

Hanspeter Mössenböck

Object-Oriented
Programming
in Oberon-2
Second Edition

© Springer‐Verlag Berlin Heidelberg 1993, 1994

This book is out of print and is made available as PDF with the friendly permission of
Springer‐Verlag

Contents

1 Overview ... 1

1.1 Procedure-Oriented Thinking ... 1
1.2 Object-Oriented Thinking .. 2
1.3 Object-Oriented Languages ... 3
1.4 How OOP Differs from Conventional Programming...... 6
1.5 Classes as Abstraction Mechanisms 9
1.6 History of Object-Oriented Languages 11
1.7 Summary .. 12

2 Oberon-2.. 13
2.1 Features of Oberon-2 .. 14
2.2 Declarations ... 14
2.3 Expressions .. 16
2.4 Statements .. 18
2.5 Procedures.. 19
2.6 Modules.. 21
2.7 Commands ... 25

3 Data Abstraction .. 29
3.1 Concrete Data Structures ... 29
3.2 Abstract Data Structures .. 32
3.3 Abstract Data Types.. 35

4 Classes ... 39
4.1 Methods.. 39
4.2 Classes and Modules .. 43
4.3 Examples .. 44
4.4 Common Questions .. 47

xii Contents

5 Inheritance .. 49
5.1 Type Extension .. 49
5.2 Compatibility of a Base Type and its Extension 52
5.3 Static and Dynamic Type ... 55
5.4 Run-Time Type Checking .. 57
5.5 Extensibility in an Object-Oriented Sense........................ 59
5.6 Common Questions .. 62

6 Dynamic Binding... 63
6.1 Messages... 63
6.2 Abstract Classes... 65
6.3 Examples .. 67
6.4 Message Records ... 70
6.5 Common Questions .. 74

7 Typical Applications ... 75
7.1 Abstract Data Types.. 75
7.2 Generic Components .. 77
7.3 Heterogeneous Data Structures .. 82
7.4 Replaceable Behavior.. 87
7.5 Adaptable Components.. 89
7.6 Semifinished Products.. 92
7.7 Summary .. 94

8 Useful Techniques... 95
8.1 Initialization of Objects... 95
8.2 Extending a System at Run Time 97
8.3 Persistent Objects .. 99
8.4 Wrapping Classes in Other Classes 104
8.5 Extensibility in Multiple Dimensions............................. 105
8.6 Multiple Inheritance ... 108
8.7 Models and Views... 112
8.8 Iterators... 116
8.9 Modifying Inherited Methods ... 118

9 Object-Oriented Design ... 121
9.1 Functional Design ... 121
9.2 Object-Oriented Design .. 122
9.3 Identifying the Classes ... 123
9.4 Designing the Interface of a Class................................... 128
9.5 Abstract Classes... 131
9.6 Relationships between Classes.. 132
9.7 When to Use Classes ... 135

 Contents xiii

9.8 Common Design Errors.. 137
10 Frameworks .. 143

10.1 Subsystems and Frameworks .. 143
10.2 The MVC Framework ... 146
10.3 A Framework for Objects in Texts 147
10.4 Application Frameworks.. 149

11 Oberon0 – A Case Study .. 153
11.1 The Viewer System.. 154
11.2 Handling User Input... 164
11.3 A Text Editor .. 165
11.4 A Graphics Editor.. 197
11.5 Embedding Graphics in Texts 209

12 Costs and Benefits of OOP .. 215
12.1 Benefits.. 215
12.2 Costs .. 217
12.3 The Future .. 220

A Oberon-2 – Language Definition.. 221
A.1 Introduction.. 221
A.2 Syntax.. 221
A.3 Vocabulary and Representation 222
A.4 Declarations and Scope Rules.. 223
A.5 Constant Declarations... 225
A.6 Type Declarations.. 225
A.7 Variable Declarations.. 228
A.8 Expressions... 229
A.9 Statements... 233
A.10 Procedure Declarations... 238
A.11 Modules .. 243
A.12 Appendices to the Language Definition 245

B The Module OS.. 255

C The Module IO... 259

D How to Get Oberon ... 261

Bibliography.. 263

Index ... 267

Foreword

Without a doubt the idea of object-oriented programming has
brought some motion into the field of programming methodology
and enlarged the set of programming languages. Object-oriented
programming is nothing new—it first arose in the sixties. The
motivation came from the simulation of discrete event systems.
The concept first manifested itself in the language Simula 67. It
took nearly two decades for the method to gain impetus, and
today object-oriented programming is an important concept and a
powerful technique. Meanwhile, we can even speak of an over-
reaction, for the concept has become a buzzword. But buzzwords
always appear where there is the hope of exploiting ill-informed
clients because they see the new approach as the solution to all
their problems. Thus object-oriented programming is often hailed
as a panacea. And so the question is justified: What is really
behind it?

To let the cat out of the bag: There is more to object-oriented
programming than merely putting data as objects in the fore-
ground, instead of algorithms to which the data are subject. It is
more than purely an alternative view of programmed systems. To
identify the essence of object-oriented programming, is the subject
of this book. This is a textbook that shows in a didactically skillful
way which concepts and constructs are new, where they can be
employed reasonably, and what advantages they offer. For, not all
programs are automatically improved by merely recasting them in
an object-oriented style. On the contrary, the new method can only
be applied sensibly where complex data structures are present. It
would be unwise to prematurely discard the conventional view.

It is to the author's credit that he introduces the concepts of
object-oriented programming in a constructive way, demonstrates
them in an evolutionary manner, and uses suitable examples to
show how these concepts can be employed judiciously. The pro-

ii Foreword

gramming language Oberon-2 provides an excellent foundation
because it adds only the few typically object-oriented concepts to
those of conventional procedural programming but no more. The
reader should always be aware that not the language but the
methodology and discipline constitute the essential concern of the
book. The language only serves the purpose of formulation in a
clear and concise manner. We speak of a language supporting a
method; Oberon-2 supports object-oriented programming.

The object-oriented paradigm holds so much promise especi-
ally for complex systems, because the technique of object-oriented
programming makes it possible to create modular systems that are
truly extensible. By extensible we mean that not only new opera-
tions can be added that build on old ones, but that the same is true
for data types and their instances. These comments indicate that
object orientation comes to full fruition only when combined with
modularity and strict typing of data.

This book is a well-organized introduction to this new field. It
is obvious that the author draws on a wealth of experience gained
in years of intensive work in the area and in successful teaching.
The book is an enrichment for anyone interested in modern pro-
gramming techniques.

Niklaus Wirth, Zurich, 1993

Preface

Object-oriented programming (OOP) has become a buzzword that
is prominently displayed in numerous journals and advertise-
ments. What is OOP all about? Is it merely a marketing fad, or
does it really denote something new and useful, perhaps even a
new panacea?

To be short, OOP is no panacea. Contrary to the claims made
by some vendors, it does not make programming a trivial task.
OOP requires a sizable portion of ability and experience—perhaps
even more than traditional programming techniques do. However,
OOP definitely has its strengths: it often permits more elegant
solutions than are possible with conventional techniques; it pro-
motes modularity and thus readability and maintainability of
programs; and it contributes to the extensibility and reusability of
software.

This book is aimed at students of computer science as well as
at practitioners who want to gain a perspective on new software
development methods. Since more and more languages are being
extended to include object-oriented features, this book also
addresses programmers who want to make better use of these new
features.

The goal of this book is to convey the fundamentals of OOP,
namely classes, inheritance and dynamic binding. The emphasis is
on the concepts rather than on the specifics of a particular pro-
gramming language. In addition, readers should learn to
determine for which problems OOP is most suitable, and which
problems would be better solved with conventional means.

Object-oriented programming is programming in the large.
Although its principles can be explained on the basis of small
examples, wider reaching examples are necessary in order to
convey the power and elegance of this technique. This is precisely
what is missing in most books on the subject. Chapter 11 thus

ii Preface

presents the design and implementation of an adequately large
system, including source code, in order to drive home the ideas
behind object-oriented programming.

The examples in this book are not coded in any of the
widespread languages such as Smalltalk or C++. Instead, Oberon-2,
a language in the tradition of Pascal and Modula-2, was selected.
The reason for this choice is that Oberon-2 is more compact than
most of the other object-oriented languages; in fact, it is even
smaller than Pascal, which makes it possible to master the lan-
guage quickly. Object-oriented elements are smoothly integrated
into the language without displacing proven constructs such as
records, arrays and procedures. Once the reader has understood
the concepts presented in this book, it should be easy to transfer
them to any other language.

However, if the reader takes a liking to Oberon-2, the Oberon
System, complete with compiler, editor and several other tools, can
be obtained at no charge. Implementations are available for several
platforms (see Appendix D). The case study printed in Chapter 11
is also available as source code.

The Oberon System was developed by Professors Niklaus
Wirth and Jürg Gutknecht 1985-1987 at ETH Zürich [WiG92]. It
consists not only of the Oberon language, but also of an operating
system with the same name. The design of Oberon reflects the
experience of the man who developed Algol W, Pascal and
Modula-2. In Oberon-2, the author of this book added several
extensions to the Oberon language that make it more suitable for
object-oriented programming.

This book is neither a general introduction to programming
nor a handbook for Oberon-2; these tasks are covered by other
texts [ReW92, Rei91]. The reader is assumed to be familiar with an
imperative language such as Pascal or Modula-2. Chapter 2
explains Oberon-2 only enough to enable comprehension of the
examples in this book. Appendix A contains the complete
language definition.

I want to express both gratitude and admiration for the two
designers of Oberon for their elegant design of the operating
system and the language, as well as for the ergonomic and efficient
implementation that makes working with Oberon a pleasure.

I owe many of the examples to my assistants, Robert Griesemer,
Clemens Szyperski and Josef Templ. Josef Templ also contributed
valuable ideas for Oberon-2.

 Preface iii

Last but not least, I want to thank Prof. Peter Rechenberg, Prof.
Jörg R. Mühlbacher, Dr. Martin Reiser, Dr. Günther Blaschek, and Dr.
Erich Gamma for their careful reading of the manuscript and for
their numerous suggested improvements.

Zürich, 1993 Hanspeter Mössenböck

1 Overview

What is the essence of object-oriented programming? What are its
typical applications, and what benefits can we expect from it? How
does object-oriented thinking differ from traditional, procedure-
oriented thinking? These are the questions that will be explored in
this chapter.

1.1 Procedure-Oriented Thinking

Since the beginnings of programming we have been used to
thinking in a procedure-oriented way. We decompose programs
into procedures that transform input data into output data (Fig.
1.1).

Decomposing
programs into
procedures

ProcedureData Data

Fig. 1.1 Procedure-oriented thinking

In order to compute the area of a figure f, we write

a := Area(f)

The procedure Area is the focus of attention, while the data a and f
tend to be relegated to the background.

This approach is quite practical and usually leads to good
programs. However, problems arise when a program has to deal
with several kinds of figures (e.g., rectangles, triangles, circles, etc.).
In conventional languages, it is not possible to use the same
procedure for different figure types; instead, a separate procedure
is required for each kind of figure (e.g., RectangleArea, TriangleArea,
CircleArea, etc.).

Problems

2 1 Overview

Furthermore, wherever a surface area is to be computed, the
various kinds of figures must be differentiated and the respective
procedure must be invoked. We have to write something like

IF f is rectangle THEN a := RectangleArea(f)
ELSIF f is triangle THEN a := TriangleArea(f)
ELSIF f is circle THEN a := CircleArea(f)
END

This means that we have to perform an extensive case analysis,
which not only inflates the code but also causes the types of
figures to be statically bound to the program. If later on ellipses are
to be handled due to changed requirements, a new case will have
to be inserted at every location where the computation of an area
occurs:

…
ELSIF f is ellipse THEN a := EllipseArea(f)
…

Modifications of this nature are troublesome and easy to overlook.
Finally, the data type for figures would also need to be

changed in order to accommodate ellipses. This could mean that
all programs that use figures would have to be adapted to the new
type or at least to be recompiled.

1.2 Object-Oriented Thinking

The object-oriented way of thinking focuses on the data rather than
on the procedures. The data and the operations applicable to them
constitute objects that can be asked to handle certain requests and
to return data as their result (Fig. 1.2).

Decomposition
into objects that
fulfill contracts

ObjectRequest Data

Fig. 1.2 Object-oriented thinking

The point here is that one does not have to bother about the type of
the object to which a request is sent. Every type of object handles
the request in its own way and carries out the correct operation:
rectangles handle Area by computing the area of a rectangle, circles
by computing the area of a circle, etc. Special notation is used to
express this view. The statement

 1.2 Object-Oriented Thinking 3

a := f.Area()

means that figure f is asked to handle an Area request. We also say
that we send f the message Area. It does not matter whether f is a
rectangle, a triangle, or a circle. Even if we later add ellipses as an
additional type of object and then assume that f is an ellipse, the
statement a := f.Area() remains unchanged. The statement is
properly executed as long as ellipses understand the message Area.
This means that the introduction of ellipses does not affect existing
code.

Our small example already suggests some of the advantages
of object-oriented programming: Object-oriented programs have to
contend less with case analysis and are more extensible than
procedure-oriented programs.

1.3 Object-Oriented Languages

Our next question is: What is an object-oriented programming
language? This is not as easy to answer as it seems. Common OOP
languages differ in many details that are not by any means all
necessary for object-oriented programming. Which minimum set
of features must a language provide in order to qualify as object-
oriented? The most significant features are information hiding,
data abstraction, inheritance, and dynamic binding.

Information hiding means that the implementation of complex
data is encapsulated in objects and that clients have access only to
an abstract view of it (Fig. 1.3). Clients cannot directly access the
encapsulated data, but must use procedures that are part of the
respective object. Thus clients are not troubled with implemen-
tation details and are not affected by later changes in the imple-
mentation of the object.

Information hiding

Encapsulated data

Proc Proc Proc

Fig. 1.3 An object with encapsulated data and a procedural interface

Information hiding was propagated by David Parnas [Par72]. It is
not restricted to object-oriented languages but also supported by

4 1 Overview

numerous other modular languages such as Modula-2 with its
modules and Ada with its packages.

Data abstraction is the next step after information hiding. The
objects described above exist only once, yet sometimes multiple
copies of them are needed (Fig. 1.4).

Data abstraction

Proc ProcProc ProcProc Proc

Variable a Variable b

Fig. 1.4 Two variables a and b of an abstract data type

Just as we can declare any number of variables of a specific data
type Integer, we want to be able to declare multiple variables of an
abstract data type Binary Tree. As the operations +, -, * and DIV
belong to Integer, a Binary Tree should provide operations such as
insertion, deletion and searching for elements.

 Integer +, -, *, DIV, MOD, =, #, <, <=, >, >=
 Binary tree Insert, Delete, Search, Traverse, ...

An abstract data type is thus a unit consisting of data and the
operations applicable to them. Multiple variables of such a type
can be declared. Abstract data types are likewise not an invention
of the object-oriented camp; they also can be realized in Modula-2
and Ada.

Inheritance is a concept not found in any conventional
programming language. It means that an existing abstract data
type can be extended to a new one that inherits all the data and
operations of the existing type. The new type can include
additional data and operations and can even modify inherited
operations. This makes it possible to design a type as a semi-
finished product, store it in a library, and later extend it to produce
various final products (Fig. 1.5).

Inheritance

An important consequence of inheritance is that the extended
type is compatible with the original one. All algorithms that work
with objects of the original type can also work with objects of the
new type. This greatly promotes the reusability of existing
algorithms.

 1.3 Object-Oriented Languages 5

The fourth characteristic of object-oriented programming
languages is dynamic binding of messages (requests) to procedures.
When the message Area is sent to an object, the decision regarding
which procedure is to carry out the request is made at run time,
i.e., dynamically.

Dynamic binding

Button

RectButton RoundButton OvalButton

Fig. 1.5 A base type Button and various extensions

The compatibility between a type and its extensions makes it
possible to store in a variable of type T not only objects of type T,
but also objects of any extension of T. Thus a variable can be
polymorphic (i.e., containing objects of multiple types). Depending
on the type of the object stored in a variable at run time, messages
are carried out differently. If variable f contains a Rectangle object,
f.Area invokes the Area procedure for rectangles (Fig. 1.6 a); if f
contains a Circle object, f.Area invokes the Area procedure for
circles (Fig. 1.6 b).

Area

Area

Variable f Variable f

f.Area f.Area

containing a rectangle object containing a circle object

a) b)

Fig. 1.6 Dynamic binding: the message f.Area is carried out by the
Area procedure of the object that is stored in the variable f at run time

Dynamic binding has also been known for a long time in the form
of procedure variables. The activation of a procedure variable
causes the invocation of the procedure contained in it at run time.
Working with procedure variables, however, is troublesome and

6 1 Overview

error-prone, while dynamic binding in object-oriented languages
represents an elegant and reliable solution.

Extensible abstract data types with dynamically bound
messages are called classes. Classes are the basic building blocks of
object-oriented programming. They will be treated in detail
beginning in Chapter 4. In summary we can say:

Object-oriented programming means programming with abstract
data types (classes) using inheritance and dynamic binding.

1.4 How OOP Differs from
Conventional Programming

Upon first contact with OOP, one immediately notices its
unaccustomed terminology. We work with classes instead of data
types, and we send messages instead of calling procedures. These
terms were introduced in Smalltalk [GoR83], one of the first object-
oriented languages, and have gained widespread acceptance
despite the fact that (apart from subtle differences) conventional
terminology would have sufficed.

Object-oriented
terminology

Table 1.7 translates the most important terms of object-
oriented languages into conventional terminology. The object-
oriented terms are usually more concise and handier than their
conventional counterparts. Therefore we will use them throughout
this book. The reader should be aware, however, that these terms
do not represent radically new concepts, but have their
corresponding terms in conventional programming.

Object-oriented term

Conventional term

Class
Object
Message
Method

Extensible abstract data type
Instance of a class
Procedure call (dynamically bound)
Procedure of a class

Table 1.7 Object-oriented terminology

Another difference is the unaccustomed syntax of procedure calls
in object-oriented languages. In order to invoke a procedure that
draws a circle with a given color , we write:

circle.Draw(color)

 1.4 How OOP Differs from Conventional Programming 7

We say that we send the message Draw to the object stored in circle
(or simply to the object circle). The message merely represents a
request rather than a procedure. It is the object that determines
which procedure is to carry out the request. Because the object is
the focus of attention, circle is written in front of the message name.

These differences, however, are of minor importance. Instead,
the following properties are more essential:

• concentration on the data
• emphasis on reusability
• programming by extension
• distributed state and distributed responsibilities

Object-oriented programming focuses on the objects rather than on
the procedures. In fact, there are programmers who insist that no
procedure should exist that is not associated with some object. This
goes too far, for there are certainly situations in which the
algorithm bears more weight than the data. Nevertheless, data are
usually the central points of object-oriented design around which
the procedures crystallize.

Object-oriented design strives harder to achieve reusability
than conventional design does. The goal of most conventional
design methods, such as stepwise refinement [Wir71], is to find a
customized solution to a specific problem. This results in tailored
programs that are usually correct and efficient but very sensitive to
changes in the requirements. Even a small change in the specifi-
cations could scrap the entire design.

Concentration on
the data

Emphasis on
reusability

In object-oriented design, the goal is not to tailor the classes to
the clients, but rather to design the classes independently of their
context and adapt the clients to the classes. One strives to make the
classes more general than would be necessary for a specific
application. This requires additional time during development, but
pays off long term: the classes can be reused in other programs for
which they were not originally designed.

Object-oriented software is seldom written from scratch. OOP
typically means extending existing software. Components such as
windows, menus and switches are usually available as
semifinished products in a library; they can be extended to meet
specific requirements. Whole frameworks of classes can be taken
from such libraries and extended to a complete program.

Programming by
extension

8 1 Overview

In conventional programs the program state is stored in the
global variables of the main program. Although the main program
invokes procedures, the procedures usually do not have a state of
their own, but either transform input data into output data, or
work on global data (Fig. 1.8).

Distributed state
and distributed
responsibilities

Procedures

Global data

Fig. 1.8 Calling graph of procedures working on a set of global data

In object-oriented programs the state is distributed among
multiple objects. Each object has its own state (its own data) and a
set of procedures working on that state. The object is responsible
not only for a single computation, but for a whole set of services.

Both state and responsibilities are more distributed in object-
oriented programs. The main program and its global data are less
important and often do not even exist. Objects communicate with
one another in order to perform a specific task (Fig. 1.9). An object
knows what other objects are responsible for, but does not know
how they fulfill these responsibilities.

Fig. 1.9 Objects communicate by means of messages. Each object is
responsible for a set of services that it provides to other objects.

Let us examine the example of a window system that, among other
things, processes mouse clicks. An object-oriented window system
registers such clicks, but it does not process them itself. It is not
aware of the specific window types and hence does not know how
they would react to mouse clicks (perhaps by positioning an

 1.4 How OOP Differs from Conventional Programming 9

insertion point, by marking selected text, by drawing a figure, etc.).
Thus it passes the click on to the respective window object and
leaves further processing to that window. Processing mouse clicks
is not the responsibility of the window system, but of the window
in which the mouse key was pressed.

1.5 Classes as Abstraction Mechanisms

Classes allow the modeling of real world entities. It is interesting
to look at their history in programming languages. The driving
force behind the introduction of classes was the striving for
abstraction and the desire to bridge the semantic gap between
problem-oriented specifications and machine-oriented programs.

Semantic gap

Initially, abstractions for data and for operations were
developed independently, but for some years there has been the
tendency to combine them. Object-oriented programming is a
consequence of this trend (Fig. 1.10).

10 1 Overview

Machine instructions

Assembler instructions

Standard statements
(Assignment, If, Loop)

Procedures

Modules

Abstract data types

Classes

Standard types
(Integer, Char, Real)

User-defined data types

Named memory cells

Memory addresses

Readability

Improvement

Machine
independence

Virtual
languages

Information
hiding

Multiple
instances

Inheritance,
dynamic binding

Data Operations

Fig. 1.10 The development of abstractions in programming languages

The earliest programs used memory cells as data and machine
instructions as operations. The greatest problem in programming
was to map real-world entities such as a customer or an account
onto the machine level. There was a broad gap between the
problem domain and the program.

The first improvement came with assemblers, which made it
possible to give memory cells a name and a primitive structure,
and replaced binary instruction codes with mnemonic instruction
names. This improved the readability of programs, but contributed
little to reducing the semantic gap.

Only with the advent of higher programming languages such
as Fortran could the semantic gap be reduced. Now arithmetic
expressions could be written in common mathematical notation
rather than needing to be reduced to a sequence of machine
instructions. The first simple data types such as Integer and Real
were introduced along with a set of operations that could be
applied to them. Although the data types and operations were

Variable names
and mnemonic
operation names

Standard types
and standard
operations

 1.5 Classes as Abstraction Mechanisms 11

determined by the programming language, the machine indepen-
dence that was achieved represented immense progress in the
level of abstraction.

Note that Integer has almost all the properties of an abstract
data type. Users of Integer variables do not need to know whether
the most significant bit is left or right, or which machine
instructions are used to realize the + operation. The only difference
with regard to abstract data types is that Integer is built into the
programming language, while abstract data types are defined by
the programmer.

In the 1960s languages like Pascal were developed that
allowed the programmer to create a virtual language. One no
longer had to restrict oneself to the data types and operations of a
particular language; instead, the programmer could define custom
data types and custom operations in the form of procedures. The
resulting virtual language was tailored to a specific problem
domain and thus more problem-oriented than a concrete language.

So far, data and operations had developed separately,
although it is interesting to note that similar developments took
place almost simultaneously in the two branches. First they
achieved better readability, then machine independence, and
finally more problem orientation. At the end of the 1970s it was
recognized that data and their associated operations should be
combined into modules. This brought more order into programs.
Being collections of data and operations, modules are better suited
to modeling real-world entities than procedures are. Modules are
taken for granted in most modern programming languages;
without them the development of large program systems would be
much more complicated and error-prone.

The problem with modules is that there is only one instance of
them. If multiple copies are needed, one has to use abstract data
types which, like modules, consist of data and operations, but can
be used to declare several variables of this type. Abstract data
types already existed in languages such as Modula-2 and Ada.

Object-oriented languages introduced the concept of classes.
Classes are abstract data types supporting inheritance and
dynamic binding. They are perfectly suitable to modeling real-
world entities such as sensors, switches, or displays in software.
The semantic gap between the problem domain and the program
nearly disappears.

User-defined data
types and
procedures

Modules

Abstract data
types

Classes

1.6 History of Object-Oriented Languages

Object-oriented programming is by no means new. The term was
coined in the early 1970s in connection with Smalltalk [GoR83], a
programming language developed by a research group at Xerox
PARC. The roots of OOP, however, go back even farther to the
language Simula [BDMN79], which was developed at the
University of Oslo in 1967. Simula already had, in essence, all the
properties of today's object-oriented languages. Thus OOP was
around already a quarter of a century ago, which makes it even
more surprising that the approach only recently began to gain
widespread acceptance. This probably stems from the fact that
Simula and Smalltalk were considered specialized languages:
Simula was designed as a simulation language, and Smalltalk was
viewed as a toy by many computer scientists. The value of classes
for general programming was recognized only later.

Smalltalk became the prototype of object-oriented languages.
It still is one of the most consistent OOP languages, for all its data
types are classes and all its operations are messages. Smalltalk is
usually interpreted, making its execution slow. Although newer
Smalltalk systems do generate machine code, message dispatching
is still interpretative. Furthermore, Smalltalk does not allow static
type checking. This limits its suitability for larger software
systems.

Smalltalk

In the mid-1980s many new object-oriented languages
emerged; most of them were hybrid in nature and were extensions
of existing languages such as Pascal and C. Hybrid languages
include conventional data types (such as Integer and arrays) in
addition to classes, and procedures in addition to messages. These
languages permit type checking at compile time. Programs are
translated into machine code, improving their efficiency over
interpreted systems. The ease of switching from a familiar
language like Pascal to a dialect like Object-Pascal [Sch86]
contributed to the acceptance of such extensions and thus of object-
oriented programming in general. Object-oriented dialects are now
available for a wide range of languages.

Hybrid languages

Oberon-2, the language used in this book, is also a hybrid. In
fact, Oberon-2 is even closer to conventional languages because it
does not have a special class construct: Classes are simply records
that contain procedures in addition to data.

Oberon-2

1.7 Summary

The most significant properties of OOP are the following:

(1) Data and operations are combined into classes that serve as
types for objects.

(2) Classes can be extended to create new classes containing
additional data and operations. Objects of an extended class
can be used wherever objects of their base class are permitted.

(3) Operations on objects are usually not performed by procedure
calls; instead, objects are sent messages. A message is a
request, and it is up to the receiving object to determine which
procedure is to handle the request. Objects communicating via
messages are more loosely coupled than software components
statically connected via procedure calls.

2 Oberon-2

Throughout this book we will use the programming language
Oberon-2, an object-oriented language in the tradition of Pascal
and Modula-2

This chapter introduces the reader to Oberon-2. We do not
provide an introduction to programming, but assume that the
reader is already able to read and write programs. Anyone who
understands Pascal or, better yet, Modula-2 can read Oberon-2
programs without difficulty. Thus Oberon-2 is only described
informally on the basis of several examples. Answers to more
detailed questions can be found in the language definition in
Appendix A.

Oberon-2 evolved from Oberon, which, like its predecessors
Pascal and Modula-2, was developed by Niklaus Wirth [ReW92].
Several features of Modula-2 such as variant records, enumeration
types and subrange types were omitted in Oberon. The language
concentrates on the essentials and is thus well suited for both
education and practice. New features in Oberon include the
concept of type extension (inheritance); Oberon-2 finally adds
type-bound procedures (methods).

Oberon is not only a programming language, but also an
operating system that provides a run-time environment with
command activation, garbage collection, dynamic loading of
modules, and certain run-time data structures [Rei91, WiG92; see
also Appendix A.12.4]. In Oberon the language is interwoven with
the operating system. For the user to fully enjoy the power of
Oberon, the language needs to be combined with the Oberon
System, under which both Oberon and Oberon-2 programs run.

14 2 Oberon-2

2.1 Features of Oberon-2

Oberon-2's most important features are block structure, modu-
larity, separate compilation, strong type checking at compile time,
type extension, and type-bound procedures.

Block structure allows nested procedures with separate scopes
for identifiers. Modules permit the decomposition of large
programs into smaller, comprehensible parts that can be compiled
separately. The compiler ensures that their interfaces match. This
is called separate compilation to distinguish it from independent
compilation, in which no interface checking takes place (such as in
Fortran or C).

Strong type checking means that the compiler checks at every
operation (assignment, arithmetic, relational, etc.) whether
variables are used according to their declaration and hence
according to the intentions of the programmer. In this way many
errors can already be detected at compile time, which drastically
reduces the cost of corrections.

The object-oriented features of Oberon-2 are not yet treated in
this chapter. They are described in Chapters 4 to 6 and then used
extensively throughout the rest of this book.

2.2 Declarations

All identifiers appearing in a program (i.e., all names of constants,
types, variables, and procedures) must be declared before they are
used. In their declaration they are assigned a data type. Oberon-2
has basic types and composite types. The basic types are listed in
Table 2.1.

Data types

Integer numbers

Real numbers

ASCII characters
Boolean values
Sets

Type name

SHORTINT
INTEGER
LONGINT
REAL
LONGREAL
CHAR
BOOLEAN
SET

Typical range

-128..127
-32768..32767
-2147483648..2147483647
±3.40282E38 (4 bytes)
 ±1.79769D308 (8 bytes)
0X..0FFX (0..255 hexadecimal)
TRUE, FALSE
Sets of numbers in the range 0..31

Table 2.1 Basic types in Oberon-2

 2.2 Declarations 15

The ranges of the basic types are not defined by the language. On
most machines, however, the values given in the right column of
Fig. 2.1 apply. Composite data types are arrays, records, pointers and
procedure types.

An array is a collection of elements all of the same type (the
element type). The elements do not have individual names, but are
selected via an index. Examples of array variables are:

Arrays

VAR
 a: ARRAY 10 OF CHAR; (* a has 10 elements: a[0], …, a[9] *)
 b: ARRAY 100, 100 OF INTEGER;

Arrays are indexed with integers, the first element having the
index 0. The elements are referenced as a[i] and b[i, j], whereby the
index values are checked to assure that they are within the
declared range.

A record is a collection of named fields of arbitrary type, for
example:

Records

TYPE
 Person = RECORD
 name: ARRAY 32 OF CHAR;
 idNumber: INTEGER;
 salary: REAL
 END;

IF r is a variable of type Person, its fields can be referenced as
r.name, r.idNumber and r.salary. Records can be extended to create
new types (see Chapter 5).

A pointer variable contains the address of a record or an array,
or it has the value NIL, which means that it does not point to any
record or array. Examples of pointer types are:

Pointers

TYPE
 PersonPtr = POINTER TO Person;
 Box = POINTER TO RECORD x, y, width, height: INTEGER END;
 Vector = POINTER TO ARRAY 100 OF INTEGER;
 String = POINTER TO ARRAY OF CHAR;

If p is a variable of type PersonPtr, then p^ is the (nameless) record
of type Person (the pointer base type) to which p points. The field
name is referenced with p^.name. For the sake of simplicity the
symbol ^ can be omitted, leaving p.name. This is an abstraction
from the fact that p is only a pointer to a record and not the record
itself. However, one must be aware that in the assignment q:=p
only the pointer p is assigned and not the record p^. The

16 2 Oberon-2

invocation of the predeclared procedure NEW(p) allocates memory
for p^.

If s is a variable of type String, then s^ is the array to which s
points. The array has been declared without length and is thus
called an open array. Its length is specified at run time. s^[i] denotes
the element with index i. Here, too, the symbol ^ can be omitted,
leaving s[i]. NEW(s, n) allocates memory for the array s^ with n
elements.

In Oberon, dynamically allocated memory is never explicitly
deallocated. Instead, the Oberon System features a garbage collector
that collects and recycles regions of memory that are no longer
referenced by a pointer. This resolves a frequent source of errors:
The programmer could deallocate memory to which some pointer
still refers. Dereferencing via such a dangling pointer would lead
to an error.

Variables of type procedure (procedure variables) contain as
their value either a procedure or NIL (no procedure). When a
procedure variable is invoked, the procedure currently stored in it
is activated. In the following example the procedure WriteTerminal
is assigned to the procedure variable write:

Procedure types

VAR write: PROCEDURE (ch: CHAR);

PROCEDURE WriteTerminal (ch: CHAR);
BEGIN …
END WriteTerminal;

write := WriteTerminal;
write(ch); (*activates WriteTerminal*)

2.3 Expressions

Expressions describe the computation of values and consist of
operators and operands. There are four kinds of expressions,
which are shown in Table 2.2.

Arithmetic expressions
Boolean expressions
Relational expressions
Set expressions

Operators

+, -, *, /, DIV, MOD
&, OR, ~
=, #, <, <=, >, >=, IN
+, -, *, /

Result type

Numeric
BOOLEAN
BOOLEAN
SET

Table 2.2 Kinds of expressions in Oberon-2

 2.3 Expressions 17

The meaning of the arithmetic and relational operators is obvious.
It should be noted, however, that the compatibility rules in
Oberon-2 are less restrictive than in Pascal or Modula-2. In
particular, numeric types (INTEGER, REAL, etc.) can be mixed in
arithmetic expressions, and character arrays can be compared. The
following examples will answer most questions. The detailed
compatibility rules can be found in the language definition in
Appendix A.

Arithmetic
expressions and
relational
expressions

VAR
 i: INTEGER; j: LONGINT; r: REAL;
 set: SET;
 s: ARRAY 32 OF CHAR;
 sp: POINTER TO ARRAY OF CHAR;
 p, p1: PersonPtr; (*see declaration in previous section*)
 proc: PROCEDURE (x: INTEGER);

Expression Result type

3 SHORTINT
300 INTEGER
100000 LONGINT
0X CHAR
i + j LONGINT
i + 3*(r-j) REAL
i DIV j LONGINT
i / j REAL
(s > "John") OR (s = sp^) BOOLEAN
s = "a" BOOLEAN
p # p1 BOOLEAN
proc = NIL BOOLEAN
~ (i IN set) BOOLEAN

The expression ~x means the negation of x. The operators & and
OR are not commutative and are evaluated as follows:

Boolean
expressions

a & b if a then b else false end
a OR b if a then true else b end

This is called short circuit evaluation because the evaluation of the
expression stops as soon as its value is known; this proves
especially useful for expressions like the following:

IF (p # NIL) & (p.name = "John") THEN … END

If p = NIL, the second part of the expression is not evaluated; thus
improper dereferencing of p is avoided.

18 2 Oberon-2

The set operators have the following meanings: Set expressions

+ Union {0..7} + {5..9} = {0..9}
- Difference (x-y = x*(-y)) {0..7} - {5..9} = {0..4}
* Intersection {0..7} * {5..9} = {5..7}
/ Symmetric difference {0..7} / {5..9} = {0..4, 8..9}
 (x/y = (x-y)+(y-x))

The expression i IN s tests whether the number i is contained in the
set s.

2.4 Statements

Oberon-2 provides elementary statements (assignment, procedure
call, return, exit), as well as structured statements for selection (if,
case) and iteration (while, repeat, for, loop). The meanings of these
statements are so common that the following examples should
suffice. The reader can find details as well as the meanings of the
predeclared procedures (ORD, CHR, etc.) in the language
definition (Appendix A).

p.name := "John" (*assignment*)
i := 10*i + ORD(ch)-ORD("0")

WriteInt(i, 10) (*procedure call*)
i := Length(text)

r := p MOD q; (*while*)
WHILE r # 0 DO
 p := q; q := r; r := p MOD q
END

i := 0; (*repeat*)
REPEAT
 s[i] := CHR(ORD("0") + n MOD 10);
 n := n DIV 10;
 INC(i)
UNTIL n = 0

FOR i := 0 TO LEN(s)-1 DO s[i] := 0X END (*for*)

i := 0; (*loop, exit, if, return*)
LOOP
 ReadChar(ch);
 IF i = LEN(s) THEN Error; RETURN
 ELSIF ch = 0X THEN EXIT
 END;
 s[i] := ch; INC(i)
END

 2.4 Statements 19

CASE ch OF (*case*)
 "a".."z", "A".."Z": ReadIdentifier
| "0".."9": ReadNumber
| " ' ", ' " ': ReadString
ELSE ReadSpecial
END

Note that string constants can be assigned to a character array of
fixed length as long as the array is sufficiently long to hold the
string and the terminal character 0X that is automatically inserted
during the assignment.

Also note that every structured statement ends with a
keyword (usually END) and may contain a whole sequence of
statements. Contrary to Pascal, the statement sequence need not be
bracketed in BEGIN … END.

2.5 Procedures

For procedures, an example will also suffice. The procedure below
converts a number n to a character array hex that represents the
hexadecimal representation of the number.

PROCEDURE IntToHex (n: LONGINT; VAR hex: ARRAY OF CHAR);
 VAR i, k: INTEGER; s: ARRAY 8 OF CHAR;

 PROCEDURE Hex (i: LONGINT): CHAR;
 BEGIN (*0 <= i <= 15*)
 IF i < 10 THEN RETURN CHR(i + ORD("0"))
 ELSE RETURN CHR(i-10 + ORD("A"))
 END
 END Hex;

BEGIN (*IntToHex: assumes n >= 0*)
 i := 0;
 REPEAT s[i] := Hex(n MOD 16); INC(i); n := n DIV 16 UNTIL n = 0;
 k := 0;
 REPEAT DEC(i); hex[k] := s[i]; INC(k) UNTIL i = 0;
 hex[k] := 0X
END IntToHex;

Procedures consist of a declaration part, in which constants, types,
variables and further procedures can be declared locally, and a
statement part (the body), which is executed when the procedure
is invoked. The parameters declared in the procedure heading (n
and hex) are called formal parameters. They are considered local to
the procedure. The parameters specified at the procedure call are
termed actual parameters.

20 2 Oberon-2

The scope of an identifier, i.e., the range in which the identifier
can be used, extends textually from its declaration to the end of the
block (procedure or module) in which it is declared. It overrides
the scope of any identically named identifier declared in an outer
block. The scope of the parameter i in Hex overrides the scope of
the variable i in IntToHex. Nested scopes allow the declaration of
arbitrary identifiers in every procedure without having to bother
about whether an identifier was already declared outside the
procedure. Good programming style suggests that a procedure
work only with its own local variables (including its parameters)
and that it not use global variables or—even worse—local variab-
les of an enclosing procedure.

In the procedure IntToHex, hex is called a variable parameter
because it is declared with the symbol VAR. A variable parameter
has the same address as its corresponding actual parameter, which
must be a variable. Thus if hex is modified in the procedure, the
actual parameter is modified, too. Variable parameters are used as
output parameters.

Scope

Parameters

n is a value parameter because during the procedure invocation
the value of the actual parameter is assigned to n. Thus n contains
a local copy of the actual parameter. Changing the value of n does
not affect the value of the actual parameter. Value parameters are
used as input parameters.

hex is an open array parameter. Its length is determined at run
time and is equal to the length of the actual parameter, which must
likewise be an array.

IntToHex is a procedure that is invoked as a statement. Hex, on
the other hand, is a function procedure that is invoked as part of
an expression. It returns a value that is used in the evaluation of
the expression. The value that a function procedure is to return
must be specified in a return statement. A function procedure is
characterized by the declaration of a result type following its
formal parameter list.

Procedures can invoke themselves recursively. With each
invocation, a new set of local variables is allocated, so that every
invocation of the procedure works with its own local variables.

A number of standard procedures such as ORD, CHR, LEN
and COPY are predeclared. Their descriptions are given in
Appendix A.10.3.

Function
procedures

Recursion

Standard
procedures

 2.6 Modules 21

2.6 Modules

Large programs are normally decomposed into smaller units,
called modules. A compiler, for example, consists of a scanner, a
parser, a code generator, and a table handler (Fig. 2.3). Each of
these modules works on a well-defined subdomain of the problem
and is easier to understand than the compiler as a whole.

Parser

Scanner Code generator

Table handler

Fig. 2.3 Modules of a compilers: Arrows indicate the "is used by"
relationship

A module is a unit with a clearly defined interface; it can be used
without knowledge of how it is implemented, and it can be
implemented without knowledge of the context in which it might
later be used.

The module
interface

In line with this definition, a module in Oberon-2 is a
collection of constants, types, variables, and procedures that form
a logical and syntactical entity. Its interface consists of the
declarations of the identifiers that can be used by other modules.
The module is said to export these identifiers.

Let us take the example of a module that represents the
implementation of a dictionary in which word pairs can be entered
and looked up. The first word serves as the key and the second as
the value.

When designing a module like this, we first define its interface
by writing a skeletal module consisting only of the declarations of
the exported identifiers. For the dictionary this could be:

MODULE Dictionary;
 TYPE String* = ARRAY 32 OF CHAR;
 PROCEDURE Clear*; END Clear;
 PROCEDURE Enter* (key, value: String); END Enter;
 PROCEDURE Lookup* (key: String; VAR value: String); END Lookup;
 PROCEDURE Print*; END Print;
END Dictionary.

22 2 Oberon-2

An identifier is marked as exported by adding an asterisk (*) after
its name in its declarations. Thus the module exports the type
String, as well as the procedures Clear for erasing the dictionary,
Enter for entering a new word pair, Lookup to search for a word
pair with a given key, and Print to output the dictionary on the
terminal.

This skeleton is later complemented by further declarations
and statements until the implementation is complete. Now let us
tackle the full implementation of module Dictionary. For the sake
of simplicity, it is implemented using an unsorted linked list.

Implementation

MODULE Dictionary;
IMPORT IO;

TYPE
 String* = ARRAY 32 OF CHAR;
 Node = POINTER TO NodeDesc;
 NodeDesc = RECORD
 key, value: String;
 next: Node
 END;

VAR root: Node;

PROCEDURE Clear*;
BEGIN root := NIL
END Clear;

PROCEDURE Enter* (key, value: String);
 VAR p: Node;
BEGIN
 NEW(p); p.next := root; root := p; p.key := key; p.value := value
END Enter;

PROCEDURE Lookup* (key: String; VAR value: String);
 VAR p: Node;
BEGIN p := root;
 WHILE (p # NIL) & (p.key # key) DO p := p.next END;
 IF p # NIL THEN value := p.value ELSE value := "" END
END Lookup;

PROCEDURE Print*;
 VAR p: Node;
BEGIN p := root;
 WHILE p # NIL DO
 IO.Str(p.key); IO.Str(" "); IO.Str(p.value); IO.NL;
 p := p.next
 END
END Print;

BEGIN Clear
END Dictionary.

 2.6 Modules 23

Note that the types Node and NodeDesc as well as the variable root
are declared without an export mark and are therefore not visible
outside Dictionary.

The interface of the module can be extracted from the
implementation at any time using a browser (see Section 2.6). The
browser simply collects the declarations of all exported identifiers
and shows them in the following form:

DEFINITION Dictionary;
 TYPE String = ARRAY 32 OF CHAR;
 PROCEDURE Clear;
 PROCEDURE Enter (key, value: String);
 PROCEDURE Lookup (key: String; VAR value: String);
 PROCEDURE Print;
END Dictionary.

Note that this is not an Oberon-2 module, but only a special view
of it, namely its interface. In languages like Modula-2 the pro-
grammer has to write the interface description (the definition
module) manually and separately from the implementation of the
module. Consistency between the two documents must be main-
tained manually. In Oberon-2 there is only one document per
module: the implementation. The interface is only a special view
on it; it is extracted automatically and therefore always consistent
with the implementation. This is significant progress over the
Modula-2 approach.

For the output of words, Dictionary uses the module IO, which
is imported at the beginning of Dictionary. IO's interface looks like
this:

Import

DEFINITION IO;
 PROCEDURE Str (s: ARRAY OF CHAR);
 PROCEDURE Int (i: LONGINT; w: INTEGER);
 PROCEDURE NL; (*skip to next line*)
 …
END IO.

All identifiers exported by IO can be used in Dictionary or any
other module that imports IO. They only need to be qualified with
the name of the exporting module. The procedure Dictionary.Print
contains invocations of IO.Str and IO.NL, for example.

An important feature of Oberon-2 is that the compiler checks
the correct use of interfaces. When a module is compiled, a
description of its interface is written to a symbol file in machine-
readable form. During the compilation of a client module, the
compiler obtains the symbol files of the imported modules and

Separate
compilation with
interface checking

24 2 Oberon-2

thus knows the identifiers exported by those modules as well as
their types. This permits type checking as if the exported identi-
fiers had been declared in the importing module itself.

This is called separate compilation, in contrast to independent
compilation, in which modules can be individually compiled, but
the compiler does not check the interfaces.

During the compilation of Dictionary the compiler checks
whether IO is used in accordance with its interface. If this interface
happens to be modified later, then the previous check is no longer
valid, and Dictionary has to be recompiled to recheck the correct
use of IO. Meanwhile the operating system makes sure that
Dictionary cannot be executed until it has been recompiled. Thus
any modification in the interface of a module M would also
require the recompilation of all its clients (all modules that import
M).

In addition to its procedures a module can also contain its
own code. This code is called the module body (the statement
sequence at the end of Dictionary). The module body primarily
serves to initialize the global data of the module. It is executed as
soon as the module is loaded. Prior to that, however, the bodies of
all imported modules are executed. (The imported modules need
to be initialized before the importing module, or they could not be
used in the body of the importing module.) This means that
Oberon-2 does not permit cyclic import relationships among
modules. The initialization sequence would otherwise be
undefined.

A variable or a record field can be exported as read-only so
that clients can read its data, but they cannot make modifications.
This increases the reliability of the system, because the exporting
module can be sure that clients will not destroy its data. Read-only
variables and fields are marked with a minus sign (-) instead of an
asterisk (*) in their declaration. A file system, for example, could
write-protect its data as follows:

Module body

Read-only export

MODULE FileSystem;
TYPE
 File* = POINTER TO FileDesc;
 FileDesc* = RECORD
 name-: ARRAY 32 OF CHAR;
 length-: LONGINT;
 …
 END;

VAR resultCode-: INTEGER;
…

 2.6 Modules 25

END FileSystem.

The fields name and length as well as the variable resultCode can be
read but not modified by clients. Only the exporting module
FileSystem can modify them, because they are declared in that
module. If a structured variable is read-only, this also applies to its
components. Not only file.name but also file.name[i] is read-only.

In languages such as Modula-2, data that are not to be modi-
fied must be made available via access procedures. Read-only
export is a more efficient solution.

What are modules for? First of all, they are a structuring
medium. They group data and their associated operations together
and help to create order in a program.

The purpose of
modules

Modules are also an abstraction medium. They hide implemen-
tation details from other modules and provide their services via a
simple interface. A module forms a wall. Identifiers declared
within a module are visible outside only if they are exported.
Identifiers exported by a module A are visible within a module B
only if A is imported by B. Import and export make the coupling
between modules visible.

Finally, a module is a compilation unit. Its source code is stored
in a file and the resulting object code is written to another file.
Thus modules are the smallest interchangeable components in a
system. The code generator in Fig. 2.3 can be replaced with another
one without recompilation, but not an individual procedure of the
code generator.

2.7 Commands

The explanations thus far referred to the language Oberon-2; this
section treats features of the Oberon operating system.

In most operating systems the smallest units that can be
invoked in dialog with the computer are programs. In the Oberon
System these units are commands. A command is any parameterless
procedure P that is exported by a module M. In a typical Oberon
environment a command is activated by typing its name (M.P) in a
window and clicking it with the middle mouse button. Usually the
name of the command is already displayed in some window and
only needs to be clicked.

When the command M.P is activated, the module M and all
modules imported by M are loaded (if they are not already in

26 2 Oberon-2

memory) and the procedure P is executed. After P terminates, M
remains loaded with all its global data and their values. If M.P (or
another command from M) is invoked again, M is not loaded
anew. P finds the values of the global data just as they were left
after P's last invocation.

Commands can thus communicate with one another via data
structures in main memory rather than via files. This is simpler
and more efficient and makes it possible to hide the data structure
within the module to which the commands belong.

Let us now rewrite the Dictionary example of Section 2.6 so
that Clear, Enter, Lookup and Print can be invoked as commands by
the user. The interface of Dictionary would look like this:

DEFINITION Dictionary;
 PROCEDURE Clear;
 PROCEDURE Enter;
 PROCEDURE Lookup;
 PROCEDURE Print;
END Dictionary.

All four procedures are now commands and can be invoked like
programs. But how do they obtain their arguments?

Each command can decide itself what kind of data it accepts
as arguments: the text following the command name, the text in
the current selection, the text at the insertion point, or some other
marked object on the screen. The Oberon System provides
appropriate procedures to read such arguments.

Command
arguments

In our example, we obtain the arguments from the text follow-
ing the command. The user activates the commands as follows:

Dictionary.Enter book Buch
Dictionary.Lookup book

Enter takes the word pair "book Buch" as its parameter and enters
it in the dictionary. Lookup takes the word "book", searches for it in
the dictionary, and returns the word "Buch". The command Enter is
implemented as follows:

PROCEDURE Enter*; (*read two words following the command text*)
 VAR s: IO.Scanner; p: Node;
BEGIN NEW(p);
 s.SetToParameters; s.Read; (*read first word*)
 IF s.class = IO.name THEN
 COPY(s.str, p.key); s.Read; (*read second word*)
 IF s.class = IO.name THEN
 COPY(s.str, p.value);
 p.next := root; root := p (*link p to the dictionary*)
 END

 2.7 Commands 27

 END
END Enter;

IO.Scanner is a data type that allows convenient reading of names,
numbers, characters, and strings (see Appendix C). The Scanner
variable s is set to the text immediately following the command
name by s.SetToParameters. s.Read reads the next symbol. Thus the
command obtains its arguments and can proceed as in Section 2.6.

Note that Dictionary remains loaded after Enter terminates and
the data of the dictionary thus retain their values. Succeeding
invocations of Enter permit additional words to be entered, and
with Lookup words can be searched for.

When is Dictionary removed from memory? Oberon's solution
is that modules must be explicitly unloaded on user demand. The
Oberon System provides a command for that purpose. After
Dictionary is unloaded, a new version of it can be loaded.

It should be noted that Oberon has a linking loader that links
object modules with other modules only upon loading. There are
no prelinked object files; rather, each object module is its own file.

Unloading
modules

Linking loader

The loader also makes sure that each module is in memory
only once. If module A is loaded that imports an already loaded
module B, then A is linked to the loaded B and B is not loaded
anew. Since modules remain in memory after being loaded the
first time, modules seldom have to be afterloaded. This reduces
loading time and memory requirements for Oberon programs.

Commands are a useful language construct. They permit the
creation of programs with multiple entry points. Commands can
be invoked interactively without needing a main program. They
prove especially practical in the creation of large systems
consisting of several equally important services, such as an
electronic mail system with services such as sending mail, reading
mail, deleting mail, etc. Which of these services should become the
main program and which should be subordinate? Commands
allow offering all these services on the same level without the need
to create an artificial superordinate main program.

Purpose of
commands

3 Data Abstraction

Abstraction is the most effective weapon against complexity. It
means concentrating on the essentials and ignoring the details.
Large systems can only be made comprehensible by decomposing
them into modules that are simple from the outside and hide all
complexity within.

The principle of abstraction has been successfully applied to
many technical things; e.g., anybody can operate a television set
without understanding the circuitry within the device. The same
should also apply to software. We strive for modules with simple
interfaces that can be used without knowing their implementation.
In other words, we want to abstract from concrete data structures
and attain abstract data structures, or, even better, abstract data
types or classes.

3.1 Concrete Data Structures

In older programming languages like Pascal, all data structures are
visible. A programmer can define custom data types, yet their
structure is known to other parts of the program; indeed, the
structure must be known in order for the programmer to work
with these data. We call these concrete data structures.

Let us consider an example of a nontrivial data structure, a
priority queue, to which elements can be added in any order and
then retrieved in the order of their priority. For the sake of
simplicity, we assume that the elements are numbers that simul-
taneously express their priority (smaller numbers representing
higher priority). One efficient data structure for the implemen-
tation of priority queues is the heap [Sed88]. A heap is a binary tree
with n elements that are arranged in the tree such that the value of
the parent is always less than or equal to the value of its two

Concrete data
structure for a
priority queue

30 3 Data Abstraction

children. The tree is almost balanced: there exists a number h such
that all nodes have height h or h-1 (Fig. 3.1).

1

3

7

9 7 8

3 4 5

4

Fig. 3.1 Heap with 10 elements

Contrary to binary trees, there is no ordering between the two
children of a node. The value of the left child could be smaller
than, equal to, or greater than the value of the right child.
However, the value of the parent is always less than or equal to the
value of the children, which means that the root has the smallest
value of the entire structure.

Fig. 3.1 shows that all levels of the tree except the last one are
completely filled. The first level contains the element 1; the second
level the elements 3 and 4; the third level 7, 3, 4 and 5; and so on. If
the elements are stored in this sequence, an array can be used as
concrete data structure, as shown in Fig. 3.2.

1

1 4 7

a 3

2 5 8

4

3 6 9

7 3 4 5 9 7 8

10

Fig. 3.2 Array representation of the heap in Fig. 3.1

The advantage of this implementation is that pointers do not need
to be stored; the children of elements a[i] (if they exist) are located
at a[2*i] and a[2*i+1]. For a given element a[i], the parent (if it
exists) is located at a[i DIV 2]. The concrete data structure of a heap
that can hold up to 127 numbers takes the following form:

VAR
 a: ARRAY 128 OF INTEGER;
 n: INTEGER; (*number of elements in the heap*)

A new element is inserted by storing it at the end of the heap (in
a[n+1]) and then swapping places with its parent (propagating it
upward) as long as the value of the new element is less than the
value of its parent. As Fig. 3.3 shows, the number of swaps is of
order O(log n).

 3.1 Concrete Data Structures 31

1 1

3 3 2

7 7 7

9 9 97 7 78 2 3 38 8

3 24 45 5

4 4

1

3 4 5

4

Fig. 3.3 Element 2 is appended to the end of the heap and then moved
upwards until its parent element is of lesser or equal value

The following statements insert element x in heap a (we assume
that the value MIN(INTEGER) is stored in a[0] as a sentinel):

(*virtually insert x at a[n]*)
n := n + 1;
(*propagate x from a[n] upwards*)
i := n;
WHILE x < a[i DIV 2] DO
 a[i] := a[i DIV 2]; i := i DIV 2
END;
a[i] := x

A heap is used in situations that require elements to be removed
from a set in ascending order of value beginning with the smallest.
A typical example is a set of processes that are to be ordered
according to time or priority.

The smallest element is always located at a[1]. When it is
removed, the heap must be adjusted. This is done by moving the
last element a[n] to a[1] and then swapping places with the smaller
of its children (propagating it downward) as long as it is larger
than (both) its child(ren) (Fig. 3.4).

8 3

3 8 3

7 7 7

9 9 97 7 7

3 34 45 5

4 4

3

8 4 5

4

Fig. 3.4 Element a[1] was removed. Element a[n] = 8 was moved
to a[1] and is now propagated downward in the tree

The following code segment removes the smallest element x from
heap a:

32 3 Data Abstraction

x := a[1];
(*propagate a[n] from a[1] downwards*)
y := a[n]; n := n - 1; i := 1; ready := FALSE;
WHILE (i <= n DIV 2) & ~ ready DO
 j := i + i;
 IF (j < n) & (a[j] > a[j+1]) THEN j := j + 1 END; (*select smaller child*)
 IF y > a[j] THEN a[i] := a[j]; i := j ELSE ready := TRUE END
END;
a[i] := y

Heap a and its number of elements n make up the concrete data
structure for the priority queue. Clients can access the concrete
data structure directly, but this is not recommended because of the
following problems:

Clients must be familiar with both the declaration of the data
structure and the algorithms for inserting and removing elements.
This complicates working with the data and bothers clients with
unnecessary details. The same code for accessing the data is often
present in every module that uses the data, thus leading to
duplication of code. Finally, clients may inadvartently destroy the
consistency of the data (the heap order).

Working with concrete data structures further has the
disadvantage that modifications in the data affect the clients. If the
implementation of the heap is changed from a fixed-length array
to a tree in order to allow an arbitrary number of elements to be
stored in it, then the access algorithms also change and all clients
must be adapted. This is unpleasant because it requires knowing
all locations where the data structure is used. It is easy to miss one.

Clients are
bothered with
details

Modifications in
the data affect the
clients

The clients actually do not care how the priority queue is
implemented. They simply want to use it as a black box. More
important, they do not want to be affected by changes in its
implementation. The concrete data structure thus needs to be
hidden.

3.2 Abstract Data Structures

An abstract data structure is a unit consisting of data and
procedures. The data are hidden within the unit and can only be
accessed by means of dedicated procedures (Fig. 3.5). The data
structure is termed abstract because only its name and its interface,
but not its implementation, are known.

 3.2 Abstract Data Structures 33

Remove ClearInsert

a

Fig. 3.5 Abstract data structure:
Heap a is accessible only via dedicated procedures

Abstract data structures support information hiding [Par72]. Their
implementation is hidden behind an interface that remains un-
changed, even if the implementation changes.

Abstract data structures have a state that can be modified by
means of access procedures. The state is expressed in the values of
the data structure and serves to store values between successive
procedure invocations.

Information hiding

State

In Oberon-2, abstract data structures are implemented as
modules that hide the data from clients by not exporting them. The
priority queue thus becomes the module PriorityQueue with the
following interface:

DEFINITION PriorityQueue;
 VAR n-: INTEGER; (*number of elements*)
 PROCEDURE Insert (x: INTEGER);
 PROCEDURE Remove (VAR x: INTEGER);
 PROCEDURE Clear;
END PriorityQueue.

The module's three procedures Insert an element, Remove the
smallest element, and Clear the queue, respectively. The number of
elements is not provided by an access procedure, but directly as
variable n. It is unlikely that its implementation will change, thus
its type need not be hidden behind an access procedure. The
variable is exported read-only, however, because clients could
otherwise destroy the correctness of the module. The imple-
mentation of PriorityQueue takes the following form:

MODULE PriorityQueue; Priority queue as

an abstract data
structure

CONST length = 128;
VAR
 n-: LONGINT; (*number of elements*)
 a: ARRAY length OF INTEGER;

PROCEDURE Clear*;
BEGIN n := 0, a[0] := MIN(INTEGER)
END Clear;

34 3 Data Abstraction

PROCEDURE Insert* (x: INTEGER);
 VAR i: INTEGER;
BEGIN
 IF n < length - 1 THEN
 n := n + 1; i := n;
 WHILE x < a[i DIV 2] DO
 a[i] := a[i DIV 2]; i := i DIV 2
 END;
 a[i] := x
 END
END Insert;

PROCEDURE Remove* (VAR x: INTEGER);
 VAR y, i, j: INTEGER; ready: BOOLEAN;
BEGIN
 IF n > 0 THEN
 x := a[1]; y := a[n];
 n := n - 1; i := 1; ready := FALSE;
 WHILE (i <= n DIV 2) & ~ ready DO
 j := i + i;
 IF (j < n) & (a[j] > a[j+1]) THEN j := j + 1 END;
 IF y > a[j] THEN a[i] := a[j]; i := j ELSE ready := TRUE END
 END;
 a[i] := y
 END
END Remove;

BEGIN Clear
END PriorityQueue.

The implementation of the data and the access algorithms is now
hidden. Clients see PriorityQueue as a black box that is easy to use
via its procedures Clear, Insert and Remove.

This solution has several advantages: Advantages

(1) Clients do not need to be familiar with the implementation of

PriorityQueue, which makes it easier for them to use the data
structure.

(2) The implementation can be changed later without needing to
adapt the clients. If a is implemented as a tree rather than as
an array (Fig. 3.6), the clients do not notice anything as long as
the interface of PriorityQueue remains unchanged.

(3) The data are encapsulated in the module PriorityQueue and
protected there against inadvertent destruction.

 3.2 Abstract Data Structures 35

a

Remove ClearInsert

Fig. 3.6 Priority queue with modified implementation
but unchanged interface

Data abstraction also has some disadvantages: Drawbacks

(1) Using PriorityQueue is less efficient than using a concrete data
structure because access to the data is now channelled
through procedures. However, the cost of a procedure
invocation is usually low in relation to the cost of the access
algorithm.

(2) The data can only be accessed by the operations specified in
the interface. If we later need to search for a particular element
in the priority queue, say, this would be impossible because
the module lacks an appropriate access procedure.

Information hiding should always be used with care and never for
its own sake. If all data are hidden as a matter of principle, the
simplicity, the flexibility and the extensibility of a module may
suffer. One should always be aware of the actual goal: to make the
use of a module as easy as possible and to hide changes in its
implementation from clients. The module PriorityQueue would not
have been simplified if n had been exported as an access procedure
rather than as a variable. The point is not that clients must not
access private data, but that they need not do so in order to use the
module.

Information hiding

3.3 Abstract Data Types

Of an abstract data structure there is only one instance. If we need
multiple instances, we must use abstract data types. An abstract
data type is likewise a unit consisting of data and procedures, but
contrary to an abstract data structure, it can be used as a type; i.e.,
multiple variables of this type can be declared.

36 3 Data Abstraction

In Oberon-2 an abstract data type is implemented as a record
whose fields can individually be hidden by not exporting them.
The priority queue in our example can be implemented as an
abstract data type as follows:

DEFINITION PriorityQueues;
 TYPE
 Queue = RECORD
 n-: INTEGER (*number of elements*)
 END;
 PROCEDURE Insert (VAR q: Queue; x: INTEGER);
 PROCEDURE Remove (VAR q: Queue; VAR x: INTEGER);
 PROCEDURE Clear (VAR q: Queue);
END PriorityQueues.

Queue is a record whose fields represent the data of the priority
queue. Among these fields, n is exported read-only, while other
fields are hidden (not exported). Note that each variable of type
Queue has its own set of data.

The access procedures have an additional parameter q of type
Queue designating the record to which the procedures refer.
Because the data of the priority queue are changed by the pro-
cedures, q must be a variable parameter. The implementation of
PriorityQueues looks like this:

MODULE PriorityQueues; Priority queue as
an abstract data
type

CONST length = 128;
TYPE
 Queue* = RECORD
 n-: LONGINT; (*number of elements*)
 a: ARRAY length OF INTEGER
 END;

PROCEDURE Clear* (VAR q: Queue);
BEGIN q.n := 0, q.a[0] := MIN(INTEGER)
END Clear;

PROCEDURE Insert* (VAR q: Queue; x: INTEGER);
 VAR i: INTEGER;
BEGIN
 IF q.n < length - 1 THEN
 q.n := q.n + 1; i := q.n;
 WHILE x < q.a[i DIV 2] DO q.a[i] := q.a[i DIV 2]; i := i DIV 2 END;
 q.a[i] := x
 END
END Insert;

 3.3 Abstract Data Types 37

PROCEDURE Remove* (VAR q: Queue; VAR x: INTEGER);
 VAR y, i, j: INTEGER; ready: BOOLEAN;
BEGIN
 IF q.n > 0 THEN
 x := q.a[1]; y := q.a[n]; q.n := q.n - 1; i := 1; ready := FALSE;
 WHILE (i <= q.n DIV 2) & ~ ready DO
 j := i + i;
 IF (j < q.n) & (q.a[j] > q.a[j+1] THEN j := j + 1 END;
 IF y > q.a[j] THEN q.a[i] := q.a[j]; i := j ELSE ready := TRUE END
 END;
 q.a[i] := y
 END
END Remove;

END PriorityQueues.

Clients can now create multiple Queue variables, e.g.:

VAR negNumbers, posNumbers: PriorityQueues.Queue;

and use them separately:

PriorityQueues.Clear(negNumbers); PriorityQueues.Clear(posNumbers);
…
IF x < 0 THEN PriorityQueues.Insert(negNumbers, x)
ELSE PriorityQueues.Insert(posNumbers, x)
END

The abstract data type Queue can be used like any concrete data
type (e.g., INTEGER). The language has been extended by a new
data type and thus made better suited to solving a particular
problem.

Extending the
language by a
new data type

However, abstract data types are again slightly less efficient
than abstract data structures, because for each operation the object
to which the operation refers has to be passed as a parameter. One
should thus give consideration to when an abstract data type (i.e.,
multiple variables of this type) is needed and when an abstract
data structure suffices. Examples of abstract data types include
Stack, Queue, Set, File, Window and Text. On the other hand, for
Mouse and Terminal, abstract data structures suffice because there
is normally only one instance of them.

Abstract data types are often implemented not as records, but
as pointers to records. Here, too, individual fields of a record can
be hidden. The interface of the priority queue then takes the
following form:

Abstract data
types are often
pointers

38 3 Data Abstraction

DEFINITION PriorityQueues1;
 TYPE
 Queue = POINTER TO QueueDesc;
 QueueDesc = RECORD
 n-: INTEGER; (*number of elements*)
 END;
 PROCEDURE Insert (q: Queue; x: INTEGER);
 PROCEDURE Remove (q: Queue; VAR x: INTEGER);
 PROCEDURE Clear (q: Queue);
END PriorityQueues1.

The parameter q can be a value parameter here because it is not the
pointer that is modified by the procedures, but only the fields of
the record referenced by the pointer.

4 Classes

A problem with the notation for abstract data types is that data
and procedures do not form a syntactic entity. Procedures are
declared outside the record and without visible connection to it.
Thus it is not immediately clear which procedures belong to a data
type.

Therefore, Oberon-2 permits the declaration of special pro-
cedures (methods) that are syntactically connected to a record.
Records that contain methods in addition to data fields are called
classes. Values whose type is a class are termed objects.

Classes differ from abstract data types in that they are
extensible and support the dynamic binding of messages to
methods. We postpone the discussion of extensibility and dynamic
binding to Chapters 5 and 6, respectively.

4.1 Methods

The procedures associated with a class are termed methods or type-
bound procedures in order to distinguish them from ordinary pro-
cedures.

Methods

The type Queue in Section 3.3, for example, could be imple-
mented as a class with the following interface:

DEFINITION PriorityQueues;
TYPE
 Queue = RECORD
 n-: LONGINT;
 PROCEDURE (VAR q: Queue) Insert (x: INTEGER);
 PROCEDURE (VAR q: Queue) Remove (VAR x: INTEGER);
 PROCEDURE (VAR q: Queue) Clear;
 END;
END PriorityQueues.

40 4 Classes

Methods are considered (constant) record fields whose type is a
procedure type. At invocation they are accessed like record fields,
e.g.:

q.Insert(x)

We say that we send the message Insert to the object designated by
q. The terminology should make clear that this is not a procedure
call, but a request to an object. Only at run time will it be decided
which method is to handle the request.

The object to which a message is sent is called the receiver.
Thus the object designated by q is the receiver of the message
Insert. It reacts by invoking the Insert method of its class. Since the
variable q can contain objects of various classes (see Chapter 5) the
Insert message can lead to the invocation of different methods.

Messages

Receiver

The receiver is a parameter of every method. In order to
distinguish it from other parameters, it is declared in front of the
method name:

PROCEDURE (VAR q: Queue) Insert (x: INTEGER);

Separating the receiver from the other formal parameter seems
justified since the corresponding actual receiver parameter is also
written in front of the message name when the message is sent:

q.Insert(x)

Note that the receiver plays a double role: Firstly, it is passed as a
parameter to the method, and secondly, the object stored in it
determines which method is invoked at run time (see Chapter 6).

Let us now look at the implementation of methods. Although
they belong to records, it would be unwise to implement them
directly in the record declaration. Statements would be in the
midst of declarations. Thus in Oberon-2 methods are implemented
outside records, but in the same module. Nevertheless, they are
considered local to their record. To which record a method belongs
can be seen from the type of its formal receiver parameter.

Implementation of
methods

Oberon-2 goes even further and omits the procedure headings
in the record declaration. The class interface at the beginning of
this section is not an Oberon-2 program, but a piece of docu-
mentation created by the browser (see Section 2.6). The actual
implementation of PriorityQueues takes the following form:

MODULE PriorityQueues;
CONST length = 128;

 4.1 Methods 41

TYPE
 Queue* = RECORD
 n-: LONGINT; (*number of elements*)
 a: ARRAY length OF INTEGER
 END;

PROCEDURE (VAR q: Queue) Clear*;
BEGIN q.n := 0, q.a[0] := MIN(INTEGER)
END Clear;

PROCEDURE (VAR q: Queue) Insert* (x: INTEGER);
 VAR i: INTEGER;
BEGIN
 IF q.n < length - 1 THEN
 q.n := q.n + 1; i := q.n;
 WHILE x < q.a[i DIV 2] DO q.a[i] := q.a[i DIV 2]; i := i DIV 2 END;
 q.a[i] := x
 END
END Insert;

PROCEDURE (VAR q: Queue) Remove* (VAR x: INTEGER);
 VAR y, i, j: INTEGER; ready: BOOLEAN;
BEGIN
 IF q.n > 0 THEN
 x := q.a[1]; y := q.a[n];
 q.n := q.n - 1; i := 1; ready := FALSE;
 WHILE (i <= q.n DIV 2) & ~ ready DO
 j := i + i;
 IF (j < q.n) & (q.a[j] > q.a[j+1] THEN j := j + 1 END;
 IF y > q.a[j] THEN q.a[i] := q.a[j]; i := j ELSE ready := TRUE END
 END;
 q.a[i] := y
 END
END Remove;

END PriorityQueues.

The receiver parameters in the procedure headings of Clear, Insert
and Remove indicate that these are not ordinary procedures, but
methods of the class Queue.

Why do we actually need a special method notation, since the
operations of a class could also be implemented as procedure
variables? For example:

Methods and
procedure
variables

TYPE
 Queue = RECORD
 n-: INTEGER;
 a: ARRAY length OF INTEGER;
 Insert: PROCEDURE (VAR q: Queue; x: INTEGER);
 Remove: PROCEDURE (VAR q: Queue; VAR x: INTEGER);
 Clear: PROCEDURE (VAR q: Queue);
 END;

42 4 Classes

This is a possible solution, but it has the following drawbacks:

(1) Procedure variables occupy storage in every object, although

their values are the same for all objects of a class. Methods, on
the other hand, belong to the class and are not stored in
objects.

(2) Procedure variables must be initialized in each object; this
means that they must be assigned procedures whenever an
object is created. This is easy to forget. Methods need not be
initialized.

(3) The operations of a class should be procedure constants rather
than procedure variables. It should not be possible to exchange
them at run time. Methods are constants while procedure
variables are not.

Many object-oriented programs do not work with records, but
with pointers to records. These are actually pointer-to-class types.
For the sake of simplicity, we also refer to these pointer types as
classes as long as this does not lead to confusion. Variables of these
types point to objects. In the following example Queue1 is declared
as a pointer type:

Pointer types

DEFINITION PriorityQueues1;
TYPE
 Queue1 = POINTER TO QueueDesc;
 Queue1Desc = RECORD
 n-: LONGINT;
 PROCEDURE (q: Queue1) Insert (x: INTEGER);
 PROCEDURE (q: Queue1) Remove (VAR x: INTEGER);
 PROCEDURE (q: Queue1) Clear;
 END;
END PriorityQueues1.

If the type of the formal receiver parameter is a pointer type, the
receiver must be a value parameter, whereas in the case of records
it must be a variable parameter. The use of Queue1 is analogous to
Queue:

VAR q: Queue1;
…
NEW(q); … q.Insert(x); …

Oberon-2 differs from most object-oriented languages in its
notation for methods. Other languages pass the receiver as a
hidden parameter with the predefined names self or this. Oberon-2
avoids hidden mechanisms and requires that the receiver be

Comments on the
notation for
methods

 4.1 Methods 43

explicitly declared as a parameter. The declaration of the receiver
also has the advantage that it can be given an expressive name. A
name like q or queue provides better readability than self.

When the fields and methods of a receiver are referenced in
Oberon-2, they must be qualified with the name of the receiver
(e.g., q.a). Most object-oriented languages allow the programmer
the option of referencing a field as self.a or only as a. This may be
confusing since a could be a local or global variable as well.

Omitting the method headings in the record declaration
avoids redundancy. The type declaration is kept short.
Modifications cannot lead to inconsistent method headings. The
browser permits viewing the class with all its methods by
extracting this information from the program. This proves faster
than flipping through pages of source code.

The fact that the class and module interfaces are not manually
written by the programmer, but extracted from the source code,
requires some readjustment, especially on the part of Modula-2
programmers. After getting used to the idea, however, anything
else seems inconvenient. Programs increasingly tend to be read
and written directly on the screen, which makes it practical to
enjoy the screen's advantages over paper. Of course, the extracted
information can also be printed to hardcopy.

4.2 Classes and Modules

Classes and modules bear certain similarities: they encapsulate
data and make them available via access procedures. Are both
constructs necessary, or could we scrap modules and employ
classes as compilation units?

The question is justified, and some languages, such as
Smalltalk, actually use only classes and not modules. Closer
examination, however, reveals that using both constructs does
make sense. They are complementary.

Classes are expected to support information hiding. In
Oberon-2, however, classes are records; access to their fields is
unrestricted. How does this agree?

Information hiding

In Oberon-2, not a class but the module in which the class is
implemented is responsible for information hiding. Within a
module all fields of private classes are visible, but other modules
see only the exported fields. Within PriorityQueues, field a of class
Queue is visible, but it is not visible for client modules. This makes

44 4 Classes

sense because a module should only contain related data and
procedures anyway. Why should we want to hide information
among them?

For reasons of efficiency, it is sometimes necessary for a
procedure to have direct access to the data of two or more classes. If
the data were not visible outside the classes, an ordinary
procedure could not access them. It would not help to make the
procedure a method of one class, for then it still would not have
access to the data of the other class. In Oberon-2 the procedure
along with the classes to which it must have efficient access can be
wrapped in one module. This allows the procedure to access the
data of both classes while still keeping the data hidden from other
modules. Thus modules permit the grouping of several classes and
procedures to a subsystem.

Not all programs can be forced into the scheme of classes and
methods. There are procedures (e.g., numeric functions) that are
neither dependent on any state nor modify a state and thus cannot
be naturally associated with any class. Modules make it possible to
group such functions together, without having to resort to classes
which would be an artificial imposition.

Modules allow the use of global variables and procedures in
connection with classes. Values that must be accessible for all
objects of a class can be stored in global variables of a module
without requiring storage in each object. Global procedures permit
the execution of operations on a class; for example, a procedure
could be used to create a new object of a class. Such operations
cannot be implemented as methods because an object cannot be
sent a message before it is created.

Modules as
collections of
functions

Global variables
and procedures

4.3 Examples

The following examples are intended to give the reader a better
feel for working with classes.

The standard type SET provides sets of integers between 0
and MAX(SET). If sets of arbitrary integers are needed, a class Set
can be defined:

The class Set

DEFINITION Sets;
TYPE
 Set = RECORD
 PROCEDURE (VAR s: Set) Init (max: INTEGER);
 PROCEDURE (VAR s: Set) CopyTo (VAR s1: Set);

 4.3 Examples 45

 PROCEDURE (VAR s: Set) Clear;
 PROCEDURE (VAR s: Set) Incl (x: INTEGER);
 PROCEDURE (VAR s: Set) Excl (x: INTEGER);
 PROCEDURE (VAR s: Set) Contains (x: INTEGER): BOOLEAN;
 PROCEDURE (VAR s: Set) Add (s1: Set);
 PROCEDURE (VAR s: Set) Subtract (s1: Set);
 PROCEDURE (VAR s: Set) Intersect (s1: Set);
 END;
END Sets.

Note that Set is a record type, and thus the receiver parameter of
the methods must be a variable parameter. The meaning of the
operations is obvious, so that we can immediately go on to their
implementation.

MODULE Sets;
CONST setSize = 32; (*size of type SET*)
TYPE
 Set* = RECORD
 max-: INTEGER; (*largest element allowed*)
 val: POINTER TO ARRAY OF SET
 END;

PROCEDURE (VAR s: Set) Init* (max: INTEGER);
BEGIN
 s.max := max;
 NEW(s.val, (max + setSize) DIV setSize)
END Init;

PROCEDURE (VAR s: Set) CopyTo* (VAR s1: Set);
 VAR i: INTEGER;
BEGIN
 s1.Init(s.max);
 FOR i := 0 TO s.max DIV setSize DO s1.val[i] := s.val[i] END
END CopyTo;

PROCEDURE (VAR s: Set) Clear*;
 VAR i: INTEGER;
BEGIN
 FOR i := 0 TO s.max DIV setSize DO s.val[i] := {} END
END Clear;

PROCEDURE (VAR s: Set) Incl* (x: INTEGER);
BEGIN
 IF (x > 0) & (x <= s.max) THEN
 INCL(s.val[x DIV setSize], x MOD setSize)
 END
END Incl;

PROCEDURE (VAR s: Set) Excl* (x: INTEGER);
BEGIN
 IF (x > 0) & (x <= s.max) THEN
 EXCL(s.val[x DIV setSize], x MOD setSize)
 END

46 4 Classes

END Excl;
PROCEDURE (VAR s: Set) Contains* (x: INTEGER): BOOLEAN;
BEGIN
 RETURN (x > 0) & (x <= s.max)
 & (x MOD setSize IN s.val[x DIV setSize])
END Contains;

PROCEDURE (VAR s: Set) Add* (s1: Set);
 VAR i, max: INTEGER;
BEGIN
 max := s.max; IF s1.max < max THEN max := s1.max END;
 FOR i := 0 TO max DIV setSize DO
 s.val[i] := s.val[i] + s1.val[i] END
END Add;

PROCEDURE (VAR s: Set) Subtract* (s1: Set);
 VAR i, max: INTEGER;
BEGIN
 max := s.max; IF s1.max < max THEN max := s1.max END;
 FOR i := 0 TO max DIV setSize DO
 s.val[i] := s.val[i] - s1.val[i] END
END Subtract;

PROCEDURE (VAR s: Set) Intersect* (s1: Set);
 VAR i, max: INTEGER;
BEGIN
 max := s.max; IF s1.max < max THEN max := s1.max END;
 FOR i := 0 TO max DIV setSize DO
 s.val[i] := s.val[i] * s1.val[i] END
END Intersect;

END Sets.

The field val of the class Set is not exported. Clients can modify it
only by means of methods. val contains the actual sets of numbers;
it is implemented as a dynamic array of sets that is allocated the
necessary storage at run time. max is the largest element that can
be stored in a Set object.

As a second example, let us consider a class for figures in a
graphics editor. Here we only describe the interface (the module
OS, which is used in the interface, is described in Appendix B):

Class Figure

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 selected: BOOLEAN;
 next: Figure;
 PROCEDURE (Q: Figure) Draw;
 PROCEDURE (Q: Figure) Move (dx, dy: INTEGER);
 PROCEDURE (Q: Figure) Select (x, y, w, h: INTEGER);
 PROCEDURE (Q: Figure) Deselect;
 PROCEDURE (Q: Figure) Load (VAR r: OS.Rider);
 PROCEDURE (Q: Figure) Store (VAR r: OS.Rider);

 4.3 Examples 47

 END;
The class Figure is implemented as a pointer to a record. Thus the
formal receiver parameters of the methods must be value
parameters.

4.4 Common Questions

This section answers some questions that might have arisen in
reading Chapter 4.

Q: Can a method and a procedure declared in the same module

share the same name?
A: Yes. A method is local to the class to which it belongs. There is

no name conflict with globally declared names or with names
in other classes.

Q: Can a method be bound to a class that is declared in another

module?
A: No. The locality of code and data is an important principle

that makes maintenance of software easier. If the methods of a
class were distributed among various modules, this would
violate the principle of locality.

Q: Can a message be sent to a pointer object if the formal receiver

parameter of the method is a record? I.e.:

 TYPE
 Ptr = POINTER TO Rec;
 Rec = RECORD … END;
 VAR
 p: Ptr;

PROCEDURE (VAR r: Rec) M; … END M;

 … p.M … (*is this message legal?*)

A: Yes. The record referenced by p is passed as a variable
parameter to M. On the other hand, a message must not be
sent to a record object if the formal receiver parameter is a
pointer. This means that the following situation is forbidden:

 VAR r: Rec;

 PROCEDURE (p: Ptr) M1; … END M1;

48 4 Classes

 … r.M1 … (*this is illegal*)
 A record cannot be passed to a pointer. When both variables

of type Ptr and variables of type Rec are used and messages
are to be sent to both, the formal receiver parameter of the
methods must be declared as a record.

5 Inheritance

So far we have used classes only as abstract data types. The
remarkable feature of classes, however, is that they can be
extended. The extensibility of classes is the new aspect of object-
oriented programming and the reason that OOP proves superior to
conventional programming in many situations.

5.1 Type Extension

In Oberon-2 a record type can be extended to a new type that
contains new fields and methods, yet maintains its compatibility
with the original type. In the declarations

Base type and
extended type

TYPE
 T0 = RECORD … END
 T1 = RECORD (T0) … END

T1 is a (direct) extension of T0, and T0 is the (direct) base type of T1.
In the case of classes, the base type is also called base class or
superclass, while the extension is called subclass.

Specifying the name of the base type in parentheses after the
symbol RECORD means that the new type is an extension of the
base type and thus contains, in addition to its own fields and
methods, all fields and methods of the base type, as though they
had been explicitly declared here. We say that the extended type
inherits the fields and methods of the base type and thus also refer
to type extension as inheritance. Type extension also works for
pointer types. If we have

TYPE
 P0 = POINTER TO T0;
 P1 = POINTER TO T1;

50 5 Inheritance

and if T1 is an extension of T0, then P1 is also an extension of P0
and P0 is the base type of P1.

In the following example RectangleDesc is an extension of
FigureDesc and Rectangle is thus an extension of Figure.

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 selected: BOOLEAN;
 PROCEDURE (f: Figure) Draw;
 PROCEDURE (f: Figure) Move (dx, dy: INTEGER);
 PROCEDURE (f: Figure) Store (VAR rider: OS.Rider);
 END;

 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD (FigureDesc)
 x, y, w, h: INTEGER;
 PROCEDURE (r: Rectangle) Fill (pat: Pattern)
 END;

Figure 5.1 shows that RectangleDesc contains all the fields and
methods of its base type FigureDesc in addition to those declared
directly in RectangleDesc.

selected

Draw
Move

Draw
Move

Store Store

Fill

selected

x
y
w

h

figure rectangle

VAR
figure: Figure;
rectangle: Rectangle;

FigureDesc object RectangleDesc object

 Fig. 5.1 Variables of types Figure and Rectangle

The fields and methods of the variable rectangle can be referenced
as rectangle.selected, rectangle.Draw, rectangle.x or rectangle.Fill, for
example.

In Fig. 5.1 the methods are represented as record fields in
order to indicate that the first part of a RectangleDesc object is
identical with a FigureDesc object. However, methods are actually
not stored in each object, but only once per class (see Appendix
A.12.4).

For the sake of simplicity, we subsequently also refer to the
values of pointer variables as objects. When we speak of objects of

 5.1 Type Extension 51

class Figure or Rectangle, we actually mean objects of class
FigureDesc or RectangleDesc.

Extensibility is transitive, so the type TextBox below is an
extension of Rectangle and thus indirectly also of Figure.

Transitivity

TYPE
 TextBox = POINTER TO TextBoxDesc;
 TextBoxDesc = RECORD (RectangleDesc)
 text: ARRAY 32 OF CHAR
 END;

In addition to Rectangle any number of other types can be derived
from Figure, e.g.:

TYPE
 Circle = POINTER TO CircleDesc;
 CircleDesc = RECORD (FigureDesc)
 x, y, radius: INTEGER
 END;

The inheritance relationship can be depicted graphically as follows
(Fig. 5.2):

Graphical
representation of
a type hierarchy

Figure
Figure

Rectangle RectangleCircle
Circle

TextBox

Hierarchy diagram Set diagram

TextBox

Fig. 5.2 Graphical representation of a type hierarchy

The set diagram in Fig. 5.2 shows clearly that every TextBox is also
a Rectangle and every Rectangle is also a Figure. Inversely, however,
not every Figure is a Rectangle for it could also be a Circle.

Is-a relationship

An extended type is a specialization of the base type: rectangles
are specialized figures. We call this an Is-a relationship.

Subclasses allow not only the addition of new methods but
also the redefinition of inherited methods. An inherited method
can be redefined (overridden) by redeclaring it with the same name
and with an identical parameter list in the subclass. Note that only
methods, not data fields, can be overridden.

Overriding

The class Figure, for example, contains the method Store,
which writes the fields of a figure to a file. When this method is
inherited in Rectangle, it should also write the Rectangle fields x, y,

52 5 Inheritance

w and h to the file. Thus Store must be overridden in Rectangle as
follows:

PROCEDURE (r: Rectangle) Store (VAR rider: OS.Rider);
BEGIN
 r.Store^ (rider);
 … write r.x, r.y, r.w, r.h to rider …
END Store;

Of course we do not want to rewrite Store from scratch; instead, we
would like to reuse the inherited (and overridden) Store. However,
this method can no longer be referenced as r.Store, for r.Store now
designates the new Store of Rectangle. Therefore, it is referenced as

r.Store^ (rider)

The symbol ^ after the method name indicates that the Store
method of the immediate superclass of Rectangle (the type of r) is
to be invoked. Note that the meaning of ^ after a method name is
different from its meaning after a pointer variable p, where p^
designates the variable to which p points.

5.2 Compatibility of a Base Type
and Its Extension

The reader might wonder whether type extension is only a way to
reduce the writing effort. Is there a difference between Rectangle
and the following type NewRectangle, in which the fields and
methods are explicitly redeclared instead of being inherited from
Figure?

TYPE
 NewRectangle = POINTER TO NewRectangleDesc;
 NewRectangleDesc = RECORD
 selected: BOOLEAN;
 x, y, w, h: INTEGER;
 PROCEDURE (r: NewRectangle) Draw;
 PROCEDURE (r: NewRectangle) Move (dx, dy: INTEGER);
 PROCEDURE (r: NewRectangle) Store (VAR rider: OS.Rider);
 PROCEDURE (r: NewRectangle) Fill (pat: Pattern)
 END

There is a very important difference: Rectangle is compatible with
Figure because it is an extension of Figure, while NewRectangle is
not compatible with Figure although it contains the same fields and
methods as Rectangle. NewRectangle is a completely different type.

 5.2 Compatibility of a Base Type and Its Extension 53

Every Rectangle object is also a Figure object! This is the
revolutionary aspect of object-oriented programming. It means
that all algorithms that work with Figure objects can also work
with Rectangle objects.

The compatibility between a base type and its extensions is
particularly used in assignments. If figureDesc is a variable of type
FigureDesc and rectangleDesc is a variable of type RectangleDesc,
then the assignment

Record
assignment

figureDesc := rectangleDesc

is permitted because RectangleDesc objects are (extended)
FigureDesc objects and thus can be assigned to FigureDesc
variables. The assignment works like a projection. That is, only
those fields of RectangleDesc are assigned that also exist in
FigureDesc.

The inverse assignment rectangleDesc := figureDesc is not
permitted because a FigureDesc object is not a RectangleDesc object.
(rectangleDesc contains more fields than figureDesc; the assignment
would leave these fields undefined.) This error would be detected
at compile time.

Passing an object as a value parameter is also an assignment.
A procedures with a formal parameter of type FigureDesc can be
invoked with a RectangleDesc object as its actual parameter.

The assignment compatibility between records is hardly ever
used. Who wants to lose data in an assignment? Pointers, however,
are another matter. If figure is of type Figure and rectangle of type
Rectangle, then the assignment

Pointer
assignments

figure := rectangle

is permitted because a Rectangle is an extended Figure. Here no
data of the object rectangle^ are lost; instead, after the assignment
figure simply points to rectangle^, whose first part is interpreted as
an object of type FigureDesc (Fig. 5.3).

selected
x
y
w

h

figure
FigureDesc

RectangleDesc

Fields that
can be
accessed
via figure

 Fig. 5.3 Result of the assignment figure := rectangle

54 5 Inheritance

The fields x, y, w and h are still there in the object to which figure
points after the assignment, but they cannot be referenced via
figure because figure was declared as a variable of type POINTER
TO FigureDesc, and FigureDesc contains no such fields.

The inverse assignment rectangle := figure is not permitted.
rectangle would point to a FigureDesc object, and the fields x, y, w,
and h would be undefined (Fig. 5.4). This kind of error is again
detected by the compiler.

?
?
?

?

rectangle
selected Fields that

can be
accessed
via rectangle

FigureDesc

Fig. 5.4 Hypothetical effect of the assignment rectangle := figure

There is another situation in which a base type and its extension
are compatible: when a record is passed as a variable parameter.
Let P be a procedure with the following interface:

Records as
variable
parameters

PROCEDURE P (VAR figureDesc: FigureDesc);

This procedure can be invoked with a parameter of type
RectangleDesc:

P(rectangleDesc)

With variable parameters no assignment takes place; instead the
formal parameter figureDesc simply has the same address as the
actual parameter rectangleDesc. No fields of rectangleDesc are
truncated. As in a pointer assignment, the fields of the extension
(e.g., rectangleDesc.x) are still there when P is executed, but they
cannot be accessed via figureDesc. Passing records as variable
parameters is used in Section 6.3 for message records.

To discuss some more examples, let us return to the type hierarchy
diagram of Fig. 5.2.

Other examples of
assignment
compatibility

 5.2 Compatibility of a Base Type and Its Extension 55

Figure

Rectangle Circle

TextBox

VAR
figure: Figure;
rectangle: Rectangle;
circle: Circle;
textBox: TextBox;

Which of the following assignments is legal?

a) figure := rectangle e) rectangle := circle
b) rectangle := figure f) circle := rectangle
c) figure := circle g) rectangle := textBox
d) figure := textBox h) circle := textBox

Only assignments a), c), d) and g) are correct. Variables of an
extended type can be assigned to variables of its base type, but not
the other way around, as in b). In e), f) and h) the types of the
variables are not derived from one another and thus are
incompatible. All these errors are detected at compile time.

5.3 Static and Dynamic Type

In languages with type extension, record and pointer variables
have a dynamic type in addition to their static type. The static type is
the type with which the variable is declared. The dynamic type is
the type of the object that the variable holds at run time; it can be
an extension of the static type. The static type is used by the
compiler for type checking, while the dynamic type is used for the
selection of methods at run time (see Chapter 6).

Dynamic type

Thus objects must contain type information at run time. This
is typical of object-oriented languages and does not occur in
conventional languages. When the object rectangle^ is created with
NEW(rectangle), it has the dynamic type RectangleDesc, which it
retains during its whole life. The variable rectangle thus has the
dynamic type Rectangle (POINTER TO RectangleDesc).

After the assignment figure := rectangle, figure also points to an
object of type RectangleDesc. The dynamic type of figure is thus
Rectangle (Fig. 5.5), but its static type remains Figure.

Pointer
assignment

56 5 Inheritance

selected
x
y
w

h

figure

RectangleDesc

FigureDesc

Fig. 5.5 The static type of figure is Figure;
the dynamic type of figure is Rectangle

In the record assignment figureDesc := rectangleDesc, only those
fields of RectangleDesc are transferred that also belong to
FigureDesc. figureDesc does not contain the complete value of
rectangleDesc; thus its dynamic type is not RectangleDesc, but only
FigureDesc. For record variables the static and dynamic types are
always the same.

One exception is records that are passed as variable para-
meters. A formal variable parameter has the same address as the
respective actual parameter. Thus it behaves as with pointers: its
dynamic type can be an extension of its static type.

Record
assignment

Records as
variable
parameters

In the following procedure P, assume that f has the dynamic
type RectangleDesc.

PROCEDURE P (VAR f: FigureDesc);
 VAR g: FigureDesc;
BEGIN
 f := g
END P;

What happens in the assignment f := g? Both variables have the
same (static) type, thus the assignment should be possible.
However, since f has the dynamic type RectangleDesc and g only
the dynamic type FigureDesc, the fields x, y, w and h in the actual
parameter corresponding to f would remain undefined.

Oberon-2 solves this problem by permitting the assignment to
a variable parameter record only if its dynamic type is the same as
its static type. The dynamic type of f is RectangleDesc; its static type
is FigureDesc; thus the assignment f := g is not permitted. This
check is done at run time.

Let us summarize:

• A variable of a record type T can only contain values of type

T.

 5.3 Static and Dynamic Type 57

• A formal variable parameter of a record type T can contain
values of type T or an extension thereof.

• A variable of type POINTER TO T can contain pointers to
values of type T or an extension thereof.

The concept of dynamic type is central to object-oriented
languages and distinguishes them from conventional languages.
The static type is needed for static type checking (i.e., type
checking at compile time), while the dynamic type is needed for
the interpretation of messages.

Conventional languages with static type checking (e.g.,
Pascal) have only static types. In object-oriented languages without
static type checking (e.g., Smalltalk), there are only dynamic types:
variables are declared without type. Object-oriented languages
with static type checking (e.g., Oberon-2, C++, Eiffel) employ both
static and dynamic types.

5.4 Run-Time Type Checking

The dynamic type of a record or pointer variable can be tested at
run time. The type test

Type test

figure IS Rectangle

returns TRUE if figure has the dynamic type Rectangle (or an
extension thereof), otherwise FALSE.

If figure has the dynamic type Rectangle, it should be possible
to assign it to rectangle. This is possible if a type guard is specified
for figure. The type guard

Type guard

figure (Rectangle)

checks at run time whether figure has the dynamic type Rectangle.
If so, the variable figure is treated within this designator as if its
static type were Rectangle; if not, there is a run-time error. The
following examples show uses for a type guard.

rectangle := figure(Rectangle) (*establishes assignment compatibility*)
figure(Rectangle).x := 0 (*field x can be referenced*)
figure(Rectangle).Fill(pat) (*method Fill can be referenced*)

The type guard figure(Rectangle) plays a double role: It checks
whether figure has the dynamic type Rectangle, and it temporarily

58 5 Inheritance

changes the static type of figure to Rectangle (it widens it to
Rectangle, as seen in Fig. 5.6). The type guard is thus a kind of type
conversion. However, Oberon-2 checks at run time whether the
conversion is legal, in contrast to many other languages in which
types can be converted without type checking.

selected selected
x x
y y
w w

h h

figure figure(Rectangle)

Fig. 5.6 figure(Rectangle) widens the static type of figure to Rectangle

A run-time error due to a failed type guard can be avoided by
preceding the type guard by a type test:

IF figure IS Rectangle THEN rectangle := figure(Rectangle) END

To improve the understanding of run-time type tests, we will look
at a few examples. Which of the following statements are correct
(see the type hierarchy in Fig. 5.2)?

a) textBox := rectangle (TextBox)
b) rectangle := figure (TextBox)
c) rectangle := circle (Rectangle)
d) figure := circle; rectangle := figure (Rectangle)

Statement a) is correct if the dynamic type of rectangle is TextBox or
an extension thereof. If not, the type guard causes a run-time error.
For b) the same applies as for a): If figure is at least of dynamic type
TextBox, the designator figure(TextBox) is treated as if it were of
static type TextBox. Thus it can be assigned to the variable
rectangle. Statement c) is illegal because the dynamic type of circle
can never be Rectangle. This error is detected by the compiler. Case
d) is interesting: Here we attempt to smuggle circle to rectangle via
figure. figure := circle is correct; rectangle := figure (Rectangle) is also
correct as far as the compiler is concerned, but the type guard
causes a run-time error because figure is of dynamic type Circle and
not Rectangle.

Which of the following type tests return TRUE if figure is of
dynamic type TextBox?

a) figure IS Figure
b) figure IS Rectangle
c) figure IS TextBox

 5.4 Run-Time Type Checking 59

All three type tests return TRUE: figure contains a TextBox object,
which is also a(n extended) Rectangle and Figure object.

Sometimes we want to apply a type guard to multiple occurrences
of a variable, but we do not want to write it each time. In this case
we can use the with statement: If f is a formal variable parameter of
static type FigureDesc, then instead of writing

With statement

f(RectangleDesc).x := …;
f(RectangleDesc).y := …;
f(RectangleDesc).Fill(…)

we can write

WITH f: RectangleDesc DO
 f.x := …;
 f.y := …;
 f.Fill(…)
END

The meaning of this with statement is: if f is of dynamic type
RectangleDesc, it is handled in the with statement as if its static type
were also RectangleDesc. Thus the fields and methods of
RectangleDesc can be referenced as f.x, f.y and f.Fill. If f is not of
dynamic type RectangleDesc, a run-time error results. A with
statement is a regional type guard. The type test is performed only
once, when the with statement is entered. With statements can also
be applied to pointers, e.g.:

WITH figure: Rectangle DO
 figure.x := …;
 figure.y := …
END

5.5 Extensibility in an
Object-Oriented Sense

At first glance it seems that extensibility of software is not
something made possible only by object-oriented programming. In
practice software systems were always extended and modified. So
what is special about object-oriented extensibility? The special
aspect is that object-oriented programming makes it possible to
extend systems in such a way that existing program parts are not
affected.

60 5 Inheritance

Meyer [Mey87] explains the open/closed principle in terms of
open and closed modules. A module is open if it is still being
developed. Its interface is still immature and subject to frequent
correction. It is used by few clients, which means that a
modification in the interface does not have dramatic consequences:
few clients are affected by these changes. At some point, however,
every module must be closed. Its interface is frozen then and the
module is released for general use. Now a modification in the
interface would have more serious consequences since the module
is used by many clients.

Open and closed
modules

The dilemma is that project management requires both
properties: A module should remain open as long as possible so
that it can mature; on the other hand, at some point clients must be
able to rely on a stable interface. The goal would be to have a
module closed for its current clients, yet open for new clients (Fig.
5.7).

A B

M M

C D

M1

Fig. 5.7 M remains closed for A, B and C and is reopened for D .

How can this be achieved? There are four basic ways to extend the
module M:

(1) The source code of M is changed. This causes problems for

various reasons: First, it assumes the availability of the source
code. Second, if the changes affect the interface, all clients
have to be recompiled. Third, the clients are bogged down
with the extension even though only a few actually use it.

Modify the original

(2) The source code of M is copied and changes are made on the

copy M1. This spares the trouble of recompiling existing
clients and avoids bogging them down with unnecessary
functionality. The drawback is its redundancy. The module
now exists in two variants. Whenever an error is detected, it
must be corrected at two locations. In addition, the source
code of M is again required.

Modify a duplicate

 5.5 Extensibility in an Object-Oriented Sense 61

(3) M is embedded in M1 in the sense that M is used by M1.
Assume that M is a module:

Embedding in
another module

 MODULE M;
 …
 PROCEDURE P (x: INTEGER);
 …
 END M.

 It is now simple to implement a new module M1 that has the
same interface and imports M:

 MODULE M1;

 IMPORT M;

 PROCEDURE P (x: INTEGER);
 BEGIN
 … (*new functionality*) …
 M.P(x)
 END P;
 …
 END M1.

 This solution does not require the source code of M. The
existing clients can continue to use M and are not troubled
with the extensions of M1. However, one small problem
remains: The clients of M cannot optionally use M1 because
they are statically bound to M. Each invocation of M.P in their
source code would have to be replaced with M1.P. But even
that would not allow the substitution of M1 for M at run time.

(4) If M is a class, it can be extended by creating the subclass M1,

in which the inherited methods can be overridden. As with
embedding, the source code of M is not needed; M's clients do
not need to be recompiled and are not bothered with the
extensions in M1. In addition, programs that work with M can
automatically also work with M1; their source code need not
be modified, and M can be replaced with M1 at run time.
Clients are dynamically bound to M or M1 (see Chapter 6).

Extension by
inheritance

Extensibility in an object-oriented sense thus means: a class is
reused in the form of object code, but it can still be extended in
such a way that existing clients can also work with the extension
without having to be modified.

62 5 Inheritance

However, inheritance is not intended to correct poor design. If
a method of a class really was forgotten, there is no option but to
reopen the class and to add the forgotten method.

 5.6 Common Questions 63

5.6 Common Questions

Q: Why is it not possible to override inherited data fields in a
subclass?

A: If it were permitted that a field f of an object a were of type
INTEGER in the superclass A and of type CHAR in its sub-
class B, then the compiler would not be able to perform a type
check for a.f := a.f + 1. If a were of dynamic type A, then a.f
would be of type INTEGER and the addition would be legal;
but if a were of dynamic type B, then a.f would be of type
CHAR and the addition would be illegal. The type check
could only be carried out at run time.

Q: Can a class be derived from more than one base class?
A: This is not possible in Oberon-2. In languages like C++ and

Eiffel, such multiple inheritance is possible. Section 8.6
explains why multiple inheritance is not permitted in Oberon-
2 and how to survive without it.

Q: Can a subclass access fields and methods of its superclass if

these are declared in another module and not exported?
A: No. In Oberon-2 it is the module, not the class, that is

responsible for information hiding. Even subclasses cannot
break through the module wall.

Q: Must an exported method be reexported each time it is

overridden?
A: When it is overridden, an exported method must be provided

with an export mark if the subclass to which it belongs is also
exported.

5 Inheritance

So far we have used classes only as abstract data types. The
remarkable feature of classes, however, is that they can be
extended. The extensibility of classes is the new aspect of object-
oriented programming and the reason that OOP proves superior to
conventional programming in many situations.

5.1 Type Extension

In Oberon-2 a record type can be extended to a new type that
contains new fields and methods, yet maintains its compatibility
with the original type. In the declarations

Base type and
extended type

TYPE
 T0 = RECORD … END
 T1 = RECORD (T0) … END

T1 is a (direct) extension of T0, and T0 is the (direct) base type of T1.
In the case of classes, the base type is also called base class or
superclass, while the extension is called subclass.

Specifying the name of the base type in parentheses after the
symbol RECORD means that the new type is an extension of the
base type and thus contains, in addition to its own fields and
methods, all fields and methods of the base type, as though they
had been explicitly declared here. We say that the extended type
inherits the fields and methods of the base type and thus also refer
to type extension as inheritance. Type extension also works for
pointer types. If we have

TYPE
 P0 = POINTER TO T0;
 P1 = POINTER TO T1;

50 5 Inheritance

and if T1 is an extension of T0, then P1 is also an extension of P0
and P0 is the base type of P1.

In the following example RectangleDesc is an extension of
FigureDesc and Rectangle is thus an extension of Figure.

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 selected: BOOLEAN;
 PROCEDURE (f: Figure) Draw;
 PROCEDURE (f: Figure) Move (dx, dy: INTEGER);
 PROCEDURE (f: Figure) Store (VAR rider: OS.Rider);
 END;

 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD (FigureDesc)
 x, y, w, h: INTEGER;
 PROCEDURE (r: Rectangle) Fill (pat: Pattern)
 END;

Figure 5.1 shows that RectangleDesc contains all the fields and
methods of its base type FigureDesc in addition to those declared
directly in RectangleDesc.

selected

Draw
Move

Draw
Move

Store Store

Fill

selected

x
y
w

h

figure rectangle

VAR
figure: Figure;
rectangle: Rectangle;

FigureDesc object RectangleDesc object

 Fig. 5.1 Variables of types Figure and Rectangle

The fields and methods of the variable rectangle can be referenced
as rectangle.selected, rectangle.Draw, rectangle.x or rectangle.Fill, for
example.

In Fig. 5.1 the methods are represented as record fields in
order to indicate that the first part of a RectangleDesc object is
identical with a FigureDesc object. However, methods are actually
not stored in each object, but only once per class (see Appendix
A.12.4).

For the sake of simplicity, we subsequently also refer to the
values of pointer variables as objects. When we speak of objects of

 5.1 Type Extension 51

class Figure or Rectangle, we actually mean objects of class
FigureDesc or RectangleDesc.

Extensibility is transitive, so the type TextBox below is an
extension of Rectangle and thus indirectly also of Figure.

Transitivity

TYPE
 TextBox = POINTER TO TextBoxDesc;
 TextBoxDesc = RECORD (RectangleDesc)
 text: ARRAY 32 OF CHAR
 END;

In addition to Rectangle any number of other types can be derived
from Figure, e.g.:

TYPE
 Circle = POINTER TO CircleDesc;
 CircleDesc = RECORD (FigureDesc)
 x, y, radius: INTEGER
 END;

The inheritance relationship can be depicted graphically as follows
(Fig. 5.2):

Graphical
representation of
a type hierarchy

Figure
Figure

Rectangle RectangleCircle
Circle

TextBox

Hierarchy diagram Set diagram

TextBox

Fig. 5.2 Graphical representation of a type hierarchy

The set diagram in Fig. 5.2 shows clearly that every TextBox is also
a Rectangle and every Rectangle is also a Figure. Inversely, however,
not every Figure is a Rectangle for it could also be a Circle.

Is-a relationship

An extended type is a specialization of the base type: rectangles
are specialized figures. We call this an Is-a relationship.

Subclasses allow not only the addition of new methods but
also the redefinition of inherited methods. An inherited method
can be redefined (overridden) by redeclaring it with the same name
and with an identical parameter list in the subclass. Note that only
methods, not data fields, can be overridden.

Overriding

The class Figure, for example, contains the method Store,
which writes the fields of a figure to a file. When this method is
inherited in Rectangle, it should also write the Rectangle fields x, y,

52 5 Inheritance

w and h to the file. Thus Store must be overridden in Rectangle as
follows:

PROCEDURE (r: Rectangle) Store (VAR rider: OS.Rider);
BEGIN
 r.Store^ (rider);
 … write r.x, r.y, r.w, r.h to rider …
END Store;

Of course we do not want to rewrite Store from scratch; instead, we
would like to reuse the inherited (and overridden) Store. However,
this method can no longer be referenced as r.Store, for r.Store now
designates the new Store of Rectangle. Therefore, it is referenced as

r.Store^ (rider)

The symbol ^ after the method name indicates that the Store
method of the immediate superclass of Rectangle (the type of r) is
to be invoked. Note that the meaning of ^ after a method name is
different from its meaning after a pointer variable p, where p^
designates the variable to which p points.

5.2 Compatibility of a Base Type
and Its Extension

The reader might wonder whether type extension is only a way to
reduce the writing effort. Is there a difference between Rectangle
and the following type NewRectangle, in which the fields and
methods are explicitly redeclared instead of being inherited from
Figure?

TYPE
 NewRectangle = POINTER TO NewRectangleDesc;
 NewRectangleDesc = RECORD
 selected: BOOLEAN;
 x, y, w, h: INTEGER;
 PROCEDURE (r: NewRectangle) Draw;
 PROCEDURE (r: NewRectangle) Move (dx, dy: INTEGER);
 PROCEDURE (r: NewRectangle) Store (VAR rider: OS.Rider);
 PROCEDURE (r: NewRectangle) Fill (pat: Pattern)
 END

There is a very important difference: Rectangle is compatible with
Figure because it is an extension of Figure, while NewRectangle is
not compatible with Figure although it contains the same fields and
methods as Rectangle. NewRectangle is a completely different type.

 5.2 Compatibility of a Base Type and Its Extension 53

Every Rectangle object is also a Figure object! This is the
revolutionary aspect of object-oriented programming. It means
that all algorithms that work with Figure objects can also work
with Rectangle objects.

The compatibility between a base type and its extensions is
particularly used in assignments. If figureDesc is a variable of type
FigureDesc and rectangleDesc is a variable of type RectangleDesc,
then the assignment

Record
assignment

figureDesc := rectangleDesc

is permitted because RectangleDesc objects are (extended)
FigureDesc objects and thus can be assigned to FigureDesc
variables. The assignment works like a projection. That is, only
those fields of RectangleDesc are assigned that also exist in
FigureDesc.

The inverse assignment rectangleDesc := figureDesc is not
permitted because a FigureDesc object is not a RectangleDesc object.
(rectangleDesc contains more fields than figureDesc; the assignment
would leave these fields undefined.) This error would be detected
at compile time.

Passing an object as a value parameter is also an assignment.
A procedures with a formal parameter of type FigureDesc can be
invoked with a RectangleDesc object as its actual parameter.

The assignment compatibility between records is hardly ever
used. Who wants to lose data in an assignment? Pointers, however,
are another matter. If figure is of type Figure and rectangle of type
Rectangle, then the assignment

Pointer
assignments

figure := rectangle

is permitted because a Rectangle is an extended Figure. Here no
data of the object rectangle^ are lost; instead, after the assignment
figure simply points to rectangle^, whose first part is interpreted as
an object of type FigureDesc (Fig. 5.3).

selected
x
y
w

h

figure
FigureDesc

RectangleDesc

Fields that
can be
accessed
via figure

 Fig. 5.3 Result of the assignment figure := rectangle

54 5 Inheritance

The fields x, y, w and h are still there in the object to which figure
points after the assignment, but they cannot be referenced via
figure because figure was declared as a variable of type POINTER
TO FigureDesc, and FigureDesc contains no such fields.

The inverse assignment rectangle := figure is not permitted.
rectangle would point to a FigureDesc object, and the fields x, y, w,
and h would be undefined (Fig. 5.4). This kind of error is again
detected by the compiler.

?
?
?

?

rectangle
selected Fields that

can be
accessed
via rectangle

FigureDesc

Fig. 5.4 Hypothetical effect of the assignment rectangle := figure

There is another situation in which a base type and its extension
are compatible: when a record is passed as a variable parameter.
Let P be a procedure with the following interface:

Records as
variable
parameters

PROCEDURE P (VAR figureDesc: FigureDesc);

This procedure can be invoked with a parameter of type
RectangleDesc:

P(rectangleDesc)

With variable parameters no assignment takes place; instead the
formal parameter figureDesc simply has the same address as the
actual parameter rectangleDesc. No fields of rectangleDesc are
truncated. As in a pointer assignment, the fields of the extension
(e.g., rectangleDesc.x) are still there when P is executed, but they
cannot be accessed via figureDesc. Passing records as variable
parameters is used in Section 6.3 for message records.

To discuss some more examples, let us return to the type hierarchy
diagram of Fig. 5.2.

Other examples of
assignment
compatibility

 5.2 Compatibility of a Base Type and Its Extension 55

Figure

Rectangle Circle

TextBox

VAR
figure: Figure;
rectangle: Rectangle;
circle: Circle;
textBox: TextBox;

Which of the following assignments is legal?

a) figure := rectangle e) rectangle := circle
b) rectangle := figure f) circle := rectangle
c) figure := circle g) rectangle := textBox
d) figure := textBox h) circle := textBox

Only assignments a), c), d) and g) are correct. Variables of an
extended type can be assigned to variables of its base type, but not
the other way around, as in b). In e), f) and h) the types of the
variables are not derived from one another and thus are
incompatible. All these errors are detected at compile time.

5.3 Static and Dynamic Type

In languages with type extension, record and pointer variables
have a dynamic type in addition to their static type. The static type is
the type with which the variable is declared. The dynamic type is
the type of the object that the variable holds at run time; it can be
an extension of the static type. The static type is used by the
compiler for type checking, while the dynamic type is used for the
selection of methods at run time (see Chapter 6).

Dynamic type

Thus objects must contain type information at run time. This
is typical of object-oriented languages and does not occur in
conventional languages. When the object rectangle^ is created with
NEW(rectangle), it has the dynamic type RectangleDesc, which it
retains during its whole life. The variable rectangle thus has the
dynamic type Rectangle (POINTER TO RectangleDesc).

After the assignment figure := rectangle, figure also points to an
object of type RectangleDesc. The dynamic type of figure is thus
Rectangle (Fig. 5.5), but its static type remains Figure.

Pointer
assignment

56 5 Inheritance

selected
x
y
w

h

figure

RectangleDesc

FigureDesc

Fig. 5.5 The static type of figure is Figure;
the dynamic type of figure is Rectangle

In the record assignment figureDesc := rectangleDesc, only those
fields of RectangleDesc are transferred that also belong to
FigureDesc. figureDesc does not contain the complete value of
rectangleDesc; thus its dynamic type is not RectangleDesc, but only
FigureDesc. For record variables the static and dynamic types are
always the same.

One exception is records that are passed as variable para-
meters. A formal variable parameter has the same address as the
respective actual parameter. Thus it behaves as with pointers: its
dynamic type can be an extension of its static type.

Record
assignment

Records as
variable
parameters

In the following procedure P, assume that f has the dynamic
type RectangleDesc.

PROCEDURE P (VAR f: FigureDesc);
 VAR g: FigureDesc;
BEGIN
 f := g
END P;

What happens in the assignment f := g? Both variables have the
same (static) type, thus the assignment should be possible.
However, since f has the dynamic type RectangleDesc and g only
the dynamic type FigureDesc, the fields x, y, w and h in the actual
parameter corresponding to f would remain undefined.

Oberon-2 solves this problem by permitting the assignment to
a variable parameter record only if its dynamic type is the same as
its static type. The dynamic type of f is RectangleDesc; its static type
is FigureDesc; thus the assignment f := g is not permitted. This
check is done at run time.

Let us summarize:

• A variable of a record type T can only contain values of type

T.

 5.3 Static and Dynamic Type 57

• A formal variable parameter of a record type T can contain
values of type T or an extension thereof.

• A variable of type POINTER TO T can contain pointers to
values of type T or an extension thereof.

The concept of dynamic type is central to object-oriented
languages and distinguishes them from conventional languages.
The static type is needed for static type checking (i.e., type
checking at compile time), while the dynamic type is needed for
the interpretation of messages.

Conventional languages with static type checking (e.g.,
Pascal) have only static types. In object-oriented languages without
static type checking (e.g., Smalltalk), there are only dynamic types:
variables are declared without type. Object-oriented languages
with static type checking (e.g., Oberon-2, C++, Eiffel) employ both
static and dynamic types.

5.4 Run-Time Type Checking

The dynamic type of a record or pointer variable can be tested at
run time. The type test

Type test

figure IS Rectangle

returns TRUE if figure has the dynamic type Rectangle (or an
extension thereof), otherwise FALSE.

If figure has the dynamic type Rectangle, it should be possible
to assign it to rectangle. This is possible if a type guard is specified
for figure. The type guard

Type guard

figure (Rectangle)

checks at run time whether figure has the dynamic type Rectangle.
If so, the variable figure is treated within this designator as if its
static type were Rectangle; if not, there is a run-time error. The
following examples show uses for a type guard.

rectangle := figure(Rectangle) (*establishes assignment compatibility*)
figure(Rectangle).x := 0 (*field x can be referenced*)
figure(Rectangle).Fill(pat) (*method Fill can be referenced*)

The type guard figure(Rectangle) plays a double role: It checks
whether figure has the dynamic type Rectangle, and it temporarily

58 5 Inheritance

changes the static type of figure to Rectangle (it widens it to
Rectangle, as seen in Fig. 5.6). The type guard is thus a kind of type
conversion. However, Oberon-2 checks at run time whether the
conversion is legal, in contrast to many other languages in which
types can be converted without type checking.

selected selected
x x
y y
w w

h h

figure figure(Rectangle)

Fig. 5.6 figure(Rectangle) widens the static type of figure to Rectangle

A run-time error due to a failed type guard can be avoided by
preceding the type guard by a type test:

IF figure IS Rectangle THEN rectangle := figure(Rectangle) END

To improve the understanding of run-time type tests, we will look
at a few examples. Which of the following statements are correct
(see the type hierarchy in Fig. 5.2)?

a) textBox := rectangle (TextBox)
b) rectangle := figure (TextBox)
c) rectangle := circle (Rectangle)
d) figure := circle; rectangle := figure (Rectangle)

Statement a) is correct if the dynamic type of rectangle is TextBox or
an extension thereof. If not, the type guard causes a run-time error.
For b) the same applies as for a): If figure is at least of dynamic type
TextBox, the designator figure(TextBox) is treated as if it were of
static type TextBox. Thus it can be assigned to the variable
rectangle. Statement c) is illegal because the dynamic type of circle
can never be Rectangle. This error is detected by the compiler. Case
d) is interesting: Here we attempt to smuggle circle to rectangle via
figure. figure := circle is correct; rectangle := figure (Rectangle) is also
correct as far as the compiler is concerned, but the type guard
causes a run-time error because figure is of dynamic type Circle and
not Rectangle.

Which of the following type tests return TRUE if figure is of
dynamic type TextBox?

a) figure IS Figure
b) figure IS Rectangle
c) figure IS TextBox

 5.4 Run-Time Type Checking 59

All three type tests return TRUE: figure contains a TextBox object,
which is also a(n extended) Rectangle and Figure object.

Sometimes we want to apply a type guard to multiple occurrences
of a variable, but we do not want to write it each time. In this case
we can use the with statement: If f is a formal variable parameter of
static type FigureDesc, then instead of writing

With statement

f(RectangleDesc).x := …;
f(RectangleDesc).y := …;
f(RectangleDesc).Fill(…)

we can write

WITH f: RectangleDesc DO
 f.x := …;
 f.y := …;
 f.Fill(…)
END

The meaning of this with statement is: if f is of dynamic type
RectangleDesc, it is handled in the with statement as if its static type
were also RectangleDesc. Thus the fields and methods of
RectangleDesc can be referenced as f.x, f.y and f.Fill. If f is not of
dynamic type RectangleDesc, a run-time error results. A with
statement is a regional type guard. The type test is performed only
once, when the with statement is entered. With statements can also
be applied to pointers, e.g.:

WITH figure: Rectangle DO
 figure.x := …;
 figure.y := …
END

5.5 Extensibility in an
Object-Oriented Sense

At first glance it seems that extensibility of software is not
something made possible only by object-oriented programming. In
practice software systems were always extended and modified. So
what is special about object-oriented extensibility? The special
aspect is that object-oriented programming makes it possible to
extend systems in such a way that existing program parts are not
affected.

60 5 Inheritance

Meyer [Mey87] explains the open/closed principle in terms of
open and closed modules. A module is open if it is still being
developed. Its interface is still immature and subject to frequent
correction. It is used by few clients, which means that a
modification in the interface does not have dramatic consequences:
few clients are affected by these changes. At some point, however,
every module must be closed. Its interface is frozen then and the
module is released for general use. Now a modification in the
interface would have more serious consequences since the module
is used by many clients.

Open and closed
modules

The dilemma is that project management requires both
properties: A module should remain open as long as possible so
that it can mature; on the other hand, at some point clients must be
able to rely on a stable interface. The goal would be to have a
module closed for its current clients, yet open for new clients (Fig.
5.7).

A B

M M

C D

M1

Fig. 5.7 M remains closed for A, B and C and is reopened for D .

How can this be achieved? There are four basic ways to extend the
module M:

(1) The source code of M is changed. This causes problems for

various reasons: First, it assumes the availability of the source
code. Second, if the changes affect the interface, all clients
have to be recompiled. Third, the clients are bogged down
with the extension even though only a few actually use it.

Modify the original

(2) The source code of M is copied and changes are made on the

copy M1. This spares the trouble of recompiling existing
clients and avoids bogging them down with unnecessary
functionality. The drawback is its redundancy. The module
now exists in two variants. Whenever an error is detected, it
must be corrected at two locations. In addition, the source
code of M is again required.

Modify a duplicate

 5.5 Extensibility in an Object-Oriented Sense 61

(3) M is embedded in M1 in the sense that M is used by M1.
Assume that M is a module:

Embedding in
another module

 MODULE M;
 …
 PROCEDURE P (x: INTEGER);
 …
 END M.

 It is now simple to implement a new module M1 that has the
same interface and imports M:

 MODULE M1;

 IMPORT M;

 PROCEDURE P (x: INTEGER);
 BEGIN
 … (*new functionality*) …
 M.P(x)
 END P;
 …
 END M1.

 This solution does not require the source code of M. The
existing clients can continue to use M and are not troubled
with the extensions of M1. However, one small problem
remains: The clients of M cannot optionally use M1 because
they are statically bound to M. Each invocation of M.P in their
source code would have to be replaced with M1.P. But even
that would not allow the substitution of M1 for M at run time.

(4) If M is a class, it can be extended by creating the subclass M1,

in which the inherited methods can be overridden. As with
embedding, the source code of M is not needed; M's clients do
not need to be recompiled and are not bothered with the
extensions in M1. In addition, programs that work with M can
automatically also work with M1; their source code need not
be modified, and M can be replaced with M1 at run time.
Clients are dynamically bound to M or M1 (see Chapter 6).

Extension by
inheritance

Extensibility in an object-oriented sense thus means: a class is
reused in the form of object code, but it can still be extended in
such a way that existing clients can also work with the extension
without having to be modified.

62 5 Inheritance

However, inheritance is not intended to correct poor design. If
a method of a class really was forgotten, there is no option but to
reopen the class and to add the forgotten method.

 5.6 Common Questions 63

5.6 Common Questions

Q: Why is it not possible to override inherited data fields in a
subclass?

A: If it were permitted that a field f of an object a were of type
INTEGER in the superclass A and of type CHAR in its sub-
class B, then the compiler would not be able to perform a type
check for a.f := a.f + 1. If a were of dynamic type A, then a.f
would be of type INTEGER and the addition would be legal;
but if a were of dynamic type B, then a.f would be of type
CHAR and the addition would be illegal. The type check
could only be carried out at run time.

Q: Can a class be derived from more than one base class?
A: This is not possible in Oberon-2. In languages like C++ and

Eiffel, such multiple inheritance is possible. Section 8.6
explains why multiple inheritance is not permitted in Oberon-
2 and how to survive without it.

Q: Can a subclass access fields and methods of its superclass if

these are declared in another module and not exported?
A: No. In Oberon-2 it is the module, not the class, that is

responsible for information hiding. Even subclasses cannot
break through the module wall.

Q: Must an exported method be reexported each time it is

overridden?
A: When it is overridden, an exported method must be provided

with an export mark if the subclass to which it belongs is also
exported.

6 Dynamic Binding

In Chapter 5 we saw that a subclass inherits code from its base
class. However, code reuse is not the primary goal of inheritance.
More important is the fact that a subclass inherits the interface, i.e.,
that it understands the same messages as its base class, although it
may implement them differently. The compatibility between a
subclass and its base class makes it possible for a variable at run
time to contain objects of various types that react differently to a
message.

6.1 Messages

A variable of static type Figure can assume various dynamic types,
e.g., Rectangle, Circle, Button, etc. If it is of dynamic type Rectangle,
the message Draw causes the invocation of the Draw method from
Rectangle; if it is of dynamic type Circle, the same message causes
the invocation of the Draw method from Circle. This mechanism is
called dynamic binding: A message obj.M causes the invocation of
the method M that belongs to the dynamic type of obj. The
message is dynamically bound to a certain method (i.e., at the time
it is sent).

Dynamic or late binding contrasts with static or early binding,
which happens in conventional procedure invocations. With static
binding, the compiler knows the address of the procedure to be
invoked and generates a direct call. With dynamic binding, the
compiler does not know the address of the corresponding method.
This address must be determined at run time using the dynamic
type of the receiver. Message sending is thus somewhat slower
than calling a procedure. Over an entire program, however, this
difference is hardly measurable.

Dynamic binding

Static binding

64 6 Dynamic Binding

Dynamic binding is central to object-oriented programming. It
makes it possible to work with variables whose dynamic type is
unknown and irrelevant at compile time. If an operation is to be
applied to such a variable, one does not have to care about its
actual dynamic type. One simply sends a message to the variable
and lets the object interpret it. The message tells what is to be done.
The object determines how it is done, i.e., which method is to be
invoked.

Let us look at an example. A class Terminal includes methods
for printing characters, strings, and numbers on the screen:

Clients do not
need to
distinguish object
variants

Example

TYPE
 Terminal = POINTER TO TerminalDesc;
 TerminalDesc = RECORD
 PROCEDURE (t: Terminal) Write (ch: CHAR);
 PROCEDURE (t: Terminal) WriteString (a: ARRAY OF CHAR);
 PROCEDURE (t: Terminal) WriteInt (value, width: INTEGER);
 END;

Assume that we need a variant of Terminal that converts all lower-
case letters to upper-case letters before printing them. We imple-
ment a subclass CapTerminal in which we override the method
Write so that it makes the required conversion using the
predefined function CAP. WriteString and WriteInt are
implemented in terms of Write; thus they do not have to be
overridden for our purpose.

TYPE
 CapTerminal = POINTER TO CapTerminalDesc;
 CapTerminalDesc = RECORD (TerminalDesc) END;

PROCEDURE (t: CapTerminal) Write (ch: CHAR);
BEGIN
 IF (ch >= "a") OR (ch <= "z") THEN ch := CAP(ch) END;
 t.Write^ (ch)
END Write;

Every algorithm that works with Terminal can now also work with
CapTerminal. For example, if terminal is a variable of type Terminal
and capTerminal a variable of type CapTerminal, then the following
procedure

PROCEDURE WriteOn (t: Terminal);
BEGIN
 … t.Write(ch) …
END WriteOn;

can be invoked not only as

 6.1 Messages 65

WriteOn (terminal)

but also as

WriteOn (capTerminal)

The procedure does not need to know whether t is of dynamic type
Terminal or CapTerminal. It need only know that Terminal objects
understand a Write message. Due to dynamic binding, this
message is handled either by the Write method of Terminal or by
that of CapTerminal, depending on the current dynamic type of t.

6.2 Abstract Classes

Assume that there are other output classes beside Terminal: one for
hard disk files, one for floppy disk files, and one for the network.
These classes are similar: they all write data to some medium. It
should be possible to exchange objects of these classes, that is, to
use a hard disk file instead of a floppy disk file or vice versa. To
achieve this, the classes must be compatible in the sense of type
extension. But which class should serve as base class and which as
subclass? Actually they are all at the same level.

A clean solution is to factor out the common behavior of all
classes and to create a new base class Stream, from which all the
other classes are derived (Fig. 6.1). Since there are no objects of
type Stream, but only objects of type Terminal, DiskFile, FloppyFile
or NetFile, we call Stream an abstract class.

Factoring out
common behavior

Stream

Terminal DiskFile FloppyFile NetFile

Fig. 6.1 Abstract class Stream and several concrete subclasses

What should the abstract class Stream look like? It certainly must
contain methods like Write, WriteString and WriteInt. But how
should these methods be implemented? Write cannot be
implemented yet, because it differs from subclass to subclass; its
implementation in Stream can only be empty. An empty method is
called an abstract method, and classes that contain abstract methods

Implementing
abstract classes

66 6 Dynamic Binding

are called abstract classes. The abstract class Stream is thus
implemented as follows:

TYPE
 Stream = POINTER TO StreamDesc;
 StreamDesc = RECORD END; (*abstract*)

PROCEDURE (s: Stream) Write (ch: CHAR); (*abstract*)
END Write;

PROCEDURE (s: Stream) WriteString (a: ARRAY OF CHAR);
 VAR i: INTEGER;
BEGIN
 i := 0;
 WHILE a[i] # 0X DO s.Write(a[i]); i := i + 1 END
END WriteString;

PROCEDURE (s: Stream) WriteInt (value, width: INTEGER);
 VAR n: LONGINT; i, k: INTEGER; neg: BOOLEAN; d: ARRAY 5 OF CHAR;
BEGIN
 n := value; neg := n < 0; i := 0;
 IF neg THEN n := - n; width := width - 1 END;
 REPEAT
 d[i] := CHR(ORD("0") + n MOD 10);
 n := n DIV 10; i := i + 1
 UNTIL n = 0;
 FOR k := i TO width DO s.Write(" ") END;
 IF neg THEN s.Write("-") END;
 REPEAT i := i - 1; s.Write(d[i]) UNTIL i = 0
END WriteInt;

Stream includes one abstract method, Write, and two concrete
methods, WriteString and WriteInt, whose implementation is based
on Write. Thus Stream is only partially abstract. In WriteString and
WriteInt, standard behavior is implemented that is inherited by
subclasses, but can be overridden.

Abstract methods such as Write must be overridden in
subclasses. It is good practice not to leave them empty but to
implement them with a HALT statement (see Appendix A) that
terminates execution. In case the programmer forgets to override
them, the HALT statement reveals that error.

One concrete subclass of Stream is DiskFile. It is implemented
as follows:

TYPE
 DiskFile = POINTER TO DiskFileDesc;
 DiskFileDesc = RECORD (StreamDesc) … END;

PROCEDURE (f: DiskFile) Write (ch: CHAR);
BEGIN
 … (*code to write ch to file f *)

 6.2 Abstract Classes 67

END Write;

Write is the only method to override because WriteString and
WriteInt are based on it.

If abstract methods have to be overridden anyway, what is the
sense of declaring them already in the base class? Could they not
be omitted in the base class and implemented only in the
subclasses?

Interfaces of
abstract classes

Abstract methods must not be omitted in the base class. The
purpose of an abstract class is not to provide code that can be
inherited, but to establish a common interface for all future
subclasses. Establishing this interface in the base class is necessary
to make dynamic binding work. A Stream variable can contain a
DiskFile object at run time. If this object is to be sent an Open
message, this is possible only if the interface of Stream permits an
Open message.

Establishing a common interface is more important than
inheriting code. Classes are often implemented as extensions of an
abstract class. In these cases an interface is inherited, but no code.
Code reuse is not important here; the common interface, however,
is necessary in order to work with multiple subclasses without
having to distinguish them in the program.

It does not make sense to create objects of an abstract class
Stream. Nothing could be done with such objects. It does, however,
make sense to work with variables whose static type is Stream and
whose dynamic type is some extension of Stream. In many object-
oriented programs, this is the normal case.

An abstract class is the design of its subclasses—a template
that indicates which methods must be provided in the subclasses.
This can be helpful. If a new Stream variant is to be implemented,
most of its methods are already known.

Abstract classes
are design

While we recommend moving as many methods as possible
from the subclasses to the abstract class, it is usually unwise to do
the same with data fields. Which fields are needed in a subclass
depends on its implementation. The fields of the base class usually
cannot be reused in subclasses. They often even impede
extensibility [WiW89].

6.3 Examples

Let us recall the declaration of the class Stream from Section 6.2:

68 6 Dynamic Binding

TYPE
 Stream = POINTER TO StreamDesc;
 StreamDesc = RECORD END; (*abstract*)

PROCEDURE (s: Stream) Write (ch: CHAR); (*abstract*)
BEGIN
 HALT(99) (*this method should be overridden*)
END Write;

PROCEDURE (s: Stream) WriteString (a: ARRAY OF CHAR);
 VAR i: INTEGER;
BEGIN
 i := 0;
 WHILE a[i] # 0X DO s.Write(a[i]); i := i + 1 END
END WriteString;

The subclass DiskFile was derived from Stream:

TYPE
 DiskFile = POINTER TO DiskFileDesc;
 DiskFileDesc = RECORD (StreamDesc) … END;

PROCEDURE (f: DiskFile) Write (ch: CHAR);
BEGIN
 … (*write ch to file f*) …
END Write;

What are the results of the following statements? Compare your
answers with those in the right column. The notation Stream.Write
means the invocation of the method Write in the class Stream.

VAR stream: Stream; file: DiskFile;

 NEW(stream); …
(*a*) stream.Write(ch); (*Stream.Write*)
(*b*) stream.WriteString("abc"); (*Stream.WriteString -> Stream.Write*)

 NEW(file); …
(*c*) file.Write(ch); (*DiskFile.Write*)
(*d*) file.WriteString("abc"); (*Stream.WriteString -> DiskFile.Write*)

 stream := file;
(*e*) stream.Write(ch); (*DiskFile.Write*)
(*f*) stream.WriteString("abc"); (*Stream.WriteString -> DiskFile.Write*)

Cases a and b are clear. Since stream is of dynamic type Stream,
Write and WriteString are invoked from Stream. WriteString itself
invokes Write.

Case c is also clear. The dynamic type of file is DiskFile, so
DiskFile.Write is invoked. Case d is more interesting. The dynamic
type of file is DiskFile, but the WriteString method was not
overridden there. Thus the inherited method from Stream is

 6.3 Examples 69

invoked, which in turn sends a Write message to its receiver. Since
the receiver is of dynamic type DiskFile, DiskFile.Write is invoked.

Cases e and f are textually the same as a and b, but they yield
the same results as c and d because stream is now of dynamic type
DiskFile. Here we clearly see the dynamic binding.

Let us consider another example. A class CryptFile is to be
implemented to encrypt an output before writing it to a file. This
class is derived from DiskFile and the method WriteString is
overridden.

TYPE
 CryptFile = POINTER TO CryptFileDesc;
 CryptFileDesc = RECORD (DiskFileDesc) END;

PROCEDURE (crypt: CryptFile) WriteString (a: ARRAY OF CHAR);
 VAR b: ARRAY 256 OF CHAR;
BEGIN
 Encrypt(a, b); (*b is an encryption of a*)
 crypt.WriteString^ (b) (*call WriteString from the base class*)
END WriteString;

What are the results of the following statements?

VAR crypt: CryptFile;
…
NEW(crypt);
stream := crypt;
stream.WriteString("abc");
(* CryptFile.WriteString -> Stream.WriteString -> DiskFile.Write*)

Write

Write

WriteString

WriteString

Stream

DiskFile

CryptFile

1

2

3

Fig. 6.2 Effects of the statement stream.WriteString("abc")

Figure 6.2 shows the results. Since stream is of dynamic type
CryptFile, CryptFile.WriteString is invoked (1). This method calls the
method with the same name in the base class of CryptFile, i.e.,
DiskFile. This is the inherited method Stream.WriteString (2). There

70 6 Dynamic Binding

the receiver is sent the message Write. The receiver is still of
dynamic type CryptFile; thus the respective Write is invoked, i.e.,
the Write method inherited from DiskFile (3).

6.4 Message Records

Methods are only one possibility to handle messages. Another
possibility is to take the expression "sending a message" literally.
Then a message is a data package (a message record) that is passed
to an object for handling. All we need for that is various message
records, as well as one method per class that interprets the
message records.

Message records

Let us return to our example with figures, rectangles and
circles from Chapter 5. Figures can be sent the messages Draw,
Store or Move. If these messages are implemented as records, we
have:

TYPE
 Message = RECORD END; (*base type of all messages*)

 DrawMsg = RECORD (Message) END;
 StoreMsg = RECORD (Message) rider: OS.Rider END;
 MoveMsg = RECORD (Message) dx, dy: INTEGER END;

The concrete message types are extensions of the empty type
Message and contain their parameters as record fields. Records of
this type can be passed to a message handler, which is a method as
in the following:

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 selected: BOOLEAN;
 PROCEDURE (f: Figure) Handle (VAR m: Message);
 END;

The message handler interprets message records based on their
dynamic type and reacts accordingly. It has to be overridden in
every class. For the class Rectangle it takes the following form:

Message handler

TYPE
 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD (FigureDesc)
 x, y, w, h: INTEGER
 END;

 6.4 Message Records 71

PROCEDURE (r: Rectangle) Handle (VAR m: Message);
BEGIN
 WITH
 m: DrawMsg DO … (*draw rectangle r*)
 | m: MoveMsg DO … (*move rectangle r by m.dx, m.dy*)
 | m: StoreMsg DO … (*store rectangle r on m.rider*)
 | …
 ELSE (*ignore m*)
 END
END HandleRectangle;

The message m is analyzed using a with statement with variants
(see Appendix A). The above with statement is to be read as
follows: If m is of dynamic type DrawMsg, the statement sequence
after the first DO symbol is executed and m is handled as a
variable with static type DrawMsg; if m is of dynamic type
MoveMsg, the statement sequence after the second DO symbol is
executed and m is handled as a variable with static type MoveMsg
(hence access to m.dx and m.dy is permitted); if none of the variants
applies, the else branch is executed, and if there is no else branch, a
run-time error results.

With statement
with variants

In this example, Handle ignores unknown messages: the else
branch of the with statement is empty. It would also be possible to
react to unknown messages with an error message or to forward
them to the handler of the base type.

To send a message to an object, an appropriate message
record is filled and is passed to the handler of the object:

Using message
records

VAR f: Figure; move: MoveMsg;
…
move.dx := 10; move.dy := 20;
f.Handle(move)

Depending on the dynamic type of f, a different message handler
will be invoked that reacts to the move message in its own way.

Result parameters of a message are returned in the message
record. To compute the area of a figure, say, the figure can be sent
a message getArea. The message handler returns the area in
getArea.value:

TYPE
 GetAreaMsg = RECORD (Message) value: LONGINT END;
VAR
 getArea: GetAreaMsg;
 area: LONGINT;

f.Handle(getArea);
area := getArea.value

72 6 Dynamic Binding

Message records are similar to Smalltalk messages, which are also
analyzed at run time by a handler that invokes the appropriate
method. In Smalltalk, however, the message handler is built into
the system, while in Oberon it is implemented by the programmer.

The Oberon system itself was implemented with message
records. Likewise the Oberon0 system described in Chapter 11
uses message records in connection with viewers (windows).

Message records have several advantages over methods: Advantages

• Messages are data packages that can be stored and sent later.

• A message can easily be distributed to more than one object.

This is called a broadcast. Consider a list of figures that have to
be moved on the screen. With methods, the caller would have
to traverse the list and send a Move message to every figure:

 f := firstFigure; WHILE f # NIL DO f.Move(dx, dy); f := f.next END

 The structure of the list must be known to the caller (which is
not always the case) and the code for the traversal is
duplicated in every client. With message records one can
implement the list traversal in a procedure Broadcast to which
the message is passed as a parameter:

 PROCEDURE Broadcast (VAR m: Message);
 VAR f: Figure;
 BEGIN
 f := firstFigure; WHILE f # NIL DO f.Handle(m); f := f.next END
 END Broadcast;

 This allows hiding the list structure and keeping the code for
the list traversal localized.

• An object can be sent a message that it does not understand. It

may ignore the message or forward it to another object. For
example, a fill message can be broadcast to all figures
although only rectangles and circles understand it, but not
lines. With methods this is not possible because the compiler
checks if a message is understood by the receiver.

• It is possible to implement the message handler as a

procedure variable rather than as a method. Then it can be

 6.4 Message Records 73

exchanged at run time to dynamically change the behavior of
an object.

Message records also have some disadvantages: Drawbacks

• It is not immediately clear which operations belong to a class,

i.e., which messages an object understands. To find that out,
one has to look at the implementation of the message handler.

• Messages are interpreted at run time using a with statement

whose variants are processed sequentially. This is slower than
a method invocation, which can be implemented with a single
table lookup (see Appendix A.12.4).

• Message sending is somewhat clumsy. First the input

parameters have to be packaged in the record, then the
message handler has to be invoked, and finally the output
parameters can be obtained from the record:

 msg.inPar := …;
 obj.Handle(msg);
 … := msg.outPar

• What was considered an advantage above can also be a

drawback: the compiler cannot check whether an object
understands a message. For example, the following program
would be correct for the compiler:

 TYPE
 NonsenseMsg = RECORD (Message) END;
 VAR
 f: Figure;
 nonsense: NonsenseMsg;
 …
 f.Handle(nonsense)

 At run time f would not understand nonsense. The object
would ignore the message or the program would be
terminated with a run-time error. The error might arise only
after months and is difficult to find then.

Thus message records have advantages and disadvantages. In
general, methods are preferable because they are more efficient,
safer, and more readable. To implement broadcasts, however, it

74 6 Dynamic Binding

makes sense to employ the greater flexibility of message records
(see also Chapter 8.7).

6.5 Common Questions

Q: Can a class be restricted rather than extended, i.e., can
inherited methods and fields be removed in a subclass?

A: No. If a method M inherited from class A were removed from
a subclass B, it would still be possible to send M to a B object
stored in a variable of type A. What would that message
yield? However, to prevent the invocation of M for B, one can
override B with a method that generates an error message.

Q: In overriding a method, can the parameter types be an

extension of the parameter types in the base method; i.e., if B
is a subclass of A, are the following declarations permitted?

 PROCEDURE (x: A) M (y: A); …
 PROCEDURE (x: B) M (y: B); …

A: No. The types of the formal parameters in the two methods
must match (except for the receiver). Otherwise the following
could occur:

 VAR a, a1: A;
 …
 a.M(a1)

 If a is of dynamic type B, method M of B is invoked, which
requires a parameter that is at least of type B. If the dynamic
type of the actual parameter a1 is only A rather than B, M is
invoked with a parameter of the wrong type. The compiler
would have to generate a run-time test in M that would report
an error if the parameter were not of type B. This would be
costly.

Q: Does obj.M^ invoke the method M from the base class of the

static or the dynamic type of obj?
A: The method from the base class of the static type of the

receiver is invoked.

7 Typical Applications

Object-oriented programming yields very elegant solutions in
some cases; in others it is of almost no use and can even add
complexity. Applications that profit from object-oriented pro-
gramming are the following:

• abstract data types
• generic components
• heterogeneous data structures
• replaceable behavior
• adaptable components
• semifinished products

Whenever a situation requires generic components, heterogeneous
data structures or replaceable behavior, classes are the approach of
choice. An experienced programmer recognizes such situations
and employs classes then (and only then).

7.1 Abstract Data Types

Classes are an excellent structuring medium. They group asso-
ciated data and operations and bring order to programs. They help
to hide unimportant details from clients and thus reduce the
complexity of software.

Classes as a
structuring
medium

Even if inheritance and dynamic binding are not used, it can
make sense to implement a data type as a class in order to make it
an identifiable, self-contained entity. An example is a class to
control an RS232 interface. Details such as interface registers,
handshake protocol and signals, can be hidden behind the follow-
ing interface:

76 7 Typical Applications

TYPE
 RS232 = RECORD
 PROCEDURE (VAR x: RS232) Init (address, bitRate, dataBits,
 stopBits, parity: LONGINT);
 PROCEDURE (VAR x: RS232) Send (ch: CHAR);
 PROCEDURE (VAR x: RS232) Receive (VAR ch: CHAR);
 END;

This interface is simple, hardware independent, and stable with
regard to modifications of the implementation. However, it should
be considered whether the component is really needed as a type. If
not, a module like the following is the simpler and more efficient
solution:

DEFINITION RS232;
 PROCEDURE Init (bitRate, dataBits, stopBits, parity: INTEGER);
 PROCEDURE Send (ch: CHAR);
 PROCEDURE Receive (VAR ch: CHAR);
END RS232.

Data abstraction is not for free. Although a class usually eliminates
complexity, it also adds a certain amount of new complexity. After
all, a new component is defined with operations whose syntax and
semantics must be kept in mind. Data abstraction is only justified
if the simplification is substantially higher that the newly
introduced complexity. For example, it would not make sense to
define the following class for a person's salary:

The cost of data
abstraction

TYPE
 Salary = RECORD
 amount: INTEGER;
 PROCEDURE (s: Salary) Set (value: INTEGER);
 PROCEDURE (s: Salary) Get (VAR value: INTEGER);
 PROCEDURE (s: Salary) Increment (value: INTEGER);
 END;

The class Salary introduces more complexity than it eliminates.
Instead, the standard type INTEGER would be perfectly adequate.
The example may be exaggerated, but such errors occur frequently
among programmers who feel the need to express everything with
classes.

Among all features of object-oriented programming, data
abstraction is the one that is least novel, yet most frequently
applicable. Inheritance and dynamic binding are applicable in some
programs; data abstraction is useful in almost all.

Data abstraction and the structuring possibilities that it
provides are a major reason for the popularity of object-oriented
languages. For Modula-2 programmers, data abstraction is a well-

 7 1 Abstract Data Types 77

known technique. For Cobol or C programmers it constitutes
substantial progress. This also explains why some view object-
oriented programming as revolutionary, while others find it less
spectacular.

7.2 Generic Components

A component is called generic if it can work with various types of
objects. Languages like Ada [DoD83] and Eiffel [Mey87] offer
genericity as a language construct. Genericity can also be
simulated with inheritance, as we will see in this section.

Consider a generic binary tree. The algorithms for inserting or
searching for objects in the tree are independent of whether the
objects are numbers, character strings, or more complex data. It is
wise to implement them so that they are not tailored to a certain
type of object, but work with generalized objects that can later be
replaced with numbers, character strings, etc. Such a binary tree
could have the following interface:

A generic binary
tree

TYPE
 Tree = RECORD
 PROCEDURE (VAR t: Tree) Init;
 PROCEDURE (VAR t: Tree) Insert (x: Node);
 PROCEDURE (VAR t: Tree) Delete (x: Node);
 PROCEDURE (VAR t: Tree) Search (x: Node): Node;
 END;

Instead of numbers or character strings, this tree handles objects of
the abstract type Node. Although the structure of the nodes is
unknown, the tree must make certain assumptions about them:
Every node must have a left and a right child, and it must be
possible to compare nodes in order to locate them in the tree.
These assumptions are expressed in the following interface of
Node:

TYPE
 Node = POINTER TO NodeDesc;
 NodeDesc = RECORD
 left, right: Node;
 PROCEDURE (x: Node) EqualTo (y: Node): BOOLEAN;
 PROCEDURE (x: Node) LessThan (y: Node): BOOLEAN;
 END;

These assumptions suffice for implementing the methods of class
Tree.

78 7 Typical Applications

TYPE
 Tree = RECORD
 root: Node
 END;

PROCEDURE (VAR t: Tree) Init;
BEGIN root := NIL
END Init;

PROCEDURE (VAR t: Tree) Insert (x: Node);
 VAR this, parent: Node;
BEGIN
 this := t.root; x.left := NIL; x.right := NIL;
 WHILE this # NIL DO
 parent := this;
 IF x.EqualTo(this) THEN RETURN (*don't insert duplicates*) END;
 IF x.LessThan(this) THEN this := this.left ELSE this := this.right END
 END;
 IF t.root = NIL THEN t.root := x
 ELSIF x.LessThan(parent) THEN parent.left := x
 ELSE parent.right := x
 END
END Insert;

PROCEDURE (VAR t: Tree) Search (x: Node): Node;
 VAR this: Node;
BEGIN
 this := t.root;
 WHILE (this # NIL) & ~ x.EqualTo(this) DO
 IF x.LessThan(this) THEN this := this.left ELSE this := this.right END
 END;
 RETURN this
END Search;

PROCEDURE (VAR t: Tree) Delete (x: Node);
 VAR this, parent, p, q: Node;
BEGIN
 this := t.root;
 WHILE (this # NIL) & ~ x.EqualTo(this) DO
 parent := this;
 IF x.LessThan(this) THEN this := this.left ELSE this := this.right END
 END;
 IF this # NIL THEN (*x.EqualTo(this); find a node p that can replace this*)
 IF this.right = NIL THEN p := this.left
 ELSIF this.right.left = NIL THEN p := this.right; p.left := this.left
 ELSE (*p := smallest node greater than this*)
 p := this.right; WHILE p.left # NIL DO q := p; p := p.left END;
 q.left := p.right; p.left := this.left; p.right := this.right
 END;
 IF this = t.root THEN t.root := p
 ELSIF this.LessThan(parent) THEN parent.left := p
 ELSE parent.right := p
 END
 END
END Delete;

 7.2 Generic Components 79

How can a binary tree that handles objects of type Node be used to
store character strings? This is simple if character strings are made
compatible to Node. In order to do that, a subclass StringNode is
derived from Node containing a character string as data field and
overriding the methods EqualTo and LessThan:

Storing character
strings in the
binary tree

TYPE
 StringNode = POINTER TO StringNodeDesc;
 StringNodeDesc = RECORD (NodeDesc)
 s: POINTER TO ARRAY OF CHAR
 END;

PROCEDURE (x: StringNode) EqualTo (y: Node): BOOLEAN;
BEGIN RETURN x.s^ = y(StringNode).s^
END EqualTo;

PROCEDURE (x: StringNode) LessThan (y: Node): BOOLEAN;
BEGIN RETURN x.s^ < y(StringNode).s^
END LessThan;

Note that parameter y of both methods is of type Node (overridden
methods must have the same parameter types as the respective
method of the base class). Thus a type guard y(StringNode) is
necessary in order to access y.s. Character strings are inserted in
the tree as follows:

VAR t: Tree; s: StringNode;
…
NEW(s); … t.Insert(s);

The method Insert compares nodes using the messages EqualTo
and LessThan, which are dynamically bound to the respective
methods of StringNode. In a similar way, it is possible to store
numbers in the tree by deriving a type IntegerNode and overriding
the methods EqualTo and LessThan. What have we achieved with
the generic type Tree ?

• Tree can work with all objects whose type is derived from

Node and that can be compared with EqualTo and LessThan.
• Node serves as a design pattern for future node classes.
• Tree can be reused without modification or recompilation.

Languages like Ada, C++ and Eiffel include genericity as a
language construct. In Eiffel, for example, a class can be para-
meterized with a type T that follows the class name in square
brackets. A generic stack in Eiffel takes the following form:

Genericity as a
language
construct

80 7 Typical Applications

class Stack [T]
 …
 Push (x: T) is do … end;
 Pop: T is do … end;
end

The operations Push and Pop work with objects of type T. In the
declaration of a stack variable, T can be replaced with a concrete
type such as INTEGER, resulting in a stack of integer numbers:

intStack: Stack[INTEGER];
i: INTEGER;
…
intStack.Push(3); … i := intStack.Pop

Stack can be used for any types of elements without needing an
element base class such as Node. This kind of genericity, however,
is suited only for simple data structures that make no assumptions
about the elements they maintain, e.g., stacks, queues or unsorted
lists. Most useful data structures such as trees, sets or sorted lists
require at least that their elements can be compared. Eiffel thus
permits a more detailed specification of the generic class Tree,
called constrained genericity. The class declaration

class Tree [T -> Node]
 …
end

specifies that the concrete type corresponding to T must be a Node
or an extension thereof. Here, too, an abstract class Node has to be
used to define the required behavior of all future nodes.

An important aspect of genericity in Eiffel is that the compiler
enforces that all objects managed by Stack have the same type, i.e.,
that they are homogeneous. Inheritance, on the other hand, allows
Stack to manage a heterogeneous set of elements, e.g., numbers
mixed with character strings. This might or might not be desirable
(see Section 7.3), but with inheritance the homogeneity of the
element set can only be checked at run time.

With genericity we can write i := intStack.Pop. If Stack is
parameterized with INTEGER, then Pop always returns INTEGER
objects. Type checks can be done at compile time. However, if the
stack is implemented using inheritance from an abstract class Node,
then Pop returns Node objects that must first be converted to
IntegerNode objects with a type guard. The type guard requires a
type check at run time.

 7.2 Generic Components 81

Note that inheritance can be used to simulate genericity, but
not vice versa. Genericity cannot replace inheritance [Mey86].
Inheritance is the more powerful and more fundamental concept.

The example of the class Tree calls attention to another important
fact: Many classes have not only an interface to their clients, but
usually also one or more interfaces to their components, in this
case to Node (Fig. 7.1). A programmer using the class Tree must
also know the interface of Node, because an extension of Node must
be implemented.

Classes usually
have multiple
interfaces

Init

EqualTo LessThan

Insert Delete Search

Tree

Node

Interface to clients:
which services are offered?

Interface to components:
which services are expected?

Framework

Fig. 7.1 Interfaces of a class to its clients and components

When a class like Tree is designed, it is not enough to consider just
the services that the class itself will offer. It is equally important to
decide which objects the class needs in order to do its job and
which services are expected from these objects. This leads to a set
of classes that work together to carry out a certain task. Such a
system of classes is called a framework (see Chapter 10). Tree and
Node form a framework for binary trees. A framework represents a
semifinished product that can later be extended for various
purposes.

Genericity is applicable whenever an object has to manage a set of
components. If this object is to be kept so general that it can work
with various component types, an implementation with classes is
appropriate. One proceeds as follows:

Summary

82 7 Typical Applications

(1) Consider which services are expected from the components.
(2) Design one or more abstract classes that offer these services.
(3) Implement the generic object using the abstract component

class(es).

7.3 Heterogeneous Data Structures

One of the most useful applications of object-oriented program-
ming is the management of heterogeneous data structures.
Situation of this kind have the following characteristics:

(1) Objects occur in variants.
(2) The program using the objects does not want to distinguish

the variants.
(3) The number of future variants is unknown; new ones can be

added later.

Table 7.2 gives examples of such situations.

Objects in a graphics editor
(lines, rectangles, circles, …)

Objects on a screen
(windows, icons, menus, …)

Objects in a dialog window
(buttons, texts, scroll bars, …)

Objects in a game
(hunter, prey, walls, …)

Objects in a simulation
(cars, persons, traffic lights, …)

Variants Operations

draw, move, click, …

draw, move, click, …

draw, move, click, …

draw, move, collide, …

activate, delay, …

Table 7.2 Examples of objects that occur in variants

Let us examine a graphics editor that supports the drawing,
selection and moving of lines, rectangles and circles. In
conventional languages like Modula-2, the various kinds of figures
would be implemented as a variant record:

Conventional
implementation of
a graphics editor

 7.3 Heterogeneous Data Structures 83

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 next: Figure;
 CASE kind: FigureKind OF
 line: x0, y0, x1, y1: INTEGER
 | rect: x, y, w, h: INTEGER
 | circle: mx, my, radius: INTEGER
 END
 END;

Using this record type, a list can be created that contains figures of
various kinds:

next nextnext next

y0
x

my my
x0

rect
mx mx

circlecircleline

x1
y

radius radius
y1

w
h

Fig. 7.3 Heterogeneous data structure with variant records

Variant records are dangerous, however, because most compilers
do not generate code to check whether the program uses the
correct variant of an object at run time. Furthermore, whenever an
operation is applied to a figure, its possible variants must be
distinguished in the program code. In order to draw all the figures
in a list, say, we would have to write:

figure := firstFigure;
WHILE figure # NIL DO (*draw all figures*)
 CASE figure^.kind OF
 line: … (*draw line*)
 | rect: … (*draw rectangle*)
 | circle: … (*draw circle*)
 END;
 figure := figure^.next
END

The places requiring case analysis are usually scattered over the
whole program. What is even worse is that the introduction of a
new kind of figure (e.g., splines) requires the modification of the
data type Figure which can in turn require the recompilation of
client modules. Furthermore, each case statement must be
modified to accommodate spline objects as well. This is tedious
and error-prone. Software of this sort tends to be messy and
difficult to extend.

84 7 Typical Applications

Object-oriented languages permit a more elegant approach.
Figures are viewed as abstract objects (black boxes) about which
certain assumptions are made: they can be linked into a list, and
they can be drawn, moved, read and stored. This is all the editor
has to know in order to be able to work with figures. It need not
know that there are rectangles, circles, lines, and all the other
concrete figure kinds; and it need not know how to draw, move
and store them.

These considerations lead to the declaration of the abstract
class Figure below. (The module OS used in this declaration is
described in Appendix B).

Object-oriented
implementation of
a graphics editor

Abstract figures

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD (*abstract*)
 next: Figure;
 selected: BOOLEAN;
 PROCEDURE (f: Figure) Draw;
 PROCEDURE (f: Figure) Move (dx, dy: BOOLEAN);
 PROCEDURE (f: Figure) HandleMouse (x, y: INTEGER;
 buttons:SET);
 PROCEDURE (f: Figure) Load (VAR r: OS.Rider);
 PROCEDURE (f: Figure) Store (VAR r: OS.Rider);
 …
 END

The concrete figure types are subclasses of Figure. They include
additional fields and override the abstract methods of Figure.

Concrete figures

TYPE
 Line = POINTER TO LineDesc;
 LineDesc = RECORD (FigureDesc)
 x0, y0, x1, y1: INTEGER;
 PROCEDURE (ln: Line) Draw;
 PROCEDURE (ln: Line) Move (dx, dy: BOOLEAN);
 …
 END;

 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD (FigureDesc)
 x, y, w, h: INTEGER
 PROCEDURE (r: Rectangle) Draw;
 PROCEDURE (r: Rectangle) Move (dx, dy: BOOLEAN);
 …
 END;

 Circle = POINTER TO CircleDesc;
 CircleDesc = RECORD (FigureDesc)
 mx, my, radius: INTEGER
 PROCEDURE (c: Circle) Draw;
 PROCEDURE (c: Circle) Move (dx, dy: BOOLEAN);

 7.3 Heterogeneous Data Structures 85

 …
 END;

Objects of this kind again permit the construction of a heteroge-
neous list (Fig. 7.4).

next nextnext next

y0
x

my my
x0
selected selected selected selected

mx mx

x1
y

radius radius
y1

w
h

Line Circle CircleRectangle

Fig. 7.4 Heterogeneous data structure composed of objects

For the editor, all the figures in the list are of static type Figure; i.e.,
the editor sees only the fields and methods of class Figure (the
shaded parts in Fig. 7.4). Actually, however, behind each object
there is a line, a rectangle or a circle. To draw all figures, the editor
need only do the following:

figure := firstFigure;
WHILE figure # NIL DO
 figure.Draw;
 figure := figure.next
END

The editor no longer has to distinguish the variants. It simply
sends each figure a Draw message, trusting that the figure,
regardless of its type, will correctly handle the message. The
introduction of a new figure type Spline does not affect the editor.
It is able to store spline objects like all the other figures in its data
structure, and if the object to which it sends a Draw message
happens to be a spline object, then a spline is drawn without the
editor being aware of it.

The operations on objects are no longer scattered over the
whole program, but collected in the figure classes. This simplifies
maintenance. The introduction of a spline class requires only the
implementation of this single class; the rest of the program
remains unchanged.

Note that two kinds of extensions occur in this example. First,
the class Figure was extended to Line, Rectangle and Circle. Second,
the entire editor was extended. Originally it could only work with
abstract figures; now it can draw lines, rectangles and circles. It
can be extended at any time to draw new types of figures.

No more case
distinctions

Better localization

Extensibility

86 7 Typical Applications

The graphics editor will have to store the figures to a file
occasionally. The input/output of heterogeneous data structures is
a nontrivial problem. The editor itself cannot load and store
figures because it does not know their data fields. It must leave
this task to the figures, which override the methods Load and Store
inherited from Figure. But before the editor can send a figure a
Load message it must first create the figure object. How does the
editor know what type the object must be? This is a tricky problem
and we will come back to it in Section 8.3.

A remarkable feature of the Oberon system is that progams
can be extended at run time. Assume that the kernel of the editor
consists of a module Figures defining the abstract class Figure, and
a module Editor that handles windows and contains general
editing commands. Each subclass of Figure is implemented in its
own module (i.e, modules Lines, Rectangles, Circles, etc.). Now, the
editor can be loaded so that at first only the kernel modules Editor
and Figures are in memory. This makes for a compact program and
short loading times. In this configuration, the editor does not know
about any concrete kinds of figure.

Input/output of
figures

Loading
extensions at run
time

Figures

Editor Lines Rectangles Circles Splines …

Fig. 7.5 Extensibility of programs by dynamic loading of modules

While the editor is running, the user can decide to load Lines or
Circles. These modules are linked to the already loaded modules
then and give the editor the ability to draw lines or circles. Each
user can load those modules as needed. It is not necessary to
always use the editor with its full functionality. Each user can load
customized functionality without bothering others (see Section
8.2).

Actually, a system is really extensible only if anyone (not just
the author) can extend a program at any time (even while it is
loaded). This is the case in Oberon. New modules, and thus new
classes, can be implemented and loaded whose existence is
unknown to the program, yet the program can still use them. The
graphics editor knows nothing of a Splines module; still, this
module can be added—without modifying or relinking the editor.
In interpretative object-oriented systems like Smalltalk, this is also
possible, but not so in most compilative systems. Oberon is an

 7.3 Heterogeneous Data Structures 87

exception: it is a compilative system that offers a degree of exten-
sibility similar to that of Smalltalk.

In summary, if a program is to work with multiple variants of
a class, it should not distinguish them, but view them as various
extensions of an abstract class. The procedure is similar to that for
generic components:

Summary

(1) Consider which operations and data are common to all

variants.
(2) Define an abstract class with these features and a subclass for

each variant.
(3) Work with variables of the abstract class without considering

which object variants might be stored in them at run time.

7.4 Replaceable Behavior

If an object or an algorithm is to change its behavior at run time,
this can also be implemented elegantly with classes.

Let us look at an example: Editors normally display data in
frames on the screen. A frame is a rectangular area into which text
and graphics can be drawn. It provides operations such as
DrawLine or DrawChar causing a line or a character to be drawn on
the screen. To output the frame contents to a printer, we have to
use print operations instead of display operation for every piece of
text or graphics displayed in the frame.

Uniform output on
screen and printer

Of course, we would like to avoid having different output
operations for the screen and for the printer, and choosing
between them every time a figure has to be drawn. Therefore, a
frame should not direct output immediately to the screen or to the
printer, but to an abstract output medium that we call Port. At run
time the abstract port can be replaced with a screen port, a printer
port, or any other concrete output medium. The interface of the
abstract class Port takes the following form:

TYPE
 Port = POINTER TO PortDesc;
 PortDesc = RECORD
 x, y, w, h: INTEGER; (*clipping rectangle*)
 PROCEDURE (p: Port) DrawLine (x0, y0, x1, y1: INTEGER);
 PROCEDURE (p: Port) DrawChar (ch: CHAR);
 …
 END;

88 7 Typical Applications

The screen port and the printer port are subclasses of Port that
override the abstract methods so that output appears on the screen
or on the printer, repectively.

TYPE
 ScreenPort = POINTER TO ScreenPortDesc;
 ScreenPortDesc = RECORD (PortDesc)
 PROCEDURE (p: ScreenPort) DrawLine (x0, y0, x1, y1: INTEGER);
 PROCEDURE (p: ScreenPort) DrawChar (ch: CHAR);
 …
 END;

 Printer Port = POINTER TO PrinterPortDesc;
 PrinterPortDesc = RECORD (PortDesc)
 PROCEDURE (p: PrinterPort) DrawLine (x0, y0, x1, y1: INTEGER);
 PROCEDURE (p: PrinterPort) DrawChar (ch: CHAR);
 …
 END;

Every frame has a data field of type Port to which all output
operations are directed by the frame's methods (e.g., DrawLine).
The clients of the frame are usually unaware of this redirection.

TYPE
 Frame = POINTER TO FrameDesc;
 FrameDesc = RECORD
 port: Port;
 …
 END;

PROCEDURE (f: Frame) DrawLine (x0, y0, x1, y1: INTEGER);
BEGIN
 f.port.DrawLine(x0, y0, x1, y1)
END DrawLine;
…

Depending on which concrete port is installed in f.port, output
goes to the screen or to the printer. The port can be changed at run
time, thus changing the behavior of the frame. All clients of f that
output to the screen can now print as well without having to be
modified.

Note that the screen and the printer usually have different
coordinate systems and different resolutions. The normal
approach to handle this problem is to use a virtual coordinate
system with a very high resolution in the interface of Port and to
convert it in the methods of the respective port to the screen or
printer coordinate system with the resolution of the respective
device.

 7.4 Replaceable Behavior 89

Another example of replaceable behavior is a parameterized
process scheduler. Parallel processes can be handled in
chronological order (first in, first out, FIFO) or by priority. In order
to be able to change the strategy at run time, it is useful to
implement the scheduler as a variable of an abstract class
Scheduler; at run time the variable could contain an object of the
concrete class FIFOScheduler or PriorityScheduler.

Other examples

Summary In summary, to change behavior at run time, proceed as
follows:

(1) Consider which operations make up the replaceable behavior.
(2) Define an abstract class that provides these operations as

methods. Implement concrete behavior in subclasses.
(3) Work with variables of the abstract class; these can contain

objects of concrete subclasses with differing behavior at run
time.

7.5 Adaptable Components

The reuse of components such as procedures or modules is often
prevented by the lack of a proper fit. We all know the situation
where we have a component with certain functionality, but we
cannot use it because slightly different functionality is needed.
Object-oriented programming offers a solution: If the component is
a class, it can be extended and adapted by deriving a subclass,
possibly with new data fields, and overriding inherited methods.
Neither the original class nor its existing clients need to be
adapted.

Consider the example of a text class: Assume that we need
texts with various fonts and the usual operations such as insertion
and deletion of characters. We have a class Text that meets most of
the requirements, but does not support fonts:

Extending a text
class

TYPE
 Text = POINTER TO TextDesc;
 TextDesc = RECORD
 … (*data*)
 PROCEDURE (t: Text) Length (): LONGINT;
 PROCEDURE (t: Text) Insert (pos: LONGINT; s: ARRAY OF CHAR);
 PROCEDURE (t: Text) Delete (from, to: LONGINT);
 … (*other methods*)
 END;

90 7 Typical Applications

Although we cannot use Text directly, it is certainly an advantage
to not have to write the required text class from scratch, but to base
it on Text. This reduces the implementation and testing effort.

In order to support fonts, Text is extended to a new class
StyledText. The text is considered to consist of a sequence of
segments. A segment is a sequence of characters of the same font
and is represented by a node of type Style that contains the length
and font of the respective segment. The fonts of the whole text are
stored in a list of Style nodes (also see Fig. 7.6):

TYPE
 Style = POINTER TO StyleDesc;
 StyleDesc = RECORD
 font: OS.Font; (*font of text segment*)
 len: LONGINT; (*length of text segment*)
 next: Style
 END;

 StyledText = POINTER TO StyledTextDesc;
 StyledTextDesc = RECORD (TextDesc)
 styles: Style;
 PROCEDURE (t: StyledText) Insert (pos: LONGINT;
 s: ARRAY OF CHAR);
 PROCEDURE (t: StyledText) Delete (from, to: LONGINT);
 PROCEDURE (t: StyledText) SetStyle (from, to: LONGINT;
 font: OS.Font);
 …
 END;

Font 1 Font 1Font 2

11 321

…

… Text

Styles

xxxxxxxxxxx xxx iiiiiibbbbbbbbbbbbbbbbbbbbb

Fig. 7.6 Data structures of StyledText

The methods Insert and Delete must also update the style list now,
so they are overridden:

PROCEDURE (t: StyledText) Insert (pos: LONGINT; s: ARRAY OF CHAR);
BEGIN
 … (*update style list*)
 t.Insert^ (pos, s) (*call Insert method from the base class*)
END Insert;

PROCEDURE (t: StyledText) Delete (from, to: LONGINT);

 7.5 Adaptable Components 91

BEGIN
 … (*update style list*)
 t.Delete^ (from, to) (*call Delete method from the base class*)
END Delete;

The method Length is independent of the fonts and does not need
to be modified. A new method, SetStyle, is necessary to modify the
font of a text segment.

What has been achieved with this extension? The existing
class Text was adapted to special needs by adding a new layer,
StyledText (Fig. 7.7).

Insert

Insert

Delete

Delete SetStyle

Length
Text

StyledText

styles

Fig. 7.7 StyledText as a new layer around Text

From the outside the class maintains the appearance of a Text.
Thus all existing clients of Text can also work with StyledText. An
editor designed for Text does not notice the difference if StyledText
is substituted for Text, but it now automatically manipulates fonts
when Insert or Delete are invoked.

Figure 7.7 should not be confused with a set diagram, which
would reflect the is-a relationship between classes and would have
the opposite appearance: Here StyledText is enclosed in Text
because every StyledText object is also a Text object (Fig. 7.8).

Text

StyledText

Fig. 7.8 Set diagram to represent the is-a relationship

While so far we have only considered the extension of abstract
classes, StyledText represents the extension of a concrete class. The
extension of concrete classes normally occurs when extensibility
was not planned from the beginning. We must warn the reader:
Although reasonable in certain situations, ad hoc extensions can

Extending
concrete classes

92 7 Typical Applications

lead to unclean solutions, particularly when extension is abused to
add forgotten features to a class.

Extensibility should be planned from the beginning. This does
not mean that all kinds of future extensions must be foreseen. It
simply means that extensibility in a particular direction should be
planned by working not with concrete objects, but with variables
of abstract classes that can later contain arbitrary concrete objects.

7.6 Semifinished Products

A class can deliberately be kept in a raw state. Avoiding appli-
cation-specific features increases the chances of reusing the class in
other programs. Such a class contains only those parts that are
needed in all foreseeable contexts. It is a semifinished product that
can be extended to a finished product by adding application-
specific features.

An example of a semifinished product is the class Frame that
we encountered in Section 7.4. In Oberon a frame is a rectangular
drawing plane for the representation of text, graphics, or other
data. It is also responsible for interpreting user input such as
mouse clicks or keyboard input.

Frames as
semifinished
products

Concrete frame classes are application-specific; i.e., they can
often be used only in a certain context: a text frame can be used for
representing text, but not for drawing graphics. Likewise graphic
frames are inappropriate in a spreadsheet program. The generally
reusable parts of frames are only those that appear in all contexts
in which a frame can be used, i.e.:

(1) A frame can be installed in a viewer (window), moved on the

screen, and resized.
(2) A frame can be told to redraw its contents, regardless of what

the contents might be.
(3) A frame can be given mouse clicks or keyboard input for

processing, although it is left open how this input is processed
by a concrete frame.

Such a general frame can be extended to a text frame, a graphic
frame, or a spreadsheet frame. It is a semifinished product that
factors out the application-independent aspects of various concrete
frames and specifies a common interface for all future frame

 7.6 Semifinished Products 93

variants. The interface of an abstract class Frame could take the
following form:

TYPE
 Frame = POINTER TO FrameDesc;
 FrameDesc = RECORD
 x, y, w, h: INTEGER; (*position on screen*)
 …
 PROCEDURE (f: Frame) MoveBy (dx, dy: INTEGER);
 PROCEDURE (f: Frame) Resize (dw, dh: INTEGER);
 PROCEDURE (f: Frame) Redraw (x, y, w, h: INTEGER);
 PROCEDURE (f: Frame) HandleMouse
 (x, y: INTEGER; buttons: SET);
 PROCEDURE (f: Frame) HandleKey (ch: CHAR);
 …
 END;

MoveBy is a concrete method. Its implementation is the same for all
frame variants and thus can already be given in the class Frame.
Redraw is an abstract method: since an abstract frame does not yet
know what it is to display, it remains empty. HandleMouse and
HandleKey are also abstract, for an abstract frame does not know
how to handle user input. Resize is a semiabstract method: it moves
the lower right corner of a frame and invokes Redraw in order to
redraw frame parts that have not been visible before. Although
Resize does not need to be overridden in subclasses, it is only
operational after Redraw has been overridden.

Now let us examine how to make a finished product
TextFrame out of the semifinished product Frame. We have to
declare TextFrame as a subclass of Frame and include fields and
methods necessary for displaying text; the abstract methods of
Frame have to be overridden.

Extending a frame
to a text frame

TYPE
 TextFrame = POINTER TO TextFrameDesc;
 TextFrameDesc = RECORD (FrameDesc)
 text: Text;
 origin: LONGINT;
 …
 (*overridden methods*)
 PROCEDURE (f: TextFrame) Redraw (x, y, w, h: INTEGER);
 PROCEDURE (f: TextFrame) HandleMouse
 (x, y: INTEGER; buttons: SET);
 PROCEDURE (f: TextFrame) HandleKey (ch: CHAR);

 (*text-specific methods*)
 PROCEDURE (f: TextFrame) Init (t: Text; origin: LONGINT);
 PROCEDURE (f: TextFrame) Scroll (newOrigin: LONGINT);
 END;

94 7 Typical Applications

Text frames inherit all the behavior of frames: they can be installed
in a viewer, redraw themselves upon request, and handle user
input.

In the same way as TextFrame, a class GraphicFrame or
TableFrame could be created. Rather than starting from scratch, the
design and implementation of Frame could be reused. When
extending a semifinished product, however, it is important to have
documentation that tells which methods must be made concrete
and which not.

7.7 Summary

This chapter has shown situations in which classes are useful. The
reader should remember these situations and their solutions. They
represent reusable design.

To know such design patterns is more important than to use a
specific design method or notation. Design requires experience
and skill. It cannot be canned in a single method. Examples are the
best teachers, and giving examples was the purpose of this
chapter. Almost all of these design patterns can be found again in
the case study in Chapter 11.

In summary, we can say that object-oriented programming is
best suited when the problem involves complex objects, especially
when these occur in variants that should be operated upon
without distinguishing them.

Object-oriented programming is also suited to systems that
demand a high degree of extensibility. In a graphics editor, it must
be possible at any time to add a new kind of figure whose
instances are displayed and moved like all other figures—without
modifying existing software.

Finally, object-oriented programming is suited to implemen-
ting library components. If components are being collected in a
library, it can only be an advantage if these are made extensible
and adaptable in the form of classes.

The goal of object-oriented programming is not to produce
customized components for a specific application, but classes or
frameworks for repeated reuse. It is especially important to find
good abstractions from which many concrete classes can be
derived.

8 Useful Techniques

This chapter shows several techniques that are useful for writing
object-oriented programs:

• initialization of objects
• extension of a system at run time
• persistent objects
• embedding classes in other classes
• extension of a class in multiple directions
• handling multiple inheritance
• models and views
• iterators
• modifying inherited methods

8.1 Initialization of Objects

Most objects must be initialized before they can be used. Their data
fields need to obtain values, and auxiliary objects must often be
created that the new object needs for its work.

Oberon-2 does not have a special language construct for the
initialization of objects; ordinary procedures are used instead. For
every class T a procedure InitT is written that handles all initia-
lization tasks for T objects. If T is declared as:

Initialization
procedures

TYPE
 T = POINTER TO TDesc;
 TDesc = RECORD
 x: INTEGER;
 y: REAL
 END;

its initialization procedure could be:

96 8 Useful Techniques

PROCEDURE InitT (t: T; x: INTEGER; y: REAL);
BEGIN
 t.x := x; t.y := y
END T;

Every newly created T object must be initialized with InitT:

NEW(t); InitT(t, x, y);

We recommend implementing InitT as a procedure rather than as
a method. Assume the following subclass T1:

Initialization
procedures are
better than
initialization
methods

TYPE
 T1 = POINTER TO TDesc1;
 TDesc1 = RECORD (TDesc)
 z: CHAR
 END;

If InitT were a method, it would have to be overridden in T1, and
with an additional parameter to initialize z. However, this is not
permitted, for overriding methods does not allow adding para-
meters. If the initialization is implemented as a procedure, there is
no problem with additional parameters:

PROCEDURE InitT1 (t: T1; x: INTEGER; y: REAL; z: CHAR);
BEGIN
 InitT(t, x, y); t.z := z
END InitT1;

The fields of the base class T are initialized by invoking InitT.
It is tempting to implement the initialization so that the object

to be initialized is created in the process, as in the following
example:

Initialization
procedures should
not create the
objects to be
initialized

PROCEDURE NewT (x: INTEGER; y: REAL): T;
 VAR t: T;
BEGIN
 NEW(t); t.x := x; t.y := y; RETURN t
END NewT;

This is not recommended, however, because NewT can no longer
be used as above in a procedure NewT1 in order to initialize T
objects.

PROCEDURE NewT1(x: INTEGER; y: REAL; z: CHAR): T1;
 VAR t1: T1;
BEGIN
 t1 := NewT(x, y); (*error: NewT returns a T object and not a T1 object*)
 t1.z := z
 RETURN t1

 8.1 Initialization of Objects 97

END NewT1;

8.2 Extending a System at Run Time

Section 7.3 showed that a graphics editor could be extended at run
time with new objects (rectangles, circles, lines) that were not
known when the editor was implemented. This section explains
how to do this.

Let us review the graphics editor example: The editor does not
work directly with rectangles or circles, but with variables of the
abstract class Figure, which is declared in the module Figures and
establishes the interface of all future figure classes:

Extending a
graphics editor

DEFINITION Figures;
 TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD
 selected: BOOLEAN;
 PROCEDURE (f: Figure) Draw;
 PROCEDURE (f: Figure) Move (dx, dy: INTEGER);
 …
 END;
 …
END Figures.

Another module of the editor is FigureFrames, which contains the
class Frame for displaying figures and reacting to user input. Frame
holds a list of all figures displayed in it; new figures can be
inserted with the message Install:

DEFINITION FigureFrames;
 IMPORT Figures, Viewers;

 TYPE
 Frame = POINTER TO FrameDesc;
 FrameDesc = RECORD (Viewers.FrameDesc)
 figures: Figures.Figure; (*list of all figures in this frame*)
 …
 PROCEDURE (f: Frame) Install (x: Figures.Figure);
 …
 END;

 VAR
 currentFrame: Frame; (*currently edited Frame*)
 …
END FigureFrames.

This is the kernel of the editor. During its implementation it is not
necessary to know which figures will exist later. The editor can
work with any subclass of Figure.

98 8 Useful Techniques

In order to extend the editor to accommodate ellipses, the
following steps are taken:

Adding ellipses

(1) Define a class Ellipse as a subclass of Figure.

TYPE
 Ellipse = POINTER TO EllipseDesc;
 EllipseDesc = RECORD (Figures.Figure)
 x, y: INTEGER; (*center*)
 a, b: INTEGER (*axes*)
 END;

(2) Override the abstract methods inherited from Figure.

PROCEDURE (e: Ellipse) Draw;
BEGIN … (*draw ellipse e*)
END Draw;
…

(3) Implement a command New that creates an ellipse object and
adds it to the list of figures in the current frame,
FigureFrames.currentFrame.

PROCEDURE New;
 VAR e: Ellipse;
BEGIN
 NEW(e);
 … (*get e.x, e.y, e.a, and e.b as arguments of the command New*) …
 FigureFrames.currentFrame.Install(e)
END New;

All this is packaged in a new module Ellipses. Existing modules of
the editor are not touched. In order to draw a new ellipse object,
the command Ellipses.New is invoked. The following occurs:

(1) If the module Ellipses is not already loaded, it is loaded and

linked to the editor.
(2) The command New is executed. It creates an ellipse object and

installs it in the list of figures in the current frame.
(3) The frame sends a Draw message to the newly inserted figure

(without knowing its type); this causes the ellipse to be drawn.

Figure 8.1 shows the relationship between the modules and the
data structures they contain.

Note that the module Ellipses is loaded and linked to the
editor only on demand. Neither Figures nor FigureFrames know
(i.e., import) Ellipses. They can thus be compiled and used long

Dynamic loading
of the module
Ellipses

 8.2 Extending a System at Run Time 99

before Ellipses exists. Ellipses, on the other hand, imports the
modules Figures and FigureFrames and uses them.

Rect Circle Ellipse

TYPE

TYPE

Ellipse = POINTER TO EllipseDesc;

Figure = POINTER TO FigureDesc;

TYPE Frame …

Figures

FigureFrames

Ellipses

figures
currentFrame

EllipseDesc = RECORD (FigureDesc)

FigureDesc = RECORD

...

...

PROC (e: Ellipse) Draw;

PROC (f: Figure) Draw;

END

END

Fig. 8.1 The module Ellipses is loaded at run time and linked to the kernel
of the editor. It installs ellipse objects in the editor kernel.

The editor kernel can work with ellipses due to dynamic binding.
In the ellipse object the editor sees an instance of the abstract class
Figure and communicates with it via messages that invoke
methods from the class Ellipse, which is higher in the import
hierarchy. Such invocations are therefore termed up-calls. The
editor invokes methods that it does not know. Only the user, who
executes the command Ellipses.New, is aware of them.

Up-calls

8.3 Persistent Objects

An object is termed persistent if it survives the program that
created it. Later invocations of the program or other programs
(possibly on other computers) find the object in the same state in
which the creating program left it.

100 8 Useful Techniques

One way to make objects persistent is to write them to a file
and to read them as needed. This is simple as long as the structure
of the objects is known. However, if the structure of the objects is
unknown to the writing or reading program, as in Section 8.2,
matters are more complicated. The question is how to load and
store objects whose structure is unknown.

To store an object of unknown type is pretty easy: The object is
sent a Store message and reacts by writing its data to the
designated file. After all, each object knows its own structure.

Input/output of
objects of
unknown type

In order to load an object, however, it cannot simply be sent a
Load message. The object does not exist yet; it must first be created.
But in order to do so its type must be known. How can this be
done?

The solution is to store not only the value of an object, but also
the name of its type. Fig. 8.2 shows an example of two figures in
memory and their representation in a file. The linking of the
objects results implicitly from their order in the file.

next next

my y10 0

selected selectedFALSE FALSE
mx x

…

10 0

radius a
b

20 5
2

CircleDesc object EllipseDesc object

Representation in memory

Representation in a file

Circles.CircleDesc FALSE 10 10 20 Ellipses.EllipseDesc FALSE 0 0 5 2 …

Type name Value

Fig. 8.2 Representation of objects in memory and in a file

Now we only need a way to extract the type name of an object in
order to store it to the file and, given a type name, to create an
object of this type.

In Oberon each object contains a pointer to its type descriptor,
which is invisible to the ordinary programmer. The type descriptor
holds run-time type information such as the name of the object's
type (Fig. 8.3). All objects of a class have the same type descriptor.

Type descriptors

 8.3 Persistent Objects 101

my my

selected selected
mx mx

radius radius

next next

CircleDesc object CircleDesc object

Type descriptor of CircleDesc

"Circles.CircleDesc" ……

Fig. 8.3 Objects and their type descriptors (with type names)

With the help of the type descriptors, we can implement a
procedure ObjToName to retrieve the type name of a given object
and a procedure NameToObj to create an object of a given type
name. (Module OS, which is used in the following interface, is
described in Appendix B.)

DEFINITION Objects;

 TYPE
 Object = POINTER TO ObjectDesc;
 ObjectDesc = RECORD
 PROCEDURE (x: Object) Load (VAR r: OS.Rider); (*abstract*)
 PROCEDURE (x: Object) Store (VAR r: OS.Rider); (*abstract*)
 END;

 PROCEDURE ObjToName (x: Object; VAR name: ARRAY OF CHAR);
 PROCEDURE NameToObj (name: ARRAY OF CHAR; VAR x: Object);

END Objects.

Figure must be derived from Object so that ObjToName and
NameToObj can be applied to Figure objects and Load and Store
messages can be sent to them.

TYPE
 Figure = POINTER TO FigureDesc;
 FigureDesc = RECORD (Objects.Object.Object)
 next: Figure;
 …
 PROCEDURE (f: Figure) Load (VAR r: OS.Rider);
 PROCEDURE (f: Figure) Store (VAR r: OS.Rider);
 …
 END;

102 8 Useful Techniques

Now we are ready to write figures to a file and to read them again.
The following procedures handle these tasks:

Input/output
procedures for
figures

PROCEDURE WriteFigure (VAR r: OS.Rider; x: Figure);
 VAR name: ARRAY 64 OF CHAR;
BEGIN
 IF x = NIL THEN r.WriteString("") (*NIL = empty type name, no value*)
 ELSE Objects.ObjToName(x, name); r.WriteString(name); x.Store(r)
 END
END WriteFigure;

PROCEDURE ReadFigure (VAR r: OS.Rider; VAR x: Figure);
 VAR name: ARRAY 64 OF CHAR; y: Objects.Objects
BEGIN
 r.ReadString(name);
 IF name = "" THEN x := NIL
 ELSE Objects.NameToObj(name, x); x.Load(r)
 END
END ReadFigure;

If x is the head of a list of figures, the whole list is stored as
follows:

WHILE x # NIL DO WriteFigure(r, x); x := x.next END;
WriteFigure(r, NIL)

The following statements read a list of figures with the head head.

ReadFigure(r, x); head := x;
WHILE x # NIL DO ReadFigure(r, x.next); x := x.next END

The input and output of figures is now symmetrical and
completely generic [PHT91]. Any future extension of figures can
be stored with WriteFigure and loaded with ReadFigure without
changing anything in these procedures. In new Figure classes only
the methods Load and Store have to be overridden.

In systems in which accessing type names is not possible at
run time, the following option remains: Before an object is stored,
it is sent a message GetTypeName. The object returns its type name.
This name can now be stored with the object's value. For loading
objects, a table is created with type names and a prototype object
of each type. When a type name is read from the file, it is located
in the table and a copy of the corresponding prototype object is
created. For each type, its name and a prototype object must be
entered in the table at the start of the program.

If the name of a type is read that is declared in a module that
has not yet been loaded, nameToObj causes this module to be

 8.3 Persistent Objects 103

loaded. If a type table with prototype objects is used, loading of
modules should also be built in if the operating system permits it.

Type names can consume quite a bit of space in a file. It is
therefore reasonable to store them in compressed form. This can be
implemented as follows: With the first occurrence of a type name,
it is written in full length and entered at the end of a table. For
further occurrences the index in the table is written instead of the
full name. Reading takes place in the opposite order: With the first
occurrence the full name is read and entered at the end of a table.
For further occurrences only the index is read, which is used to
extract the name from the table. The methods WriteString and
ReadString of the class OS.Rider (see Appendix B) read and write
character strings in compressed form. The table for converting
character strings to indices and vice verse is a data field of Rider.
At the start of input/output, the Rider object is initialized with
InitRider.

Compressed
storage of type
names

TYPE
 String = ARRAY 32 OF CHAR;
 Rider = RECORD
 …
 tab: ARRAY maxnames OF String; (*tab[0] = "" (for NIL)*)
 end: INTEGER (*tab[0..end-1] are filled*)
 END;

PROCEDURE InitRider (VAR r: Rider);
BEGIN r.tab[0] := ""; r.end := 1
END InitRider;

PROCEDURE (VAR r: Rider) WriteString (s: ARRAY OF CHAR);
 VAR i: INTEGER;
BEGIN i := 0;
 LOOP (*search s in r.tab*)
 IF i = r.end THEN (*not found -> first occurrence of s*)
 r.Write(CHR(i));
 i := -1; REPEAT INC(i); r.Write(s[i]) UNTIL s[i] = 0X;
 COPY(s, r.tab[r.end]); INC(r.end); EXIT
 ELSIF s = r.tab[i] THEN r.Write(CHR(i)); EXIT
 ELSE INC(i)
 END
 END
END WriteString;

PROCEDURE (VAR r: Rider) ReadString (VAR s: ARRAY OF CHAR);
 VAR i: INTEGER; ch: CHAR;
BEGIN r.Read(ch);
 IF ORD(ch) = r.end THEN (*full text follows*)
 i := -1; REPEAT INC(i); r.Read(s[i]) UNTIL s[i] = 0X;
 COPY(s, r.tab[r.end]); INC(r.end)

104 8 Useful Techniques

 ELSE COPY(r.tab[ORD(ch)], s)
 END
END ReadString;

Figure 8.4 shows a text with and without type name compression .

Full text
CircleDesc…EllipseDesc…EllipseDesc…CircleDesc…EllipseDesc…

Compressed text
1CircleDesc…2EllipseDesc…2…1…2…

Fig. 8.4 Text with and without compression of type names

8.4 Wrapping Classes in Other Classes

Consider two classes A and B that are not compatible. We want to
use B wherever A is currently used. However, B cannot become a
subclass of A because it already exists and we cannot or do not
want to change the existing class hierarchy.

For example, our graphics editor from Section 8.2 is to be
extended to handle text pieces like figures, allowing them to be
moved, selected, and deleted. Using class Text for this would be
fine, but the problem is that Text already exists and thus cannot be
made a subclass of Figure. Furthermore, this would violate the is-a
relationship, for a text is not a figure.

The solution is to wrap Text in a new class TextFigure that is a
subclass of Figure. Wrapping means that the text becomes a field of
class TextFigure:

TYPE
 TextFigure = POINTER TO TextFigureDesc;
 TextFigureDesc = RECORD (FigureDesc)
 t: Text;
 …
 END;

Now the graphics editor can handle TextFigure objects like
rectangles, circles and other figures. It can add them to the list of
figures and send them any messages that figures understand
(Draw, Store, etc.). TextFigure objects must translate these messages
into Text messages and forward them to their field t. The following
example assumes that texts understand a Store message.

PROCEDURE (f: TextFigures) Store (VAR r: OS.Rider);
BEGIN

 8.4 Wrapping Classes in Other Classes 105

 f.Store^ (r); (*store fields of base class Figures*)
 f.t.Store (r) (*store text of this figure*)
END Store;

This simple technique is useful in many situations: If B must be
compatible with A, but cannot become a subclass, it is wrapped in
a new subclass of A that forwards all A messages to B.

8.5 Extensibility in Multiple Dimensions

In Section 6.2 the abstract class Stream was described; it was
extended to various subclasses like DiskFile, FloppyFile and NetFile,
which were variants with respect to the output medium. Variants
could also be created with respect to another criterion such as the
encryption technique: there could be a plain character stream, a
stream encrypted with the DES method (e.g., see [Sed88]), and a
stream encrypted with the RSA method. Thus the class Stream can
be extended in multiple dimensions (Fig. 8.5).

DiskFile

PlainStream

DESStream

RSAStream

…

FloppyFile NetFile Output medium

Encryption technique

…

Fig. 8.5 Extension of the class Stream in two dimensions

Each variant of the output medium should be combinable with
each variant of the encryption technique, giving a DESDiskFile, a
DESFloppyFile, etc. With n variants of the output medium and m
variants of the encryption technique, we obtain n*m classes (Fig.
8.6).

Cartesian product
of two attributes

106 8 Useful Techniques

Stream

DiskFile

FloppyFile

NetFile

PlainDiskFile

PlainFloppyFile

PlainNetFile

DESDiskFile
RSADiskFile

DESFloppyFile
RSAFloppyFile

DESNetFile
RSANetFile

Fig. 8.6 Subclasses of Stream

How can this explosion of the number of classes be avoided
without sacrificing the possibility to combine the output medium
and the encryption technique? There is a simple method based on
wrapping classes: Define a new class EncryptionStream as a
subclass of Stream; give it a data field of type Stream containing
one particular variant of the output medium (DiskFile, FloppyFile,
etc.). EncryptionStream can now be extended to cover the various
encryption techniques. By plugging a certain output medium into
the desired encryption technique, the two dimensions can be
combined, resulting in only n+m+1 (instead of n*m) classes (Fig.
8.7).

Stream

DiskFile FloppyFile NetFile EncryptionStream
 s: Stream

PlainStream DESStream RSAStream

Various output media

Various encryption techniques

Fig. 8.7 Field s of EncryptionStream can contain DiskFile, FloppyFile or
NetFile

The method Write in EncryptionStream is overridden so that the
Write message is forwarded to field s:

Implementing
EncryptionStream

TYPE
 EncryptionStream = POINTER TO EncryptionStreamDesc;
 EncryptionStreamDesc = RECORD (StreamDesc)

 8.5 Extensibility in Multiple Dimensions 107

 s: Stream (*DiskFile, FloppyFile, NetFile*)
 END;

PROCEDURE (e: EncryptionStream) Write (ch: CHAR);
BEGIN
 e.s.Write(ch)
END Write;

In the subclasses of EncryptionStream the Write method is also over-
ridden and the respective encryption algorithm is implemented:

TYPE
 DESStream = POINTER TO DESStreamDesc;
 DESStreamDesc = RECORD (EncryptionStreamDesc) … END;
PROCEDURE (d: DESStream) Write (ch: CHAR);
 VAR ch1: CHAR;
BEGIN
 … (*enccrypt ch giving ch1*)
 d.Write^ (ch1)
END Write;

To combine DES encryption with output to disk, a variable d is
created as follows:

Combining DES
encryption with
output to disk

VAR d: DESStream; f: DiskFile;
…
NEW(d); NEW(f); d.s := f

The message d.WriteString(string) is now processed as follows (Fig.
8.8):

WriteString Write

Write

Write

Write

Write

Stream

Stream
DiskFile

EncryptionStream

DESStream

e.s.Write

Fig. 8.8 Processing the message d.WriteString(string)

WriteString is sent to d and handled by the WriteString method
inherited from Stream. This method sends its receiver a Write
message for every character in string (see Section 6.2). Since the
dynamic type of the receiver is DESStream, the Write method of

108 8 Useful Techniques

DESStream is invoked; there the character is encrypted and
forwarded to the Write method of the base class EncryptionStream.
This forwards the message to its field e.s, which invokes the Write
method of DiskFile, where the character is output.

The programmer does not need to keep this message sequence
in mind. How the messages are forwarded is an implementation
detail. The programmer, who in this case is the user of DESStream,
only needs to know the interface and the specification the class. It
suffices to know that all output to d finally reaches the correct
output medium in encrypted form.

Every program that can work with Stream can also work with
DESStream, RSAStream or any other encryption variant. Every
encryption technique can be combined with every output medium.

Extensibility in multiple dimensions only works if the abstract
base class (here Stream) already establishes the entire interface of
the subclasses. Every message to an encryption variant must be
mapable onto a message with the same name in the output
medium variant. In addition, an output medium variant cannot
send itself messages because the dynamic type of its receiver is no
longer EncryptionStream but, for example, DiskFile.

Despite this constraint, the technique of extending a class in
multiple dimensions is useful in some situations.

8.6 Multiple Inheritance

If it is possible to derive a class from one superclass, why should it
not be possible to derive it from two or more superclasses? If a
class has more than one superclass, we call this multiple inheritance.

Multiple inheritance is not supported in Oberon-2. This
section explains why and shows how multiple inheritance can be
attained with single inheritance.

A B

C

Fig. 8.9 Multiple inheritance: C inherits from A and B

In Fig. 8.9 class C is derived from both A and B. C inherits all fields
and methods from A and B. Every C object is both an A object and a
B object; thus it is compatible with both.

 8.6 Multiple Inheritance 109

At first glance multiple inheritance seems simple and natural.
On closer inspection, however, it suffers from various problems:

• If A and B contain fields or methods with identical names, a

name clash results in C: the names are inherited from both
superclasses and become ambiguous. Languages that support
multiple inheritance must provide a means to resolve such
name clashes.

Name clashes

• If A and B are extensions of a class D, the repeated inheritance

results in a diamond structure (Fig. 8.10).
Diamond structure

A B

C

D

Fig. 8.10 Diamond structure

 All methods of D are inherited from both A and B. This
inevitably leads to name clashes in C. But worse yet, all data
fields of D are present in both A objects and B objects. Should
they be present twice in C objects, or only once?

• Multiple inheritance leads to class libraries that are not trees,

but directed acyclic graphs. This results in more complex
dependencies in the library and makes it less comprehensible.

Complex class
libraries

• Multiple inheritance also leads to less efficient code. For

example, in C++ a method invocation causes additional run-
time costs because of the overhead involved with multiple
inheritance—even if the program uses only single inheritance
[Str89].

Run-time costs

Most well-known class libraries (e.g., Smalltalk's) do without
multiple inheritance. For this reason, and because of the problems
mentioned above, Oberon-2 was designed without multiple
inheritance.

If multiple inheritance is not available, how can we make a class C
compatible with both A and B? Fortunately the classes can often be
reorganized to avoid the need for multiple inheritance.

Avoiding multiple
inheritance

110 8 Useful Techniques

In the simplest case the class hierarchy can be designed so that
A is derived from B or vice versa (Fig. 8.11). This is possible
especially if A and B do not exist yet, but are designed along with
C. In Fig. 8.11 C objects are both A objects and B objects.

A B

B Aor

C C

Fig. 8.11 One superclass of C is derived from the other

If this does not work, we can attempt to wrap B in C and to inherit
only from A or vice versa (Fig. 8.12). The fields and methods of B
can now be used in C objects via the field b. However, we lose the
compatibility of C objects with B objects.

A

b: B

A = POINTER TO ADesc;

C

ADesc = RECORD … END;

C = POINTER TO CDesc;
CDesc = RECORD (ADesc)
 b: B
END;

Fig. 8.12 One superclass becomes a component of the subclass

An entirely satisfactory solution can be found by extending A and
B to subclasses CA and CB and to link these via data fields (Fig.
8.13).

CA and CB must be viewed as a twin class with two ends. The
CA end is compatible with A, the CB end with B. For example, a
CA object can be inserted in a list of A objects, a CB object in a list
of B objects. CA objects handle A messages and forward B
messages to their field b. CB objects do exactly the opposite. Note
that in this solution no name clashes occur and the problems of the
diamond structure disappear.

 8.6 Multiple Inheritance 111

A B

b: CB a: CA

CA = POINTER TO CADesc;

CA CB

"Twin class"

CADesc = RECORD (ADesc)
 b: CB
END;

CB = POINTER TO CBDesc;
CBDesc = RECORD (BDesc)
 a: CA
END;

Fig. 8.13 Resolving multiple inheritance with a twin class

Let us look at a concrete example: a computer game in which balls
move on a playing field and thereby bounce off surrounding walls.
Balls and walls are displayable game objects derived from a
common base class Item. Balls are also active objects (processes)
that gain control every few milliseconds to move themselves a bit
on the playing field. Assume the existence of a class Process from
which all classes of active objects are derived (Fig. 8.14).

Example

Item Process

Wall Ball

Fig. 8.14 Class hierarchy of a computer game

Ball must be compatible with Item so that balls can be inserted in a
list of game objects; Ball must also be compatible with Process so
that the operating system can handle balls like other processes.

Using the technique described above, Ball is implemented as a
twin class BallItem and BallProcess (Fig. 8.15):

TYPE
 BallItem = POINTER TO BallItemDesc;
 BallItemDesc = RECORD (ItemDesc)
 process: BallProcess;
 …
 PROCEDURE (f: BallItem) Draw;
 PROCEDURE (f: BallItem) Move (dx, dy: INTEGER);
 …
 END;

 BallProcess = POINTER TO BallProcessDesc;
 BallProcessDesc = RECORD (ProcessDesc)
 item: BallItem;
 …
 PROCEDURE (p: BallProcess) Activate;
 PROCEDURE (p: BallProcess) Passivate;

112 8 Useful Techniques

 …
 END;

Item Process

BallItem BallProcess
process: BallProcess item: BallItem

Fig. 8.15 Balls are modelled as a twin class BallItem/BallProcess.

A new ball is created and initialized as follows:

VAR ball: BallItem; ballProcess: BallProcess;

NEW(ball); NEW(ballProcess);
ball.process := ballProcess; ballProcess.item := ball;
…

The variable ball can be inserted into the list of game objects, the
variable ballProcess into the list of processes. If a ball process p
becomes active and wants to move its ball, it calls p.item.Move. If
the program wants to stop a moving ball b, it invokes
b.process.Passivate.

8.7 Models and Views

Interactive programs usually consist of three parts:

(1) The Model maintains the central data structure, e.g., text,

graphics, tables, etc.
MVC concept

(2) The View is responsible for displaying the data on the screen.
(3) The Controller handles user input such as mouse clicks or

keyboard input.

How the three parts interact in order to manipulate and display
data is called the Model/View/Controller (MVC) concept [KrP88].
This is a reusable pattern that occurs in almost all interactive
programs. Figure 8.16 shows the interaction of the three parts.

 8.7 Models and Views 113

Controller View

Model

modifies
notifies notifies

reads

restores

1

2 2

3

4

Fig. 8.16 The MVC concept: Arrows indicate the flow of messages.
The numbers are explained below.

A model may be shown in multiple views. For example, there
could be two views of a text showing different portions of it; or a
sequence of numbers could have one view that shows it as a text
and another that shows it as a chart. All views show the same
model. If the model changes, all views must be updated.

Views and controllers occur pairwise; each view has its own
controller since the same input directed to various views can have
different effects. A mouse click in the text view of a number
sequence might cause selection of the text, while a mouse click in
the chart view might cause the chart to be moved.

The following messages flow between model, view and
controller (numbers refer to Fig. 8.16):

Messages in the
MVC concept

(1) The controller reacts to keyboard input or mouse clicks by

modifying the model (e.g., inserting characters in a text).
(2) The model notifies its views that it has been modified and

thus its views must be updated. Even controllers are notified,
for it is possible that the modification of the model requires
different interpretation of subsequent input.

(3) The view was instructed to update the model (e.g., to draw an
inserted text stretch). It acquires the necessary data from the
model and displays them on the screen.

(4) Sometimes the controller accesses the view directly, for
example, if the contents of the view are to be scrolled. Here
the model is not modified, but only one particular view is
shifted.

The program that modifies the model must not simultaneously
update the view because then only this particular view would be
up to date. Other views of the same model would be inconsistent.

114 8 Useful Techniques

The correct way is to modify only the model, which tells all its
views to update themselves.

View and model need to be clearly separate. If they are com-
bined to a single class, there can be only one view of the model.
Usually this is an unnecessary restriction.

The Oberon System also employs the MVC concept, but in a
somewhat different form. View and controller are combined to a
single class Frame (Fig. 8.17), which makes sense because view and
controller always occur pairwise. This combination reduces the
number of messages for updating views and controllers.

Implementation in
the Oberon
System

View + Controller
(Frame)

Model

modifies
notifies

reads

1
2

3

Fig. 8.17 The MVC concept in Oberon

In the original MVC concept the model knows its views and
controllers. It maintains a list of these objects and sends them
notify messages whenever it is modified. In the Oberon System the
model does not know its views. When the model is modified, it
broadcasts a notify message to all frames on the screen. The frames
themselves know whether they belong to the broadcasting model
and thus whether they need to react to the message. In this way,
more messages are sent than necessary, but the handling of
dependent views becomes easier.

Let us look at an example that shows how model, view and
controller interact in the Oberon System. Assume that an insertion
mark (caret) is in a text frame and the user presses a key. What
happens? The Oberon System determines the frame containing the
insertion mark and sends it the message HandleKey along with the
value of the pressed key. This invokes the following method:

Example of the
MVC concept

PROCEDURE (f: Frame) HandleKey (ch: CHAR);
BEGIN
 IF ch = DEL THEN … (*delete character to the left of the caret*)
 ELSE f.text.Write(ch) … (*insert ch into the text*)
 END

 8.7 Models and Views 115

END HandleKey;

The frame plays the role of the controller. It does not directly
display ch on the screen, but only modifies the model (the text).
The text must then notify all frames in which it is displayed. It
sends a message record of type NotifyInsMsg to the viewer system
(module Viewers), which broadcasts it to all viewers on the screen,
which in turn broadcast it to all frames they contain.

TYPE
 NotifyInsMsg = RECORD (OS.Message)
 t: Text;
 beg, end: LONGINT
 END;

PROCEDURE (t: Text) Write (ch: CHAR);
 VAR msg: NotifyInsMsg;
BEGIN
 … (*insert ch at t.pos; t.pos := t.pos + 1*)
 msg.t := t; msg.beg := t.pos-1; msg.end := t.pos;
 Viewers.Broadcast(msg)
END Write;

Viewers and frames have a message handler (in the sense of
Section 6.4) that analyzes the message at run time and either reacts
to it or ignores it. The message handler for text frames looks like
this:

PROCEDURE (f: Frame) Handle (VAR m: OS.Message);
BEGIN
 WITH
 m: Texts.NotifyInsMsg DO
 IF m.t = f.text THEN (*frame shows the modified text*)
 … (*read m.t from m.beg to m.end*)
 … (*and draw it on the screen*)
 END
 | m: Texts.NotifyDelMsg DO
 …
 ELSE (*ignore the message*)
 END
END Handle;

Only if the message handler understands the NotifyInsMsg
message and only if the frame is displaying the modified model
(i.e., if m.t = f.text) is the update made on the screen. In all other
cases the message is ignored. Fig. 8.18 shows this process. There
are two viewers, each containing two frames. The shaded frames
are those that belong to the modified model and react to
NotifyInsMsg.

116 8 Useful Techniques

Viewer

Viewer

Frame Frame

Frame Frame

Text

HandleKey

Write

NotifyInsMsg

Fig. 8.18 Message distribution in the MVC concept

Broadcasts like this are the most important application of message
records. Since the sender does not know the receivers, the message
is simply sent to all possible receivers. Only those for which the
message is intended react. A broadcast of this type would hardly
be possible without message records.

 8.8 Iterators 117

8.8 Iterators

We often have a number of objects and want to carry out an
operation on each of them, but we do not know how to access the
objects. Because of data abstraction, the implementation of the data
structure containing the objects is hidden; it could be an array, a
linear list, or a tree. Consider the following class Dictionary, whose
interface looks like this:

DEFINITION Dictionaries;
TYPE
 Elem = POINTER TO ElemDesc;
 ElemDesc = RECORD
 PROCEDURE (x: Elem) EqualTo (y: Elem): BOOLEAN;
 PROCEDURE (x: Elem) LessThan (y: Elem): BOOLEAN;
 PROCEDURE (x: Elem) Print;
 END;

 Dictionary = RECORD
 PROCEDURE (VAR d: Dictionary) Enter (x: Elem);
 PROCEDURE (VAR d: Dictionary) Retrieve (x: Elem; VAR y: Elem);
 END;

PROCEDURE Init (VAR d: Dictionary);
END Dictionaries;

The implementation of Dictionary is hidden. Assume that we want
to print a list of all elements of Dictionary. What possibilities do we
have?

The simplest possibility is to provide a method PrintAll that
prints all elements:

A separate
method for each
operation

PROCEDURE (VAR d: Dictionary) PrintAll;
 VAR e: Elem;
BEGIN
 e := d.firstElem;
 WHILE e # NIL DO e.Print; e := e.next END
END PrintAll;

This solution is unsatisfactory. Each operation on Element requires
a method in Dictionary, for example, StoreAll to write all elements
to a file or SelectAll to find all elements whose key matches a
certain criterion. Furthermore, the implementation of Dictionary
requires the knowledge of which operations will later be applied
to the elements or extensions thereof (e.g., e.Print, e.Store, e.Select,
etc.).

Another possibility is to declare an iterator class in the same
module as Dictionary as follows:

Iterator class

118 8 Useful Techniques

TYPE
 Iterator = RECORD
 PROCEDURE (VAR it: Iterator) SetTo (d: Dictionary);
 PROCEDURE (VAR it: Iterator) Next(): Elem;
 END;

An iterator is an object that moves over a data structure. SetTo sets
the iterator to the beginning of the dictionary; Next returns the next
element. The iterator makes it possible to traverse the elements of
Dictionary sequentially and to apply some operation to them:

iterator.SetTo(d); e := iterator.Next();
WHILE e # NIL DO e.Print; e := iterator.Next() END

This solution is general enough, but requires that the code for
traversing the elements be present in each client. Besides, if the
data structure is a tree, which can best be traversed recursively,
Next cannot be implemented efficiently.

The result type of Next is Elem, but the actual type of the
returned objects can be an extension thereof (e.g., MyElem). Using
a type guard makes it possible to send the object returned by Next
a MyElem message that is not accommodated in Elem:

iterator.SetTo(d); e := iterator.Next();
WHILE e # NIL DO
 IF e IS MyElem THEN e(MyElem).Store(rider) END;
 e := iterator.Next()
END

A third possibility is to work with message records. A message
record is passed to Dictionary, which broadcasts it to all elements.
Every element must have a message handler that reacts to the
message record. However, for simple tasks like printing Dictionary
elements, this solution is too heavy-duty.

Finally, Dictionary can provide a universal method ForAll that
takes a procedure as parameter and calls it for all elements:

Operations as
message records

Operations as
procedure
variables

PROCEDURE (VAR d: Dictionary) ForAll (P: PROCEDURE (e: Elem));
BEGIN
 e := d.firstElem;
 WHILE e # NIL DO P(e); e := e.next END
END ForAll;

The method could be invoked as

d.ForAll(Print)

where Print is a client's procedure:

 8.8 Iterators 119

PROCEDURE Print (e: Elem);
BEGIN
 e.Print
END Print;

In Oberon-2 this solution is usually the simplest and most
readable. Several other languages have special iterator constructs
or block objects that permit a more comfortable implementation of
iterators.

8.9 Modifying Inherited Methods

In order to modify an inherited method in a subclass, it must be
overridden there. Assume a class Frame containing a method
TrackMouse that tracks mouse movements and moves the cursor
accordingly:

PROCEDURE (f: Frame) TrackMouse;
 VAR x, y: INTEGER; buttons: SET;
BEGIN
 LOOP
 OS.GetMouse(x, y, buttons); (*get mouse position and buttons*)
 IF buttons = {} THEN EXIT END;
 OS.DrawCursor(x, y) (*move cursor to new position *)
 END
END TrackMouse;

In a subclass MyFrame we want the mouse pointer (cursor) to
change its form as long as a mouse button is pressed. This is easy
to implement by overriding TrackMouse in MyFrame and changing
the cursor form before and after the invocation of the inherited
method (see also Fig. 8.19):

PROCEDURE (f: MyFrame) TrackMouse;
BEGIN
 SaveCursor;
 ChangeCursorTo(crossHair);
 f.TrackMouse ^; (*calls TrackMouse from Frame*)
 RestoreCursor
END TrackMouse;

MyFrame.TrackMouse

Frame.TrackMouse

Fig. 8.19 Overriding allows adding behavior to the beginning
and the end of an inherited method

120 8 Useful Techniques

It is easy to add behavior to the beginning and the end of an
inherited method. But how can we add something to the middle of
such a method, e.g., how can we modify TrackMouse so that the
cursor moves on a grid instead of continuously? We can do so by
letting the TrackMouse method of the base class pass control to the
programmer immediately before the cursor is drawn. More
specifically, TrackMouse calls an empty method Constrain (a hook)
that can be overridden to add new behavior:

PROCEDURE (f: Frame) TrackMouse;
 VAR x, y: INTEGER; buttons: SET;
BEGIN
 LOOP
 OS.GetMouse(x, y, buttons);
 IF buttons = {} THEN EXIT END;
 f.Constrain(x, y);
 OS.DrawCursor(x, y)
 END
END TrackMouse;

PROCEDURE (f: Frame) Constrain (VAR x, y: INTEGER);
END Constrain;

If a subclass like MyFrame does not override Constrain, the empty
method is invoked with no effect. But if Constrain is overridden, it
is called every time before the cursor is drawn, thus giving control
to the subclass (Fig. 8.20).

PROCEDURE (f: MyFrame) Constrain (VAR x, y: INTEGER);
BEGIN
 x := (x + grid DIV 2) DIV grid * grid;
 y := (y + grid DIV 2) DIV grid * grid
END Constrain;

MyFrame.Constrain

Frame.TrackMouse

Fig. 8.20 Adding behavior to an inherited method
by overriding a hook method

By invoking hook methods, the superclass allows the subclass to
intervene in the algorithm. This technique is often used to make
algorithms more adaptable. Sometimes a complete algorithm
consists solely of invocations of such empty hook methods. The
redrawing of a frame, for example, could consist of the removal of
the selection, the setting of a clipping rectangle, and the proper
drawing of the frame.

 8.9 Modifying Inherited Methods 121

PROCEDURE (f: Frame) Redraw;
BEGIN
 f.RemoveSelection;
 f.SetClippingRect(f.X, f.Y, f.W, f.H);
 f.Draw
END Redraw;

The operations RemoveSelection, SetClippingRect and Draw are diffe-
rent in graphic frames and text frames. Thus the methods cannot
be implemented in the abstract class Frame. But Redraw establishes
the right order of the operations and thus provides the outline of
an algorithm that can be filled out in subclasses.

9 Object-Oriented Design

Designing a program means decomposing it into smaller, more
comprehensible parts and describing their interactions. The parts
can be modules, procedures, files, or classes. In object-oriented
design we are interested primarily in classes. Our question is thus:
How can we find the classes required for the implementation of a
system?

9.1 Functional Design

Conventional program design begins with the question: What is
the program supposed to do? The orientation is towards the tasks
that are to be solved. We begin with the overall task and
decompose it into subtasks, then reduce the subtasks to smaller
subtasks, and so on until the subtasks are so simple that they can
be formulated directly in a programming language.

This approach is called stepwise refinement [Wir71]. We
advance from the abstract to the concrete, from the overall task to
the details. Stepwise refinement is a top-down method that leads to
an hierarchy of procedures or functions (Fig. 9.1). It is therefore
also called functional decomposition.

Stepwise
refinement

Overall task

Subtasks at level 1

Subtasks at level 2

Fig. 9.1 Program hierarchy in functional design:
Arrows indicate the uses relationship.

122 9 Object-Oriented Design

Stepwise refinement has many advantages: It is easy to use and
systematic, and it leads to well-structured programs. Important
parts (e.g., the top-level logic) are designed first and less important
details later; the design of the control logic shapes the rest of the
program.

But stepwise refinement also has drawbacks: It is precisely the
control logic that is the most sensitive part of a program. In the
early stages of design, the form of the control logic is often still in
the dark. In fact, sometimes it is not even clear whether there
should be a single main function or multiple functions at the same
level. In an operating system, for example, it is difficult to tell
which part is the main function. Where should refinement begin?
Of course, each part can be refined independently, but this leads to
separate program hierarchies without common parts at the base.

Advantages

Drawbacks

Stepwise refinement does not promote software reuse. All
subtasks are tailored to the requirements of the main function, so
the resulting program is a customized work of craftsmanship. Its
parts are hardly usable in other programs.

Finally, software designed by stepwise refinement is sensitive
to modifications. If the requirements on the main function change,
the decomposition often has to be rethought, which can render
large parts of the program design disposable.

Although stepwise refinement is a technique that works per-
fectly for the design of small programs or algorithms, it is less
suitable for the design of large systems.

9.2 Object-Oriented Design

In object-oriented design the main question is not what the system
is to do, but with which objects it is to work. This approach con-
centrates on the data and the operations applied to them. Since the
objects can hardly be viewed as the top of the system, object-
oriented design is more of a bottom-up technique.

Concentration on
abstractions

The system is organized as a set of objects that can be operated
like independent machines via clearly defined operations. The
control logic can later be built on these objects in such a way that
the resulting system can have multiple functions at the top (Fig.
9.2).

Object-oriented design has at least the following advantages:
The resulting classes reflect the entities in the respective appli-
cation; programs thus become more problem-oriented and more

 9.2 Object-Oriented Design 123

comprehensible. Object-oriented design permits systems with mul-
tiple functions at the top. New software components are easier to
add than in task-oriented design. The classes at the base were not
tailored to one specific application and can more readily be reused
in other programs.

Class Class

Fig. 9.2 Program hierarchy in object-oriented design. Arrows indicate the
uses relationship.

A drawback of object-oriented design is that the classes at the base
are often too general. If an application needs binary trees that
provide only insertion and searching, then operations like storing,
reading and merging of trees are superfluous. The extra functio-
nality has to be carried along although it is not needed. This is the
price paid for reusability.

Object-oriented design is mainly a bottom-up technique. How-
ever, this does not mean that programs should be designed
exclusively bottom-up. In practice, design is both bottom-up and
top-down, depending on which technique is most suitable at the
moment. For example, if we are designing software for the control
of a computer network, we first design the basic classes that model
the network, its layers, and its protocols. Then we build on these
classes to design the control logic of the system top-down. At some
point, we might observe that we need an address service. We go
back and design a class at the base to offer this service. Then we
continue the top-down design process.

Advantages
Drawbacks

In practice, design
is a mixture of
top-down and
bottom-up

Some authors recommend that object-oriented design be
neither top-down nor bottom-up, but from the known to the un-
known parts of a system [Bud91].

9.3 Identifying the Classes

The starting point for every design is a requirements definition
that specifies what requirements the program is to fulfill. Since it is

Requirements
definition

124 9 Object-Oriented Design

independent of any later implementation, classes, methods and
other object-oriented aspects do not need to be considered yet. Any
familiar notation is suitable.

We use the requirements definition to identify the classes of
the system. Although it would be naive to believe that a certain
method can automatically lead to good designs, the ever recurring
question is how we should proceed when trying to identify the
classes. We cannot prescribe a mechanical technique for that;
designing a system requires experience and skill. The only advice
we can give is to use the following considerations as a guideline in
the design process.

9.3.1 Basic Design Considerations

The goal of object-oriented design is to establish a one-to-one
relationship between the real-world entities and the classes in the
program. In the design of a text editor, for example, texts should be
represented by a class Text and windows by a class Window. In a
traffic simulation system the objects should be cars, roads and
traffic lights. We therefore start the design process with the follow-
ing three questions:

Classes model
real-world entities

(1) What are the physical and logical entities of the real-world system? Identifying classes
 This question leads to the classes. Physical entities could be

switches, sensors or displays. Logical entities could be a
process, a measurement, or a command. Any concept that is
central to the system, represents important data, or can
assume various states is a candidate for a class.

(2) Which operations can be carried out with these objects? Identifying

methods This question leads to the methods. The operations of a class
Sensor, for example, could be turning it on, turning it off,
reading its value, etc. The search for methods should not be
restricted by the current requirements, but should be carried
out with the reusability of the class in mind. Any reasonable
operation is a candidate for a method.

 One approach that has proved useful is to simulate
various scenarios in which the class appears and to ask:
Which events could occur? Which objects will react to these
events and how? Which other actions or events are triggered?

 9.3 Identifying the Classes 125

(3) Which data must be stored in an object to allow the operations to do
their tasks?

Identifying data
fields

 This question leads to the data fields of a class. The data fields
represent the state of an object, which can be modified and
read via methods. They form the concrete data structure that
is hidden from the clients of the class. The data of a class
Sensor, for example, could be its current value and the
sampling interval.

These three questions help to find the classes and to specify their
interfaces. For example, by applying these questions we might
create a class Sensor that looks like this:

TYPE
 Sensor = RECORD
 value, interval: REAL;
 …
 PROCEDURE (VAR s: Sensor) Switch (on: BOOLEAN);
 PROCEDURE (VAR s: Sensor) Value (): REAL;
 …
 END;

What has been achieved so far? With each class, some behavior has
been extracted from the program and has been concentrated in one
place. The remaining program is leaner and less complex. It can
work with the classes at a higher level. Once sufficiently many
classes have been created in this way, the remaining control logic
is often relatively simple.

However, there is a danger of creating too many classes. This
makes the program complex, not because of its inpenetrable
control structure, but because of its many (and often irrelevant)
components and their interactions.

Concentrating
behavior

Mistakes

Another mistake is to build everything with classes, forgetting
about modules and abstract data types, which are not extensible,
but somewhat simpler and more efficient than classes. Whenever
we use a class, we should consider whether a module or an
abstract data type might not be adequate instead.

9.3.2 Additional Design Considerations

In addition to the three basic questions above, the following con-
siderations are useful for identifying the classes of a system:

126 9 Object-Oriented Design

Are there situations that particularly lend themselves to being solved
with classes?

Typical patterns

Are there objects that occur in variants? Are variants to be added
later? Is there some behavior to be exchanged for another at run
time? Situations of this kind were described in Chapter 7. They
particularly lend themselves to an object-oriented implementation
because extensibility and dynamic binding can be exploited.

Which system-specific parts should be hidden from clients? Information hiding
Programs often contain system-specific details that are difficult to
understand and are among the first things that must be modified
when the system is ported. Such details should be encapsulated in
modules or in classes so that modifications in them remain local
and clients can use them without knowing their implementation.

Which parts of the software are likely to change? How can the effects of
such changes be limited?

Modifications

Often future modifications of a program are already indicated
during its construction, because a more efficient solution is sought,
because the program is to be ported, or because external conditions
change. The affected parts should be hidden in a class and pro-
vided with an interface that remains stable even if the implemen-
tation behind it changes.

Can we identify generally useful services that are also needed in other
programs?

Basic services

Studies have shown that more than half of all code also occurs in
similar form in other programs. Examples include code for list
handling, for text and graphics operations, and for input/output
formatting. It makes sense to decouple such basic services from the
program where they were initially used and to make them
available to other programs in the form of reusable classes.

What decomposition is used in similar systems? How others do it
Good design is learned by experience rather than by rules. Editors
are always constructed in a similar way, as are bookkeeping
programs and simulation systems. Studying existing systems helps
to collect a repertoire of design patterns and to learn how to use
them. In this sense we refer the reader to Chapter 11, which
contains the complete implementation of a window system with an
extensible text and graphics editor.

 9.3 Identifying the Classes 127

9.3.3 Deriving Classes from a Verbal Specification

R. Abbott suggests a method by which classes, methods, and data
fields can be almost mechanically derived from a verbal specifi-
cation [Abb83]. He advises observing the nouns, verbs and adjec-
tives that occur in the text.

Abbott's method

The nouns in the text are candidates for classes or data fields.
They describe the objects that are handled or the properties of an
object. The verbs in the text are candidates for methods. They
describe the operations that are executed with the objects. The
adjectives in the text suggest data fields. They describe a property
or a state of an object.

If a specification contains the phrase "The editor must be able
to draw and erase figures and change their size", then editor, figure
and size are the occurring nouns. Editor and figure are central
objects and suggest classes, while size indicates only a property of
a figure and is thus a data field. The size of a figure is not complex
enough to make it worth implementing as a class. It can be
expressed simply in two numbers that specify the height and
width of the figure. The verbs of the specification are draw, delete,
and modify. They suggest methods of the class Figure. Adjectives do
not exist in this part of the specification.

We readily see that this method cannot provide the complete
design of classes; it can only be used as a starting point. The
reasons are clear: On the one hand, the results can only be as good
as the specification. An incomplete specification does not contain
all necessary nouns, verbs and adjectives and thus does not lead to
the required classes. On the other hand, not every noun is a class
and not every verb is a method. The relevant words have to be
filtered out, which is not always easy.

Shortcomings

It is a common mistake to create too many classes, i.e., to
include ones that do not have complex data or interesting
methods.

9.3.4 CRC Cards

The literature on object-oriented analysis and design describes
CRC cards (Class/Responsibilities/Collaborators cards), which are
recommended as an aid for identifying classes [BeC89]. CRC cards
are simple file cards on which we note the responsibilities and
collaborators of classes.

CRC cards

128 9 Object-Oriented Design

For each class there is a card labeled with the name of the
class. In the left column of the card we list what the class is
responsible for; in the right column we write the names of the
other classes with which it collaborates (Fig. 9.3).

Drawing

Knows which figures it contains List

Responsibilities Collaborators

Class

Draws figures
Can find the figure at a certain location
…

Figure

Fig. 9.3 CRC cards for a class Drawing

The responsibilities need not yet correspond to the methods. A
responsibility such as "knows which figures it contains" can consist
of several methods, e.g., Insert, Delete, Broadcast. Inversely, a
method can assume several responsibilities. The data of the class
can be specified on the back of the card. Since data are hidden to
clients, this is the right place to write them down. Of course it is
also possible to use the card for specifying the class interface in a
certain syntactical notation (e.g., a programming language) if this
is desired.

CRC cards have various advantages: They are easy to
understand, to produce, and to discard. Multiple cards can be laid
out on a large table and arranged by various criteria, giving a good
overview of the system. The limited size of the cards helps to keep
the size of classes small. If abstract classes are to be distinguished
from their concrete subclasses, a stack of cards can be created with
the abstract class at the top and the concrete classes underneath.

Advantages

9.4 Designing the Interface of a Class

The interface of a class consists of the fields and methods that are
visible to clients. The interface of a class File, for example, could
look like this:

Interfaces

 9.4 Designing the Interface of a Class 129

TYPE
 File = POINTER TO FileDesc;
 FileDesc = RECORD
 name-: ARRAY 64 OF CHAR;
 pos-, len-, result-: LONGINT;
 PROCEDURE (f: File) Open (name: ARRAY OF CHAR);
 PROCEDURE (f: File) Close;
 PROCEDURE (f: File) SetTo (pos: LONGINT);
 PROCEDURE (f: File) Read (VAR ch: CHAR);
 PROCEDURE (f: File) Write (ch: CHAR);
 END;

The interface should be designed so that the class can be used in as
many contexts as possible with as few and as simple operations as
possible. A good indication for the value of a class is to what
degree other programmers are willing to use it. Class interfaces
should be designed according to the following criteria [Hof90]:

The goal of
interface design

(1) Consistency Interface criteria
 Set up your own rules (based on standard guidelines) and

stick to them. The rules can apply to parameter passing (input
parameters before output parameters), to naming (consistent
use of verbs, nouns and adjectives), or to the use of upper and
lower case in names. Consistent interfaces make it easier to
understand the rest of a system if part of it is already known.

(2) Simplicity
 Avoid needless features. The smaller the interface, the easier it

is to use the class.

(3) No redundancy
 Avoid offering the same service in more than one way; elimi-

nate redundant features.

(4) Atomicity
 Do not combine several operations if they are also needed

individually. Keep independent features separate.

(5) Reusability
 Do not customize classes to specific clients, but make them

general enough to be reusable in other contexts.

(6) Robustness with respect to modifications
 Design the interface of a class so that it remains stable even if

the implementation of the class changes.

130 9 Object-Oriented Design

The following examples serve to clarify these criteria. Let us start
with naming conventions which significantly contribute to the
readability of programs. Since such conventions are seldom expli-
citly described, we give some rules here that have proven useful
over time (Table 9.4).

Naming
conventions

Names for

Constants, variables

Types

Procedures

Functions

Modules

Start with

Lower-case noun
Lower-case adjective

Upper-case noun

Upper-case verb

Upper- case noun
Upper-case adjective

Upper-case noun

Examples

version, wordSize
full

File, TextFrame

WriteString

Position
Empty, Equal

Files, TextFrames

Table 9.4 Proven naming conventions

In names consisting of several words, every word (except possibly
the first one) should start with a capital letter. Data and methods
with similar semantics should be named identically. An operation
that draws a window, a frame or a figure should bear the same
name in each case. This simplifies learning and understanding new
classes.

Consider a message text.Search(pattern, pos), which searches for
a pattern in a text beginning at position pos. Another message
text.SearchNext looks for the next occurrence of the same pattern
starting at the position where the pattern was last found.
SearchNext should be omitted since it can easily be expressed with
Search.

The message file.Open(name, pos) opens a file and sets the
reading position to pos. This operation is not atomic. It should be
decomposed into two operations that can be used individually:
file.Open(name) and file.SetTo(pos).

The above criteria can conflict with each other: On the one
hand, a class should be held as general as possible to increase its
chances of reuse; on the other hand, unnecessary features are to be
avoided. How can this be resolved? Or: Only atomic operations
should be provided that can be combined in a flexible way; on the

Avoiding
redundancy

Atomicity

Conflicts

 9.4 Designing the Interface of a Class 131

other hand, this makes client code consist of many individual
operations that have to be invoked in the correct order. In such
cases we have to decide according to our priorities by selecting one
criterion over another.

Good interface design requires skill. With classes we are able
to create virtual languages that contain new data types and new
operations. Thus interface design is actually language design!
Since it is difficult to design a good language, it is not surprizing
that the design of good classes proves challenging. Whether a class
is good in the sense of the above criteria can only be evaluated
when it is used by persons other than its author.

9.5 Abstract Classes

Abstract classes were introduced in Chapter 6. They contain empty
methods that must be overridden in subclasses. In the construction
of extensible software systems, abstract classes play an important
role: they are the design of their subclasses, a common pattern that
establishes the behavior of all future extensions.

Abstract classes
are the design of
their subclasses

For example, in the implementation of a graphical user
interface, an abstract class InterfaceItem might specify that all its
subclasses (Button, CheckBox, ScrollBar, etc.) must understand the
messages Draw, Move and Resize.

TYPE
 InterfaceItem = POINTER TO InterfaceDesc;
 InterfaceDesc = RECORD
 PROCEDURE (x: InterfaceItem) Draw;
 PROCEDURE (x: InterfaceItem) Move (dx, dy: INTEGER);
 PROCEDURE (x: InterfaceItem) Resize (dx, dy: INTEGER);
 …
 END;

Concrete subclasses like Button inherit this interface. They
understand the same messages and can thus be used wherever an
InterfaceItem is expected.

The purpose of an abstract class is to serve as a pattern from
which other classes can be derived; the purpose of a concrete class
is to create objects from it. Abstract classes are thus reusable:
InterfaceItem can be seen as a pattern for new interface items.
Concrete classes are often tailored to a specific purpose and thus
not so readily usable in a different context; it is also harder to
derive new classes from concrete ones. We should therefore try to

132 9 Object-Oriented Design

identify as many abstract classes as possible in our application
domain. The more abstract classes we design, the more reusable
abstractions we obtain.

How can we find abstract classes? One possibility is to
observe from the beginning that there are variants of a class from
which we can factor out common behavior. This is the case with
generic components (Section 7.2), heterogeneous data structures
(Section 7.3), and replaceable behavior (Section 7.4).

Finding abstract
classes

The other possibility is to start with a concrete class that has
proven useful and to attempt to devise a reusable abstraction from
it. Assume the existence of a class BarChart. The reusable
abstraction here is not the bar chart, but a more general diagram.
The common properties of diagrams can be isolated and defined as
an abstract class Chart, of which BarChart is a special case. Note
that the goal is to make the interface reusable rather than the code.

Reuse does not happen by accident. In order to make classes
really reusable, the designer must not rest with the first design. It
must be reworked to increase its value. Just as important as
designing a new class is revising an existing one to make it simpler
and more reusable. Experienced programmers spend as much time
on simplifying existing classes as on writing new ones. Useful
abstractions are usually created by persons with an obsession for
simplicity, who are willing to rewrite code several times to achieve
comprehensible and reusable classes [JoF88].

Making classes
reusable

Whether a class is reusable or not can be evaluated only after
it has actually been reused. A class that has not been reused re-
peatedly and by different persons cannot be called reusable.

9.6 Relationships between Classes

Classes do not exist in isolation, but interact with other classes to
perform a certain task. When two classes cooperate, one takes the
role of a server that offers some services; the other takes the role of
a client that uses these services. The two classes are said to be
linked by a contract. A contract is a set of services (methods) that a
class offers. For the description of classes and contracts, the
notation used in Fig. 9.5 is recommended in [WWW90].

Contracts

Contracts are depicted by an arrow from the client to the
server. The arrow leads into a numbered semicircle; the corres-
ponding note explains the contract. Although a contract usually

 9.6 Relationships between Classes 133

consists of multiple methods, only one arrow is drawn to keep the
picture simple.

Client Server1 1: … Description of the contract …

Fig.9.5 A contract between a client and a server.
The arrow indicates the flow of messages.

A class can support multiple contracts. A frame in Oberon, for
example, supports the following two contracts (Fig. 9.6).

Viewer

Oberon
Frame

1

2

1: Displaying the frame contents

2: Handling user input

Fig. 9.6 Class Frame with two contracts

A viewer sends messages that cause the frame to change its size
and to display its contents. Oberon sends messages that pass
mouse clicks and keyboard input to the frame.

A contract is only one way in which classes can interact. Alto-
gether there are three possible relationships between two classes A
and B:

Relationships
between classes

(1) A has a B: An A object has n data fields of type B.

A B
1 n

(2) A uses a B: An A object uses (a contract of) a B object.

1A B

(3) A is a B: A is a subclass of B.

B
A

A uses-a relationship is normally based on a has-a relationship,
which is often not drawn.

134 9 Object-Oriented Design

These relationships make it possible to graphically represent
the interplay of classes. Such representations are called collaboration
graphs [WWW90].

Figure 9.7 shows such a graph that describes a traffic control
system. A crossing has n roads. Each road has a sensor and a traffic
light. The sensor can be a contact sensor or an induction sensor.
The sensor and the light are managed by a controller that inspects
the sensor and uses the acquired data to control the light.

Collaboration
graphs

Crossing

Controller

Road

1
n

Contact
sensor

Induction
sensor

Sensor

Traffic light

1 2

1: inspect
2: control

Fig. 9.7 Collaboration graph for a traffic control system

The components of a collaboration graph can, of course, also be
modules or abstract data types rather than classes. There are also
various other notations that have been suggested for describing
classes and their relationships (e.g., [Boo91], [CoY90], [RBP91],
[ShM88]).

A graphical notation can be useful to capture the ideas in the
minds of the designers and to make them tactile. It serves as a
documentation and as the basis for discussions between designers.
However, a notation is only a means to an end and not the end
itself. Even the best notation cannot guarantee good designs. CASE
tools also need to be seen in this light, as they are often good
documentation tools, but cannot replace the work of the designer.
Designing is creative work and requires experience and insight.
Notation is the mechanical part of the job. If the design is simple
and clear, it is less important which notation is used or whether a
particular notation is used at all.

The value of a
graphical notation

 9.7 When to Use Classes 135

9.7 When to Use Classes

Languages like Smalltalk offer no data types except classes and no
operations except methods. In hybrid languages like Oberon-2, one
has the choice to use other constructs beside classes and methods.
There are basic types (INTEGER, CHAR, etc.), structured types
(arrays, records, etc.), modules, and abstract data types. Often an
array is more natural than a class, and a procedure simpler than a
method.

This raises the question: When should classes be used and
when not? We believe that classes are only justified if at least one
of the following conditions is met:

(1) If the data is sufficiently complex to justify encapsulation: Sufficiently

complex data Classes should abstract from complex data by hiding details.
The abstract view that a class offers must be significantly
simpler than the concrete data structure that it encapsulates. A
class Speed would hardly make sense because speed can be
expressed more simply as an integer. A class File, by contrast,
is useful because it hides unnecessary details, such as a data
buffer, a position, or access rights. Using the abstraction File is
simpler than using its concrete data structure.

(2) If there are sufficiently many useful operations with the data: Sufficiently many

useful operations If accessing and modifying data fields seem to be the only
operations, then generally a record is the more suitable con-
struct. For a class Speed there are no interesting operations: A
value can be stored in it and retrieved again, and possibly
speeds can be added, but this can be done with integers as
well. A method Add is no easier to understand than the
standard operation + (quite the contrary). A class File, on the
other hand, has many useful operations: opening, closing,
reading, writing, etc.

 Classes with only a single method are suspect. In excep-
tional cases they might be practical, especially in situations
where an operation is associated with a state (as in a random
number generator). Usually, however, for a single method, a
procedure is the better construct.

(3) If the data exist in variants: Variants
 The most useful applications of object-oriented programming

come from heterogeneous data structures. If a program has to

136 9 Object-Oriented Design

work with variants of data that should be handled in a
uniform way, then these data are candidates for classes.
Making them classes enables dynamic binding and allows
new variants to be added later without having to change the
algorithms that work with existing variants.

 The uniform treatment of variants is perhaps the most
important incentive for using classes, because without classes
it is hardly possible to add new variants to a program without
modifying or at least recompiling it.

(4) If there is a chance of extension and reuse: Reusability
 Some data are so general that they can be used not only in the

program in which they were conceived, but also in other
programs. Pop-up menus, for example, are application-inde-
pendent, reusable and extensible (e.g., nested menus). Thus it
makes sense to implement them as a class.

In most other cases, classes are impractical: If the data are simple,
arrays, records or sets suffice. They are at least as comprehensible
as classes and are more efficient. An array for which the number
and type of its elements is fixed should not be implemented as a
class.

When not to use
classes

If data are application-specific and used only locally to an
algorithm, then classes usually do not pay off. For example, con-
verting an integer to a digit string requires an intermediate data
structure to store the individual digits. An array is sufficient for
that.

Via data abstraction, classes help to reduce the complexity of
programs. However, we have to be aware that each class also
introduces a certain amount of new complexity: The semantics of
its operations must be understood and remembered; its implemen-
tation requires code that increases the size of a program and thus
the possibility of errors. The benefits of data abstraction must be
substantially higher than its overhead in order to justify the
introduction of a class.

Classes are only one possible construct among many. They
often permit elegant solutions, but this is no reason to express
everything in classes. Compare this with recursion: Recursion
allows a very elegant implementation of certain algorithms; but
this does not mean that all algorithms should be implemented
recursively. Often ordinary loops are more natural and more
efficient.

Choosing the right
construct for data
abstraction

 9.7 When to Use Classes 137

The Oberon system itself consists only in part of classes. The
major part consists of modules, abstract data types, and ordinary
procedures. Nevertheless, it is modular and extensible.

Figure 9.8 shows how to select a suitable construct for data
abstraction.

Does data abstraction
simplify matters?

Concrete
data structure

Are there variants of the data
that should be handled in a uniform way?

Are there multiple
instances of the data?

ClassAbstract
data type

Abstract
data structure

y

y

y

n

n

n

Fig. 9.8 Choosing the right construct for data abstraction

The bottom line is: Classes should not be used at any price, but
only if they make a program more comprehensible and extensible,
and if this extensibility is required. Flexibility has its price, and
who would pay for something that is not used? It is the craft of an
experienced programmer to know when to use classes.

Classes—not at
any price

9.8 Common Design Errors

Teaching good design is difficult if not impossible. In fact, it is
sometimes easier to show how not to design programs. This infor-
mation can also be useful. Avoiding the worst mistakes already
leads to quite acceptable designs. This section describes some of
the most frequent design errors:

• too many trivial classes
• mixing up is-a and has-a relationships
• mixing up superclass and subclass
• identical variants

138 9 Object-Oriented Design

• methods associated with the wrong class
• too deep or too flat class hierarchy

These errors can even be found in some books on object-oriented
programming.

9.8.1 Too Many Trivial Classes

The previous section showed that classes do not always pay off. It
is a common mistake (especially among beginners) to create a class
for every concept, no matter how simple. Classes like Salary or
Amount inflate a program without reducing its complexity or
contributing significantly to its flexibility.

Too many trivial
classes

In such cases it is clear that classes are not the proper con-
struct. Other cases are less obvious, e.g., time. Should an ordinary
record be used:

TYPE
 Time = RECORD
 hours: INTEGER;
 minutes: INTEGER;
 seconds: INTEGER
 END

or rather a class:

TYPE
 Time = RECORD
 PROCEDURE (VAR t: Time) Get (VAR h, m, s: INTEGER);
 PROCEDURE (VAR t: Time) Set (h, m, s: INTEGER);
 PROCEDURE (VAR t: Time) Add (t1: Time);
 PROCEDURE (VAR t: Time) Subtract (t1: Time);
 PROCEDURE (VAR t: Time) LessThan (t1: Time);
 END

This depends on what is to be done with times. If they are used
only locally in a program without carrying out calculations on
them, a record suffices. A record is easy enough to understand and
allows efficient access. If time is viewed as a reusable component
that is also needed in other programs, and if times are to be added
and subtracted, then an abstract data type or a class is appropriate.
A class also makes it possible to change the implementation of
time without affecting the clients. Thus it depends on what we
want to do with the data.

 9.8 Common Design Errors 139

9.8.2 Mixing up Is-a and Has-a Relationships

Inheritance establishes an is-a relationship between a subclass and
its superclass. B should only be derived from A if it is an extension
or refinement of A. Instead, inheritance is often abused to
represent a has-a relationship, e.g.:

Mixing up is-a and
has-a
relationships

TYPE
 Point = RECORD x, y: INTEGER END;
 Line = RECORD (Point) x1, y1: INTEGER END;

The idea is that a line can be described by its two endpoints. The
coordinates of one point are inherited; those of the other are added
in Line. This is wrong! A line is not a point. It has two points. The
declaration should read:

TYPE
 Line = RECORD p0, p1: Point END;

This error sometimes occurs also in a more subtle form:

TYPE
 Rectangle = RECORD … END;
 Window = RECORD (Rectangle) … END;

Although it is true that a window could be viewed as a refinement
of a rectangle, the is-a relationship limits the flexibility of Window.
Oval windows might be introduced in the future; then a window is
no longer a rectangle, but has a certain shape, which could be
rectangular or oval. A better design would be:

TYPE
 Form = POINTER TO FormDesc;
 FormDesc = RECORD (*abstract*) END;

 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD (FormDesc) … END;

 Window = RECORD
 form: Form;
 …
 END;

If Window were derived from Rectangle, this would have the
further drawback that it could not be derived from another class
without using multiple inheritance. It might be necessary, for
example, to derive Window from a class ListNode in order to link
various windows in a list.

140 9 Object-Oriented Design

9.8.3 Mixing up Superclass and Subclass

Sometimes it is difficult to say which of two classes should be the
superclass and which the subclass. Fig. 9.9 shows an example.

Mixing up
superclass and
subclass

RectangleSquare

SquareRectangle

Fig. 9.9 Is Square a subclass of Rectangle or vice versa?

It could be argued that a rectangle is an extension of a square, for
while a square requires a corner and a dimension, a rectangle
requires the same data and an additional dimension.

This argument is wrong because not every rectangle is a
square. The opposite is true: every square is a rectangle! The
subclass must be a specialization of the superclass. The relationship
between classes must be selected so as to yield an is-a relationship.
Only then can objects of the subclass be used wherever objects of
the superclass are expected.

9.8.4 Identical Variants

Some programmers tend to distinguish between objects that have
the same structure and behavior, but differ in the value of a data
field. For example, they view red and blue rectangles as belonging
to different classes (Fig. 9.10).

Identical variants

Rectangle

RedRectangle BlueRectangle

Fig. 9.10 Subclasses with identical structure and behavior

This class hierarchy is generally incorrect. If red and blue rec-
tangles have the same kind of data and methods, they should
belong to the same class Rectangle. They differ only in the value of
a data field that specifies their color:

TYPE
 Rectangle = POINTER TO RectangleDesc;
 RectangleDesc = RECORD
 color: Color;
 …

 9.8 Common Design Errors 141

 END
Deriving separate subclasses would, however, be justified if red
and blue rectangles would react differently to a message.

9.8.5 Methods Associated with the Wrong Class

hould this method belong to lists or to elements?
Should we write

t.Remove(element)

or

lement.RemoveFrom(list)

gumentation
is w

ts on the state of the list could no longer be
gua

o several methods that each modify only
the data of their receiver.

ies that are too deep or too flat are generally
und

deep hierarchies is that each method scarcely does any work

the wrong class

or too

hierarchy

Sometimes it is not clear to which class an operation should be
assigned. Removing elements from a list, for example, requires a
method Remove. S

Methods
associated with

lis

e

It can be argued that elements should be autonomous and thus
responsible to remove themselves from a list. This ar

rong. The removal of elements is a list operation.
The receiver of a message must always be the object whose

data are changed by the operation. In this example the list, not the
element, is changed. The state of a list must only be modified by its
own operations; anything else would violate information hiding,
and invarian

ranteed.
But what happens when a method modifies the data of

multiple classes? To which class should this method be assigned?
Such a situation usually indicates a design error. The method
should be decomposed int

9.8.6 Too Deep or too Flat Class Hierarchy

Although it is difficult to say how deep a class hierarchy should be,
class hierarch

Too deep
flat class

esirable.
Excessively deep hierarchies occur when concrete classes are

frequently extended with the goal of reusing code. This is a
particularly common practice in Smalltalk, where the source code
of every class is available and invites reuse. The problem with too

142 9 Object-Oriented Design

before passing the message to the superclass. An operation is thus
spread over numerous methods. This can impede maintenance and
error localization.

Overly flat hierarchies occur when subclasses reuse little or
nothing from their superclasses. The extreme case would be a
single abstract class Object from which all other classes are derived.
This is certainly wrong, for it sacrifices almost all the advantages of
object-orientedness.

A class hierarchy should be balanced. The inner nodes should
represent abstract classes, the leaves concrete ones. When many
concrete classes are derived from an abstract class, this extends the
class tree in its width. When abstract classes are derived from other
abstract classes, this usually extends the tree in depth (Fig. 9.11).

abstract

concrete

Fig. 9.11 Class hierarchies should be neither too deep nor too flat

10 Frameworks

Object-oriented systems are seldom written from scratch, but are
usually built on existing systems. Object-oriented programming
normally means extending a given system. This extensibility is one
of the great advantages of OOP. Only when new programs can
build on existing ones, can the productivity of programmers be
increased.

If one class can be derived from another, programmers al-
ready save a lot of work. If, however, a whole set of classes can be
reused together, the advantage is even greater. A set of
cooperating classes is called a framework [Deu89]. We will first
examine the idea of frameworks and then look at some examples.

10.1 Subsystems and Frameworks

Large systems generally consist of several subsystems, where each
subsystem is composed of a set of objects or other components that
cooperate to perform a certain task. A subsystem itself can be
viewed as a single component with an interface to the outside (Fig.
10.1).

Subsystems

Fig. 10.1 Subsystem consisting of four classes

144 10 Frameworks

A subsystem like this is usually designed for a particular applica-
tion, which makes it application-specific and scarcely reusable. In
order to achieve reusability, the application-independent parts
have to be isolated. They form the framework of the subsystem (Fig.
10.2). Application-specific tasks are left to later extensions of the
framework.

Application-specific

Application-independent

Framework

Fig. 10.2 Framework of a subsystem

A framework is a set of abstract and concrete classes that cooperate
in order to handle the application-independent aspects of a task.
By extending its classes, the framework can be developed into
various concrete subsystems.

A frameworks is
the design of
subsystems

In the same way as an abstract class is the design of its con-
crete subclasses, a framework is the design of the subsystems to
which it can be extended. As an abstract class is the generalization
of a concrete class, a framework is the generalization of a system of
classes.

Although frameworks are not tailored to a specific appli-
cation, they are designed for certain application domains. Examples
include frameworks for graphical user interfaces, for simulation
tasks, and for operating systems. The design of a framework
requires a great deal of experience and expert knowledge in the
respective domain. Only then can a designer factor out the
commonalities of all programs in that domain and implement
them in a framework that can easily be extended to concrete
applications.

A framework of classes is significantly more useful than a
loose collection of procedures or modules. Procedure libraries offer
only individual operations, but give no clue as to how these
operations can be assembled to a practical system. The toolbox of
the Apple Macintosh is such an example. Anyone who has ever
used this library knows how difficult it is to find the procedures
required for a certain task and to invoke them in the proper order.

Domains

Frameworks and
procedure
libraries

 10.1 Subsystems and Frameworks 145

Menu selection, for example, requires the following individual
operations:

A framework for
menus

(1) display the menu
(2) track mouse movement and invert contacted menu items
(3) determine the item at which the mouse button was released
(4) handle the respective menu item

The first three operations are the same for all menus; only the last
one is application-specific. A major part of menu selection can be
programmed once and for all. Only the handling of the individual
menu item must be left to the application. Thus menu selection can
be implemented as a reusable framework consisting of a concrete
class Menu and an abstract class MenuItem (Fig. 10.3):

MenuItem
1: Select
2: Show, Hide,
 TrackMouse
3: Show, Handle

1 nMenu

2
31 1

Fig. 10.3 Framework for menu selection (notation see Section 9.6)

Menu holds a list of menu items and has a method Show that
displays the whole menu, a method Hide that removes it from the
screen, and a method TrackMouse that tracks mouse movement,
inverts contacted menu items, and returns the selected item. A
method Select controls the whole menu selection:

PROCEDURE (menu: Menu) Select;
 VAR item: MenuItem;
BEGIN
 menu.Show;
 menu.TrackMouse(item);
 menu.Hide;
 IF item # NIL THEN item.Handle END
END Select;

Menu items are initially represented by the abstract class
MenuItem, whose methods are empty, e.g.:

PROCEDURE (item: MenuItem) Handle; (*abstract*)
END Handle;

Handle is overridden in subclasses, and objects of these subclasses
are used in Menu to fill out the framework. During menu selection
the Handle method of the subclasses is invoked and the respective

146 10 Frameworks

menu item is handled. The application-independent framework is
thus parameterized via subclasses of MenuItem.

Instead of implementing Handle as a method, it is better to
make it a procedure variable. In this way we avoid having a
subclass for each menu item and get by with only a few item kinds
(e.g., TextItem and PictureItem) in which an appropriate Handle
procedure is installed.

In frameworks the flow of control is exactly opposite to that in
conventional programs using procedure libraries (Fig. 10.4).

Inverted control
flow

Application

Library

Conventional program Extended framework

Framework

Fig. 10.4 Control flow in conventional programs and frameworks

In conventional programs the programmer writes a main program
that invokes procedures from the library. With frameworks it is the
other way round: Here the actual main program (the framework)
comes from a library and invokes methods that the programmer
provides. It is not the application that invokes library routines, but
library routines that invoke parts of the application. This is called
the Hollywood principle, "Don't call us, we'll call you" [Swe85].

10.2 The MVC Framework

One frequently used framework was already introduced in Section
8.7: the Model/View/Controller framework (MVC). It consists of
three abstract classes: a model, its views, and its controllers (Fig.
10.5).

1

1

2 Model

ViewController
3 3

4

1:
2:
3:

4:

Handle user input
Modify model
Notify views
and controllers
Show view

Fig. 10.5 The MVC framework

 10.2 The MVC Framework 147

This framework forms the application-independent part of many
interactive programs. By extending the three classes, it can be
developed into various editors, such as a text editor or a graphics
editor (Fig. 10.6).

Text Graphics

TextView GraphViewTextCtrl GraphCtrl

Fig. 10.6 Extension of the MVC framework to a text editor and a graphics
editor

10.3 A Framework for Objects in Texts

Many document editors process text that contains not only cha-
racters but also other objects such as pictures, tables, and formulas
that flow with the text (Fig. 10.7).

Texts

The hypotenuse of a right-angled

triangle
a

b

c

is computed with

a + b2 2the formula c = . This can be used

to calculate …

Fig.10.7 Text with floating objects

The document editor Write [Szy92] provided with the Oberon
System is based on such texts. They have proven very useful and
flexible, primarily because the kinds of objects in a text are not
fixed in advance. The programmer can implement any kind of new
objects (e.g., hypertext buttons) and let them float in the text
without modifying the editor. The objects react to mouse clicks:

148 10 Frameworks

pictures go into editing mode, hypertext buttons follow a link into
another text, etc.

We call objects floating in the text elements. Together with texts
and text frames they form a framework for many useful appli-
cations such as document editors, spreadsheet programs,
hypertext systems, or other programs that manage, display and
edit some kind of objects.

Elements

The framework consists of the classes Text, TextFrame and
Element. The classes Text and TextFrame are concrete, while Element
is abstract (Fig. 10.8).

2 5

1

1

44 4

3

TextFrame

Text Element

HandleMouse,

1 n

1:

2:

3:

4:

5:

HandleKey

Insert, Delete,
Read, Write

Notify

Load, Store,
Copy

Draw,
HandleMouse

Fig.10.8 Framework for texts and included elements

How do texts and elements interact? A text holds a list of elements
and their positions. When it is loaded from or stored in a file, the
elements also have to be loaded or stored. In order to do so, the
text sends the elements Load or Store messages that each element
interprets in its own way. If a piece of text is to be copied, all
elements in it get a Copy message. Beside this, a text does not need
to know anything about elements.

Operations on
elements

How does a text frame interact with elements? When the
contents of a frame are redrawn, the elements get a Draw message
that causes them to display themselves at a certain position in the
frame. If the user clicks on an element with the mouse, the frame
sends the element a HandleMouse message. Again, a text frame
need not know what kinds of elements exist. It communicates with
them only via messages and thus can work with any kind of
element.

The necessary assumptions about elements are expressed in
the interface of the abstract class Element:

Class Element

 10.3 A Framework for Objects in Texts 149

TYPE
 Element = POINTER TO ElementDesc;
 ElementDesc = RECORD
 PROCEDURE (e: Element) Load (VAR r: OS.Rider);
 PROCEDURE (e: Element) Store (VAR r: OS.Rider);
 PROCEDURE (e: Element) Copy (): Element;
 PROCEDURE (e: Element) Draw (x, y: INTEGER);
 PROCEDURE (e: Element) HandleMouse
 (x, y : INTEGER; buttons: SET);
 END;

The framework can be extended by deriving concrete subclasses
from Element, e.g., GraphicElement, FormulaElement or HypertextEle-
ment. While the editor is running, these classes can be dynamically
added to the editor and objects of these classes (pictures, formulas,
hypertext buttons, etc.) can be inserted in the text. They increase
the functionality of the editor according to the needs of the user.

We cannot overemphasize how important it is to have a
system that allows adding modules to a running program. Only in
such systems are programs truly extensible without recompilation
or relinking.

Concrete
elements

Dynamic
extensibility

Compare this to editors in other systems. In most systems an
editor must be loaded with its full functionality. This leads to long
loading times and large memory consumption, and overwhelms
the user with an abundance of functions that are hardly ever used.
In the Oberon System the run-time extensibility of programs
allows each user to keep in memory only the core of the editor plus
the few functions that are actually needed.

Chapter 11 contains a complete implementation of texts with
elements.

10.4 Application Frameworks

If frameworks can be extracted from subsystems, why should it
not be possible to extract the common behavior of whole appli-
cations? Old-style batch programs scarcely have such common
parts, but many interactive applications do. Commonalities can be
found that can be isolated and collected into an application frame-
work.

Dialog programs of the first generation mimic the behavior of
batch programs. Data and commands have to be entered in a fixed
order. Mistyped input often cannot be taken back because the

Dialog programs

150 10 Frameworks

program already expects the next input. The program has control
over the user, who cannot make inputs in arbitrary order.

The next generation of dialog programs uses menus that
permit input in any order. However, menus are often hierar-
chically arranged with a main menu and several submenus that
again can contain submenus. Each menu drives the program in a
certain state (Fig. 10.9).

Main menu
(state 0)

Submenu
(state 1)

Submenu
(state 3)

Submenu
(state 4)

Submenu
(state 5)

Submenu
(state 6)

Submenu
(state 7)

Submenu
(state 2)

… … … … …… … … … …

Fig.10.9 Hierarchical menus introduce states

Now the user can execute commands in any order, but must move
up and down the menu tree until the proper state is attained that
allows the desired command. States in which only certain input is
permitted impair the user-friendliness of a program and should be
avoided whenever possible.

Modern dialog programs are event-driven. They have only
one state, in which all inputs are possible in any order. Each input
(keyboard input, mouse click, etc.) is an event and causes a
message to be sent to an object that handles the event. The core of
such applications is a loop that waits for events and distributes
them to the appropriate handler (Fig. 10.10). The program struc-
ture is inverted: the handlers belonging to the application are
called by the framework belonging to the library

In the Oberon System the event loop is implemented in the
module Oberon. It need not be reimplemented in each program.

Event-driven
applications

Event loop

 10.4 Application Frameworks 151

LOOP
 IF event available THEN
 Pass it to appropriate handler
 END
END

Handler 1

Handler 3

Handler 2

Handler 4

Fig.10.10 Event-driven program structure

This event-handling mechanism is reusable. It is common to all
event-driven programs and thus a candidate for the framework.
Interactive applications share still other commonalities: They often
work with windows, moving and resizing them in a uniform way.
These operations are independent of the window contents and
thus can be included in the framework. Other common parts
include frames, dialog buttons, and menus.

An application framework is thus a standard program that
offers the basic functionality that is expected of any application:
window management (without contents), menus, loading and
storing documents, reading mouse clicks and keyboard input
(without processing), etc. This functionality is achieved via a set of
classes, some of which are concrete, thus implementing concrete
behavior, and some of which are abstract and need to be made
concrete in subclasses.

Application
frameworks

Various application frameworks are commercially available
that facilitate the writing of interactive applications. Some well-
known ones include MacApp [Sch86], NextStep [Web89], and ET++
[GWM88].

Let us take a brief look at MacApp, which is from the Apple
company. It is implemented in Object Pascal and consists of a
library of classes that are connected in a certain way to form an
application framework (Fig. 10.11).

MacApp

152 10 Frameworks

Application

Document

Window

View

Fig.10.11 Application framework MacApp

Each MacApp program is an extension of the class Application. An
application processes one or more documents that are displayed in
one or more windows. A window contains one or more views that
display text, graphics, or other data and react to user input. Note
that MacApp uses somewhat different terminology from that in
Oberon. Window is a Viewer in Oberon, and View is a Frame.

Each class of the MacApp framework already fulfills certain
tasks. Application handles initialization tasks and distributes
events, Window moves and resizes windows, and View adapts the
view size to the surrounding window.

A concrete application is made from the standard behavior of
the framework by extending some of these classes and overriding
certain methods. This is a good example of programming by
difference: Only those parts are programmed that deviate from the
standard behavior.

Programming by
difference

11 Oberon0 –
A Case Study

In many books, object-oriented programming is taught with tiny
examples like stacks, lists and queues. These examples are not
representative at all; indeed, they give a completely inaccurate
picture of the actual applications and advantages of this technique.
Object-oriented programming is programming in the large and
requires large, realistic examples. For this reason this chapter
presents a realistic case study—a system of windows that can be
moved and resized and in which text and graphics can be edited—
in full source code.

Why a realistic
case study?

By reading source code, we can learn a lot. In school we learn
both to read and to write. We read good books to improve our
style. Why then do we study so few good programs? Why do we
not try to take up their style before writing our own programs?
Perhaps because too few good programs are around as source
code. Where source code is available, it is usually appreciatively
read, as the Smalltalk class library has proven.

The system we describe in this chapter is called Oberon0
because its functionality and implementation are close to the
Oberon System [WiG92]. Several things were solved differently,
however: In Oberon0 most messages were implemented with
methods and not with message records as in Oberon. Details that
would have inflated the source code without contributing to the
object-oriented idea were omitted. Thus Oberon0 is less powerful
and less efficient than Oberon. But it is a realistic system that can
be used for simple editing tasks. The source code of Oberon0 is
available along with the object code of the Oberon System (see
Appendix D).

Oberon0 was implemented under Oberon and uses proce-
dures from Oberon's file system, mouse and screen control, etc. To

Oberon and
Oberon0

Base module OS

154 11 Oberon0 – A Case Study

avoid describing all these Oberon modules, they were hidden
beneath a module OS. The interface of OS is described in
Appendix B.

Oberon0 consists of five parts: Parts of Oberon0

(1) windows and frames
(2) user input handling
(3) text editing
(4) graphics editing
(5) integration of graphics and texts

The system has 1300 lines of code, 11 modules, and 11 classes.
Each module and each class is first described in general, followed
by an annotated program listing with explanations. All exported
procedures can also be found in the index at the end of the book.

A large part of Oberon0 is written in conventional style. Not
all data types are classes; not all operations are methods. This is
not a shortcoming, but a conscious design decision. Classes are
employed only where they make the program simpler or better
extensible. One of the goals of this case study is to show the reader
where classes make sense and where to do without them.

The reader should take time with this chapter. It cannot be
read as a bed-time story, but needs to be studied with pencil and
paper in hand. Only the study of complete examples provides the
necessary experience to write object-oriented programs.

11.1 The Viewer System

We start with a description of the viewer system. The viewer
system of Oberon0 handles rectangular regions of a raster display
in which data can be viewed and edited. These regions are called
windows or viewers.

Viewers completely divide the screen into rectangles (tiling
viewers). For the sake of simplicity, Oberon0 has only one column
of viewers (Fig. 11.1) rather than two as in Oberon.

Viewers

The black bar at the top of each viewer is the title bar
containing the name of the viewer and a list of commands (the
menu). Pressing the left mouse button while the mouse pointer is
located on the bar permits resizing the viewer by moving the bar

 11.1 The Viewer System 155

up or down with the mouse. Viewers can also be opened and
closed by special commands.

Frames

⎬

⎬

⎬

⎫

⎫

⎥

⎫

⎭

⎭

⎭

⎥
⎥

⎥

Viewer 3

Viewer 2

Viewer 1

Fig. 11.1 Oberon0 screen with three viewers

Data are not directly drawn into a viewer, but into a rectangular
area within the viewer called a frame. Frames have two respon-
sibilities:

(1) They display data (text, graphics, etc.).
(2) They handle user input (mouse clicks and keyboard input).

These are also the tasks of a viewer: A viewer is responsible for
drawing its border and for handling user input, although the input
is usually passed on to the frames in the viewer. A viewer is
therefore a subclass of frame. For the sake of simplicity, viewers in
Oberon0 always contain exactly two frames: a menu frame with
the name of the viewer and a list of Oberon commands, and a
contents frame, in which the actual data appear (Fig. 11.2). Frames
combine the responsibilities of views and controllers from the
MVC concept (Section 8.7).

156 11 Oberon0 – A Case Study

Menu frame

Contents frame

Viewer

Temp.Mod Viewers0.Close Viewers0.Copy

Viewer name Commands

Fig. 11.2 Viewer with a menu frame and a contents frame

Viewers and frames are so closely related that it makes sense to
package them together in a module Viewers0:

DEFINITION Viewers0; Interface of

Viewers0
IMPORT OS;

TYPE
 Frame = POINTER TO FrameDesc; Frame
 FrameDesc = RECORD (OS.ObjectDesc)
 x, y: INTEGER; (*left bottom in pixels relative to left bot. of screen*)
 w, h: INTEGER; (*width, height in pixels*)
 PROCEDURE (f: Frame) Draw;
 PROCEDURE (f: Frame) Modify (dy: INTEGER);
 PROCEDURE (f: Frame) Move (dy: INTEGER);
 PROCEDURE (f: Frame) Copy (): Frame;
 PROCEDURE (f: Frame) HandleKey (ch: CHAR);
 PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET);
 PROCEDURE (f: Frame) Handle (VAR m: OS.Message);
 PROCEDURE (f: Frame) Neutralize;
 PROCEDURE (f: Frame) SetFocus;
 PROCEDURE (f: Frame) Defocus;
 END;

 Viewer = POINTER TO ViewerDesc; Viewer
 ViewerDesc = RECORD (FrameDesc)
 menu-, cont-: Frame;
 next-: Viewer;
 PROCEDURE (v: Viewer) Close;
 END;

VAR
 focus-: Frame; (*the frame that gets the keyboard input*)

PROCEDURE New (menu, cont: Frame): Viewer;
PROCEDURE ViewerAt (y: INTEGER): Viewer;
PROCEDURE Broadcast (VAR m: OS.Message);

 11.1 The Viewer System 157

PROCEDURE Close; Commands
PROCEDURE Copy;

END Viewers0.

The position and size of a frame f is shown in Fig. 11.3. The
coordinates (f.x, f.y) are relative to the lower left corner of the
screen. In this implementation of the viewer system, f.x is always 0,
but that can change, of course (see Section 11.5).

Frame
coordinates

(f.x, f.y)
f.w

f.h

y

x

Fig. 11.3 Position and size of a frame f

Frame is an abstract class. It simply provides an interface without
completely implementing it. Due to this interface, a viewer knows
which operations it can apply to a frame. And since a viewer can
work with general frames, it can also work with frame extensions,
such as text frames (Section 11.3.3) and graphics frames (Section
11.4.2).

f.Draw Messages to

frames requests frame f to redraw its contents.
f.Modify(dy)
 shifts the lower border of frame f by dy pixels up (dy > 0) or

down (dy < 0).
f.Move(dy)
 moves frame f by dy pixels up (dy > 0) or down (dy < 0).
f1 := f.Copy()
 makes a copy of frame f.
f.HandleKey(ch)
 requests frame f to process character ch which was typed at

the keyboard. This message is only sent to a frame if it is the
focus frame (see below).

f.HandleMouse(x, y, b)
 requests frame f to react to mouse input. This message is

repeatedly sent to the frame as long as it contains the mouse
pointer. x and y are the mouse coordinates relative to the
lower left corner of the screen, and b is the set of pressed
mouse buttons (OS.left, OS.middle, OS.right).

f.Handle(m)

158 11 Oberon0 – A Case Study

 analyzes the message record m and reacts to it. This is the
message handler of frames.

f.Defocus
 is sent to the focus frame f immediately before another frame

becomes the focus frame.
f.SetFocus
 makes f the focus frame.
f.Neutralize
 requests frame f to remove all marks (caret, selection, etc.)

from the screen.

A viewer inherits the interface from frames, but overrides some
methods. For example, when a viewer is resized by a Modify
message, part of its border needs to be redrawn. Viewers also
understand a Close message.

Messages to
viewers

v.Close
 requests the viewer v to close itself.

One of the frames is the focus frame. All characters typed at the
keyboard are sent to the focus frame via HandleKey messages.
When the left mouse button is pressed in a frame, this frame
becomes the new focus frame.

The procedure New creates a viewer and displays it on the
screen. ViewerAt(y) returns the viewer containing the coordinate y.
Broadcast(m) sends the message record m to all viewers on the
screen.

Copy and Close are commands that are placed in the menu
frame of a viewer. Close closes the viewer that contains the
command, and Copy creates a copy of that viewer and displays it.

All viewers are linked via a field next. A global variable
viewers points to the bottom viewer on the screen (Fig. 11.4).

Viewer list

next

next

menu

menu

cont

cont

viewers

Viewers Frames

Fig. 11.4 List of all viewers on the screen

 11.1 The Viewer System 159

We now come to the implementation of the module Viewers0. Code
that requires explanation is marked with a number in the margin
(e.g., ♣). This number refers to comments at the end of the code
section (marked with the corresponding number in black, e.g.,).
The imported module OS is described in Appendix B.

MODULE Viewers0; Implementation of

Viewers0
IMPORT OS;

CONST
 barH = 14; (*default height of title bar*)
 minH = barH + 2; (*minimal height of a viewer*)

TYPE
 Frame* = POINTER TO FrameDesc;
 FrameDesc* = RECORD (OS.ObjectDesc)
 x*, y*: INTEGER; (*left bottom in pixels relative to left bot. of screen*)
 w*, h*: INTEGER (*width, height in pixels*)
 END;
 Viewer* = POINTER TO ViewerDesc;
 ViewerDesc* = RECORD (FrameDesc)
 menu-, cont-: Frame; (*menu frame, contents frame*)
 next-: Viewer;
 END;

VAR
 focus-: Frame; (*the frame that gets the keyboard input*)
 viewers: Viewer; (*root for list of viewers on the screen*)

PROCEDURE (f: Frame) Draw*; Frame methods
END Draw;

PROCEDURE (f: Frame) Copy* (): Frame;
END Copy;

PROCEDURE (f: Frame) Neutralize*;
END Neutralize;

PROCEDURE (f: Frame) HandleKey* (ch: CHAR);
END HandleKey;

PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET);
END HandleMouse;

PROCEDURE (f: Frame) Handle* (VAR m: OS.Message);
END Handle;

PROCEDURE (f: Frame) Modify* (dy: INTEGER);
BEGIN INC(f.y, dy); DEC(f.h, dy)
END Modify;

PROCEDURE (f: Frame) Move* (dy: INTEGER);
BEGIN INC(f.y, dy)

160 11 Oberon0 – A Case Study

END Move;

PROCEDURE (f: Frame) Defocus*;
BEGIN focus := NIL
END Defocus;

PROCEDURE (f: Frame) SetFocus*;
BEGIN IF focus # NIL THEN focus.Defocus END; focus := f
END SetFocus;

PROCEDURE (v: Viewer) Erase (h: INTEGER); Viewer methods
BEGIN
 IF h > 0 THEN (*clear bottom block and draw left and right border*)
 OS.EraseBlock(v.x, v.y, v.w, h);
 OS.FillBlock(v.x, v.y, 1, h);
 OS.FillBlock(v.x+v.w-1, v.y, 1, h)
 END;
 OS.FillBlock(v.x, v.y, OS.screenW, 1)
END Erase;
PROCEDURE (v: Viewer) FlipTitleBar;
BEGIN
 OS.InvertBlock(v.x+1, v.y+v.h-barH, OS.screenW-2, barH)
END FlipTitleBar;

PROCEDURE (v: Viewer) Neutralize*;
BEGIN v.menu.Neutralize; v.cont.Neutralize
END Neutralize;

PROCEDURE (v: Viewer) Modify* (dy: INTEGER);
BEGIN
 v.Neutralize;
 v.Modify^ (dy); v.Erase(-dy+1); v.cont.Modify(dy)
END Modify;

PROCEDURE (v: Viewer) Move* (dy: INTEGER);
BEGIN
 v.Neutralize; v.menu.Move(dy); v.cont.Move(dy);
 OS.CopyBlock(v.x, v.y+1, v.w, v.h-1, v.x, v.y+dy+1);
 INC(v.y, dy)
END Move;

PROCEDURE (v: Viewer) Draw*;
BEGIN
 OS.FadeCursor;
 v.Erase(v.h); v.menu.Draw; v.cont.Draw; v.FlipTitleBar
END Draw;

PROCEDURE (v: Viewer) HandleMouse* (x, y: INTEGER; buttons: SET);
 VAR b: SET; x1, y1: INTEGER; dy, maxUp, maxDown: INTEGER;
BEGIN
 OS.DrawCursor(x, y);
 IF y > v.menu.y THEN
 IF OS.left IN buttons THEN (*left click in menu bar => resize viewer*)
 (*----- track mouse movements*)
 v.FlipTitleBar;

 11.1 The Viewer System 161

 REPEAT
 OS.GetMouse(b, x1, y1); OS.DrawCursor(x1, y1)
 UNTIL b = {};
 v.FlipTitleBar;

see ♣ (*----- compute how far v can be moved up or down*)
 dy := y1 - y; maxDown := v.h - minH;
 IF v.next = NIL THEN maxUp := OS.screenH - v.y - v.h
 ELSE maxUp := v.next.h - minH; v.next.Neutralize
 END;
 IF dy < - maxDown THEN dy := - maxDown
 ELSIF dy > maxUp THEN dy := maxUp
 END;
 (*----- move v up or down and adjust neighbor viewers*)
 OS.FadeCursor; v.Neutralize;
 IF dy < 0 THEN (*move down*) v.Modify(-dy); v.Move(dy)
 ELSE (*move up*) v.Move(dy); v.Modify(-dy)
 END;
 IF v.next # NIL THEN v.next.Modify(dy)
 ELSE OS.EraseBlock(v.x, v.y+v.h, v.w, OS.screenH-v.y-v.h)
 END
 ELSE v.menu.HandleMouse(x, y, buttons)
 END
 ELSE v.cont.HandleMouse(x, y, buttons)
 END
END HandleMouse;

PROCEDURE (v: Viewer) Handle* (VAR m: OS.Message);
BEGIN
 v.menu.Handle(m); v.cont.Handle(m)
END Handle;

PROCEDURE (v: Viewer) Close*;
 VAR x: Viewer;
BEGIN
 OS.FadeCursor; v.Neutralize;
 IF v.next # NIL THEN v.next.Modify(-v.h)
 ELSE OS.EraseBlock(v.x, v.y, v.w, v.h)
 END;
 IF viewers = v THEN
 viewers := v.next
 ELSE
 x := viewers;
 WHILE x.next # v DO x := x.next END;
 x.next := v.next
 END
END Close;

PROCEDURE ViewerAt*(y: INTEGER): Viewer; Other procedures
 VAR v: Viewer;
BEGIN
 v := viewers;
 WHILE (v # NIL) & (y > v.y + v.h) DO v := v.next END;
 RETURN v
END ViewerAt;

162 11 Oberon0 – A Case Study

PROCEDURE New* (menu, cont: Frame): Viewer; see
 VAR below, above, v, w: Viewer; top: INTEGER;
BEGIN
 (*----- compute position of new viewer*)
 IF ViewerAt(OS.screenH) = NIL THEN
 top := OS.screenH
 ELSE
 w := viewers; v := viewers.next;
 WHILE v # NIL DO
 IF v.h > w.h THEN w := v END;
 v := v.next
 END;
 top := w.y + w.h DIV 2
 END;
 (*----- generate new viewer and link it into viewer list*)
 above := viewers; below := NIL;
 WHILE (above # NIL) & (top > above.y + above.h) DO
 below := above; above := above.next
 END;
 NEW(v); v.x := 0; v.w := OS.screenW; v.next := above;
 IF below = NIL THEN v.y := 0; v.h := top
 ELSE v.y := below.y + below.h; v.h := top - v.y
 END;
 IF v.h < minH THEN RETURN NIL END;
 v.menu := menu; v.cont := cont;
 menu.x := v.x+1; menu.y := v.y+v.h-barH; menu.w := v.w-2; menu.h := barH-1;
 cont.x := v.x+1; cont.y := v.y+1; cont.w := v.w-2; cont.h := menu.y - v.y-1;
 IF below = NIL THEN viewers := v ELSE below.next := v END;
 IF above # NIL THEN above.Modify(v.h) END;
 v.Draw;
 RETURN v
END New;

PROCEDURE Broadcast* (VAR m: OS.Message);
 VAR v: Viewer;
BEGIN
 v := viewers;
 WHILE v # NIL DO v.Handle(m); v := v.next END
END Broadcast;

PROCEDURE Close*; Commands
 VAR x, y: INTEGER; buttons: SET; v: Viewer;
BEGIN
 OS.GetMouse(buttons, x, y); v := ViewerAt(y); v.Close
END Close;

PROCEDURE Copy*;
 VAR v: Viewer; x, y: INTEGER; buttons: SET;
BEGIN
 OS.GetMouse(buttons, x, y); v := ViewerAt(y);
 v := New(v.menu.Copy(), v.cont.Copy())
END Copy;

BEGIN (*Viewers0*)
 viewers := NIL; focus := NIL

 11.1 The Viewer System 163

END Viewers0.

Most methods of class Frame are empty and must be overridden in
subclasses because abstract frames do not know what their
contents are or how they should react to mouse clicks and
keyboard input. The methods Move, SetFocus and Defocus, on the
other hand, can already be implemented for abstract frames and
usually do not need to be overridden. Modify can be implemented
too, but it must be overridden in subclasses to redraw the part of
the frame that becomes visible after a modification (see, e.g.,
Section 11.3.3).

A viewer reacts to a mouse click in the title bar by allowing its
upper border to be moved up or down. This process requires
explanation (Fig. 11.5).

Explanations

maxUp

maxDown v

minH y

y1
dy

Fig. 11.5 Shifting the upper border of the viewer v by dy pixels

The mouse was pressed at position y and released at y1. The
vertical shift vector is dy = y1-y. The viewer border can be shifted
by at most maxUp pixels up or maxDown pixels down before
bumping into the next viewer (viewers must maintain a minimum
height minH). When the top of a viewer is shifted, the viewer
above must be resized and thus receives a Modify message.

The position of a new viewer is determined so that its upper
edge top is either at the very top of the screen (if there is no other
viewer yet) or in the middle of the largest existing viewer. In the
latter case the new viewer v is positioned between two other
viewers below and above (Fig. 11.6). The viewer above is reduced in
size and thus receives a Modify message.

164 11 Oberon0 – A Case Study

below below

above
above

v
top

Before opening v After opening v

Fig. 11.6 Opening a new viewer with top edge top

Viewer and Frame are two components with complex data and
useful operations. Thus it is justified to implement them as classes.
Since viewers will display variants of frames (text frames, graphics
frames, etc.), it makes sense to define the common behavior of all
frames in an abstract class Frame. Viewers do not work with
concrete frame variants, but with abstract frames; hence they do
not need to know the variants. They are able to display any frame
variant that might be developed in the future. This provides an
example of heterogeneous, extensible data structures in the sense
of Section 7.3. The classes Viewer and Frame can also be seen as a
framework for an extensible viewer system.

What can be
learned?

Although it is also possible to extend a viewer by deriving
subclasses from it, this is not planned and generally not necessary.
In our implementation viewers are fixed containers for frames.
Only their contents vary, but not the viewers themselves.

11.2 Handling User Input

Viewers and frames can react to keyboard input and mouse clicks.
But how are these events reported? This is the task of the event loop.
Whenever the system is idle, it falls back to the event loop and
polls the state of the input devices.

As soon as a key is pressed, the event loop sends a message to
the focus frame, which handles it appropriately. If the focus frame
is a text frame, it might insert the character into its text at the
position of the insertion mark (caret). If it is a graphics frame, it
might interpret the character as a command. After having handled
the event the frame returns control to the event loop.

As long as no key is pressed, the frame that contains the
mouse pointer is requested to react to the mouse. Normally the
frame does nothing except draw the mouse pointer. If a mouse

Event loop

Keyboard input

Mouse clicks

 11.2 Handling User Input 165

button is pressed, the reaction might be the placement of the caret,
text or graphics selection, or some kind of drawing. Then control is
returned to the event loop again.

Since viewers can react to events in any order, and since they
return control after a short time, the impression arises that all
programs corresponding to the viewers run in parallel. In reality
there is only one process that alternately gives control to the
programs for a short amount of time.

Multiprogramming

In the same way as in Oberon0 user input is also handled in
the Oberon System. The event loop in Oberon is located in the
module Oberon, so we also wrap it in a module Oberon0, which has
a very simple interface:

DEFINITION Oberon0; Interface of

Oberon0
 PROCEDURE Loop;
END Oberon0.

The Oberon0 system is started by invoking Loop (the event loop). It
can be stopped by pressing the escape key. The source code of
Oberon0 should be comprehensible without explanation. The
modules Texts0 and TextFrames0 are discussed in the next section.

MODULE Oberon0; Implementation of

Oberon0
IMPORT OS, Viewers0, Texts0, TextFrames0;
CONST ESC = 1BX;

PROCEDURE Loop*;
 VAR ch: CHAR; x, y: INTEGER; buttons: SET;
 v: Viewers0.Viewer; t: Texts0.Text;
BEGIN
 NEW(t); t.Clear;
 v := Viewers0.New(TextFrames0.NewMenu("LOG", "Viewers0.Close"),
 TextFrames0.New(t)); (*open the log viewer*)
 LOOP (*wait for events*)
 IF OS.AvailChars() > 0 THEN OS.ReadKey(ch);
 IF ch = ESC THEN EXIT
 ELSIF Viewers0.focus # NIL THEN Viewers0.focus.HandleKey(ch)
 END
 ELSE OS.GetMouse(buttons, x, y);
 v := Viewers0.ViewerAt(y);
 IF v # NIL THEN v.HandleMouse(x, y, buttons)
 ELSE OS.DrawCursor(x, y)
 END
 END
 END
END Loop;

END Oberon0.

166 11 Oberon0 – A Case Study

11.3 A Text Editor

The most frequent kind of data to be displayed in viewers is text.
Thus we shall design and implement classes that permit
displaying and editing text in an Oberon0 viewer.

Which classes and modules are necessary? Recall Section 8.7,
in which the MVC concept was introduced as a useful technique in
designing interactive programs (Fig. 11.7).

MVC structure

View + Controller
(Frame)

Model

change notify read

Fig. 11.7 The MVC concept

According to the MVC concept, an interactive program consists of
a model and several views and controllers. How can we transpose
this onto a text editor?

Our model is the text; thus we need a class that manages text.
The view and controller part is handled by frames, so we need a
class TextFrame, a subclass of Frame, that displays a text on the
screen and handles keyboard input and mouse clicks. Text frames
are installed in viewers; we can use the class Viewer from Section
11.1 for that. Finally, we need a module that has commands to
open and close a text viewer; we call it Edit0. Each of these classes
is implemented in its own module; the resulting hierarchy of
modules and classes is shown in Fig. 11.8.

Viewers work with text frames by sending them messages and
thus requesting them to change their size or to display their
contents. However, Viewers0 does not import TextFrames0, but
regards all kinds of frames (including text frames) as extensions of
the class Viewers0.Frame. A text frame is installed in a viewer with
Viewers0.New without the viewer needing to know this Frame
extension.

 11.3 A Text Editor 167

Text0 Text

Frame

Viewer

TextFrames0

Viewers0

Edit0

Modules
with import relationship

Classes
with uses relationship

Model

View + Controller

Fig. 11.8 Modules and classes of the text editor

The class Text actually has two responsibilities: It handles ASCII
text and it adds various fonts. In order to be able to describe these
two tasks independently, we model them as a class AsciiText,
which handles plain text, and a subclass Text, which adds the
fonts.

Note that a text editor is no trivial program; its implemen-
tation imposes many details, although here we have avoided as
much detail as possible by sacrificing efficiency and generality.
11.3.1 Plain Texts (AsciiTexts)

The class AsciiTexts.Text handles a text as a sequence of ASCII
characters. Operations on texts include insertion, deletion, reading,
writing, loading, and storing. This leads to the following interface:

DEFINITION AsciiTexts; Interface of

AsciiTexts
IMPORT OS;

TYPE
 Text = POINTER TO TextDesc;
 TextDesc = RECORD (OS.ObjectDesc)
 len-: LONGINT; (*text length*)
 pos-: LONGINT; (*read/write position*)
 PROCEDURE (t: Text) Clear;
 PROCEDURE (t: Text) Insert (at: LONGINT; t1: Text; beg, end: LONGINT);
 PROCEDURE (t: Text) Delete (beg, end: LONGINT);
 PROCEDURE (t: Text) SetPos (pos: LONGINT);
 PROCEDURE (t: Text) Read (VAR ch: CHAR);
 PROCEDURE (t: Text) Write (ch: CHAR);
 PROCEDURE (t: Text) Load (VAR r: OS.Rider);
 PROCEDURE (t: Text) Store (VAR r: OS.Rider);
 END;

168 11 Oberon0 – A Case Study

 NotifyInsMsg = RECORD (OS.Message) t: Text; beg, end: LONGINT END;
 NotifyDelMsg = RECORD (OS.Message) t: Text; beg, end: LONGINT END;

END AsciiTexts.

A text t is a sequence of characters at positions 0 to t.len-1. It has a
read/write position t.pos where characters can be read and written
with Read and Write. In the following explanation the open interval
[a..b[indicates a text segment beginning with the character at
position a and ending with the character at position b-1.

Messages to
ASCII texts

t.Clear
 clears the text t.
t.Insert(p, t1, a, b)
 inserts the text segment [a..b[of t1 at position p in t.
t.Delete(a, b)
 deletes the segment [a..b[in t.
t.SetPos(p)
 sets the read/write position of t to p.
t.Read(ch)
 reads the character ch at t.pos and increments t.pos by 1. An

attempt to read beyond the end of the text causes 0X to be
read and t.pos is not incremented.

t.Write(ch)
 inserts the character ch at t.pos and increments t.pos by 1.
t.Load(r)
 loads the text t from a file (rider r).
t.Store(r)
 stores the text t in a file (rider r).

The central data structure of texts is the text buffer. In its simplest
form, it is an array of characters. However, the insertion and
deletion of characters must be efficient; thus we make use of the
following observation:

Text buffer

The array is not completely filled. It consists of a sequence of
characters and a gap that extends from the position after the last
character to the end of the array. Inserting and deleting at the front
of this gap (i.e., at the end of the text) is efficient because no
characters have to be moved. Within the text, inserting and
deleting are expensive operations.

The trick is to move the gap from the end of the text to within
the text. Then inserting and deleting can be efficient there, too (Fig.
11.9).

 11.3 A Text Editor 169

Characters Characters CharactersGapGap

Inserting characters Inserting characters
is efficient here is efficient here

Fig. 11.9 Moving the gap from the end of the text to within the text

Whenever the insertion point in the text changes, the gap is moved
to the new insertion point by a method MoveGap. Since multiple
characters are usually inserted at the same place before the
insertion point is changed, the gap seldom needs to be moved. For
clients of the class Text, the array and the position of the gap
remain hidden, of course.

The length of arrays is fixed. But to permit a text to grow to an
arbitrary length without wasting storage on small texts, we must
permit the array to grow and shrink. We do this in the following
way: If the array is completely filled, we create a larger array and
copy the old one into the new. If the text length is less than half the
array size, we create a smaller array and copy to it. These tasks are
handled by the methods Grow and Shrink.

Growing and
shrinking

We will now examine the implementation. Note that texts in
Oberon0 are implemented differently from those in the Oberon
System. In Oberon they are not in main memory, but in a file; thus
they can really be of arbitrary length. This implementation is more
practical, but also more complicated than the Oberon0 solution.
The Oberon approach is described in [WiG92].

MODULE AsciiTexts; Implementation of

AsciiTexts
IMPORT OS, Viewers0;

CONST minBufLen = 32;

TYPE
 Buffer = POINTER TO ARRAY OF CHAR;
 Text* = POINTER TO TextDesc; Text
 TextDesc* = RECORD (OS.ObjectDesc)
 len-: LONGINT; (*text length*)
 pos-: LONGINT; (*read/write position*)
 buf: Buffer; (*text buffer*)
 gap: LONGINT (*index of first byte in gap*)
 END;
 NotifyInsMsg* = RECORD(OS.Message) t*:Text; beg*, end*:LONGINT END;
 NotifyDelMsg* = RECORD(OS.Message) t*:Text; beg*, end*:LONGINT END;

PROCEDURE (t: Text) MoveGap (to: LONGINT); Text methods
 VAR n, gapLen: LONGINT;

170 11 Oberon0 – A Case Study

BEGIN
 n := ABS(to - t.gap); gapLen := LEN(t.buf^) - t.len;
 IF to > t.gap THEN OS.Move(t.buf^, t.gap + gapLen, t.buf^, t.gap, n)
 ELSIF to < t.gap THEN OS.Move(t.buf^, t.gap - n, t.buf^, t.gap + gapLen - n, n)
 END;
 t.gap := to
END MoveGap;

PROCEDURE (t: Text) Grow (size: LONGINT);
 VAR bufLen: LONGINT; old: Buffer;
BEGIN
 bufLen := LEN(t.buf^);
 IF size > bufLen THEN
 t.MoveGap(t.len);
 WHILE bufLen < size DO bufLen := 2*bufLen END;
 old := t.buf; NEW(t.buf, bufLen); OS.Move(old^, 0, t.buf^, 0, t.len)
 END
END Grow;

PROCEDURE (t: Text) Shrink;
 VAR bufLen: LONGINT; old: Buffer;
BEGIN
 bufLen := LEN(t.buf^); t.MoveGap(t.len);
 WHILE (bufLen >= 2*t.len) & (bufLen > minBufLen) DO
 bufLen := bufLen DIV 2
 END;
 old := t.buf; NEW(t.buf, bufLen); OS.Move(old^, 0, t.buf^, 0, t.len)
END Shrink;

PROCEDURE (t: Text) Clear*;
BEGIN
 NEW(t.buf, minBufLen);
 t.gap := 0; t.pos := 0; t.len := 0
END Clear;

PROCEDURE (t: Text) Insert* (at: LONGINT; t1: Text; beg, end: LONGINT); see ♣
 VAR len: LONGINT; m: NotifyInsMsg; t0: Text;
BEGIN
 IF t = t1 THEN
 NEW(t0); t0.Clear; t0.Insert(0, t1, beg, end); t.Insert(at, t0, 0, t0.len)
 ELSE len := end - beg;
 IF t.len + len > LEN(t.buf^) THEN t.Grow(t.len + len) END;
 t.MoveGap(at); t1.MoveGap(end);
 OS.Move(t1.buf^, beg, t.buf^, t.gap, len);
 INC(t.gap, len); INC(t.len, len);
 m.t := t; m.beg := at; m.end := at + len; Viewers0.Broadcast(m)
 END
END Insert;

PROCEDURE (t: Text) Delete* (beg, end: LONGINT); see
 VAR m: NotifyDelMsg;
BEGIN
 t.MoveGap(end); t.gap := beg; DEC(t.len, end-beg);
 IF (t.len * 2 < LEN(t.buf^)) & (LEN(t.buf^) > minBufLen) THEN t.Shrink END;
 m.t := t; m.beg := beg; m.end := end; Viewers0.Broadcast(m) see ➆

 11.3 A Text Editor 171

END Delete;

PROCEDURE (t: Text) SetPos* (pos: LONGINT);
BEGIN t.pos := pos
END SetPos;

PROCEDURE (t: Text) Read* (VAR ch: CHAR);
 VAR i: LONGINT;
BEGIN
 i := t.pos;
 IF t.pos >= t.gap THEN INC(i, LEN(t.buf^) - t.len) END;
 IF t.pos < t.len THEN ch := t.buf[i]; INC(t.pos) ELSE ch := 0X END
END Read;

PROCEDURE (t: Text) Write* (ch: CHAR);
 VAR m: NotifyInsMsg;
BEGIN
 IF t.len = LEN(t.buf^) THEN t.Grow(t.len + 1) END;
 IF t.pos # t.gap THEN t.MoveGap(t.pos) END;
 t.buf[t.gap] := ch; INC(t.gap); INC(t.pos); INC(t.len);
 m.t := t; m.beg := t.gap-1; m.end := t.gap; Viewers0.Broadcast(m)
END Write;

PROCEDURE (t: Text) Load* (VAR r: OS.Rider);
 VAR len: LONGINT;
BEGIN
 t.Clear;
 r.ReadLInt(len); t.Grow(len); r.ReadChars(t.buf^, len);
 t.gap := len; t.len := len
END Load;

PROCEDURE (t: Text) Store* (VAR r: OS.Rider);
BEGIN
 t.MoveGap(t.len);
 r.WriteLInt(t.len); r.WriteChars(t.buf^, t.len)
END Store;

END AsciiTexts.

The most important methods of AsciiTexts are Insert and Delete. In
Insert, a text segment from text t1 is inserted in text t by moving the
gap to the insert position and copying the text segment to this
position (Fig. 11.10). First t might have to attain the proper length
via t.Grow. If t and t1 are identical, a temporary buffer must be
used.

172 11 Oberon0 – A Case Study

t t1

t.MoveGap(at); t1.MoveGap(end)

OS.Move(t1.buf^,beg,t.buf^,at,end-beg)

at beg

beg

end

endat

Fig. 11.10 Effects of t.Insert(at, t1, beg, end)

Delete works similarly. The gap is moved to the end of the text
segment that is to be deleted and is then simply enlarged down-
ward (Fig. 11.11). Finally the array in t is shrunk with t.Shrink if
necessary.

t

t.MoveGap(end)

t.gap := beg; DEC(t.len, end-beg)
(*gap length is LEN(t.buf^) - t.len*)

beg

beg

beg

end

end

end

Fig. 11.11 Effects of t.Delete(beg, end)

Whenever the text is changed, its views must be updated. Thus
Insert, Delete and Write invoke the procedure Viewers0.Broadcast
and pass it a message record that specifies how the text was
modified. Viewers0.Broadcast distributes the message to all frames
on the screen. Whichever frame displays the modified text reacts to
the message by updating the modified part of the text on the
screen (see Section 11.3.3).

11.3.2 Texts with Fonts and Elements (Texts0)

For simple texts, AsciiTexts.Text might suffice. A realistic editor,
however, should support fonts and allow pictures and other
elements to be inserted in the text. These features are provided by
the class Texts0.Text, an extension of AsciiTexts.Text.

 11.3 A Text Editor 173

DEFINITION Texts0; Interface of
Texts0

IMPORT OS, AsciiTexts;

TYPE
 Attribute = POINTER TO AttrDesc;
 Element = POINTER TO ElemDesc;

 Text = POINTER TO TextDesc; Text
 TextDesc = RECORD (AsciiTexts.TextDesc)
 attr-: Attribute; (*attributes of previously read character*)
 PROCEDURE (t: Text) ChangeFont (beg, end: LONGINT; fnt: OS.Font);
 PROCEDURE (t: Text) ReadNextElem (VAR e: Element);
 PROCEDURE (t: Text) WriteElem (e: Element);
 PROCEDURE (t: Text) ElemPos (e: Element);
 END;

 AttrDesc = RECORD
 fnt-: OS.Font; (*font of this attribute segment*)
 elem-: Element (*if not NIL, the corrsponding character is an element*)
 END;

 ElemDesc = RECORD (OS.ObjectDesc) Element
 w, h: INTEGER; (*width and height of element in pixels*)
 dsc: INTEGER; (*descender (part below the base line)*)
 PROCEDURE (e: Element) Draw (x, y: INTEGER);
 PROCEDURE (e: Element) HandleMouse
 (frame: OS.Object; x, y: INTEGER);
 PROCEDURE (e: Element) Copy (): Element;
 END;

 NotifyDelMsg = AsciiTexts.NotifyDelMsg; Notify messages
 NotifyInsMsg = AsciiTexts.NotifyInsMsg;
 NotifyReplMsg = RECORD (OS.Message) t: Text; beg, end: LONGINT END;

END Texts0.
Text inherits the interface from AsciiTexts.Text. This means that text
segments can be inserted, deleted, etc. However, the inherited
methods are overridden in such a way that fonts are updated
correctly and pictures and other elements can flow with the text.
The following additional operations are provided:

Messages to texts

t.ChangeFont(a, b, fnt)
 changes the font of the text segment [a..b[to fnt.
t.ReadNextElem(e)
 returns the next element e in t after the position t.pos.

Afterwards t.pos contains the position of the character
following e. If no element is found, e = NIL and t.pos = t.len.

t.WriteElem(e)
 inserts the element e at t.pos in t.
pos := t.ElemPos(e)

174 11 Oberon0 – A Case Study

 returns the position of the element e in t or the value t.len if e
does not exist.

Which data fields are needed in Text? In addition to the character
array, an attribute list is necessary to specify the font of each
character and whether it is a plain character or an element (e.g., a
picture). Each node of the attribute list represents a text segment of
len characters in font fnt:

Attributes

TYPE
 Attribute = POINTER TO AttrDesc;
 AttrDesc = RECORD
 len: LONGINT; (*length of attribute segment*)
 fnt: OS.Font; (*font of attribute segment*)
 elem: Element; (*pointer to element or NIL*)
 next: Attribute
 END;

Elements are represented in the text by a special character (1CX)
and in the attribute list by a node of len = 1; the field elem of this
node points to the actual element. For plain characters, elem has the
value NIL. Before we turn to elements, let us consider the
management of the attribute list. Fig. 11.13 shows the connection
between the ASCII text and the attribute list. The attribute list is
not visible to clients of Text.

The first node in the attribute list is a dummy that simplifies
the handling of the list. Each node contains the length of the text
segment that it stands for, but not its position; otherwise it would

 11.3 A Text Editor 175

be necessary to update the positions of subsequent text segments
every time a character is inserted.

StdFont

0

NIL
Font1

9

NIL
Font2

14

NIL
Font2

1

Font2

11

NIL
NIL

t t

Dummy

ASCII text

Attribute
list

1CX

Element

len
fnt

elem

next

Fig. 11.13 A text with its associated attribute list

A text should also be able to contain objects that are not characters,
but pictures, tables or formulas. The kinds of objects are unknown
in advance; besides, we do not want to inflate texts by making
them know unnecessarily many kinds of objects. Thus texts should
not distinguish the objects at all, but work with an abstract class
Element, from which picture elements, table elements and formula
elements can later be derived. This keeps the editor small and
makes it possible to add new kinds of elements anytime.

Elements

TYPE
 Element = POINTER TO ElemDesc;
 ElemDesc = RECORD (OS.ObjectDesc)
 w, h: INTEGER; (*width and height of element in pixels*)
 dsc: INTEGER (*descender (part below the base line)*)
 END;

Which operations should be possible on elements? Elements
should be able to display themselves on the screen and to react to
mouse clicks. They should also know how to write themselves to a
file and how to read themselves in again; these are already
properties of the superclass OS.Object. Thus elements must
understand the following messages:

e.Draw(x, y) Messages to

elements draws e at position (x, y) on the screen (Fig. 11.14).
e.HandleMouse(f, x, y)
 causes e to react to a mouse click at position (x, y) in frame f.
e1 := e.Copy()
 makes a copy of e.

176 11 Oberon0 – A Case Study

(x, y)

dsc
Base line

Element

w

h

Fig. 11.14 Coordinates of an element on the screen

Most methods of Element are abstract and need to be overridden in
subclasses.

MODULE Texts0; Implementation of

Texts0
IMPORT OS, AsciiTexts, Viewers0;

CONST ELEM = 1CX;

TYPE
 Element* = POINTER TO ElemDesc;
 Attribute* = POINTER TO AttrDesc;

 Text* = POINTER TO TextDesc;
 TextDesc* = RECORD (AsciiTexts.TextDesc)
 attr-: Attribute; (*attributes of previously read character*)
 firstAttr: Attribute; (*to attribute list (first node is dummy)*)
 attrRest: LONGINT (*unread bytes in current attribute segment*)
 END;

 AttrDesc* = RECORD
 len: LONGINT; (*length of attribute segment*)
 fnt-: OS.Font; (*font of this attribute segment*)
 elem-: Element; (*pointer to element descriptor or NIL*)
 next: Attribute
 END;

 ElemDesc* = RECORD (OS.ObjectDesc)
 w*, h*: INTEGER; (*width and height in pixels*)
 dsc*: INTEGER (*descender (part under the base line)*)
 END;

 NotifyInsMsg* = AsciiTexts.NotifyInsMsg;
 NotifyDelMsg* = AsciiTexts.NotifyDelMsg;
 NotifyReplMsg* = RECORD (OS.Message)
 t*: Text; beg*, end*: LONGINT
 END;

PROCEDURE (e: Element) Draw* (x, y: INTEGER); Element methods
END Draw;

PROCEDURE (e: Element) HandleMouse* (f: OS.Object; x, y: INTEGER);
END HandleMouse;

 11.3 A Text Editor 177

PROCEDURE (e: Element) Copy* (): Element;
END Copy;

PROCEDURE (e: Element) Load* (VAR r: OS.Rider);
BEGIN
 r.ReadInt(e.w); r.ReadInt(e.h); r.ReadInt(e.dsc)
END Load;

PROCEDURE (e: Element) Store* (VAR r: OS.Rider);
BEGIN
 r.WriteInt(e.w); r.WriteInt(e.h); r.WriteInt(e.dsc)
END Store;

PROCEDURE (t: Text) Split (pos: LONGINT; VAR prev: Attribute); Text methods

see ♣
 VAR a, b: Attribute;
BEGIN
 a := t.firstAttr;
 WHILE (a # NIL) & (pos >= a.len) DO
 DEC(pos, a.len); prev := a; a := a.next
 END;
 IF (a # NIL) & (pos > 0) THEN
 NEW(b); b.elem := a.elem; b.fnt := a.fnt; b.len := a.len - pos; a.len := pos;
 b.next := a.next; a.next := b; prev := a
 END
END Split;

PROCEDURE (t: Text) Merge (a: Attribute); see
 VAR b: Attribute;
BEGIN
 b := a.next;
 IF (b # NIL) & (a.fnt = b.fnt) & (a.len > 0) & (a.elem = NIL) & (b.elem = NIL) THEN
 INC(a.len, b.len); a.next := b.next
 END
END Merge;

PROCEDURE (t: Text) Insert* see ➆
 (at: LONGINT; t1: AsciiTexts.Text; beg, end: LONGINT);
 VAR a, b, c, d, i, j, k: Attribute; t0: Text;
BEGIN
 IF t = t1 THEN
 NEW(t0); t0.Clear; t0.Insert(0, t1, beg, end); t.Insert(at, t0, 0, t0.len)
 ELSE
 WITH t1: Text DO
 t1.Split(beg, a); t1.Split(end, b); t.Split(at, c); d := c.next;
 i := a; j := c;
 WHILE i # b DO
 i := i.next; NEW(k); k^ := i^;
 IF i.elem # NIL THEN k.elem := i.elem.Copy() END;
 j.next := k; j := k
 END;
 j.next := d; t1.Merge(b); t1.Merge(a); t.Merge(j); t.Merge(c);
 t.Insert^ (at, t1, beg, end)
 END
 END
END Insert;

178 11 Oberon0 – A Case Study

PROCEDURE (t: Text) Delete* (beg, end: LONGINT);
 VAR a, b: Attribute;
BEGIN
 t.Split(beg, a); t.Split(end, b); a.next := b.next; t.Merge(a);
 t.Delete^ (beg, end)
END Delete;

PROCEDURE (t: Text) SetPos* (pos: LONGINT);
 VAR prev, a: Attribute;
BEGIN
 t.SetPos^(pos);
 a := t.firstAttr;
 WHILE (a # NIL) & (pos >= a.len) DO
 DEC(pos, a.len); prev := a; a := a.next
 END;
 IF (a = NIL) OR (pos = 0) THEN t.attr := prev; t.attrRest := 0
 ELSE t.attr := a; t.attrRest := a.len-pos
 END
END SetPos;

PROCEDURE (t: Text) Read* (VAR ch: CHAR); see ➘
BEGIN
 t.Read^(ch);
 IF (t.attrRest = 0) & (t.attr.next # NIL) THEN
 t.attr := t.attr.next; t.attrRest := t.attr.len
 END;
 DEC(t.attrRest)
END Read;

PROCEDURE (t: Text) Write* (ch: CHAR); see
 VAR a, prev: Attribute; at: LONGINT;
BEGIN
 a := t.firstAttr; at := t.pos;
 WHILE (a # NIL) & (at >= a.len) DO DEC(at, a.len); prev := a; a := a.next END;
 IF (a = NIL) OR (at = 0) THEN (*insert at end of attribute segment*)
 IF (prev = t.firstAttr) OR (prev.elem # NIL) THEN
 NEW(a); a.elem := NIL; a.fnt := prev.fnt; a.len := 1;
 a.next := prev.next; prev.next := a;
 t.Merge(a)
 ELSE INC(prev.len)
 END
 ELSE INC(a.len)
 END;
 t.Write^ (ch)
END Write;

PROCEDURE (t: Text) ReadNextElem* (VAR e: Element);
 VAR pos: LONGINT; a: Attribute;
BEGIN
 pos := t.pos + t.attrRest; a := t.attr.next;
 WHILE (a # NIL) & (a.elem = NIL) DO pos := pos + a.len; a := a.next END;
 IF a # NIL THEN e := a.elem; t.SetPos(pos+1)
 ELSE e := NIL; t.SetPos(t.len)
 END
END ReadNextElem;

 11.3 A Text Editor 179

PROCEDURE (t: Text) WriteElem* (e: Element); see ⑥
 VAR x, y: Attribute; m: NotifyReplMsg;
BEGIN
 t.Write(ELEM); t.Split(t.pos - 1, x); t.Split(t.pos, y); y.elem := e;
 m.t := t; m.beg := t.pos-1; m.end := t.pos; Viewers0.Broadcast(m)
END WriteElem;

PROCEDURE (t: Text) ElemPos* (e: Element): LONGINT;
 VAR pos: LONGINT; a: Attribute;
BEGIN
 a := t.firstAttr; pos := 0;
 WHILE (a # NIL) & (a.elem # e) DO pos := pos + a.len; a := a.next END;
 RETURN pos
END ElemPos;

PROCEDURE (t: Text) ChangeFont* (beg, end: LONGINT; fnt: OS.Font);
 VAR a, b: Attribute; m: NotifyReplMsg;

 PROCEDURE Change(a: Attribute);
 BEGIN
 a.fnt := fnt;
 IF a # b THEN Change(a.next) END;
 t.Merge(a)
 END Change;

BEGIN
 IF end > beg THEN
 t.Split(beg, a); t.Split(end, b); Change(a.next); t.Merge(a);
 m.t := t; m.beg := beg; m.end := end; Viewers0.Broadcast(m)
 END
END ChangeFont;

PROCEDURE (t: Text) Clear*;
BEGIN
 t.Clear^;
 NEW(t.firstAttr); t.firstAttr.elem := NIL; t.firstAttr.next := NIL;
 t.firstAttr.fnt := OS.DefaultFont(); t.firstAttr.len := 0; t.SetPos(0)
END Clear;

PROCEDURE (t: Text) Store* (VAR r: OS.Rider); see
 VAR a: Attribute;
BEGIN
 t.Store^(r); a := t.firstAttr.next;
 WHILE a # NIL DO
 r.WriteString(a.fnt.name);
 r.WriteObj(a.elem); r.WriteLInt(a.len);
 a := a.next
 END;
 r.Write(0X) (*empty font name terminates attribute list*)
END Store;

PROCEDURE (t: Text) Load* (VAR r: OS.Rider);
 VAR prev, a: Attribute; name: ARRAY 32 OF CHAR; x: OS.Object;
BEGIN

180 11 Oberon0 – A Case Study

 t.Load^(r);
 prev := t.firstAttr;
 LOOP
 r.ReadString(name); IF name = "" THEN EXIT END;
 NEW(a); a.fnt := OS.FontWithName(name);
 r.ReadObj(x); r.ReadLInt(a.len);
 IF x = NIL THEN a.elem := NIL ELSE a.elem := x(Element) END;
 prev.next := a; prev := a
 END;
 prev.next := NIL
END Load;

END Texts0.

The attribute list is managed via the operations Split and Merge.
Split splits an attribute segment at position pos and creates two
segments (Fig. 11.15). The segment a to the left of the split position
is returned.

a
t.Split(pos, a)pos

Fig. 11.15 Effects of t.Split(pos, a)

The inverse operation, t.Merge(a), merges the segment a with its
successor if both have the same font and do not represent
elements.

The most complicated operation of Texts0.Text is Insert. It
inserts a segment of text t1 into another text t. This requires tempo-
rarily splitting and remerging attribute segments, as shown in Fig.
11.16. If t and t1 are the same text, a temporary buffer is used.

 11.3 A Text Editor 181

at beg end

Attribute list of t Attribute list of t1

t1.Split(beg, a);
t1.Split(end, b);
t.Split(at, c);
d := c.nexta bc

c

d

d

i

j

copy nodes i
to nodes j

t1.Merge(b);
t1.Merge(a);
t.Merge(j);
t.Merge(c)

Fig. 11.16 Effects of t.Insert(at, t1, beg, end) on the attribute list

For the sake of simplicity, we require that both t1 and t be of
dynamic type Texts0.Text. Since parameter types cannot be
changed in overriding methods, t1 is of static type AsciiTexts.Text.
A with statement (type guard) is necessary in order to treat t1 as a
Texts0.Text object.

When a character is read with t.Read(ch), its attributes are
stored in the field t.attr. As long as the characters belong to the
same attribute segment, it is not necessary to reestablish t.attr each
time a character is read. The number of unread characters in the
current attribute segment is stored in a field t.attrRest. If t.attrRest
is 0, t.attr must be set to the next attribute segment.

When a character is written with t.Write(ch), no attributes can
be set. The font of a written piece of text can be changed with
t.ChangeFont.

Characters that are entered at the end of an attribute segment
are considered as belonging to this segment. If they are entered
immediately after an element, however, a new attribute node is
created (element segments must always have the length 1).

Elements are inserted with a special procedure WriteElem. This
creates a new attribute node for them.

When a text is stored in a file, its attributes must be stored as
well. For fonts the font name is output; elements are stored with
the method WriteObj, which outputs the type and value of the
element, as described in Section 8.3. WriteObj requests elements to
store themselves, since only they know their internal structure. The
end of the attribute list on the file is marked by an empty font
name.

♥

❺

182 11 Oberon0 – A Case Study

What lessons can be learned from this implementation? In
AsciiTexts and Texts0, classes were used as a structuring medium.
They divide text management into two independent tasks: text
buffer management and attribute management. In line with the
principle that a component should only handle one task, these two
responsibilities were assigned to different classes: text buffer
management to AsciiTexts and attribute management to Texts0.

AsciiTexts.Text is itself already a useful component. For simple
texts in which fonts are not needed, this component suffices. At the
same time it is a semifinished product that can be extended to a
finished product as needed.

We have taken care to make texts extensible. The abstract class
Element serves as a socket into which arbitrary element extensions
can be plugged and used with Text. The Oberon System also has a
text editor with extensible elements (Write [Szy92]); it has proven
very useful and flexible. An example of an element extension is
given in Section 11.5.

Structuring

Semifinished
products

Extensibility

11.3.3 Editing Text (TextFrames0)

Now we have texts with various fonts, but we can neither display
them on the screen nor edit them. We are still missing the view
and controller components from the MVC concept. As in Fig. 11.7,
we implement them in the class TextFrames0.Frame, which is
derived from Viewers0.Frame.

A text frame is a rectangular area of the screen that handles
the following tasks:

Responsibilities of
text frames

(1) Display text. The text as a continuous stream of characters is

cast in lines and displayed on the screen. Each character is
represented by a rectangular pixel matrix. The characters are
arranged in a line according to their widths; when an end-of-
line character appears, a new line is started. If a line is wider
than the frame, only as many characters are displayed as fit
(Fig. 11.17).

Display text

 11.3 A Text Editor 183

The text
as a continuou
stream of
characters …

The text as a continuous stream of characters …

Text (= end-of-line symbol)

TextFrame

Fig. 11.17 Casting a text in a text frame

(2) Process keyboard input. Characters typed at the keyboard are
inserted at the caret position, and the rest of the line is shifted
right (Fig. 11.18).

Process keyboard
input

The text The text
as a cotinuous as a continuou

Fig. 11.18 Before and after typing the character n

(3) Process mouse clicks. If one of the three mouse buttons is
pressed (ML = left, MM = middle, MR = right), the frame
reacts according to Table 11.19, depending on whether the
mouse pointer is in the text area or in the scroll bar of the
frame.

Process mouse
clicks

Mouse
button

ML
MM
MR

In text area

Set caret
Execute command
Select
+ ML = delete
+ MM = copy to caret

In scroll bar

Scroll forward
Scroll absolutely
Scroll to beginning
of text

Table 11.19 Meaning of mouse clicks in a text frame

 An MM-click causes the word clicked on to be interpreted as a
command (in the form Module.Procedure) and executed. If
the mouse is moved while the right button is pressed, all
characters passed are selected and displayed inversely.

In forward scrolling, the text line at the height of the
mouse click becomes the first line of the frame. In absolute

184 11 Oberon0 – A Case Study

scrolling, the vertical position of the mouse pointer in the
scroll bar determines the text position from which the text is
displayed in the frame. A click on the vertical center of the
scroll bar causes the middle part of the text to appear at the
top of the frame.

We implement text frames as a class Frame in a module
TextFrames0 with the following interface:

DEFINITION TextFrames0; Interface of

TextFrames0
IMPORT OS, Viewers0, Texts0;

TYPE
 Position = RECORD (*position of a character ch on the screen*)
 x-, y-: INTEGER; (*left point on base line*)
 dx-: INTEGER; (*width of ch*)
 org-: LONGINT; (*origin of line containing ch*)
 pos-: LONGINT (*text position of ch*)
 END;

 Frame = POINTER TO FrameDesc; Frame
 FrameDesc = RECORD (Viewers0.FrameDesc)
 text: Texts0.Text; (*text displayed in this frame*)
 org-: LONGINT; (*origin: text pos. of first char. in frame*)
 caret-: Position; (*caret.pos < 0: no caret visible*)
 selBeg-, selEnd-: Position; (*selBeg.pos < 0: no selection visible*)
 PROCEDURE (f: Frame) Draw;
 PROCEDURE (f: Frame) Defocus;
 PROCEDURE (f: Frame) Neutralize;
 PROCEDURE (f: Frame) Modify (dy: INTEGER);
 PROCEDURE (f: Frame) HandleKey (ch: CHAR);
 PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET);
 PROCEDURE (f: Frame) Handle (VAR m: OS.Message);
 PROCEDURE (f: Frame) SetCaret (pos: LONGINT);
 PROCEDURE (f: Frame) RemoveCaret;
 PROCEDURE (f: Frame) SetSelection (from, to: LONGINT);
 PROCEDURE (f: Frame) RemoveSelection;
 PROCEDURE (f: Frame) Copy (): Viewers0.Frame;
 END;

VAR
 cmdFrame-: Frame; (*frame containing most recent command*)
 cmdPos-: LONGINT; (*text position after most recent command*)

PROCEDURE New (t: Texts0.Text): Frame;
PROCEDURE NewMenu (name, commands: ARRAY OF CHAR): Frame;
PROCEDURE GetSelection (VAR f: Frame);

END TextFrames0.

The type Position describes the location of a character ch on the
screen. It also serves to store the position of the caret and the

Position

 11.3 A Text Editor 185

selection. The fields x and y designate the position of ch in screen
coordinates; dx is the width of ch (Figs. 11.20 and 11.22).

Base line

ch

(x, y) dx

Predecessor
of ch

Successor
of ch

Fig. 11.20 Meaning of fields x, y and dx of type Position

The field pos gives the text position of ch; org specifies the origin of
the line, i.e., the text position of the first character of the line
containing ch.

The most important type in TextFrames0 is the class Frame. Its
interface is partially inherited from Viewers0.Frame, but some text-
specific messages are added.

Messages to text
frames

f.Draw
 recasts the entire text of f.
f.Defocus
 removes the caret by sending f.RemoveCaret. The focus is taken

away from f.
f.Neutralize
 removes all marks in the frame (selection and caret) by sen-

ding f.RemoveSelection and f.RemoveCaret.
f.Modify(dy)
 shifts the lower border of f by dy and recasts any text that

becomes visible.
f.HandleKey(ch)
 inserts ch at the caret position.
f.HandleMouse(x, y, b)
 reacts to a mouse click at the position (x, y) relative to the

lower left corner of the screen. b is the set of pressed mouse
buttons.

f.Handle(m)
 reacts to a notify message m sent when a text was modified

(see Section 8.7).
f.SetCaret(pos)
 sets the caret to position pos.
f.RemoveCaret
 removes the caret.

186 11 Oberon0 – A Case Study

f.SetSelection(a, b)
 sets the selection in the interval [a..b[.
f.RemoveSelection
 removes the selection.
f1 := f.Copy()
 returns a copy of f.

The procedure New creates a new text frame. NewMenu creates a
new menu frame (also a text frame) that contains a viewer name
and a list of commands. GetSelection searches all visible text frames
for the latest selection and returns the frame that contains it, or
NIL if no selection is visible. For this purpose each text frame must
store a (nonexported) time stamp that tells when the last selection
was made in this frame.

Before turning to the implementation of TextFrames0, which is
by nature rather complex, let us examine some of the data
structures more closely.

The area of a text frame is divided into a text area and a scroll
bar. The text area has a margin in which no text is displayed
(Fig.11.21).

Frame metrics

Text areaScroll bar

f.w

f.h

(f.x, f.y)

margin

Fig. 11.21 Frame layout

Each character has a pixel pattern pat that is displayed on the
screen in a box of width dx and height asc+dsc (Fig. 11.22). The cha-
racter metrics (x, y, w, h, dx, asc, dsc) are taken from the respective
font. For an element e (e.g., a picture) this box is determined by the
element's width e.w, its height e.h, and its distance e.dsc from the
base line (see Fig. 11.14).

Character metrics

 11.3 A Text Editor 187

pat

x
y

w

h

dx

asc

dsc
Base line

Fig. 11.22 Character metrics

The boxes of succeeding characters are strung together and form a
line of text. Before a line is displayed on the screen, its metrics
must be computed, i.e., its length in characters (len) and pixels
(wid) as well as its height (asc+dsc), which is the maximum height
of the individual characters or elements (Fig. 11.23).

Line metrics

wid

asc

dsc
Base line

len = 13

Fig. 11.23 Line metrics

The metrics of each line are stored in a line descriptor of the
following form:

Line descriptors

TYPE
 Line = POINTER TO LineDesc;
 LineDesc = RECORD
 len, wid: INTEGER; (*length, width*)
 asc, dsc: INTEGER; (*ascender, descender*)
 eol: BOOLEAN; (*TRUE if line is terminated with EOL*)
 next: Line
 END;

The descriptors of the lines that are visible on the screen are linked
in a circular list (Fig. 11.24). Note that a line descriptor does not
contain the text of a line, but only its dimensions. The text is read
anew as needed.

188 11 Oberon0 – A Case Study

XXXXXXX

XXX

XXXXXX

Line descriptors Text frame

Dummy descriptor
to simplify list
handling

Fig. 11.24 List of line descriptors for a text frame

The reader should now be able to understand the source code of
TextFrames0. Keep pencil and paper ready, however, for some
sketches may help comprehension.

MODULE TextFrames0; Implementation of

TextFrames0
IMPORT OS, Viewers0, Texts0;

CONST
 EOL = 0DX; DEL = 7FX; (*end of line character; delete character*)
 scrollW = 12; (*width of scroll bar*)

TYPE
 Line = POINTER TO LineDesc; Line descriptor
 LineDesc = RECORD
 len, wid, asc, dsc: INTEGER; (*length, width, ascender, descender*)
 eol: BOOLEAN; (*TRUE if line is terminated with EOL*)
 next: Line
 END;
 Position* = RECORD (*position of a character c on the screen*) Screen position
 x-, y-, dx-: INTEGER; (*(x,y) = left point on base line; dx = width of c*)
 org-, pos-: LONGINT; (*origin of line containing c; text position of c*)
 L: Line (*line containing c*)
 END;
 Frame* = POINTER TO FrameDesc; Frame
 FrameDesc* = RECORD (Viewers0.FrameDesc)
 text*: Texts0.Text;
 org-: LONGINT; (*index of first character in the frame*)
 caret-: Position; (*caret; visible if caret.pos >= 0*)
 selBeg-, selEnd-: Position; (*selection; visible if selBeg.pos >= 0*)
 selTime: LONGINT; (*time stamp of selection*)
 lsp: INTEGER; (*space between lines*)
 margin: INTEGER; (*space between frame border and text*)
 lines: Line (*list of lines in frame (first line in dummy)*)
 END;
 SelectionMsg = RECORD (OS.Message) f: Frame END;

VAR
 cmdFrame-: Frame; (*frame containing the most recent command*)
 cmdPos-: LONGINT; (*text position after the most recent command*)

 11.3 A Text Editor 189

PROCEDURE GetMetric (at: Texts0.Attribute; ch: CHAR; Auxiliary
procedures

 VAR dx, x, y, asc, dsc: INTEGER; VAR pat: OS.Pattern);
 VAR w, h: INTEGER;
BEGIN
 IF at.elem = NIL THEN
 OS.GetCharMetric(at.fnt, ch, dx, x, y, w, h, pat);
 asc := at.fnt.maxY; dsc := - at.fnt.minY
 ELSE
 dx := at.elem.w; x := 0; y := 0; dsc := at.elem.dsc; asc := at.elem.h - dsc
 END
END GetMetric;

PROCEDURE MeasureLine (t: Texts0.Text; VAR L: Line); see ♣
 VAR ch: CHAR; dx, x, y, asc, dsc: INTEGER; pat: OS.Pattern;
BEGIN
 L.len := 0; L.wid := 0; L.asc := 0; L.dsc := 0; ch := " ";
 WHILE (ch # EOL) & (t.pos < t.len) DO
 t.Read(ch); INC(L.len);
 GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat);
 INC(L.wid, dx);
 IF asc > L.asc THEN L.asc := asc END;
 IF dsc > L.dsc THEN L.dsc := dsc END
 END;
 L.eol := ch = EOL
END MeasureLine;

PROCEDURE DrawLine (t: Texts0.Text; len, left, right, base: INTEGER); see
 VAR ch: CHAR; dx, x, y, w, h: INTEGER; pat: OS.Pattern;
BEGIN
 WHILE len > 0 DO t.Read(ch); DEC(len);
 IF t.attr.elem = NIL THEN
 OS.GetCharMetric(t.attr.fnt, ch, dx, x, y, w, h, pat);
 IF left + dx < right THEN OS.DrawPattern(pat, left + x, base + y) END
 ELSE dx := t.attr.elem.w;
 IF left + dx < right THEN t.attr.elem.Draw(left, base) END
 END;
 INC(left, dx)
 END
END DrawLine;
PROCEDURE (f: Frame) FlipCaret; Frame methods
BEGIN
 OS.DrawPattern(OS.Caret, f.caret.x, f.caret.y - 10)
END FlipCaret;
PROCEDURE (f: Frame) FlipSelection (a, b: Position);
 VAR x, y: INTEGER; L: Line;
BEGIN
 L := a.L; x := a.x; y := a.y - L.dsc;
 WHILE L # b.L DO
 OS.InvertBlock(x, y, f.x + f.w - x, L.asc + L.dsc);
 L := L.next; x := f.x + scrollW + f.margin; y := y - f.lsp - L.asc - L.dsc
 END;
 OS.InvertBlock(x, y, b.x - x, L.asc + L.dsc)
END FlipSelection;

PROCEDURE (f: Frame) RedrawFrom (top: INTEGER); see ➆

190 11 Oberon0 – A Case Study

 VAR t: Texts0.Text; L, L0: Line; y: INTEGER; org: LONGINT;
BEGIN
 (*----- find first line to be redrawn*)
 y := f.y + f.h - f.margin; org := f.org; L0 := f.lines; L := L0.next;
 WHILE (L # f.lines) & (y - L.asc - L.dsc >= top) DO
 DEC(y, L.asc + L.dsc + f.lsp); org := org + L.len; L0 := L; L := L.next
 END;
 IF y > top THEN top := y END;
 OS.FadeCursor; OS.EraseBlock(f.x, f.y, f.w, top - f.y);
 IF f.margin > 0 THEN (*draw scroll bar*)
 OS.InvertBlock(f.x + scrollW, f.y, 1, top - f.y)
 END;
 (*----- redraw lines and rebuild line descriptors; L0 is last valid line descriptor*)
 t := f.text;
 LOOP NEW(L);
 t.SetPos(org); MeasureLine(t, L);
 IF (L.len = 0) OR (y - L.asc - L.dsc < f.y + f.margin) THEN EXIT END;
 t.SetPos(org);
 DrawLine(t, L.len, f.x + scrollW + f.margin, f.x + f.w - f.margin, y - L.asc);
 org := org + L.len;
 DEC(y, L.asc + L.dsc + f.lsp); L0.next := L; L0 := L;
 IF t.pos >= t.len THEN EXIT END
 END;
 L0.next := f.lines
END RedrawFrom;

PROCEDURE (f: Frame) GetPointPos (x0, y0: INTEGER; VAR p: Position); see ➘
 VAR t: Texts0.Text; ch: CHAR; L: Line; dx, x, y, asc, dsc: INTEGER;
 pat: OS.Pattern;
BEGIN
 (*----- find line containing y0*)
 L := f.lines.next; p.y := f.y + f.h - f.margin; p.org := f.org;
 WHILE (L # f.lines) & (y0 < p.y - L.asc - L.dsc - f.lsp) & L.eol DO
 DEC(p.y, L.asc + L.dsc + f.lsp); p.org := p.org + L.len; L := L.next
 END;
 DEC(p.y, L.asc);
 (*----- find character containing x0*)
 p.x := f.x + scrollW + f.margin; p.L := L; p.pos := p.org;
 t := f.text; t.SetPos(p.pos);
 LOOP
 IF p.pos >= t.len THEN p.dx := 0; EXIT END;
 t.Read(ch); GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat);
 IF (ch = EOL) OR (p.x + dx > x0) THEN p.dx := dx; EXIT
 ELSE INC(p.pos); INC(p.x, dx)
 END;
 END
END GetPointPos;

PROCEDURE (f: Frame) GetCharPos (pos: LONGINT; VAR p: Position); see
 VAR t: Texts0.Text; ch: CHAR; L: Line; dx, x, y, asc, dsc: INTEGER;
 pat: OS.Pattern; i: LONGINT;
BEGIN
 (*----- find line containing pos*)
 L := f.lines.next; p.y := f.y + f.h - f.margin; p.org := f.org; p.pos := pos;
 WHILE (L # f.lines) & (pos >= p.org + L.len) & L.eol DO

 11.3 A Text Editor 191

 p.org := p.org + L.len; DEC(p.y, L.asc + L.dsc + f.lsp); L := L.next
 END;
 DEC(p.y, L.asc); p.L := L;
 (*----- find character at pos*)
 p.x := f.x + scrollW + f.margin; t := f.text; t.SetPos(p.org);
 FOR i := 1 TO p.pos - p.org DO
 t.Read(ch); GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat);
 INC(p.x, dx)
 END;
 IF t.pos >= t.len THEN p.dx := 0
 ELSE t.Read(ch); GetMetric(t.attr, ch, p.dx, x, y, asc, dsc, pat)
 END
END GetCharPos;

PROCEDURE (f: Frame) CallCommand; see ⑥
 VAR x, y, i: INTEGER; buttons: SET; p: Position; t: Texts0.Text;
 ch: CHAR; cmd: ARRAY 64 OF CHAR;
BEGIN
 REPEAT OS.GetMouse(buttons, x, y) UNTIL buttons = {};
 f.GetPointPos(x, y, p); t := f.text; t.SetPos(p.org); t.Read(ch);
 REPEAT
 WHILE (t.pos < t.len) & (ch # EOL) & ((CAP(ch) < "A") OR (CAP(ch) > "Z"))
DO
 t.Read(ch)
 END;
 i := 0;
 WHILE (CAP(ch) >= "A") & (CAP(ch) <= "Z") OR (ch >= "0") & (ch <= "9")
 OR (ch = ".") DO
 cmd[i] := ch; INC(i); t.Read(ch)
 END;
 cmd[i] := 0X;
 UNTIL (t.pos >= t.len) OR (ch = EOL) OR (t.pos > p.pos);
 cmdFrame := f; cmdPos := t.pos; OS.Call(cmd)
END CallCommand;

PROCEDURE (f: Frame) RemoveCaret*;
BEGIN
 IF f.caret.pos >= 0 THEN f.FlipCaret; f.caret.pos := -1 END
END RemoveCaret;

PROCEDURE (f: Frame) SetCaret* (pos: LONGINT);
 VAR p: Position;
BEGIN
 IF pos < 0 THEN pos := 0 ELSIF pos > f.text.len THEN pos := f.text.len END;
 f.SetFocus; f.GetCharPos(pos, p);
 IF p.x < f.x + f.w - f.margin THEN f.caret := p; f.FlipCaret END
END SetCaret;

PROCEDURE (f: Frame) RemoveSelection*;
BEGIN
 IF f.selBeg.pos >= 0 THEN
 f.FlipSelection(f.selBeg, f.selEnd); f.selBeg.pos := -1
 END
END RemoveSelection;

192 11 Oberon0 – A Case Study

PROCEDURE (f: Frame) SetSelection* (from, to: LONGINT);
BEGIN
 f.RemoveSelection;
 f.GetCharPos(from, f.selBeg); f.GetCharPos(to, f.selEnd);
 f.FlipSelection(f.selBeg, f.selEnd); f.selTime := OS.Time()
END SetSelection;

PROCEDURE (f: Frame) Defocus*;
BEGIN f.RemoveCaret; f.Defocus^
END Defocus;

PROCEDURE (f: Frame) Neutralize*;
BEGIN f.RemoveCaret; f.RemoveSelection
END Neutralize;

PROCEDURE (f: Frame) Draw*;
BEGIN f.RedrawFrom(f.y + f.h)
END Draw;

PROCEDURE (f: Frame) Modify* (dy: INTEGER);
 VAR y: INTEGER;
BEGIN
 y := f.y; f.Modify^ (dy);
 IF y > f.y THEN f.RedrawFrom(y) ELSE f.RedrawFrom(f.y) END
END Modify;

PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET); see
 VAR p: Position; b: SET; t: Texts0.Text; ch: CHAR; f1: Frame;
BEGIN
 f.HandleMouse^ (x, y, buttons);
 t := f.text;
 IF (x < f.x + scrollW) & (buttons # {}) THEN (*----- handle click in scroll bar*)
 REPEAT OS.GetMouse(b, x, y); buttons := buttons + b UNTIL b = {};
 f.Neutralize;
 IF OS.left IN buttons THEN f.GetPointPos(x, y, p); f.org := p.org
 ELSIF OS.right IN buttons THEN f.org := 0
 ELSIF OS.middle IN buttons THEN
 t.SetPos((f.y + f.h - y) * f.text.len DIV f.h);
 REPEAT t.Read(ch) UNTIL (ch = EOL) OR (t.pos >= t.len);
 f.org := t.pos
 END;
 f.RedrawFrom(f.y + f.h)
 ELSE (*----- handle click in text area*)
 f.GetPointPos(x, y, p);
 IF OS.left IN buttons THEN
 IF p.pos # f.caret.pos THEN f.SetCaret(p.pos) END
 ELSIF OS.middle IN buttons THEN
 t.SetPos(p.pos); t.Read(ch);
 IF t.attr.elem = NIL THEN f.CallCommand
 ELSE t.attr.elem.HandleMouse(f, x, y)
 END
 ELSIF OS.right IN buttons THEN
 f.RemoveSelection;
 f.selBeg := p; f.selEnd := p; f.selTime := OS.Time();
 LOOP

 11.3 A Text Editor 193

 OS.GetMouse(b, x, y); buttons := buttons + b;
 IF b = {} THEN EXIT END;
 OS.DrawCursor(x, y); f.GetPointPos(x, y, p);
 IF p.pos < f.selBeg.pos THEN p := f.selBeg END;
 IF p.pos < t.len THEN INC(p.pos); INC(p.x, p.dx) END;
 IF p.pos # f.selEnd.pos THEN
 IF p.pos > f.selEnd.pos THEN f.FlipSelection(f.selEnd, p)
 ELSE f.FlipSelection(p, f.selEnd)
 END;
 f.selEnd := p
 END
 END;
 (*----- check for right-left or right-middle click*)
 IF OS.left IN buttons THEN
 t.Delete(f.selBeg.pos, f.selEnd.pos)
 ELSIF (OS.middle IN buttons)
 & (Viewers0.focus # NIL) & (Viewers0.focus IS Frame) THEN
 f1 := Viewers0.focus(Frame);
 IF f1.caret.pos >= 0 THEN
 f1.text.Insert(f1.caret.pos, t, f.selBeg.pos, f.selEnd.pos)
 END
 END
 END
 END
END HandleMouse;

PROCEDURE (f: Frame) HandleKey* (ch: CHAR);
 VAR pos: LONGINT;
BEGIN
 pos := f.caret.pos;
 IF pos >= 0 THEN
 IF ch = DEL THEN
 IF pos > 0 THEN f.text.Delete(pos - 1, pos); f.SetCaret(pos - 1) END
 ELSE f.text.SetPos(pos); f.text.Write(ch); f.SetCaret(pos + 1)
 END
 END
END HandleKey;

PROCEDURE (f: Frame) Handle* (VAR m: OS.Message); see
 VAR t: Texts0.Text; ch: CHAR; VAR dx, x, y, asc, dsc: INTEGER;
 pat: OS.Pattern; p: Position;
BEGIN
 t := f.text;
 WITH
 m: Texts0.NotifyInsMsg DO
 IF m.t = t THEN
 IF m.beg < f.org THEN f.org := f.org + (m.end - m.beg)
 ELSE
 f.Neutralize; OS.FadeCursor;
 f.GetCharPos(m.beg, p);
 t.SetPos(m.beg); t.Read(ch);
 GetMetric(t.attr, ch, dx, x, y, asc, dsc, pat);
 IF (m.end = m.beg+1) & (ch # EOL) & (p.L # f.lines)
 & (asc+dsc <= p.L.asc+p.L.dsc) THEN
 IF p.x + dx <= f.x + f.w - f.margin THEN

194 11 Oberon0 – A Case Study

 OS.CopyBlock(p.x, p.y-p.L.dsc, f.x+f.w-f.margin-dx-p.x,
 p.L.asc+p.L.dsc, p.x+dx, p.y-p.L.dsc);
 OS.EraseBlock(p.x, p.y-p.L.dsc, dx, p.L.asc + p.L.dsc);
 IF t.attr.elem = NIL THEN
 OS.DrawPattern(pat, p.x + x, p.y + y)
 ELSE t.attr.elem.Draw(p.x, p.y)
 END
 ELSE
 OS.EraseBlock(p.x, p.y-p.L.dsc,
 f.x+f.w-p.x, p.L.asc+p.L.dsc)
 END;
 INC(p.L.len); INC(p.L.wid, dx)
 ELSE f.RedrawFrom(p.y + p.L.asc)
 END
 END
 END
 | m: Texts0.NotifyDelMsg DO
 IF m.t = t THEN
 IF m.end <= f.org THEN f.org := f.org - (m.end - m.beg)
 ELSE
 f.Neutralize;
 IF m.beg < f.org THEN f.org := m.beg; f.RedrawFrom(f.y + f.h)
 ELSE f.GetCharPos(m.beg, p); f.RedrawFrom(p.y + p.L.asc)
 END
 END
 END
 | m: Texts0.NotifyReplMsg DO
 IF (m.t = t) & (m.end > f.org) THEN
 f.Neutralize;
 IF m.beg < f.org THEN m.beg := f.org END;
 f.GetCharPos(m.beg, p); f.RedrawFrom(p.y + p.L.asc)
 END
 | m: SelectionMsg DO
 IF (f.selBeg.pos >= 0) & ((m.f = NIL)
 OR (m.f.selTime < f.selTime)) THEN
 m.f := f
 END
 ELSE
 END
END Handle;
PROCEDURE New* (t: Texts0.Text): Frame;
 VAR f: Frame; fnt: OS.Font;
BEGIN
 NEW(f); f.text := t;
 f.org := 0; f.caret.pos := -1; f.selBeg.pos := -1; f.lsp := 2; f.margin := 5;
 NEW(f.lines); f.lines.next := f.lines; fnt := OS.DefaultFont();
 f.lines.asc := fnt.maxY; f.lines.dsc := - fnt.minY; f.lines.len := 0;
 RETURN f
END New;

PROCEDURE NewMenu* (name, menu: ARRAY OF CHAR): Frame;
 VAR t: Texts0.Text; f: Frame; i: INTEGER;
BEGIN
 NEW(t); t.Clear;
 i := 0; WHILE name[i] # 0X DO t.Write(name[i]); INC(i) END;

 11.3 A Text Editor 195

 t.Write(" "); t.Write("|"); t.Write(" ");
 i := 0; WHILE menu[i] # 0X DO t.Write(menu[i]); INC(i) END;
 f := New(t); f.margin := 0; RETURN f
END NewMenu;

PROCEDURE (f: Frame) Copy* (): Viewers0.Frame;
 VAR f1: Frame;
BEGIN f1 := New(f.text); f1.margin := f.margin; RETURN f1
END Copy;

PROCEDURE GetSelection* (VAR f: Frame); see ❥
 VAR m: SelectionMsg;
BEGIN m.f := NIL; Viewers0.Broadcast(m); f := m.f
END GetSelection;

END TextFrames0.

MeasureLine reads a line from the current text position to the next
end of line character and returns a line descriptor as shown in Fig.
11.23. The metrics of each character are obtained via GetMetric.

DrawLine reads len characters starting at the current text
position and displays them on the screen. left is the left margin and
right the right margin of the frame; characters that extend beyond
the right margin, are not displayed (clipping). base is the height of
the base line relative to the bottom of the screen. Elements are
requested to draw themselves, since the frame does not know how
to draw them.

RedrawFrom redraws all lines starting at the vertical position
top and creates new line descriptors for them. During this process,
y always points to the top of the line to be drawn, and org is the
text position of the first character in this line. Before a line is
drawn, its metrics are computed with MeasureLine. The space
between two lines is always f.lsp in this implementation. If f is not a
menu frame (f.margin > 0), a scroll bar is also drawn.

GetPointPos computes the position p of the character on the
screen that contains the point (x0, y0) or that is closest to it (see Fig.
11.20).

GetCharPos computes the position p of the character at text
position pos (see Fig. 11.20).

If the user clicks in the text with the middle mouse button, the
word at the current position is interpreted as an Oberon command
and invoked via OS.Call.

If the mouse is in a text frame, a HandleMouse message is sent
to the frame. (x, y) is the mouse position and buttons is the set of
pressed mouse buttons. If a button is pressed in the scroll bar, the
text is scrolled; if a button is pressed in the text area, then, depen-

♥

❺

196 11 Oberon0 – A Case Study

ding on the button pressed, either the caret is set, a piece of text is
selected, or a command is executed. If an element is clicked on
with the middle mouse button, then the frame does not respond
itself, but the click is passed to the element for handling. Thus an
element that is unknown to the frame can react to the click in its
own way. When a selection is made, a unique time stamp is stored
with the selection.

Most messages to text frames are implemented as methods
because their receiver is known. For some messages, however,
(e.g., notify messages) the receiver is unknown to the sender. Thus
they must be broadcast to all possible receivers, whereby each
receiver must determine whether the message is intended for it.
Such messages are not implemented as methods, but as message
records, and Handle is the corresponding message handler.

Each time a text is modified, a notify message is broadcast to
all frames on the screen. Those frames that show the modified text
respond by making the modification visible on the screen
(compare Fig. 8.18).

NotifyInsMsg means that some characters were inserted in the
text. The message is handled by the frame f if the frame's own text
f.text is the modified text m.t. In our implementation only the
insertion of single characters was optimized. In all other cases the
entire frame contents after the inserted text are redrawn.

NotifyDelMsg means that something was deleted in the text.
NotifyReplMsg means that something was modified (e.g., the font)
without changing the length of the text. To keep the implemen-
tation simple NotifyDelMsg and NotifyReplMsg cause the complete
frame contents to be redrawn starting at the point of the modifi-
cation. In the Oberon System these operations were optimized to
redraw as little as possible of the frame contents. This is compli-
cated, however, and was omitted in Oberon0.

Finally, Handle interprets SelectionMsg (see below): If the
selection of f is newer than that of m.f, m.f is replaced by f.

GetSelection determines the latest selection in all visible text
frames. For this purpose, a message record of type SelectionMsg is
broadcast to all frames. Text frames respond by entering
themselves in this record if they contain a selection that is newer
than the latest selection so far. At the end of the broadcast the
message record contains the frame with the latest selection.

➦

From an object-oriented point of view, three things are particularly
interesting about TextFrames0:

What can be
learned?

 11.3 A Text Editor 197

(1) Genericity
 A text frame can be installed into a viewer and is handled

correctly by it although viewers do not know text frames.
Viewers work with abstract frames, of which a text frame is
just one possible variant.

(2) MVC concept
 A text frame is the view and controller component of a text

editor. Modifications to the text cause a notify message to be
sent to all frames. The implementation of the message inter-
preter Handle shows how text frames react to it. The broadcast
of a message to multiple receivers is the major application of
message records.

(3) Arbitrary elements in texts
 Text frames must display and manipulate elements. Since they

do not know what kinds of elements exist, they work with
variables of the abstract class Element that may contain any
kind of elements at run time.

11.3.4 Main Module of Text Editor (Edit0)

What we still need is a main module that creates a text frame and
installs it into a viewer, and that provides various other commands
to the user. We call this module Edit0; it provides the following
three commands:
Edit0.Open f
 Opens a viewer with a text frame and displays the text file f in

it.
Edit0.Store
 This command is invoked from the menu of a viewer v. The

contents of the text frame in v are stored in a file whose name
is the name of the viewer v. (The name of a viewer is
displayed at the beginning of the associated menu frame.)

Edit0.ChangeFont n
 Changes the font of the last text selection to the font with the

name n.

198 11 Oberon0 – A Case Study

To read the command arguments, Edit0 uses an object of type
IO.Scanner. The module IO is an input/output module that is
described in Appendix C.

MODULE Edit0; Implementation of

Edit0
IMPORT OS, IO, TextFrames0, Texts0, Viewers0;

PROCEDURE Open*;
 VAR s: IO.Scanner; t: Texts0.Text; menu, cont: TextFrames0.Frame;
 v: Viewers0.Viewer; f: OS.File; r: OS.Rider;
BEGIN
 s.SetToParameters; s.Read;
 IF s.class = IO.name THEN
 menu := TextFrames0.NewMenu(s.str,
 "Viewers0.Close Viewers0.Copy Edit0.Store");
 NEW(t);
 f := OS.OldFile(s.str);
 IF f = NIL THEN t.Clear
 ELSE OS.InitRider(r); r.Set(f, 0); t.Load(r)
 END;
 cont := TextFrames0.New(t);
 v := Viewers0.New(menu, cont)
 END
END Open;

PROCEDURE Store*;
 VAR v: Viewers0.Viewer; s: IO.Scanner; f: OS.File; r: OS.Rider;
BEGIN
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y);
 s.Set(v.menu(TextFrames0.Frame).text, 0);
 s.Read; (*read viewer name*)
 IF s.class = IO.name THEN
 v.Neutralize;
 f := OS.NewFile(s.str); OS.InitRider(r); r.Set(f, 0);
 v.cont(TextFrames0.Frame).text.Store(r);
 OS.Register(f)
 END
END Store;

PROCEDURE ChangeFont*;
 VAR s: IO.Scanner; f: TextFrames0.Frame;
BEGIN
 s.SetToParameters; s.Read;
 TextFrames0.GetSelection(f);
 IF (f # NIL) & (s.class = IO.name) THEN
 f.text.ChangeFont(f.selBeg.pos, f.selEnd.pos, OS.FontWithName(s.str))
 END
END ChangeFont;

END Edit0.

 11.4 A Graphics Editor 199

11.4 A Graphics Editor

In addition to text viewers, we would like to have viewers in
which graphics can be edited. It should be possible to draw, move,
select and delete various figures such as rectangles, lines and
circles.

A graphics editor is also an interactive program that is
structured according to the MVC concept. The model here is a
graphics of type Shapes0.Graphic, which handles a list of figures of
type Shapes0.Shape. The view and the controller are combined in
the class GraphicFrames0.Frame, which can be installed in a viewer
of type Viewers0.Viewer. The main module is Draw0 (Fig. 11.25).

Shapes0

Graphic

Shape

Frame

Viewer

GraphicFrames0

Viewers0

Draw0

Modules
with import relationships

Classes
with uses relationships

Model

View + Controller

Fig. 11.25 Modules and classes of the graphics editor

Whenever the model is changed by drawing, selecting or deleting
a figure, all its views must be updated. As with the text editor, this
is done via notify messages that are sent to all frames by the
model.
11.4.1 Figures (Shapes0)

The module Shapes0 handles drawings (class Graphic) as the data
model of the editor. Just as a text consists of characters and
elements, a drawing consists of figures. A drawing should be able
to contain any figures, including ones that are defined later. Thus

200 11 Oberon0 – A Case Study

Graphic cannot know the kinds of figures, but must work with an
abstract class Shape. The interface of Shapes0 follows:

DEFINITION Shapes0; interface of

Shapes0
IMPORT OS, Viewers0;

TYPE
 Shape = POINTER TO ShapeDesc; Shape
 ShapeDesc = RECORD (OS.ObjectDesc)
 selected: BOOLEAN; (*TRUE: shape is selected*)
 PROCEDURE (s: Shape) SetBox (x, y, w, h: INTEGER);
 PROCEDURE (s: Shape) GetBox (VAR x, y, w, h: INTEGER);
 PROCEDURE (s: Shape) Draw (f: Viewers0.Frame);
 PROCEDURE (s: Shape) Move (dx, dy: INTEGER);
 PROCEDURE (s: Shape) Neutralize;
 PROCEDURE (s: Shape) SetSelection (x, y, w, h: INTEGER);
 PROCEDURE (s: Shape) Copy (): Shape;
 END;

 Graphic = POINTER TO GraphicDesc; Graphic
 GraphicDesc = RECORD
 shapes: Shape;
 PROCEDURE (g: Graphic) Insert (s: Shape);
 PROCEDURE (g: Graphic) DeleteSelected;
 PROCEDURE (g: Graphic) MoveSelected (dx, dy: INTEGER);
 PROCEDURE (g: Graphic) Draw (f: Viewers0.Frame);
 PROCEDURE (g: Graphic) Neutralize;
 PROCEDURE (g: Graphic) SetSelection (x, y, w, h: INTEGER);
 PROCEDURE (g: Graphic) GetBox (VAR x, y, w, h: INTEGER);
 PROCEDURE (g: Graphic) Copy (): Graphic;
 PROCEDURE (g: Graphic) Load (VAR r: OS.Rider);
 PROCEDURE (g: Graphic) Store (VAR r: OS.Rider);
 END ;

 NotifyChangeMsg = RECORD (OS.Message) g: Graphic END ;

VAR curShape: ARRAY 32 OF CHAR; (*name of current shape type*)

PROCEDURE InitGraphic (VAR g: Graphic);
END Shapes0.

s.SetBox(x, y, w, h) Messages to

figures computes the position and size of figure s based on its
enclosing rectangle (x, y, w, h).

 11.4 A Graphics Editor 201

s.GetBox(x, y, w, h)
 returns the smallest rectangle (x, y, w, h) that encloses s.
s.Draw(f)
 draws s at its current position in frame f.
s.Move(dx, dy)
 moves s by the vector (dx, dy).
s.Neutralize
 removes any selection from s.
s.SetSelection(x, y, w, h)
 selects s if it is totally within the rectangle (x, y, w, h).
s1 := s.Copy()
 returns a copy of s.

g.Insert (s) Messages to

graphics inserts the figure s in the graphics g.
g.DeleteSelected
 deletes all selected figures in g.
g.MoveSelected (dx, dy)
 moves all selected figures in g by the vector (dx, dy).
g.Draw (f)
 requests all figures in g to draw themselves at their position in

frame f.
g.Neutralize
 deselects all figures in g.
g.SetSelection (x, y, w, h)
 selects all figures of the graphics g that are totally within the

rectangle (x, y, w, h).
g.GetBox (x, y, w, h)
 returns the smallest rectangle that encloses all figures in the

graphics g.
g1 := g.Copy()
 returns a copy of g.
g.Load (r)
 loads the graphics g from the rider r.
g.Store (r)
 stores the graphics g on the rider r.

MODULE Shapes0; Implementation of

Shapes0
IMPORT OS, Viewers0;

TYPE
 Shape* = POINTER TO ShapeDesc; Shape
 ShapeDesc* = RECORD (OS.ObjectDesc)
 selected*: BOOLEAN; (*TRUE: shape is selected*)

202 11 Oberon0 – A Case Study

 next: Shape
 END;

 Graphic* = POINTER TO GraphicDesc; Graphic
 GraphicDesc* = RECORD
 shapes*: Shape
 END;

 NotifyChangeMsg* = RECORD (OS.Message) g*: Graphic END;

VAR
 curShape*: ARRAY 32 OF CHAR; (*name of current shape type*)

PROCEDURE (s: Shape) SetBox* (x, y, w, h: INTEGER); Shape methods
BEGIN s.selected := FALSE;
END SetBox;

PROCEDURE (s: Shape) Draw* (f: Viewers0.Frame);
END Draw;

PROCEDURE (s: Shape) Move* (dx, dy: INTEGER);
END Move;

PROCEDURE (s: Shape) SetSelection* (x, y, w, h: INTEGER);
END SetSelection;

PROCEDURE (s: Shape) Neutralize*;
BEGIN s.selected := FALSE
END Neutralize;

PROCEDURE (s: Shape) GetBox* (VAR x, y, w, h: INTEGER);
END GetBox;

PROCEDURE (s: Shape) Copy* (): Shape;
END Copy;

PROCEDURE InitGraphic* (VAR g: Graphic); Graphic methods
BEGIN g.shapes := NIL
END InitGraphic;

PROCEDURE (g: Graphic) Insert* (s: Shape);
 VAR msg: NotifyChangeMsg;
BEGIN
 s.next := g.shapes; g.shapes := s; msg.g := g; Viewers0.Broadcast(msg)
END Insert;

PROCEDURE (g: Graphic) DeleteSelected*;
 VAR s, s0: Shape; msg: NotifyChangeMsg;
BEGIN
 s := g.shapes; s0 := NIL;
 WHILE s # NIL DO
 IF s.selected THEN
 IF s0 = NIL THEN g.shapes := s.next ELSE s0.next := s.next END
 ELSE s0 := s
 END;

 11.4 A Graphics Editor 203

 s := s.next
 END;
 msg.g := g; Viewers0.Broadcast(msg)
END DeleteSelected;

PROCEDURE (g: Graphic) MoveSelected* (dx, dy: INTEGER);
 VAR s: Shape; msg: NotifyChangeMsg;
BEGIN
 s := g.shapes;
 WHILE s # NIL DO
 IF s.selected THEN s.Move(dx, dy) END;
 s := s.next
 END;
 msg.g := g; Viewers0.Broadcast(msg)
END MoveSelected;

PROCEDURE (g: Graphic) Draw* (f: Viewers0.Frame);
 VAR s: Shape;
BEGIN
 s := g.shapes; WHILE s # NIL DO s.Draw(f); s := s.next END
END Draw;

PROCEDURE (g: Graphic) Neutralize*;
 VAR s: Shape; msg: NotifyChangeMsg; changed: BOOLEAN;
BEGIN
 s := g.shapes; changed := FALSE;
 WHILE s # NIL DO
 changed := changed OR s.selected; s.Neutralize; s := s.next
 END;
 IF changed THEN msg.g := g; Viewers0.Broadcast(msg) END
END Neutralize;

PROCEDURE (g: Graphic) SetSelection* (x, y, w, h: INTEGER);
 VAR s: Shape; msg: NotifyChangeMsg;
BEGIN
 s := g.shapes;
 WHILE s # NIL DO s.SetSelection(x, y, w, h); s := s.next END;
 msg.g := g; Viewers0.Broadcast(msg)
END SetSelection;

PROCEDURE (g: Graphic) GetBox* (VAR x, y, w, h: INTEGER);
 VAR x0, y0, w0, h0: INTEGER; s: Shape;
BEGIN
 x := 0; y := 0; w := 12; h := 12;
 s := g.shapes;
 IF s # NIL THEN s.GetBox(x, y, w, h); s := s.next END;
 WHILE s # NIL DO
 s.GetBox(x0, y0, w0, h0);
 IF x0 < x THEN INC(w, x - x0); x := x0 END;
 IF y0 < y THEN INC(h, y - y0); y := y0 END;
 IF x0 + w0 > x + w THEN w := x0 + w0 - x END;
 IF y0 + h0 > y + h THEN h := y0 + h0 - y END;
 s := s.next
 END;
END GetBox;

204 11 Oberon0 – A Case Study

PROCEDURE (g: Graphic) Copy* (): Graphic;
 VAR s, a, b: Shape; g1: Graphic;
BEGIN
 NEW(g1); g1.shapes := NIL;
 s := g.shapes;
 WHILE s # NIL DO
 a := s.Copy(); a.next := NIL;
 IF g1.shapes = NIL THEN g1.shapes := a ELSE b.next := a END;
 b := a; s := s.next
 END;
 RETURN g1
END Copy;

PROCEDURE (g: Graphic) Load* (VAR r: OS.Rider);
 VAR s, last: Shape; x: OS.Object;
BEGIN
 last := NIL;
 REPEAT
 r.ReadObj(x);
 IF x = NIL THEN s := NIL ELSE s := x(Shape) END;
 IF last = NIL THEN g.shapes := s ELSE last.next := s END;
 last := s
 UNTIL x = NIL (*terminated by a NIL shape*)
END Load;

PROCEDURE (g: Graphic) Store* (VAR r: OS.Rider);
 VAR s: Shape;
BEGIN
 s := g.shapes;
 WHILE s # NIL DO r.WriteObj(s); s := s.next END;
 r.WriteObj(NIL)
END Store;

BEGIN
 curShape := ""
END Shapes0.

11.4.2 Editing Figures (GraphicFrames0)

A graphics frame displays figures on the screen and reacts to
mouse clicks by creating, moving, selecting or deleting figures. To
keep the example small, we do not support resizing of figures.

The mouse buttons have the following meaning: If the left
button is pressed while the mouse is dragged, a new figure is
drawn in the enclosing rectangle. If the mouse is dragged with the
middle button pressed, the entire drawing in the frame is moved;
if the middle and the left button are pressed simultaneously
(interclick), only the selected figures are moved. The right button
permits selection. When the mouse is moved with the right button

Meaning of mouse
buttons

 11.4 A Graphics Editor 205

pressed, all figures enclosed in the selection rectangle are selected
(i.e., filled with a color); if the left button is interclicked, the
selected figures are deleted.

To allow moving the entire drawing on the screen without
changing the coordinates of all figures, a graphics frame has a
coordinate system with the origin (orgX, orgY) relative to the lower
left corner of the frame (Fig. 11.26). The coordinates of the figures
are relative to this origin, so that moving the origin moves the
entire drawing.

Coordinate
system

Figure

orgX
orgY

x

y

Fig. 11.26 Graphics frame with origin (orgX, orgY)

Graphics frames are implemented in module GraphicFrame0, which
has the following interface:

DEFINITION GraphicFrames0; Interface of

GraphicFrames0
IMPORT Viewers0, OS, Shapes0;

TYPE
 Frame = POINTER TO FrameDesc;
 FrameDesc = RECORD (Viewers0.FrameDesc)
 orgX, orgY: INTEGER;
 graphic: Shapes0.Graphic;
 PROCEDURE (f: Frame) Draw;
 PROCEDURE (f: Frame) Neutralize;
 PROCEDURE (f: Frame) Modify (y: INTEGER);
 PROCEDURE (f: Frame) Copy (): Viewers0.Frame;
 PROCEDURE (f: Frame) HandleMouse (x, y: INTEGER; buttons: SET);
 PROCEDURE (f: Frame) Handle (VAR m: OS.Message);
 PROCEDURE (f: Frame) InvertBlock (x, y, w, h: INTEGER);
 END ;

PROCEDURE New (graphic: Shapes0.Graphic): Frame;
END GraphicFrames0.

Most of the interface of Frame is inherited from the base class
Viewers0.Frame. Only one method is new:

f.InvertBlock(x, y, w, h)
 inverts the block (x, y, w, h) in frame f. x and y are relative to

the origin (orgX, orgY). If the block extends beyond the border

206 11 Oberon0 – A Case Study

of the frame, it is clipped. InvertBlock can also be used to draw
horizontal and vertical lines (w=1 or h=1).

MODULE GraphicFrames0; Implementation of
GraphicFrames0

IMPORT OS, Viewers0, Shapes0;

TYPE
 Frame* = POINTER TO FrameDesc; Frame
 FrameDesc* = RECORD (Viewers0.FrameDesc)
 orgX*, orgY*: INTEGER; (*origin*)
 graphic*: Shapes0.Graphic (*shapes in this frame*)
 END;

PROCEDURE (f: Frame) InvertBlock* (x, y, w, h: INTEGER); see ♣
BEGIN
 INC(x, f.x + f.orgX); INC(y, f.y + f.orgY);
 IF x < f.x THEN DEC(w, f.x - x); x := f.x END;
 IF x + w > f.x + f.w THEN w := f.x + f.w - x END;
 IF y < f.y THEN DEC(h, f.y - y); y := f.y END;
 IF y + h > f.y + f.h THEN h := f.y + f.h - y END;
 IF (w > 0) & (h > 0) THEN OS.InvertBlock(x, y, w, h) END
END InvertBlock;

PROCEDURE (f: Frame) Draw*; see
BEGIN
 OS.FadeCursor;
 OS.EraseBlock(f.x, f.y, f.w, f.h);
 f.graphic.Draw(f)
END Draw;

PROCEDURE (f: Frame) Modify* (y: INTEGER);
BEGIN f.Modify^ (y); f.Draw
END Modify;

PROCEDURE (f: Frame) HandleMouse* (x, y: INTEGER; buttons: SET); see ➆
 VAR w, h, dx, dy: INTEGER; obj: OS.Object; s: Shapes0.Shape;
 changed: BOOLEAN;

 PROCEDURE Track(VAR x, y, w, h, dx, dy: INTEGER; VAR buttons: SET);
 VAR b: SET; x1, y1: INTEGER;
 BEGIN
 REPEAT
 OS.GetMouse(b, x1, y1); buttons := buttons + b;
 OS.DrawCursor(x1, y1)
 UNTIL b = {};
 dx := x1 - x; dy := y1 - y; w := ABS(dx); h := ABS(dy);
 IF x1 < x THEN x := x1 END;
 IF y1 < y THEN y := y1 END;
 DEC(x, f.x + f.orgX); DEC(y, f.y + f.orgY)
 END Track;
BEGIN changed := FALSE;
 IF OS.left IN buttons THEN
 Track(x, y, w, h, dx, dy, buttons);
 (*----- generate new shape with type curShape*)
 OS.NameToObj(Shapes0.curShape, obj);

 11.4 A Graphics Editor 207

 IF obj # NIL THEN
 s := obj(Shapes0.Shape); s.SetBox(x, y, w, h); f.graphic.Insert(s)
 END
 ELSIF OS.middle IN buttons THEN
 Track(x, y, w, h, dx, dy, buttons);
 IF OS.left IN buttons THEN (*----- MM+ML click: move selected figures*)
 f.graphic.MoveSelected(dx, dy)
 ELSE (*----- MM click: move origin*)
 INC(f.orgX, dx); INC(f.orgY, dy); f.Draw
 END
 ELSIF OS.right IN buttons THEN
 f.Neutralize; Track(x, y, w, h, dx, dy, buttons);
 f.graphic.SetSelection(x, y, w, h);
 IF OS.left IN buttons THEN (*----- MR+ML click: delete selected shapes*)
 f.graphic.DeleteSelected
 END
 END
END HandleMouse;

PROCEDURE (f: Frame) Handle* (VAR m: OS.Message); see ➘
BEGIN
 WITH m: Shapes0.NotifyChangeMsg DO
 IF f.graphic = m.g THEN f.Draw END
 ELSE
 END
END Handle;

PROCEDURE (f: Frame) Neutralize*;
BEGIN
 f.graphic.Neutralize
END Neutralize;

PROCEDURE New* (graphic: Shapes0.Graphic): Frame;
 VAR f: Frame;
BEGIN
 NEW(f); f.graphic := graphic;
 f.orgX := 0; f.orgY := 0;
 RETURN f
END New;

PROCEDURE (f: Frame) Copy* (): Viewers0.Frame;
 VAR f1: Frame;
BEGIN
 f1 := New(f.graphic); f1.orgX := f.orgX; f1.orgY := f.orgY; RETURN f1
END Copy;

END GraphicFrames0.

Graphics frames normally offer a set of drawing primitives. These
are methods that allow drawing dots, rectangles, etc. into the
frame. Their arguments are in coordinates relative to the origin
(orgX, orgY) and are transformed to screen coordinates. In this

208 11 Oberon0 – A Case Study

example there is only one drawing primitive, InvertBlock, which
also handles clipping.

Draw redraws the entire frame contents. To keep the imple-
mentation simple, this occurs with each modification in the frame.
In practice this would not be acceptable; provisions would have to
be made to assure that only those parts of the frame are redrawn
that actually changed.

HandleMouse interprets mouse clicks as described above. Track
computes the start and end points of a mouse movement while a
button is pressed. The coordinates of these points are transformed
to coordinates relative to the origin of the frame (orgX, orgY).

It is interesting to see how figures are entered by the user.
When the user moves the mouse while pressing the left button, the
frame must react by creating a new figure and displaying it. But
which figure is to be drawn? A rectangle? A circle? The frame is
not aware of rectangles or circles, but only of abstract figures. It
must revert to a trick: It creates a figure of the type whose name is
currently stored in the global variable Shapes0.curShape. The
procedure OS.NameToObj is used to create from a type name an
object of that type. Any new module that wants its own figures to
be drawn simply installs the name of the respective figure class in
curShape (see Section 11.4.4). This makes the editor create figures
that it does not know at all.

In systems that do not offer this possibility, curShape can be
implemented as a variable of type Shape, which at any time
contains an object of the current figure type. When the editor has
to draw a figure, it copies this object and draws the copy.

Handle is the message handler for graphics frames. It handles
NotifyChange messages that are sent to all frames when a figure is
modified.

11.4.3 Main Module of Graphics Editor (Draw0)

Draw0 provides two commands:

Draw0.Open f
 Opens a viewer with a graphics frame and displays in it the

contents of file f.
Draw0.Store

 11.4 A Graphics Editor 209

 This command is invoked from the menu of a viewer v. The
contents of the graphics frame in v are stored in a file whose
name is the name of the viewer v.

MODULE Draw0; Implementation of
Draw0

IMPORT OS, IO, Texts0, TextFrames0, Shapes0, GraphicFrames0, Viewers0;

PROCEDURE Open*;
 VAR s: IO.Scanner; v: Viewers0.Viewer;
 menu: TextFrames0.Frame; cont: GraphicFrames0.Frame;
 file: OS.File; r: OS.Rider; g: Shapes0.Graphic;
BEGIN
 s.SetToParameters; s.Read;
 IF s.class = IO.name THEN
 menu := TextFrames0.NewMenu
 (s.str, "Viewers0.Close Viewers0.Copy Draw0.Store");
 NEW(g); Shapes0.InitGraphic(g); file := OS.OldFile(s.str);
 IF file # NIL THEN OS.InitRider(r); r.Set(file, 0); g.Load(r) END;
 cont := GraphicFrames0.New(g);
 v := Viewers0.New(menu, cont)
 END
END Open;

PROCEDURE Store*;
 VAR v: Viewers0.Viewer; s: IO.Scanner; file: OS.File; r: OS.Rider;
BEGIN
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y);
 s.Set(v.menu(TextFrames0.Frame).text, 0); s.Read;
 IF s.class = IO.name THEN
 file := OS.NewFile(s.str); OS.InitRider(r); r.Set(file, 0);
 v.cont(GraphicFrames0.Frame).graphic.Store(r);
 OS.Register(file)
 END
END Store;

END Draw0.

11.4.4 Rectangles as Special Figures
(Rectangles0)

The graphics editor developed so far can only work with abstract
figures. It can be extended, however, by deriving concrete figure
classes for rectangles, circles and lines from the abstract figure
class Shape. Each concrete figure class is implemented in a separate
module that can be added to the existing editor (Fig. 11.27).

210 11 Oberon0 – A Case Study

GraphicFrames0

Shapes0

Rectangles0 Circles0 Lines0

Fig. 11.27 Module hierarchy with figure extensions

The Oberon System even permits adding modules like Rectangles0
at run time while the editor is already loaded. This allows a user to
dynamically adapt the functionality of the editor as needed.

As an example of a figure extension, we look at the module
Rectangles0, in which rectangles are implemented. Its interface is:

DEFINITION Rectangles0; Interface of

Rectangles0
IMPORT Shapes0;
TYPE
 Rectangle = POINTER TO RectDesc;
 RectDesc = RECORD (Shapes0.ShapeDesc) END;
PROCEDURE Set;
END Rectangles0.

The class Rectangle has the same interface as Shapes0.Shape. In the
implementation of Rectangle, however, the abstract methods are
overridden. The command Rectangles0.Set makes the editor draw a
rectangle when it tries to create a new figure.

MODULE Rectangles0; Implementation of

Rectangles0
IMPORT OS, Viewers0, Shapes0, GraphicFrames0;

TYPE
 Rectangle* = POINTER TO RectDesc; Rectangle
 RectDesc* = RECORD (Shapes0.ShapeDesc)
 x, y, w, h: INTEGER
 END;

PROCEDURE (r: Rectangle) SetBox* (x, y, w, h: INTEGER);
BEGIN
 r.SetBox^ (x, y, w, h);
 r.x := x; r.y := y; r.w := w; r.h := h
END SetBox;

PROCEDURE (r: Rectangle) Draw* (f: Viewers0.Frame);
BEGIN
 WITH f: GraphicFrames0.Frame DO
 IF r.selected THEN
 f.InvertBlock(r.x, r.y, r.w, r.h)
 ELSE
 f.InvertBlock(r.x, r.y, r.w, 1);
 f.InvertBlock(r.x, r.y + r.h - 1, r.w, 1);
 f.InvertBlock(r.x, r.y + 1, 1, r.h - 2);

 11.4 A Graphics Editor 211

 f.InvertBlock(r.x + r.w - 1, r.y + 1, 1, r.h - 2)
 END
 END
END Draw;

PROCEDURE (r: Rectangle) Move* (dx, dy: INTEGER);
BEGIN
 INC(r.x, dx); INC(r.y, dy)
END Move;
PROCEDURE (r: Rectangle) SetSelection* (x, y, w, h: INTEGER);
BEGIN
 r.selected := (r.x >= x) & (r.x+r.w <= x+w) & (r.y >= y) & (r.y+r.h <= y+h)
END SetSelection;

PROCEDURE (r: Rectangle) GetBox* (VAR x, y, w, h: INTEGER);
BEGIN x := r.x; y := r.y; w := r.w; h := r.h
END GetBox;

PROCEDURE (r: Rectangle) Copy* (): Shapes0.Shape;
 VAR r1: Rectangle;
BEGIN
 NEW(r1);
 r1.selected := r.selected; r1.x := r.x; r1.y := r.y; r1.w := r.w; r1.h := r.h;
 RETURN r1
END Copy;

PROCEDURE (r: Rectangle) Load* (VAR R: OS.Rider);
BEGIN R.ReadInt(r.x); R.ReadInt(r.y); R.ReadInt(r.w); R.ReadInt(r.h)
END Load;

PROCEDURE (r: Rectangle) Store* (VAR R: OS.Rider);
BEGIN R.WriteInt(r.x); R.WriteInt(r.y); R.WriteInt(r.w); R.WriteInt(r.h)
END Store;

PROCEDURE Set*;
BEGIN Shapes0.curShape := "Rectangles0.RectDesc"
END Set;

END Rectangles0.

The command Rectangles0.Set stores the name of the rectangle type
in the global variable Shapes0.curShape. The editor uses this type
name in the creation of a new figure. After the invocation of
Rectangles0.Set, the editor thus draws rectangles.

11.5 Embedding Graphics in Texts

The next step is to integrate pictures in texts and let them flow
with the text during editing. Fortunately we have provided texts

212 11 Oberon0 – A Case Study

with the ability to handle arbitrary elements. Pictures are thus a
special kind of element—graphic elements.

How must a graphic element behave? It is installed with the
command GraphicElems0.Insert, which creates an empty graphic
element (displayed as a blank rectangle) and inserts it in the text at
the caret position. When the element is clicked with the middle
mouse button, a graphic viewer opens that displays the drawing
contained in the element. This viewer permits editing. The
drawing can be written back to the element by clicking on the
command GraphicElems0.Update in the menu of the graphic viewer
(Fig. 11.28).

Graphic elements

xxxxxxxxxxxxx

xxx xxxx
xxxxxxxxxxx
GraphicElems0.Update

Text frame with an element

Is opened in response to a
middle click at the element.

Graphic frame.

Fig. 11.28 Behavior of graphic elements

A graphic element is a subclass of Texts0.Element. It contains a list
of figures that can be displayed in a graphics frame.

How is a graphic element displayed in the midst of a text
frame? At the position where the element is to appear in the text, a
(temporary) graphics frame is placed with the dimensions of the
element. In this frame the element, i.e., its figures, can be
displayed. The frame must only be there while the contents of the
element are drawn; otherwise it can be removed. Thus one
graphics frame suffices for all graphic elements.

Temporary
graphics frame

We implement graphic elements in the module GraphicElems0
with the following interface:

DEFINITION GraphicElems0; Interface of

GraphicElems0
IMPORT Texts0;

TYPE
 Element = POINTER TO ElemDesc;
 ElemDesc = RECORD (Texts0.ElemDesc) END;

 11.5 Embedding Graphics in Texts 213

PROCEDURE Insert;
PROCEDURE Update;

END GraphicElems0.

The class GraphicElems0.Element has the same interface as its
abstract base class Texts0.Element. The inherited methods are
overridden to provide the required behavior for graphic elements.

MODULE GraphicElems0; Implementation of

GraphicElems0
IMPORT OS, Texts0, Shapes0, GraphicFrames0, TextFrames0, Viewers0;

TYPE
 Element* = POINTER TO ElemDesc; Element
 ElemDesc* = RECORD (Texts0.ElemDesc)
 orgX, orgY: INTEGER;
 graphic: Shapes0.Graphic;
 END;
 UpdateFrame = POINTER TO UpdateFrameDesc;
 UpdateFrameDesc = RECORD (GraphicFrames0.FrameDesc)
 text: Texts0.Text;
 e: Element
 END;

VAR f: GraphicFrames0.Frame;
 (*reused within a text frame whenever a graphic element has to be redrawn*)

PROCEDURE (e: Element) Copy* (): Texts0.Element;
 VAR res: Element;
BEGIN NEW(res); res^ := e^; res.graphic := e.graphic.Copy(); RETURN res
END Copy;

PROCEDURE (e: Element) Draw* (x, y: INTEGER); see ♣
BEGIN
 f.x := x; f.y := y; f.w := e.w; f.h := e.h;
 f.orgX := e.orgX; f.orgY := e.orgY; f.graphic := e.graphic;
 f.Draw
END Draw;

PROCEDURE (e: Element) HandleMouse* (f: OS.Object; x, y: INTEGER); see
 VAR v: Viewers0.Viewer; menu: TextFrames0.Frame;
 cont: UpdateFrame; buttons: SET;
BEGIN
 REPEAT OS.GetMouse(buttons, x, y) UNTIL buttons = {};
 menu := TextFrames0.NewMenu
 ("", "Viewers0.Close Viewers0.Copy GraphicElems0.Update");
 NEW(cont);
 cont.graphic := e.graphic;
 cont.orgX := e.orgX + 10; cont.orgY := e.orgY + 10;
 cont.text := f(TextFrames0.Frame).text; cont.e := e;
 v := Viewers0.New(menu, cont)
END HandleMouse;

PROCEDURE (e: Element) Load* (VAR r: OS.Rider);

214 11 Oberon0 – A Case Study

BEGIN
 e.Load^ (r);
 r.ReadInt(e.orgX); r.ReadInt(e.orgY);
 NEW(e.graphic); Shapes0.InitGraphic(e.graphic); e.graphic.Load(r)
END Load;

PROCEDURE (e: Element) Store* (VAR r: OS.Rider);
BEGIN e.Store^ (r); r.WriteInt(e.orgX); r.WriteInt(e.orgY); e.graphic.Store(r)
END Store;

PROCEDURE Insert*;
 VAR e: Element; f: TextFrames0.Frame;
BEGIN
 IF Viewers0.focus # NIL THEN
 f := Viewers0.focus(TextFrames0.Frame);
 IF (f # NIL) & (f.caret.pos >= 0) THEN
 NEW(e); e.w := 12; e.h := 12; e.dsc := 0;
 NEW(e.graphic); Shapes0.InitGraphic(e.graphic);
 e.orgX := 0; e.orgY := 0;
 f.text.SetPos(f.caret.pos); f.text.WriteElem(e)
 END
 END
END Insert;

PROCEDURE Update*; see ➆
 VAR v: Viewers0.Viewer; f: UpdateFrame; e: Element;
 m: Texts0.NotifyReplMsg; x, y: INTEGER; pos: LONGINT;
BEGIN
 v := Viewers0.ViewerAt(TextFrames0.cmdFrame.y);
 f := v.cont(UpdateFrame);
 e := f.e; pos := f.text.ElemPos(e);
 IF pos < f.text.len THEN
 f.graphic.GetBox(x, y, e.w, e.h);
 e.graphic := f.graphic; e.orgX := - x ; e.orgY := - y;
 m.t := f.text; m.beg := pos; m.end := pos + 1; Viewers0.Broadcast(m)
 END
END Update;

PROCEDURE Init;
 VAR g: Shapes0.Graphic;
BEGIN NEW(g); Shapes0.InitGraphic(g); f := GraphicFrames0.New(g)
END Init;

BEGIN Init
END GraphicElems0.

Draw draws the graphic element at screen position (x, y). It creates
a (temporary) graphics frame of the appropriate size at this
position, installs the figures in it, and sends it a Draw message.

 HandleMouse is invoked when a graphic element is clicked
with the middle mouse button. The method opens a viewer with a
frame of type UdateFrame and displays the figures of the element in
it. The update frame remembers which element is currently being

 11.5 Embedding Graphics in Texts 215

edited (f.e) and to which text it belongs (f.text). This information is
necessary to restore the edited figures in the element via the Update
command.

In an UpdateFrame f, the figures of the element f.e contained in
the text f.text are edited. Update writes the edited figures back to f.e.
The size of f.e is determined as the smallest rectangle that encloses
all the figures.

This example shows how in Oberon two initially different pro-
grams can be integrated. The following properties are important
for this:

What can be
learned?

(1) GraphicElems0 is a separate program. Nevertheless, it has

access to the text in the text editor, which is necessary in order
to be able to insert elements. It also has access to the figures in
a graphics frame, which is necessary in order to display the
figures of an element in such a frame. Thus Oberon programs
are not closed monolithic systems, but are open in the sense
that exported data structures are visible to other programs
(not only to other modules of the same program).

(2) Graphic elements are compatible with abstract elements and

can thus be handled by the text editor. The editor commu-
nicates with them via messages rather than via procedure
calls. Messages represent a looser coupling of program parts
than procedure calls, which require that the caller knows the
callee.

(3) Graphic elements wrap up a set of figures to make them

compatible with elements (see Section 8.4)

12 Costs and Benefits
of OOP

This book has attempted to show what kind of situations classes
are useful for and when they should not be used. Let us
summarize now: Why should we program in an object-oriented
instead of a procedural way? What are the costs and the benefits of
object-oriented programming? Are the benefits greater than the
costs?

If a programmer is aware of the strengths and the limits of
object-oriented programming and uses classes consciously, then
the benefits by far outweigh the costs. However, costs can quickly
rise if classes are used thoughtlessly, particularly in situations
where they do not simplify matters, but rather add complexity.

12.1 Benefits of OOP

We expect a programming technique to help us in solving
problems. The greatest problem in programming is complexity.
The larger and more complex a program is, the more important it
becomes to decompose it into small, comprehensible parts. To
master complexity, we must abstract away from details. Classes
are a suitable tool for that:

Mastering
complexity

• Classes permit the construction of handy components with

simple interfaces that abstract away from implementation
details.

• Data and operations form an entity and are not spread over a
program, as with procedural techniques.

• The locality of code and data improves the readability and
maintainability of software.

216 12 Costs and Benefits of OOP

• Information hiding protects against unauthorized access to
critical data.

Object-oriented programming makes it possible to build extensible
systems. This is one of its great advantages and distinguishes OOP
from conventional programming techniques. Extensibility means
that an existing system can be made to work with new components
without having to be modified. Components can be even added at
run time.

Extensibility

Type extension and the resulting polymorphism of variables
prove useful primarily in the following situations (see Chapter 7):

• Handling of heterogeneous data structures: Programs can

work with variants of objects without distinguishing them.
New variants can be added at any time.

• Changing behavior at run time: One object can be replaced by
another at run time. This can change the behavior of an algo-
rithm that uses this object.

• Implementation of generic components: Algorithms can be
generalized so that they no longer work with just one kind of
object.

• Completion of semifinished products: Components need not
be customized for a certain application. They can be stored as
semifinished products in a library and extended as needed to
yield various finished products.

• Extension of frameworks: Application-independendent parts
of a domain can be implemented as a framework and later
extended by adding application-specific parts.

In practice, software reuse often fails because existing components
do not match new requirements. Object-oriented programming
helps by making it possible to adapt components to new needs
without invalidating their existing clients. This lets us enjoy all the
advantages of reuse:

Reuse

• We save development time that can be invested in other tasks

more profitably.
• Reused components usually contain fewer errors than newly

developed ones because they have already been tested
repeatedly.

• When a component is used by several clients, improvements
in its code take effect in multiple programs simultaneously.

 12.1 Benefits of OOP 217

• If programs rely on standard components, their structure and
user interface become more uniform, which makes them more
understandable and easier to use.

12.2 Costs of OOP

Object-oriented programming requires learning four things: Learning effort

(1) The basic concepts such as classes, inheritance and dynamic

binding must be understood. For programmers that are
already familiar with modules and abstract data types, this is
but a small step. For others who have never used data
encapsulation, this can mean a paradigm shift and require
significant learning time.

(2) Reuse requires programmers to become familiar with large

class libraries. This can be harder than learning a new
programming language. A class library is actually a virtual
language that can include hundreds of types and thousands of
operations. In Smalltalk, for example, a significant part of its
class library must be learned before practical programming
can begin. This takes time.

(3) More difficult than using a class library is designing one. Class

design is language design and requires experience. It is an
iterative process where learning occurs through errors.

(4) It is just as difficult to learn when to use classes (see Chapter

7) and when to keep hands off. Only with the acquisition of
this critical skill has one mastered object-oriented
programming.

As we can see, the learning effort for the basic concepts is small,
but that for the class library and for the proper use of classes can
be substantial.

Since implementation details of classes are usually unknown, the
programmer must rely on documentation and naming when trying
to understand a class. The time gained in not having to write a
class must in part be reinvested (especially in the beginning) in
order to understand the class.

Comprehension
problems

218 12 Costs and Benefits of OOP

The documentation of classes is more difficult than that of
procedures or modules. Since every method can be overridden, the
documentation must not only say what the method does, but also
in which context it is invoked: overridden methods are usually not
invoked by the client, but by a framework. Thus the programmer
must know what conditions hold when the method is called. For
abstract methods, which are empty, the documentation must even
say what the overriding method is supposed to do.

In deep class hierarchies, the fields and methods of a class are
usually inherited from various hierarchy levels. It is not always
easy to see which fields and methods actually belong to a class.
Tools such as a class browser are necessary to provide this
information. If concrete classes are extended, then each method
usually does little before passing the message to the base class. The
implementation of an operation is thus distributed among several
classes, and we have to leaf through the code to understand how it
works.

Methods are usually shorter than procedures since they
perform only a single operation on data. But the number of
methods is accordingly higher. Short methods have the advantage
of being easy to understand, but the drawback that the code to
handle a message is sometimes spread out over many small
methods.

Data abstraction limits the flexibility of clients. Clients can only
carry out those operations that a class provides. They no longer
have unlimited access to the data. This is usually intended. The
motivation is the same as for using a high-level programming
language, namely to prevent certain unclean program structures.

Flexibility

Data abstraction should not be overdone. The more data are
hidden, the more difficult it is to extend a class. The point is not
that clients should not be allowed to know data, but that they
should not be required to know them in order to work with a class.

It is often claimed that object-oriented programming is inefficient.
What is true about that? We must distinguish between run-time
inefficiency, storage inefficiency, and inefficiency coming from
unnecessary generality:

Efficiency

(1) Run-time inefficiency. In languages like Smalltalk, messages are

interpreted at run time by searching them in one or more
tables and selecting the appropriate method. Of course, this is

 12.2 Costs of OOP 219

slow. Even with the best optimizing techniques, Smalltalk
programs prove to be ten times slower than optimized C
programs [Cha92].

In hybrid languages like Oberon-2, Object-Pascal and
C++, sending a message only amounts to invoking a pro-
cedure variable referenced by a pointer. On certain machines,
messages are only 10 percent slower than procedure calls.
Since messages are rare compared to other operations in a
program, their influence on run time is negligible.

However, there is another factor that influences run time:
data abstraction. It denies direct access to fields of a class and
requires that every operation on the data be done via
methods. This costs a procedure invocation for every data
access. However, when data abstraction is used only where it
is necesary (i.e., not for its own sake), then the slowdown is
moderate.

(2) Storage inefficiency. Dynamic binding and run-time type

checking require information about the type of an object at run
time. This information is kept in a type descriptor of which
there is one per class. Each object has an invisible pointer to
the type descriptor of its class. The additional storage
requirement in object-oriented programs is thus one pointer
per object and one type descriptor per class.

(3) Unnecessary generality. Inefficiency can also mean that a pro-

gram has unnecessary features. A library class often has more
methods than are needed. Since extraneous methods cannot be
removed, they have to be carried along as dead weight. This
does not affect run time, but it does inflate code size.

One alternative would be to provide a base class with
only a minimum of methods, and then to implement various
extensions of it that offer increasing functionality.

Another approach would be to let the linker remove
superfluous methods. Such smart linkers are available for
various languages and operating systems.

Oberon has another way of dealing with unnecessary
generality: Program parts can be added at run time. Thus it is
not necessary to load the entire program at once, but only
those parts have to be loaded that are actually needed. In
practice this saves more code than the removal of methods
can.

220 12 Costs and Benefits of OOP

Thus it cannot be said that object-oriented programming is
generally inefficient. If classes are used only where they make
sense, the loss of efficiency is negligible both in run time and in
memory.

12.3 The Future of OOP

Will object-oriented programming survive, or is it only a fad that
will die off again?

Classes have found their way into most modern programming
languages. This already indicates that they are going to stay.
Classes will soon belong to the standard repertoire of every
programmer, just as every programmer today can handle dynamic
data structures and recursion, which were also new twenty years
ago. But classes are just one new construct among many others. We
will have to learn for what situations they are suited and will use
them there and only there. It is the skill of every craftsman, and
more so of every engineer, to select the right tool for every task.

Object-oriented programming has given rise to a certain
euphoria. Advertisements promise incredible things, and even
some researchers seem to consider object-oriented programming to
be the panacea that will solve all the problems of software
development. This euphoria will subside. After a period of
disillusionment, people will perhaps cease to speak about object-
oriented programming, just as hardly anybody speaks about
structured programming any more. But classes will be used quite
naturally then and will be seen as what they are: components that
help to build modular and extensible software.

A Oberon-2
Language Definition

A.1 Introduction

Oberon-2 is a general-purpose language in the tradition of Oberon
and Modula-2. Its most important features are block structure,
modularity, separate compilation, static typing with strong type
checking (also across module boundaries), and type extension with
type-bound procedures.

This report is not intended as a programmer's tutorial, but is
deliberately kept concise. It serves as a reference for programmers,
implementors, and manual writers. What remains unsaid is mostly
left so intentionally, either because it can be derived from stated
rules of the language, or because it would require commitment to a
definition when a general commitment appears as unwise.

Section A.12.1 defines some terms that are used to express the
type checking rules of Oberon-2. Where they appear in the text,
they are written in italics to indicate their special meaning (e.g., the
same type).

A.2 Syntax

An extended Backus-Naur Formalism (EBNF) is used to describe
the syntax of Oberon-2: Alternatives are separated by |. Brackets [
and] denote optionality of the enclosed expression, and braces {
and } denote its repetition (possibly 0 times). Nonterminal symbols
start with an upper-case letter (e.g., Statement). Terminal symbols

222 Appendix A Oberon-2 Language Definition

either start with a lower-case letter (e.g., ident), or are written all in
upper-case letters (e.g., BEGIN), or are denoted by strings (e.g.,
":=").

A.3 Vocabulary and Representation

The representation of (terminal) symbols in terms of characters is
defined using the ASCII set. Symbols are identifiers, numbers,
strings, operators, and delimiters. The following lexical rules must
be observed: Blanks and line breaks must not occur within
symbols (except blanks in strings). They are ignored unless they
are essential to separate two consecutive symbols. Upper-case and
lower-case letters are considered distinct.

1. Identifiers are sequences of letters and digits. The first

character must be a letter.

 ident = letter {letter | digit}.

 Examples: x Scan Oberon2 GetSymbol firstLetter

2. Numbers are (unsigned) integer or real constants. The type of

an integer constant is the minimal type to which the constant
value belongs (see A.6.1). If the constant is specified with the
suffix H, the representation is hexadecimal; otherwise it is
decimal.

 A real number always contains a decimal point. Optionally it
may also contain a decimal scale factor. The letter E (or D)
means "times ten to the power of". A real number is of type
REAL, unless it has a scale factor containing the letter D, in
which case it is of type LONGREAL.

 number = integer | real.
 integer = digit {digit} | digit {hexDigit} "H".
 real = digit {digit} "." {digit} [ScaleFactor].
 ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.
 hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

 Examples:

 1991 INTEGER 1991
 0DH SHORTINT 13
 12.3 REAL 12.3
 4.567E8 REAL 456700000

 A.3 Vocabulary and Representation 223

 0.57712566D-6 LONGREAL 0.00000057712566
3. Character constants are denoted by the ordinal number of the

character in hexadecimal notation followed by the letter X.

 character = digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in single (') or
double (") quotation marks. The opening quotation mark must
be the same as the closing one and must not occur within the
string. The number of characters in a string is called its length.
A string of length 1 can be used wherever a character constant
is allowed and vice versa.

 string = ' " ' {char} ' " ' | " ' " {char} " ' ".

 Examples: "Oberon-2" "Don't worry!" "x"

5. Operators and delimiters are the special characters, character

pairs, or reserved words listed below. The reserved words
consist exclusively of capital letters and cannot be used as
identifiers.

 + := ARRAY IMPORT RETURN
 - ^ BEGIN IN THEN
 * = BY IS TO
 / # CASE LOOP TYPE
 ~ < CONST MOD UNTIL
 & > DIV MODULE VAR
 . <= DO NIL WHILE
 , >= ELSE OF WITH
 ; .. ELSIF OR
 | : END POINTER
 () EXIT PROCEDURE
 [] FOR RECORD
 { } IF REPEAT

6. Comments may be inserted between any two symbols in a
program. They are arbitrary character sequences opened by
the bracket (* and closed by *). Comments may be nested.
They do not affect the meaning of a program.

A.4 Declarations and Scope Rules

Every identifier occurring in a program must be introduced by a
declaration unless it is a predeclared identifier. Declarations also
specify certain permanent properties of an object, such as whether

224 Appendix A Oberon-2 Language Definition

it is a constant, a type, a variable, or a procedure. The identifier is
then used to refer to the associated object.

The scope of an object x extends textually from the point of its
declaration to the end of the block (module, procedure, or record)
to which the declaration belongs and hence to which the object is
local. It excludes the scopes of objects with the same name that are
declared in nested blocks. The scope rules are:

1. No identifier may denote more than one object within a given

scope (i.e., no identifier may be declared twice in a block).
2. An object may only be referenced within its scope.
3. A type T of the form POINTER TO T1 (see A.6.4) can be

declared before the scope of T1. In this case, the declaration of
T1 must follow in the same block to which T is local.

4. Identifiers denoting record fields (see A.6.3) or type-bound
procedures (see A.10.2) are valid in record designators only.

An identifier declared in a module block may be followed by an
export mark (an asterisk or a minus sign) in its declaration to
indicate that it is exported. An identifier x exported by a module M
may be used in other modules if they import M (see A.11). The
identifier is then denoted as M.x in these modules and is called a
qualified identifier. Variables and record fields marked with a minus
in their declaration are read-only in importing modules.

Qualident = [ident "."] ident.
IdentDef = ident [" * " | " - "].

The following identifiers are predeclared; their meaning is defined
in the indicated sections:

ABS (A.10.3) LEN (A.10.3)
ASH (A.10.3) LONG (A.10.3)
BOOLEAN (A.6.1) LONGINT (A.6.1)
CAP (A.10.3) LONGREAL (A.6.1)
CHAR (A.6.1) MAX (A.10.3)
CHR (A.10.3) MIN (A.10.3)
COPY (A.10.3) NEW (A.10.3)
DEC (A.10.3) ODD (A.10.3)
ENTIER (A.10.3) ORD (A.10.3)
EXCL (A.10.3) REAL (A.6.1)
FALSE (A.6.1) SET (A.6.1)
HALT (A.10.3) SHORT (A.10.3)
INC (A.10.3) SHORTINT (A.6.1)
INCL (A.10.3) SIZE (A.10.3)
INTEGER (A.6.1) TRUE (A.6.1)

 A.5 Constant Declarations 225

A.5 Constant Declarations

A constant declaration associates an identifier with a constant
value.

ConstantDeclaration = IdentDef "=" ConstExpression.
ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a
mere textual scan without actually executing the program. Its
operands are constants (A.8) or predeclared functions (A.10.3) that
can be evaluated at compile time. Examples of constant decla-
rations are:

N = 100
limit = 2*N - 1
fullSet = {MIN(SET) .. MAX(SET)}

A.6 Type Declarations

A data type determines the set of values that variables of that type
may assume, and the operators that are applicable. A type
declaration associates an identifier with a type. In the case of
structured types (arrays and records) it also defines the structure
of variables of this type.

TypeDeclaration = IdentDef "=" Type.
Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType.

Examples:

Table = ARRAY N OF REAL

Tree = POINTER TO Node
Node = RECORD
 key : INTEGER;
 left, right: Tree
END

CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)
 width: INTEGER;
 subnode: Tree
END

Function = PROCEDURE(x: INTEGER): INTEGER

226 Appendix A Oberon-2 Language Definition

A.6.1 Basic Types

The basic types are denoted by predeclared identifiers. The
associated operators are defined in A.8.2 and the predeclared
function procedures in A.10.3. The values of the given basic types
are the following:

BOOLEAN truth values TRUE and FALSE
CHAR characters of the extended ASCII set (0X .. 0FFX)
SHORTINT integers between MIN(SHORTINT) and MAX(SHORTINT)
INTEGER integers between MIN(INTEGER) and MAX(INTEGER)
LONGINT integers between MIN(LONGINT) and MAX(LONGINT)
REAL real numbers between MIN(REAL) and MAX(REAL)
LONGREAL real numbers betw. MIN(LONGREAL) and MAX(LONGREAL)
SET sets of integers between 0 and MAX(SET)

Types SHORTINT, INTEGER, and LONGINT are integer types;
types REAL and LONGREAL are real types; together they are
called numeric types. They form a hierarchy: each larger type
includes (the values of) the smaller types:

LONGREAL � REAL � LONGINT � INTEGER � SHORTINT

A.6.2 Array Types

An array is a structure consisting of a number of elements that are
all of the same type, called the element type. The number of
elements of an array is called its length. The elements of the array
are designated by indices, which are integers between 0 and the
length minus 1.

ArrayType = ARRAY [Length {"," Length}] OF Type.
Length = ConstExpression.

A type of the form

ARRAY L0, L1, …, Ln OF T

is understood as an abbreviation of

ARRAY L0 OF
 ARRAY L1 OF
 …
 ARRAY Ln OF T

 A.6 Type Declarations 227

Arrays declared without length are called open arrays. They are
restricted to pointer base types (see A.6.4), element types of open
array types, and formal parameter types (see A.10.1). Examples:

ARRAY 10, N OF INTEGER
ARRAY OF CHAR

A.6.3 Record Types

A record type is a structure consisting of a fixed number of
elements, called fields, with possibly different types. The record
type declaration specifies the name and type of each field. The
scope of the field identifiers extends from the point of their
declaration to the end of the record type, but they are also visible
within designators referring to fields of record variables (see
A.8.1). If a record type is exported, field identifiers that are to be
visible outside the declaring module must be marked. They are
called public fields; unmarked elements are called private fields.

RecordType = RECORD ["("BaseType")"] FieldList {";" FieldList} END.
BaseType = Qualident.
FieldList = [IdentList ":" Type].

Record types are extensible; i.e., a record type can be declared as
an extension of another record type. In the example

T0 = RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1
(see A.12.1). An extended type T1 consists of the fields of its base
type and of the fields that are declared in T1 (see A.6). Identifiers
declared in the extension must be different from the identifiers
declared in its base type(s). The following are examples of record
type declarations:

RECORD
 day, month, year: INTEGER
END

RECORD
 name, firstname: ARRAY 32 OF CHAR;
 age: INTEGER;
 salary: REAL
END

228 Appendix A Oberon-2 Language Definition

A.6.4 Pointer Types

Variables of a pointer type P assume as values pointers to variables
of some type T. T is called the pointer base type of P and must be a
record or array type. Pointer types adopt the extension relation of
their pointer base types: if a type T1 is an extension of T, and P1 is
of type POINTER TO T1, then P1 is also an extension of P.

PointerType = POINTER TO Type.

If p is a variable of type P = POINTER TO T, a call of the prede-
clared procedure NEW(p) (see A.10.3) allocates a nameless
variable of type T in free storage. If T is a record type or an array
type with fixed length, the allocation has to be done with NEW(p);
if T is an n-dimensional open array the allocation has to be done
with NEW(p, e0, …, en-1), where T is allocated with lengths given
by the expressions e0, …, en-1. In either case a pointer to the
allocated variable is assigned to p. p is of type P and the referenced
variable p^ (pronounced as p-referenced) is of type T.

Any pointer variable may assume the value NIL, which points
to no variable at all. All pointer variables are initialized to NIL.

A.6.5 Procedure types

Variables of a procedure type T have a procedure (or NIL) as their
value. If a procedure P is assigned to a variable of type T, the
formal parameter lists (see A.10.1) of P and T must match (see
A.12.1). P must not be a predeclared or type-bound procedure, nor
may it be local to another procedure.

ProcedureType = PROCEDURE [FormalParameters].

A.7 Variable Declarations

Variable declarations introduce variables by defining an identifier
and a data type for them.

VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with
which they are declared—simply called their type) and a dynamic

 A.7 Variable Declarations 229

type (the type they assume at run time). For pointers and variable
parameters of record type, the dynamic type may be an extension
of their static type. The static type determines which fields of a
record are accessible. The dynamic type is used to call type-bound
procedures (see A.10.2).

The following are examples of variable declarations (refer to
examples in A.6):

i, j, k: INTEGER
x, y: REAL
p, q: BOOLEAN
s: SET
F: Function
a: ARRAY 100 OF REAL
w: ARRAY 16 OF RECORD
 name: ARRAY 32 OF CHAR;
 count: INTEGER
 END
t, c: Tree

A.8 Expressions

Expressions denote rules of computation whereby constants and
current values of variables are combined to compute other values
by the application of operators and function procedures.
Expressions consist of operands and operators. Parentheses may
be used to express specific associations of operators and operands.

A.8.1 Operands

With the exception of set constructors and literal constants
(numbers, character constants, or strings), operands are denoted
by designators. A designator consists of an identifier referring to a
constant, variable, or procedure. This identifier may possibly be
qualified by a module identifier (see A.4 and A.11) and may be
followed by selectors if the designated object is an element of a
structure.

Designator = Qualident
 {"." ident | "[" ExpressionList "]" | "^" | "(" Qualident ")"}.
ExpressionList = Expression {"," Expression}.

230 Appendix A Oberon-2 Language Definition

If a designates an array, then a[e] denotes that element of a whose
index is the current value of the expression e. The type of e must be
an integer type. A designator of the form a[e0, e1, …, en] stands for
a[e0][e1]…[en]. If r designates a record, then r.f denotes the field f of
r or the procedure f bound to the dynamic type of r (see A.10.2). If
p designates a pointer, p^ denotes the variable that is referenced by
p. The designators p^.f and p^[e] may be abbreviated as p.f and
p[e]; i.e., record and array selectors imply dereferencing. If a or r
are read-only, then a[e] and r.f are also read-only.

A type guard v(T) asserts that the dynamic type of v is T (or an
extension of T); i.e., program execution is aborted if the dynamic
type of v is not T (or an extension of T). Within the designator, v is
then regarded as having the static type T. The guard is applicable
if

1. v is a variable parameter of record type or v is a pointer, and if
2. T is an extension of the static type of v.

If the designated object is a constant or a variable, then the desig-
nator refers to its current value. If it is a procedure, the designator
refers to that procedure unless it is followed by a (possibly empty)
parameter list, in which case it implies an activation of that
procedure and stands for the value resulting from its execution.
The actual parameters must correspond to the formal parameters
as in proper procedure calls (see A.10.1).

The following are examples of designators (refer to examples
in A.7):

i (INTEGER)
a[i] (REAL)
w[3].name[i] (CHAR)
t.left.right (Tree)
t(CenterTree).subnode (Tree)

A.8.2 Operators

Four classes of operators with different precedences (binding
strengths) are syntactically distinguished in expressions. The
operator ~ has the highest precedence, followed by multiplication
operators, addition operators, and relations. Operators of the same
precedence associate from left to right. For example, x-y-z stands
for (x-y)-z.

 A.8 Expressions 231

Expression = SimpleExpression [Relation SimpleExpression].
SimpleExpression = ["+" | "-"] Term {AddOperator Term}.
Term = Factor {MulOperator Factor}.
Factor = Designator [ActualParameters] | number | character
 | string | NIL | Set | "(" Expression ")" | "~" Factor.
Set = "{" [Element {"," Element}] "}".
Element = Expression [".." Expression].
ActualParameters = "(" [ExpressionList] ")".
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
AddOperator = "+" | "-" | OR.
MulOperator = "*" | "/" | DIV | MOD | "&".

The available operators are listed in the following tables. Some
operators are applicable to operands of various types, denoting
different operations. In these cases, the actual operation is identi-
fied by the type of the operands. The operands must be expression
compatible with respect to the operator (see A.12.1).

Logical operators

OR logical disjunction p OR q + "if p then TRUE, else q end"
& logical conjunction p & q + "if p then q, else FALSE end"
~ negation ~ p + "not p"

These operators apply to BOOLEAN operands and yield a
BOOLEAN result.

Arithmetic operators

+ sum
- difference
* product
/ real quotient
DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric types.
The type of the result is the type of that operand that includes the
type of the other operand, except for division (/), where the result
is the smallest real type that includes both operand types. When
used as monadic operators, - denotes sign inversion and + denotes
the identity operation. The operators DIV and MOD apply to
integer operands only. They are related by the following formulas,
defined for any x and positive divisor y:

x = (x DIV y) * y + (x MOD y)
0 ≤ (x MOD y) < y

Examples:

232 Appendix A Oberon-2 Language Definition

x y x DIV y x MOD y

 5 3 1 2
 -5 3 -2 1

Set operators

+ union
- difference (x - y = x * (-y))
* intersection
/ symmetric set difference (x / y = (x-y) + (y-x))

Set operators apply to operands of type SET and yield a result of
type SET. The monadic minus sign denotes the complement of x;
i.e., -x denotes the set of integers between 0 and MAX(SET) that
are not elements of x.

A set constructor defines the value of a set by listing its
elements between braces. The elements must be integers in the
range 0..MAX(SET). A range a..b denotes all integers in the interval
[a, b].

Relational operators

= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

Relations yield a BOOLEAN result. The relations =, #, <, <=, >, and
>= apply to numeric types, CHAR, (open) character arrays, and
strings. The relations = and # also apply to BOOLEAN and SET, as
well as to pointer and procedure types (including the value NIL). x
IN s stands for "x is an element of s". x must be of an integer type
and s of type SET. v IS T stands for "the dynamic type of v is T (or
an extension of T)" and is called a type test. It is applicable if

1. v is a variable parameter of record type or v is a pointer, and if
2. T is an extension of the static type of v.

The following are examples of expressions (refer to examples in
A.7):

1991 INTEGER
i DIV 3 INTEGER
~p OR q BOOLEAN

 A.8 Expressions 233

(i+j) * (i-j) INTEGER
s - {8, 9, 13} SET
i + x REAL
a[i+j] * a[i-j] REAL
(0<=i) & (i<100) BOOLEAN
t.key = 0 BOOLEAN
k IN {i..j-1} BOOLEAN
w[i].name <= "John" BOOLEAN
t IS CenterTree BOOLEAN

A.9 Statements

Statements denote actions. There are elementary and structured
statements. Elementary statements are not composed of any parts
that are themselves statements. They are the assignment, the
procedure call, the return, and the exit statement. Structured
statements are composed of parts that are themselves statements.
They are used to express sequencing and conditional, selective,
and repetitive execution. A statement may also be empty, in which
case it denotes no action. The empty statement is included in order
to relax punctuation rules in statement sequences.

Statement =
 [Assignment | ProcedureCall | IfStatement | CaseStatement | WhileStatement
| RepeatStatement | ForStatement | LoopStatement | WithStatement | EXIT
| RETURN [Expression]].

A.9.1 Assignments

Assignments replace the current value of a variable with a new
value specified by an expression. The expression must be assign-
ment compatible with the variable (see A.12.1). The assignment
operator is written as ":=" and pronounced as becomes.

Assignment = Designator ":=" Expression.

If an expression e of type Te is assigned to a variable v of type Tv,
the following happens:

1. If Tv and Te are record types, only those fields of Te are

assigned which also belong to Tv (projection); the dynamic type
of v must be the same as the static type of v and is not changed
by the assignment.

234 Appendix A Oberon-2 Language Definition

2. If Tv and Te are pointer types, the dynamic type of v becomes
the dynamic type of e.

3. If Tv is ARRAY n OF CHAR and e is a string of length m<n,
v[i] becomes ei for i = 0..m-1 and v[m] becomes 0X.

The following are examples of assignments (refer to examples in
A.7):

i := 0
p := i = j
x := i + 1
k := log2(i+j)
F := log2 (* see A.10.1 *)
s := {2, 3, 5, 7, 11, 13}
a[i] := (x+y) * (x-y)
t.key := i
w[i+1].name := "John"
t := c

A.9.2 Procedure Calls

A procedure call activates a procedure. It may contain a list of
actual parameters which replace the corresponding formal
parameters defined in the procedure declaration (see A.10). The
correspondence is established by the positions of the parameters in
the actual and formal parameter lists. There are two kinds of
parameters: variable and value parameters.

If a formal parameter is a variable parameter, the corres-
ponding actual parameter must be a designator denoting a
variable. If it denotes an element of a structured variable, the
component selectors are evaluated when the formal/actual
parameter substitution takes place, i.e., before the execution of the
procedure. If a formal parameter is a value parameter, the corres-
ponding actual parameter must be an expression. The value of this
expression is assigned to the formal parameter (see also A.10.1).

ProcedureCall = Designator [ActualParameters].

Examples:

WriteInt(i*2+1) (* see A.10.1 *)
t.Insert("John") (* see A.11 *)
INC(w[k].count)

 A.9 Statements 235

A.9.3 Statement Sequences

Statement sequences denote the sequence of actions specified by
the component statements which are separated by semicolons.

StatementSequence = Statement {";" Statement}.

A.9.4 If Statements

IfStatement = IF Expression THEN StatementSequence
 {ELSIF Expression THEN StatementSequence}
 [ELSE StatementSequence]
 END.

If statements specify the conditional execution of guarded
statement sequences. The boolean expression preceding a
statement sequence is called its guard. The guards are evaluated in
sequence of occurrence until one evaluates to TRUE, whereafter its
associated statement sequence is executed. If no guard is satisfied,
the statement sequence following the symbol ELSE is executed, if
there is one. Example:

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber
ELSIF (ch = " ' ") OR (ch = ' " ') THEN ReadString
ELSE SpecialCharacter
END

A.9.5 Case Statements

Case statements specify the selection and execution of a statement
sequence according to the value of an expression. First the case
expression is evaluated; then that statement sequence is executed
whose case label list contains the obtained value. The case
expression must either be of an integer type that includes the types
of all case labels, or both the case expression and the case labels
must be of type CHAR. Case labels are constants, and no value
may occur more than once. If the value of the expression does not
match any label, the statement sequence following the symbol
ELSE is selected, if there is one; otherwise the program is aborted.

CaseStatement = CASE Expression OF Case {"|" Case}
 [ELSE StatementSequence] END.
Case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].

236 Appendix A Oberon-2 Language Definition

Example:

CASE ch OF
 "A" .. "Z": ReadIdentifier
| "0" .. "9": ReadNumber
| " ' ", ' " ': ReadString
ELSE SpecialCharacter
END

A.9.6 While Statements

While statements specify the repeated execution of a statement
sequence while the boolean expression (its guard) yields TRUE.
The guard is checked before every execution of the statement
sequence.

WhileStatement = WHILE Expression DO StatementSequence END.

Examples:

WHILE i > 0 DO i := i DIV 2; k := k + 1 END
WHILE (t # NIL) & (t.key # i) DO t := t.left END

A.9.7 Repeat Statements

A repeat statement specifies the repeated execution of a statement
sequence until a condition specified by a boolean expression is
satisfied. The statement sequence is executed at least once.

RepeatStatement = REPEAT StatementSequence UNTIL Expression.

A.9.8 For Statements

A for statement specifies the repeated execution of a statement
sequence for a fixed number of times while a progression of values
is assigned to an integer variable called the control variable of the
for statement.

ForStatement = FOR ident ":=" Expression TO Expression
 [BY ConstExpression] DO StatementSequence END.

The statement

FOR v := low TO high BY step DO statements END

is equivalent to

 A.9 Statements 237

v := low; temp := high;
IF step > 0 THEN
 WHILE v <= temp DO statements; v := v + step END
ELSE
 WHILE v >= temp DO statements; v := v + step END
END

low must be assignment compatible with v (see A.12.1), high must be
expression compatible (i.e., comparable) with v, and step must be a
nonzero constant expression of an integer type. If step is not
specified, it is assumed to be 1. Examples:

FOR i := 0 TO 79 DO k := k + a[i] END
FOR i := 79 TO 1 BY -1 DO a[i] := a[i-1] END

A.9.9 Loop Statements

A loop statement specifies the repeated execution of a statement
sequence. It is terminated upon execution of an exit statement
within that sequence (see A.9.10).

LoopStatement = LOOP StatementSequence END.

Example:

LOOP
 ReadInt(i);
 IF i < 0 THEN EXIT END;
 WriteInt(i)
END

Loop statements are useful to express repetitions with several exit
points or cases where the exit condition is in the middle of the
repeated statement sequence.

A.9.10 Return and Exit Statements

A return statement indicates the termination of a procedure. It is
denoted by the symbol RETURN, followed by an expression if the
procedure is a function procedure. The type of the expression must
be assignment compatible (see A.12.1) with the result type specified
in the procedure heading (see A.10).

Function procedures require the presence of a return state-
ment indicating the result value. In proper procedures, a return

238 Appendix A Oberon-2 Language Definition

statement is implied by the end of the procedure body. Any
explicit return statement therefore appears as an additional
(probably exceptional) termination point.

An exit statement is denoted by the symbol EXIT. It specifies
termination of the enclosing loop statement and continuation with
the statement following that loop statement. Exit statements are
contextually, although not syntactically, associated with the loop
statement that contains them.
A.9.11 With Statements

With statements execute a statement sequence depending on the
result of a type test and apply a type guard to every occurrence of
the tested variable within this statement sequence.

WithStatement = WITH Guard DO StatementSequence
 {"|" Guard DO StatementSequence}
 [ELSE StatementSequence] END.
Guard = Qualident ":" Qualident.

If v is a variable parameter of record type or a pointer variable, and
if it is of a static type T0, the statement

WITH v: T1 DO S1 | v: T2 DO S2 ELSE S3 END

has the following meaning: if the dynamic type of v is T1, then the
statement sequence S1 is executed, where v is regarded as if it had
the static type T1; else if the dynamic type of v is T2, then S2 is
executed, where v is regarded as if it had the static type T2; else S3
is executed. T1 and T2 must be extensions of T0. If no type test is
satisfied and if an else clause is missing, the program is aborted.
Example:

WITH t: CenterTree DO i := t.width; c := t.subnode END

A.10 Procedure Declarations

A procedure declaration consists of a procedure heading and a
procedure body. The heading specifies the procedure identifier and
the formal parameters. For type-bound procedures it also specifies
the receiver parameter. The body contains declarations and
statements. The procedure identifier is repeated at the end of the
procedure declaration.

 A.10 Procedure Declarations 239

There are two kinds of procedures: proper procedures and
function procedures. The latter are activated by a function designator
as a constituent of an expression and yield a result that is an
operand of the expression. Proper procedures are activated by a
procedure call. A procedure is a function procedure if its formal
parameters specify a result type. The body of a function procedure
must contain a return statement that defines its result.

All constants, variables, types, and procedures declared
within a procedure body are local to the procedure. Since
procedures may be declared as local objects, too, procedure
declarations may be nested. The call of a procedure within its
declaration implies recursive activation.

In addition to its formal parameters and locally declared
objects, the objects declared in the environment of the procedure
are also visible in the procedure (with the exception of those
objects that have the same name as an object declared locally).

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
ProcedureHeading = PROCEDURE [Receiver] IdentDef
 [FormalParameters].
ProcedureBody = DeclarationSequence
 [BEGIN StatementSequence] END.
DeclarationSequence = {CONST {ConstantDeclaration ";"}
 | TYPE {TypeDeclaration ";"}
 | VAR {VariableDeclaration ";"} }
 {ProcedureDeclaration ";"
 | ForwardDeclaration ";"}.
ForwardDeclaration = PROCEDURE " ^ " [Receiver] IdentDef
 [FormalParameters].

If a procedure declaration specifies a receiver parameter, the pro-
cedure is considered to be bound to a type (see A.10.2). A forward
declaration serves to allow forward references to a procedure whose
actual declaration appears later in the text. The formal parameter
lists of the forward declaration and the actual declaration must
match (see A.12.1).

A.10.1 Formal Parameters

Formal parameters are identifiers declared in the formal parameter
list of a procedure. They correspond to actual parameters specified
in the procedure call. The correspondence between formal and
actual parameters is established when the procedure is called.
There are two kinds of parameters, value and variable parameters,

240 Appendix A Oberon-2 Language Definition

indicated in the formal parameter list by the absence or presence of
the keyword VAR. Value parameters are local variables to which
the value of the corresponding actual parameter is assigned as an
initial value. Variable parameters correspond to actual parameters
that are variables, and they stand for these variables. The scope of
a formal parameter extends from its declaration to the end of the
procedure block in which it is declared. A function procedure
without parameters must have an empty parameter list. It must be
called by a function designator whose actual parameter list is
empty, too. The result type of a function procedure can be neither
a record nor an array.

FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" Qualident].
FPSection = [VAR] ident {"," ident} ":" Type.

Let Tf be the type of a formal parameter f (not an open array) and
Ta the type of the corresponding actual parameter a. For variable
parameters, Ta must be the same as Tf, or Tf must be a record type
and Ta an extension of Tf. For value parameters, a must be
assignment compatible with f (see A.12.1).

If Tf is an open array, then a must be array compatible with f
(see A.12.1). The lengths of f are taken from a. The following are
examples of procedure declarations:

PROCEDURE ReadInt(VAR x: INTEGER);
 VAR i: INTEGER; ch: CHAR;
BEGIN i := 0; Read(ch);
 WHILE ("0" <= ch) & (ch <= "9") DO
 i := 10*i + (ORD(ch)-ORD("0")); Read(ch)
 END;
 x := i
END ReadInt

PROCEDURE WriteInt(x: INTEGER); (*0 <= x <100000*)
 VAR i: INTEGER; buf: ARRAY 5 OF INTEGER;
BEGIN i := 0;
 REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0;
 REPEAT DEC(i); Write(CHR(buf[i] + ORD("0"))) UNTIL i = 0
END WriteInt

PROCEDURE WriteString(s: ARRAY OF CHAR);
 VAR i: INTEGER;
BEGIN i := 0;
 WHILE (i < LEN(s)) & (s[i] # 0X) DO Write(s[i]); INC(i) END
END WriteString;

PROCEDURE log2(x: INTEGER): INTEGER;
 VAR y: INTEGER; (*assume x>0*)
BEGIN

 A.10 Procedure Declarations 241

 y := 0; WHILE x > 1 DO x := x DIV 2; INC(y) END;
 RETURN y
END log2

A.10.2 Type-Bound Procedures

Globally declared procedures may be associated with a record type
declared in the same module. The procedures are said to be bound
to the record type. The binding is expressed by the type of the
receiver in the heading of a procedure declaration. The receiver
may be either a variable parameter of record type T or a value
parameter of type POINTER TO T (where T is a record type). The
procedure is bound to the type T and is considered local to it.

ProcedureHeading = PROCEDURE [Receiver] IdentDef [FormalParameters].
Receiver = "(" [VAR] ident ":" ident ")".

If a procedure P is bound to a type T0, it is implicitly also bound to
any type T1 that is an extension of T0. However, a procedure P '
(with the same name as P) may be explicitly bound to T1, in which
case it overrides the binding of P. P ' is considered a redefinition of
P for T1. The formal parameters of P and P ' must match (see
A.12.1). If P and T1 are exported (see A. 4), P ' must be exported,
too.

If v is a designator and P is a type-bound procedure, then v.P
denotes that procedure P that is bound to the dynamic type of v
(dynamic binding). Note that this may be a different procedure than
the one bound to the static type of v. v is passed to P's receiver
according to the parameter passing rules specified in A.10.1.

If r is a receiver parameter declared with type T, r.P ^ denotes
the (redefined) procedure P bound to the base type of T.

In a forward declaration of a type-bound procedure, the
receiver parameter must be of the same type as in the actual
procedure declaration. The formal parameter lists of both
declarations must match (A.12.1).

Examples:

PROCEDURE (t: Tree) Insert (node: Tree);
 VAR p, father: Tree;
BEGIN
 p := t;
 REPEAT father := p;
 IF node.key = p.key THEN RETURN END;
 IF node.key < p.key THEN p := p.left ELSE p := p.right END

242 Appendix A Oberon-2 Language Definition

 UNTIL p = NIL;
 IF node.key < father.key THEN father.left := node
 ELSE father.right := node
 END;
 node.left := NIL; node.right := NIL
END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree); (*redefinition*)
BEGIN
 WriteInt(node(CenterTree).width);
 t.Insert^ (node) (* calls the Insert procedure bound to Tree *)
END Insert;

A.10.3 Predeclared Procedures

The following table lists the predeclared procedures. Some are
generic procedures, i.e., they apply to several types of operands. v
stands for a variable, x and n for expressions, and T for a type.

Function procedures

Name Argument type result type Function

ABS(x) numeric type type of x absolute value

ASH(x, n) x, n: integer type LONGINT arithmetic shift (x * 2n)
CAP(x) CHAR CHAR x is letter: corresp.onding capital letter
CHR(x) integer type CHAR character with ordinal number x
ENTIER(x) real type LONGINT largest integer not greater than x
LEN(v, n) v: array; LONGINT length of v in dimension n
 n: integer constant (first dim. = 0)
LEN(v) v: array LONGINT equivalent to LEN(v, 0)
LONG(x) SHORTINT INTEGER identity
 INTEGER LONGINT identity
 REAL LONGREAL identity
MAX(T) T = basic type T maximum value of type T
 T = SET INTEGER maximum element of a set
MIN(T) T = basic type T minimum value of type T
 T = SET INTEGER 0
ODD(x) integer type BOOLEAN x MOD 2 = 1
ORD(x) CHAR INTEGER ordinal number of x
SHORT(x) LONGINT INTEGER identity
 INTEGER SHORTINT identity
 LONGREAL REAL identity (truncation possible)
SIZE(T) any type integer type number of bytes required by T

 A.10 Procedure Declarations 243

Proper procedures

Name Argument types Function

COPY(x, v) x: char. array, string; v: char. array v := x
DEC(v) integer type v := v - 1
DEC(v, n) v, n: integer type v := v - n
EXCL(v, x) v: SET; x: integer type v := v - {x}
HALT(x) integer constant terminate program
INC(v) integer type v := v + 1
INC(v, n) v, n: integer type v := v + n
INCL(v, x) v: SET; x: integer type v := v + {x}
NEW(v) pointer to record or fixed array allocate v ^
NEW(v, x0, …, xn) v: pointer to open array; xi: int. type allocate v ^ with lengths x0.. xn

COPY allows the assignment between (open) character arrays with
different types. If necessary, the source is shortened to the target
length minus one. The target is always terminated by the character
0X. In HALT(x), the interpretation of x is left to the underlying
system implementation.

A.11 Modules

A module is a collection of declarations of constants, types,
variables, and procedures, together with a sequence of statements
for the purpose of assigning initial values to the variables. A
module constitutes a text that is compilable as a unit.

Module = MODULE ident ";" [ImportList] DeclarationSequence
 [BEGIN StatementSequence] END ident ".".
ImportList = IMPORT Import {"," Import} ";".
Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a
module A is imported by a module M and A exports an identifier
x, then x is referred to as A.x within M. If A is imported as B := A,
the object x must be referenced as B.x. This allows short alias
names in qualified identifiers. Identifiers that are to be exported
(i.e., that are to be visible in client modules) must be marked by an
export mark in their declaration (see A. 4).

The statement sequence following the symbol BEGIN is
executed when the module is added to a system (loaded), which is
done after the imported modules have been loaded. It follows that
cyclic import of modules is illegal. Individual (parameterless and

244 Appendix A Oberon-2 Language Definition

exported) procedures can be activated from the system, and these
procedures serve as commands (see A.12.4).

MODULE Trees;

 IMPORT Texts, Oberon;
 (* exports: Tree, Node, Insert, Search, Write, Init *)
 (* exports read-only: Node.name *)

 TYPE
 Tree* = POINTER TO Node;
 Node* = RECORD
 name-: POINTER TO ARRAY OF CHAR;
 left, right: Tree
 END;

 VAR w: Texts.Writer;
 PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR);
 VAR p, father: Tree;
 BEGIN p := t;
 REPEAT father := p;
 IF name = p.name^ THEN RETURN END;
 IF name < p.name^ THEN p := p.left ELSE p := p.right END
 UNTIL p = NIL;
 NEW(p); p.left := NIL; p.right := NIL;
 NEW(p.name, LEN(name)+1); COPY(name, p.name^);
 IF name < father.name^ THEN father.left := p
 ELSE father.right := p
 END
 END Insert;

 PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree;
 VAR p: Tree;
 BEGIN p := t;
 WHILE (p # NIL) & (name # p.name^) DO
 IF name < p.name^ THEN p := p.left ELSE p := p.right END
 END;
 RETURN p
 END Search;

 PROCEDURE (t: Tree) Write*;
 BEGIN
 IF t.left # NIL THEN t.left.Write END;
 Texts.WriteString(w, t.name^); Texts.WriteLn(w);
 Texts.Append(Oberon.Log, w.buf);
 IF t.right # NIL THEN t.right.Write END
 END Write;

 PROCEDURE Init* (VAR t: Tree);
 VAR t: Tree;
 BEGIN
 NEW(t.name, 1); t.name[0] := 0X; t.left := NIL; t.right := NIL
 END Init;

 A.11 Modules 245

BEGIN Texts.OpenWriter(w)
END Trees.

246 Appendix A Oberon-2 Language Definition

A.12 Appendices to the Language Definition

A.12.1 Definition of Terms

Integer types SHORTINT, INTEGER, LONGINT
Real types REAL, LONGREAL
Numeric types integer types, real types

Same types
Two variables a and b with types Ta and Tb are of the same type if
1. Ta and Tb are both denoted by the same type identifier, or
2. Ta is declared to equal Tb in a type declaration of the form Ta =

Tb, or
3. a and b appear in the same identifier list in a variable, record

field, or formal parameter declaration and are not open arrays.

Equal types
Two types Ta and Tb are equal if
1. Ta and Tb are the same type, or
2. Ta and Tb are open array types with equal element types, or
3. Ta and Tb are procedure types whose formal parameter lists

match.

Type inclusion
Numeric types include (the values of) smaller numeric types
according to the following hierarchy:

LONGREAL � REAL � LONGINT � INTEGER � SHORTINT

Type extension (base type)
Given a type declaration Tb = RECORD (Ta) … END, Tb is a direct
extension of Ta, and Ta is a direct base type of Tb. A type Tb is an
extension of a type Ta (Ta is a base type of Tb) if
1. Ta and Tb are the same types, or
2. Tb is a direct extension of an extension of Ta
If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an
extension of Pa (Pa is a base type of Pb) if Tb is an extension of Ta.

 A.12 Appendices to the Language Definition 247

Assignment compatibility
An expression e of type Te is assignment compatible with a variable v
of type Tv if one of the following conditions holds:
1. Te and Tv are the same type.
2. Te and Tv are numeric types and Tv includes Te.
3. Te and Tv are record types and Te is an extension of Tv and the

dynamic type of v is Tv .
4. Te and Tv are pointer types and Te is an extension of Tv.
5. Tv is a pointer or a procedure type and e is NIL.
6. Tv is ARRAY n OF CHAR, e is a string constant with m

characters, and m < n.
7. Tv is a procedure type and e is the name of a procedure whose

formal parameters match those of Tv.

Expression compatibility
For a given operator, the types of its operands are expression
compatible if they conform to the following table (which also
shows the result type of the expression). Type T1 must be an
extension of type T0:

Operator 1st Operand 2nd Operand Result Type

+ - * numeric numeric smallest numeric type
 including both opd. types
/ numeric numeric smallest real type
 including both opd. types
DIV MOD integer integer smallest integer type
 including both opd. types
+ - * / SET SET SET
OR & ~ BOOLEAN BOOLEAN BOOLEAN
= # < <= > >= numeric numeric BOOLEAN
 CHAR CHAR BOOLEAN
 character array, string character array, string BOOLEAN
= # BOOLEAN BOOLEAN BOOLEAN
 SET SET BOOLEAN
 NIL, pointer type T0 or T1 NIL, pointer type T0 or T1 BOOLEAN
 NIL, procedure type T NIL, procedure type T BOOLEAN
IN integer SET BOOLEAN
IS type T0 type T1 BOOLEAN

Array compatibility
An actual parameter a of type Ta is array compatible with a formal
parameter f of type Tf if

248 Appendix A Oberon-2 Language Definition

1. Tf and Ta are the same type, or
2. Tf is an open array, Ta is any array, and their element types

are array compatible, or
3. Tf is ARRAY OF CHAR and a is a string.

Matching formal parameter lists
Two formal parameter lists match if
1. they have the same number of parameters, and
2. they have either the same function result type or none, and
3. parameters at corresponding positions have equal types, and
4. parameters at corresponding positions are both either value or

variable parameters.

 A.12 Appendices to the Language Definition 249

A.12.2 Syntax of Oberon-2

Module = MODULE ident ";" [ImportList] DeclSeq
 [BEGIN StatSeq] END ident ".".
ImportList = IMPORT [ident ":="] ident {"," [ident ":="] ident} ";".
DeclSeq = { CONST {IdentDef "=" ConstExpr ";" }
 | TYPE {IdentDef "=" Type ";"}
 | VAR {IdentList ":" Type";"}}
 {ProcDecl ";" | ForwardDecl ";"}.
ProcDecl = PROCEDURE [Receiver] IdentDef [FormalPars] ";" DeclSeq
 [BEGIN StatSeq] END ident.
ForwardDecl = PROCEDURE "^" [Receiver] IdentDef [FormalPars].
FormalPars = "(" [FPSection {";" FPSection}] ")" [":" Qualident].
FPSection = [VAR] ident {"," ident} ":" Type.
Receiver = "(" [VAR] ident ":" ident ")".
Type = Qualident
 | ARRAY [ConstExpr {"," ConstExpr}] OF Type
 | RECORD ["("Qualident")"] FieldList {";" FieldList} END
 | POINTER TO Type
 | PROCEDURE [FormalPars].
FieldList = [IdentList ":" Type].
StatSeq = Statement {";" Statement}.
Statement = [Designator ":=" Expr
 | Designator ["(" [ExprList] ")"]
 | IF Expr THEN StatSeq {ELSIF Expr THEN StatSeq}
 [ELSE StatSeq] END
 | CASE Expr OF Case {"|" Case} [ELSE StatSeq] END
 | WHILE Expr DO StatSeq END
 | REPEAT StatSeq UNTIL Expr
 | FOR ident ":=" Expr TO Expr [BY ConstExpr] DO StatSeq END
 | LOOP StatSeq END
 | WITH Guard DO StatSeq {"|" Guard DO StatSeq}
 [ELSE StatSeq] END
 | EXIT
 | RETURN [Expr]].
Case = [CaseLabels {"," CaseLabels} ":" StatSeq].
CaseLabels = ConstExpr [".." ConstExpr].
Guard = Qualident ":" Qualident.
ConstExpr = Expr.
Expr = SimpleExpr [Relation SimpleExpr].
SimpleExpr = ["+" | "-"] Term {AddOp Term}.
Term = Factor {MulOp Factor}.
Factor = Designator ["(" [ExprList] ")"] | number | character
 | string | NIL | Set | "(" Expr ")" | " ~ " Factor.
Set = {" [Element {"," Element}] "}".
Element = Expr [".." Expr].
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
AddOp = "+" | "-" | OR.
MulOp = " * " | "/" | DIV | MOD | "&".
Designator = Qualident {"." ident | "[" ExprList "]" | " ^ " | "(" Qualident ")"}.
ExprList = Expr {"," Expr}.
IdentList = IdentDef {"," IdentDef}.
Qualident = [ident "."] ident.
IdentDef = ident [" * " | "-"].

250 Appendix A Oberon-2 Language Definition

A.12.3 The Module SYSTEM

The module SYSTEM contains certain types and procedures that
are necessary to implement low-level operations particular to a
given computer and/or operating system. These include, for
example, facilities for accessing devices that are controlled by the
computer, and facilities to break the type compatibility rules
otherwise imposed by the language definition.

It is strongly recommended that the use of the module
SYSTEM be restricted to specific modules (called low-level
modules). Such modules are inherently nonportable and unsafe,
but easily recognized due to the identifier SYSTEM appearing in
their import list. The following specifications hold for the
implementation of Oberon-2 on the Ceres computer.

Module SYSTEM exports a type BYTE with the following
characteristics: Variables of type CHAR or SHORTINT can be
assigned to variables of type BYTE. If a formal variable parameter
is of type ARRAY OF BYTE, then the corresponding actual para-
meter may be of any type.

Another type exported by module SYSTEM is the type PTR.
Variables of any pointer type may be assigned to variables of type
PTR. If a formal variable parameter is of type PTR, the corres-
ponding actual parameter may be any pointer type. If the actual
parameter is a pointer to a record type T the address of the type
descriptor of T is passed as the actual parameter.

The procedures contained in module SYSTEM are listed in the
following tables. Most of them correspond to single instructions
compiled as in-line code. For details, the reader is referred to the
processor manual. v stands for a variable, x, y, a, and n for
expressions, and T for a type.

Function procedures

Name Argument types Result type Function

ADR(v) any LONGINT address of variable v
BIT(a, n) a: LONGINT; n: integer BOOLEAN bit n of Mem[a]
CC(n) integer constant BOOLEAN condition n (0 ≤ n ≤ 15)
LSH(x, n) x: integer, CHAR, BYTE; n: integer type of x logical shift
ROT(x, n) x: integer, CHAR, BYTE; n: integer type of x rotation
VAL(T, x) T, x: any type T x interpreted as of type T

 A.12 Appendices to the Language Definition 251

Proper procedures

Name Argument types Function

GET(a, v) a: LONGINT; v := M[a]
 v: any basic type, pointer, procedure type
PUT(a, x) a: LONGINT; M[a] := x
 x: any basic type, pointer, procedure type
GETREG(n, v) n: integer constant; v := Registern
 v: any basic type, pointer, procedure type
PUTREG(n, x) n: integer constant; Registern := v

 x: any basic type, pointer, procedure type
MOVE(a0, a1, n) a0, a1: LONGINT; n: integer M[a1..a1 +n-1] := M[a0..a0 +n-1]
NEW(v, n) v: any pointer; n: integer allocate n bytes of memory;
 assign its address to v

A.12.4 The Oberon Environment

Oberon-2 programs usually run in an environment that provides
command activation, garbage collection, dynamic loading of modules,
and certain run-time data structures. Although not part of the
language, this environment contributes to the power of Oberon-2
and is to some degree implied by the language definition. This
section describes the essential features of a typical Oberon
environment and provides implementation hints. More details can
be found in [WiG92], [Rei91], and [PHT91].

Commands

A command is any parameterless procedure P that is exported
from a module M. It is denoted by M.P and can be activated under
this name from the shell of the operating system. In Oberon, a user
invokes commands instead of programs or modules. This gives the
user a finer grain of control and allows modules with multiple
entry points. When a command M.P is invoked, the module M is
dynamically loaded unless it is already in memory and the pro-
cedure P is executed. When P terminates, M remains loaded. All
global variables and data structures that can be reached from
global pointer variables in M retain their values. When P (or
another command of M) is invoked again, it may continue to use
these values.

252 Appendix A Oberon-2 Language Definition

The following module demonstrates the use of commands. It
implements an abstract data structure Counter that encapsulates a
counter variable and provides commands to increment and print
its value.

MODULE Counter;
IMPORT Texts, Oberon;

VAR
 counter: LONGINT;
 w: Texts.Writer;

PROCEDURE Add*; (*takes a numeric argument from the command line*)
 VAR s: Texts.Scanner;
BEGIN
 Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos);
 Texts.Scan(s);
 IF s.class = Texts.Int THEN INC(counter, s.i) END
END Add;

PROCEDURE Write*;
BEGIN
 Texts.WriteInt(w, counter, 5); Texts.WriteLn(w);
 Texts.Append(Oberon.Log, w.buf)
END Write;

BEGIN counter := 0; Texts.OpenWriter(w)
END Counter.

The user may execute the following two commands:

Counter.Add n adds value n to variable counter
Counter.Write writes current value of counter to screen

Since commands are parameterless, they have to get their
arguments from the operating system. In general, commands are
free to take arguments from anywhere (e.g., from the text
following the command, from the most recent selection, or from a
marked viewer). The command Add uses a scanner (a data type
provided by the Oberon system) to read the value that follows it
on the command line.

When Counter.Add is invoked for the first time, the module
Counter is loaded and its body is executed. Every call of
Counter.Add n increments the variable counter by n. Every call of
Counter.Write writes the current value of counter to the screen.

Since a module remains loaded after the execution of its
commands, there must be an explicit way to unload it (e.g., when

 A.12 Appendices to the Language Definition 253

the user wants to substitute a recompiled version for the loaded
version.) The Oberon system provides a command to do that.

Dynamic Loading of Modules

A loaded module may invoke a command of a still unloaded
module by calling the loader and passing the name of the desired
command as a parameter. The specified module is then dynami-
cally loaded and the designated command is executed. Dynamic
loading allows the user to start a program as a small set of basic
modules and to extend it by adding further modules at run time as
the need becomes evident.

A module M0 may cause the dynamic loading of a module M1
without importing it. M1 may of course import and use M0, but
M0 need not know about the existence of M1. M1 can be a module
that is designed and implemented long after M0.

Garbage Collection

In Oberon-2, the predeclared procedure NEW is used to allocate
data blocks in free memory. There is, however, no way to explicitly
dispose of an allocated block. Rather, the Oberon environment
uses a garbage collector to find the blocks that are not referenced by
a pointer any more and to make them available for allocation
again.

A garbage collector frees a programmer from the nontrivial
task of deallocating data structures correctly and thus helps to
avoid errors. However, it requires information about dynamic data
at run time.

Browser

The interface of a module (the declaration of the exported objects)
is extracted from the module by a browser, which is a separate tool
of the Oberon environment. For example, the browser produces
the following interface of the module Trees from A.11.

DEFINITION Trees;
 TYPE
 Tree = POINTER TO Node;
 Node = RECORD
 name: POINTER TO ARRAY OF CHAR;
 PROCEDURE (t: Tree) Insert (name: ARRAY OF CHAR);
 PROCEDURE (t: Tree) Search (name: ARRAY OF CHAR): Tree;

254 Appendix A Oberon-2 Language Definition

 PROCEDURE (t: Tree) Write;
 END;
 PROCEDURE Init (VAR t: Tree);
END Trees.

For a record type, the browser also collects all procedures bound to
this type and shows their declaration in the record type
declaration.

Run-Time Data Structures

Certain information about records has to be available at run time:
The dynamic type of records is needed for type tests and type
guards. A table with the addresses of the procedures bound to a
record is needed for calling them using dynamic binding. Finally,
the garbage collector needs information about the locations of
pointers in dynamically allocated records. All that information is
stored in type descriptors, of which there is one for every record
type at run time. The following paragraphs show a possible
implementation of type descriptors.

The dynamic type of a record corresponds to the address of its
type descriptor. For dynamically allocated records, this address is
stored in a type tag, which precedes the actual record data and is
invisible to the programmer. If t is a variable of type CenterTree
(see the example in A.6), Figure A.12.1 shows one possible
implementation of the run-time data structures.

t

t^

Type descriptor
of CenterNode

ProcTab

BaseTypes

Pointer offsets in t^
(for garbage collector)

Type tag

key
left
right
width
subnode

4

0
4
8

12
16

Node
CenterNode

8
16

NIL
NIL

Fig. A.12.1 A variable t of type CenterTree, the record t^ of type
CenterNode, and its type descriptor

Since both the table of procedure addresses and the table of pointer
offsets must have a fixed offset from the type descriptor address,

 A.12 Appendices to the Language Definition 255

and since both may grow when the type is extended and further
procedures and pointers are added, the tables are located at the
opposite ends of the type descriptor and grow in different
directions.

A type-bound procedure t.P is called as t.tag.ProcTab[IndexP].
The procedure table index of every type-bound procedure is
known at compile time. A type test v IS T is translated into
v.tag.BaseTypes[ExtensionLevelT] = TypeDescrAdrT. Both the exten-
sion level of a record type and the address of its type descriptor are
known at compile time. For example, the extension level of Node is
0 (it has no base type), and the extension level of CenterNode is 1.

B The Module OS

OS is a cover module for various constants, types, variables and
procedures of the Oberon System that are used in examples
throughout this book. It serves to keep the interface between the
examples and the Oberon System small and permits us to avoid a
description of the complete Oberon module library. (Interested
readers are referred to [Rei91].)

DEFINITION OS; Interface of OS
 IMPORT Display, Files, Fonts; (*Oberon modules that are not explained here*)

 CONST
 right = 0; middle = 1; left = 2; (*mouse button codes*)
 ticks = 300; (*OS.Time returns the time in units of 1/ticks seconds*)

 TYPE
 File = Files.File;
 Font = Fonts.Font;
 Message = RECORD END; (*base type for all message records*)
 Object = POINTER TO ObjectDesc;
 Pattern = Display.Pattern;

 Rider = RECORD (Files.Rider) (*read/write position in a file*) Rider
 PROCEDURE (VAR r: Rider) Set (f: Files.File; pos: LONGINT);
 PROCEDURE (VAR r: Rider) Read (VAR x: CHAR);
 PROCEDURE (VAR r: Rider) ReadString (VAR s: ARRAY OF CHAR);
 PROCEDURE (VAR r: Rider) ReadInt (VAR x: INTEGER);
 PROCEDURE (VAR r: Rider) ReadLInt (VAR x: LONGINT);
 PROCEDURE (VAR r: Rider) ReadObj (VAR x: Object);
 PROCEDURE (VAR r: Rider) ReadChars
 (VAR x: ARRAY OF CHAR; n: LONGINT);
 PROCEDURE (VAR r: Rider) Write (x: CHAR);
 PROCEDURE (VAR r: Rider) WriteString (s: ARRAY OF CHAR);
 PROCEDURE (VAR r: Rider) WriteInt (x: INTEGER);
 PROCEDURE (VAR r: Rider) WriteLInt (x: LONGINT);
 PROCEDURE (VAR r: Rider) WriteObj (x: Object);
 PROCEDURE (VAR r: Rider) WriteChars
 (VAR x: ARRAY OF CHAR; n: LONGINT);
 END;

256 Appendix B Module OS

 ObjectDesc = RECORD Object
 PROCEDURE (x: Object) Load (VAR r: Rider);
 PROCEDURE (x: Object) Store (VAR r: Rider);
 END;

 VAR
 Caret-: Pattern;
 screenH-, screenW-: INTEGER; (*screen height and width in pixels*)

 PROCEDURE CopyBlock (sx, sy, w, h, dx, dy: INTEGER); Screen operations
 PROCEDURE FillBlock (x, y, w, h: INTEGER);
 PROCEDURE EraseBlock (x, y, w, h: INTEGER);
 PROCEDURE InvertBlock (x, y, w, h: INTEGER);
 PROCEDURE DrawPattern (pat: Pattern; x, y: INTEGER);
 PROCEDURE DrawCursor (x, y: INTEGER);
 PROCEDURE FadeCursor;

 PROCEDURE DefaultFont (): Font; Font operations
 PROCEDURE FontWithName (name: ARRAY OF CHAR): Font;
 PROCEDURE GetCharMetric (f: Font; ch: CHAR;
 VAR dx, x, y, w, h: INTEGER; VAR pat: Pattern);

 PROCEDURE AvailChars (): INTEGER; Mouse and

keyboard
operations

 PROCEDURE ReadKey (VAR ch: CHAR);
 PROCEDURE GetMouse (VAR buttons: SET; VAR x, y: INTEGER);

 PROCEDURE NewFile (name: ARRAY OF CHAR): File; File operations
 PROCEDURE OldFile (name: ARRAY OF CHAR): File;
 PROCEDURE Register (f: File);
 PROCEDURE InitRider (VAR r: Rider);

 PROCEDURE NameToObj (name: ARRAY OF CHAR; VAR obj: Object); Miscellaneous
 PROCEDURE Move (VAR fromBuf: ARRAY OF CHAR; from: LONGINT;
 VAR toBuf: ARRAY OF CHAR; to, n: LONGINT);
 PROCEDURE Time (): LONGINT;
 PROCEDURE Call (command: ARRAY OF CHAR);

END OS.

CopyBlock (sx, sy, w, h, dx, dh) Screen operations
 copies the rectangular screen area (sx, sy, w, h) to (dx, dy, w, h).
FillBlock (x, y, w, h)
 fills the rectangular screen area (x, y, w, h).
EraseBlock (x, y, w, h)
 deletes the rectangular screen area (x, y, w, h).
InvertBlock (x, y, w, h)
 inverts the rectangular screen area (x, y, w, h).
DrawPattern (pat, x, y)
 copies the rectangular bit pattern pat to the screen position

with left bottom corner (x, y).

Appendix B Module OS 257

DrawCursor (x, y)
 moves the mouse pointer to position (x, y).
FadeCursor
 hides the mouse pointer.

f := DefaultFont () Font operations
 returns the standard font.
f := FontWithName (n)
 returns the font with the name n.
GetCharMetric (fnt, ch, dx, x, y, w, h, pat)
 returns the character metrics (x, y, w, h, dx) and the bit pattern

pat of the character ch in font fnt. The meaning of the metrics is
shown in Fig. 11.22.

n := AvailChars () Mouse and

keyboard
operations

 returns the number of characters in the keyboard buffer.
ReadKey (ch)
 reads and removess the next character ch from the keyboard

buffer. If the buffer is empty, the method stalls until a cha-
racter is typed in.

GetMouse (b, x, y)
 returns the mouse coordinates (x, y) relative to the lower left

corner of the screen as well as the set b of pressed mouse
buttons (0 = right, 1 = middle, 2 = left).

f := NewFile (n) File operations
 creates a new (temporary) file f with name n and opens it.
f := OldFile (n)
 opens an existing file f with name n. If no such file exists, f =

NIL.
Register (f)
 transforms the temporary file f created with NewFile into a

permanent file.
InitRider (r)
 initializes the rider r (see Section 8.3).

r.Set (f, pos) Methods of class

Rider sets rider r to position pos in file f.
r.Read (ch)
 reads character ch from rider r.
r.ReadInt (x)
 reads integer x from rider r.

258 Appendix B Module OS

r.ReadLInt (x)
 reads long integer x from rider r.
r.ReadString (s)
 reads string s (stored in compressed form) from rider r.
r.ReadChars (buf, len)
 reads len characters from rider r into buffer buf.
r.ReadObj (obj)
 creates and reads an arbitrary object written with WriteObj

and returns it in obj (see Section 8.3).
r.Write (ch)
 writes character ch to rider r.
r.WriteInt (x)
 writes integer x to rider r.
r.WriteLInt (x)
 writes long integer x to rider r.
r.WriteString (s)
 writes string s in compressed form to rider r.
r.WriteChars (buf, len)
 writes len characters from buffer buf to rider r.
r.WriteObj (obj)
 writes an arbitrary object obj to rider r (see Section 8.3).

NameToObj (name, obj) Other operations
 The parameter name is a string of the form "M.T". NameToObj

creates a record of type T exported by module M and returns a
pointer to it in obj. If the module or type name is incorrect or
the created object is not assignment compatible with obj, NIL
is returned.

Move (buf0, pos0, buf1, pos1, len)
 copies len bytes from buf0[pos0] to buf1[pos1].
t := Time ()
 returns the elapsed time since system start in 1/ticks seconds

(ticks being a constant declared in OS).
Call (cmd)
 activates the command cmd and loads the module containing

the command if it is not already loaded.

C The Module IO

Module IO handles simple input/output of numbers, characters
and strings. Input is handled via a scanner that is able to read
various symbols in a text. Output is via procedures.

To read a text, a scanner s is set to the desired text position via
s.Set. Successive symbols can be read via s.Read.

For output, a text t must be assigned to the variable out and its
write position must be set via t.SetPos. Output routines write to
the text out starting at position out.pos.

DEFINITION IO; Interface of IO
 IMPORT Texts0;

 CONST none = 0; integer = 1; name = 2; string = 3; char = 4;

 TYPE
 Scanner = RECORD Scanner
 text-: Texts0.Text; (*text to which scanner is set*)
 class-: INTEGER; (*class of recognized symbol*)
 int-: LONGINT; (*filled if class=integer*)
 str-: ARRAY 32 OF CHAR; (*filled if class=string or name*)
 ch-: CHAR; (*filled if class=char*)
 PROCEDURE (VAR s: Scanner) Set (t: Texts0.Text; pos: LONGINT);
 PROCEDURE (VAR s: Scanner) SetToParameters;
 PROCEDURE (VAR s: Scanner) Read;
 PROCEDURE (VAR s: Scanner) Eot (): BOOLEAN;
 PROCEDURE (VAR s: Scanner) Pos (): LONGINT;
 END ;

 VAR out: Texts0.Text; (*output procedures write to this text*)

 PROCEDURE Ch (ch: CHAR); Output routines
 PROCEDURE Str (s: ARRAY OF CHAR);
 PROCEDURE Int (x: LONGINT; w: INTEGER);
 PROCEDURE Real (x: REAL; w: INTEGER);
 PROCEDURE NL;

END IO.

260 Appendix C Module IO

s.Set(t, pos) Scanner
messages sets the scanner s to position pos in text t.

s.SetToParameters
 sets the scanner s to the text after the last command clicked.

This permits reading of command parameters.
s.Read
 reads the next symbol from the current scanner position and

returns its value in s.int, s.str or s.ch. s.class specifies the kind
of symbol read. Blanks are skipped. Examples:

 Input Kind of Symbol Value in
 <eot> s.class = none –
 123 s.class = integer s.int
 -123 s.class = integer s.int
 xxx s.class = name s.str
 xxx.yyy s.class = name s.str
 "xxx" s.class = string s.str (no quotes)
 other s.class = char s.ch

bool := s.Eof ()
 returns TRUE if no more symbols can be read from the

scanner s, otherwise FALSE.
pos := s.Pos ()
 returns the current text position of the scanner s.

Str(s) Output routines
 outputs the string s.
Ch(ch)
 outputs the character ch.
Int(i, w)
 outputs the signed integer i right-justified in a character field

of width w.
Real(r, w)
 outputs the real number r in a character field of width w (e.g.,

Real(123.45, 7) = 0.12E02).
NL
 causes a line feed.

D How to Get Oberon

The Oberon System, including the Oberon-2 compiler and various
tools such as a text editor, a graphics editor and a browser, is
available at no cost. It can either be obtained via ftp from ETH
Zurich or ordered from Springer-Verlag on diskette.

The Oberon System is currently available for Sun SPARC-
Station, DECstation, IBM RS/6000, Apple Macintosh II and IBM-
PC (MS-DOS). Oberon-2 compilers are currently available for Sun
SPARCStation, DECstation and IBM RS/6000.

The parameters for the ftp program are:

Oberon

Platforms

ftp

Ftp host name: neptune.inf.ethz.ch
Internet address: 129.132.101.33
Login name: ftp
Password: <your e-mail address>
Ftp directory: Oberon

Oberon can also be purchased from Springer-Verlag on diskette.
Please specify the computer version.

In addition to this book on Oberon-2 and its application in
object-oriented programming, the following books serve as a
documentation of Oberon:

Diskette

Documentation

• N. Wirth and M. Reiser Programming in Oberon. Steps beyond

Pascal and Modula-2. Addison-Wesley 1992
 Tutorial for the Oberon programming language and concise

language reference.

• M. Reiser: The Oberon System. User Guide and Programmer's

Manual. Addison-Wesley, 1991
 User manual for the programming environment and reference

for the standard module library.

262 Appendix D How to get Oberon

• N. Wirth and J. Gutknecht: Project Oberon. Addison-Wesley, 1992
 Program listings with explanations for the whole Oberon

System, including the compiler for the NS32000.

The source code for Oberon0 described in Chapter 11 can also be
obtained at no cost so that the reader can play with it and extend
it. The source code is available via the same ftp address as
specified above. It is in the subdirectory Oberon0. If the Oberon
System is purchased on diskette, the source code of Oberon0 is
included.

Oberon0

Bibliography

[Abb83] Abbott R.: Program Design by Informal English
Descriptions. Communications of the ACM, 26 (11),
1983

[BDMN79] Birtwistle G.M., Dahl O.-J., Myhrhaug B., Nygaard K.:
Simula Begin, Studentlitteratur, Lund, Sweden, 1979

[BeC89] Beck K., Cunningham W.: A Laboratory for Teaching
Object-Oriented Thinking. Proceedings OOPSLA'89.
SIGPLAN Notices, 24 (10), 1989

[Boo91] Booch G.: Object-Oriented Design with Applications.
Benjamin Cummings, 1991

[Bud91] Budd T.: Object-Oriented Programming. Addison-
Wesley, 1991

[Cha92] Chambers C.: The Design and Implementation of the
SELF Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages. Ph.D. thesis,
Stanford, 1992

[CoY90] Coad P., Yourdon E.: Object-Oriented Analysis.
Prentice Hall, 1990

[Deu89] Deutsch P.: Design Reuse and Frameworks in the
Smalltalk-80 System. In Biggerstaff T.J., Perlis A.J.
(ed.): Software Reusability, Volume 2, ACM Press,
1989

264 Bibliography

[DoD83] Reference Manual for the Ada Programming
Language (ANSI/MIL-STD-1815A), United States
Departement of Defense, Washington D.C., 1983

[GWM88] Gamma E., Weinand A., Marty R.: ET++ – An Object-
Oriented Application Framework in C++. Proceedings
OOPSLA'88, SIGPLAN Notices, 23 (11), 1988

[GoR83] Goldberg A., Robson D.: Smalltalk-80, The Language
and its Implementation. Addison-Wesley, 1983

[Hof90] Hoffman D.: On Criteria for Module Interfaces. IEEE
Trans. on Software Engineering, 16 (5), 1990

[JoF88] Johnson R.E., Foote B.: Designing Reusable Classes.
Journal of Object-Oriented Programming, June/July
1988

[KrP88] Krasner G., Pope S.: A Cookbook for Using the MVC
User Interface Paradigm in Smalltalk. Journal of
Object-Oriented Programming Aug./Sep. 1988

[Mey86] Meyer B.: Genericity versus Inheritance. Proceedings
OOPSLA'86, SIGPLAN Notices, 21 (11), 1986

[Mey87] Meyer B.: Object-Oriented Software Construction.
Prentice Hall, 1987

[Par72] Parnas D.L.: On the Criteria to be Used in
Decomposing Systems into Modules,
Communications of the ACM, 15 (12), 1972

[PHT91] Pfister C., Heeb B., Templ J.: Oberon Technical Notes.
Computer Science Report 156, ETH Zürich, March
1991

[RBP91] Rumbaugh J., Blaha M., Premerlani W., Eddy F.,
Lorensen W.: Object-Oriented Modeling and Design.
Prentice Hall, 1991

[Rei91] Reiser M.: The Oberon System; Users Guide and
Programmers Manual. Addison-Wesley, 1991

[ReW92] Reiser M., Wirth N.: Programming in Oberon. Steps
Beyond Pascal and Modula-2. Addison-Wesley, 1992

[Sch86] Schmucker K.J.: Object-Oriented Programming for the
Macintosh. Hayden, 1986

[Sed88] Sedgewick R.: Algorithms. Addison-Wesley, 1988

 Bibliography 265

[ShM88] Shlaer S., Mellor S.: Object-Oriented Systems Analysis:
Modeling the World in Data. Yourdon Press, 1988

[Str86] Stroustrup B.: The C++ Programming Language,
Addison-Wesley, 1986 (second edition 1991)

[Str89] Stroustrup B.: Multiple Inheritance for C++.
Proceedings EUUG Spring Conference, Helsinki, May
1989

[Swe85] Sweet R.E.: The Mesa Programming Environment.
SIGPLAN Notices, 20 (7), 1985

[Szy92] Szyperski C.A.: Write–ing Applications. Proceedings
of Tools Europe 92, Dortmund, 1992

[Web89] Webster B.F.: The NeXT Book. Addison-Wesley, 1989

[WiG92] Wirth N., Gutknecht J.: Project Oberon. The Design of
an Operating System and Compiler. Addison-Wesley,
1992

[Wir71] Wirth N.: Program Development by Stepwise
Refinement. Communications of the ACM, 14, (4),
1971

[WiW89] Wirfs-Brock A., Wilkerson B.: Variables Limit
Reusability. Journal of Object-Oriented Programming,
May/June 1989

[WWW90] Wirfs-Brock R., Wilkerson R., Wiener L.: Designing
Object-Oriented Software. Addison-Wesley, 1990

Index

applications for OOP 79 & 235
arithmetic expressions 21 0X (terminal character) 247
arithmetic operators 235
array compatibility 244, 251 Abbott's method 131
array types 19, 230, 232, 234 ABS 246
AsciiTexts 171, 173 abstract

classes 69, 135 ASH 246
assignment 237 classes as design 71

data structure 36, 37 assignment compatibility 57, 58, 237,
241, 244, 251 data types 8, 10, 15, 39, 40, 79

asterisk 26, 228 figures 88
atomicity 133, 134 methods 71, 222
attr 179 output medium 91

abstract data structures 36, 37 AttrDesc 179
Attribute 177, 179 advantages 38
attribute abstract data types 8, 10, 15, 39, 40,

79 list 177, 183, 184
node 184 abstraction 126, 219

mechanisms 13 segments 183, 184
AvailChars 260, 261 medium 29
 access 217, 220, 222, 223
Backus-Naur Formalism 225 actual parameters 23, 243, 244, 251
BallItem 115 acyclic graph 113
BallProcess 115 Ada 81

adaptable components 93 base class 53
base types 9, 18, 53, 56, 57, 230, 231,

250
Add 50
ADR 254

beg 179 alias 247
BEGIN 247 allocation 232
behavior 220 application

at run time 91 domains 148
frameworks 153, 155 common 69, 167

replaceable 29, 79, 91 independence 148
benefits of OOP 219 application-specific tasks 148

268 Index

when to use 139 BIT 254
Clear 26, 37, 40, 45, 49, 171, 174, 182 block 228
clients 36, 38, 137 BOOLEAN 230, 235, 236
clipping 197, 209 boolean expressions 21, 239, 240
Close 162, 165, 166 bottom-up 126
cmdFrame 191 broadcast 76, 166
cmdPos 191 browser 27, 222, 257
collaboration graphs 138 BYTE 254
commands 29, 248, 255, 256

activation 255 C++ 223
arguments 30, 256 Call 198, 260, 262
purpose 31 CAP 246
use of 256 CapTerminal 68

comments 227 caret 191
common behavior 69, 167 case
common interface 71 analysis 6, 87
commonalities 148 distinctions 89
compatibility 9, 57, 67, 108, 217, 232 labels 239

statement 239 assignment 57, 58, 237, 241, 244,
251 case sensitivity 225

expression 235, 241, 251 case study 157
of base type and extension 56 casting text 185

compilation 28 CC 254
compilation units 29, 47 Ceres computer 254
compile time 259 Ch 264
complex class libraries 113 ChangeFont 177, 182, 200, 201
complexity 79, 139, 219 CHAR 230
components 219, 220, 224 character constants 227
composite data types 19 character metrics 189
comprehension 219, 221 CHR 246
compression of type names 107, 108 Circle 88
computer game 114 class (see classes)
concentrating behavior 129 interface 132
concepts 221 hierarchy 145, 222
concrete classes 95 libraries 113, 221
concrete data structures 33, 36 multiple interfaces 85

drawbacks 36 class relationships
has-a 136, 143 concrete figures 88

concurrency 168 is-a 137, 143
conflicting criteria 134 uses-a 137
consistency 133 classes 10, 13, 15, 43, 219, 221
constant declaration 229 alternatives 140
constant expression 229 and modules 47
constants 229 identifying 127
cont 163 physical/logical entities 128

relationships 136 Contains 50

 Index 269

abstract classes 136 contents frame 159
as language design 135 contract 136
class library 221 control 168
class relationships 136 control flow 150
considerations 128, 129 control variable 240
CRC cards 131 Copy 163, 166, 178, 180, 188, 197,

203, 204, 206, 209, 213, 215, 247 data abstraction 140
data fields 129 CopyBlock 260
deriving classes 131 CopyTo 49
errors 141 costs of OOP 221
finding classes 128 coupling 217

CRC cards 131 for reusability 136
functional 125 creating objects 100
identifying classes 128 CryptFile 73
identifying methods 128 curShape 204
learning from others 130 cyclic import 247

 mistakes 129
modeling 128

data 11 object-oriented 125
data abstraction 8, 33, 140, 223 patterns 98, 130

cost of 80 subclasses 135
data packages 76 verbal specification 131
data structures when classes 139

abstract 36 without classes 140
concrete 33 design errors 141
extensible 168 class hierarchy 145
heap 33 confusing relationships 143
heterogeneous 86, 168 identical variants 144
priority queue 33 superclass and subclass 144

data type 18 trivial classes 142
abstract 39 wrong class 145

DEC 247 designators 233, 234
decimal 226 DESStream 110
declaration 18, 25, 228 development time 220
decomposing programs into

procedures 5
dialog programs 153, 154
diamond structure 112

decomposition 5, 6, 130 Dictionaries 120
DefaultFont 260, 261 dictionary 25, 26, 30, 120
Defocus 161, 163, 188, 194 digit 226
Delete 171, 174, 181 direct access 48
DeleteSelected 203, 204 directed acyclic graphs 113
deleting 172 DiskFile 70, 72
delimiters 227 displaying text 185
dereferencing 234 distinguishing object variants 68
design 71, 98, 126, 158 distributed responsibilities 11

Abbott's method 131 distributed state 11

270 Index

Enter 26 distribution of functionality 222
ENTIER 246 DIV 235, 251
Eof 264 documentation 222
equal types 250 Draw 161, 163, 164, 178, 179, 187,

194, 203, 204, 205, 208, 209,
212, 215, 216

EraseBlock 260
errors in code 220
event loop 154, 168 Draw0 201, 210
event-driven applications 154 DrawCursor 260, 261
Excl 49, 247 drawing primitives 209
existing code 7 DrawLine 197
exit DrawPattern 260

condition 241 dsc 179
points 241 dx 190
statement 241, 242 dynamic

export 25, 231 allocation of memory 20
export mark 26, 228, 247 binding 8, 67, 221, 223, 245, 258
expression compatibility 235, 241, 251 extensibility 153
expressions 20, 233, 234, 237, 251 loading 90, 102, 212, 223, 255, 257

type 59, 61, 69, 111, 233, 236, 237,
238, 242, 245, 251, 258

arithmetic 21
boolean 21

 relational 21
set 22

early binding 67 extended type 8
EBNF 225 extensibility 53, 63, 65, 89, 90, 96,

109, 147, 152, 184, 220, 224 Edit0 199, 200
editing text 185 dynamic 153
editors 151 in multiple dimensions 109
efficiency 48, 222 run-time 153
Eiffel 81, 83 extensible data structures 168
Elem 120, 179 extensible viewer system 168
ElemDesc 179 extension 9, 53, 56, 57, 97, 135, 140,

148, 156, 176, 184, 199, 231,
232, 233, 236, 242, 250, 251

Element 153, 176, 178, 179, 215
element type 230
elementary statements 22, 237 approaches 64
elements 152, 176, 177, 178, 199, 213,

217
at run time 101
by inheritance 65

ElemPos 177, 182 embedding 64
Ellipse 102 level 259
Ellipses 103 modify duplicate 64
ELSE 239 modify original 64
embedding 64 of concrete classes 95
embedding elements 213 empty statement 237
encapsulation 7, 38, 47, 139 factoring out common behavior 69
EncryptionStream 110 FadeCursor 260, 261
end 179 fields 231

 Index 271

procedures 246 Figure 50, 54, 55, 87, 88, 101, 105
stack 83 FigureFrames 101

genericity 81, 85, 106, 199 figures 101, 202, 206
GET 255 abstract 88
GetBox 203, 204, 205, 213 concrete 88
GetCharMetric 260, 261 File 133
GetCharPos 198 file operations 260, 261
GetMetric 197 FillBlock 260
GetMouse 260, 261 finding classes 127
GetPointPos 198 finding objects 126
GETREG 255 flexibility 222
GetSelection 197, 199 fnt 179
global procedures 48 focus 163
global variables 48 focus frame 162, 168
Graphic 202, 204, 208 font operations 260, 261

fonts 176, 184 graphic elements 214, 216
in text 213 FontWithName 260, 261

for statement 240 graphical notation 138
graphical representation 55 formal parameters 23, 232, 242, 243,

244, 251 GraphicElems0 215, 217
GraphicFrames0 206, 208 forward declaration 243, 245
graphics editor 86, 88, 108, 201, 210 Frame 92, 96, 97, 101, 117, 118, 122,

159, 160, 162, 167, 170, 186,
190, 208, 214, 216

graphics frame 206, 214, 216, 217
growing and shrinking texts 172
guard 239, 240 frames 91, 118, 159, 161
guarded statement sequences 239 classes 96

 coordinates 160
layout 189

h 163, 179 methods 163
HALT 247 metrics 188
Handle 161, 163, 165, 188, 195, 198,

199, 209, 210
frameworks 85, 147, 148

example 149, 150, 151, 220
HandleKey 161, 163, 188, 195 function designator 244
HandleMouse 161, 163, 164, 178, 179,

188, 194, 198, 208, 210, 215, 216
function procedures 24, 241, 243, 244,

246, 254
handling 168 functional decomposition 125
has-a relationship 137 functional design 125
heap 33 future modifications 130
heterogeneous data structures 86, 90, 220

list 89 gap 172
hexadecimal 226 garbage collection 20, 255, 257, 258
hierarchy generality 223

levels 222 generic 81
of classes 145, 222 binary tree 81

components 81, 220 of procedures 125

272 Index

interpretation of messages 61 Hollywood principle 150
Intersect 50 hook method 123
InvertBlock 207, 208, 209, 260 hybrid languages 16, 139, 223
IO 263 hypertext 152

 IS 61, 236, 259
Is-a relationship 55, 108, 137

identifiers 226, 228 iteration 22
identifying iterator class 120

classes 127, 128 iterators 120, 121
data fields 129 methods 128

idle 168 keyboard input 168, 185
if statement 239 keyboard operations 260, 261

 import 27, 247
IN 236

language definition 225 INC 247
language extension 41 Incl 49, 247
late binding 67 independent compilation 28
layer around Text 95 information hiding 7, 39, 47, 130, 220
learning effort 221 inheritance 8, 17, 53, 122, 221
len 173, 246 multiple 66, 112
length 230 relationship 55
lexical rules 226 Init 49
Line 88, 190 InitGraphic 204
line descriptor 189, 190 initialization of objects 99
line metrics 189 initialization procedure 99
linker 223 InitRider 260, 261
linking loader 31 input/output 263
Load 172, 174, 180, 182, 203, 206,

213, 215, 260
procedures 106

Insert 40, 45, 171, 174, 180, 203, 204,
216 local 228, 243

locality of code and data 51, 219 inserting text 172
localization 89 insertion point 172
localized code 76 Int 264
location 187 integer types 226, 230, 250
logical entities 128 interactive programs 116, 170
logical operators 235 interchangeable components 29
LONG 246 interface 25, 27, 67, 132, 135, 161,

171, 186, 214, 219 LONGINT 230
LONGREAL 230 checking 27
Lookup 26 criteria 133
Loop 169 description 27
loop statement 241 design 133, 135
low-level operations 254 of abstract classes 71
LSH 254 of Oberon0 168

 InterfaceItem 135

 Index 273

and classes 47 MacApp 155
purpose 29 machine-oriented programs 13

monadic operators 235 maintainability 219
mouse match 232, 243, 245, 251

matching formal parameter lists 252 buttons 206
clicks 168, 186 MAX 246
movements 122 MeasureLine 197
operations 260, 261 memory allocation 20

Move 161, 163, 164, 203, 204, 212,
255, 260, 262

menu 163
menu frame 159

MoveSelected 203, 205 menu selection 149
multiple inheritance 66, 112 message 10, 44, 67

avoiding 113 flow 117
drawbacks 112 forwarding 111
run-time costs 113 handler 74, 118

multiple interfaces 85 handling 111
multiprogramming 168 understanding 76

message records 58, 74, 121 MVC concept 116, 117, 159, 169,
170, 185, 199, 201 advantages 76

MVC framework 150 drawbacks 77

 interpretation 77
using 75

name clashes 112 messages 10, 67
NameToObj 210, 260, 262 to ASCII texts 171
naming 51 to elements 178
naming conventions 134 to figures 202
nested blocks 228 to frames 161
nested comments 227 to graphics 203
Neutralize 161, 163, 164, 188, 194,

203, 204, 205
to text frames 187
to texts 177

NEW 72, 100, 165, 197, 209, 232,
247, 255

to viewers 161
methods 10, 17, 43, 44, 136, 145

NewFile 260, 261 notation 46
NewMenu 197 Meyer 64
next 163 MIN 246
NIL 232, 236, 261 mnemonic operation names 14
NL 264 MOD 235, 251
Node 81 Model/View/Controller 116, 150
nonterminal symbols 225 modifications 126, 130, 133
notify messages 176 Modify 161, 163, 164, 188, 194, 208
NotifyChangeMsg 204, 210 Modula-2 17, 225
NotifyDelMsg 179, 198 modularity 224
NotifyInsMsg 179, 198 module 38, 247
NotifyReplMsg 179, 198 body 28
numbers 226 interface 25
numeric types 230, 250, 251 modules 14, 25

274 Index

 subclasses 135
verbal specification 131

Oberon 17, 90, 96, 104, 157, 217, 223,
225, 255

when classes 139
without classes 140

books 265 object-oriented programming 1, 10,
63, 147, 157 commands 29, 159, 198

documentation 265 assessment 224
environment 255 benefits of 219
interface extraction 27 contrast with conventional 10
module 168 costs and benefits 219
operating system 17, 29 costs of 221
run-time environment 17 future 224

Oberon System 2, 117, 118, 151, 154,
157, 168, 212, 255, 265

languages 7, 17
properties 16

Oberon-2 16, 17, 225 strengths 1
basic types 18 object-oriented programming

languages 7, 17 compiler 265
expressions 20 history 15
features 18, 225 object-oriented terminology 10
procedures 23 object-oriented thinking 6
syntax 225, 253 Object-Pascal 16, 223

Oberon0 157, 169 objects 10, 105, 126, 259
components 158 as variable parameters 58
source code 266 finding 126

object (see objects) in texts 151
object-oriented design 125, 126 ODD 246

Abbott's method 131 offsets 258
abstract classes 136 OldFile 260, 261
advantages 126 Open 200, 210, 211
class library 221 open array 20, 244
class relationships 136 open array parameter 24
considerations 128, 129 open/closed principle 64
CRC cards 131 operands 233
data abstraction 140 operating system 255, 256
data fields 129 operations 139
deriving classes 131 operators 227, 233, 234
drawbacks 127 OR 235
errors 141 ORD 246
finding classes 128 org 190, 191
for reusability 136 orgX 208
identifying classes 128 orgY 208
identifying methods 128 OS 157, 259
learning from others 130 overriding methods 55, 122, 123, 166,

222 mistakes 129
modeling 128 patterns 130

 Index 275

components of 243 parallel 168
constants 46 parameter 238
declaration 242 actual 24
heading 242 formal 24
identifier 242 open array 24
invocation 238 value 57
libraries 148 variable 24, 58
table index 259 parameter
type 232, 251 list 234

procedure variables 9, 20, 45, 46, 121 matching lists 252
drawbacks 46 passing 245

procedure-oriented thinking 5 passing rules 244
productivity 147 parameterless 256
program hierarchy 125 Parnas 7
programming by difference 156 Pascal 17, 33
programming by extension 11 persistent objects 103
projection 57, 237 pictures in texts 213
proper procedures 241, 243, 247, 255 platforms 265
PTR 254 pointer 46, 223, 234, 236
public fields 231 assignment 57, 59
PUT 255 base type 232

type 46, 232, 238, 251, 254 PUTREG 255

 variable 19
polymorphism 9, 220

qualified identifiers 228, 247 Port 91
Queue 40, 45 pos 173, 190, 264

 position 187, 190
precedence 234

Read 171, 174, 181, 259, 261, 264
predeclared

read-only export 28, 37, 228, 234
functions 229, 230

readability 219
identifiers 228

ReadChars 259, 262
procedures 246

ReadInt 259, 261
primitives 209

ReadKey 260, 261
Print 26

ReadLInt 259, 262
PrinterPort 92

ReadNextElem 177, 181
priority queue 40, 47

ReadObj 259, 262
abstract data structure 37

ReadString 259, 262
concrete 33

real types 226, 230, 250, 264
PriorityQueue 37

real-world system 128
PriorityQueues 40, 43, 44

receiver 44, 111, 242, 243, 245
private fields 231

record 19, 234, 258
problem-oriented specifications 13

as variable parameter 60
procedural interface 7

assignment 58, 60
procedure 23, 48, 234, 241

fields 228
body 242
call 238, 243

276 Index

scope rules 228 type 231, 232, 236, 237, 245, 251,
259 screen operations 260

screen position 190 Rectangle 54, 56, 74, 88, 212
rectangles 211 ScreenPort 92

scroll bar 186 Rectangles0 212
selBeg 191 recursion 243
selected 203 redefinition 245
selection 22, 239 RedrawFrom 197
SelectionMsg 199 redundancy 133, 134
selEnd 191 referencing 228, 232
semantic gap 13 Register 260, 261
semifinished products 96, 97, 184, 220 relational expressions 21

relational operators 236 separate compilation 28
sequence 240 relations 236

relationships between classes 136, 137 server 136
services 130 Remove 38, 41, 45
Set 49, 213, 230, 236, 259, 261, 264 RemoveCaret 188, 193
set RemoveSelection 188, 194

repeat statement 240 constructor 236
replaceable behavior 29, 79, 91 diagram 95

expressions 22 requirements definition 127
operators 236 reserved words 227

SetBox 204, 212 resizing 158
SetCaret 188, 194 result type 241, 252

return statement 241, 243 SetFocus 161, 163
SetPos 171, 174, 181 reusability 11, 127, 133, 136, 140, 220
Sets 49 reusable design 98
SetSelection 188, 194, 203, 204, 205 reused components 220
SetToParameters 264 rider 259, 261
Shape 202, 203 robustness 133
shape methods 204 ROT 254
shapes 204 run-time
Shapes0 202, 203 behavior 91
shell 255 data structures 255
SHORT 246 extensibility 101, 153
short circuit evaluation 21 extensions 90
SHORTINT 230 inefficiency. 222
simplicity 133 type check 61
Simula 15 type checking 223
SIZE 246 type information 104

 Smalltalk 15, 47, 91, 113, 139, 221,
222

same type 250 smart linkers 223
scanner 256, 263 socket 184
scheduler 92 source code 157
scope 24, 228, 244 specialization 55

 Index 277

symmetry 106 split position 183
syntax of Oberon-2 225, 253 standard
SYSTEM 254 behavior 70
system-specific parts 130 components 221
techniques for OOP 99 operations 14
Terminal 68 types 14
terminal symbols 225 state 154, 168

statement 22, 237 Text 93, 108, 173, 179, 191
text case 239

buffer 172 elementary 22
editor 169, 217 exit 242
insertion 172 for 240
methods 173 if 239
with floating objects 151 loop 241

TextBox 55 repeat 240
sequence 237, 239, 240, 241, 242,

247
TextFigure 108
TextFrame 97, 170
TextFrames0 185, 186, 190 structured 22
Texts0 179 while 240
Time 260, 262 with 242
title bar 158, 166 static
top-down 125 binding 67

type 59, 89, 233, 236, 237, 242 Track 210
tracking mouse movement 122 type checking 15, 61
transitivity 55 stepwise refinement 125
Tree 81, 82, 85 advantages 126
twin class 114, 115 drawbacks 126
type storage inefficiency 223

BYTE 254 Store 172, 175, 180, 182, 200, 203,
206, 210, 211, 213, 215, 260 checking 28

declaration 229 Str 264
descriptor 104, 223, 258, 259 Stream 70, 71, 109
dynamic 233 String 26, 107, 227, 238
extension 17, 53, 220, 250 string constant 251
guard 61, 184, 234, 242 StringNode 83
hierarchy 55 structured statements 22, 237
inclusion 250 structured types 229
names 108 structuring medium 29, 79, 184
PTR 254 Style 94
SET 236 StyledText 94
static 233 subclass 53, 144
tag 258 subsystems 147, 148, 153
test 61, 236, 242, 259 Subtract 50

type-bound procedures 17, 43, 233,
242, 245, 259

superclass 53, 144
symbol file 27
symbols 225

278 Index

uniformity 221
unloading modules 31, 256
up-calls 103
Update 216
update frame 216
user input 168
user-defined data types 14
user-defined procedures 14
user friendliness 154
uses relationship 125, 137

VAL 254
value parameter 24, 57, 238, 243, 244,

245, 252
variable

declarations 232
names 14
parameter 24, 58, 60, 236, 238, 243,

244, 245, 252
variant records 87
variants 75, 86, 109, 130, 139, 168,

220
distinguishing 87

verbal specification 131
Viewer 160, 161, 163, 166, 167, 170,

216
list 162
methods 163
new 167
position 167
system 158

ViewerAt 165
viewers 118, 158
Viewers0 160, 162
virtual languages 135, 221
visibility 231

w 163, 179
while statements 240
windows 158
Wirth 2, 17
with statement 75, 77, 242
wrapping 108, 114
Write 172, 174, 181, 259, 262
WriteChars 259, 262
WriteElem 177, 182
WriteInt 259, 262
WriteLInt 259, 262
WriteObj 259, 262
WriteString 259, 262

x 162, 190
Xerox PARC 15

y 162, 190

	00. Contents.pdf
	Contents

	0. Foreword Wirth.pdf
	Foreword

	0. Preface.pdf
	Preface

	01. Overview.pdf
	1 Overview
	1.1 Procedure-Oriented Thinking
	1.2 Object-Oriented Thinking
	1.3 Object-Oriented Languages
	1.4 How OOP Differs from Conventional Programming
	1.5 Classes as Abstraction Mechanisms
	1.6 History of Object-Oriented Languages
	1.7 Summary

	02. Oberon-2.pdf
	2 Oberon-2
	2.1 Features of Oberon-2
	2.2 Declarations
	2.3 Expressions
	2.4 Statements
	2.5 Procedures
	2.6 Modules
	2.7 Commands

	03. Data Abstraction.pdf
	3 Data Abstraction
	3.1 Concrete Data Structures
	3.2 Abstract Data Structures
	3.3 Abstract Data Types

	04. Classes.pdf
	4 Classes
	4.1 Methods
	4.2 Classes and Modules
	4.3 Examples
	4.4 Common Questions

	05. Inheritance.pdf
	5 Inheritance
	5.1 Type Extension
	5.2 Compatibility of a Base Type and Its Extension
	5.3 Static and Dynamic Type
	5.4 Run-Time Type Checking
	5.5 Extensibility in an Object-Oriented Sense
	5.6 Common Questions

	05. Inheritance.pdf
	5 Inheritance
	5.1 Type Extension
	5.2 Compatibility of a Base Type and Its Extension
	5.3 Static and Dynamic Type
	5.4 Run-Time Type Checking
	5.5 Extensibility in an Object-Oriented Sense
	5.6 Common Questions

	06. Dynamic Binding.pdf
	6 Dynamic Binding
	6.1 Messages
	6.2 Abstract Classes
	6.3 Examples
	6.4 Message Records
	6.5 Common Questions

	07. Typical Applications.pdf
	7 Typical Applications
	7.1 Abstract Data Types
	7.2 Generic Components
	7.3 Heterogeneous Data Structures
	7.4 Replaceable Behavior
	7.5 Adaptable Components
	7.6 Semifinished Products
	7.7 Summary

	08. Useful Techniques.pdf
	8 Useful Techniques
	8.1 Initialization of Objects
	8.2 Extending a System at Run Time
	8.3 Persistent Objects
	8.4 Wrapping Classes in Other Classes
	8.5 Extensibility in Multiple Dimensions
	8.6 Multiple Inheritance
	8.7 Models and Views
	8.8 Iterators
	8.9 Modifying Inherited Methods

	09. Object-Oriented Design.pdf
	9 Object-Oriented Design
	9.1 Functional Design
	9.2 Object-Oriented Design
	9.3 Identifying the Classes
	9.3.1 Basic Design Considerations
	9.3.2 Additional Design Considerations
	9.3.3 Deriving Classes from a Verbal Specification
	9.3.4 CRC Cards

	9.4 Designing the Interface of a Class
	9.5 Abstract Classes
	9.6 Relationships between Classes
	9.7 When to Use Classes
	9.8 Common Design Errors
	9.8.1 Too Many Trivial Classes
	9.8.2 Mixing up Is-a and Has-a Relationships
	9.8.3 Mixing up Superclass and Subclass
	9.8.4 Identical Variants
	9.8.5 Methods Associated with the Wrong Class
	9.8.6 Too Deep or too Flat Class Hierarchy

	10. Frameworks.pdf
	10 Frameworks
	10.1 Subsystems and Frameworks
	10.2 The MVC Framework
	10.3 A Framework for Objects in Texts
	10.4 Application Frameworks

	11. Case Study.pdf
	11 Oberon0 – A Case Study
	11.1 The Viewer System
	11.2 Handling User Input
	11.3 A Text Editor
	11.3.1 Plain Texts (AsciiTexts)
	11.3.2 Texts with Fonts and Elements (Texts0)
	11.3.3 Editing Text (TextFrames0)
	11.3.4 Main Module of Text Editor (Edit0)

	11.4 A Graphics Editor
	11.4.1 Figures (Shapes0)
	11.4.2 Editing Figures (GraphicFrames0)
	11.4.3 Main Module of Graphics Editor (Draw0)
	11.4.4 Rectangles as Special Figures(Rectangles0)

	11.5 Embedding Graphics in Texts

	12. Costs and Benefits.pdf
	12 Costs and Benefits of OOP
	12.1 Benefits of OOP
	12.2 Costs of OOP
	12.3 The Future of OOP

	Appendix A (Report).pdf
	A Oberon-2Language Definition
	A.1 Introduction
	A.2 Syntax
	A.3 Vocabulary and Representation
	A.4 Declarations and Scope Rules
	A.5 Constant Declarations
	A.6 Type Declarations
	A.6.1 Basic Types
	A.6.2 Array Types
	A.6.3 Record Types
	A.6.4 Pointer Types
	A.6.5 Procedure types

	A.7 Variable Declarations
	A.8 Expressions
	A.8.1 Operands
	A.8.2 Operators

	A.9 Statements
	A.9.1 Assignments
	A.9.2 Procedure Calls
	A.9.3 Statement Sequences
	A.9.4 If Statements
	A.9.5 Case Statements
	A.9.6 While Statements
	A.9.7 Repeat Statements
	A.9.8 For Statements
	A.9.9 Loop Statements
	A.9.10 Return and Exit Statements
	A.9.11 With Statements

	A.10 Procedure Declarations
	A.10.1 Formal Parameters
	A.10.2 Type-Bound Procedures
	A.10.3 Predeclared Procedures

	A.11 Modules
	A.12 Appendices to the Language Definition
	A.12.1 Definition of Terms
	A.12.2 Syntax of Oberon-2
	A.12.3 The Module SYSTEM
	A.12.4 The Oberon Environment

	Appendix B (OS).pdf
	B The Module OS

	Appendix C (IO).pdf
	C The Module IO

	Appendix D (Source).pdf
	D How to Get Oberon

	Bibliography.pdf
	Bibliography

	Index.pdf
	Index

