classes, forgetting 
about modules and abstract data types, which are not extensible, 
but somewhat simpler and more efficient than classes. Whenever 
we use a class, we should consider whether a module or an 
abstract data type might not be adequate instead. 

9.3.2 Additional Design Considerations 

In addition to the three basic questions above, the following con-
siderations are useful for identifying the classes of a system: 
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Are there situations that particularly lend themselves to being solved 
with classes? 

Typical patterns 

Are there objects that occur in variants? Are variants to be added 
later? Is there some behavior to be exchanged for another at run 
time? Situations of this kind were described in Chapter 7. They 
particularly lend themselves to an object-oriented implementation 
because extensibility and dynamic binding can be exploited. 
 
Which system-specific parts should be hidden from clients? Information hiding 
Programs often contain system-specific details that are difficult to 
understand and are among the first things that must be modified 
when the system is ported. Such details should be encapsulated in 
modules or in classes so that modifications in them remain local 
and clients can use them without knowing their implementation. 
 
Which parts of the software are likely to change? How can the effects of 
such changes be limited? 

Modifications 

Often future modifications of a program are already indicated 
during its construction, because a more efficient solution is sought, 
because the program is to be ported, or because external conditions 
change. The affected parts should be hidden in a class and pro-
vided with an interface that remains stable even if the implemen-
tation behind it changes. 
 
Can we identify generally useful services that are also needed in other 
programs? 

Basic services 

Studies have shown that more than half of all code also occurs in 
similar form in other programs. Examples include code for list 
handling, for text and graphics operations, and for input/output 
formatting. It makes sense to decouple such basic services from the 
program where they were initially used and to make them 
available to other programs in the form of reusable classes. 
 
What decomposition is used in similar systems? How others do it 
Good design is learned by experience rather than by rules. Editors 
are always constructed in a similar way, as are bookkeeping 
programs and simulation systems. Studying existing systems helps 
to collect a repertoire of design patterns and to learn how to use 
them. In this sense we refer the reader to Chapter 11, which 
contains the complete implementation of a window system with an 
extensible text and graphics editor. 
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9.3.3 Deriving Classes from a Verbal Specification 

R. Abbott suggests a method by which classes, methods, and data 
fields can be almost mechanically derived from a verbal specifi-
cation [Abb83]. He advises observing the nouns, verbs and adjec-
tives that occur in the text. 

Abbott's method 

The nouns in the text are candidates for classes or data fields. 
They describe the objects that are handled or the properties of an 
object. The verbs in the text are candidates for methods. They 
describe the operations that are executed with the objects. The 
adjectives in the text suggest data fields. They describe a property 
or a state of an object. 

If a specification contains the phrase "The editor must be able 
to draw and erase figures and change their size", then editor, figure 
and size are the occurring nouns. Editor and figure are central 
objects and suggest classes, while size indicates only a property of 
a figure and is thus a data field. The size of a figure is not complex 
enough to make it worth implementing as a class. It can be 
expressed simply in two numbers that specify the height and 
width of the figure. The verbs of the specification are draw, delete, 
and modify. They suggest methods of the class Figure. Adjectives do 
not exist in this part of the specification. 

We readily see that this method cannot provide the complete 
design of classes; it can only be used as a starting point. The 
reasons are clear: On the one hand, the results can only be as good 
as the specification. An incomplete specification does not contain 
all necessary nouns, verbs and adjectives and thus does not lead to 
the required classes. On the other hand, not every noun is a class 
and not every verb is a method. The relevant words have to be 
filtered out, which is not always easy. 

Shortcomings 

It is a common mistake to create too many classes, i.e., to 
include ones that do not have complex data or interesting 
methods. 

9.3.4 CRC Cards 

The literature on object-oriented analysis and design describes 
CRC cards (Class/Responsibilities/Collaborators cards), which are 
recommended as an aid for identifying classes [BeC89]. CRC cards 
are simple file cards on which we note the responsibilities and 
collaborators of classes. 

CRC cards 
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For each class there is a card labeled with the name of the 
class. In the left column of the card we list what the class is 
responsible for; in the right column we write the names of the 
other classes with which it collaborates (Fig. 9.3). 

Drawing

Knows which figures it contains List

Responsibilities Collaborators

Class

Draws figures
Can find the figure at a certain location
…

Figure

 

Fig. 9.3  CRC cards for a class Drawing 

The responsibilities need not yet correspond to the methods. A 
responsibility such as "knows which figures it contains" can consist 
of several methods, e.g., Insert, Delete, Broadcast. Inversely, a 
method can assume several responsibilities. The data of the class 
can be specified on the back of the card. Since data are hidden to 
clients, this is the right place to write them down. Of course it is 
also possible to use the card for specifying the class interface in a 
certain syntactical notation (e.g., a programming language) if this 
is desired. 

CRC cards have various advantages: They are easy to 
understand, to produce, and to discard. Multiple cards can be laid 
out on a large table and arranged by various criteria, giving a good 
overview of the system. The limited size of the cards helps to keep 
the size of classes small. If abstract classes are to be distinguished 
from their concrete subclasses, a stack of cards can be created with 
the abstract class at the top and the concrete classes underneath. 

Advantages 

9.4 Designing the Interface of a Class 

The interface of a class consists of the fields and methods that are 
visible to clients. The interface of a class File, for example, could 
look like this: 

Interfaces 
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TYPE 
 File = POINTER TO FileDesc; 
 FileDesc = RECORD 
  name-: ARRAY 64 OF CHAR; 
  pos-, len-, result-: LONGINT; 
  PROCEDURE (f: File) Open (name: ARRAY OF CHAR); 
  PROCEDURE (f: File) Close; 
  PROCEDURE (f: File) SetTo (pos: LONGINT); 
  PROCEDURE (f: File) Read (VAR ch: CHAR); 
  PROCEDURE (f: File) Write (ch: CHAR); 
 END; 
 

The interface should be designed so that the class can be used in as 
many contexts as possible with as few and as simple operations as 
possible. A good indication for the value of a class is to what 
degree other programmers are willing to use it. Class interfaces 
should be designed according to the following criteria [Hof90]: 

The goal of 
interface design 

 
(1) Consistency Interface criteria 
 Set up your own rules (based on standard guidelines) and 

stick to them. The rules can apply to parameter passing (input 
parameters before output parameters), to naming (consistent 
use of verbs, nouns and adjectives), or to the use of upper and 
lower case in names. Consistent interfaces make it easier to 
understand the rest of a system if part of it is already known. 

 
(2) Simplicity 
 Avoid needless features. The smaller the interface, the easier it 

is to use the class. 
 
(3) No redundancy 
 Avoid offering the same service in more than one way; elimi-

nate redundant features. 
 
(4) Atomicity 
 Do not combine several operations if they are also needed 

individually. Keep independent features separate. 
 
(5) Reusability 
 Do not customize classes to specific clients, but make them 

general enough to be reusable in other contexts. 
 
(6) Robustness with respect to modifications 
 Design the interface of a class so that it remains stable even if 

the implementation of the class changes. 
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The following examples serve to clarify these criteria. Let us start 
with naming conventions which significantly contribute to the 
readability of programs. Since such conventions are seldom expli-
citly described, we give some rules here that have proven useful 
over time (Table 9.4). 

Naming 
conventions 

Names for 
 
Constants, variables 
 
 
Types 
 
Procedures 
 
Functions 
 
 
Modules

Start with 
 
Lower-case noun 
Lower-case adjective 
 
Upper-case noun 
 
Upper-case verb 
 
Upper- case noun 
Upper-case adjective 
 
Upper-case noun

Examples 
 
version, wordSize 
full 
 
File, TextFrame 
 
WriteString 
 
Position 
Empty, Equal 
 
Files, TextFrames

 

Table 9.4  Proven naming conventions 

In names consisting of several words, every word (except possibly 
the first one) should start with a capital letter. Data and methods 
with similar semantics should be named identically. An operation 
that draws a window, a frame or a figure should bear the same 
name in each case. This simplifies learning and understanding new 
classes. 

Consider a message text.Search(pattern, pos), which searches for 
a pattern in a text beginning at position pos. Another message 
text.SearchNext looks for the next occurrence of the same pattern 
starting at the position where the pattern was last found. 
SearchNext should be omitted since it can easily be expressed with 
Search. 

The message file.Open(name, pos) opens a file and sets the 
reading position to pos. This operation is not atomic. It should be 
decomposed into two operations that can be used individually: 
file.Open(name) and file.SetTo(pos). 

The above criteria can conflict with each other: On the one 
hand, a class should be held as general as possible to increase its 
chances of reuse; on the other hand, unnecessary features are to be 
avoided. How can this be resolved? Or: Only atomic operations 
should be provided that can be combined in a flexible way; on the 

Avoiding 
redundancy 

Atomicity 

Conflicts 
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other hand, this makes client code consist of many individual 
operations that have to be invoked in the correct order. In such 
cases we have to decide according to our priorities by selecting one 
criterion over another. 

Good interface design requires skill. With classes we are able 
to create virtual languages that contain new data types and new 
operations. Thus interface design is actually language design! 
Since it is difficult to design a good language, it is not surprizing 
that the design of good classes proves challenging. Whether a class 
is good in the sense of the above criteria can only be evaluated 
when it is used by persons other than its author. 

9.5 Abstract Classes 

Abstract classes were introduced in Chapter 6. They contain empty 
methods that must be overridden in subclasses. In the construction 
of extensible software systems, abstract classes play an important 
role: they are the design of their subclasses, a common pattern that 
establishes the behavior of all future extensions. 

Abstract classes 
are the design of 
their subclasses 

For example, in the implementation of a graphical user 
interface, an abstract class InterfaceItem might specify that all its 
subclasses (Button, CheckBox, ScrollBar, etc.) must understand the 
messages Draw, Move and Resize. 

 
TYPE 
 InterfaceItem = POINTER TO InterfaceDesc; 
 InterfaceDesc = RECORD 
  PROCEDURE (x: InterfaceItem) Draw; 
  PROCEDURE (x: InterfaceItem) Move (dx, dy: INTEGER); 
  PROCEDURE (x: InterfaceItem) Resize (dx, dy: INTEGER); 
  … 
 END; 
 

Concrete subclasses like Button inherit this interface. They 
understand the same messages and can thus be used wherever an 
InterfaceItem is expected. 

The purpose of an abstract class is to serve as a pattern from 
which other classes can be derived; the purpose of a concrete class 
is to create objects from it. Abstract classes are thus reusable: 
InterfaceItem can be seen as a pattern for new interface items. 
Concrete classes are often tailored to a specific purpose and thus 
not so readily usable in a different context; it is also harder to 
derive new classes from concrete ones. We should therefore try to 
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identify as many abstract classes as possible in our application 
domain. The more abstract classes we design, the more reusable 
abstractions we obtain. 

How can we find abstract classes? One possibility is to 
observe from the beginning that there are variants of a class from 
which we can factor out common behavior. This is the case with 
generic components (Section 7.2), heterogeneous data structures 
(Section 7.3), and replaceable behavior (Section 7.4).  

Finding abstract 
classes 

The other possibility is to start with a concrete class that has 
proven useful and to attempt to devise a reusable abstraction from 
it. Assume the existence of a class BarChart. The reusable 
abstraction here is not the bar chart, but a more general diagram. 
The common properties of diagrams can be isolated and defined as 
an abstract class Chart, of which BarChart is a special case. Note 
that the goal is to make the interface reusable rather than the code. 

Reuse does not happen by accident. In order to make classes 
really reusable, the designer must not rest with the first design. It 
must be reworked to increase its value. Just as important as 
designing a new class is revising an existing one to make it simpler 
and more reusable. Experienced programmers spend as much time 
on simplifying existing classes as on writing new ones. Useful 
abstractions are usually created by persons with an obsession for 
simplicity, who are willing to rewrite code several times to achieve 
comprehensible and reusable classes [JoF88]. 

Making classes 
reusable 

Whether a class is reusable or not can be evaluated only after 
it has actually been reused. A class that has not been reused re-
peatedly and by different persons cannot be called reusable. 

9.6 Relationships between Classes 

Classes do not exist in isolation, but interact with other classes to 
perform a certain task. When two classes cooperate, one takes the 
role of a server that offers some services; the other takes the role of 
a client that uses these services. The two classes are said to be 
linked by a contract. A contract is a set of services (methods) that a 
class offers. For the description of classes and contracts, the 
notation used in Fig. 9.5 is recommended in [WWW90]. 

Contracts 

Contracts are depicted by an arrow from the client to the 
server. The arrow leads into a numbered semicircle; the corres-
ponding note explains the contract. Although a contract usually 
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consists of multiple methods, only one arrow is drawn to keep the 
picture simple. 

Client Server1 1: … Description of the contract …
 

Fig.9.5  A contract between a client and a server. 
The arrow indicates the flow of messages. 

A class can support multiple contracts. A frame in Oberon, for 
example, supports the following two contracts (Fig. 9.6). 

Viewer

Oberon
Frame

1

2

1: Displaying the frame contents

2: Handling user input
 

Fig. 9.6  Class Frame with two contracts 

A viewer sends messages that cause the frame to change its size 
and to display its contents. Oberon sends messages that pass 
mouse clicks and keyboard input to the frame. 

A contract is only one way in which classes can interact. Alto-
gether there are three possible relationships between two classes A 
and B: 

Relationships 
between classes 

 
(1) A has a B: An A object has n data fields of type B. 

A B
1 n

 
 
(2) A uses a B: An A object uses (a contract of) a B object. 

1A B
 

 
(3) A is a B: A is a subclass of B. 

B
A

 
 
A uses-a relationship is normally based on a has-a relationship, 
which is often not drawn. 
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These relationships make it possible to graphically represent 
the interplay of classes. Such representations are called collaboration 
graphs [WWW90]. 

Figure 9.7 shows such a graph that describes a traffic control 
system. A crossing has n roads. Each road has a sensor and a traffic 
light. The sensor can be a contact sensor or an induction sensor. 
The sensor and the light are managed by a controller that inspects 
the sensor and uses the acquired data to control the light. 

Collaboration 
graphs 

Crossing

Controller

Road

1
n

Contact 
sensor

Induction 
sensor

Sensor

Traffic light

1 2

1: inspect 
2: control

 

Fig. 9.7  Collaboration graph for a traffic control system 

The components of a collaboration graph can, of course, also be 
modules or abstract data types rather than classes. There are also 
various other notations that have been suggested for describing 
classes and their relationships (e.g., [Boo91], [CoY90], [RBP91], 
[ShM88]). 

A graphical notation can be useful to capture the ideas in the 
minds of the designers and to make them tactile. It serves as a 
documentation and as the basis for discussions between designers. 
However, a notation is only a means to an end and not the end 
itself. Even the best notation cannot guarantee good designs. CASE 
tools also need to be seen in this light, as they are often good 
documentation tools, but cannot replace the work of the designer. 
Designing is creative work and requires experience and insight. 
Notation is the mechanical part of the job. If the design is simple 
and clear, it is less important which notation is used or whether a 
particular notation is used at all. 

The value of a 
graphical notation 
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9.7 When to Use Classes 

Languages like Smalltalk offer no data types except classes and no 
operations except methods. In hybrid languages like Oberon-2, one 
has the choice to use other constructs beside classes and methods. 
There are basic types (INTEGER, CHAR, etc.), structured types 
(arrays, records, etc.), modules, and abstract data types. Often an 
array is more natural than a class, and a procedure simpler than a 
method. 

This raises the question: When should classes be used and 
when not? We believe that classes are only justified if at least one 
of the following conditions is met: 

 
(1) If the data is sufficiently complex to justify encapsulation: Sufficiently 

complex data  Classes should abstract from complex data by hiding details. 
The abstract view that a class offers must be significantly 
simpler than the concrete data structure that it encapsulates. A 
class Speed would hardly make sense because speed can be 
expressed more simply as an integer. A class File, by contrast, 
is useful because it hides unnecessary details, such as a data 
buffer, a position, or access rights. Using the abstraction File is 
simpler than using its concrete data structure. 

 
(2) If there are sufficiently many useful operations with the data: Sufficiently many 

useful operations  If accessing and modifying data fields seem to be the only 
operations, then generally a record is the more suitable con-
struct. For a class Speed there are no interesting operations: A 
value can be stored in it and retrieved again, and possibly 
speeds can be added, but this can be done with integers as 
well. A method Add is no easier to understand than the 
standard operation + (quite the contrary). A class File, on the 
other hand, has many useful operations: opening, closing, 
reading, writing, etc. 

 Classes with only a single method are suspect. In excep-
tional cases they might be practical, especially in situations 
where an operation is associated with a state (as in a random 
number generator). Usually, however, for a single method, a 
procedure is the better construct. 

 
(3) If the data exist in variants: Variants 
 The most useful applications of object-oriented programming 

come from heterogeneous data structures. If a program has to 
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work with variants of data that should be handled in a 
uniform way, then these data are candidates for classes. 
Making them classes enables dynamic binding and allows 
new variants to be added later without having to change the 
algorithms that work with existing variants. 

 The uniform treatment of variants is perhaps the most 
important incentive for using classes, because without classes 
it is hardly possible to add new variants to a program without 
modifying or at least recompiling it. 

 
(4) If there is a chance of extension and reuse: Reusability 
 Some data are so general that they can be used not only in the 

program in which they were conceived, but also in other 
programs. Pop-up menus, for example, are application-inde-
pendent, reusable and extensible (e.g., nested menus). Thus it 
makes sense to implement them as a class. 

 
In most other cases, classes are impractical: If the data are simple, 
arrays, records or sets suffice. They are at least as comprehensible 
as classes and are more efficient. An array for which the number 
and type of its elements is fixed should not be implemented as a 
class. 

When not to use 
classes 

If data are application-specific and used only locally to an 
algorithm, then classes usually do not pay off. For example, con-
verting an integer to a digit string requires an intermediate data 
structure to store the individual digits. An array is sufficient for 
that. 

Via data abstraction, classes help to reduce the complexity of 
programs. However, we have to be aware that each class also 
introduces a certain amount of new complexity: The semantics of 
its operations must be understood and remembered; its implemen-
tation requires code that increases the size of a program and thus 
the possibility of errors. The benefits of data abstraction must be 
substantially higher than its overhead in order to justify the 
introduction of a class. 

Classes are only one possible construct among many. They 
often permit elegant solutions, but this is no reason to express 
everything in classes. Compare this with recursion: Recursion 
allows a very elegant implementation of certain algorithms; but 
this does not mean that all algorithms should be implemented 
recursively. Often ordinary loops are more natural and more 
efficient. 

Choosing the right 
construct for data 
abstraction 
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The Oberon system itself consists only in part of classes. The 
major part consists of modules, abstract data types, and ordinary 
procedures. Nevertheless, it is modular and extensible. 

Figure 9.8 shows how to select a suitable construct for data 
abstraction. 

Does data abstraction 
simplify matters?

Concrete 
data structure

Are there variants of the data 
that should be handled in a uniform way?

Are there multiple 
instances of the data?

ClassAbstract 
data type

Abstract 
data structure

y

y

y

n

n

n

 

Fig. 9.8  Choosing the right construct for data abstraction 

The bottom line is: Classes should not be used at any price, but 
only if they make a program more comprehensible and extensible, 
and if this extensibility is required. Flexibility has its price, and 
who would pay for something that is not used? It is the craft of an 
experienced programmer to know when to use classes. 

Classes—not at 
any price 

9.8 Common Design Errors 

Teaching good design is difficult if not impossible. In fact, it is 
sometimes easier to show how not to design programs. This infor-
mation can also be useful. Avoiding the worst mistakes already 
leads to quite acceptable designs. This section describes some of 
the most frequent design errors: 
 
• too many trivial classes 
• mixing up is-a and has-a relationships 
• mixing up superclass and subclass 
• identical variants 
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• methods associated with the wrong class 
• too deep or too flat class hierarchy 

 
These errors can even be found in some books on object-oriented 
programming. 

9.8.1 Too Many Trivial Classes 

The previous section showed that classes do not always pay off. It 
is a common mistake (especially among beginners) to create a class 
for every concept, no matter how simple. Classes like Salary or 
Amount inflate a program without reducing its complexity or 
contributing significantly to its flexibility. 

Too many trivial 
classes 

In such cases it is clear that classes are not the proper con-
struct. Other cases are less obvious, e.g., time. Should an ordinary 
record be used: 

 
TYPE 
 Time = RECORD 
  hours: INTEGER; 
  minutes: INTEGER; 
  seconds: INTEGER 
 END 
 

or rather a class: 
 
TYPE 
 Time = RECORD 
  PROCEDURE (VAR t: Time) Get (VAR h, m, s: INTEGER); 
  PROCEDURE (VAR t: Time) Set (h, m, s: INTEGER); 
  PROCEDURE (VAR t: Time) Add (t1: Time); 
  PROCEDURE (VAR t: Time) Subtract (t1: Time); 
  PROCEDURE (VAR t: Time) LessThan (t1: Time); 
 END 
 

This depends on what is to be done with times. If they are used 
only locally in a program without carrying out calculations on 
them, a record suffices. A record is easy enough to understand and 
allows efficient access. If time is viewed as a reusable component 
that is also needed in other programs, and if times are to be added 
and subtracted, then an abstract data type or a class is appropriate. 
A class also makes it possible to change the implementation of 
time without affecting the clients. Thus it depends on what we 
want to do with the data. 
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9.8.2 Mixing up Is-a and Has-a Relationships 

Inheritance establishes an is-a relationship between a subclass and 
its superclass. B should only be derived from A if it is an extension 
or refinement of A. Instead, inheritance is often abused to 
represent a has-a relationship, e.g.: 

Mixing up is-a and 
has-a 
relationships 

 
TYPE 
 Point = RECORD x, y: INTEGER END; 
 Line = RECORD (Point) x1, y1: INTEGER END; 
 

The idea is that a line can be described by its two endpoints. The 
coordinates of one point are inherited; those of the other are added 
in Line. This is wrong! A line is not a point. It has two points. The 
declaration should read: 

 
TYPE 
 Line = RECORD p0, p1: Point END; 
 

This error sometimes occurs also in a more subtle form: 
 
TYPE 
 Rectangle = RECORD … END; 
 Window = RECORD (Rectangle) … END; 
 

Although it is true that a window could be viewed as a refinement 
of a rectangle, the is-a relationship limits the flexibility of Window. 
Oval windows might be introduced in the future; then a window is 
no longer a rectangle, but has a certain shape, which could be 
rectangular or oval. A better design would be: 

 
TYPE 
 Form = POINTER TO FormDesc; 
 FormDesc = RECORD (*abstract*) END; 
 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD (FormDesc) … END; 
  
 Window = RECORD 
  form: Form; 
  … 
 END; 
 

If Window were derived from Rectangle, this would have the 
further drawback that it could not be derived from another class 
without using multiple inheritance. It might be necessary, for 
example, to derive Window from a class ListNode in order to link 
various windows in a list. 



140  9 Object-Oriented Design 

9.8.3 Mixing up Superclass and Subclass 

Sometimes it is difficult to say which of two classes should be the 
superclass and which the subclass. Fig. 9.9 shows an example. 

Mixing up 
superclass and 
subclass 

RectangleSquare

SquareRectangle  

Fig. 9.9  Is Square a subclass of Rectangle or vice versa? 

It could be argued that a rectangle is an extension of a square, for 
while a square requires a corner and a dimension, a rectangle 
requires the same data and an additional dimension. 

This argument is wrong because not every rectangle is a 
square. The opposite is true: every square is a rectangle! The 
subclass must be a specialization of the superclass. The relationship 
between classes must be selected so as to yield an is-a relationship. 
Only then can objects of the subclass be used wherever objects of 
the superclass are expected. 

9.8.4 Identical Variants 

Some programmers tend to distinguish between objects that have 
the same structure and behavior, but differ in the value of a data 
field. For example, they view red and blue rectangles as belonging 
to different classes (Fig. 9.10). 

Identical variants 

Rectangle

RedRectangle BlueRectangle  

Fig. 9.10  Subclasses with identical structure and behavior 

This class hierarchy is generally incorrect. If red and blue rec-
tangles have the same kind of data and methods, they should 
belong to the same class Rectangle. They differ only in the value of 
a data field that specifies their color: 

 
TYPE 
 Rectangle = POINTER TO RectangleDesc; 
 RectangleDesc = RECORD 
  color: Color; 
  … 
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 END 
Deriving separate subclasses would, however, be justified if red 
and blue rectangles would react differently to a message. 

9.8.5 Methods Associated with the Wrong Class 

hould this method belong to lists or to elements? 
Should we write 

t.Remove(element) 
 

or 

lement.RemoveFrom(list) 

gumentation 
is w

ts on the state of the list could no longer be 
gua

o several methods that each modify only 
the data of their receiver. 

ies that are too deep or too flat are generally 
und

deep hierarchies is that each method scarcely does any work 

the wrong class 

or too 

hierarchy 

Sometimes it is not clear to which class an operation should be 
assigned. Removing elements from a list, for example, requires a 
method Remove. S

Methods 
associated with 

 
lis

 
e
 

It can be argued that elements should be autonomous and thus 
responsible to remove themselves from a list. This ar

rong. The removal of elements is a list operation. 
The receiver of a message must always be the object whose 

data are changed by the operation. In this example the list, not the 
element, is changed. The state of a list must only be modified by its 
own operations; anything else would violate information hiding, 
and invarian

ranteed. 
But what happens when a method modifies the data of 

multiple classes? To which class should this method be assigned? 
Such a situation usually indicates a design error. The method 
should be decomposed int

9.8.6 Too Deep or too Flat Class Hierarchy 

Although it is difficult to say how deep a class hierarchy should be, 
class hierarch

Too deep 
flat class 

esirable. 
Excessively deep hierarchies occur when concrete classes are 

frequently extended with the goal of reusing code. This is a 
particularly common practice in Smalltalk, where the source code 
of every class is available and invites reuse. The problem with too 
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before passing the message to the superclass. An operation is thus 
spread over numerous methods. This can impede maintenance and 
error localization. 

Overly flat hierarchies occur when subclasses reuse little or 
nothing from their superclasses. The extreme case would be a 
single abstract class Object from which all other classes are derived. 
This is certainly wrong, for it sacrifices almost all the advantages of 
object-orientedness. 

A class hierarchy should be balanced. The inner nodes should 
represent abstract classes, the leaves concrete ones. When many 
concrete classes are derived from an abstract class, this extends the 
class tree in its width. When abstract classes are derived from other 
abstract classes, this usually extends the tree in depth (Fig. 9.11). 

abstract 
 
concrete  

Fig. 9.11  Class hierarchies should be neither too deep nor too flat 



 

10 Frameworks 

Object-oriented systems are seldom written from scratch, but are 
usually built on existing systems. Object-oriented programming 
normally means extending a given system. This extensibility is one 
of the great advantages of OOP. Only when new programs can 
build on existing ones, can the productivity of programmers be 
increased. 

If one class can be derived from another, programmers al-
ready save a lot of work. If, however, a whole set of classes can be 
reused together, the advantage is even greater. A set of 
cooperating classes is called a framework [Deu89]. We will first 
examine the idea of frameworks and then look at some examples. 

10.1 Subsystems and Frameworks 

Large systems generally consist of several subsystems, where each 
subsystem is composed of a set of objects or other components that 
cooperate to perform a certain task. A subsystem itself can be 
viewed as a single component with an interface to the outside (Fig. 
10.1). 

Subsystems 

 

Fig. 10.1  Subsystem consisting of four classes 
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A subsystem like this is usually designed for a particular applica-
tion, which makes it application-specific and scarcely reusable. In 
order to achieve reusability, the application-independent parts 
have to be isolated. They form the framework of the subsystem (Fig. 
10.2). Application-specific tasks are left to later extensions of the 
framework. 

Application-specific

Application-independent

Framework

 

Fig. 10.2  Framework of a subsystem 

A framework is a set of abstract and concrete classes that cooperate 
in order to handle the application-independent aspects of a task. 
By extending its classes, the framework can be developed into 
various concrete subsystems. 

A frameworks is 
the design of 
subsystems 

In the same way as an abstract class is the design of its con-
crete subclasses, a framework is the design of the subsystems to 
which it can be extended. As an abstract class is the generalization 
of a concrete class, a framework is the generalization of a system of 
classes. 

Although frameworks are not tailored to a specific appli-
cation, they are designed for certain application domains. Examples 
include frameworks for graphical user interfaces, for simulation 
tasks, and for operating systems. The design of a framework 
requires a great deal of experience and expert knowledge in the 
respective domain. Only then can a designer factor out the 
commonalities of all programs in that domain and implement 
them in a framework that can easily be extended to concrete 
applications. 

A framework of classes is significantly more useful than a 
loose collection of procedures or modules. Procedure libraries offer 
only individual operations, but give no clue as to how these 
operations can be assembled to a practical system. The toolbox of 
the Apple Macintosh is such an example. Anyone who has ever 
used this library knows how difficult it is to find the procedures 
required for a certain task and to invoke them in the proper order. 

Domains 

Frameworks and 
procedure 
libraries 
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Menu selection, for example, requires the following individual 
operations: 

A framework for 
menus 

 
(1) display the menu 
(2) track mouse movement and invert contacted menu items 
(3) determine the item at which the mouse button was released 
(4) handle the respective menu item 
 
The first three operations are the same for all menus; only the last 
one is application-specific. A major part of menu selection can be 
programmed once and for all. Only the handling of the individual 
menu item must be left to the application. Thus menu selection can 
be implemented as a reusable framework consisting of a concrete 
class Menu and an abstract class MenuItem (Fig. 10.3): 

MenuItem
1: Select 
2: Show, Hide, 
     TrackMouse 
3: Show, Handle

1 nMenu

2
31 1

 

Fig. 10.3  Framework for menu selection (notation see Section 9.6) 

Menu holds a list of menu items and has a method Show that 
displays the whole menu, a method Hide that removes it from the 
screen, and a method TrackMouse that tracks mouse movement, 
inverts contacted menu items, and returns the selected item. A 
method Select controls the whole menu selection: 

 
PROCEDURE (menu: Menu) Select; 
 VAR item: MenuItem; 
BEGIN 
 menu.Show; 
 menu.TrackMouse(item); 
 menu.Hide; 
 IF item # NIL THEN item.Handle END 
END Select; 
 

Menu items are initially represented by the abstract class 
MenuItem, whose methods are empty, e.g.: 

 
PROCEDURE (item: MenuItem) Handle;  (*abstract*) 
END Handle; 
 

Handle is overridden in subclasses, and objects of these subclasses 
are used in Menu to fill out the framework. During menu selection 
the Handle method of the subclasses is invoked and the respective 
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menu item is handled. The application-independent framework is 
thus parameterized via subclasses of MenuItem. 

Instead of implementing Handle as a method, it is better to 
make it a procedure variable. In this way we avoid having a 
subclass for each menu item and get by with only a few item kinds 
(e.g., TextItem and PictureItem) in which an appropriate Handle 
procedure is installed. 

In frameworks the flow of control is exactly opposite to that in 
conventional programs using procedure libraries (Fig. 10.4). 

Inverted control 
flow 

Application

Library

Conventional program Extended framework

Framework  

Fig. 10.4  Control flow in conventional programs and frameworks 

In conventional programs the programmer writes a main program 
that invokes procedures from the library. With frameworks it is the 
other way round: Here the actual main program (the framework) 
comes from a library and invokes methods that the programmer 
provides. It is not the application that invokes library routines, but 
library routines that invoke parts of the application. This is called 
the Hollywood principle, "Don't call us, we'll call you" [Swe85]. 

10.2 The MVC Framework 

One frequently used framework was already introduced in Section 
8.7: the Model/View/Controller framework (MVC). It consists of 
three abstract classes: a model, its views, and its controllers (Fig. 
10.5). 

1

1

2 Model

ViewController
3 3

4

1: 
2: 
3: 
 
4:

Handle user input 
Modify model 
Notify views 
and controllers 
Show view

 

Fig. 10.5  The MVC framework 
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This framework forms the application-independent part of many 
interactive programs. By extending the three classes, it can be 
developed into various editors, such as a text editor or a graphics 
editor (Fig. 10.6). 

Text Graphics

TextView GraphViewTextCtrl GraphCtrl

 

Fig. 10.6  Extension of the MVC framework to a text editor and a graphics 
editor 

10.3 A Framework for Objects in Texts 

Many document editors process text that contains not only cha-
racters but also other objects such as pictures, tables, and formulas 
that flow with the text (Fig. 10.7). 

Texts 

The hypotenuse of a right-angled

triangle
a

b

c

is computed with

a  + b2 2the formula c =              . This can be used

to calculate …

 

Fig.10.7  Text with floating objects 

The document editor Write [Szy92] provided with the Oberon 
System is based on such texts. They have proven very useful and 
flexible, primarily because the kinds of objects in a text are not 
fixed in advance. The programmer can implement any kind of new 
objects (e.g., hypertext buttons) and let them float in the text 
without modifying the editor. The objects react to mouse clicks: 
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pictures go into editing mode, hypertext buttons follow a link into 
another text, etc. 

We call objects floating in the text elements. Together with texts 
and text frames they form a framework for many useful appli-
cations such as document editors, spreadsheet programs, 
hypertext systems, or other programs that manage, display and 
edit some kind of objects. 

Elements 

The framework consists of the classes Text, TextFrame and 
Element. The classes Text and TextFrame are concrete, while Element 
is abstract (Fig. 10.8). 
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Load, Store, 
Copy

Draw, 
HandleMouse

 

Fig.10.8  Framework for texts and included elements 

How do texts and elements interact? A text holds a list of elements 
and their positions. When it is loaded from or stored in a file, the 
elements also have to be loaded or stored. In order to do so, the 
text sends the elements Load or Store messages that each element 
interprets in its own way. If a piece of text is to be copied, all 
elements in it get a Copy message. Beside this, a text does not need 
to know anything about elements. 

Operations on 
elements 

How does a text frame interact with elements? When the 
contents of a frame are redrawn, the elements get a Draw message 
that causes them to display themselves at a certain position in the 
frame. If the user clicks on an element with the mouse, the frame 
sends the element a HandleMouse message. Again, a text frame 
need not know what kinds of elements exist. It communicates with 
them only via messages and thus can work with any kind of 
element. 

The necessary assumptions about elements are expressed in 
the interface of the abstract class Element: 

Class Element 
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TYPE 
 Element = POINTER TO ElementDesc; 
 ElementDesc = RECORD 
  PROCEDURE (e: Element) Load (VAR r: OS.Rider); 
  PROCEDURE (e: Element) Store (VAR r: OS.Rider); 
  PROCEDURE (e: Element) Copy (): Element; 
  PROCEDURE (e: Element) Draw (x, y: INTEGER); 
  PROCEDURE (e: Element) HandleMouse   
   (x, y : INTEGER; buttons: SET); 
 END; 
 

The framework can be extended by deriving concrete subclasses 
from Element, e.g., GraphicElement, FormulaElement or HypertextEle-
ment. While the editor is running, these classes can be dynamically 
added to the editor and objects of these classes (pictures, formulas, 
hypertext buttons, etc.) can be inserted in the text. They increase 
the functionality of the editor according to the needs of the user. 

We cannot overemphasize how important it is to have a 
system that allows adding modules to a running program. Only in 
such systems are programs truly extensible without recompilation 
or relinking. 

Concrete 
elements 

Dynamic 
extensibility 

Compare this to editors in other systems. In most systems an 
editor must be loaded with its full functionality. This leads to long 
loading times and large memory consumption, and overwhelms 
the user with an abundance of functions that are hardly ever used. 
In the Oberon System the run-time extensibility of programs 
allows each user to keep in memory only the core of the editor plus 
the few functions that are actually needed. 

Chapter 11 contains a complete implementation of texts with 
elements. 

10.4 Application Frameworks 

If frameworks can be extracted from subsystems, why should it 
not be possible to extract the common behavior of whole appli-
cations? Old-style batch programs scarcely have such common 
parts, but many interactive applications do. Commonalities can be 
found that can be isolated and collected into an application frame-
work. 

Dialog programs of the first generation mimic the behavior of 
batch programs. Data and commands have to be entered in a fixed 
order. Mistyped input often cannot be taken back because the 

Dialog programs 
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program already expects the next input. The program has control 
over the user, who cannot make inputs in arbitrary order. 

The next generation of dialog programs uses menus that 
permit input in any order. However, menus are often hierar-
chically arranged with a main menu and several submenus that 
again can contain submenus. Each menu drives the program in a 
certain state (Fig. 10.9). 

Main menu 
(state 0)

Submenu 
(state 1)

Submenu 
(state 3)

Submenu 
(state 4)

Submenu 
(state 5)

Submenu 
(state 6)

Submenu 
(state 7)

Submenu 
(state 2)

… … … … …… … … … …  

Fig.10.9  Hierarchical menus introduce states 

Now the user can execute commands in any order, but must move 
up and down the menu tree until the proper state is attained that 
allows the desired command. States in which only certain input is 
permitted impair the user-friendliness of a program and should be 
avoided whenever possible. 

Modern dialog programs are event-driven. They have only 
one state, in which all inputs are possible in any order. Each input 
(keyboard input, mouse click, etc.) is an event and causes a 
message to be sent to an object that handles the event. The core of 
such applications is a loop that waits for events and distributes 
them to the appropriate handler (Fig. 10.10). The program struc-
ture is inverted: the handlers belonging to the application are 
called by the framework belonging to the library 

In the Oberon System the event loop is implemented in the 
module Oberon. It need not be reimplemented in each program. 

Event-driven 
applications 

Event loop 
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LOOP 
   IF event available THEN 
      Pass it to appropriate handler 
   END 
END

Handler 1

Handler 3

Handler 2

Handler 4  

Fig.10.10  Event-driven program structure 

This event-handling mechanism is reusable. It is common to all 
event-driven programs and thus a candidate for the framework. 
Interactive applications share still other commonalities: They often 
work with windows, moving and resizing them in a uniform way. 
These operations are independent of the window contents and 
thus can be included in the framework. Other common parts 
include frames, dialog buttons, and menus. 

An application framework is thus a standard program that 
offers the basic functionality that is expected of any application: 
window management (without contents), menus, loading and 
storing documents, reading mouse clicks and keyboard input 
(without processing), etc. This functionality is achieved via a set of 
classes, some of which are concrete, thus implementing concrete 
behavior, and some of which are abstract and need to be made 
concrete in subclasses. 

Application 
frameworks 

Various application frameworks are commercially available 
that facilitate the writing of interactive applications. Some well-
known ones include MacApp [Sch86], NextStep [Web89], and ET++ 
[GWM88]. 

Let us take a brief look at MacApp, which is from the Apple 
company. It is implemented in Object Pascal and consists of a 
library of classes that are connected in a certain way to form an 
application framework (Fig. 10.11). 

MacApp 
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Application

Document

Window

View
 

Fig.10.11  Application framework MacApp 

Each MacApp program is an extension of the class Application. An 
application processes one or more documents that are displayed in 
one or more windows. A window contains one or more views that 
display text, graphics, or other data and react to user input. Note 
that MacApp uses somewhat different terminology from that in 
Oberon. Window is a Viewer in Oberon, and View is a Frame. 

Each class of the MacApp framework already fulfills certain 
tasks. Application handles initialization tasks and distributes 
events, Window moves and resizes windows, and View adapts the 
view size to the surrounding window. 

A concrete application is made from the standard behavior of 
the framework by extending some of these classes and overriding 
certain methods. This is a good example of programming by 
difference: Only those parts are programmed that deviate from the 
standard behavior. 

Programming by 
difference 



 

11 Oberon0 –  
A Case Study 

In many books, object-oriented programming is taught with tiny 
examples like stacks, lists and queues. These examples are not 
representative at all; indeed, they give a completely inaccurate 
picture of the actual applications and advantages of this technique. 
Object-oriented programming is programming in the large and 
requires large, realistic examples. For this reason this chapter 
presents a realistic case study—a system of windows that can be 
moved and resized and in which text and graphics can be edited—
in full source code. 

Why a realistic 
case study? 

By reading source code, we can learn a lot. In school we learn 
both to read and to write. We read good books to improve our 
style. Why then do we study so few good programs? Why do we 
not try to take up their style before writing our own programs? 
Perhaps because too few good programs are around as source 
code. Where source code is available, it is usually appreciatively 
read, as the Smalltalk class library has proven. 

The system we describe in this chapter is called Oberon0 
because its functionality and implementation are close to the 
Oberon System [WiG92]. Several things were solved differently, 
however: In Oberon0 most messages were implemented with 
methods and not with message records as in Oberon. Details that 
would have inflated the source code without contributing to the 
object-oriented idea were omitted. Thus Oberon0 is less powerful 
and less efficient than Oberon. But it is a realistic system that can 
be used for simple editing tasks. The source code of Oberon0 is 
available along with the object code of the Oberon System (see 
Appendix D). 

Oberon0 was implemented under Oberon and uses proce-
dures from Oberon's file system, mouse and screen control, etc. To 

Oberon and 
Oberon0 

Base module OS 



154  11 Oberon0 – A Case Study 

avoid describing all these Oberon modules, they were hidden 
beneath a module OS. The interface of OS is described in 
Appendix B. 

 
Oberon0 consists of five parts: Parts of Oberon0 
 
(1) windows and frames 
(2) user input handling 
(3) text editing 
(4) graphics editing 
(5) integration of graphics and texts 
 
The system has 1300 lines of code, 11 modules, and 11 classes. 
Each module and each class is first described in general, followed 
by an annotated program listing with explanations. All exported 
procedures can also be found in the index at the end of the book. 

A large part of Oberon0 is written in conventional style. Not 
all data types are classes; not all operations are methods. This is 
not a shortcoming, but a conscious design decision. Classes are 
employed only where they make the program simpler or better 
extensible. One of the goals of this case study is to show the reader 
where classes make sense and where to do without them. 

The reader should take time with this chapter. It cannot be 
read as a bed-time story, but needs to be studied with pencil and 
paper in hand. Only the study of complete examples provides the 
necessary experience to write object-oriented programs. 

11.1 The Viewer System 

We start with a description of the viewer system. The viewer 
system of Oberon0 handles rectangular regions of a raster display 
in which data can be viewed and edited. These regions are called 
windows or viewers. 

Viewers completely divide the screen into rectangles (tiling 
viewers). For the sake of simplicity, Oberon0 has only one column 
of viewers (Fig. 11.1) rather than two as in Oberon. 

Viewers 

The black bar at the top of each viewer is the title bar 
containing the name of the viewer and a list of commands (the 
menu). Pressing the left mouse button while the mouse pointer is 
located on the bar permits resizing the viewer by moving the bar 
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up or down with the mouse. Viewers can also be opened and 
closed by special commands. 

Frames 

⎬

⎬

⎬

⎫

⎫

⎥

⎫

⎭

⎭

⎭

⎥
⎥

⎥

Viewer 3

Viewer 2

Viewer 1

 

Fig. 11.1  Oberon0 screen with three viewers 

Data are not directly drawn into a viewer, but into a rectangular 
area within the viewer called a frame. Frames have two respon-
sibilities: 
 
(1) They display data (text, graphics, etc.). 
(2) They handle user input (mouse clicks and keyboard input). 
 
These are also the tasks of a viewer: A viewer is responsible for 
drawing its border and for handling user input, although the input 
is usually passed on to the frames in the viewer. A viewer is 
therefore a subclass of frame. For the sake of simplicity, viewers in 
Oberon0 always contain exactly two frames: a menu frame with 
the name of the viewer and a list of Oberon commands, and a 
contents frame, in which the actual data appear (Fig. 11.2). Frames 
combine the responsibilities of views and controllers from the 
MVC concept (Section 8.7). 
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Menu frame

Contents frame

Viewer

Temp.Mod   Viewers0.Close   Viewers0.Copy

Viewer name Commands

 

Fig. 11.2  Viewer with a menu frame and a contents frame 

Viewers and frames are so closely related that it makes sense to 
package them together in a module Viewers0: 

 
DEFINITION Viewers0; Interface of 

Viewers0 
IMPORT OS; 
 
TYPE 
 Frame = POINTER TO FrameDesc; Frame 
 FrameDesc = RECORD (OS.ObjectDesc) 
  x, y: INTEGER; (*left bottom in pixels relative to left bot. of screen*) 
  w, h: INTEGER; (*width, height in pixels*) 
  PROCEDURE (f: Frame) Draw; 
  PROCEDURE (f: Frame) Modify (dy: INTEGER); 
  PROCEDURE (f: Frame) Move (dy: INTEGER); 
  PROCEDURE (f: Frame) Copy (): Frame; 
  PROCEDURE (f: Frame) HandleKey (ch: CHAR); 
  PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET); 
  PROCEDURE (f: Frame) Handle (VAR m: OS.Message); 
  PROCEDURE (f: Frame) Neutralize; 
  PROCEDURE (f: Frame) SetFocus; 
  PROCEDURE (f: Frame) Defocus; 
 END; 
 
 Viewer = POINTER TO ViewerDesc; Viewer 
 ViewerDesc = RECORD (FrameDesc) 
  menu-, cont-: Frame; 
  next-: Viewer; 
  PROCEDURE (v: Viewer) Close; 
 END; 
 
VAR 
 focus-: Frame; (*the frame that gets the keyboard input*) 
 
PROCEDURE New (menu, cont: Frame): Viewer; 
PROCEDURE ViewerAt (y: INTEGER): Viewer; 
PROCEDURE Broadcast (VAR m: OS.Message); 
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PROCEDURE Close; Commands 
PROCEDURE Copy; 
 
END Viewers0. 
 
The position and size of a frame f is shown in Fig. 11.3. The 
coordinates (f.x, f.y) are relative to the lower left corner of the 
screen. In this implementation of the viewer system, f.x is always 0, 
but that can change, of course (see Section 11.5). 

Frame 
coordinates 

(f.x, f.y)
f.w

f.h

y

x  

Fig. 11.3  Position and size of a frame f 

Frame is an abstract class. It simply provides an interface without 
completely implementing it. Due to this interface, a viewer knows 
which operations it can apply to a frame. And since a viewer can 
work with general frames, it can also work with frame extensions, 
such as text frames (Section 11.3.3) and graphics frames (Section 
11.4.2). 
 
f.Draw Messages to 

frames  requests frame f to redraw its contents. 
f.Modify(dy) 
 shifts the lower border of frame f by dy pixels up (dy > 0) or 

down (dy < 0). 
f.Move(dy) 
 moves frame f by dy pixels up (dy > 0) or down (dy < 0). 
f1 := f.Copy() 
 makes a copy of frame f. 
f.HandleKey(ch) 
 requests frame f to process character ch which was typed at 

the keyboard. This message is only sent to a frame if it is the 
focus frame (see below). 

f.HandleMouse(x, y, b) 
 requests frame f to react to mouse input. This message is 

repeatedly sent to the frame as long as it contains the mouse 
pointer. x and y are the mouse coordinates relative to the 
lower left corner of the screen, and b is the set of pressed 
mouse buttons (OS.left, OS.middle, OS.right). 

f.Handle(m) 

 



158  11 Oberon0 – A Case Study 

 analyzes the message record m and reacts to it. This is the 
message handler of frames. 

f.Defocus 
 is sent to the focus frame f immediately before another frame 

becomes the focus frame. 
f.SetFocus 
 makes f the focus frame. 
f.Neutralize 
 requests frame f to remove all marks (caret, selection, etc.) 

from the screen.  
 
A viewer inherits the interface from frames, but overrides some 
methods. For example, when a viewer is resized by a Modify 
message, part of its border needs to be redrawn. Viewers also 
understand a Close message. 

Messages to 
viewers 

v.Close 
 requests the viewer v to close itself. 
 
One of the frames is the focus frame. All characters typed at the 
keyboard are sent to the focus frame via HandleKey messages. 
When the left mouse button is pressed in a frame, this frame 
becomes the new focus frame. 

The procedure New creates a viewer and displays it on the 
screen. ViewerAt(y) returns the viewer containing the coordinate y. 
Broadcast(m) sends the message record m to all viewers on the 
screen. 

Copy and Close are commands that are placed in the menu 
frame of a viewer. Close closes the viewer that contains the 
command, and Copy creates a copy of that viewer and displays it. 

All viewers are linked via a field next. A global variable 
viewers points to the bottom viewer on the screen (Fig. 11.4). 

Viewer list 

next

next

menu

menu

cont

cont

viewers

Viewers Frames

 

Fig. 11.4  List of all viewers on the screen 
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We now come to the implementation of the module Viewers0. Code 
that requires explanation is marked with a number in the margin 
(e.g., ♣). This number refers to comments at the end of the code 
section (marked with the corresponding number in black, e.g.,  ). 
The imported module OS is described in Appendix B. 
 
MODULE Viewers0; Implementation of 

Viewers0 
IMPORT OS; 
 
CONST 
 barH = 14;     (*default height of title bar*) 
 minH = barH + 2;  (*minimal height of a viewer*) 
 
TYPE 
 Frame* = POINTER TO FrameDesc; 
 FrameDesc* = RECORD (OS.ObjectDesc) 
  x*, y*: INTEGER; (*left bottom in pixels relative to left bot. of screen*) 
  w*, h*: INTEGER (*width, height in pixels*) 
 END; 
 Viewer* = POINTER TO ViewerDesc; 
 ViewerDesc* = RECORD (FrameDesc) 
  menu-, cont-: Frame; (*menu frame, contents frame*) 
  next-: Viewer; 
 END; 
 
VAR 
 focus-: Frame;   (*the frame that gets the keyboard input*) 
 viewers: Viewer;   (*root for list of viewers on the screen*) 
 
PROCEDURE (f: Frame) Draw*; Frame methods 
END Draw; 
 
PROCEDURE (f: Frame) Copy* (): Frame; 
END Copy; 
 
PROCEDURE (f: Frame) Neutralize*; 
END Neutralize; 
 
PROCEDURE (f: Frame) HandleKey* (ch: CHAR); 
END HandleKey; 
 
PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET); 
END HandleMouse; 
 
PROCEDURE (f: Frame) Handle* (VAR m: OS.Message); 
END Handle; 
 
PROCEDURE (f: Frame) Modify* (dy: INTEGER); 
BEGIN INC(f.y, dy); DEC(f.h, dy) 
END Modify; 
 
PROCEDURE (f: Frame) Move* (dy: INTEGER); 
BEGIN INC(f.y, dy) 
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END Move; 
 
PROCEDURE (f: Frame) Defocus*; 
BEGIN focus := NIL 
END Defocus; 
 
PROCEDURE (f: Frame) SetFocus*; 
BEGIN IF focus # NIL THEN focus.Defocus END; focus := f 
END SetFocus; 
 
PROCEDURE (v: Viewer) Erase (h: INTEGER); Viewer methods 
BEGIN 
 IF h > 0 THEN (*clear bottom block and draw left and right border*) 
  OS.EraseBlock(v.x, v.y, v.w, h); 
  OS.FillBlock(v.x, v.y, 1, h); 
  OS.FillBlock(v.x+v.w-1, v.y, 1, h) 
 END; 
 OS.FillBlock(v.x, v.y, OS.screenW, 1) 
END Erase; 
PROCEDURE (v: Viewer) FlipTitleBar; 
BEGIN 
 OS.InvertBlock(v.x+1, v.y+v.h-barH, OS.screenW-2, barH) 
END FlipTitleBar; 
 
PROCEDURE (v: Viewer) Neutralize*; 
BEGIN v.menu.Neutralize; v.cont.Neutralize 
END Neutralize; 
 
PROCEDURE (v: Viewer) Modify* (dy: INTEGER); 
BEGIN 
 v.Neutralize; 
 v.Modify^ (dy); v.Erase(-dy+1); v.cont.Modify(dy) 
END Modify; 
 
PROCEDURE (v: Viewer) Move* (dy: INTEGER); 
BEGIN 
 v.Neutralize; v.menu.Move(dy); v.cont.Move(dy); 
 OS.CopyBlock(v.x, v.y+1, v.w, v.h-1, v.x, v.y+dy+1); 
 INC(v.y, dy) 
END Move; 
 
PROCEDURE (v: Viewer) Draw*; 
BEGIN 
 OS.FadeCursor; 
 v.Erase(v.h); v.menu.Draw; v.cont.Draw; v.FlipTitleBar 
END Draw; 
 
PROCEDURE (v: Viewer) HandleMouse* (x, y: INTEGER; buttons: SET); 
 VAR b: SET; x1, y1: INTEGER; dy, maxUp, maxDown: INTEGER; 
BEGIN 
 OS.DrawCursor(x, y); 
 IF y > v.menu.y THEN  
  IF OS.left IN buttons THEN (*left click in menu bar => resize viewer*) 
   (*----- track mouse movements*) 
   v.FlipTitleBar;  
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   REPEAT 
    OS.GetMouse(b, x1, y1); OS.DrawCursor(x1, y1) 
   UNTIL b = {}; 
   v.FlipTitleBar; 

see ♣    (*----- compute how far v can be moved up or down*) 
   dy := y1 - y; maxDown := v.h - minH; 
   IF v.next = NIL THEN maxUp := OS.screenH - v.y - v.h 
   ELSE maxUp := v.next.h - minH; v.next.Neutralize 
   END; 
   IF dy < - maxDown THEN dy := - maxDown 
   ELSIF dy > maxUp THEN dy := maxUp 
   END; 
   (*----- move v up or down and adjust neighbor viewers*) 
   OS.FadeCursor; v.Neutralize;  
   IF dy < 0 THEN (*move down*) v.Modify(-dy); v.Move(dy) 
   ELSE (*move up*) v.Move(dy); v.Modify(-dy) 
   END; 
   IF v.next # NIL THEN v.next.Modify(dy) 
   ELSE OS.EraseBlock(v.x, v.y+v.h, v.w, OS.screenH-v.y-v.h) 
   END 
  ELSE v.menu.HandleMouse(x, y, buttons) 
  END 
 ELSE v.cont.HandleMouse(x, y, buttons) 
 END 
END HandleMouse; 
 
PROCEDURE (v: Viewer) Handle* (VAR m: OS.Message); 
BEGIN 
 v.menu.Handle(m); v.cont.Handle(m) 
END Handle; 
 
PROCEDURE (v: Viewer) Close*; 
 VAR x: Viewer; 
BEGIN 
 OS.FadeCursor; v.Neutralize; 
 IF v.next # NIL THEN v.next.Modify(-v.h) 
 ELSE OS.EraseBlock(v.x, v.y, v.w, v.h) 
 END; 
 IF viewers = v THEN 
  viewers := v.next 
 ELSE 
  x := viewers; 
  WHILE x.next # v DO x := x.next END; 
  x.next := v.next 
 END 
END Close; 
 
PROCEDURE ViewerAt*(y: INTEGER): Viewer; Other procedures
 VAR v: Viewer; 
BEGIN 
 v := viewers; 
 WHILE (v # NIL) & (y > v.y + v.h) DO v := v.next END; 
 RETURN v 
END ViewerAt; 
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PROCEDURE New* (menu, cont: Frame): Viewer; see   
 VAR below, above, v, w: Viewer; top: INTEGER; 
BEGIN 
 (*----- compute position of new viewer*) 
 IF ViewerAt(OS.screenH) = NIL THEN 
  top := OS.screenH 
 ELSE 
  w := viewers; v := viewers.next; 
  WHILE v # NIL DO 
   IF v.h > w.h THEN w := v END; 
   v := v.next 
  END; 
  top := w.y + w.h DIV 2 
 END; 
 (*----- generate new viewer and link it into viewer list*) 
 above := viewers; below := NIL; 
 WHILE (above # NIL) & (top > above.y + above.h) DO 
  below := above; above := above.next 
 END; 
 NEW(v); v.x := 0; v.w := OS.screenW; v.next := above; 
 IF below = NIL THEN v.y := 0; v.h := top 
 ELSE v.y := below.y + below.h; v.h := top - v.y 
 END; 
 IF v.h < minH THEN RETURN NIL END; 
 v.menu := menu; v.cont := cont; 
 menu.x := v.x+1; menu.y := v.y+v.h-barH; menu.w := v.w-2; menu.h := barH-1; 
 cont.x := v.x+1; cont.y := v.y+1; cont.w := v.w-2; cont.h := menu.y - v.y-1; 
 IF below = NIL THEN viewers := v ELSE below.next := v END; 
 IF above # NIL THEN above.Modify(v.h) END; 
 v.Draw; 
 RETURN v 
END New; 
 
PROCEDURE Broadcast* (VAR m: OS.Message); 
 VAR v: Viewer; 
BEGIN 
 v := viewers; 
 WHILE v # NIL DO v.Handle(m); v := v.next END 
END Broadcast; 
 
PROCEDURE Close*; Commands 
 VAR x, y: INTEGER; buttons: SET; v: Viewer; 
BEGIN 
 OS.GetMouse(buttons, x, y); v := ViewerAt(y); v.Close 
END Close; 
 
PROCEDURE Copy*; 
 VAR v: Viewer; x, y: INTEGER; buttons: SET; 
BEGIN 
 OS.GetMouse(buttons, x, y); v := ViewerAt(y); 
 v := New(v.menu.Copy(), v.cont.Copy()) 
END Copy; 
 
BEGIN (*Viewers0*) 
 viewers := NIL; focus := NIL 
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END Viewers0. 
 
Most methods of class Frame are empty and must be overridden in 
subclasses because abstract frames do not know what their 
contents are or how they should react to mouse clicks and 
keyboard input. The methods Move, SetFocus and Defocus, on the 
other hand, can already be implemented for abstract frames and 
usually do not need to be overridden. Modify can be implemented 
too, but it must be overridden in subclasses to redraw the part of 
the frame that becomes visible after a modification (see, e.g., 
Section 11.3.3). 

A viewer reacts to a mouse click in the title bar by allowing its 
upper border to be moved up or down. This process requires 
explanation (Fig. 11.5). 

Explanations 

  

maxUp

maxDown v

minH y

y1
dy

 

Fig. 11.5  Shifting the upper border of the viewer v by dy pixels 

The mouse was pressed at position y and released at y1. The 
vertical shift vector is dy = y1-y. The viewer border can be shifted 
by at most maxUp pixels up or maxDown pixels down before 
bumping into the next viewer (viewers must maintain a minimum 
height minH). When the top of a viewer is shifted, the viewer 
above must be resized and thus receives a Modify message. 

The position of a new viewer is determined so that its upper 
edge top is either at the very top of the screen (if there is no other 
viewer yet) or in the middle of the largest existing viewer. In the 
latter case the new viewer v is positioned between two other 
viewers below and above (Fig. 11.6). The viewer above is reduced in 
size and thus receives a Modify message. 
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Fig. 11.6  Opening a new viewer with top edge top 

Viewer and Frame are two components with complex data and 
useful operations. Thus it is justified to implement them as classes. 
Since viewers will display variants of frames (text frames, graphics 
frames, etc.), it makes sense to define the common behavior of all 
frames in an abstract class Frame. Viewers do not work with 
concrete frame variants, but with abstract frames; hence they do 
not need to know the variants. They are able to display any frame 
variant that might be developed in the future. This provides an 
example of heterogeneous, extensible data structures in the sense 
of Section 7.3. The classes Viewer and Frame can also be seen as a 
framework for an extensible viewer system. 

What can be 
learned? 

Although it is also possible to extend a viewer by deriving 
subclasses from it, this is not planned and generally not necessary. 
In our implementation viewers are fixed containers for frames. 
Only their contents vary, but not the viewers themselves. 

11.2 Handling User Input 

Viewers and frames can react to keyboard input and mouse clicks. 
But how are these events reported? This is the task of the event loop. 
Whenever the system is idle, it falls back to the event loop and 
polls the state of the input devices. 

As soon as a key is pressed, the event loop sends a message to 
the focus frame, which handles it appropriately. If the focus frame 
is a text frame, it might insert the character into its text at the 
position of the insertion mark (caret). If it is a graphics frame, it 
might interpret the character as a command. After having handled 
the event the frame returns control to the event loop. 

As long as no key is pressed, the frame that contains the 
mouse pointer is requested to react to the mouse. Normally the 
frame does nothing except draw the mouse pointer. If a mouse 

Event loop 

Keyboard input 

Mouse clicks 



 11.2 Handling User Input 165 

button is pressed, the reaction might be the placement of the caret, 
text or graphics selection, or some kind of drawing. Then control is 
returned to the event loop again. 

Since viewers can react to events in any order, and since they 
return control after a short time, the impression arises that all 
programs corresponding to the viewers run in parallel. In reality 
there is only one process that alternately gives control to the 
programs for a short amount of time. 

Multiprogramming

In the same way as in Oberon0 user input is also handled in 
the Oberon System. The event loop in Oberon is located in the 
module Oberon, so we also wrap it in a module Oberon0, which has 
a very simple interface: 

 
DEFINITION Oberon0; Interface of 

Oberon0 
 PROCEDURE Loop; 
END Oberon0. 
 
The Oberon0 system is started by invoking Loop (the event loop). It 
can be stopped by pressing the escape key. The source code of 
Oberon0 should be comprehensible without explanation. The 
modules Texts0 and TextFrames0 are discussed in the next section. 
 
MODULE Oberon0; Implementation of 

Oberon0 
IMPORT OS, Viewers0, Texts0, TextFrames0; 
CONST ESC = 1BX; 
 
PROCEDURE Loop*; 
 VAR ch: CHAR; x, y: INTEGER; buttons: SET; 
  v: Viewers0.Viewer; t: Texts0.Text; 
BEGIN 
 NEW(t); t.Clear; 
 v := Viewers0.New(TextFrames0.NewMenu("LOG", "Viewers0.Close"), 
  TextFrames0.New(t));  (*open the log viewer*) 
 LOOP  (*wait for events*) 
  IF OS.AvailChars() > 0 THEN OS.ReadKey(ch); 
   IF ch = ESC THEN EXIT 
   ELSIF Viewers0.focus # NIL THEN Viewers0.focus.HandleKey(ch) 
   END 
  ELSE OS.GetMouse(buttons, x, y); 
   v := Viewers0.ViewerAt(y); 
   IF v # NIL THEN v.HandleMouse(x, y, buttons) 
   ELSE OS.DrawCursor(x, y) 
   END 
  END 
 END 
END Loop; 
 
END Oberon0. 
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11.3 A Text Editor 

The most frequent kind of data to be displayed in viewers is text. 
Thus we shall design and implement classes that permit 
displaying and editing text in an Oberon0 viewer. 

Which classes and modules are necessary? Recall Section 8.7, 
in which the MVC concept was introduced as a useful technique in 
designing interactive programs (Fig. 11.7). 

MVC structure 

View + Controller
(Frame)

Model

change notify read

 

Fig. 11.7  The MVC concept 

According to the MVC concept, an interactive program consists of 
a model and several views and controllers. How can we transpose 
this onto a text editor? 

Our model is the text; thus we need a class that manages text. 
The view and controller part is handled by frames, so we need a 
class TextFrame, a subclass of Frame, that displays a text on the 
screen and handles keyboard input and mouse clicks. Text frames 
are installed in viewers; we can use the class Viewer from Section 
11.1 for that. Finally, we need a module that has commands to 
open and close a text viewer; we call it Edit0. Each of these classes 
is implemented in its own module; the resulting hierarchy of 
modules and classes is shown in Fig. 11.8. 

Viewers work with text frames by sending them messages and 
thus requesting them to change their size or to display their 
contents. However, Viewers0 does not import TextFrames0, but 
regards all kinds of frames (including text frames) as extensions of 
the class Viewers0.Frame. A text frame is installed in a viewer with 
Viewers0.New without the viewer needing to know this Frame 
extension. 
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Fig. 11.8  Modules and classes of the text editor 

The class Text actually has two responsibilities: It handles ASCII 
text and it adds various fonts. In order to be able to describe these 
two tasks independently, we model them as a class AsciiText, 
which handles plain text, and a subclass Text, which adds the 
fonts. 

Note that a text editor is no trivial program; its implemen-
tation imposes many details, although here we have avoided as 
much detail as possible by sacrificing efficiency and generality. 
11.3.1 Plain Texts (AsciiTexts) 

The class AsciiTexts.Text handles a text as a sequence of ASCII 
characters. Operations on texts include insertion, deletion, reading, 
writing, loading, and storing. This leads to the following interface: 
 
DEFINITION AsciiTexts; Interface of 

AsciiTexts 
IMPORT OS; 
 
TYPE 
 Text = POINTER TO TextDesc; 
 TextDesc = RECORD (OS.ObjectDesc) 
  len-: LONGINT;  (*text length*) 
  pos-: LONGINT;   (*read/write position*) 
  PROCEDURE (t: Text) Clear; 
  PROCEDURE (t: Text) Insert (at: LONGINT; t1: Text; beg, end: LONGINT); 
  PROCEDURE (t: Text) Delete (beg, end: LONGINT); 
  PROCEDURE (t: Text) SetPos (pos: LONGINT); 
  PROCEDURE (t: Text) Read (VAR ch: CHAR); 
  PROCEDURE (t: Text) Write (ch: CHAR); 
  PROCEDURE (t: Text) Load (VAR r: OS.Rider); 
  PROCEDURE (t: Text) Store (VAR r: OS.Rider); 
 END; 
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 NotifyInsMsg = RECORD (OS.Message) t: Text;  beg, end: LONGINT END; 
 NotifyDelMsg = RECORD (OS.Message) t: Text;  beg, end: LONGINT END; 
 
END AsciiTexts. 
 
A text t is a sequence of characters at positions 0 to t.len-1. It has a 
read/write position t.pos where characters can be read and written 
with Read and Write. In the following explanation the open interval 
[a..b[ indicates a text segment beginning with the character at 
position a and ending with the character at position b-1. 

Messages to 
ASCII texts 

 
t.Clear 
 clears the text t. 
t.Insert(p, t1, a, b) 
 inserts the text segment [a..b[ of t1 at position p in t. 
t.Delete(a, b) 
 deletes the segment [a..b[ in t. 
t.SetPos(p) 
 sets the read/write position of t to p. 
t.Read(ch) 
 reads the character ch at t.pos and increments t.pos by 1. An 

attempt to read beyond the end of the text causes 0X to be 
read and t.pos is not incremented. 

t.Write(ch) 
 inserts the character ch at t.pos and increments t.pos by 1. 
t.Load(r) 
 loads the text t from a file (rider r). 
t.Store(r) 
 stores the text t in a file (rider r). 
 
The central data structure of texts is the text buffer. In its simplest 
form, it is an array of characters. However, the insertion and 
deletion of characters must be efficient; thus we make use of the 
following observation: 

Text buffer 

The array is not completely filled. It consists of a sequence of 
characters and a gap that extends from the position after the last 
character to the end of the array. Inserting and deleting at the front 
of this gap (i.e., at the end of the text) is efficient because no 
characters have to be moved. Within the text, inserting and 
deleting are expensive operations. 

The trick is to move the gap from the end of the text to within 
the text. Then inserting and deleting can be efficient there, too (Fig. 
11.9). 
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Characters Characters CharactersGapGap

Inserting characters Inserting characters
is efficient here is efficient here  

Fig. 11.9  Moving the gap from the end of the text to within the text 

Whenever the insertion point in the text changes, the gap is moved 
to the new insertion point by a method MoveGap. Since multiple 
characters are usually inserted at the same place before the 
insertion point is changed, the gap seldom needs to be moved. For 
clients of the class Text, the array and the position of the gap 
remain hidden, of course. 

The length of arrays is fixed. But to permit a text to grow to an 
arbitrary length without wasting storage on small texts, we must 
permit the array to grow and shrink. We do this in the following 
way: If the array is completely filled, we create a larger array and 
copy the old one into the new. If the text length is less than half the 
array size, we create a smaller array and copy to it. These tasks are 
handled by the methods Grow and Shrink. 

Growing and 
shrinking 

We will now examine the implementation. Note that texts in 
Oberon0 are implemented differently from those in the Oberon 
System. In Oberon they are not in main memory, but in a file; thus 
they can really be of arbitrary length. This implementation is more 
practical, but also more complicated than the Oberon0 solution. 
The Oberon approach is described in [WiG92]. 

 
MODULE AsciiTexts; Implementation of 

AsciiTexts 
IMPORT OS, Viewers0; 
 
CONST minBufLen = 32; 
 
TYPE 
 Buffer = POINTER TO ARRAY OF CHAR; 
 Text* = POINTER TO TextDesc; Text 
 TextDesc* = RECORD (OS.ObjectDesc) 
  len-: LONGINT;  (*text length*) 
  pos-: LONGINT;   (*read/write position*) 
  buf: Buffer;    (*text buffer*) 
  gap: LONGINT   (*index of first byte in gap*) 
 END; 
 NotifyInsMsg* = RECORD(OS.Message) t*:Text; beg*, end*:LONGINT END; 
 NotifyDelMsg* = RECORD(OS.Message) t*:Text; beg*, end*:LONGINT END; 
 
PROCEDURE (t: Text) MoveGap (to: LONGINT); Text methods 
 VAR n, gapLen: LONGINT; 
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BEGIN 
 n := ABS(to - t.gap); gapLen := LEN(t.buf^) - t.len; 
 IF to > t.gap THEN OS.Move(t.buf^, t.gap + gapLen, t.buf^, t.gap, n) 
 ELSIF to < t.gap THEN OS.Move(t.buf^, t.gap - n, t.buf^, t.gap + gapLen - n, n) 
 END; 
 t.gap := to 
END MoveGap; 
 
PROCEDURE (t: Text) Grow (size: LONGINT); 
 VAR bufLen: LONGINT; old: Buffer; 
BEGIN 
 bufLen := LEN(t.buf^); 
 IF size > bufLen THEN 
  t.MoveGap(t.len); 
  WHILE bufLen < size DO bufLen := 2*bufLen END; 
  old := t.buf; NEW(t.buf, bufLen); OS.Move(old^, 0, t.buf^, 0, t.len) 
 END 
END Grow; 
 
PROCEDURE (t: Text) Shrink; 
 VAR bufLen: LONGINT; old: Buffer; 
BEGIN 
 bufLen := LEN(t.buf^); t.MoveGap(t.len); 
 WHILE (bufLen >= 2*t.len) & (bufLen > minBufLen) DO 
  bufLen := bufLen DIV 2 
 END; 
 old := t.buf; NEW(t.buf, bufLen); OS.Move(old^, 0, t.buf^, 0, t.len) 
END Shrink; 
 
PROCEDURE (t: Text) Clear*; 
BEGIN 
 NEW(t.buf, minBufLen); 
 t.gap := 0; t.pos := 0; t.len := 0 
END Clear; 
 
PROCEDURE (t: Text) Insert* (at: LONGINT; t1: Text; beg, end: LONGINT); see ♣ 
 VAR len: LONGINT; m: NotifyInsMsg; t0: Text; 
BEGIN 
 IF t = t1 THEN 
  NEW(t0); t0.Clear; t0.Insert(0, t1, beg, end); t.Insert(at, t0, 0, t0.len) 
 ELSE len := end - beg; 
  IF t.len + len > LEN(t.buf^) THEN t.Grow(t.len + len) END; 
  t.MoveGap(at); t1.MoveGap(end); 
  OS.Move(t1.buf^, beg, t.buf^, t.gap, len); 
  INC(t.gap, len); INC(t.len, len); 
  m.t := t; m.beg := at; m.end := at + len; Viewers0.Broadcast(m) 
 END 
END Insert; 
 
PROCEDURE (t: Text) Delete* (beg, end: LONGINT); see   
 VAR m: NotifyDelMsg; 
BEGIN 
 t.MoveGap(end); t.gap := beg; DEC(t.len, end-beg); 
 IF (t.len * 2 < LEN(t.buf^)) & (LEN(t.buf^) > minBufLen) THEN t.Shrink END; 
 m.t := t; m.beg := beg; m.end := end; Viewers0.Broadcast(m) see ➆ 
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END Delete; 
 
PROCEDURE (t: Text) SetPos* (pos: LONGINT); 
BEGIN t.pos := pos 
END SetPos; 
 
PROCEDURE (t: Text) Read* (VAR ch: CHAR); 
 VAR i: LONGINT; 
BEGIN 
 i := t.pos; 
 IF t.pos >= t.gap THEN INC(i, LEN(t.buf^) - t.len) END; 
 IF t.pos < t.len THEN ch := t.buf[i]; INC(t.pos) ELSE ch := 0X END 
END Read; 
 
PROCEDURE (t: Text) Write* (ch: CHAR); 
 VAR m: NotifyInsMsg; 
BEGIN 
 IF t.len = LEN(t.buf^) THEN t.Grow(t.len + 1) END; 
 IF t.pos # t.gap THEN t.MoveGap(t.pos) END; 
 t.buf[t.gap] := ch; INC(t.gap); INC(t.pos); INC(t.len);  
 m.t := t; m.beg := t.gap-1; m.end := t.gap; Viewers0.Broadcast(m) 
END Write; 
 
PROCEDURE (t: Text) Load* (VAR r: OS.Rider); 
 VAR len: LONGINT; 
BEGIN 
 t.Clear; 
 r.ReadLInt(len); t.Grow(len); r.ReadChars(t.buf^, len); 
 t.gap := len; t.len := len 
END Load; 
 
PROCEDURE (t: Text) Store* (VAR r: OS.Rider); 
BEGIN 
 t.MoveGap(t.len); 
 r.WriteLInt(t.len); r.WriteChars(t.buf^, t.len) 
END Store; 
 
END AsciiTexts. 
 
The most important methods of AsciiTexts are Insert and Delete. In 
Insert, a text segment from text t1 is inserted in text t by moving the 
gap to the insert position and copying the text segment to this 
position (Fig. 11.10). First t might have to attain the proper length 
via t.Grow. If t and t1 are identical, a temporary buffer must be 
used. 
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t t1

t.MoveGap(at); t1.MoveGap(end)

OS.Move(t1.buf^,beg,t.buf^,at,end-beg)

at beg

beg

end

endat

 

Fig. 11.10  Effects of t.Insert(at, t1, beg, end) 

Delete works similarly. The gap is moved to the end of the text 
segment that is to be deleted and is then simply enlarged down-
ward (Fig. 11.11). Finally the array in t is shrunk with t.Shrink if 
necessary. 

  

t

t.MoveGap(end)

t.gap := beg; DEC(t.len, end-beg)
(*gap length is LEN(t.buf^) - t.len*)

beg

beg

beg

end

end

end  

Fig. 11.11  Effects of t.Delete(beg, end) 

Whenever the text is changed, its views must be updated. Thus 
Insert, Delete and Write invoke the procedure Viewers0.Broadcast 
and pass it a message record that specifies how the text was 
modified. Viewers0.Broadcast distributes the message to all frames 
on the screen. Whichever frame displays the modified text reacts to 
the message by updating the modified part of the text on the 
screen (see Section 11.3.3). 

  

11.3.2 Texts with Fonts and Elements (Texts0) 

For simple texts, AsciiTexts.Text might suffice. A realistic editor, 
however, should support fonts and allow pictures and other 
elements to be inserted in the text. These features are provided by 
the class Texts0.Text, an extension of AsciiTexts.Text. 
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DEFINITION Texts0; Interface of 
Texts0 

IMPORT OS, AsciiTexts; 
 
TYPE 
 Attribute = POINTER TO AttrDesc; 
 Element = POINTER TO ElemDesc; 
 
 Text = POINTER TO TextDesc; Text 
 TextDesc = RECORD (AsciiTexts.TextDesc) 
  attr-: Attribute;  (*attributes of previously read character*) 
  PROCEDURE (t: Text) ChangeFont (beg, end: LONGINT; fnt: OS.Font); 
  PROCEDURE (t: Text) ReadNextElem (VAR e: Element); 
  PROCEDURE (t: Text) WriteElem (e: Element); 
  PROCEDURE (t: Text) ElemPos (e: Element); 
 END; 
 
 AttrDesc = RECORD 
  fnt-: OS.Font;  (*font of this attribute segment*) 
  elem-: Element (*if not NIL, the corrsponding character is an element*) 
 END; 
 
 ElemDesc = RECORD (OS.ObjectDesc) Element 
  w, h: INTEGER; (*width and height of element in pixels*) 
  dsc: INTEGER; (*descender (part below the base line)*) 
  PROCEDURE (e: Element) Draw (x, y: INTEGER); 
  PROCEDURE (e: Element) HandleMouse  
   (frame: OS.Object; x, y: INTEGER); 
  PROCEDURE (e: Element) Copy (): Element; 
 END; 
 
 NotifyDelMsg = AsciiTexts.NotifyDelMsg; Notify messages 
 NotifyInsMsg = AsciiTexts.NotifyInsMsg; 
 NotifyReplMsg = RECORD (OS.Message) t: Text; beg, end: LONGINT END; 
 
END Texts0. 
Text inherits the interface from AsciiTexts.Text. This means that text 
segments can be inserted, deleted, etc. However, the inherited 
methods are overridden in such a way that fonts are updated 
correctly and pictures and other elements can flow with the text. 
The following additional operations are provided: 

Messages to texts

 
t.ChangeFont(a, b, fnt) 
 changes the font of the text segment [a..b[ to fnt. 
t.ReadNextElem(e) 
 returns the next element e in t after the position t.pos. 

Afterwards t.pos contains the position of the character 
following e. If no element is found, e = NIL and t.pos = t.len. 

t.WriteElem(e) 
 inserts the element e at t.pos in t. 
pos := t.ElemPos(e) 
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 returns the position of the element e in t or the value t.len if e 
does not exist. 

 
Which data fields are needed in Text? In addition to the character 
array, an attribute list is necessary to specify the font of each 
character and whether it is a plain character or an element (e.g., a 
picture). Each node of the attribute list represents a text segment of 
len characters in font fnt: 

Attributes 

 
TYPE 
 Attribute = POINTER TO AttrDesc; 
 AttrDesc = RECORD 
  len: LONGINT; (*length of attribute segment*) 
  fnt: OS.Font;  (*font of attribute segment*) 
  elem: Element; (*pointer to element or NIL*) 
  next: Attribute 
 END; 
 

Elements are represented in the text by a special character (1CX) 
and in the attribute list by a node of len = 1; the field elem of this 
node points to the actual element. For plain characters, elem has the 
value NIL. Before we turn to elements, let us consider the 
management of the attribute list. Fig. 11.13 shows the connection 
between the ASCII text and the attribute list. The attribute list is 
not visible to clients of Text. 

The first node in the attribute list is a dummy that simplifies 
the handling of the list. Each node contains the length of the text 
segment that it stands for, but not its position; otherwise it would 
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be necessary to update the positions of subsequent text segments 
every time a character is inserted. 

StdFont

0

NIL
Font1

9

NIL
Font2

14

NIL
Font2

1

Font2

11

NIL
NIL

t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t

Dummy

ASCII text

Attribute 
list

1CX

Element

len
fnt

elem

next

 

Fig. 11.13  A text with its associated attribute list 

A text should also be able to contain objects that are not characters, 
but pictures, tables or formulas. The kinds of objects are unknown 
in advance; besides, we do not want to inflate texts by making 
them know unnecessarily many kinds of objects. Thus texts should 
not distinguish the objects at all, but work with an abstract class 
Element, from which picture elements, table elements and formula 
elements can later be derived. This keeps the editor small and 
makes it possible to add new kinds of elements anytime. 

Elements 

 
TYPE 
 Element = POINTER TO ElemDesc; 
 ElemDesc = RECORD (OS.ObjectDesc) 
  w, h: INTEGER; (*width and height of element in pixels*) 
  dsc: INTEGER (*descender (part below the base line)*) 
 END; 
 

Which operations should be possible on elements? Elements 
should be able to display themselves on the screen and to react to 
mouse clicks. They should also know how to write themselves to a 
file and how to read themselves in again; these are already 
properties of the superclass OS.Object. Thus elements must 
understand the following messages: 
 
e.Draw(x, y) Messages to 

elements  draws e at position (x, y) on the screen (Fig. 11.14). 
e.HandleMouse(f, x, y) 
 causes e to react to a mouse click at position (x, y) in frame f. 
e1 := e.Copy() 
 makes a copy of e. 
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(x, y)

dsc
Base line

Element

w

h

 

Fig. 11.14  Coordinates of an element on the screen 

Most methods of Element are abstract and need to be overridden in 
subclasses. 

 
MODULE Texts0; Implementation of 

Texts0 
IMPORT OS, AsciiTexts, Viewers0; 
 
CONST ELEM = 1CX; 
  
TYPE 
 Element* = POINTER TO ElemDesc; 
 Attribute* = POINTER TO AttrDesc; 
 
 Text* = POINTER TO TextDesc; 
 TextDesc* = RECORD (AsciiTexts.TextDesc) 
  attr-: Attribute;     (*attributes of previously read character*) 
  firstAttr: Attribute;    (*to attribute list (first node is dummy)*) 
  attrRest: LONGINT   (*unread bytes in current attribute segment*) 
 END; 
 
 AttrDesc* = RECORD 
  len: LONGINT;   (*length of attribute segment*) 
  fnt-: OS.Font;    (*font of this attribute segment*) 
  elem-: Element;   (*pointer to element descriptor or NIL*) 
  next: Attribute 
 END; 
 
 ElemDesc* = RECORD (OS.ObjectDesc) 
  w*, h*: INTEGER;  (*width and height in pixels*) 
  dsc*: INTEGER   (*descender (part under the base line)*) 
 END; 
 
 NotifyInsMsg* = AsciiTexts.NotifyInsMsg; 
 NotifyDelMsg* = AsciiTexts.NotifyDelMsg; 
 NotifyReplMsg* = RECORD (OS.Message)  
  t*: Text; beg*, end*: LONGINT  
 END; 
 
PROCEDURE (e: Element) Draw* (x, y: INTEGER); Element methods 
END Draw; 
 
PROCEDURE (e: Element) HandleMouse* (f: OS.Object; x, y: INTEGER); 
END HandleMouse; 
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PROCEDURE (e: Element) Copy* (): Element; 
END Copy; 
 
PROCEDURE (e: Element) Load* (VAR r: OS.Rider); 
BEGIN  
 r.ReadInt(e.w); r.ReadInt(e.h); r.ReadInt(e.dsc) 
END Load; 
 
PROCEDURE (e: Element) Store* (VAR r: OS.Rider); 
BEGIN 
 r.WriteInt(e.w); r.WriteInt(e.h); r.WriteInt(e.dsc) 
END Store; 
 
PROCEDURE (t: Text) Split (pos: LONGINT; VAR prev: Attribute); Text methods 

see ♣ 
 VAR a, b: Attribute; 
BEGIN 
 a := t.firstAttr; 
 WHILE (a # NIL) & (pos >= a.len) DO 
  DEC(pos, a.len); prev := a; a := a.next 
 END; 
 IF (a # NIL) & (pos > 0) THEN 
  NEW(b); b.elem := a.elem; b.fnt := a.fnt; b.len := a.len - pos; a.len := pos; 
  b.next := a.next; a.next := b; prev := a 
 END 
END Split; 
 
PROCEDURE (t: Text) Merge (a: Attribute); see   
 VAR b: Attribute; 
BEGIN 
 b := a.next; 
 IF (b # NIL) & (a.fnt = b.fnt) & (a.len > 0) & (a.elem = NIL) & (b.elem = NIL) THEN 
  INC(a.len, b.len); a.next := b.next 
 END 
END Merge; 
 
PROCEDURE (t: Text) Insert*  see ➆ 
 (at: LONGINT; t1: AsciiTexts.Text; beg, end: LONGINT); 
 VAR a, b, c, d, i, j, k: Attribute; t0: Text; 
BEGIN 
 IF t = t1 THEN 
  NEW(t0); t0.Clear; t0.Insert(0, t1, beg, end); t.Insert(at, t0, 0, t0.len) 
 ELSE 
  WITH t1: Text DO 
   t1.Split(beg, a); t1.Split(end, b); t.Split(at, c); d := c.next;  
   i := a; j := c; 
   WHILE i # b DO 
    i := i.next; NEW(k); k^ := i^; 
    IF i.elem # NIL THEN k.elem := i.elem.Copy() END; 
    j.next := k; j := k 
   END; 
   j.next := d; t1.Merge(b); t1.Merge(a); t.Merge(j); t.Merge(c);  
   t.Insert^ (at, t1, beg, end) 
  END 
 END 
END Insert; 
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PROCEDURE (t: Text) Delete* (beg, end: LONGINT); 
 VAR a, b: Attribute; 
BEGIN 
 t.Split(beg, a); t.Split(end, b); a.next := b.next; t.Merge(a); 
 t.Delete^ (beg, end) 
END Delete; 
 
PROCEDURE (t: Text) SetPos* (pos: LONGINT); 
 VAR prev, a: Attribute; 
BEGIN 
 t.SetPos^(pos); 
 a := t.firstAttr; 
 WHILE (a # NIL) & (pos >= a.len) DO 
  DEC(pos, a.len); prev := a; a := a.next 
 END; 
 IF (a = NIL) OR (pos = 0) THEN t.attr := prev; t.attrRest := 0 
 ELSE t.attr := a; t.attrRest := a.len-pos 
 END 
END SetPos; 
 
PROCEDURE (t: Text) Read* (VAR ch: CHAR); see ➘ 
BEGIN 
 t.Read^(ch); 
 IF (t.attrRest = 0) & (t.attr.next # NIL) THEN 
  t.attr := t.attr.next; t.attrRest := t.attr.len 
 END; 
 DEC(t.attrRest) 
END Read; 
 
PROCEDURE (t: Text) Write* (ch: CHAR); see   
 VAR a, prev: Attribute; at: LONGINT; 
BEGIN 
 a := t.firstAttr; at := t.pos; 
 WHILE (a # NIL) & (at >= a.len) DO DEC(at, a.len); prev := a; a := a.next END; 
 IF (a = NIL) OR (at = 0) THEN  (*insert at end of attribute segment*) 
  IF (prev = t.firstAttr) OR (prev.elem # NIL) THEN 
   NEW(a); a.elem := NIL; a.fnt := prev.fnt; a.len := 1; 
   a.next := prev.next; prev.next := a; 
   t.Merge(a) 
  ELSE INC(prev.len) 
  END 
 ELSE INC(a.len) 
 END; 
 t.Write^ (ch) 
END Write; 
 
PROCEDURE (t: Text) ReadNextElem* (VAR e: Element); 
 VAR pos: LONGINT; a: Attribute; 
BEGIN 
 pos := t.pos + t.attrRest; a := t.attr.next; 
 WHILE (a # NIL) & (a.elem = NIL) DO pos := pos + a.len; a := a.next END; 
 IF a # NIL THEN e := a.elem; t.SetPos(pos+1) 
 ELSE e := NIL; t.SetPos(t.len) 
 END 
END ReadNextElem; 
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PROCEDURE (t: Text) WriteElem* (e: Element); see ⑥ 
 VAR x, y: Attribute; m: NotifyReplMsg; 
BEGIN 
 t.Write(ELEM); t.Split(t.pos - 1, x); t.Split(t.pos, y); y.elem := e; 
 m.t := t; m.beg := t.pos-1; m.end := t.pos; Viewers0.Broadcast(m) 
END WriteElem; 
 
PROCEDURE (t: Text) ElemPos* (e: Element): LONGINT; 
 VAR pos: LONGINT; a: Attribute; 
BEGIN 
 a := t.firstAttr; pos := 0; 
 WHILE (a # NIL) & (a.elem # e) DO pos := pos + a.len; a := a.next END; 
 RETURN pos 
END ElemPos; 
 
PROCEDURE (t: Text) ChangeFont* (beg, end: LONGINT; fnt: OS.Font); 
 VAR a, b: Attribute; m: NotifyReplMsg; 
  
 PROCEDURE Change(a: Attribute); 
 BEGIN 
  a.fnt := fnt;  
  IF a # b THEN Change(a.next) END; 
  t.Merge(a) 
 END Change; 
 
BEGIN 
 IF end > beg THEN 
  t.Split(beg, a); t.Split(end, b); Change(a.next); t.Merge(a); 
  m.t := t; m.beg := beg; m.end := end; Viewers0.Broadcast(m) 
 END 
END ChangeFont; 
 
PROCEDURE (t: Text) Clear*; 
BEGIN 
 t.Clear^; 
 NEW(t.firstAttr); t.firstAttr.elem := NIL; t.firstAttr.next := NIL; 
 t.firstAttr.fnt := OS.DefaultFont(); t.firstAttr.len := 0; t.SetPos(0) 
END Clear; 
 
PROCEDURE (t: Text) Store* (VAR r: OS.Rider); see   
 VAR a: Attribute; 
BEGIN 
 t.Store^(r); a := t.firstAttr.next; 
 WHILE a # NIL DO 
  r.WriteString(a.fnt.name); 
  r.WriteObj(a.elem); r.WriteLInt(a.len); 
  a := a.next 
 END; 
 r.Write(0X)  (*empty font name terminates attribute list*) 
END Store; 
 
PROCEDURE (t: Text) Load* (VAR r: OS.Rider); 
 VAR prev, a: Attribute; name: ARRAY 32 OF CHAR; x: OS.Object; 
BEGIN 
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 t.Load^(r); 
 prev := t.firstAttr; 
 LOOP 
  r.ReadString(name); IF name = "" THEN EXIT END; 
  NEW(a); a.fnt := OS.FontWithName(name); 
  r.ReadObj(x); r.ReadLInt(a.len); 
  IF x = NIL THEN a.elem := NIL ELSE a.elem := x(Element) END; 
  prev.next := a; prev := a 
 END; 
 prev.next := NIL 
END Load; 
 
END Texts0. 
 
The attribute list is managed via the operations Split and Merge. 
Split splits an attribute segment at position pos and creates two 
segments (Fig. 11.15). The segment a to the left of the split position 
is returned. 

  

a
t.Split(pos, a)pos

 

Fig. 11.15  Effects of t.Split(pos, a) 

The inverse operation, t.Merge(a), merges the segment a with its 
successor if both have the same font and do not represent 
elements. 

The most complicated operation of Texts0.Text is Insert. It 
inserts a segment of text t1 into another text t. This requires tempo-
rarily splitting and remerging attribute segments, as shown in Fig. 
11.16. If t and t1 are the same text, a temporary buffer is used. 
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at beg end

Attribute list of t Attribute list of t1

t1.Split(beg, a);
t1.Split(end, b);
t.Split(at, c);
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d
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j
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t1.Merge(b);
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t.Merge(j);
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Fig. 11.16  Effects of t.Insert(at, t1, beg, end) on the attribute list 

For the sake of simplicity, we require that both t1 and t be of 
dynamic type Texts0.Text. Since parameter types cannot be 
changed in overriding methods, t1 is of static type AsciiTexts.Text. 
A with statement (type guard) is necessary in order to treat t1 as a 
Texts0.Text object. 

When a character is read with t.Read(ch), its attributes are 
stored in the field t.attr. As long as the characters belong to the 
same attribute segment, it is not necessary to reestablish t.attr each 
time a character is read. The number of unread characters in the 
current attribute segment is stored in a field t.attrRest. If t.attrRest 
is 0, t.attr must be set to the next attribute segment. 

When a character is written with t.Write(ch), no attributes can 
be set. The font of a written piece of text can be changed with 
t.ChangeFont. 

 

  

Characters that are entered at the end of an attribute segment 
are considered as belonging to this segment. If they are entered 
immediately after an element, however, a new attribute node is 
created (element segments must always have the length 1). 

Elements are inserted with a special procedure WriteElem. This 
creates a new attribute node for them. 

When a text is stored in a file, its attributes must be stored as 
well. For fonts the font name is output; elements are stored with 
the method WriteObj, which outputs the type and value of the 
element, as described in Section 8.3. WriteObj requests elements to 
store themselves, since only they know their internal structure. The 
end of the attribute list on the file is marked by an empty font 
name. 

♥ 

❺ 
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What lessons can be learned from this implementation? In 
AsciiTexts and Texts0, classes were used as a structuring medium. 
They divide text management into two independent tasks: text 
buffer management and attribute management. In line with the 
principle that a component should only handle one task, these two 
responsibilities were assigned to different classes: text buffer 
management to AsciiTexts and attribute management to Texts0. 

AsciiTexts.Text is itself already a useful component. For simple 
texts in which fonts are not needed, this component suffices. At the 
same time it is a semifinished product that can be extended to a 
finished product as needed. 

We have taken care to make texts extensible. The abstract class 
Element serves as a socket into which arbitrary element extensions 
can be plugged and used with Text. The Oberon System also has a 
text editor with extensible elements (Write [Szy92]); it has proven 
very useful and flexible. An example of an element extension is 
given in Section 11.5. 

Structuring 

Semifinished 
products 

Extensibility 

11.3.3 Editing Text (TextFrames0) 

Now we have texts with various fonts, but we can neither display 
them on the screen nor edit them. We are still missing the view 
and controller components from the MVC concept. As in Fig. 11.7, 
we implement them in the class TextFrames0.Frame, which is 
derived from Viewers0.Frame. 

A text frame is a rectangular area of the screen that handles 
the following tasks: 

Responsibilities of 
text frames 

 
(1) Display text. The text as a continuous stream of characters is 

cast in lines and displayed on the screen. Each character is 
represented by a rectangular pixel matrix. The characters are 
arranged in a line according to their widths; when an end-of-
line character appears, a new line is started. If a line is wider 
than the frame, only as many characters are displayed as fit 
(Fig. 11.17). 

Display text 
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Fig. 11.17  Casting a text in a text frame 

(2) Process keyboard input. Characters typed at the keyboard are 
inserted at the caret position, and the rest of the line is shifted 
right (Fig. 11.18). 

Process keyboard 
input 

The text The text
as a cotinuous as a continuou

 

Fig. 11.18  Before and after typing the character n 

(3) Process mouse clicks. If one of the three mouse buttons is 
pressed (ML = left, MM = middle, MR = right), the frame 
reacts according to Table 11.19, depending on whether the 
mouse pointer is in the text area or in the scroll bar of the 
frame. 

Process mouse 
clicks 

Mouse 
button 
 
ML 
MM 
MR

In text area 
 
 
Set caret 
Execute command 
Select 
+ ML = delete 
+ MM = copy to caret

In scroll bar 
 
 
Scroll forward 
Scroll absolutely 
Scroll to beginning 
of text

 

Table 11.19 Meaning of mouse clicks in a text frame 

 An MM-click causes the word clicked on to be interpreted as a 
command (in the form Module.Procedure) and executed. If 
the mouse is moved while the right button is pressed, all 
characters passed are selected and displayed inversely. 

In forward scrolling, the text line at the height of the 
mouse click becomes the first line of the frame. In absolute 
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scrolling, the vertical position of the mouse pointer in the 
scroll bar determines the text position from which the text is 
displayed in the frame. A click on the vertical center of the 
scroll bar causes the middle part of the text to appear at the 
top of the frame. 

 
We implement text frames as a class Frame in a module 
TextFrames0 with the following interface: 
 
DEFINITION TextFrames0; Interface of 

TextFrames0 
IMPORT OS, Viewers0, Texts0; 
 
TYPE 
 Position = RECORD  (*position of a character ch on the screen*) 
  x-, y-: INTEGER; (*left point on base line*) 
  dx-: INTEGER;  (*width of ch*) 
  org-: LONGINT;  (*origin of line containing ch*) 
  pos-: LONGINT  (*text position of ch*) 
 END; 
 
 Frame = POINTER TO FrameDesc; Frame 
 FrameDesc = RECORD (Viewers0.FrameDesc) 
  text: Texts0.Text;     (*text displayed in this frame*) 
  org-: LONGINT;     (*origin: text pos. of first char. in frame*) 
  caret-: Position;     (*caret.pos < 0: no caret visible*) 
  selBeg-, selEnd-: Position;  (*selBeg.pos < 0: no selection visible*) 
  PROCEDURE (f: Frame) Draw; 
  PROCEDURE (f: Frame) Defocus; 
  PROCEDURE (f: Frame) Neutralize; 
  PROCEDURE (f: Frame) Modify (dy: INTEGER); 
  PROCEDURE (f: Frame) HandleKey (ch: CHAR); 
  PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET); 
  PROCEDURE (f: Frame) Handle (VAR m: OS.Message); 
  PROCEDURE (f: Frame) SetCaret (pos: LONGINT); 
  PROCEDURE (f: Frame) RemoveCaret; 
  PROCEDURE (f: Frame) SetSelection (from, to: LONGINT); 
  PROCEDURE (f: Frame) RemoveSelection; 
  PROCEDURE (f: Frame) Copy (): Viewers0.Frame; 
 END; 
 
VAR 
 cmdFrame-: Frame; (*frame containing most recent command*) 
 cmdPos-: LONGINT; (*text position after most recent command*) 
 
PROCEDURE New (t: Texts0.Text): Frame; 
PROCEDURE NewMenu (name, commands: ARRAY OF CHAR): Frame; 
PROCEDURE GetSelection (VAR f: Frame); 
 
END TextFrames0. 
 
The type Position describes the location of a character ch on the 
screen. It also serves to store the position of the caret and the 

Position 
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selection. The fields x and y designate the position of ch in screen 
coordinates; dx is the width of ch (Figs. 11.20 and 11.22). 

Base line

ch

(x, y) dx

Predecessor 
of ch

Successor 
of ch

 

Fig. 11.20  Meaning of fields x, y and dx of type Position 

The field pos gives the text position of ch; org specifies the origin of 
the line, i.e., the text position of the first character of the line 
containing ch. 

The most important type in TextFrames0 is the class Frame. Its 
interface is partially inherited from Viewers0.Frame, but some text-
specific messages are added. 

Messages to text 
frames 

 
f.Draw 
 recasts the entire text of f. 
f.Defocus 
 removes the caret by sending f.RemoveCaret. The focus is taken 

away from f. 
f.Neutralize 
 removes all marks in the frame (selection and caret) by sen-

ding f.RemoveSelection and f.RemoveCaret. 
f.Modify(dy) 
 shifts the lower border of f by dy and recasts any text that 

becomes visible. 
f.HandleKey(ch) 
 inserts ch at the caret position. 
f.HandleMouse(x, y, b) 
 reacts to a mouse click at the position (x, y) relative to the 

lower left corner of the screen. b is the set of pressed mouse 
buttons. 

f.Handle(m) 
 reacts to a notify message m sent when a text was modified 

(see Section 8.7). 
f.SetCaret(pos) 
 sets the caret to position pos. 
f.RemoveCaret 
 removes the caret. 
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f.SetSelection(a, b) 
 sets the selection in the interval [a..b[. 
f.RemoveSelection 
 removes the selection. 
f1 := f.Copy() 
 returns a copy of f. 
 
The procedure New creates a new text frame. NewMenu creates a 
new menu frame (also a text frame) that contains a viewer name 
and a list of commands. GetSelection searches all visible text frames 
for the latest selection and returns the frame that contains it, or 
NIL if no selection is visible. For this purpose each text frame must 
store a (nonexported) time stamp that tells when the last selection 
was made in this frame. 

Before turning to the implementation of TextFrames0, which is 
by nature rather complex, let us examine some of the data 
structures more closely. 

The area of a text frame is divided into a text area and a scroll 
bar. The text area has a margin in which no text is displayed 
(Fig.11.21). 

Frame metrics 

Text areaScroll bar

f.w

f.h

(f.x, f.y)

margin

 

Fig. 11.21  Frame layout 

Each character has a pixel pattern pat that is displayed on the 
screen in a box of width dx and height asc+dsc (Fig. 11.22). The cha-
racter metrics (x, y, w, h, dx, asc, dsc) are taken from the respective 
font. For an element e (e.g., a picture) this box is determined by the 
element's width e.w, its height e.h, and its distance e.dsc from the 
base line (see Fig. 11.14). 

Character metrics 
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pat
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h
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Base line

 

Fig. 11.22  Character metrics 

The boxes of succeeding characters are strung together and form a 
line of text. Before a line is displayed on the screen, its metrics 
must be computed, i.e., its length in characters (len) and pixels 
(wid) as well as its height (asc+dsc), which is the maximum height 
of the individual characters or elements (Fig. 11.23). 

Line metrics 

wid

asc

dsc
Base line

len = 13

 

Fig. 11.23  Line metrics 

The metrics of each line are stored in a line descriptor of the 
following form: 

Line descriptors 

 
TYPE 
 Line = POINTER TO LineDesc; 
 LineDesc = RECORD 
  len, wid: INTEGER;    (*length, width*) 
  asc, dsc: INTEGER;   (*ascender, descender*) 
  eol: BOOLEAN;     (*TRUE if line is terminated with EOL*) 
  next: Line 
 END; 
 

The descriptors of the lines that are visible on the screen are linked 
in a circular list (Fig. 11.24). Note that a line descriptor does not 
contain the text of a line, but only its dimensions. The text is read 
anew as needed. 
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XXXXXXX

XXX

XXXXXX

Line descriptors Text frame

Dummy descriptor
to simplify list
handling

 

Fig. 11.24  List of line descriptors for a text frame 

The reader should now be able to understand the source code of 
TextFrames0. Keep pencil and paper ready, however, for some 
sketches may help comprehension. 

 
MODULE TextFrames0; Implementation of 

TextFrames0 
IMPORT OS, Viewers0, Texts0; 
 
CONST 
 EOL = 0DX; DEL = 7FX;   (*end of line character; delete character*) 
 scrollW = 12;         (*width of scroll bar*) 
  
TYPE 
 Line = POINTER TO LineDesc; Line descriptor 
 LineDesc = RECORD 
  len, wid, asc, dsc: INTEGER; (*length, width, ascender, descender*) 
  eol: BOOLEAN;       (*TRUE if line is terminated with EOL*) 
  next: Line 
 END; 
 Position* = RECORD      (*position of a character c on the screen*) Screen position 
  x-, y-, dx-: INTEGER;     (*(x,y) = left point on base line; dx = width of c*) 
  org-, pos-: LONGINT;    (*origin of line containing c; text position of c*) 
  L: Line         (*line containing c*) 
 END; 
 Frame* = POINTER TO FrameDesc; Frame 
 FrameDesc* = RECORD (Viewers0.FrameDesc) 
  text*: Texts0.Text; 
  org-: LONGINT;       (*index of first character in the frame*) 
  caret-: Position;      (*caret; visible if caret.pos >= 0*) 
  selBeg-, selEnd-: Position; (*selection; visible if selBeg.pos >= 0*) 
  selTime: LONGINT;      (*time stamp of selection*) 
  lsp: INTEGER;       (*space between lines*) 
  margin: INTEGER;      (*space between frame border and text*) 
  lines: Line          (*list of lines in frame (first line in dummy)*) 
 END; 
 SelectionMsg = RECORD (OS.Message) f: Frame END; 
 
VAR 
 cmdFrame-: Frame;     (*frame containing the most recent command*) 
 cmdPos-: LONGINT;     (*text position after the most recent command*) 
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PROCEDURE GetMetric (at: Texts0.Attribute; ch: CHAR; Auxiliary 
procedures 

  VAR dx, x, y, asc, dsc: INTEGER; VAR pat: OS.Pattern); 
 VAR w, h: INTEGER; 
BEGIN 
 IF at.elem = NIL THEN 
  OS.GetCharMetric(at.fnt, ch, dx, x, y, w, h, pat); 
  asc := at.fnt.maxY; dsc := - at.fnt.minY 
 ELSE 
  dx := at.elem.w; x := 0; y := 0; dsc := at.elem.dsc; asc := at.elem.h - dsc 
 END 
END GetMetric; 
 
PROCEDURE MeasureLine (t: Texts0.Text; VAR L: Line); see ♣ 
 VAR ch: CHAR; dx, x, y, asc, dsc: INTEGER; pat: OS.Pattern; 
BEGIN 
 L.len := 0; L.wid := 0; L.asc := 0; L.dsc := 0; ch := " "; 
 WHILE (ch # EOL) & (t.pos < t.len) DO 
  t.Read(ch); INC(L.len); 
  GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat); 
  INC(L.wid, dx); 
  IF asc > L.asc THEN L.asc := asc END; 
  IF dsc > L.dsc THEN L.dsc := dsc END 
 END;  
 L.eol := ch = EOL 
END MeasureLine; 
 
PROCEDURE DrawLine (t: Texts0.Text; len, left, right, base: INTEGER); see   
 VAR ch: CHAR; dx, x, y, w, h: INTEGER; pat: OS.Pattern; 
BEGIN 
 WHILE len > 0 DO t.Read(ch); DEC(len); 
  IF t.attr.elem = NIL THEN 
   OS.GetCharMetric(t.attr.fnt, ch, dx, x, y, w, h, pat); 
   IF left + dx < right THEN OS.DrawPattern(pat, left + x, base + y) END 
  ELSE dx := t.attr.elem.w; 
   IF left + dx < right THEN t.attr.elem.Draw(left, base) END 
  END; 
  INC(left, dx) 
 END 
END DrawLine; 
PROCEDURE (f: Frame) FlipCaret; Frame methods 
BEGIN  
 OS.DrawPattern(OS.Caret, f.caret.x, f.caret.y - 10) 
END FlipCaret; 
PROCEDURE (f: Frame) FlipSelection (a, b: Position); 
 VAR x, y: INTEGER; L: Line; 
BEGIN 
 L := a.L; x := a.x; y := a.y - L.dsc;  
 WHILE L # b.L DO 
  OS.InvertBlock(x, y, f.x + f.w - x, L.asc + L.dsc); 
  L := L.next; x := f.x + scrollW + f.margin; y := y - f.lsp - L.asc - L.dsc 
 END; 
 OS.InvertBlock(x, y, b.x - x, L.asc + L.dsc) 
END FlipSelection; 
 
PROCEDURE (f: Frame) RedrawFrom (top: INTEGER); see ➆ 
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 VAR t: Texts0.Text; L, L0: Line; y: INTEGER; org: LONGINT; 
BEGIN 
 (*----- find first line to be redrawn*) 
 y := f.y + f.h - f.margin; org := f.org; L0 := f.lines; L := L0.next; 
 WHILE (L # f.lines) & (y - L.asc - L.dsc >= top) DO 
  DEC(y, L.asc + L.dsc + f.lsp); org := org + L.len; L0 := L; L := L.next 
 END; 
 IF y > top THEN top := y END; 
 OS.FadeCursor; OS.EraseBlock(f.x, f.y, f.w, top - f.y); 
 IF f.margin > 0 THEN (*draw scroll bar*) 
  OS.InvertBlock(f.x + scrollW, f.y, 1, top - f.y) 
 END; 
 (*----- redraw lines and rebuild line descriptors; L0 is last valid line descriptor*) 
 t := f.text; 
 LOOP NEW(L); 
  t.SetPos(org); MeasureLine(t, L); 
  IF (L.len = 0) OR (y - L.asc - L.dsc < f.y + f.margin) THEN EXIT END; 
  t.SetPos(org); 
  DrawLine(t, L.len, f.x + scrollW + f.margin, f.x + f.w - f.margin, y - L.asc); 
  org := org + L.len; 
  DEC(y, L.asc + L.dsc + f.lsp); L0.next := L; L0 := L; 
  IF t.pos >= t.len THEN EXIT END 
 END; 
 L0.next := f.lines 
END RedrawFrom; 
 
PROCEDURE (f: Frame) GetPointPos (x0, y0: INTEGER; VAR p: Position); see ➘ 
 VAR t: Texts0.Text; ch: CHAR; L: Line; dx, x, y, asc, dsc: INTEGER; 
  pat: OS.Pattern; 
BEGIN 
 (*----- find line containing y0*) 
 L := f.lines.next; p.y := f.y + f.h - f.margin; p.org := f.org; 
 WHILE (L # f.lines) & (y0 < p.y - L.asc - L.dsc - f.lsp) & L.eol DO 
  DEC(p.y, L.asc + L.dsc + f.lsp); p.org := p.org + L.len; L := L.next 
 END; 
 DEC(p.y, L.asc); 
 (*----- find character containing x0*) 
 p.x := f.x + scrollW + f.margin; p.L := L; p.pos := p.org; 
 t := f.text; t.SetPos(p.pos); 
 LOOP 
  IF p.pos >= t.len THEN p.dx := 0; EXIT END; 
  t.Read(ch); GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat); 
  IF (ch = EOL) OR (p.x + dx > x0) THEN p.dx := dx; EXIT 
  ELSE INC(p.pos); INC(p.x, dx) 
  END; 
 END 
END GetPointPos; 
 
PROCEDURE (f: Frame) GetCharPos (pos: LONGINT; VAR p: Position); see   
 VAR t: Texts0.Text; ch: CHAR; L: Line; dx, x, y, asc, dsc: INTEGER; 
  pat: OS.Pattern; i: LONGINT; 
BEGIN 
 (*----- find line containing pos*) 
 L := f.lines.next; p.y := f.y + f.h - f.margin; p.org := f.org; p.pos := pos; 
 WHILE (L # f.lines) & (pos >= p.org + L.len) & L.eol DO 
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  p.org := p.org + L.len; DEC(p.y, L.asc + L.dsc + f.lsp); L := L.next 
 END; 
 DEC(p.y, L.asc); p.L := L; 
 (*----- find character at pos*) 
 p.x := f.x + scrollW + f.margin; t := f.text; t.SetPos(p.org); 
 FOR i := 1 TO p.pos - p.org DO 
  t.Read(ch); GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat); 
  INC(p.x, dx) 
 END; 
 IF t.pos >= t.len THEN p.dx := 0 
 ELSE t.Read(ch); GetMetric(t.attr, ch, p.dx, x, y, asc, dsc, pat) 
 END 
END GetCharPos; 
 
PROCEDURE (f: Frame) CallCommand; see ⑥ 
 VAR x, y, i: INTEGER; buttons: SET; p: Position; t: Texts0.Text; 
  ch: CHAR; cmd: ARRAY 64 OF CHAR; 
BEGIN 
 REPEAT OS.GetMouse(buttons, x, y) UNTIL buttons = {}; 
 f.GetPointPos(x, y, p); t := f.text; t.SetPos(p.org); t.Read(ch); 
 REPEAT 
  WHILE (t.pos < t.len) & (ch # EOL) & ((CAP(ch) < "A") OR (CAP(ch) > "Z")) 
DO 
   t.Read(ch) 
  END; 
  i := 0; 
  WHILE (CAP(ch) >= "A") & (CAP(ch) <= "Z") OR (ch >= "0") & (ch <= "9") 
  OR (ch = ".") DO 
   cmd[i] := ch; INC(i); t.Read(ch) 
  END; 
  cmd[i] := 0X; 
 UNTIL (t.pos >= t.len) OR (ch = EOL) OR (t.pos > p.pos); 
 cmdFrame := f; cmdPos := t.pos; OS.Call(cmd) 
END CallCommand; 
 
PROCEDURE (f: Frame) RemoveCaret*; 
BEGIN 
 IF f.caret.pos >= 0 THEN f.FlipCaret; f.caret.pos := -1 END 
END RemoveCaret; 
 
PROCEDURE (f: Frame) SetCaret* (pos: LONGINT); 
 VAR p: Position; 
BEGIN 
 IF pos < 0 THEN pos := 0 ELSIF pos > f.text.len THEN pos := f.text.len END; 
 f.SetFocus; f.GetCharPos(pos, p); 
 IF p.x < f.x + f.w - f.margin THEN f.caret := p; f.FlipCaret END 
END SetCaret; 
 
PROCEDURE (f: Frame) RemoveSelection*; 
BEGIN 
 IF f.selBeg.pos >= 0 THEN 
  f.FlipSelection(f.selBeg, f.selEnd); f.selBeg.pos := -1 
 END 
END RemoveSelection; 
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PROCEDURE (f: Frame) SetSelection* (from, to: LONGINT); 
BEGIN 
 f.RemoveSelection; 
 f.GetCharPos(from, f.selBeg); f.GetCharPos(to, f.selEnd);  
 f.FlipSelection(f.selBeg, f.selEnd); f.selTime := OS.Time() 
END SetSelection; 
 
PROCEDURE (f: Frame) Defocus*; 
BEGIN f.RemoveCaret; f.Defocus^ 
END Defocus; 
 
PROCEDURE (f: Frame) Neutralize*; 
BEGIN f.RemoveCaret; f.RemoveSelection 
END Neutralize; 
 
PROCEDURE (f: Frame) Draw*; 
BEGIN f.RedrawFrom(f.y + f.h) 
END Draw; 
 
PROCEDURE (f: Frame) Modify* (dy: INTEGER); 
 VAR y: INTEGER; 
BEGIN 
 y := f.y; f.Modify^ (dy); 
 IF y > f.y THEN f.RedrawFrom(y) ELSE f.RedrawFrom(f.y) END 
END Modify; 
 
PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET); see   
 VAR p: Position; b: SET; t: Texts0.Text; ch: CHAR; f1: Frame; 
BEGIN 
 f.HandleMouse^ (x, y, buttons); 
 t := f.text; 
 IF (x < f.x + scrollW) & (buttons # {}) THEN (*----- handle click in scroll bar*) 
  REPEAT OS.GetMouse(b, x, y); buttons := buttons + b UNTIL b = {}; 
  f.Neutralize; 
  IF OS.left IN buttons THEN f.GetPointPos(x, y, p); f.org := p.org 
  ELSIF OS.right IN buttons THEN f.org := 0 
  ELSIF OS.middle IN buttons THEN 
   t.SetPos((f.y + f.h - y) * f.text.len DIV f.h); 
   REPEAT t.Read(ch) UNTIL (ch = EOL) OR (t.pos >= t.len); 
   f.org := t.pos 
  END; 
  f.RedrawFrom(f.y + f.h) 
 ELSE (*----- handle click in text area*) 
  f.GetPointPos(x, y, p); 
  IF OS.left IN buttons THEN 
   IF p.pos # f.caret.pos THEN f.SetCaret(p.pos) END 
  ELSIF OS.middle IN buttons THEN 
   t.SetPos(p.pos); t.Read(ch); 
   IF t.attr.elem = NIL THEN f.CallCommand 
   ELSE t.attr.elem.HandleMouse(f, x, y) 
   END 
  ELSIF OS.right IN buttons THEN 
   f.RemoveSelection; 
   f.selBeg := p; f.selEnd := p; f.selTime := OS.Time(); 
   LOOP 
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    OS.GetMouse(b, x, y); buttons := buttons + b; 
    IF b = {} THEN EXIT END; 
    OS.DrawCursor(x, y); f.GetPointPos(x, y, p); 
    IF p.pos < f.selBeg.pos THEN p := f.selBeg END; 
    IF p.pos < t.len THEN INC(p.pos); INC(p.x, p.dx) END; 
    IF p.pos # f.selEnd.pos THEN 
     IF p.pos > f.selEnd.pos THEN f.FlipSelection(f.selEnd, p) 
     ELSE f.FlipSelection(p, f.selEnd) 
     END; 
     f.selEnd := p 
    END 
   END; 
   (*----- check for right-left or right-middle click*) 
   IF OS.left IN buttons THEN 
    t.Delete(f.selBeg.pos, f.selEnd.pos) 
   ELSIF (OS.middle IN buttons) 
   & (Viewers0.focus # NIL) & (Viewers0.focus IS Frame) THEN  
    f1 := Viewers0.focus(Frame); 
    IF f1.caret.pos >= 0 THEN 
     f1.text.Insert(f1.caret.pos, t, f.selBeg.pos, f.selEnd.pos) 
    END 
   END 
  END 
 END 
END HandleMouse; 
 
PROCEDURE (f: Frame) HandleKey* (ch: CHAR); 
 VAR pos: LONGINT; 
BEGIN 
 pos := f.caret.pos; 
 IF pos >= 0 THEN 
  IF ch = DEL THEN 
   IF pos > 0 THEN f.text.Delete(pos - 1, pos); f.SetCaret(pos - 1) END 
  ELSE f.text.SetPos(pos); f.text.Write(ch); f.SetCaret(pos + 1) 
  END 
 END 
END HandleKey; 
 
PROCEDURE (f: Frame) Handle* (VAR m: OS.Message); see   
 VAR t: Texts0.Text; ch: CHAR; VAR dx, x, y, asc, dsc: INTEGER; 
  pat: OS.Pattern; p: Position; 
BEGIN 
 t := f.text; 
 WITH 
  m: Texts0.NotifyInsMsg DO 
   IF m.t = t THEN 
    IF m.beg < f.org THEN f.org := f.org + (m.end - m.beg) 
    ELSE 
     f.Neutralize; OS.FadeCursor; 
     f.GetCharPos(m.beg, p);  
     t.SetPos(m.beg); t.Read(ch); 
     GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat); 
     IF (m.end = m.beg+1) & (ch # EOL) & (p.L # f.lines)  
     & (asc+dsc <= p.L.asc+p.L.dsc) THEN 
      IF p.x + dx <= f.x + f.w - f.margin THEN 
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       OS.CopyBlock(p.x, p.y-p.L.dsc, f.x+f.w-f.margin-dx-p.x,  
        p.L.asc+p.L.dsc, p.x+dx, p.y-p.L.dsc); 
       OS.EraseBlock(p.x, p.y-p.L.dsc, dx, p.L.asc +  p.L.dsc); 
       IF t.attr.elem = NIL THEN  
        OS.DrawPattern(pat, p.x + x, p.y + y) 
       ELSE t.attr.elem.Draw(p.x, p.y) 
       END 
      ELSE 
       OS.EraseBlock(p.x, p.y-p.L.dsc,  
        f.x+f.w-p.x, p.L.asc+p.L.dsc) 
      END; 
      INC(p.L.len); INC(p.L.wid, dx) 
     ELSE f.RedrawFrom(p.y + p.L.asc) 
     END 
    END 
   END 
 | m: Texts0.NotifyDelMsg DO 
   IF m.t = t THEN 
    IF m.end <= f.org THEN f.org := f.org - (m.end - m.beg) 
    ELSE 
     f.Neutralize; 
     IF m.beg < f.org THEN f.org := m.beg; f.RedrawFrom(f.y + f.h) 
     ELSE f.GetCharPos(m.beg, p); f.RedrawFrom(p.y + p.L.asc) 
     END 
    END 
   END 
 | m: Texts0.NotifyReplMsg DO 
   IF (m.t = t) & (m.end > f.org) THEN 
    f.Neutralize; 
    IF m.beg < f.org THEN m.beg := f.org END; 
    f.GetCharPos(m.beg, p); f.RedrawFrom(p.y + p.L.asc) 
   END 
 | m: SelectionMsg DO 
   IF (f.selBeg.pos >= 0) & ((m.f = NIL)  
   OR (m.f.selTime < f.selTime)) THEN  
    m.f := f 
   END 
 ELSE 
 END 
END Handle; 
PROCEDURE New* (t: Texts0.Text): Frame; 
 VAR f: Frame; fnt: OS.Font; 
BEGIN 
 NEW(f); f.text := t; 
 f.org := 0; f.caret.pos := -1; f.selBeg.pos := -1; f.lsp := 2; f.margin := 5; 
 NEW(f.lines); f.lines.next := f.lines; fnt := OS.DefaultFont(); 
 f.lines.asc := fnt.maxY; f.lines.dsc := - fnt.minY; f.lines.len := 0; 
 RETURN f 
END New; 
 
PROCEDURE NewMenu* (name, menu: ARRAY OF CHAR): Frame; 
 VAR t: Texts0.Text; f: Frame; i: INTEGER; 
BEGIN 
 NEW(t); t.Clear; 
 i := 0; WHILE name[i] # 0X DO t.Write(name[i]); INC(i) END; 
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 t.Write(" "); t.Write("|"); t.Write(" "); 
 i := 0; WHILE menu[i] # 0X DO t.Write(menu[i]); INC(i) END; 
 f := New(t); f.margin := 0; RETURN f 
END NewMenu; 
 
PROCEDURE (f: Frame) Copy* (): Viewers0.Frame; 
 VAR f1: Frame; 
BEGIN f1 := New(f.text); f1.margin := f.margin; RETURN f1 
END Copy; 
 
PROCEDURE GetSelection* (VAR f: Frame); see ❥ 
 VAR m: SelectionMsg; 
BEGIN m.f := NIL; Viewers0.Broadcast(m); f := m.f 
END GetSelection; 
 
END TextFrames0. 
 
MeasureLine reads a line from the current text position to the next 
end of line character and returns a line descriptor as shown in Fig. 
11.23. The metrics of each character are obtained via GetMetric. 

DrawLine reads len characters starting at the current text 
position and displays them on the screen. left is the left margin and 
right the right margin of the frame; characters that extend beyond 
the right margin, are not displayed (clipping). base is the height of 
the base line relative to the bottom of the screen. Elements are 
requested to draw themselves, since the frame does not know how 
to draw them. 

RedrawFrom redraws all lines starting at the vertical position 
top and creates new line descriptors for them. During this process, 
y always points to the top of the line to be drawn, and org is the 
text position of the first character in this line. Before a line is 
drawn, its metrics are computed with MeasureLine. The space 
between two lines is always f.lsp in this implementation. If f is not a 
menu frame (f.margin > 0), a scroll bar is also drawn. 

GetPointPos computes the position p of the character on the 
screen that contains the point (x0, y0) or that is closest to it (see Fig. 
11.20). 

GetCharPos computes the position p of the character at text 
position pos (see Fig. 11.20). 

If the user clicks in the text with the middle mouse button, the 
word at the current position is interpreted as an Oberon command 
and invoked via OS.Call. 

If the mouse is in a text frame, a HandleMouse message is sent 
to the frame. (x, y) is the mouse position and buttons is the set of 
pressed mouse buttons. If a button is pressed in the scroll bar, the 
text is scrolled; if a button is pressed in the text area, then, depen-
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ding on the button pressed, either the caret is set, a piece of text is 
selected, or a command is executed. If an element is clicked on 
with the middle mouse button, then the frame does not respond 
itself, but the click is passed to the element for handling. Thus an 
element that is unknown to the frame can react to the click in its 
own way. When a selection is made, a unique time stamp is stored 
with the selection. 

Most messages to text frames are implemented as methods 
because their receiver is known. For some messages, however, 
(e.g., notify messages) the receiver is unknown to the sender. Thus 
they must be broadcast to all possible receivers, whereby each 
receiver must determine whether the message is intended for it. 
Such messages are not implemented as methods, but as message 
records, and Handle is the corresponding message handler. 

  

Each time a text is modified, a notify message is broadcast to 
all frames on the screen. Those frames that show the modified text 
respond by making the modification visible on the screen 
(compare Fig. 8.18). 

NotifyInsMsg means that some characters were inserted in the 
text. The message is handled by the frame f if the frame's own text 
f.text is the modified text m.t. In our implementation only the 
insertion of single characters was optimized. In all other cases the 
entire frame contents after the inserted text are redrawn. 

NotifyDelMsg means that something was deleted in the text. 
NotifyReplMsg means that something was modified (e.g., the font) 
without changing the length of the text. To keep the implemen-
tation simple NotifyDelMsg and NotifyReplMsg cause the complete 
frame contents to be redrawn starting at the point of the modifi-
cation. In the Oberon System these operations were optimized to 
redraw as little as possible of the frame contents. This is compli-
cated, however, and was omitted in Oberon0. 

Finally, Handle interprets SelectionMsg (see below): If the 
selection of f is newer than that of m.f, m.f is replaced by f. 

GetSelection determines the latest selection in all visible text 
frames. For this purpose, a message record of type SelectionMsg is 
broadcast to all frames. Text frames respond by entering 
themselves in this record if they contain a selection that is newer 
than the latest selection so far. At the end of the broadcast the 
message record contains the frame with the latest selection. 

➦ 

 
From an object-oriented point of view, three things are particularly 
interesting about TextFrames0: 

What can be 
learned? 
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(1) Genericity 
 A text frame can be installed into a viewer and is handled 

correctly by it although viewers do not know text frames. 
Viewers work with abstract frames, of which a text frame is 
just one possible variant. 

 
(2) MVC concept 
 A text frame is the view and controller component of a text 

editor. Modifications to the text cause a notify message to be 
sent to all frames. The implementation of the message inter-
preter Handle shows how text frames react to it. The broadcast 
of a message to multiple receivers is the major application of 
message records. 

 
(3) Arbitrary elements in texts 
 Text frames must display and manipulate elements. Since they 

do not know what kinds of elements exist, they work with 
variables of the abstract class Element that may contain any 
kind of elements at run time. 

11.3.4 Main Module of Text Editor (Edit0) 

What we still need is a main module that creates a text frame and 
installs it into a viewer, and that provides various other commands 
to the user. We call this module Edit0; it provides the following 
three commands: 
Edit0.Open  f 
 Opens a viewer with a text frame and displays the text file f in 

it. 
Edit0.Store 
 This command is invoked from the menu of a viewer v. The 

contents of the text frame in v are stored in a file whose name 
is the name of the viewer v. (The name of a viewer is 
displayed at the beginning of the associated menu frame.) 

Edit0.ChangeFont   n 
 Changes the font of the last text selection to the font with the 

name n. 
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To read the command arguments, Edit0 uses an object of type 
IO.Scanner. The module IO is an input/output module that is 
described in Appendix C. 

 
MODULE Edit0; Implementation of 

Edit0 
IMPORT OS, IO, TextFrames0, Texts0, Viewers0; 
 
PROCEDURE Open*; 
 VAR s: IO.Scanner; t: Texts0.Text; menu, cont: TextFrames0.Frame; 
  v: Viewers0.Viewer; f: OS.File; r: OS.Rider; 
BEGIN 
 s.SetToParameters; s.Read; 
 IF s.class = IO.name THEN  
  menu := TextFrames0.NewMenu(s.str, 
   "Viewers0.Close  Viewers0.Copy  Edit0.Store"); 
  NEW(t); 
  f := OS.OldFile(s.str); 
  IF f = NIL THEN t.Clear 
  ELSE OS.InitRider(r); r.Set(f, 0); t.Load(r) 
  END; 
  cont := TextFrames0.New(t); 
  v := Viewers0.New(menu, cont) 
 END 
END Open; 
 
PROCEDURE Store*; 
 VAR v: Viewers0.Viewer; s: IO.Scanner; f: OS.File; r: OS.Rider; 
BEGIN 
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y); 
 s.Set(v.menu(TextFrames0.Frame).text, 0); 
 s.Read; (*read viewer name*) 
 IF s.class = IO.name THEN 
  v.Neutralize; 
  f := OS.NewFile(s.str); OS.InitRider(r); r.Set(f, 0); 
  v.cont(TextFrames0.Frame).text.Store(r); 
  OS.Register(f) 
 END 
END Store; 
 
PROCEDURE ChangeFont*; 
 VAR s: IO.Scanner; f: TextFrames0.Frame; 
BEGIN 
 s.SetToParameters; s.Read; 
 TextFrames0.GetSelection(f); 
 IF (f # NIL) & (s.class = IO.name) THEN 
  f.text.ChangeFont(f.selBeg.pos, f.selEnd.pos, OS.FontWithName(s.str)) 
 END 
END ChangeFont; 
 
END Edit0. 
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11.4 A Graphics Editor 

In addition to text viewers, we would like to have viewers in 
which graphics can be edited. It should be possible to draw, move, 
select and delete various figures such as rectangles, lines and 
circles. 

A graphics editor is also an interactive program that is 
structured according to the MVC concept. The model here is a 
graphics of type Shapes0.Graphic, which handles a list of figures of 
type Shapes0.Shape. The view and the controller are combined in 
the class GraphicFrames0.Frame, which can be installed in a viewer 
of type Viewers0.Viewer. The main module is Draw0 (Fig. 11.25). 

Shapes0

Graphic

Shape

Frame

Viewer

GraphicFrames0

Viewers0

Draw0

Modules 
with import relationships

Classes 
with uses relationships

Model

View + Controller

 

Fig. 11.25  Modules and classes of the graphics editor 

Whenever the model is changed by drawing, selecting or deleting 
a figure, all its views must be updated. As with the text editor, this 
is done via notify messages that are sent to all frames by the 
model. 
11.4.1 Figures (Shapes0) 

The module Shapes0 handles drawings (class Graphic) as the data 
model of the editor. Just as a text consists of characters and 
elements, a drawing consists of figures. A drawing should be able 
to contain any figures, including ones that are defined later. Thus 
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Graphic cannot know the kinds of figures, but must work with an 
abstract class Shape. The interface of Shapes0 follows: 

 
DEFINITION Shapes0; interface of 

Shapes0 
IMPORT OS, Viewers0; 
 
TYPE 
 Shape = POINTER TO ShapeDesc; Shape 
 ShapeDesc = RECORD (OS.ObjectDesc) 
  selected: BOOLEAN;  (*TRUE: shape is selected*) 
  PROCEDURE (s: Shape) SetBox (x, y, w, h: INTEGER); 
  PROCEDURE (s: Shape) GetBox (VAR x, y, w, h: INTEGER); 
  PROCEDURE (s: Shape) Draw (f: Viewers0.Frame); 
  PROCEDURE (s: Shape) Move (dx, dy: INTEGER); 
  PROCEDURE (s: Shape) Neutralize; 
  PROCEDURE (s: Shape) SetSelection (x, y, w, h: INTEGER); 
  PROCEDURE (s: Shape) Copy (): Shape; 
 END; 
 
 Graphic = POINTER TO GraphicDesc; Graphic 
 GraphicDesc = RECORD 
  shapes: Shape; 
  PROCEDURE (g: Graphic) Insert (s: Shape); 
  PROCEDURE (g: Graphic) DeleteSelected; 
  PROCEDURE (g: Graphic) MoveSelected (dx, dy: INTEGER); 
  PROCEDURE (g: Graphic) Draw (f: Viewers0.Frame); 
  PROCEDURE (g: Graphic) Neutralize; 
  PROCEDURE (g: Graphic) SetSelection (x, y, w, h: INTEGER); 
  PROCEDURE (g: Graphic) GetBox (VAR x, y, w, h: INTEGER); 
  PROCEDURE (g: Graphic) Copy (): Graphic; 
  PROCEDURE (g: Graphic) Load (VAR r: OS.Rider); 
  PROCEDURE (g: Graphic) Store (VAR r: OS.Rider); 
 END ; 
 
 NotifyChangeMsg = RECORD (OS.Message) g: Graphic END ; 
 
VAR curShape: ARRAY 32 OF CHAR;  (*name of current shape type*) 
 
PROCEDURE InitGraphic (VAR g: Graphic); 
END Shapes0. 
 
s.SetBox(x, y, w, h) Messages to 

figures  computes the position and size of figure s based on its 
enclosing rectangle (x, y, w, h). 
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s.GetBox(x, y, w, h) 
  returns the smallest rectangle (x, y, w, h) that encloses s. 
s.Draw(f) 
 draws s at its current position in frame f. 
s.Move(dx, dy) 
 moves s by the vector (dx, dy). 
s.Neutralize 
 removes any selection from s. 
s.SetSelection(x, y, w, h) 
 selects s if it is totally within the rectangle (x, y, w, h). 
s1 := s.Copy() 
 returns a copy of s. 
 
g.Insert (s) Messages to 

graphics  inserts the figure s in the graphics g. 
g.DeleteSelected 
 deletes all selected figures in g. 
g.MoveSelected (dx, dy) 
 moves all selected figures in g by the vector (dx, dy). 
g.Draw (f) 
 requests all figures in g to draw themselves at their position in 

frame f. 
g.Neutralize 
 deselects all figures in g. 
g.SetSelection (x, y, w, h) 
 selects all figures of the graphics g that are totally within the 

rectangle (x, y, w, h). 
g.GetBox (x, y, w, h) 
 returns the smallest rectangle that encloses all figures in the 

graphics g. 
g1 := g.Copy() 
 returns a copy of g. 
g.Load (r) 
 loads the graphics g from the rider r. 
g.Store (r) 
 stores the graphics g on the rider r. 
 
MODULE Shapes0; Implementation of 

Shapes0 
IMPORT OS, Viewers0; 
 
TYPE 
 Shape* = POINTER TO ShapeDesc; Shape 
 ShapeDesc* = RECORD (OS.ObjectDesc) 
  selected*: BOOLEAN;  (*TRUE: shape is selected*) 
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  next: Shape 
 END; 
  
 Graphic* = POINTER TO GraphicDesc; Graphic 
 GraphicDesc* = RECORD 
  shapes*: Shape 
 END; 
  
 NotifyChangeMsg* = RECORD (OS.Message) g*: Graphic END; 
 
VAR 
 curShape*: ARRAY 32 OF CHAR;  (*name of current shape type*) 
 
PROCEDURE (s: Shape) SetBox* (x, y, w, h: INTEGER); Shape methods 
BEGIN s.selected := FALSE; 
END SetBox; 
 
PROCEDURE (s: Shape) Draw* (f: Viewers0.Frame); 
END Draw; 
 
PROCEDURE (s: Shape) Move* (dx, dy: INTEGER); 
END Move; 
 
PROCEDURE (s: Shape) SetSelection* (x, y, w, h: INTEGER); 
END SetSelection; 
 
PROCEDURE (s: Shape) Neutralize*; 
BEGIN s.selected := FALSE 
END Neutralize; 
 
PROCEDURE (s: Shape) GetBox* (VAR x, y, w, h: INTEGER); 
END GetBox; 
 
PROCEDURE (s: Shape) Copy* (): Shape; 
END Copy; 
 
PROCEDURE InitGraphic* (VAR g: Graphic); Graphic methods 
BEGIN g.shapes := NIL 
END InitGraphic; 
 
PROCEDURE (g: Graphic) Insert* (s: Shape); 
 VAR msg: NotifyChangeMsg; 
BEGIN 
 s.next := g.shapes; g.shapes := s; msg.g := g; Viewers0.Broadcast(msg) 
END Insert; 
 
PROCEDURE (g: Graphic) DeleteSelected*; 
 VAR s, s0: Shape; msg: NotifyChangeMsg; 
BEGIN 
 s := g.shapes; s0 := NIL; 
 WHILE s # NIL DO 
  IF s.selected THEN 
   IF s0 = NIL THEN g.shapes := s.next ELSE s0.next := s.next END 
  ELSE s0 := s 
  END; 
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  s := s.next 
 END; 
 msg.g := g; Viewers0.Broadcast(msg) 
END DeleteSelected; 
 
PROCEDURE (g: Graphic) MoveSelected* (dx, dy: INTEGER); 
 VAR s: Shape; msg: NotifyChangeMsg; 
BEGIN 
 s := g.shapes; 
 WHILE s # NIL DO 
  IF s.selected THEN s.Move(dx, dy) END; 
  s := s.next 
 END; 
 msg.g := g; Viewers0.Broadcast(msg) 
END MoveSelected; 
 
PROCEDURE (g: Graphic) Draw* (f: Viewers0.Frame); 
 VAR s: Shape; 
BEGIN 
 s := g.shapes;  WHILE s # NIL DO s.Draw(f); s := s.next END 
END Draw; 
 
PROCEDURE (g: Graphic) Neutralize*; 
 VAR s: Shape; msg: NotifyChangeMsg; changed: BOOLEAN; 
BEGIN 
 s := g.shapes; changed := FALSE; 
 WHILE s # NIL DO 
  changed := changed OR s.selected; s.Neutralize; s := s.next 
 END; 
 IF changed THEN msg.g := g; Viewers0.Broadcast(msg) END 
END Neutralize; 
 
PROCEDURE (g: Graphic) SetSelection* (x, y, w, h: INTEGER); 
 VAR s: Shape; msg: NotifyChangeMsg; 
BEGIN 
 s := g.shapes; 
 WHILE s # NIL DO s.SetSelection(x, y, w, h); s := s.next END; 
 msg.g := g; Viewers0.Broadcast(msg) 
END SetSelection; 
 
PROCEDURE (g: Graphic) GetBox* (VAR x, y, w, h: INTEGER); 
 VAR x0, y0, w0, h0: INTEGER; s: Shape; 
BEGIN 
 x := 0; y := 0; w := 12; h := 12; 
 s := g.shapes; 
 IF s # NIL THEN s.GetBox(x, y, w, h); s := s.next END; 
 WHILE s # NIL DO 
  s.GetBox(x0, y0, w0, h0); 
  IF x0 < x THEN INC(w, x - x0); x := x0 END; 
  IF y0 < y THEN INC(h, y - y0); y := y0 END; 
  IF x0 + w0 > x + w THEN w := x0 + w0 - x END; 
  IF y0 + h0 > y + h THEN h := y0 + h0 - y END; 
  s := s.next 
 END; 
END GetBox; 
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PROCEDURE (g: Graphic) Copy* (): Graphic; 
 VAR s, a, b: Shape; g1: Graphic; 
BEGIN 
 NEW(g1); g1.shapes := NIL; 
 s := g.shapes; 
 WHILE s # NIL DO 
  a := s.Copy(); a.next := NIL; 
  IF g1.shapes = NIL THEN g1.shapes := a ELSE b.next := a END; 
  b := a; s := s.next 
 END; 
 RETURN g1 
END Copy; 
 
PROCEDURE (g: Graphic) Load* (VAR r: OS.Rider); 
 VAR s, last: Shape; x: OS.Object; 
BEGIN 
 last := NIL; 
 REPEAT 
  r.ReadObj(x); 
  IF x = NIL THEN s := NIL ELSE s := x(Shape) END; 
  IF last = NIL THEN g.shapes := s ELSE last.next := s END; 
  last := s 
 UNTIL x = NIL  (*terminated by a NIL shape*) 
END Load; 
 
PROCEDURE (g: Graphic) Store* (VAR r: OS.Rider); 
 VAR s: Shape; 
BEGIN 
 s := g.shapes;  
 WHILE s # NIL DO r.WriteObj(s); s := s.next END; 
 r.WriteObj(NIL) 
END Store; 
 
BEGIN 
 curShape := "" 
END Shapes0. 

11.4.2 Editing Figures (GraphicFrames0) 

A graphics frame displays figures on the screen and reacts to 
mouse clicks by creating, moving, selecting or deleting figures. To 
keep the example small, we do not support resizing of figures. 

The mouse buttons have the following meaning: If the left 
button is pressed while the mouse is dragged, a new figure is 
drawn in the enclosing rectangle. If the mouse is dragged with the 
middle button pressed, the entire drawing in the frame is moved; 
if the middle and the left button are pressed simultaneously 
(interclick), only the selected figures are moved. The right button 
permits selection. When the mouse is moved with the right button 

Meaning of mouse 
buttons 
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pressed, all figures enclosed in the selection rectangle are selected 
(i.e., filled with a color); if the left button is interclicked, the 
selected figures are deleted. 

To allow moving the entire drawing on the screen without 
changing the coordinates of all figures, a graphics frame has a 
coordinate system with the origin (orgX, orgY) relative to the lower 
left corner of the frame (Fig. 11.26). The coordinates of the figures 
are relative to this origin, so that moving the origin moves the 
entire drawing. 

Coordinate 
system 

Figure

orgX
orgY

x

y

 

Fig. 11.26  Graphics frame with origin (orgX, orgY) 

Graphics frames are implemented in module GraphicFrame0, which 
has the following interface: 
 
DEFINITION GraphicFrames0; Interface of 

GraphicFrames0 
IMPORT Viewers0, OS, Shapes0; 
 
TYPE 
 Frame = POINTER TO FrameDesc; 
 FrameDesc = RECORD (Viewers0.FrameDesc) 
  orgX, orgY: INTEGER; 
  graphic: Shapes0.Graphic; 
  PROCEDURE (f: Frame) Draw; 
  PROCEDURE (f: Frame) Neutralize; 
  PROCEDURE (f: Frame) Modify (y: INTEGER); 
  PROCEDURE (f: Frame) Copy (): Viewers0.Frame; 
  PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET); 
  PROCEDURE (f: Frame) Handle (VAR m: OS.Message); 
  PROCEDURE (f: Frame) InvertBlock (x, y, w, h: INTEGER); 
 END ; 
 
PROCEDURE New (graphic: Shapes0.Graphic): Frame; 
END GraphicFrames0. 
 
Most of the interface of Frame is inherited from the base class 
Viewers0.Frame. Only one method is new: 
 
f.InvertBlock(x, y, w, h) 
 inverts the block (x, y, w, h) in frame f. x and y are relative to 

the origin (orgX, orgY). If the block extends beyond the border 
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of the frame, it is clipped. InvertBlock can also be used to draw 
horizontal and vertical lines (w=1 or h=1). 

MODULE GraphicFrames0; Implementation of 
GraphicFrames0 

IMPORT OS, Viewers0, Shapes0; 
 
TYPE 
 Frame* = POINTER TO FrameDesc; Frame 
 FrameDesc* = RECORD (Viewers0.FrameDesc) 
  orgX*, orgY*: INTEGER;    (*origin*) 
  graphic*: Shapes0.Graphic   (*shapes in this frame*) 
 END; 
 
PROCEDURE (f: Frame) InvertBlock* (x, y, w, h: INTEGER); see ♣ 
BEGIN 
 INC(x, f.x + f.orgX); INC(y, f.y + f.orgY); 
 IF x < f.x THEN DEC(w, f.x - x); x := f.x END; 
 IF x + w > f.x + f.w THEN w := f.x + f.w - x END; 
 IF y < f.y THEN DEC(h, f.y - y); y := f.y END; 
 IF y + h > f.y + f.h THEN h := f.y + f.h - y END; 
 IF (w > 0) & (h > 0) THEN OS.InvertBlock(x, y, w, h) END 
END InvertBlock; 
 
PROCEDURE (f: Frame) Draw*; see   
BEGIN 
 OS.FadeCursor; 
 OS.EraseBlock(f.x, f.y, f.w, f.h); 
 f.graphic.Draw(f) 
END Draw; 
 
PROCEDURE (f: Frame) Modify* (y: INTEGER); 
BEGIN f.Modify^ (y); f.Draw 
END Modify; 
 
PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET); see ➆ 
 VAR w, h, dx, dy: INTEGER; obj: OS.Object; s: Shapes0.Shape; 
  changed: BOOLEAN; 
 
  PROCEDURE Track(VAR x, y, w, h, dx, dy: INTEGER; VAR buttons: SET); 
   VAR b: SET; x1, y1: INTEGER; 
  BEGIN 
   REPEAT 
    OS.GetMouse(b, x1, y1); buttons := buttons + b; 
    OS.DrawCursor(x1, y1) 
   UNTIL b = {}; 
   dx := x1 - x; dy := y1 - y; w := ABS(dx); h := ABS(dy); 
   IF x1 < x THEN x := x1 END; 
   IF y1 < y THEN y := y1 END; 
   DEC(x, f.x + f.orgX); DEC(y, f.y + f.orgY) 
  END Track; 
BEGIN changed := FALSE; 
 IF OS.left IN buttons THEN 
  Track(x, y, w, h, dx, dy, buttons); 
  (*----- generate new shape with type curShape*) 
  OS.NameToObj(Shapes0.curShape, obj); 
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  IF obj # NIL THEN 
   s := obj(Shapes0.Shape); s.SetBox(x, y, w, h); f.graphic.Insert(s) 
  END 
 ELSIF OS.middle IN buttons THEN 
  Track(x, y, w, h, dx, dy, buttons); 
  IF OS.left IN buttons THEN (*----- MM+ML click: move selected figures*) 
   f.graphic.MoveSelected(dx, dy) 
  ELSE (*----- MM click: move origin*) 
   INC(f.orgX, dx); INC(f.orgY, dy); f.Draw 
  END 
 ELSIF OS.right IN buttons THEN 
  f.Neutralize; Track(x, y, w, h, dx, dy, buttons); 
  f.graphic.SetSelection(x, y, w, h); 
  IF OS.left IN buttons THEN (*----- MR+ML click: delete selected shapes*) 
   f.graphic.DeleteSelected 
  END 
 END 
END HandleMouse; 
 
PROCEDURE (f: Frame) Handle* (VAR m: OS.Message); see ➘ 
BEGIN 
 WITH m: Shapes0.NotifyChangeMsg DO 
  IF f.graphic = m.g THEN f.Draw END 
 ELSE 
 END 
END Handle; 
 
PROCEDURE (f: Frame) Neutralize*; 
BEGIN 
 f.graphic.Neutralize 
END Neutralize; 
 
PROCEDURE New* (graphic: Shapes0.Graphic): Frame; 
 VAR f: Frame; 
BEGIN 
 NEW(f); f.graphic := graphic; 
 f.orgX := 0; f.orgY := 0; 
 RETURN f 
END New; 
 
PROCEDURE (f: Frame) Copy* (): Viewers0.Frame; 
 VAR f1: Frame; 
BEGIN 
 f1 := New(f.graphic); f1.orgX := f.orgX; f1.orgY := f.orgY; RETURN f1 
END Copy; 
 
END GraphicFrames0. 
 
Graphics frames normally offer a set of drawing primitives. These 
are methods that allow drawing dots, rectangles, etc. into the 
frame. Their arguments are in coordinates relative to the origin 
(orgX, orgY) and are transformed to screen coordinates. In this 
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example there is only one drawing primitive, InvertBlock, which 
also handles clipping. 

Draw redraws the entire frame contents. To keep the imple-
mentation simple, this occurs with each modification in the frame. 
In practice this would not be acceptable; provisions would have to 
be made to assure that only those parts of the frame are redrawn 
that actually changed. 

  

HandleMouse interprets mouse clicks as described above. Track 
computes the start and end points of a mouse movement while a 
button is pressed. The coordinates of these points are transformed 
to coordinates  relative to the origin of the frame (orgX, orgY). 

  

It is interesting to see how figures are entered by the user. 
When the user moves the mouse while pressing the left button, the 
frame must react by creating a new figure and displaying it. But 
which figure is to be drawn? A rectangle? A circle? The frame is 
not aware of rectangles or circles, but only of abstract figures. It 
must revert to a trick: It creates a figure of the type whose name is 
currently stored in the global variable Shapes0.curShape. The 
procedure OS.NameToObj is used to create from a type name an 
object of that type. Any new module that wants its own figures to 
be drawn simply installs the name of the respective figure class in 
curShape (see Section 11.4.4). This makes the editor create figures 
that it does not know at all. 

In systems that do not offer this possibility, curShape can be 
implemented as a variable of type Shape, which at any time 
contains an object of the current figure type. When the editor has 
to draw a figure, it copies this object and draws the copy. 

Handle is the message handler for graphics frames. It handles 
NotifyChange messages that are sent to all frames when a figure is 
modified. 

 

11.4.3 Main Module of Graphics Editor (Draw0) 

Draw0 provides two commands: 
 
Draw0.Open  f 
 Opens a viewer with a graphics frame and displays in it the 

contents of file f. 
Draw0.Store 



 11.4 A Graphics Editor 209 

 This command is invoked from the menu of a viewer v. The 
contents of the graphics frame in v are stored in a file whose 
name is the name of the viewer v. 
 

MODULE Draw0; Implementation of 
Draw0 

IMPORT OS, IO, Texts0, TextFrames0, Shapes0, GraphicFrames0, Viewers0; 
 
PROCEDURE Open*; 
 VAR s: IO.Scanner; v: Viewers0.Viewer; 
  menu: TextFrames0.Frame; cont: GraphicFrames0.Frame; 
  file: OS.File; r: OS.Rider; g: Shapes0.Graphic; 
BEGIN 
 s.SetToParameters; s.Read; 
 IF s.class = IO.name THEN 
  menu := TextFrames0.NewMenu 
   (s.str, "Viewers0.Close  Viewers0.Copy  Draw0.Store"); 
  NEW(g); Shapes0.InitGraphic(g); file := OS.OldFile(s.str); 
  IF file # NIL THEN OS.InitRider(r); r.Set(file, 0); g.Load(r) END; 
  cont := GraphicFrames0.New(g);  
  v := Viewers0.New(menu, cont) 
 END 
END Open; 
 
PROCEDURE Store*; 
 VAR v: Viewers0.Viewer; s: IO.Scanner; file: OS.File; r: OS.Rider; 
BEGIN 
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y); 
 s.Set(v.menu(TextFrames0.Frame).text, 0); s.Read; 
 IF s.class = IO.name THEN 
  file := OS.NewFile(s.str); OS.InitRider(r); r.Set(file, 0); 
  v.cont(GraphicFrames0.Frame).graphic.Store(r); 
  OS.Register(file) 
 END 
END Store; 
 
END Draw0. 

11.4.4 Rectangles as Special Figures 
(Rectangles0) 

The graphics editor developed so far can only work with abstract 
figures. It can be extended, however, by deriving concrete figure 
classes for rectangles, circles and lines from the abstract figure 
class Shape. Each concrete figure class is implemented in a separate 
module that can be added to the existing editor (Fig. 11.27). 
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GraphicFrames0

Shapes0

Rectangles0 Circles0 Lines0

 

Fig. 11.27  Module hierarchy with figure extensions 

The Oberon System even permits adding modules like Rectangles0 
at run time while the editor is already loaded. This allows a user to 
dynamically adapt the functionality of the editor as needed. 

As an example of a figure extension, we look at the module 
Rectangles0, in which rectangles are implemented. Its interface is: 

 
DEFINITION Rectangles0; Interface of 

Rectangles0 
IMPORT Shapes0; 
TYPE 
 Rectangle = POINTER TO RectDesc; 
 RectDesc = RECORD (Shapes0.ShapeDesc) END; 
PROCEDURE Set; 
END Rectangles0. 

 
The class Rectangle has the same interface as Shapes0.Shape. In the 
implementation of Rectangle, however, the abstract methods are 
overridden. The command Rectangles0.Set makes the editor draw a 
rectangle when it tries to create a new figure. 

 
MODULE Rectangles0; Implementation of 

Rectangles0 
IMPORT OS, Viewers0, Shapes0, GraphicFrames0; 
 
TYPE 
 Rectangle* = POINTER TO RectDesc; Rectangle 
 RectDesc* = RECORD (Shapes0.ShapeDesc) 
  x, y, w, h: INTEGER 
 END; 
 
PROCEDURE (r: Rectangle) SetBox* (x, y, w, h: INTEGER); 
BEGIN 
 r.SetBox^ (x, y, w, h); 
 r.x := x; r.y := y; r.w := w; r.h := h 
END SetBox; 
 
PROCEDURE (r: Rectangle) Draw* (f: Viewers0.Frame); 
BEGIN 
 WITH f: GraphicFrames0.Frame DO 
  IF r.selected THEN 
   f.InvertBlock(r.x, r.y, r.w, r.h) 
  ELSE 
   f.InvertBlock(r.x, r.y, r.w, 1); 
   f.InvertBlock(r.x, r.y + r.h - 1, r.w, 1); 
   f.InvertBlock(r.x, r.y + 1, 1, r.h - 2); 
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   f.InvertBlock(r.x + r.w - 1, r.y + 1, 1, r.h - 2) 
  END 
 END 
END Draw; 
 
PROCEDURE (r: Rectangle) Move* (dx, dy: INTEGER); 
BEGIN 
 INC(r.x, dx); INC(r.y, dy) 
END Move; 
PROCEDURE (r: Rectangle) SetSelection* (x, y, w, h: INTEGER); 
BEGIN 
 r.selected := (r.x >= x) & (r.x+r.w <= x+w) & (r.y >= y) & (r.y+r.h <= y+h) 
END SetSelection; 
 
PROCEDURE (r: Rectangle) GetBox* (VAR x, y, w, h: INTEGER); 
BEGIN x := r.x; y := r.y; w := r.w; h := r.h 
END GetBox; 
 
PROCEDURE (r: Rectangle) Copy* (): Shapes0.Shape; 
 VAR r1: Rectangle; 
BEGIN 
 NEW(r1); 
 r1.selected := r.selected; r1.x := r.x; r1.y := r.y; r1.w := r.w; r1.h := r.h;  
 RETURN r1 
END Copy; 
 
PROCEDURE (r: Rectangle) Load* (VAR R: OS.Rider); 
BEGIN R.ReadInt(r.x); R.ReadInt(r.y); R.ReadInt(r.w); R.ReadInt(r.h) 
END Load; 
 
PROCEDURE (r: Rectangle) Store* (VAR R: OS.Rider); 
BEGIN R.WriteInt(r.x); R.WriteInt(r.y); R.WriteInt(r.w); R.WriteInt(r.h) 
END Store; 
 
PROCEDURE Set*; 
BEGIN Shapes0.curShape := "Rectangles0.RectDesc" 
END Set; 
 
END Rectangles0. 
 
The command Rectangles0.Set stores the name of the rectangle type 
in the global variable Shapes0.curShape. The editor uses this type 
name in the creation of a new figure. After the invocation of 
Rectangles0.Set, the editor thus draws rectangles. 

11.5 Embedding Graphics in Texts 

The next step is to integrate pictures in texts and let them flow 
with the text during editing. Fortunately we have provided texts 
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with the ability to handle arbitrary elements. Pictures are thus a 
special kind of element—graphic elements. 

How must a graphic element behave? It is installed with the 
command GraphicElems0.Insert, which creates an empty graphic 
element (displayed as a blank rectangle) and inserts it in the text at 
the caret position. When the element is clicked with the middle 
mouse button, a graphic viewer opens that displays the drawing 
contained in the element. This viewer permits editing. The 
drawing can be written back to the element by clicking on the 
command GraphicElems0.Update in the menu of the graphic viewer 
(Fig. 11.28). 

Graphic elements 

xxxxxxxxxxxxx

xxx xxxx
xxxxxxxxxxx
GraphicElems0.Update

Text frame with an element

Is opened in response to a 
middle click at the element.

Graphic frame.

 

Fig. 11.28  Behavior of graphic elements 

A graphic element is a subclass of Texts0.Element. It contains a list 
of figures that can be displayed in a graphics frame. 

How is a graphic element displayed in the midst of a text 
frame? At the position where the element is to appear in the text, a 
(temporary) graphics frame is placed with the dimensions of the 
element. In this frame the element, i.e., its figures, can be 
displayed. The frame must only be there while the contents of the 
element are drawn; otherwise it can be removed. Thus one 
graphics frame suffices for all graphic elements. 

Temporary 
graphics frame 

We implement graphic elements in the module GraphicElems0 
with the following interface: 

 
DEFINITION GraphicElems0; Interface of 

GraphicElems0 
IMPORT Texts0; 
 
TYPE 
 Element = POINTER TO ElemDesc; 
 ElemDesc = RECORD (Texts0.ElemDesc) END; 
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PROCEDURE Insert; 
PROCEDURE Update; 
 
END GraphicElems0. 
 
The class GraphicElems0.Element has the same interface as its 
abstract base class Texts0.Element. The inherited methods are 
overridden to provide the required behavior for graphic elements. 

 
MODULE GraphicElems0; Implementation of 

GraphicElems0 
IMPORT OS, Texts0, Shapes0, GraphicFrames0, TextFrames0, Viewers0; 
 
TYPE 
 Element* = POINTER TO ElemDesc; Element 
 ElemDesc* = RECORD (Texts0.ElemDesc) 
  orgX, orgY: INTEGER; 
  graphic: Shapes0.Graphic; 
 END; 
 UpdateFrame = POINTER TO UpdateFrameDesc; 
 UpdateFrameDesc = RECORD (GraphicFrames0.FrameDesc) 
  text: Texts0.Text; 
  e: Element 
 END; 
 
VAR f: GraphicFrames0.Frame; 
 (*reused within a text frame whenever a graphic element has to be redrawn*) 
 
PROCEDURE (e: Element) Copy* (): Texts0.Element; 
 VAR res: Element; 
BEGIN NEW(res); res^ := e^; res.graphic := e.graphic.Copy(); RETURN res 
END Copy; 
 
PROCEDURE (e: Element) Draw* (x, y: INTEGER); see ♣ 
BEGIN 
 f.x := x; f.y := y; f.w := e.w; f.h := e.h; 
 f.orgX := e.orgX; f.orgY := e.orgY; f.graphic := e.graphic; 
 f.Draw 
END Draw; 
 
PROCEDURE (e: Element) HandleMouse* (f: OS.Object; x, y: INTEGER); see   
 VAR v: Viewers0.Viewer; menu: TextFrames0.Frame; 
  cont: UpdateFrame; buttons: SET; 
BEGIN 
 REPEAT OS.GetMouse(buttons, x, y) UNTIL buttons = {}; 
 menu := TextFrames0.NewMenu 
  ("", "Viewers0.Close  Viewers0.Copy  GraphicElems0.Update"); 
 NEW(cont); 
 cont.graphic := e.graphic; 
 cont.orgX := e.orgX + 10; cont.orgY := e.orgY + 10; 
 cont.text := f(TextFrames0.Frame).text; cont.e := e; 
 v := Viewers0.New(menu, cont) 
END HandleMouse; 
 
PROCEDURE (e: Element) Load* (VAR r: OS.Rider); 
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BEGIN 
 e.Load^ (r); 
 r.ReadInt(e.orgX); r.ReadInt(e.orgY); 
 NEW(e.graphic); Shapes0.InitGraphic(e.graphic); e.graphic.Load(r) 
END Load; 
 
PROCEDURE (e: Element) Store* (VAR r: OS.Rider); 
BEGIN e.Store^ (r); r.WriteInt(e.orgX); r.WriteInt(e.orgY); e.graphic.Store(r) 
END Store; 
 
PROCEDURE Insert*; 
 VAR e: Element; f: TextFrames0.Frame; 
BEGIN 
 IF Viewers0.focus # NIL THEN 
  f := Viewers0.focus(TextFrames0.Frame); 
  IF (f # NIL) & (f.caret.pos >= 0) THEN 
   NEW(e); e.w := 12; e.h := 12; e.dsc := 0; 
   NEW(e.graphic); Shapes0.InitGraphic(e.graphic);  
   e.orgX := 0; e.orgY := 0; 
   f.text.SetPos(f.caret.pos); f.text.WriteElem(e) 
  END 
 END 
END Insert; 
 
PROCEDURE Update*; see ➆ 
 VAR v: Viewers0.Viewer; f: UpdateFrame; e: Element; 
  m: Texts0.NotifyReplMsg; x, y: INTEGER; pos: LONGINT; 
BEGIN 
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y); 
 f := v.cont(UpdateFrame); 
 e := f.e; pos := f.text.ElemPos(e); 
 IF pos < f.text.len THEN 
  f.graphic.GetBox(x, y, e.w, e.h); 
  e.graphic := f.graphic; e.orgX := - x ; e.orgY := - y; 
  m.t := f.text; m.beg := pos; m.end := pos + 1; Viewers0.Broadcast(m) 
 END 
END Update; 
 
PROCEDURE Init; 
 VAR g: Shapes0.Graphic; 
BEGIN NEW(g); Shapes0.InitGraphic(g); f := GraphicFrames0.New(g) 
END Init; 
 
BEGIN Init 
END GraphicElems0. 
 
Draw draws the graphic element at screen position (x, y). It creates 
a (temporary) graphics frame of the appropriate size at this 
position, installs the figures in it, and sends it a Draw message. 

  

  HandleMouse is invoked when a graphic element is clicked 
with the middle mouse button. The method opens a viewer with a 
frame of type UdateFrame and displays the figures of the element in 
it. The update frame remembers which element is currently being 
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edited (f.e) and to which text it belongs (f.text). This information is 
necessary to restore the edited figures in the element via the Update 
command. 

In an UpdateFrame f, the figures of the element f.e contained in 
the text f.text are edited. Update writes the edited figures back to f.e. 
The size of f.e is determined as the smallest rectangle that encloses 
all the figures. 

  

 
This example shows how in Oberon two initially different pro-
grams can be integrated. The following properties are important 
for this: 

What can be 
learned? 

 
(1) GraphicElems0 is a separate program. Nevertheless, it has 

access to the text in the text editor, which is necessary in order 
to be able to insert elements. It also has access to the figures in 
a graphics frame, which is necessary in order to display the 
figures of an element in such a frame. Thus Oberon programs 
are not closed monolithic systems, but are open in the sense 
that exported data structures are visible to other programs 
(not only to other modules of the same program). 

 
(2) Graphic elements are compatible with abstract elements and 

can thus be handled by the text editor. The editor commu-
nicates with them via messages rather than via procedure 
calls. Messages represent a looser coupling of program parts 
than procedure calls, which require that the caller knows the 
callee. 

 
(3) Graphic elements wrap up a set of figures to make them 

compatible with elements (see Section 8.4) 



 

12 Costs and Benefits  
of OOP 

This book has attempted to show what kind of situations classes 
are useful for and when they should not be used. Let us 
summarize now: Why should we program in an object-oriented 
instead of a procedural way? What are the costs and the benefits of 
object-oriented programming? Are the benefits greater than the 
costs? 

If a programmer is aware of the strengths and the limits of 
object-oriented programming and uses classes consciously, then 
the benefits by far outweigh the costs. However, costs can quickly 
rise if classes are used thoughtlessly, particularly in situations 
where they do not simplify matters, but rather add complexity. 

12.1 Benefits of OOP 

We expect a programming technique to help us in solving 
problems. The greatest problem in programming is complexity. 
The larger and more complex a program is, the more important it 
becomes to decompose it into small, comprehensible parts. To 
master complexity, we must abstract away from details. Classes 
are a suitable tool for that: 

Mastering 
complexity 

 
• Classes permit the construction of handy components with 

simple interfaces that abstract away from implementation 
details. 

• Data and operations form an entity and are not spread over a 
program, as with procedural techniques. 

• The locality of code and data improves the readability and 
maintainability of software. 
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• Information hiding protects against unauthorized access to 
critical data. 

 
Object-oriented programming makes it possible to build extensible 
systems. This is one of its great advantages and distinguishes OOP 
from conventional programming techniques. Extensibility means 
that an existing system can be made to work with new components 
without having to be modified. Components can be even added at 
run time. 

Extensibility 

Type extension and the resulting polymorphism of variables 
prove useful primarily in the following situations (see Chapter 7): 
 
• Handling of heterogeneous data structures: Programs can 

work with variants of objects without distinguishing them. 
New variants can be added at any time. 

• Changing behavior at run time: One object can be replaced by 
another at run time. This can change the behavior of an algo-
rithm that uses this object. 

• Implementation of generic components: Algorithms can be 
generalized so that they no longer work with just one kind of 
object. 

• Completion of semifinished products: Components need not 
be customized for a certain application. They can be stored as 
semifinished products in a library and extended as needed to 
yield various finished products. 

• Extension of frameworks: Application-independendent parts 
of a domain can be implemented as a framework and later 
extended by adding application-specific parts. 

 
In practice, software reuse often fails because existing components 
do not match new requirements. Object-oriented programming 
helps by making it possible to adapt components to new needs 
without invalidating their existing clients. This lets us enjoy all the 
advantages of reuse: 

Reuse 

 
• We save development time that can be invested in other tasks 

more profitably. 
• Reused components usually contain fewer errors than newly 

developed ones because they have already been tested 
repeatedly. 

• When a component is used by several clients, improvements 
in its code take effect in multiple programs simultaneously. 
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• If programs rely on standard components, their structure and 
user interface become more uniform, which makes them more 
understandable and easier to use. 

12.2 Costs of OOP 

Object-oriented programming requires learning four things: Learning effort 
 
(1) The basic concepts such as classes, inheritance and dynamic 

binding must be understood. For programmers that are 
already familiar with modules and abstract data types, this is 
but a small step. For others who have never used data 
encapsulation, this can mean a paradigm shift and require 
significant learning time. 

 
(2) Reuse requires programmers to become familiar with large 

class libraries. This can be harder than learning a new 
programming language. A class library is actually a virtual 
language that can include hundreds of types and thousands of 
operations. In Smalltalk, for example, a significant part of its 
class library must be learned before practical programming 
can begin. This takes time. 

 
(3) More difficult than using a class library is designing one. Class 

design is language design and requires experience. It is an 
iterative process where learning occurs through errors. 

 
(4) It is just as difficult to learn when to use classes (see Chapter 

7) and when to keep hands off. Only with the acquisition of 
this critical skill has one mastered object-oriented 
programming. 

 
As we can see, the learning effort for the basic concepts is small, 
but that for the class library and for the proper use of classes can 
be substantial. 
 
Since implementation details of classes are usually unknown, the 
programmer must rely on documentation and naming when trying 
to understand a class. The time gained in not having to write a 
class must in part be reinvested (especially in the beginning) in 
order to understand the class. 

Comprehension 
problems 
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The documentation of classes is more difficult than that of 
procedures or modules. Since every method can be overridden, the 
documentation must not only say what the method does, but also 
in which context it is invoked: overridden methods are usually not 
invoked by the client, but by a framework. Thus the programmer 
must know what conditions hold when the method is called. For 
abstract methods, which are empty, the documentation must even 
say what the overriding method is supposed to do. 

In deep class hierarchies, the fields and methods of a class are 
usually inherited from various hierarchy levels. It is not always 
easy to see which fields and methods actually belong to a class. 
Tools such as a class browser are necessary to provide this 
information. If concrete classes are extended, then each method 
usually does little before passing the message to the base class. The 
implementation of an operation is thus distributed among several 
classes, and we have to leaf through the code to understand how it 
works. 

Methods are usually shorter than procedures since they 
perform only a single operation on data. But the number of 
methods is accordingly higher. Short methods have the advantage 
of being easy to understand, but the drawback that the code to 
handle a message is sometimes spread out over many small 
methods. 

 
Data abstraction limits the flexibility of clients. Clients can only 
carry out those operations that a class provides. They no longer 
have unlimited access to the data. This is usually intended. The 
motivation is the same as for using a high-level programming 
language, namely to prevent certain unclean program structures. 

Flexibility 

Data abstraction should not be overdone. The more data are 
hidden, the more difficult it is to extend a class. The point is not 
that clients should not be allowed to know data, but that they 
should not be required to know them in order to work with a class. 

 
It is often claimed that object-oriented programming is inefficient. 
What is true about that? We must distinguish between run-time 
inefficiency, storage inefficiency, and inefficiency coming from 
unnecessary generality: 

Efficiency 

 
(1) Run-time inefficiency. In languages like Smalltalk, messages are 

interpreted at run time by searching them in one or more 
tables and selecting the appropriate method. Of course, this is 
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slow. Even with the best optimizing techniques, Smalltalk 
programs prove to be ten times slower than optimized C 
programs [Cha92]. 

In hybrid languages like Oberon-2, Object-Pascal and 
C++, sending a message only amounts to invoking a pro-
cedure variable referenced by a pointer. On certain machines, 
messages are only 10 percent slower than procedure calls. 
Since messages are rare compared to other operations in a 
program, their influence on run time is negligible. 

However, there is another factor that influences run time: 
data abstraction. It denies direct access to fields of a class and 
requires that every operation on the data be done via 
methods. This costs a procedure invocation for every data 
access. However, when data abstraction is used only where it 
is necesary (i.e., not for its own sake), then the slowdown is 
moderate. 

 
(2) Storage inefficiency. Dynamic binding and run-time type 

checking require information about the type of an object at run 
time. This information is kept in a type descriptor of which 
there is one per class. Each object has an invisible pointer to 
the type descriptor of its class. The additional storage 
requirement in object-oriented programs is thus one pointer 
per object and one type descriptor per class. 

 
(3) Unnecessary generality. Inefficiency can also mean that a pro-

gram has unnecessary features. A library class often has more 
methods than are needed. Since extraneous methods cannot be 
removed, they have to be carried along as dead weight. This 
does not affect run time, but it does inflate code size. 

One alternative would be to provide a base class with 
only a minimum of methods, and then to implement various 
extensions of it that offer increasing functionality. 

Another approach would be to let the linker remove 
superfluous methods. Such smart linkers are available for 
various languages and operating systems. 

Oberon has another way of dealing with unnecessary 
generality: Program parts can be added at run time. Thus it is 
not necessary to load the entire program at once, but only 
those parts have to be loaded that are actually needed. In 
practice this saves more code than the removal of methods 
can. 

 



220  12 Costs and Benefits of OOP 

Thus it cannot be said that object-oriented programming is 
generally inefficient. If classes are used only where they make 
sense, the loss of efficiency is negligible both in run time and in 
memory. 

12.3 The Future of OOP 

Will object-oriented programming survive, or is it only a fad that 
will die off again? 

Classes have found their way into most modern programming 
languages. This already indicates that they are going to stay. 
Classes will soon belong to the standard repertoire of every 
programmer, just as every programmer today can handle dynamic 
data structures and recursion, which were also new twenty years 
ago. But classes are just one new construct among many others. We 
will have to learn for what situations they are suited and will use 
them there and only there. It is the skill of every craftsman, and 
more so of every engineer, to select the right tool for every task. 

Object-oriented programming has given rise to a certain 
euphoria. Advertisements promise incredible things, and even 
some researchers seem to consider object-oriented programming to 
be the panacea that will solve all the problems of software 
development. This euphoria will subside. After a period of 
disillusionment, people will perhaps cease to speak about object-
oriented programming, just as hardly anybody speaks about 
structured programming any more. But classes will be used quite 
naturally then and will be seen as what they are: components that 
help to build modular and extensible software. 



A Oberon-2 
Language Definition 

A.1 Introduction 

Oberon-2 is a general-purpose language in the tradition of Oberon 
and Modula-2. Its most important features are block structure, 
modularity, separate compilation, static typing with strong type 
checking (also across module boundaries), and type extension with 
type-bound procedures. 

This report is not intended as a programmer's tutorial, but is 
deliberately kept concise. It serves as a reference for programmers, 
implementors, and manual writers. What remains unsaid is mostly 
left so intentionally, either because it can be derived from stated 
rules of the language, or because it would require commitment to a 
definition when a general commitment appears as unwise. 

Section A.12.1 defines some terms that are used to express the 
type checking rules of Oberon-2. Where they appear in the text, 
they are written in italics to indicate their special meaning (e.g., the 
same type). 

A.2 Syntax 

An extended Backus-Naur Formalism (EBNF) is used to describe 
the syntax of Oberon-2: Alternatives are separated by |. Brackets [ 
and ] denote optionality of the enclosed expression, and braces { 
and } denote its repetition (possibly 0 times). Nonterminal symbols 
start with an upper-case letter (e.g., Statement). Terminal symbols 
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either start with a lower-case letter (e.g., ident), or are written all in 
upper-case letters (e.g., BEGIN), or are denoted by strings (e.g., 
":="). 

A.3 Vocabulary and Representation 

The representation of (terminal) symbols in terms of characters is 
defined using the ASCII set. Symbols are identifiers, numbers, 
strings, operators, and delimiters. The following lexical rules must 
be observed: Blanks and line breaks must not occur within 
symbols (except blanks in strings). They are ignored unless they 
are essential to separate two consecutive symbols. Upper-case and 
lower-case letters are considered distinct. 
 
1. Identifiers are sequences of letters and digits. The first 

character must be a letter. 
 
 ident = letter {letter | digit}. 
 

 Examples:     x     Scan     Oberon2     GetSymbol     firstLetter 
 
2. Numbers are (unsigned) integer or real constants. The type of 

an integer constant  is the minimal type to which the constant 
value belongs (see A.6.1). If the constant is specified with the 
suffix H, the representation is hexadecimal; otherwise it is 
decimal. 

  A real number always contains a decimal point. Optionally it 
may also contain a decimal scale factor. The letter E (or D) 
means "times ten to the power of". A real number is of type 
REAL, unless it has a scale factor containing the letter D, in 
which case it is of type LONGREAL. 
 
 number  = integer | real. 
 integer  = digit {digit} | digit {hexDigit} "H". 
 real  = digit {digit} "." {digit} [ScaleFactor]. 
 ScaleFactor  = ("E" | "D") ["+" | "-"] digit {digit}. 
 hexDigit  = digit | "A" | "B" | "C" | "D" | "E" | "F". 
 digit  = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". 
 

 Examples: 
 
 1991 INTEGER 1991 
 0DH  SHORTINT 13 
 12.3 REAL 12.3 
 4.567E8  REAL 456700000 
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 0.57712566D-6  LONGREAL 0.00000057712566 
3. Character constants are denoted by the ordinal number of the 

character in hexadecimal notation followed by the letter X. 
 
 character = digit {hexDigit} "X". 
 

4. Strings are sequences of characters enclosed in single (') or 
double (") quotation marks. The opening quotation mark must 
be the same as the closing one and must not occur within the 
string. The number of characters in a string is called its length. 
A string of length 1 can be used wherever a character constant 
is allowed and vice versa. 
 
 string = ' " ' {char} ' " ' | " ' " {char} " ' ". 
 

 Examples:     "Oberon-2"     "Don't worry!"     "x" 
 
5. Operators and delimiters are the special characters, character 

pairs, or reserved words listed below. The reserved words 
consist exclusively of capital letters and cannot be used as 
identifiers. 
 
 + := ARRAY IMPORT RETURN 
 - ^ BEGIN IN THEN 
 * = BY IS TO 
 / # CASE LOOP TYPE 
 ~ < CONST MOD UNTIL 
 & > DIV MODULE VAR 
 . <= DO NIL WHILE 
 , >= ELSE OF WITH 
 ; .. ELSIF OR 
 | : END POINTER 
 ( ) EXIT PROCEDURE 
 [ ] FOR RECORD 
 { } IF REPEAT 
 

6. Comments may be inserted between any two symbols in a 
program. They are arbitrary character sequences opened by 
the bracket (* and closed by *). Comments may be nested. 
They do not affect the meaning of a program. 

A.4 Declarations and Scope Rules 

Every identifier occurring in a program must be introduced by a 
declaration unless it is a predeclared identifier. Declarations also 
specify certain permanent properties of an object, such as whether 
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it is a constant, a type, a variable, or a procedure. The identifier is 
then used to refer to the associated object.  

The scope of an object x extends textually from the point of its 
declaration to the end of the block (module, procedure, or record) 
to which the declaration belongs and hence to which the object is 
local. It excludes the scopes of objects with the same name that are 
declared in nested blocks. The scope rules are: 

 
1. No identifier may denote more than one object within a given 

scope (i.e., no identifier may be declared twice in a block). 
2. An object may only be referenced within its scope. 
3. A type T of the form POINTER TO T1 (see A.6.4) can be 

declared before the scope of T1. In this case, the declaration of 
T1 must follow in the same block to which T is local. 

4. Identifiers denoting record fields (see A.6.3) or type-bound 
procedures (see A.10.2) are valid in record designators only. 

 
An identifier declared in a module block may be followed by an 
export mark (an asterisk or a minus sign) in its declaration to 
indicate that it is exported. An identifier x exported by a module M 
may be used in other modules if they import M (see A.11). The 
identifier is then denoted as M.x in these modules and is called a 
qualified identifier. Variables and record fields marked with a minus 
in their declaration are read-only in importing modules. 

 
Qualident  = [ident "."] ident. 
IdentDef  = ident [" * " | " - "]. 
 

The following identifiers are predeclared; their meaning is defined 
in the indicated sections: 

 
ABS (A.10.3) LEN (A.10.3) 
ASH (A.10.3) LONG (A.10.3) 
BOOLEAN (A.6.1) LONGINT (A.6.1) 
CAP (A.10.3) LONGREAL (A.6.1) 
CHAR (A.6.1) MAX (A.10.3) 
CHR (A.10.3) MIN (A.10.3) 
COPY (A.10.3) NEW (A.10.3) 
DEC (A.10.3) ODD (A.10.3) 
ENTIER (A.10.3) ORD (A.10.3) 
EXCL (A.10.3) REAL (A.6.1) 
FALSE (A.6.1) SET (A.6.1) 
HALT (A.10.3) SHORT (A.10.3) 
INC (A.10.3) SHORTINT (A.6.1) 
INCL (A.10.3) SIZE (A.10.3) 
INTEGER (A.6.1) TRUE (A.6.1) 
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A.5 Constant Declarations 

A constant declaration associates an identifier with a constant 
value. 

 
ConstantDeclaration = IdentDef "=" ConstExpression. 
ConstExpression  = Expression. 
 

A constant expression is an expression that can be evaluated by a 
mere textual scan without actually executing the program. Its 
operands are constants (A.8) or predeclared functions (A.10.3) that 
can be evaluated at compile time. Examples of constant decla-
rations are: 

 
N = 100 
limit = 2*N - 1 
fullSet = {MIN(SET) .. MAX(SET)} 

A.6 Type Declarations 

A data type determines the set of values that variables of that type 
may assume, and the operators that are applicable. A type 
declaration associates an identifier with a type. In the case of 
structured types (arrays and records) it also defines the structure 
of variables of this type. 

 
TypeDeclaration = IdentDef "=" Type. 
Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType. 
 

Examples: 
 
Table = ARRAY N OF REAL 
 
Tree = POINTER TO Node 
Node =  RECORD 
 key : INTEGER; 
 left, right: Tree 
END 
 
CenterTree = POINTER TO CenterNode 
CenterNode = RECORD (Node) 
 width: INTEGER; 
 subnode: Tree 
END 
 
Function = PROCEDURE(x: INTEGER): INTEGER 
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A.6.1 Basic Types 

The basic types are denoted by predeclared identifiers. The 
associated operators are defined in A.8.2 and the predeclared 
function procedures in A.10.3. The values of the given basic types 
are the following: 

 
BOOLEAN truth values TRUE and FALSE 
CHAR characters of the extended ASCII set (0X .. 0FFX) 
SHORTINT integers between MIN(SHORTINT) and MAX(SHORTINT) 
INTEGER integers between MIN(INTEGER) and MAX(INTEGER) 
LONGINT integers between MIN(LONGINT) and MAX(LONGINT) 
REAL real numbers between MIN(REAL) and MAX(REAL) 
LONGREAL real numbers betw. MIN(LONGREAL) and MAX(LONGREAL) 
SET sets of integers between 0 and MAX(SET) 

 
Types SHORTINT, INTEGER, and LONGINT are integer types; 
types REAL and LONGREAL are real types; together they are 
called numeric types. They form a hierarchy: each larger type 
includes (the values of) the smaller types: 

 

LONGREAL  �  REAL  �  LONGINT  �  INTEGER  �  SHORTINT 

A.6.2 Array Types 

An array is a structure consisting of a number of elements that are 
all of the same type, called the element type. The number of 
elements of an array is called its length. The elements of the array 
are designated by indices, which are integers between 0 and the 
length minus 1. 

 
ArrayType = ARRAY [Length {"," Length}] OF Type. 
Length = ConstExpression. 
 

A type of the form 
 
ARRAY L0, L1, …, Ln OF T 
 

is understood as an abbreviation of 
 
ARRAY L0 OF 
 ARRAY L1 OF 
 … 
  ARRAY Ln OF T 
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Arrays declared without length are called open arrays. They are 
restricted to pointer base types (see A.6.4), element types of open 
array types, and formal parameter types (see A.10.1).  Examples: 

 
ARRAY 10, N OF INTEGER 
ARRAY OF CHAR 
 

A.6.3 Record Types 

A record type is a structure consisting of a fixed number of 
elements, called fields, with possibly different types. The record 
type declaration specifies the name and type of each field. The 
scope of the field identifiers extends from the point of their 
declaration to the end of the record type, but they are also visible 
within designators referring to fields of record variables (see 
A.8.1). If a record type is exported, field identifiers that are to be 
visible outside the declaring module must be marked. They are 
called public fields; unmarked elements are called private fields. 

 
RecordType = RECORD ["("BaseType")"] FieldList {";" FieldList} END. 
BaseType = Qualident. 
FieldList = [IdentList ":" Type ]. 
 

Record types are extensible; i.e., a record type can be declared as 
an extension of another record type. In the example 

 
T0 = RECORD x: INTEGER END 
T1 = RECORD (T0) y: REAL END 
 

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1 
(see A.12.1). An extended type T1 consists of the fields of its base 
type and of the fields that are declared in T1 (see A.6). Identifiers 
declared in the extension must be different from the identifiers 
declared in its base type(s). The following are examples of record 
type declarations: 

 
RECORD 
 day, month, year: INTEGER 
END 
 

RECORD 
 name, firstname: ARRAY 32 OF CHAR; 
 age: INTEGER; 
 salary: REAL 
END 
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A.6.4 Pointer Types 

Variables of a pointer type P assume as values pointers to variables 
of some type T. T is called the pointer base type of P and must be a 
record or array type. Pointer types adopt the extension relation of 
their pointer base types: if a type T1 is an extension of T, and P1 is 
of type POINTER TO T1, then P1 is also an extension of P. 

 
PointerType = POINTER TO Type. 
 

If p is a variable of type P = POINTER TO T, a call of the prede-
clared procedure NEW(p) (see A.10.3) allocates a nameless 
variable of type T in free storage. If T is a record type or an array 
type with fixed length, the allocation has to be done with NEW(p); 
if T is an n-dimensional open array the allocation has to be done 
with NEW(p, e0, …, en-1), where T is allocated with lengths given 
by the expressions e0, …, en-1. In either case a pointer to the 
allocated variable is assigned to p. p is of type P and the referenced  
variable p^ (pronounced as p-referenced) is of type T. 

Any pointer variable may assume the value NIL, which points 
to no variable at all. All pointer variables are initialized to NIL. 

A.6.5 Procedure types 

Variables of a procedure type T have a procedure (or NIL) as their 
value. If a procedure P is assigned to a variable of type T, the 
formal parameter lists (see A.10.1) of P and T must match (see 
A.12.1). P must not be a predeclared or type-bound procedure, nor 
may it be local to another procedure. 

 
ProcedureType = PROCEDURE [FormalParameters]. 

A.7 Variable Declarations 

Variable declarations introduce variables by defining an identifier 
and a data type for them. 

 
VariableDeclaration = IdentList ":" Type. 
 

Record and pointer variables have both a static type (the type with 
which they are declared—simply called their type) and a dynamic 
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type (the type they assume at run time). For pointers and variable 
parameters of record type, the dynamic type may be an extension 
of their static type. The static type determines which fields of a 
record are accessible. The dynamic type is used to call type-bound 
procedures (see A.10.2). 

The following are examples of variable declarations (refer to 
examples in A.6): 

 
i, j, k: INTEGER 
x, y: REAL 
p, q: BOOLEAN 
s: SET 
F: Function 
a: ARRAY 100 OF REAL 
w: ARRAY 16 OF RECORD 
  name: ARRAY 32 OF CHAR; 
  count: INTEGER 
 END 
t, c: Tree 

A.8 Expressions 

Expressions denote rules of computation whereby constants and 
current values of variables are combined to compute other values 
by the application of operators and function procedures. 
Expressions consist of operands and operators. Parentheses may 
be used to express specific associations of operators and operands. 

A.8.1 Operands 

With the exception of set constructors and literal constants 
(numbers, character constants, or strings), operands are denoted 
by designators. A designator consists of an identifier referring to a 
constant, variable, or procedure. This identifier may possibly be 
qualified by a module identifier (see A.4 and A.11) and may be 
followed by selectors if the designated object is an element of a 
structure. 

 
Designator  = Qualident 
  {"." ident | "[" ExpressionList "]" | "^" | "(" Qualident ")"}. 
ExpressionList  = Expression {"," Expression}. 
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If a designates an array, then a[e] denotes that element of a whose 
index is the current value of the expression e. The type of e must be 
an integer type. A designator of the form a[e0, e1, …, en] stands for 
a[e0][e1]…[en]. If r designates a record, then r.f denotes the field f of 
r or the procedure f bound to the dynamic type of r (see A.10.2). If 
p designates a pointer, p^ denotes the variable that is referenced by 
p. The designators p^.f and p^[e] may be abbreviated as p.f and 
p[e]; i.e., record and array selectors imply dereferencing. If a or r 
are read-only, then a[e] and r.f are also read-only.  

A type guard v(T) asserts that the dynamic type of v is T (or an 
extension of T); i.e., program execution is aborted if the dynamic 
type of v is not T (or an extension of T). Within the designator, v is 
then regarded as having the static type T. The guard is applicable 
if 

 
1. v is a variable parameter of record type or v is a pointer, and if 
2. T is an extension of the static type of v. 

 
If the designated object is a constant or a variable, then the desig-
nator refers to its current value. If it is a procedure, the designator 
refers to that procedure unless it is followed by a (possibly empty) 
parameter list, in which case it implies an activation of that 
procedure and stands for the value resulting from its execution. 
The actual parameters must correspond to the formal parameters 
as in proper procedure calls (see A.10.1). 

The following are examples of designators (refer to examples 
in A.7): 

 
i (INTEGER) 
a[i] (REAL) 
w[3].name[i] (CHAR) 
t.left.right (Tree) 
t(CenterTree).subnode (Tree) 

A.8.2 Operators 

Four classes of operators with different precedences (binding 
strengths) are syntactically distinguished in expressions. The 
operator ~ has the highest precedence, followed by multiplication 
operators, addition operators, and relations. Operators of the same 
precedence associate from left to right. For example, x-y-z stands 
for (x-y)-z. 
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Expression    = SimpleExpression [Relation SimpleExpression]. 
SimpleExpression = ["+" | "-"] Term {AddOperator Term}. 
Term      = Factor {MulOperator Factor}. 
Factor      = Designator [ActualParameters] | number | character 
       |  string | NIL | Set | "(" Expression ")" | "~" Factor. 
Set       = "{" [Element {"," Element}] "}". 
Element     = Expression [".." Expression]. 
ActualParameters  = "(" [ExpressionList] ")". 
Relation     = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS. 
AddOperator    = "+" | "-" | OR. 
MulOperator    = "*" | "/" | DIV | MOD | "&". 
 

The available operators are listed in the following tables. Some 
operators are applicable to operands of various types, denoting 
different operations. In these cases, the actual operation is identi-
fied by the type of the operands. The operands must be expression 
compatible with respect to the operator (see A.12.1). 

 
Logical operators 

 
OR logical disjunction  p OR q +  "if p then TRUE, else q end" 
& logical conjunction  p & q +  "if p then q, else FALSE end" 
~ negation  ~ p +  "not p" 
 

These operators apply to BOOLEAN operands and yield a 
BOOLEAN result. 
 
Arithmetic operators 

 
+  sum 
-  difference 
*  product 
/  real quotient 
DIV integer quotient 
MOD modulus 
 

The operators +, -, *, and / apply to operands of numeric types. 
The type of the result is the type of that operand that includes the 
type of the other operand, except for division (/), where the result 
is the smallest real type that includes both operand types. When 
used as monadic operators, - denotes sign inversion and + denotes 
the identity operation. The operators DIV and MOD apply to 
integer operands only. They are related by the following formulas, 
defined for any x and positive divisor y: 

 
x = (x DIV y) * y + (x MOD y) 
0 ≤ (x MOD y) < y 
 

Examples: 
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x y x DIV y x MOD y 

 5 3 1 2 
 -5 3 -2 1 

Set operators 
 
+  union 
-  difference (x - y = x * (-y)) 
*  intersection 
/  symmetric set difference (x / y = (x-y) + (y-x)) 
 

Set operators apply to operands of type SET and yield a result of 
type SET. The monadic minus sign denotes the complement of x; 
i.e., -x  denotes the set of integers between 0 and MAX(SET) that 
are not elements of x. 

A set constructor defines the value of a set by listing its 
elements between braces. The elements must be integers in the 
range 0..MAX(SET). A range a..b denotes all integers in the interval 
[a, b]. 
 
Relational operators 

 
= equal 
# unequal 
< less 
<= less or equal 
> greater 
>= greater or equal 
IN set membership 
IS type test 
 

Relations yield a BOOLEAN result. The relations =, #, <, <=, >, and 
>= apply to numeric types, CHAR, (open) character arrays, and 
strings. The relations = and # also apply to BOOLEAN and SET, as 
well as to pointer and procedure types (including the value NIL). x 
IN s stands for "x is an element of s". x must be of an integer type 
and s of type SET. v IS T stands for "the dynamic type of v is T (or 
an extension of T)" and is called a type test. It is applicable if 

 
1. v is a variable parameter of record type or v is a pointer, and if 
2. T is an extension of the static type of v. 

 
The following are examples of expressions (refer to examples in 
A.7): 

 
1991 INTEGER 
i DIV 3 INTEGER 
~p OR q BOOLEAN 
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(i+j) * (i-j) INTEGER 
s - {8, 9, 13} SET 
i + x REAL 
a[i+j] * a[i-j] REAL 
(0<=i) & (i<100) BOOLEAN 
t.key = 0 BOOLEAN 
k IN {i..j-1} BOOLEAN 
w[i].name <= "John" BOOLEAN 
t IS CenterTree BOOLEAN 

A.9 Statements 

Statements denote actions. There are elementary and structured 
statements. Elementary statements are not composed of any parts 
that are themselves statements. They are the assignment, the 
procedure call, the return, and the exit statement. Structured 
statements are composed of parts that are themselves statements. 
They are used to express sequencing and conditional, selective, 
and repetitive execution. A statement may also be empty, in which 
case it denotes no action. The empty statement is included in order 
to relax punctuation rules in statement sequences. 

 
Statement = 
 [ Assignment | ProcedureCall | IfStatement | CaseStatement |  WhileStatement 
| RepeatStatement | ForStatement | LoopStatement |  WithStatement | EXIT 
| RETURN [Expression] ]. 

A.9.1 Assignments 

Assignments replace the current value of a variable with a new 
value specified by an expression. The expression must be assign-
ment compatible with the variable (see A.12.1). The assignment 
operator is written as ":=" and pronounced as becomes. 

 
Assignment = Designator ":=" Expression. 
 

If an expression e of type Te is assigned to a variable v of type Tv, 
the following happens: 

 
1. If Tv and Te are record types, only those fields of Te are 

assigned which also belong to Tv (projection); the dynamic type 
of v must be the same as the static type of v and is not changed 
by the assignment. 
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2. If Tv and Te are pointer types, the dynamic type of v becomes 
the dynamic type of e. 

3. If Tv is ARRAY n OF CHAR and e is a string of length m<n, 
v[i] becomes ei for i = 0..m-1 and v[m] becomes 0X. 

The following are examples of assignments (refer to examples in 
A.7): 

 
i := 0 
p := i = j 
x := i + 1 
k := log2(i+j) 
F := log2      (* see A.10.1 *) 
s := {2, 3, 5, 7, 11, 13} 
a[i] := (x+y) * (x-y) 
t.key := i 
w[i+1].name := "John" 
t := c 

A.9.2 Procedure Calls 

A procedure call activates a procedure. It may contain a list of 
actual parameters which replace the corresponding formal 
parameters defined in the procedure declaration (see A.10). The 
correspondence is established by the positions of the parameters in 
the actual and formal parameter lists. There are two kinds of 
parameters: variable and value parameters. 

If a formal parameter is a variable parameter, the corres-
ponding actual parameter must be a designator denoting a 
variable. If it denotes an element of a structured variable, the 
component selectors are evaluated when the formal/actual 
parameter substitution takes place, i.e., before the execution of the 
procedure. If a formal parameter is a value parameter, the corres-
ponding actual parameter must be an expression. The value of this 
expression is assigned to the formal parameter (see also A.10.1). 

 
ProcedureCall = Designator [ActualParameters]. 
 

Examples: 
 
WriteInt(i*2+1) (* see A.10.1 *) 
t.Insert("John") (* see A.11 *) 
INC(w[k].count) 
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A.9.3 Statement Sequences 

Statement sequences denote the sequence of actions specified by 
the component statements which are separated by semicolons. 

 
StatementSequence = Statement {";" Statement}. 

A.9.4 If Statements 

IfStatement =  IF Expression THEN StatementSequence 
 {ELSIF Expression THEN StatementSequence} 
 [ELSE StatementSequence] 
 END. 
 

If statements specify the conditional execution of guarded 
statement sequences. The boolean expression preceding a 
statement sequence is called its guard. The guards are evaluated in 
sequence of occurrence until one evaluates to TRUE, whereafter its 
associated statement sequence is executed. If no guard is satisfied, 
the statement sequence following the symbol ELSE is executed, if 
there is one.  Example: 

 
IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier 
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber 
ELSIF (ch = " ' ") OR (ch = ' " ') THEN ReadString 
ELSE SpecialCharacter 
END 

A.9.5 Case Statements 

Case statements specify the selection and execution of a statement 
sequence according to the value of an expression. First the case 
expression is evaluated; then that statement sequence is executed 
whose case label list contains the obtained value. The case 
expression must either be of an integer type that includes the types 
of all case labels, or both the case expression and the case labels 
must be of type CHAR. Case labels are constants, and no value 
may occur more than once. If the value of the expression does not 
match any label, the statement sequence following the symbol 
ELSE is selected, if there is one; otherwise the program is aborted. 

 
CaseStatement  = CASE Expression OF Case {"|" Case}  
  [ELSE StatementSequence] END. 
Case  = [CaseLabelList ":" StatementSequence]. 
CaseLabelList  = CaseLabels {"," CaseLabels}. 
CaseLabels  = ConstExpression [".." ConstExpression]. 
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Example: 

CASE ch OF 
 "A" .. "Z": ReadIdentifier  
| "0" .. "9": ReadNumber  
| " ' ", ' " ': ReadString 
ELSE SpecialCharacter 
END 

A.9.6 While Statements 

While statements specify the repeated execution of a statement 
sequence while the boolean expression (its guard) yields TRUE. 
The guard is checked before every execution of the statement 
sequence. 

 
WhileStatement = WHILE Expression DO StatementSequence END. 
 

Examples: 
 
WHILE i > 0 DO i := i DIV 2; k := k + 1 END 
WHILE (t # NIL) & (t.key # i) DO t := t.left END 

A.9.7 Repeat Statements 

A repeat statement specifies the repeated execution of a statement 
sequence until a condition specified by a boolean expression is 
satisfied. The statement sequence is executed at least once. 

 
RepeatStatement = REPEAT StatementSequence UNTIL Expression. 

A.9.8 For Statements 

A for statement specifies the repeated execution of a statement 
sequence for a fixed number of times while a progression of values 
is assigned to an integer variable called the control variable of the 
for statement. 

 
ForStatement = FOR ident ":=" Expression TO Expression 
 [BY ConstExpression] DO StatementSequence END. 
 

The statement 
 
FOR v := low TO high BY step DO statements END 
 

is equivalent to 
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v := low; temp := high; 
IF step > 0 THEN 
 WHILE v <= temp DO statements; v := v + step END 
ELSE 
 WHILE v >= temp DO statements; v := v + step END 
END 
 

low must be assignment compatible with v (see A.12.1), high must be 
expression compatible (i.e., comparable) with v, and step must be a 
nonzero constant expression of an integer type. If step is not 
specified, it is assumed to be 1.  Examples: 

 
FOR i := 0 TO 79 DO k := k + a[i] END 
FOR i := 79 TO 1 BY -1 DO a[i] := a[i-1] END 

A.9.9 Loop Statements 

A loop statement specifies the repeated execution of a statement 
sequence. It is terminated upon execution of an exit statement 
within that sequence (see A.9.10). 

 
LoopStatement = LOOP StatementSequence END. 
 

Example: 
 
LOOP 
 ReadInt(i); 
 IF i < 0 THEN EXIT END; 
 WriteInt(i) 
END 
 

Loop statements are useful to express repetitions with several exit 
points or cases where the exit condition is in the middle of the 
repeated statement sequence. 

A.9.10 Return and Exit Statements 

A return statement indicates the termination of a procedure. It is 
denoted by the symbol RETURN, followed by an expression if the 
procedure is a function procedure. The type of the expression must 
be assignment compatible (see A.12.1) with the result type specified 
in the procedure heading (see A.10). 

Function procedures require the presence of a return state-
ment indicating the result value. In proper procedures, a return 
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statement is implied by the end of the procedure body. Any 
explicit return statement therefore appears as an additional 
(probably exceptional) termination point. 

An exit statement is denoted by the symbol EXIT. It specifies 
termination of the enclosing loop statement and continuation with 
the statement following that loop statement. Exit statements are 
contextually, although not syntactically, associated with the loop 
statement that contains them. 
A.9.11 With Statements 

With statements execute a statement sequence depending on the 
result of a type test and apply a type guard to every occurrence of 
the tested variable within this statement sequence. 

 
WithStatement  = WITH Guard DO StatementSequence 
 {"|" Guard DO StatementSequence} 
 [ELSE StatementSequence] END. 
Guard = Qualident ":" Qualident. 
 

If v is a variable parameter of record type or a pointer variable, and 
if it is of a static type T0, the statement 

 
WITH v: T1 DO S1 | v: T2 DO S2 ELSE S3 END 
 

has the following meaning: if the dynamic type of v is T1, then the 
statement sequence S1 is executed, where v is regarded as if it had 
the static type T1; else if the dynamic type of v is T2, then S2 is 
executed, where v is regarded as if it had the static type T2; else S3 
is executed. T1 and T2 must be extensions of T0. If no type test is 
satisfied and if an else clause is missing, the program is aborted.  
Example: 

 
WITH t: CenterTree DO i := t.width; c := t.subnode END 

A.10 Procedure Declarations 

A procedure declaration consists of a procedure heading and a 
procedure body. The heading specifies the procedure identifier and 
the formal parameters. For type-bound procedures it also specifies 
the receiver parameter. The body contains declarations and 
statements. The procedure identifier is repeated at the end of the 
procedure declaration. 
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There are two kinds of procedures: proper procedures and 
function procedures. The latter are activated by a function designator 
as a constituent of an expression and yield a result that is an 
operand of the expression. Proper procedures are activated by a 
procedure call. A procedure is a function procedure if its formal 
parameters specify a result type. The body of a function procedure 
must contain a return statement that defines its result. 

All constants, variables, types, and procedures declared 
within a procedure body are local to the procedure. Since 
procedures may be declared as local objects, too, procedure 
declarations may be nested. The call of a procedure within its 
declaration implies recursive activation. 

In addition to its formal parameters and locally declared 
objects, the objects declared in the environment of the procedure 
are also visible in the procedure (with the exception of those 
objects that have the same name as an object declared locally). 

 
ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident. 
ProcedureHeading = PROCEDURE [Receiver] IdentDef  
  [FormalParameters]. 
ProcedureBody  =  DeclarationSequence 
  [BEGIN StatementSequence] END. 
DeclarationSequence = {CONST {ConstantDeclaration ";"}  
  | TYPE {TypeDeclaration ";"}  
  | VAR {VariableDeclaration ";"} } 
  {ProcedureDeclaration ";" 
  | ForwardDeclaration ";"}. 
ForwardDeclaration = PROCEDURE " ^ " [Receiver] IdentDef  
  [FormalParameters]. 
 

If a procedure declaration specifies a receiver parameter, the pro-
cedure is considered to be bound to a type (see A.10.2). A forward 
declaration serves to allow forward references to a procedure whose 
actual declaration appears later in the text. The formal parameter 
lists of the forward declaration and the actual declaration must 
match (see A.12.1). 

A.10.1 Formal Parameters 

Formal parameters are identifiers declared in the formal parameter 
list of a procedure. They correspond to actual parameters specified 
in the procedure call. The correspondence between formal and 
actual parameters is established when the procedure is called. 
There are two kinds of parameters, value and variable parameters, 
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indicated in the formal parameter list by the absence or presence of 
the keyword VAR. Value parameters are local variables to which 
the value of the corresponding actual parameter is assigned as an 
initial value. Variable parameters correspond to actual parameters 
that are variables, and they stand for these variables. The scope of 
a formal parameter extends from its declaration to the end of the 
procedure block in which it is declared. A function procedure 
without parameters must have an empty parameter list. It must be 
called by a function designator whose actual parameter list is 
empty, too. The result type of a function procedure can be neither 
a record nor an array. 

 
FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" Qualident]. 
FPSection  = [VAR] ident {"," ident} ":" Type. 
 

Let Tf be the type of a formal parameter f (not an open array) and 
Ta the type of the corresponding actual parameter a. For variable 
parameters, Ta must be the same as Tf, or Tf must be a record type 
and Ta an extension of Tf. For value parameters, a must be 
assignment compatible with f (see A.12.1). 

If Tf is an open array, then a must be array compatible with f 
(see A.12.1). The lengths of f are taken from a. The following are 
examples of procedure declarations: 

 
PROCEDURE ReadInt(VAR x: INTEGER); 
 VAR i: INTEGER; ch: CHAR; 
BEGIN i := 0; Read(ch); 
 WHILE ("0" <= ch) & (ch <= "9") DO 
  i := 10*i + (ORD(ch)-ORD("0")); Read(ch) 
 END; 
 x := i 
END ReadInt 
 
PROCEDURE WriteInt(x: INTEGER); (*0 <= x <100000*) 
 VAR i: INTEGER; buf: ARRAY 5 OF INTEGER; 
BEGIN i := 0; 
 REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0; 
 REPEAT DEC(i); Write(CHR(buf[i] + ORD("0"))) UNTIL i = 0 
END WriteInt 
 
PROCEDURE WriteString(s: ARRAY OF CHAR); 
 VAR i: INTEGER; 
BEGIN i := 0; 
 WHILE (i < LEN(s)) & (s[i] # 0X) DO Write(s[i]); INC(i) END 
END WriteString; 
 
PROCEDURE log2(x: INTEGER): INTEGER; 
 VAR y: INTEGER; (*assume x>0*) 
BEGIN 
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 y := 0; WHILE x > 1 DO x := x DIV 2; INC(y) END; 
 RETURN y 
END log2 

A.10.2 Type-Bound Procedures 

Globally declared procedures may be associated with a record type 
declared in the same module. The procedures are said to be bound 
to the record type. The binding is expressed by the type of the 
receiver in the heading of a procedure declaration.  The receiver 
may be either a variable parameter of record type T or a value 
parameter of type POINTER TO T (where T is a record type). The 
procedure is bound to the type T and is considered local to it. 

 
ProcedureHeading = PROCEDURE [Receiver] IdentDef [FormalParameters]. 
Receiver  = "(" [VAR] ident ":" ident ")". 
 

If a procedure P is bound to a type T0, it is implicitly also bound to 
any type T1 that is an extension of T0. However, a procedure P ' 
(with the same name as P) may be explicitly bound to T1, in which 
case it overrides the binding of P. P ' is considered a redefinition of 
P for T1. The formal parameters of P and P ' must match (see 
A.12.1). If P and T1 are exported (see A. 4), P ' must be exported, 
too. 

If v is a designator and P is a type-bound procedure, then v.P 
denotes that procedure P that is bound to the dynamic type of v 
(dynamic binding). Note that this may be a different procedure than 
the one bound to the static type of v. v is passed to P's receiver 
according to the parameter passing rules specified in A.10.1. 

If r is a receiver parameter declared with type T, r.P ^ denotes 
the (redefined) procedure P bound to the base type of T. 

In a forward declaration of a type-bound procedure, the 
receiver parameter must be of the same type as in the actual 
procedure declaration. The formal parameter lists of both 
declarations must match (A.12.1).  

 
Examples: 

 
PROCEDURE (t: Tree) Insert (node: Tree); 
 VAR p, father: Tree; 
BEGIN 
 p := t; 
 REPEAT father := p; 
  IF node.key = p.key THEN RETURN END; 
  IF node.key < p.key THEN p := p.left ELSE p := p.right END 
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 UNTIL p = NIL; 
 IF node.key < father.key THEN father.left := node 
 ELSE father.right := node 
 END; 
 node.left := NIL; node.right := NIL 
END Insert; 
 
PROCEDURE (t: CenterTree) Insert (node: Tree);  (*redefinition*) 
BEGIN 
 WriteInt(node(CenterTree).width); 
 t.Insert^ (node)  (* calls the Insert procedure bound to Tree *) 
END Insert; 

A.10.3 Predeclared Procedures 

The following table lists the predeclared procedures. Some are 
generic procedures, i.e., they apply to several types of operands. v 
stands for a variable, x and n for expressions, and T for a type. 
 
 

Function procedures 
 

Name Argument type result type Function 
 

ABS(x) numeric type type of x absolute value 

ASH(x, n) x, n: integer type LONGINT arithmetic shift (x * 2n) 
CAP(x) CHAR CHAR x is letter: corresp.onding capital letter 
CHR(x) integer type CHAR character with  ordinal  number x 
ENTIER(x) real type LONGINT largest integer not greater than x 
LEN(v, n) v: array; LONGINT length of v in dimension n 
 n: integer constant  (first dim. = 0) 
LEN(v) v: array LONGINT equivalent to LEN(v, 0) 
LONG(x) SHORTINT INTEGER identity 
 INTEGER LONGINT identity 
 REAL LONGREAL identity 
MAX(T) T = basic type T maximum value of type T 
 T = SET INTEGER maximum element of a set 
MIN(T) T = basic type T minimum value of type T 
 T = SET INTEGER 0 
ODD(x) integer type BOOLEAN x MOD 2 = 1 
ORD(x) CHAR INTEGER ordinal number of x 
SHORT(x) LONGINT INTEGER identity 
 INTEGER SHORTINT identity 
 LONGREAL REAL identity (truncation  possible) 
SIZE(T) any type integer type number of bytes required by T 
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Proper procedures 
 

Name Argument types Function 
 

COPY(x, v) x: char. array, string; v: char. array  v := x 
DEC(v) integer type v := v - 1 
DEC(v, n) v, n: integer type v := v - n 
EXCL(v, x) v: SET; x: integer type v := v - {x} 
HALT(x) integer constant terminate program 
INC(v) integer type v := v + 1 
INC(v, n) v, n: integer type v := v + n 
INCL(v, x) v: SET; x: integer type v := v + {x} 
NEW(v) pointer to record or fixed array  allocate v ^ 
NEW(v, x0, …, xn) v: pointer to open array; xi: int. type allocate v ^  with  lengths x0.. xn 

 

COPY allows the assignment between (open) character arrays with 
different types. If necessary, the source is shortened to the target 
length minus one. The target is always terminated by the character 
0X. In HALT(x), the interpretation of x is left to the underlying 
system implementation. 

A.11 Modules 

A module is a collection of declarations of constants, types, 
variables, and procedures, together with a sequence of statements 
for the purpose of assigning initial values to the variables. A 
module constitutes a text that is compilable as a unit. 

 
Module  = MODULE ident ";" [ImportList] DeclarationSequence  
     [BEGIN StatementSequence] END ident ".". 
ImportList  = IMPORT Import {"," Import} ";". 
Import  = [ident ":="] ident. 
 

The import list specifies the names of the imported modules. If a 
module A is imported by a module M and A exports an identifier 
x, then x is referred to as A.x within M. If A is imported as B := A, 
the object x must be referenced as B.x. This allows short alias 
names in qualified identifiers. Identifiers that are to be exported 
(i.e., that are to be visible in client modules) must be marked by an 
export mark in their declaration (see A. 4). 

The statement sequence following the symbol BEGIN is 
executed when the module is added to a system (loaded), which is 
done after the imported modules have been loaded. It follows that 
cyclic import of modules is illegal. Individual (parameterless and 
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exported) procedures can be activated from the system, and these 
procedures serve as commands (see A.12.4). 

 
MODULE Trees;  
 
 IMPORT Texts, Oberon; 
 (* exports: Tree, Node, Insert, Search, Write, Init *) 
 (* exports read-only: Node.name *) 
 
 TYPE 
  Tree* = POINTER TO Node; 
  Node* = RECORD 
   name-: POINTER TO ARRAY OF CHAR; 
   left, right: Tree 
  END; 
 
 VAR w: Texts.Writer; 
 PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR); 
  VAR p, father: Tree; 
 BEGIN p := t; 
  REPEAT father := p; 
   IF name = p.name^ THEN RETURN END; 
   IF name < p.name^ THEN p := p.left ELSE p := p.right END 
  UNTIL p = NIL; 
  NEW(p); p.left := NIL; p.right := NIL;  
  NEW(p.name, LEN(name)+1); COPY(name, p.name^); 
  IF name < father.name^ THEN father.left := p  
  ELSE father.right := p 
  END 
 END Insert; 
 

 PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree; 
  VAR p: Tree; 
 BEGIN p := t; 
  WHILE (p # NIL) & (name # p.name^) DO 
   IF name < p.name^ THEN p := p.left ELSE p := p.right END 
  END; 
  RETURN p 
 END Search; 
 
 PROCEDURE (t: Tree) Write*; 
 BEGIN 
  IF t.left # NIL THEN t.left.Write END; 
  Texts.WriteString(w, t.name^); Texts.WriteLn(w); 
  Texts.Append(Oberon.Log, w.buf); 
  IF t.right # NIL THEN t.right.Write END 
 END Write; 
 

 PROCEDURE Init* (VAR t: Tree); 
  VAR t: Tree; 
 BEGIN 
  NEW(t.name, 1); t.name[0] := 0X; t.left := NIL; t.right := NIL 
 END Init; 
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BEGIN Texts.OpenWriter(w) 
END Trees. 
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A.12 Appendices to the Language Definition 

A.12.1 Definition of Terms 

 
Integer types SHORTINT, INTEGER, LONGINT 
Real types REAL, LONGREAL 
Numeric types integer types, real types 
 
Same types 
Two variables a and b with types Ta and Tb are of the same type if 
1. Ta and Tb are both denoted by the same type identifier, or 
2. Ta is declared to equal Tb in a type declaration of the form Ta = 

Tb, or 
3. a and b appear in the same identifier list in a variable, record 

field, or formal parameter declaration and are not open arrays. 
 
Equal types 
Two types Ta and Tb are equal if 
1. Ta and Tb are the same type,  or 
2. Ta and Tb are open array types with equal element types, or 
3. Ta and Tb are procedure types whose formal parameter lists 

match. 
 
Type inclusion 
Numeric types include (the values of) smaller numeric types 
according to the following hierarchy: 

 

LONGREAL � REAL � LONGINT � INTEGER � SHORTINT 
 
Type extension (base type) 
Given a type declaration Tb = RECORD (Ta) … END, Tb is a direct 
extension of Ta, and Ta is a direct base type of Tb. A type Tb is an 
extension of a type Ta (Ta is a base type of Tb) if 
1. Ta and Tb are the same types, or 
2. Tb is a direct extension of an extension of Ta 
If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an 
extension of Pa (Pa is a base type of Pb) if Tb is an extension of Ta. 
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Assignment compatibility 
An expression e of type Te is assignment compatible with a variable v 
of type Tv if one of the following conditions holds: 
1. Te and Tv are the same type. 
2. Te and Tv are numeric types and Tv includes Te. 
3. Te and Tv are record types and Te is an extension of Tv and the 

dynamic type of v is Tv . 
4. Te and Tv are pointer types and Te is an extension of Tv. 
5. Tv is a pointer or a procedure type and e is NIL. 
6. Tv is ARRAY n OF CHAR, e is a string constant with m 

characters, and m < n. 
7. Tv is a procedure type and e is the name of a procedure whose 

formal parameters match those of Tv. 
 
Expression compatibility 
For a given operator, the types of its operands are expression 
compatible if they conform to the following table (which also 
shows the result type of the expression).  Type T1 must be an 
extension of type T0: 
 

 
Operator  1st Operand 2nd Operand  Result Type 

 
+ - * numeric numeric smallest numeric type 
   including both opd. types 
/ numeric numeric smallest real  type  
   including both opd. types 
DIV MOD integer integer smallest integer type 
   including both opd. types 
+ - * / SET SET SET 
OR & ~ BOOLEAN BOOLEAN BOOLEAN 
= # < <= > >= numeric numeric BOOLEAN 
 CHAR CHAR BOOLEAN 
 character array, string  character array, string BOOLEAN   
= # BOOLEAN BOOLEAN BOOLEAN 
 SET SET BOOLEAN 
 NIL, pointer type T0 or T1  NIL, pointer type T0 or T1 BOOLEAN 
 NIL, procedure type T NIL, procedure type T BOOLEAN 
IN integer SET BOOLEAN 
IS type T0 type T1 BOOLEAN 

 

 
Array compatibility 
An actual parameter a of type Ta is array compatible with a formal 
parameter f of type Tf if 
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1. Tf and Ta are the same type, or 
2. Tf is an open array, Ta is any array, and their element types 

are array compatible, or 
3. Tf is ARRAY OF CHAR and a is a string. 
 
Matching formal parameter lists 
Two formal parameter lists match if 
1. they have the same number of parameters, and 
2. they have either the same function result type or none, and 
3. parameters at corresponding positions have equal types, and 
4. parameters at corresponding positions are both either value or 

variable parameters. 
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A.12.2 Syntax of Oberon-2 

Module  = MODULE ident ";" [ImportList] DeclSeq  
  [BEGIN StatSeq] END ident ".". 
ImportList  = IMPORT [ident ":="] ident {"," [ident ":="] ident} ";". 
DeclSeq  = { CONST {IdentDef "=" ConstExpr ";" } 
  | TYPE {IdentDef "=" Type ";"} 
  | VAR {IdentList ":" Type";"}} 
  {ProcDecl ";" | ForwardDecl ";"}. 
ProcDecl   = PROCEDURE [Receiver] IdentDef [FormalPars] ";" DeclSeq   
 [BEGIN StatSeq] END ident. 
ForwardDecl = PROCEDURE "^" [Receiver] IdentDef [FormalPars]. 
FormalPars  = "(" [FPSection {";" FPSection}] ")" [":" Qualident]. 
FPSection  = [VAR] ident {"," ident} ":" Type. 
Receiver  = "(" [VAR] ident ":" ident ")". 
Type  = Qualident 
  | ARRAY [ConstExpr {"," ConstExpr}] OF Type  
  | RECORD ["("Qualident")"] FieldList {";" FieldList} END 
  | POINTER TO Type 
  | PROCEDURE [FormalPars]. 
FieldList  = [IdentList ":" Type]. 
StatSeq = Statement {";" Statement}. 
Statement  = [ Designator ":=" Expr  
  | Designator ["(" [ExprList] ")"]  
  | IF Expr THEN StatSeq {ELSIF Expr THEN StatSeq} 
   [ELSE StatSeq] END  
  | CASE Expr OF Case {"|" Case} [ELSE StatSeq] END  
  | WHILE Expr DO StatSeq END  
  | REPEAT StatSeq UNTIL Expr  
  | FOR ident ":=" Expr TO Expr [BY ConstExpr] DO StatSeq END  
  | LOOP StatSeq END 
  | WITH Guard DO StatSeq {"|" Guard DO StatSeq} 
   [ELSE StatSeq] END 
  | EXIT  
  | RETURN [Expr]  ]. 
Case  = [CaseLabels {"," CaseLabels} ":" StatSeq]. 
CaseLabels = ConstExpr [".." ConstExpr]. 
Guard  = Qualident ":" Qualident. 
ConstExpr = Expr. 
Expr  = SimpleExpr [Relation SimpleExpr]. 
SimpleExpr  = ["+" | "-"] Term {AddOp Term}. 
Term  = Factor {MulOp Factor}. 
Factor   = Designator ["(" [ExprList] ")"] | number | character  
  | string | NIL | Set | "(" Expr ")" | " ~ " Factor. 
Set  = {" [Element {"," Element}] "}". 
Element  = Expr [".." Expr]. 
Relation  = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS. 
AddOp  = "+" | "-" | OR. 
MulOp = " * " | "/" | DIV | MOD | "&". 
Designator = Qualident {"." ident | "[" ExprList "]" | " ^ "  | "(" Qualident ")"}. 
ExprList = Expr {"," Expr}. 
IdentList = IdentDef {"," IdentDef}. 
Qualident = [ident "."] ident. 
IdentDef = ident [" * " | "-"]. 
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A.12.3 The Module SYSTEM 

The module SYSTEM contains certain types and procedures that 
are necessary to implement low-level operations particular to a 
given computer and/or operating system. These include, for 
example, facilities for accessing devices that are controlled by the 
computer, and facilities to break the type compatibility rules 
otherwise imposed by the language definition. 

It is strongly recommended that the use of the module 
SYSTEM be restricted to specific modules (called low-level 
modules). Such modules are inherently nonportable and unsafe, 
but easily recognized due to the identifier SYSTEM appearing in 
their import list. The following specifications hold for the 
implementation of Oberon-2 on the Ceres computer. 

Module SYSTEM exports a type BYTE with the following 
characteristics: Variables of type CHAR or SHORTINT can be 
assigned to variables of type BYTE. If a formal variable parameter 
is of type ARRAY OF BYTE, then the corresponding actual para-
meter may be of any type. 

Another type exported by module SYSTEM is the type PTR. 
Variables of any pointer type may be assigned to variables of type 
PTR. If a formal variable parameter is of type PTR, the corres-
ponding actual parameter may be any pointer type. If the actual 
parameter is a pointer to a record type T the address of the type 
descriptor of T is passed as the actual parameter. 

The procedures contained in module SYSTEM are listed in the 
following tables. Most of them correspond to single instructions 
compiled as in-line code. For details, the reader is referred to the 
processor manual. v stands for a variable, x, y, a, and n for 
expressions, and T for a type. 

 
 

Function procedures 

 
 

Name Argument types Result type Function 
 

ADR(v) any LONGINT address of variable v 
BIT(a, n) a: LONGINT; n: integer BOOLEAN bit n of Mem[a] 
CC(n) integer constant BOOLEAN condition n (0 ≤ n ≤ 15) 
LSH(x, n) x: integer, CHAR, BYTE; n: integer type of x logical shift 
ROT(x, n) x: integer, CHAR, BYTE; n: integer type of x rotation 
VAL(T, x) T, x: any type T x interpreted as of type T 
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Proper procedures 
 

 
Name Argument types Function 

 
GET(a, v) a: LONGINT;  v := M[a] 
 v: any basic type, pointer, procedure type 
PUT(a, x) a: LONGINT;  M[a] := x 
 x: any basic type, pointer, procedure type 
GETREG(n, v) n: integer constant;  v := Registern 
 v: any basic type, pointer, procedure type 
PUTREG(n, x) n: integer constant;  Registern := v 

 x: any basic type, pointer, procedure type 
MOVE(a0, a1, n) a0, a1: LONGINT; n: integer M[a1..a1 +n-1] :=  M[a0..a0 +n-1] 
NEW(v, n) v: any pointer; n: integer allocate n bytes of memory; 
  assign its address to v 

 

A.12.4 The Oberon Environment 

Oberon-2 programs usually run in an environment that provides 
command activation, garbage collection, dynamic loading of modules, 
and certain run-time data structures. Although not part of the 
language, this environment contributes to the power of Oberon-2 
and is to some degree implied by the language definition. This 
section describes the essential features of a typical Oberon 
environment and provides implementation hints. More details can 
be found in [WiG92], [Rei91], and [PHT91]. 
 
Commands 

 
A command is any parameterless procedure P that is exported 
from a module M. It is denoted by M.P and can be activated under 
this name from the shell of the operating system. In Oberon, a user 
invokes commands instead of programs or modules. This gives the 
user a finer grain of control and allows modules with multiple 
entry points. When a command M.P is invoked, the module M is 
dynamically loaded unless it is already in memory and the pro-
cedure P is executed. When P terminates, M remains loaded. All 
global variables and data structures that can be reached from 
global pointer variables in M retain their values. When P (or 
another command of M) is invoked again, it may continue to use 
these values. 
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The following module demonstrates the use of commands. It 
implements an abstract data structure Counter that encapsulates a 
counter variable and provides commands to increment and print 
its value. 

 
MODULE Counter; 
IMPORT Texts, Oberon; 
 
VAR 
 counter: LONGINT; 
 w: Texts.Writer; 
 
PROCEDURE Add*; (*takes a numeric argument from the command line*) 
 VAR s: Texts.Scanner; 
BEGIN  
 Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos); 
 Texts.Scan(s); 
 IF s.class = Texts.Int THEN INC(counter, s.i) END 
END Add; 
 
PROCEDURE Write*; 
BEGIN 
 Texts.WriteInt(w, counter, 5); Texts.WriteLn(w); 
 Texts.Append(Oberon.Log, w.buf) 
END Write; 
 
BEGIN counter := 0; Texts.OpenWriter(w) 
END Counter. 
 

The user may execute the following two commands: 
 
Counter.Add   n  adds value n to variable counter 
Counter.Write   writes current value of counter to screen 

 
Since commands are parameterless, they have to get their 
arguments from the operating system. In general, commands are 
free to take arguments from anywhere (e.g., from the text 
following the command, from the most recent selection, or from a 
marked viewer). The command Add uses a scanner (a data type 
provided by the Oberon system) to read the value that follows it 
on the command line. 

When Counter.Add is invoked for the first time, the module 
Counter is loaded and its body is executed. Every call of 
Counter.Add n increments the variable counter by n. Every call of 
Counter.Write writes the current value of counter to the screen. 

Since a module remains loaded after the execution of its 
commands, there must be an explicit way to unload it (e.g., when 
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the user wants to substitute a recompiled version for the loaded 
version.) The Oberon system provides a command to do that. 

 
Dynamic Loading of Modules 
 
A loaded module may invoke a command of a still unloaded 
module by calling the loader and passing the name of the desired 
command as a parameter. The specified module is then dynami-
cally loaded and the designated command is executed. Dynamic 
loading allows the user to start a program as a small set of basic 
modules and to extend it by adding further modules at run time as 
the need becomes evident. 

A module M0 may cause the dynamic loading of a module M1 
without importing it. M1 may of course import and use M0, but 
M0 need not know about the existence of M1. M1 can be a module 
that is designed and implemented long after M0. 

 
Garbage Collection 
 
In Oberon-2, the predeclared procedure NEW is used to allocate 
data blocks in free memory. There is, however, no way to explicitly 
dispose of an allocated block. Rather, the Oberon environment 
uses a garbage collector to find the blocks that are not referenced by 
a pointer any more and to make them available for allocation 
again. 

A garbage collector frees a programmer from the nontrivial 
task of deallocating data structures correctly and thus helps to 
avoid errors. However, it requires information about dynamic data 
at run time. 

 
Browser 
 
The interface of a module (the declaration of the exported objects) 
is extracted from the module by a browser, which is a separate tool 
of the Oberon environment. For example, the browser produces 
the following interface of the module Trees from A.11. 

 
DEFINITION Trees;  
 TYPE 
  Tree = POINTER TO Node; 
  Node = RECORD 
   name: POINTER TO ARRAY OF CHAR; 
   PROCEDURE (t: Tree) Insert (name: ARRAY OF CHAR); 
   PROCEDURE (t: Tree) Search (name: ARRAY OF CHAR): Tree; 
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   PROCEDURE (t: Tree) Write; 
  END; 
 PROCEDURE Init (VAR t: Tree); 
END Trees. 
 

For a record type, the browser also collects all procedures bound to 
this type and shows their declaration in the record type 
declaration.  

 
Run-Time Data Structures 
 
Certain information about records has to be available at run time: 
The dynamic type of records is needed for type tests and type 
guards. A table with the addresses of the procedures bound to a 
record is needed for calling them using dynamic binding. Finally, 
the garbage collector needs information about the locations of 
pointers in dynamically allocated records. All that information is 
stored in type descriptors, of which there is one for every record 
type at run time. The following paragraphs show a possible 
implementation of type descriptors. 

The dynamic type of a record corresponds to the address of its 
type descriptor. For dynamically allocated records, this address is 
stored in a type tag, which precedes the actual record data and is 
invisible to the programmer. If t is a variable of type CenterTree 
(see the example in A.6), Figure A.12.1 shows one possible 
implementation of the run-time data structures. 

t

t^

Type descriptor 
of CenterNode

ProcTab

BaseTypes

Pointer offsets in t^
(for garbage collector)

Type tag

key
left
right
width
subnode

4

0
4
8

12
16

Node
CenterNode

8
16

NIL
NIL

 

Fig. A.12.1  A variable t of type CenterTree, the record t^ of type 
CenterNode, and its type descriptor 

Since both the table of procedure addresses and the table of pointer 
offsets must have a fixed offset from the type descriptor address, 
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and since both may grow when the type is extended and further 
procedures and pointers are added, the tables are located at the 
opposite ends of the type descriptor and grow in different 
directions. 

A type-bound procedure t.P is called as t.tag.ProcTab[IndexP]. 
The procedure table index of every type-bound procedure is 
known at compile time. A type test v IS T is translated into 
v.tag.BaseTypes[ExtensionLevelT] = TypeDescrAdrT. Both the exten-
sion level of a record type and the address of its type descriptor are 
known at compile time. For example, the extension level of Node is 
0 (it has no base type), and the extension level of CenterNode is 1. 



 

B The Module OS 

OS is a cover module for various constants, types, variables and 
procedures of the Oberon System that are used in examples 
throughout this book. It serves to keep the interface between the 
examples and the Oberon System small and permits us to avoid a 
description of the complete Oberon module library. (Interested 
readers are referred to [Rei91].) 
 
DEFINITION OS; Interface of OS 
 IMPORT Display, Files, Fonts; (*Oberon modules that are not explained here*) 
 
 CONST 
  right = 0; middle = 1; left = 2; (*mouse button codes*) 
  ticks = 300; (*OS.Time returns the time in units of 1/ticks seconds*) 
 
 TYPE 
  File = Files.File; 
  Font = Fonts.Font; 
  Message = RECORD END; (*base type for all message records*) 
  Object = POINTER TO ObjectDesc; 
  Pattern = Display.Pattern; 
 
  Rider = RECORD (Files.Rider) (*read/write position in a file*) Rider 
   PROCEDURE (VAR r: Rider) Set (f: Files.File; pos: LONGINT); 
   PROCEDURE (VAR r: Rider) Read (VAR x: CHAR); 
   PROCEDURE (VAR r: Rider) ReadString (VAR s: ARRAY OF CHAR); 
   PROCEDURE (VAR r: Rider) ReadInt (VAR x: INTEGER); 
   PROCEDURE (VAR r: Rider) ReadLInt (VAR x: LONGINT); 
   PROCEDURE (VAR r: Rider) ReadObj (VAR x: Object); 
   PROCEDURE (VAR r: Rider) ReadChars  
    (VAR x: ARRAY OF CHAR; n: LONGINT); 
   PROCEDURE (VAR r: Rider) Write (x: CHAR); 
   PROCEDURE (VAR r: Rider) WriteString (s: ARRAY OF CHAR); 
   PROCEDURE (VAR r: Rider) WriteInt (x: INTEGER); 
   PROCEDURE (VAR r: Rider) WriteLInt (x: LONGINT); 
   PROCEDURE (VAR r: Rider) WriteObj (x: Object); 
   PROCEDURE (VAR r: Rider) WriteChars  
    (VAR x: ARRAY OF CHAR; n: LONGINT); 
  END; 
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  ObjectDesc = RECORD Object 
   PROCEDURE (x: Object) Load (VAR r: Rider); 
   PROCEDURE (x: Object) Store (VAR r: Rider); 
  END; 
 
 VAR 
  Caret-: Pattern; 
  screenH-, screenW-: INTEGER; (*screen height and width in pixels*) 
 
 PROCEDURE CopyBlock (sx, sy, w, h, dx, dy: INTEGER); Screen operations 
 PROCEDURE FillBlock (x, y, w, h: INTEGER); 
 PROCEDURE EraseBlock (x, y, w, h: INTEGER); 
 PROCEDURE InvertBlock (x, y, w, h: INTEGER); 
 PROCEDURE DrawPattern (pat: Pattern; x, y: INTEGER); 
 PROCEDURE DrawCursor (x, y: INTEGER); 
 PROCEDURE FadeCursor; 
 
 PROCEDURE DefaultFont (): Font; Font operations 
 PROCEDURE FontWithName (name: ARRAY OF CHAR): Font; 
 PROCEDURE GetCharMetric (f: Font; ch: CHAR; 
  VAR dx, x, y, w, h: INTEGER; VAR pat: Pattern); 
 
 PROCEDURE AvailChars (): INTEGER; Mouse and 

keyboard 
operations 

 PROCEDURE ReadKey (VAR ch: CHAR); 
 PROCEDURE GetMouse (VAR buttons: SET; VAR x, y: INTEGER); 
 
 PROCEDURE NewFile (name: ARRAY OF CHAR): File; File operations 
 PROCEDURE OldFile (name: ARRAY OF CHAR): File; 
 PROCEDURE Register (f: File); 
 PROCEDURE InitRider (VAR r: Rider); 
 
 PROCEDURE NameToObj (name: ARRAY OF CHAR; VAR obj: Object); Miscellaneous 
 PROCEDURE Move (VAR fromBuf: ARRAY OF CHAR; from: LONGINT; 
  VAR toBuf: ARRAY OF CHAR; to, n: LONGINT); 
 PROCEDURE Time (): LONGINT; 
 PROCEDURE Call (command: ARRAY OF CHAR); 
 
END OS. 
 
CopyBlock (sx, sy, w, h, dx, dh) Screen operations 
 copies the rectangular screen area (sx, sy, w, h) to (dx, dy, w, h). 
FillBlock (x, y, w, h) 
 fills the rectangular screen area (x, y, w, h). 
EraseBlock (x, y, w, h) 
 deletes the rectangular screen area (x, y, w, h). 
InvertBlock (x, y, w, h) 
 inverts the rectangular screen area (x, y, w, h). 
DrawPattern (pat, x, y) 
 copies the rectangular bit pattern pat to the screen position 

with left bottom corner (x, y). 
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DrawCursor (x, y) 
 moves the mouse pointer to position (x, y). 
FadeCursor  
 hides the mouse pointer. 
 
f := DefaultFont ()  Font operations 
 returns the standard font. 
f := FontWithName (n) 
 returns the font with the name n. 
GetCharMetric (fnt, ch, dx, x, y, w, h, pat) 
 returns the character metrics (x, y, w, h, dx) and the bit pattern 

pat of the character ch in font fnt. The meaning of the metrics is 
shown in Fig. 11.22. 

 
n := AvailChars ()  Mouse and 

keyboard 
operations 

 returns the number of characters in the keyboard buffer. 
ReadKey (ch) 
 reads and removess the next character ch from the keyboard 

buffer. If the buffer is empty, the method stalls until a cha-
racter is typed in. 

GetMouse (b, x, y) 
 returns the mouse coordinates (x, y) relative to the lower left 

corner of the screen as well as the set b of pressed mouse 
buttons (0 = right, 1 = middle, 2 = left). 

 
f := NewFile (n) File operations 
 creates a new (temporary) file f with name n and opens it. 
f := OldFile (n) 
 opens an existing file f with name n. If no such file exists, f = 

NIL. 
Register (f)  
 transforms the temporary file f created with NewFile into a 

permanent file. 
InitRider (r)  
 initializes the rider r (see Section 8.3). 
 
r.Set (f, pos)  Methods of class 

Rider  sets rider r to position pos in file f. 
r.Read (ch)  
 reads character ch from rider r. 
r.ReadInt (x)  
 reads integer x from rider r. 
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r.ReadLInt (x)  
 reads long integer x from rider r.  
r.ReadString (s) 
 reads string s (stored in compressed form) from rider r. 
r.ReadChars (buf, len) 
 reads len characters from rider r into buffer buf. 
r.ReadObj (obj) 
 creates and reads an arbitrary object written with WriteObj 

and returns it in obj (see Section 8.3). 
r.Write (ch)  
 writes character ch to rider r. 
r.WriteInt (x)  
 writes integer x to rider r. 
r.WriteLInt (x)  
 writes long integer x to rider r. 
r.WriteString (s) 
 writes string s in compressed form to rider r. 
r.WriteChars (buf, len) 
 writes len characters from buffer buf to rider r. 
r.WriteObj (obj) 
 writes an arbitrary object obj to rider r (see Section 8.3). 
 
NameToObj (name, obj)  Other operations 
 The parameter name is a string of the form "M.T". NameToObj 

creates a record of type T exported by module M and returns a 
pointer to it in obj. If the module or type name is incorrect or 
the created object is not assignment compatible with obj, NIL 
is returned. 

Move (buf0, pos0, buf1, pos1, len) 
 copies len bytes from buf0[pos0] to buf1[pos1]. 
t := Time ()  
 returns the elapsed time since system start in 1/ticks seconds 

(ticks being a constant declared in OS). 
Call (cmd)  
 activates the command cmd and loads the module containing 

the command if it is not already loaded. 



 

C The Module IO 

Module IO handles simple input/output of numbers, characters 
and strings. Input is handled via a scanner that is able to read 
various symbols in a text. Output is via procedures. 

To read a text, a scanner s is set to the desired text position via 
s.Set. Successive symbols can be read via s.Read. 

For output, a text t must be assigned to the variable out and its 
write position must be set via t.SetPos. Output routines write to 
the text out starting at position out.pos. 

 
DEFINITION IO; Interface of IO 
 IMPORT Texts0; 
 
 CONST none = 0; integer = 1; name = 2; string = 3; char = 4; 
 
 TYPE 
  Scanner = RECORD Scanner 
   text-: Texts0.Text;    (*text to which scanner is set*) 
   class-: INTEGER;    (*class of recognized symbol*) 
   int-: LONGINT;     (*filled if class=integer*) 
   str-: ARRAY 32 OF CHAR; (*filled if class=string or name*) 
   ch-: CHAR;      (*filled if class=char*) 
   PROCEDURE (VAR s: Scanner) Set (t: Texts0.Text; pos: LONGINT); 
   PROCEDURE (VAR s: Scanner) SetToParameters; 
   PROCEDURE (VAR s: Scanner) Read; 
   PROCEDURE (VAR s: Scanner) Eot (): BOOLEAN; 
   PROCEDURE (VAR s: Scanner) Pos (): LONGINT; 
  END ; 
 
 VAR out: Texts0.Text;  (*output procedures write to this text*) 
 
 PROCEDURE Ch (ch: CHAR); Output routines 
 PROCEDURE Str (s: ARRAY OF CHAR); 
 PROCEDURE Int (x: LONGINT; w: INTEGER); 
 PROCEDURE Real (x: REAL; w: INTEGER); 
 PROCEDURE NL; 
 
END IO. 
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s.Set(t, pos)  Scanner 
messages  sets the scanner s to position pos in text t. 

s.SetToParameters 
 sets the scanner s to the text after the last command clicked. 

This permits reading of command parameters. 
s.Read  
 reads the next symbol from the current scanner position and 

returns its value in s.int, s.str or s.ch. s.class specifies the kind 
of symbol read. Blanks are skipped. Examples: 

 
 Input Kind of Symbol Value in 
 <eot> s.class = none  – 
 123 s.class = integer  s.int 
 -123 s.class = integer  s.int 
 xxx s.class = name  s.str 
 xxx.yyy s.class = name  s.str 
 "xxx" s.class = string  s.str (no quotes) 
 other s.class = char s.ch 
 
bool := s.Eof () 
 returns TRUE if no more symbols can be read from the 

scanner s, otherwise FALSE. 
pos := s.Pos () 
 returns the current text position of the scanner s. 
 
Str(s)  Output routines 
 outputs the string s. 
Ch(ch)  
 outputs the character ch. 
Int(i, w)  
 outputs the signed integer i right-justified in a character field 

of width w. 
Real(r, w)  
 outputs the real number r in a character field of width w (e.g., 

Real(123.45, 7) = 0.12E02). 
NL  
 causes a line feed. 



 

D How to Get Oberon 

The Oberon System, including the Oberon-2 compiler and various 
tools such as a text editor, a graphics editor and a browser, is 
available at no cost. It can either be obtained via ftp from ETH 
Zurich or ordered from Springer-Verlag on diskette. 

The Oberon System is currently available for Sun SPARC-
Station, DECstation, IBM RS/6000, Apple Macintosh II and IBM-
PC (MS-DOS). Oberon-2 compilers are currently available for Sun 
SPARCStation, DECstation and IBM RS/6000. 

The parameters for the ftp program are: 

Oberon 

Platforms 

ftp 
 

Ftp host name:  neptune.inf.ethz.ch 
Internet address:  129.132.101.33 
Login name:   ftp 
Password:    <your e-mail address> 
Ftp directory:   Oberon 

 
Oberon can also be purchased from Springer-Verlag on diskette. 
Please specify the computer version. 

In addition to this book on Oberon-2 and its application in 
object-oriented programming, the following books serve as a 
documentation of Oberon: 

Diskette 

Documentation 

 
• N. Wirth and M. Reiser Programming in Oberon. Steps beyond 

Pascal and Modula-2. Addison-Wesley 1992 
 Tutorial for the Oberon programming language and concise 

language reference. 
 
• M. Reiser: The Oberon System. User Guide and Programmer's 

Manual. Addison-Wesley, 1991 
 User manual for the programming environment and reference 

for the standard module library. 
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• N. Wirth and J. Gutknecht: Project Oberon. Addison-Wesley, 1992 
 Program listings with explanations for the whole Oberon 

System, including the compiler for the NS32000. 
 
The source code for Oberon0 described in Chapter 11 can also be 
obtained at no cost so that the reader can play with it and extend 
it. The source code is available via the same ftp address as 
specified above. It is in the subdirectory Oberon0. If the Oberon 
System is purchased on diskette, the source code of Oberon0 is 
included. 

Oberon0 
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