
PL/SQL�User’s Guide
and Reference
Release 2.3
Part No. A32542–1

PL/SQL� User’s Guide and Reference, Release 2.3

Part No. A32542–1
Copyright � 1988, 1996 Oracle Corporation
All rights reserved. Printed in the U.S.A.

Primary Author: Tom Portfolio

Contributors: Cailein Barclay, Gray Clossman, Ken Jacobs, Ken Jensen, Chris
Jones, Cetin Ozbutun, Olga Peschansky, Dave Posner, Ken Rudin, Phil Shaw,
Tim Smith, Scott Urman, Kevin Wharton

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error free.

Oracle, SQL*Forms, SQL*Net, and SQL*Plus are registered trademarks of Oracle
Corporation.
Oracle7, Oracle Forms, Oracle Graphics, Oracle Reports, PL/SQL, Pro*C,
Pro*C/C++, SQL*Module, Server Manager, and Trusted Oracle7 are trademarks
of Oracle Corporation.
All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

P

 iPreface

Preface

L/SQL is Oracle Corporation’s procedural language extension
to SQL, the standard data access language for relational databases.
PL/SQL offers modern software engineering features such as data
encapsulation, information hiding, overloading, and exception
handling, and so brings state–of–the–art programming to the Oracle
Server and Toolset.

Designed to meet the practical needs of software developers, this guide
explains all the concepts behind PL/SQL and illustrates every facet of
the language. Good programming style is stressed throughout and
supported by numerous examples. Here is all the information you need
to understand PL/SQL and use it effectively to solve your information
management problems.

 ii PL/SQL User’s Guide and Reference

Audience

Anyone developing applications for the Oracle Server will benefit
from reading this guide. Written especially for programmers, this
comprehensive treatment of PL/SQL will also be of value to systems
analysts, project managers, and others interested in database
applications. To use this guide effectively, you need a working
knowledge of the following subjects:

• a procedural programming language such as Ada, C, Cobol,
Fortran, Pascal, or PL/I

• the SQL database language

• Oracle concepts and terminology

• Oracle application development tools

You will not find installation instructions or system–specific information
in this guide. For that kind of information, see the Oracle installation or
user’s guide for your system.

What’s New in This Edition?

Release 2.3 of PL/SQL offers an array of new features to help you build
better database applications. For example, now you can benefit from

• support for file I/O

• PL/SQL table improvements such as PL/SQL table attributes and
support for PL/SQL tables of records

• cursor variable improvements such as weak REF CURSOR types
and support for cursor attributes

• a new fast–integer datatype

• full support for subqueries

• a new remote dependency mode

For more information, see Appendix A.

User’s Guide

 iiiPreface

How This Guide Is Organized

The PL/SQL User’s Guide and Reference is divided into three parts: a
user’s guide, a language reference, and appendices.

This part introduces you to PL/SQL and shows you how to use its
many features.

Chapter 1: Overview
This chapter surveys the main features of PL/SQL and points out the
advantages they offer. It also acquaints you with the basic concepts
behind PL/SQL and the general appearance of PL/SQL programs.

Chapter 2: Fundamentals
This chapter focuses on the small–scale aspects of PL/SQL. It discusses
lexical units, scalar datatypes, user–defined subtypes, expressions,
assignments, block structure, declarations, scope, and built–in functions.

Chapter 3: Control Structures
This chapter shows you how to structure the flow of control through a
PL/SQL program. It describes conditional, iterative, and sequential
control. You learn how to apply simple but powerful control structures
such as IF–THEN–ELSE and WHILE–LOOP.

Chapter 4: PL/SQL Tables and User–Defined Records
This chapter focuses on the composite datatypes TABLE and RECORD,
which can store collections of data. You learn how to reference and
manipulate these collections as whole objects.

Chapter 5: Interaction with Oracle
This chapter shows you how PL/SQL supports the SQL commands,
functions, and operators that let you manipulate Oracle data. You also
learn how to manage cursors, process transactions, and safeguard the
consistency of your database.

Chapter 6: Error Handling
This chapter provides an in–depth discussion of error reporting and
recovery. You learn how to detect and handle errors using PL/SQL
exceptions.

Chapter 7: Subprograms
This chapter shows you how to write and use subprograms, which aid
application development by isolating operations. It discusses
procedures, functions, forward declarations, actual versus formal
parameters, positional and named notation, parameter modes,
parameter default values, aliasing, overloading, and recursion.

Language Reference

Appendices

 iv PL/SQL User’s Guide and Reference

Chapter 8: Packages
This chapter shows you how to bundle related PL/SQL types, objects,
and subprograms into a package. Once written, your general–purpose
package is compiled, then stored in an Oracle database, where its
contents can be shared by many applications.

Chapter 9: Execution Environments
This chapter shows you how to use PL/SQL in the SQL*Plus, Oracle
Precompiler, and Oracle Call Interface (OCI) environments.

This part serves as a reference guide to PL/SQL commands, syntax, and
semantics.

Chapter 10: Language Elements
This chapter uses BNF–style syntax definitions to show how commands,
parameters, and other language elements are sequenced to form
PL/SQL statements. Also, it provides usage notes and short examples to
help you become fluent in PL/SQL quickly.

This part provides a survey of new features, sample programs,
supplementary technical information, and a list of reserved words.

Appendix A: New Features
This appendix looks at the array of new features offered by release 2.3 of
PL/SQL.

Appendix B: Sample Programs
This appendix provides several PL/SQL programs to guide you in
writing your own. The sample programs illustrate important PL/SQL
concepts and features.

Appendix C: CHAR versus VARCHAR2 Semantics
This appendix explains the subtle but important semantic differences
between the CHAR and VARCHAR2 base types.

Appendix D: PL/SQL Wrapper
This appendix shows you how to run the PL/SQL Wrapper, a
standalone utility that enables you to deliver PL/SQL applications
without exposing your source code.

Appendix E: Reserved Words
This appendix lists those words reserved for use by PL/SQL.

 vPreface

Notational Conventions

This guide uses the following notation in code examples:

Angle brackets enclose the name of a syntactic element.

A double hyphen begins a single–line comment, which
extends to the end of a line.

A slash–asterisk and an asterisk–slash delimit a
multi–line comment, which can span multiple lines.

A dot separates an object name from a component name
and so qualifies a reference.

An ellipsis shows that statements or clauses irrelevant
to the discussion were left out.

Uppercase denotes PL/SQL keywords.

Lowercase denotes user–defined items such as
variables, parameters, and exceptions.

The syntax of PL/SQL is described using a simple variant of
Backus–Naur Form (BNF). See “Reading Syntax Definitions” on
page 10 – 3.

Terms being defined for the first time, words being emphasized, error
messages, and book titles are italicized.

Sample Database Tables

Most programming examples in this guide use two sample database
tables named dept and emp. Their definitions follow:

CREATE TABLE dept

 (deptno NUMBER(2) NOT NULL,

 dname CHAR(14),

 loc CHAR(13))

CREATE TABLE emp

 (empno NUMBER(4) NOT NULL,

 ename CHAR(10),

 job CHAR(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2))

< >

– –

/* and */

.

...

UPPERCASE

lowercase

Sample Data

 vi PL/SQL User’s Guide and Reference

Respectively, the dept and emp tables contain the following rows of data:

DEPTNO DNAME LOC

––––––– –––––––––– –––––––––

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

––––– ––––––– ––––––––– –––––– ––––––––– –––––– –––––– –––––––

 7369 SMITH CLERK 7902 17–DEC–80 800 20

 7499 ALLEN SALESMAN 7698 20–FEB–81 1600 300 30

 7521 WARD SALESMAN 7698 22–FEB–81 1250 500 30

 7566 JONES MANAGER 7839 02–APR–81 2975 20

 7654 MARTIN SALESMAN 7698 28–SEP–81 1250 1400 30

 7698 BLAKE MANAGER 7839 01–MAY–81 2850 30

 7782 CLARK MANAGER 7839 09–JUN–81 2450 10

 7788 SCOTT ANALYST 7566 19–APR–87 3000 20

 7839 KING PRESIDENT 17–NOV–81 5000 10

 7844 TURNER SALESMAN 7698 08–SEP–81 1500 30

 7876 ADAMS CLERK 7788 23–MAY–87 1100 20

 7900 JAMES CLERK 7698 03–DEC–81 950 30

 7902 FORD ANALYST 7566 03–DEC–81 3000 20

 7934 MILLER CLERK 7782 23–JAN–82 1300 10

Your Comments Are Welcome

We appreciate your comments. As we evaluate and revise our
documentation, your opinions are the most important feedback we
receive. At the back of our printed manuals is a Reader’s Comment
Form, which we encourage you to use. If the form is not available,
please use the following address or fax number:

Oracle7 Server Documentation Manager
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065

Fax: (415) 506–7200

 viiContents

Contents

PART I USER’S GUIDE

Chapter 1 Overview 1 – 1.
Main Features 1 – 2.

Block Structure 1 – 3.
Variables and Constants 1 – 4.
Cursors 1 – 5.
Cursor FOR Loops 1 – 6.
Cursor Variables 1 – 6.
Attributes 1 – 7.
Control Structures 1 – 8.
PL/SQL Tables 1 – 11.
User–Defined Records 1 – 11.
Modularity 1 – 12.
Information Hiding 1 – 13.
Error Handling 1 – 14.

Architecture 1 – 15.
In the Oracle Server 1 – 16.
In Oracle Tools 1 – 17.

Advantages of PL/SQL 1 – 17.
Support for SQL 1 – 18.
Higher Productivity 1 – 18.
Better Performance 1 – 18.
Portability 1 – 19.
Integration with Oracle 1 – 19.

 viii PL/SQL User’s Guide and Reference

Chapter 2 Fundamentals 2 – 1.
Character Set 2 – 2.
Lexical Units 2 – 2.

Delimiters 2 – 3.
Identifiers 2 – 4.
Literals 2 – 7.
Comments 2 – 8.

Datatypes 2 – 10.
BINARY_INTEGER 2 – 11.
NUMBER 2 – 11.
PLS_INTEGER 2 – 12.
CHAR 2 – 13.
LONG 2 – 13.
RAW 2 – 14.
LONG RAW 2 – 14.
ROWID 2 – 14.
VARCHAR2 2 – 15.
BOOLEAN 2 – 16.
DATE 2 – 16.
MLSLABEL 2 – 16.

User–Defined Subtypes 2 – 17.
Defining Subtypes 2 – 17.
Using Subtypes 2 – 18.

Datatype Conversion 2 – 20.
Explicit Conversion 2 – 20.
Implicit Conversion 2 – 20.
Implicit versus Explicit Conversion 2 – 21.
DATE Values 2 – 21.
RAW and LONG RAW Values 2 – 22.

Declarations 2 – 22.
Using DEFAULT 2 – 23.
Using NOT NULL 2 – 23.
Using %TYPE 2 – 24.
Using %ROWTYPE 2 – 25.
Restrictions 2 – 27.

Naming Conventions 2 – 27.
Synonyms 2 – 28.
Scoping 2 – 28.
Case Sensitivity 2 – 28.
Name Resolution 2 – 28.

Scope and Visibility 2 – 30.

 ixContents

Assignments 2 – 32.
Boolean Values 2 – 32.
Database Values 2 – 32.

Expressions and Comparisons 2 – 33.
Operator Precedence 2 – 33.
Logical Operators 2 – 34.
Comparison Operators 2 – 36.
Concatenation Operator 2 – 37.
Boolean Expressions 2 – 37.
Handling Nulls 2 – 39.

Built–In Functions 2 – 41.

Chapter 3 Control Structures 3 – 1.
Overview 3 – 2.
Conditional Control: IF Statements 3 – 2.

IF–THEN 3 – 2.
IF–THEN–ELSE 3 – 3.
IF–THEN–ELSIF 3 – 4.
Guidelines 3 – 5.

Iterative Control: LOOP and EXIT Statements 3 – 6.
LOOP 3 – 6.
WHILE–LOOP 3 – 8.
FOR–LOOP 3 – 9.

Sequential Control: GOTO and NULL Statements 3 – 13.
GOTO Statement 3 – 14.
NULL Statement 3 – 17.

Chapter 4 PL/SQL Tables and User–Defined Records 4 – 1.
PL/SQL Tables 4 – 2.

Why Use PL/SQL Tables? 4 – 2.
Defining TABLE Types 4 – 2.
Declaring PL/SQL Tables 4 – 4.
Referencing PL/SQL Tables 4 – 5.
Using PL/SQL Table Attributes 4 – 8.
Using PL/SQL Tables 4 – 11.
Using Host Arrays with PL/SQL Tables 4 – 15.

User–Defined Records 4 – 19.
Defining RECORD Types 4 – 19.
Declaring Records 4 – 20.
Referencing Records 4 – 21.
Using Records 4 – 24.

 x PL/SQL User’s Guide and Reference

Chapter 5 Interaction with Oracle 5 – 1.
SQL Support 5 – 2.

Data Manipulation 5 – 2.
Transaction Control 5 – 2.
SQL Functions 5 – 2.
SQL Pseudocolumns 5 – 3.
ROWLABEL Column 5 – 5.
SQL Operators 5 – 6.
SQL92 Conformance 5 – 7.

Using DDL and Dynamic SQL 5 – 7.
Efficiency versus Flexibility 5 – 7.
Some Limitations 5 – 8.
Overcoming the Limitations 5 – 8.

Managing Cursors 5 – 9.
Explicit Cursors 5 – 9.
Implicit Cursors 5 – 13.

Packaging Cursors 5 – 14.
Using Cursor FOR Loops 5 – 15.

Using Aliases 5 – 16.
Passing Parameters 5 – 16.

Using Cursor Variables 5 – 17.
What Are Cursor Variables? 5 – 17.
Why Use Cursor Variables? 5 – 17.
Defining REF CURSOR Types 5 – 18.
Declaring Cursor Variables 5 – 19.
Controlling Cursor Variables 5 – 20.
Some Examples 5 – 25.
Reducing Network Traffic 5 – 28.
Avoiding Exceptions 5 – 29.
Guarding Against Aliasing 5 – 31.

Using Cursor Attributes 5 – 33.
Explicit Cursor Attributes 5 – 33.
Implicit Cursor Attributes 5 – 37.

Processing Transactions 5 – 39.
How Transactions Guard Your Database 5 – 40.
Using COMMIT 5 – 40.
Using ROLLBACK 5 – 41.
Using SAVEPOINT 5 – 42.
Implicit Rollbacks 5 – 43.
Ending Transactions 5 – 43.
Using SET TRANSACTION 5 – 44.
Overriding Default Locking 5 – 45.
Dealing with Size Limitations 5 – 48.

 xiContents

Chapter 6 Error Handling 6 – 1.
Overview 6 – 2.
Advantages and Disadvantages of Exceptions 6 – 3.

Disadvantages 6 – 4.
Predefined Exceptions 6 – 5.
User–Defined Exceptions 6 – 7.

Declaring Exceptions 6 – 7.
Scope Rules 6 – 8.
Using EXCEPTION_INIT 6 – 9.
Using raise_application_error 6 – 10.
Redeclaring Predefined Exceptions 6 – 11.

How Exceptions Are Raised 6 – 12.
Using the RAISE Statement 6 – 12.

How Exceptions Propagate 6 – 13.
Reraising an Exception 6 – 15.
Handling Raised Exceptions 6 – 16.

Exceptions Raised in Declarations 6 – 17.
Exceptions Raised in Handlers 6 – 18.
Branching to or from an Exception Handler 6 – 18.
Using SQLCODE and SQLERRM 6 – 18.
Unhandled Exceptions 6 – 20.

Useful Techniques 6 – 21.
Continuing after an Exception Is Raised 6 – 21.
Retrying a Transaction 6 – 22.

Chapter 7 Subprograms 7 – 1.
What Are Subprograms? 7 – 2.
Advantages of Subprograms 7 – 3.
Procedures 7 – 3.
Functions 7 – 5.

Restriction 7 – 6.
RETURN Statement 7 – 7.
Declaring Subprograms 7 – 8.

Forward Declarations 7 – 8.
Stored Subprograms 7 – 10.

Actual versus Formal Parameters 7 – 11.
Positional and Named Notation 7 – 12.

Positional Notation 7 – 12.
Named Notation 7 – 12.
Mixed Notation 7 – 12.

 xii PL/SQL User’s Guide and Reference

Parameter Modes 7 – 13.
IN Mode 7 – 13.
OUT Mode 7 – 13.
IN OUT Mode 7 – 14.

Parameter Default Values 7 – 15.
Parameter Aliasing 7 – 17.
Overloading 7 – 18.

Restrictions 7 – 19.
How Calls Are Resolved 7 – 20.

Recursion 7 – 23.
Recursive Subprograms 7 – 23.
Caution 7 – 25.
Mutual Recursion 7 – 26.
Recursion versus Iteration 7 – 27.

Chapter 8 Packages 8 – 1.
What Is a Package? 8 – 2.
Advantages of Packages 8 – 4.
The Package Specification 8 – 5.

Referencing Package Contents 8 – 6.
The Package Body 8 – 7.
Some Examples 8 – 8.
Private versus Public Objects 8 – 13.
Overloading 8 – 13.
Package STANDARD 8 – 14.
Product–specific Packages 8 – 15.

DBMS_STANDARD 8 – 15.
DBMS_SQL 8 – 15.
DBMS_ALERT 8 – 15.
DBMS_OUTPUT 8 – 15.
DBMS_PIPE 8 – 15.
UTL_FILE 8 – 16.

Guidelines 8 – 16.
SQL*Plus Environment 9 – 2.

Inputting an Anonymous Block 9 – 2.
Executing an Anonymous Block 9 – 2.
Creating a Script 9 – 3.
Loading and Running a Script 9 – 3.
Creating a Stored Subprogram, Package, or Trigger 9 – 4.
Using Bind Variables 9 – 4.
Calling Stored Subprograms 9 – 6.
Displaying Output 9 – 6.

 xiiiContents

Oracle Precompiler Environment 9 – 7.
Embedding PL/SQL Blocks 9 – 7.
Using Host Variables 9 – 7.
Using Indicator Variables 9 – 12.
Using the VARCHAR Pseudotype 9 – 15.
Using the DECLARE TABLE Statement 9 – 16.
Using the SQLCHECK Option 9 – 16.
Using Dynamic SQL 9 – 16.
Mimicking Dynamic SQL 9 – 18.
Calling Stored Subprograms 9 – 19.

OCI Environment 9 – 19.
Calling Stored Subprograms 9 – 23.

PART II LANGUAGE REFERENCE

Chapter 9 Language Elements 10 – 1.
Reading Syntax Definitions 10 – 3.
Assignment Statement 10 – 4.
Blocks 10 – 7.
CLOSE Statement 10 – 12.
Comments 10 – 13.
COMMIT Statement 10 – 14.
Constants and Variables 10 – 16.
Cursor Attributes 10 – 19.
Cursors 10 – 23.
Cursor Variables 10 – 27.
DELETE Statement 10 – 33.
EXCEPTION_INIT Pragma 10 – 35.
Exceptions 10 – 36.
EXIT Statement 10 – 39.
Expressions 10 – 41.
FETCH Statement 10 – 48.
Functions 10 – 51.
GOTO Statement 10 – 56.
IF Statement 10 – 58.
INSERT Statement 10 – 60.
Literals 10 – 62.
LOCK TABLE Statement 10 – 64.
LOOP Statements 10 – 65.
NULL Statement 10 – 70.
OPEN Statement 10 – 71.

 xiv PL/SQL User’s Guide and Reference

OPEN–FOR Statement 10 – 73.
Packages 10 – 76.
PL/SQL Table Attributes 10 – 79.
PL/SQL Tables 10 – 82.
Procedures 10 – 87.
RAISE Statement 10 – 92.
Records 10 – 93.
RETURN Statement 10 – 98.
ROLLBACK Statement 10 – 100.
%ROWTYPE Attribute 10 – 101.
SAVEPOINT Statement 10 – 103.
SELECT INTO Statement 10 – 104.
SET TRANSACTION Statement 10 – 106.
SQL Cursor 10 – 108.
SQLCODE Function 10 – 110.
SQLERRM Function 10 – 111.
%TYPE Attribute 10 – 113.
UPDATE Statement 10 – 114.

PART III APPENDICES

Appendix A New Features A – 1.

Appendix B Sample Programs B – 1.

Appendix C CHAR versus VARCHAR2 Semantics C – 1.

Appendix D PL/SQL Wrapper D – 1.

Appendix E Reserved Words E – 1.

Index

P A R T

 I User’s Guide

C H A P T E R

1

T

1 – 1Overview

Overview

The limits of my language mean the limits of my world.

Ludwig Wittgenstein

his chapter surveys the main features of PL/SQL and points out the
advantages they offer. It also acquaints you with the basic concepts
behind PL/SQL and the general appearance of PL/SQL programs. You
see how PL/SQL bridges the gap between database technology and
procedural programming languages.

1 – 2 PL/SQL User’s Guide and Reference

Main Features

A good way to get acquainted with PL/SQL is to look at a sample
program. The program below processes an order for tennis rackets.
First, it declares a variable of type NUMBER to store the quantity of
tennis rackets on hand. Then, it retrieves the quantity on hand from a
database table named inventory. If the quantity is greater than zero, the
program updates the table and inserts a purchase record into another
table named purchase_record. Otherwise, the program inserts an
out–of–stock record into the purchase_record table.

–– available online in file EXAMP1

DECLARE

 qty_on_hand NUMBER(5);

BEGIN

 SELECT quantity INTO qty_on_hand FROM inventory

 WHERE product = ’TENNIS RACKET’

 FOR UPDATE OF quantity;

 IF qty_on_hand > 0 THEN –– check quantity

 UPDATE inventory SET quantity = quantity – 1

 WHERE product = ’TENNIS RACKET’;

 INSERT INTO purchase_record

 VALUES (’Tennis racket purchased’, SYSDATE);

 ELSE

 INSERT INTO purchase_record

 VALUES (’Out of tennis rackets’, SYSDATE);

 END IF;

 COMMIT;

END;

With PL/SQL, you can use SQL statements to manipulate Oracle data
and flow–of–control statements to process the data. Moreover, you can
declare constants and variables, define procedures and functions, and
trap runtime errors. Thus, PL/SQL combines the data manipulating
power of SQL with the data processing power of procedural languages.

Block Structure

1 – 3Overview

PL/SQL is a block–structured language. That is, the basic units
(procedures, functions, and anonymous blocks) that make up a PL/SQL
program are logical blocks, which can contain any number of nested
sub–blocks. Typically, each logical block corresponds to a problem or
subproblem to be solved. Thus, PL/SQL supports the divide–and–
conquer approach to problem solving called stepwise refinement.

A block (or sub–block) lets you group logically related declarations and
statements. That way, you can place declarations close to where they are
used. The declarations are local to the block and cease to exist when the
block completes.

As Figure 1 – 1 shows, a PL/SQL block has three parts: a declarative
part, an executable part, and an exception–handling part. (In PL/SQL, a
warning or error condition is called an exception.) Only the executable
part is required.

The order of the parts is logical. First comes the declarative part, in
which objects can be declared. Once declared, objects can be
manipulated in the executable part. Exceptions raised during execution
can be dealt with in the exception–handling part.

[DECLARE
 –– declarations]
BEGIN
 –– statements
[EXCEPTION
 –– handlers]
END;

Figure 1 – 1 Block Structure

You can nest sub–blocks in the executable and exception–handling parts
of a PL/SQL block or subprogram but not in the declarative part. Also,
you can define local subprograms in the declarative part of any block.
However, you can call local subprograms only from the block in which
they are defined.

Variables and
Constants

Declaring Variables

Assigning Values to a
Variable

Declaring Constants

1 – 4 PL/SQL User’s Guide and Reference

PL/SQL allows you to declare constants and variables, then use them in
SQL and procedural statements anywhere an expression can be used.
However, forward references are not allowed. So, you must declare a
constant or variable before referencing it in other statements, including
other declarative statements.

Variables can have any SQL datatype, such as CHAR, DATE, and
NUMBER, or any PL/SQL datatype, such as BOOLEAN and
BINARY_INTEGER. For example, assume that you want to declare a
variable named part_no to hold 4–digit numbers and a variable named
in_stock to hold the Boolean value TRUE or FALSE. You declare these
variables as follows:

part_no NUMBER(4);

in_stock BOOLEAN;

You can also declare records and PL/SQL tables using the RECORD and
TABLE composite datatypes.

You can assign values to a variable in two ways. The first way uses the
assignment operator (:=), a colon followed by an equal sign. You place
the variable to the left of the operator and an expression to the right.
Some examples follow:

tax := price * tax_rate;

bonus := current_salary * 0.10;

amount := TO_NUMBER(SUBSTR(’750 dollars’, 1, 3));

valid := FALSE;

The second way to assign values to a variable is to select or fetch
database values into it. In the following example, you have Oracle
compute a 10% bonus when you select the salary of an employee:

SELECT sal * 0.10 INTO bonus FROM emp WHERE empno = emp_id;

Then, you can use the variable bonus in another computation or insert its
value into a database table.

Declaring a constant is like declaring a variable except that you must
add the keyword CONSTANT and immediately assign a value to the
constant. Thereafter, no more assignments to the constant are allowed.
In the following example, you declare a constant named credit_limit:

credit_limit CONSTANT REAL := 5000.00;

Cursors

1 – 5Overview

Oracle uses work areas to execute SQL statements and store processing
information. A PL/SQL construct called a cursor lets you name a work
area and access its stored information. There are two kinds of cursors:
implicit and explicit. PL/SQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row.
For queries that return more than one row, you can explicitly declare a
cursor to process the rows individually. An example follows:

DECLARE

 CURSOR c1 IS

 SELECT empno, ename, job FROM emp WHERE deptno = 20;

The set of rows returned by a multi–row query is called the result set. Its
size is the number of rows that meet your search criteria. As Figure 1 – 2
shows, an explicit cursor “points” to the current row in the result set.
This allows your program to process the rows one at a time.

7369

7566

7788

7876

7902

SMITH

JONES

SCOTT

ADAMS

FORD

CLERK

MANAGER

ANALYST

CLERK

ANALYST

cursor 7788 SCOTT ANALYST Current Row

Result Set

Figure 1 – 2 Query Processing

Multi–row query processing is somewhat like file processing. For
example, a COBOL program opens a file, processes records, then closes
the file. Likewise, a PL/SQL program opens a cursor, processes rows
returned by a query, then closes the cursor. Just as a file pointer marks
the current position in an open file, a cursor marks the current position
in a result set.

You use the OPEN, FETCH, and CLOSE statements to control a cursor.
The OPEN statement executes the query associated with the cursor,
identifies the result set, and positions the cursor before the first row. The
FETCH statement retrieves the current row and advances the cursor to
the next row. When the last row has been processed, the CLOSE
statement disables the cursor.

Cursor FOR Loops

Cursor Variables

1 – 6 PL/SQL User’s Guide and Reference

In most situations that require an explicit cursor, you can simplify
coding by using a cursor FOR loop instead of the OPEN, FETCH, and
CLOSE statements.

A cursor FOR loop implicitly declares its loop index as a record that
represents a row in a database table, opens a cursor, repeatedly fetches
rows of values from the result set into fields in the record, then closes
the cursor when all rows have been processed. In the following example,
the cursor FOR loop implicitly declares emp_rec as a record:

DECLARE

 CURSOR c1 IS

 SELECT ename, sal, hiredate, deptno FROM emp;

 ...

BEGIN

 FOR emp_rec IN c1 LOOP

 ...

 salary_total := salary_total + emp_rec.sal;

 END LOOP;

END;

You use dot notation to reference individual fields in the record.

Like a cursor, a cursor variable points to the current row in the result set
of a multi–row query. But, unlike a cursor, a cursor variable can be
opened for any type–compatible query. It is not tied to a specific query.
Cursor variables are true PL/SQL variables, to which you can assign
new values and which you can pass to subprograms stored in an Oracle
database. This gives you more flexibility and a convenient way to
centralize data retrieval.

Typically, you open a cursor variable by passing it to a stored procedure
that declares a cursor variable as one of its formal parameters. The
following packaged procedure opens the cursor variable generic_cv for
the chosen query:

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN generic_cv FOR SELECT * FROM emp;

 ELSIF choice = 2 THEN

 OPEN generic_cv FOR SELECT * FROM dept;

 ELSIF choice = 3 THEN

 OPEN generic_cv FOR SELECT * FROM salgrade;

 END IF;

 END open_cv;

END emp_data;

Attributes

%TYPE

%ROWTYPE

1 – 7Overview

PL/SQL variables and cursors have attributes, which are properties that
let you reference the datatype and structure of an object without
repeating its definition. Database columns and tables have similar
attributes, which you can use to ease maintenance.

The %TYPE attribute provides the datatype of a variable or database
column. This is particularly useful when declaring variables that will
hold database values. For example, assume there is a column named title
in a table named books. To declare a variable named my_title having the
same datatype as the column title, you use dot notation and the %TYPE
attribute, as follows:

my_title books.title%TYPE;

Declaring my_title with %TYPE has two advantages. First, you need not
know the exact datatype of title. Second, if you change the database
definition of title (make it a longer character string, for example), the
datatype of my_title changes accordingly at run time.

In PL/SQL, records are used to group data. A record consists of a
number of related fields in which data values can be stored. The
%ROWTYPE attribute provides a record type that represents a row in a
table. The record can store an entire row of data selected from the table
or fetched from a cursor or cursor variable.

Columns in a row and corresponding fields in a record have the same
names and datatypes. In the example below, you declare a record named
dept_rec. Its fields have the same names and datatypes as the columns in
the dept table.

DECLARE

 dept_rec dept%ROWTYPE; –– declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno := dept_rec.deptno;

If you declare a cursor that retrieves the last name, salary, hire date, and
job title of an employee, you can use %ROWTYPE to declare a record
that stores the same information, as follows:

DECLARE

 CURSOR c1 IS SELECT ename, sal, hiredate, job FROM emp;

 emp_rec c1%ROWTYPE; –– declare record variable that

 –– represents a row in the emp table

Control Structures

Conditional Control

1 – 8 PL/SQL User’s Guide and Reference

When you execute the statement

FETCH c1 INTO emp_rec;

the value in the ename column of the emp table is assigned to the ename
field of emp_rec, the value in the sal column is assigned to the sal field,
and so on. Figure 1 – 3 shows how the result might appear.

JAMES

950.00

03–DEC–81

CLERK

emp_rec

emp_rec.ename

emp_rec.sal

emp_rec.hiredate

emp_rec.job

Figure 1 – 3 %ROWTYPE Record

Control structures are the most important PL/SQL extension to SQL.
Not only does PL/SQL let you manipulate Oracle data, it lets you
process the data using conditional, iterative, and sequential
flow–of–control statements such as IF–THEN–ELSE, FOR–LOOP,
WHILE–LOOP, EXIT–WHEN, and GOTO. Collectively, these statements
can handle any situation.

Often, it is necessary to take alternative actions depending on
circumstances. The IF–THEN–ELSE statement lets you execute a
sequence of statements conditionally. The IF clause checks a condition;
the THEN clause defines what to do if the condition is true; the ELSE
clause defines what to do if the condition is false or null.

Consider the program below, which processes a bank transaction. Before
allowing you to withdraw $500 from account 3, it makes sure the
account has sufficient funds to cover the withdrawal. If the funds are
available, the program debits the account; otherwise, the program
inserts a record into an audit table.

–– available online in file EXAMP2

DECLARE

 acct_balance NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

 debit_amt CONSTANT NUMBER(5,2) := 500.00;

BEGIN

 SELECT bal INTO acct_balance FROM accounts

 WHERE account_id = acct

 FOR UPDATE OF bal;

Iterative Control

1 – 9Overview

 IF acct_balance >= debit_amt THEN

 UPDATE accounts SET bal = bal – debit_amt

 WHERE account_id = acct;

 ELSE

 INSERT INTO temp VALUES

 (acct, acct_balance, ’Insufficient funds’);

 –– insert account, current balance, and message

 END IF;

 COMMIT;

END;

A sequence of statements that uses query results to select alternative
actions is common in database applications. Another common sequence
inserts or deletes a row only if an associated entry is found in another
table. You can bundle these common sequences into a PL/SQL block
using conditional logic. This can improve performance and simplify the
integrity checks built into Oracle Forms applications.

LOOP statements let you execute a sequence of statements multiple
times. You place the keyword LOOP before the first statement in the
sequence and the keywords END LOOP after the last statement in the
sequence. The following example shows the simplest kind of loop,
which repeats a sequence of statements continually:

LOOP

 –– sequence of statements

END LOOP;

The FOR–LOOP statement lets you specify a range of integers, then
execute a sequence of statements once for each integer in the range. For
example, suppose that you are a manufacturer of custom–made cars and
that each car has a serial number. To keep track of which customer buys
each car, you might use the following FOR loop:

FOR i IN 1..order_qty LOOP

 UPDATE sales SET custno = customer_id

 WHERE serial_num = serial_num_seq.NEXTVAL;

END LOOP;

The WHILE–LOOP statement associates a condition with a sequence of
statements. Before each iteration of the loop, the condition is evaluated.
If the condition yields TRUE, the sequence of statements is executed,
then control resumes at the top of the loop. If the condition yields FALSE
or NULL, the loop is bypassed and control passes to the next statement.

Sequential Control

1 – 10 PL/SQL User’s Guide and Reference

In the following example, you find the first employee who has a salary
over $4000 and is higher in the chain of command than employee 7902:

–– available online in file EXAMP3

DECLARE

 salary emp.sal%TYPE;

 mgr_num emp.mgr%TYPE;

 last_name emp.ename%TYPE;

 starting_empno CONSTANT NUMBER(4) := 7902;

BEGIN

 SELECT sal, mgr INTO salary, mgr_num FROM emp

 WHERE empno = starting_empno;

 WHILE salary < 4000 LOOP

 SELECT sal, mgr, ename INTO salary, mgr_num, last_name

 FROM emp WHERE empno = mgr_num;

 END LOOP;

 INSERT INTO temp VALUES (NULL, salary, last_name);

 COMMIT;

END;

The EXIT–WHEN statement lets you complete a loop if further
processing is impossible or undesirable. When the EXIT statement is
encountered, the condition in the WHEN clause is evaluated. If the
condition yields TRUE, the loop completes and control passes to the
next statement. In the following example, the loop completes when the
value of total exceeds 25,000:

LOOP

 ...

 total := total + salary;

 EXIT WHEN total > 25000; –– exit loop if condition is true

END LOOP;

–– control resumes here

The GOTO statement lets you branch to a label unconditionally. The
label, an undeclared identifier enclosed by double angle brackets, must
precede an executable statement or a PL/SQL block. When executed, the
GOTO statement transfers control to the labeled statement or block, as
the following example shows:

IF rating > 90 THEN

 GOTO calc_raise; –– branch to label

END IF;

...

<<calc_raise>>

IF job_title = ’SALESMAN’ THEN –– control resumes here

 amount := commission * 0.25;

ELSE

 amount := salary * 0.10;

END IF;

PL/SQL Tables

User–Defined Records

1 – 11Overview

Like an array, a PL/SQL table is an ordered collection of elements of the
same type. Each element has a unique index number that determines its
position in the ordered collection. But, unlike an array, a PL/SQL table is
unbounded. So, its size can increase dynamically. Also, it does not
require consecutive index numbers. So, it can be indexed by any series
of integers.

PL/SQL tables help you move bulk data. They can store columns or
rows of Oracle data, and they can be passed as parameters. So, PL/SQL
tables make it easy to move collections of data into and out of database
tables or between client–side applications and stored subprograms.

You can use a cursor FOR loop to fetch an entire column or table of
Oracle data into a PL/SQL table. In the following example, you fetch a
table of data into the PL/SQL table dept_tab:

DECLARE

 TYPE DeptTabTyp IS TABLE OF dept%ROWTYPE

 INDEX BY BINARY_INTEGER;

 dept_tab DeptTabTyp;

 n BINARY_INTEGER := 0;

BEGIN

 FOR dept_rec IN (SELECT * FROM dept) LOOP

 n := n + 1;

 dept_tab(n) := dept_rec;

 END LOOP;

 ...

END;

You can use the %ROWTYPE attribute to declare a record that
represents a row in a table or a row fetched from a cursor. But, with a
user–defined record, you can declare fields of your own.

Records contain uniquely named fields, which can have different
datatypes. Suppose you have various data about an employee such as
name, salary, and hire date. These items are dissimilar in type but
logically related. A record containing a field for each item lets you treat
the data as a logical unit. Consider the following example:

DECLARE

 TYPE TimeTyp IS RECORD (minute SMALLINT, hour SMALLINT);

 TYPE MeetingTyp IS RECORD (

 day DATE,

 time TimeTyp, –– nested record

 place VARCHAR2(20),

 purpose VARCHAR2(50));

Notice that you can nest records. That is, a record can be the component
of another record.

Modularity

Subprograms

Packages

1 – 12 PL/SQL User’s Guide and Reference

Modularity lets you break an application down into manageable,
well–defined logic modules. Through successive refinement, you can
reduce a complex problem to a set of simple problems that have
easy–to–implement solutions. PL/SQL meets this need with program
units. Besides blocks and subprograms, PL/SQL provides the package,
which allows you to group related program objects into larger units.

PL/SQL has two types of subprograms called procedures and functions,
which can take parameters and be invoked (called). As the following
example shows, a subprogram is like a miniature program, beginning
with a header followed by an optional declarative part, an executable
part, and an optional exception–handling part:

PROCEDURE award_bonus (emp_id NUMBER) IS

 bonus REAL;

 comm_missing EXCEPTION;

BEGIN

 SELECT comm * 0.15 INTO bonus FROM emp WHERE empno = emp_id;

 IF bonus IS NULL THEN

 RAISE comm_missing;

 ELSE

 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;

 END IF;

EXCEPTION

 WHEN comm_missing THEN

 ...

END award_bonus;

When called, this procedure accepts an employee number. It uses the
number to select the employee’s commission from a database table and,
at the same time, compute a 15% bonus. Then, it checks the bonus
amount. If the bonus is null, an exception is raised; otherwise, the
employee’s payroll record is updated.

PL/SQL lets you bundle logically related types, program objects, and
subprograms into a package. Each package is easy to understand and the
interfaces between packages are simple, clear, and well defined. This
aids application development.

Packages usually have two parts: a specification and a body. The
specification is the interface to your applications; it declares the types,
constants, variables, exceptions, cursors, and subprograms available for
use. The body defines cursors and subprograms and so implements
the specification.

Information Hiding

Algorithms

Data Structures

1 – 13Overview

In the following example, you package two employment procedures:

CREATE PACKAGE emp_actions AS –– package specification

 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);

 PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS –– package body

 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS

 BEGIN

 INSERT INTO emp VALUES (empno, ename, ...);

 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

END emp_actions;

Only the declarations in the package specification are visible and
accessible to applications. Implementation details in the package body
are hidden and inaccessible.

Packages can be compiled and stored in an Oracle database, where
their contents can be shared by many applications. When you call a
packaged subprogram for the first time, the whole package is loaded
into memory. So, subsequent calls to related subprograms in the package
require no disk I/O. Thus, packages can enhance productivity and
improve performance.

With information hiding, you see only the details that are relevant at a
given level of algorithm and data structure design. Information hiding
keeps high–level design decisions separate from low–level design
details, which are more likely to change.

You implement information hiding for algorithms through top–down
design. Once you define the purpose and interface specifications of a
low–level procedure, you can ignore the implementation details. They
are hidden at higher levels. For example, the implementation of a
procedure named raise_salary is hidden. All you need to know is that the
procedure will increase a specific employee salary by a given amount.
Any changes to the definition of raise_salary are transparent to
calling applications.

You implement information hiding for data structures though data
encapsulation. By developing a set of utility subprograms for a data
structure, you insulate it from users and other developers. That way,
other developers know how to use the subprograms that operate on the
data structure but not how the structure is represented.

Error Handling

1 – 14 PL/SQL User’s Guide and Reference

With PL/SQL packages, you can specify whether types, program
objects, and subprograms are public or private. Thus, packages enforce
data encapsulation by letting you put type declarations in a black box. A
private type definition is hidden and inaccessible. Only the package, not
your application, is affected if the definition changes. This simplifies
maintenance and enhancement.

PL/SQL makes it easy to detect and process predefined and
user–defined error conditions called exceptions. When an error occurs, an
exception is raised. That is, normal execution stops and control transfers
to the exception–handling part of your PL/SQL block or subprogram.
To handle raised exceptions, you write separate routines called
exception handlers.

Predefined exceptions are raised implicitly by the runtime system. For
example, if you try to divide a number by zero, PL/SQL raises the
predefined exception ZERO_DIVIDE automatically. You must raise
user–defined exceptions explicitly with the RAISE statement.

You can define exceptions of your own in the declarative part of any
PL/SQL block or subprogram. In the executable part, you check for the
condition that needs special attention. If you find that the condition
exists, you execute a RAISE statement. In the example below, you
compute the bonus earned by a salesperson. The bonus is based on
salary and commission. So, if the commission is null, you raise the
exception comm_missing.

DECLARE

 salary NUMBER(7,2);

 commission NUMBER(7,2);

 comm_missing EXCEPTION; –– declare exception

BEGIN

 SELECT sal, comm INTO salary, commission FROM emp

 WHERE empno = :emp_id;

 IF commission IS NULL THEN

 RAISE comm_missing; –– raise exception

 ELSE

 :bonus := (salary * 0.05) + (commission * 0.15);

 END IF;

EXCEPTION –– begin exception handlers

 WHEN comm_missing THEN

 –– process error

END;

The variables emp_id and bonus are declared and assigned values in a
host environment. For more information about host variables, see
“Oracle Precompiler Environment” on page 9 – 7.

1 – 15Overview

Architecture

The PL/SQL runtime system is a technology, not an independent
product. Think of this technology as an engine that executes PL/SQL
blocks and subprograms. The engine can be installed in an Oracle Server
or in an application development tool such as Oracle Forms or Oracle
Reports. So, PL/SQL can reside in two environments:

• the Oracle Server

• Oracle tools

These two environments are independent. PL/SQL might be available in
the Oracle Server but unavailable in tools, or the other way around. In
either environment, the PL/SQL engine accepts as input any valid
PL/SQL block or subprogram. Figure 1 – 4 shows the PL/SQL engine
processing an anonymous block.

non–SQL

SQL

PL/SQL
Block

PL/SQL
Block

PL/SQL Engine

SQL Statement Executor

Oracle7 Server

Procedural
Statement
Executor

Figure 1 – 4 PL/SQL Engine

The PL/SQL engine executes procedural statements but sends SQL
statements to the SQL Statement Executor in the Oracle Server.

In the Oracle Server

Anonymous Blocks

Stored Subprograms

1 – 16 PL/SQL User’s Guide and Reference

Application development tools that lack a local PL/SQL engine must
rely on Oracle to process PL/SQL blocks and subprograms. When it
contains the PL/SQL engine, an Oracle Server can process PL/SQL
blocks and subprograms as well as single SQL statements. The Oracle
Server passes the blocks and subprograms to its local PL/SQL engine.

Anonymous PL/SQL blocks can be embedded in an Oracle Precompiler
or OCI program. At run time, the program, lacking a local PL/SQL
engine, sends these blocks to the Oracle Server, where they are compiled
and executed. Likewise, interactive tools such as SQL*Plus and Server
Manager, lacking a local PL/SQL engine, must send anonymous blocks
to Oracle.

Named PL/SQL blocks (subprograms) can be compiled separately and
stored permanently in an Oracle database, ready to be executed. A
subprogram explicitly CREATEd using an Oracle tool is called a stored
subprogram. Once compiled and stored in the data dictionary, it is a
database object, which can be referenced by any number of applications
connected to that database.

Stored subprograms defined within a package are called packaged
subprograms; those defined independently are called standalone
subprograms. (Subprograms defined within another subprogram or
within a PL/SQL block are called local subprograms. They cannot be
referenced by other applications and exist only for the convenience of
the enclosing block.)

Stored subprograms offer higher productivity, better performance,
memory savings, application integrity, and tighter security. For
example, by designing applications around a library of stored
procedures and functions, you can avoid redundant coding and
increase your productivity.

You can call stored subprograms from a database trigger, another stored
subprogram, an Oracle Precompiler application, an OCI application, or
interactively from SQL*Plus or Server Manager. For example, you might
call the standalone procedure create_dept from SQL*Plus as follows:

SQL> EXECUTE create_dept(’FINANCE’, ’NEW YORK’);

Subprograms are stored in parsed, compiled form. So, when called, they
are loaded and passed to the PL/SQL engine immediately. Moreover,
stored subprograms take advantage of the Oracle shared memory
capability. Only one copy of a subprogram need be loaded into memory
for execution by multiple users.

Database Triggers

In Oracle Tools

1 – 17Overview

A database trigger is a stored subprogram associated with a table. You
can have Oracle automatically fire the database trigger before or after an
INSERT, UPDATE, or DELETE statement affects the table. One of the
many uses for database triggers is to audit data modifications. For
example, the following database trigger fires whenever salaries in the
emp table are updated:

CREATE TRIGGER audit_sal

 AFTER UPDATE OF sal ON emp

 FOR EACH ROW

BEGIN

 INSERT INTO emp_audit VALUES ...

END;

You can use all the SQL data manipulation statements and any
procedural statement in the executable part of a database trigger.

When it contains the PL/SQL engine, an application development tool
can process PL/SQL blocks. The tool passes the blocks to its local
PL/SQL engine. The engine executes all procedural statements at the
application site and sends only SQL statements to Oracle. Thus, most of
the work is done at the application site, not at the server site.

Furthermore, if the block contains no SQL statements, the engine
executes the entire block at the application site. This is useful if your
application can benefit from conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test
the value of field entries or to do simple computations. By using
PL/SQL instead, you can avoid calls to the Oracle Server. Moreover, you
can use PL/SQL functions to manipulate field entries.

Advantages of PL/SQL

PL/SQL is a completely portable, high–performance transaction
processing language that offers the following advantages:

• support for SQL

• higher productivity

• better performance

• portability

• integration with Oracle

Support for SQL

Higher Productivity

Better Performance

1 – 18 PL/SQL User’s Guide and Reference

SQL has become the standard database language because it is flexible,
powerful, and easy to learn. A few English–like commands such as
INSERT, UPDATE, and DELETE make it easy to manipulate the data
stored in a relational database.

SQL is non–procedural, meaning that you can state what you want done
without stating how to do it. Oracle determines the best way to carry
out your request. There is no necessary connection between consecutive
statements because Oracle executes SQL statements one at a time.

PL/SQL lets you use all the SQL data manipulation, cursor control, and
transaction control commands, as well as all the SQL functions,
operators, and pseudocolumns. So, you can manipulate Oracle data
flexibly and safely.

PL/SQL adds functionality to non–procedural tools such as Oracle
Forms and Oracle Reports. With PL/SQL in these tools, you can use
familiar procedural constructs to build applications. For example, you
can use an entire PL/SQL block in an Oracle Forms trigger. You need
not use multiple trigger steps, macros, or user exits. Thus, PL/SQL
increases productivity by putting better tools in your hands.

Moreover, PL/SQL is the same in all environments. As soon as you
master PL/SQL with one Oracle tool, you can transfer your knowledge
to other tools, and so multiply the productivity gains. For example,
scripts written with one tool can be used by other tools.

Without PL/SQL, Oracle must process SQL statements one at a time.
Each SQL statement results in another call to Oracle and higher
performance overhead. In a networked environment, the overhead can
become significant. Every time a SQL statement is issued, it must be sent
over the network, creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to
Oracle at one time. This can drastically reduce communication between
your application and Oracle. As Figure 1 – 5 shows, if your application
is database intensive, you can use PL/SQL blocks and subprograms to
group SQL statements before sending them to Oracle for execution.

Portability

Integration with Oracle

1 – 19Overview

SQL

SQL

SQL

SQL

Application

Application

Application RPC
Oracle7
with PL/SQL
and Stored
Procedures

Oracle7
with PL/SQL

Other DBMSs

SQL
IF ... THEN
 SQL
ELSE
 SQL
END IF;
SQL

Figure 1 – 5 PL/SQL Boosts Performance

PL/SQL also improves performance by adding procedural processing
power to Oracle tools. Using PL/SQL, a tool can do any computation
quickly and efficiently without calling on Oracle. This saves time and
reduces network traffic.

Applications written in PL/SQL are portable to any operating system
and platform on which Oracle runs. In other words, PL/SQL programs
can run anywhere Oracle can run; you need not tailor them to each new
environment. That means you can write portable program libraries,
which can be reused in different environments.

Both PL/SQL and Oracle are based on SQL. Moreover, PL/SQL
supports all the SQL datatypes. Combined with the direct access that
SQL provides, these shared datatypes integrate PL/SQL with the Oracle
data dictionary.

The %TYPE and %ROWTYPE attributes further integrate PL/SQL with
the data dictionary. For example, you can use the %TYPE attribute to
declare variables, basing the declarations on the definitions of database
columns. If a definition changes, the variable declaration changes
accordingly at run time. This provides data independence, reduces
maintenance costs, and allows programs to adapt as the database
changes to meet new business needs.

1 – 20 PL/SQL User’s Guide and Reference

C H A P T E R

2

T

2 – 1Fundamentals

Fundamentals

There are six essentials in painting. The first is called spirit; the second,
rhythm; the third, thought; the fourth, scenery; the fifth, the brush; and the last
is the ink.

Ching Hao

he previous chapter provided an overview of PL/SQL. This chapter
focuses on the small–scale aspects of the language. Like every other
programming language, PL/SQL has a character set, reserved words,
punctuation, datatypes, rigid syntax, and fixed rules of usage and
statement formation. You use these basic elements of PL/SQL to
represent real–world objects and operations.

2 – 2 PL/SQL User’s Guide and Reference

Character Set

You write a PL/SQL program as lines of text using a specific set of
characters. The PL/SQL character set includes

• the upper and lowercase letters A .. Z, a .. z

• the numerals 0 .. 9

• tabs, spaces, and carriage returns

• the symbols () + – * / < > = ! ~ ; : . ’ @ % , ” # $ ^ & _ | { } ? []

PL/SQL is not case sensitive, so lowercase letters are equivalent to
corresponding uppercase letters except within string and
character literals.

Lexical Units

A line of PL/SQL text contains groups of characters known as lexical
units, which can be classified as follows:

• delimiters (simple and compound symbols)

• identifiers, which include reserved words

• literals

• comments

For example, the line

bonus := salary * 0.10; –– compute bonus

contains the following lexical units:

• identifiers bonus and salary

• compound symbol :=

• simple symbols * and ;

• numeric literal 0.10

• comment – – compute bonus

To improve readability, you can separate lexical units by spaces. In fact,
you must separate adjacent identifiers by a space or punctuation. For
example, the following line is illegal because the reserved words END
and IF are joined:

IF x > y THEN high := x; ENDIF; –– illegal

Delimiters

Simple Symbols

2 – 3Fundamentals

However, you cannot embed spaces in lexical units except for string
literals and comments. For example, the following line is illegal because
the compound symbol for assignment (:=) is split:

count : = count + 1; –– illegal

To show structure, you can divide lines using carriage returns and
indent lines using spaces or tabs. Compare the following IF statements
for readability:

IF x>y THEN max:=x;ELSE max:=y;END IF; | IF x > y THEN

 | max := x;

 | ELSE

 | max := y;

 | END IF;

A delimiter is a simple or compound symbol that has a special meaning
to PL/SQL. For example, you use delimiters to represent arithmetic
operations such as addition and subtraction.

Simple symbols consist of one character; a list follows:

+ addition operator

– subtraction/negation operator

* multiplication operator

/ division operator

= relational operator

< relational operator

> relational operator

(expression or list delimiter

) expression or list delimiter

; statement terminator

% attribute indicator

, item separator

. component selector

@ remote access indicator

’ character string delimiter

” quoted identifier delimiter

: host variable indicator

Compound Symbols

Identifiers

2 – 4 PL/SQL User’s Guide and Reference

Compound symbols consist of two characters; a list follows:

** exponentiation operator

<> relational operator

!= relational operator

~= relational operator

^= relational operator

<= relational operator

>= relational operator

:= assignment operator

=> association operator

.. range operator

|| concatenation operator

<< (beginning) label delimiter

>> (ending) label delimiter

– – single–line comment indicator

/* (beginning) multi–line comment delimiter

*/ (ending) multi–line comment delimiter

You use identifiers to name PL/SQL program objects and units, which
include constants, variables, exceptions, cursors, cursor variables,
subprograms, and packages. Some examples of identifiers follow:

X

t2

phone#

credit_limit

LastName

oracle$number

An identifier consists of a letter optionally followed by more letters,
numerals, dollar signs, underscores, and number signs. Other characters
such as hyphens, slashes, and spaces are illegal, as the following
examples show:

mine&yours –– illegal ampersand

debit–amount –– illegal hyphen

on/off –– illegal slash

user id –– illegal space

Reserved Words

2 – 5Fundamentals

The next examples show that adjoining and trailing dollar signs,
underscores, and number signs are legal:

money$$$tree

SN##

try_again_

You can use upper, lower, or mixed case to write identifiers. PL/SQL is
not case sensitive except within string and character literals. So, if the
only difference between identifiers is the case of corresponding letters,
PL/SQL considers the identifiers to be the same, as the following
example shows:

lastname

LastName –– same as lastname

LASTNAME –– same as lastname and LastName

The length of an identifier cannot exceed 30 characters. But, every
character, including dollar signs, underscores, and number signs, is
significant. For example, PL/SQL considers the following identifiers to
be different:

lastname

last_name

Identifiers should be descriptive. So, use meaningful names such as
credit_limit and cost_per_thousand. Avoid obscure names such as cr_lim
and cpm.

Some identifiers, called reserved words, have a special syntactic meaning
to PL/SQL and so should not be redefined. For example, the words
BEGIN and END, which bracket the executable part of a block or
subprogram, are reserved. As the next example shows, if you try to
redefine a reserved word, you get a compilation error:

DECLARE

 end BOOLEAN; –– illegal; causes compilation error

However, you can embed reserved words in an identifier, as the
following example shows:

DECLARE

 end_of_game BOOLEAN; –– legal

Often, reserved words are written in upper case to promote readability.
However, like other PL/SQL identifiers, reserved words can be written
in lower or mixed case. For a list of reserved words, see Appendix E.

Predefined Identifiers

Quoted Identifiers

2 – 6 PL/SQL User’s Guide and Reference

Identifiers globally declared in package STANDARD, such as the
exception INVALID_NUMBER, can be redeclared. However, redeclaring
predefined identifiers is error prone because your local declaration
overrides the global declaration.

For flexibility, PL/SQL lets you enclose identifiers within double quotes.
Quoted identifiers are seldom needed, but occasionally they can be
useful. They can contain any sequence of printable characters including
spaces but excluding double quotes. Thus, the following identifiers
are legal:

”X+Y”

”last name”

”on/off switch”

”employee(s)”

”*** header info ***”

The maximum length of a quoted identifier is 30 characters not counting
the double quotes.

Using PL/SQL reserved words as quoted identifiers is allowed but not
recommended. It is poor programming practice to reuse reserved words.

Some PL/SQL reserved words are not reserved by SQL. For example,
you can use the PL/SQL reserved word TYPE in a CREATE TABLE
statement to name a database column. But, if a SQL statement in your
program refers to that column, you get a compilation error, as the
following example shows:

SELECT acct, type, bal INTO ... –– causes compilation error

To prevent the error, enclose the uppercase column name in double
quotes, as follows:

SELECT acct, ”TYPE”, bal INTO ...

The column name cannot appear in lower or mixed case (unless it was
defined that way in the CREATE TABLE statement). For example, the
following statement is invalid:

SELECT acct, ”type”, bal INTO ... –– causes compilation error

Alternatively, you can create a view that renames the troublesome
column, then use the view instead of the base table in SQL statements.

Literals

Numeric Literals

Character Literals

2 – 7Fundamentals

A literal is an explicit numeric, character, string, or Boolean value not
represented by an identifier. The numeric literal 147 and the Boolean
literal FALSE are examples.

Two kinds of numeric literals can be used in arithmetic expressions:
integers and reals. An integer literal is an optionally signed whole
number without a decimal point. Some examples follow:

030 6 –14 0 +32767

A real literal is an optionally signed whole or fractional number with a
decimal point. Several examples follow:

6.6667 0.0 –12.0 3.14159 +8300.00 .5 25.

PL/SQL considers numbers such as 12.0 and 25. to be reals even though
they have integral values.

Numeric literals cannot contain dollar signs or commas, but can be
written using scientific notation. Simply suffix the number with an E (or
e) followed by an optionally signed integer. A few examples follow:

2E5 1.0E–7 3.14159e0 –1E38 –9.5e–3

E stands for ”times ten to the power of.” As the next example shows, the
number after E is the power of ten by which the number before E must
be multiplied:

5E3 = 5 � 10 3 = 5 � 1000 = 5000

The number after E also corresponds to the number of places the
decimal point shifts. In the last example, the implicit decimal point
shifted three places to the right; in the next example, it shifts three places
to the left:

5E–3 = 5 � 10 –3 = 5 � 0.001 = 0.005

A character literal is an individual character enclosed by single quotes
(apostrophes). Several examples follow:

’Z’ ’%’ ’7’ ’ ’ ’z’ ’(’

Character literals include all the printable characters in the PL/SQL
character set: letters, numerals, spaces, and special symbols. PL/SQL is
case sensitive within character literals. For example, PL/SQL considers
the literals ’Z’ and ’z’ to be different.

The character literals ’0’ .. ’9’ are not equivalent to integer literals, but
can be used in arithmetic expressions because they are implicitly
convertible to integers.

String Literals

Boolean Literals

Comments

Single–Line

2 – 8 PL/SQL User’s Guide and Reference

A character value can be represented by an identifier or explicitly
written as a string literal, which is a sequence of zero or more characters
enclosed by single quotes. Several examples follow:

’Hello, world!’

’XYZ Corporation’

’10–NOV–91’

’He said ”Life is like licking honey from a thorn.”’

’$1,000,000’

All string literals except the null string (’’) have datatype CHAR.

Given that apostrophes (single quotes) delimit string literals, how do
you represent an apostrophe within a string? As the next example
shows, you write two single quotes, which is not the same as writing a
double quote:

’Don’’t leave without saving your work.’

PL/SQL is case sensitive within string literals. For example, PL/SQL
considers the following literals to be different:

’baker’

’Baker’

Boolean literals are the predefined values TRUE and FALSE and the
non–value NULL, which stands for a missing, unknown, or inapplicable
value. Remember, Boolean literals are values, not strings. For example,
TRUE is no less a value than the number 25.

The PL/SQL compiler ignores comments, but you should not.
Adding comments to your program promotes readability and aids
understanding. Generally, you use comments to describe the purpose
and use of each code segment. PL/SQL supports two comment styles:
single–line and multi–line.

Single–line comments begin with a double hyphen (– –) anywhere on a
line and extend to the end of the line. A few examples follow:

–– begin processing

SELECT sal INTO salary FROM emp –– get current salary

 WHERE empno = emp_id;

bonus := salary * 0.15; –– compute bonus amount

Notice that comments can appear within a statement at the end of a line.

While testing or debugging a program, you might want to disable a line
of code. The following example shows how you can “comment–out”
the line:

–– DELETE FROM emp WHERE comm IS NULL;

Multi–line

Restrictions

2 – 9Fundamentals

Multi–line comments begin with a slash–asterisk (/*), end with an
asterisk–slash (*/), and can span multiple lines. An example follows:

/* Compute a 15% bonus for top–rated employees. */

IF rating > 90 THEN

 bonus := salary * 0.15 /* bonus is based on salary */

ELSE

 bonus := 0;

END IF;

The next three examples illustrate some popular formats:

/* The following line computes the area of a circle using pi,

 which is the ratio between the circumference and diameter. */

area := pi * radius**2;

/**

 * The following line computes the area of a circle using pi, *

 * which is the ratio between the circumference and diameter. *

 **/

area := pi * radius**2;

/*

 The following line computes the area of a circle using pi,

 which is the ratio between the circumference and diameter.

*/

area := pi * radius**2;

You can use multi–line comment delimiters to comment–out whole
sections of code, as the following example shows:

/*

OPEN c1;

LOOP

 FETCH c1 INTO emp_rec;

 EXIT WHEN c1%NOTFOUND;

 ...

END LOOP; CLOSE c1;

*/

You cannot nest comments. Also, you cannot use single–line comments
in a PL/SQL block that will be processed dynamically by an Oracle
Precompiler program because end–of–line characters are ignored. As a
result, single–line comments extend to the end of the block, not just to
the end of a line. So, use multi–line comments instead.

2 – 10 PL/SQL User’s Guide and Reference

Datatypes

Every constant and variable has a datatype, which specifies a storage
format, constraints, and valid range of values. PL/SQL provides a
variety of predefined scalar and composite datatypes. A scalar type has
no internal components. A composite type has internal components that
can be manipulated individually. A reference type contains values, called
pointers, that designate other program objects.

Figure 2 – 1 shows the predefined datatypes available for your use. An
additional scalar type, MLSLABEL, is available with Trusted Oracle, a
specially secured version of Oracle. The scalar types fall into four
families, which store number, character, date/time, or Boolean
data, respectively.

BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL

NUMBER
NUMERIC

POSITIVE

REAL
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
RAW
ROWID
STRING
VARCHAR
VARCHAR2

DATE

Scalar Types Composite Types

PL/SQL Datatypes

BOOLEAN

Reference Types

REF CURSOR

RECORD

TABLE

POSITIVEN

PLS_INTEGER

NATURALN

Figure 2 – 1 Predefined Datatypes

This section discusses the scalar types; the composite types are
discussed in Chapter 4; the reference type is discussed in “Using Cursor
Variables” on page 5 – 17.

BINARY_INTEGER

Subtypes

NUMBER

2 – 11Fundamentals

You use the BINARY_INTEGER datatype to store signed integers. Its
magnitude range is –2147483647 .. 2147483647. Like PLS_INTEGER
values, BINARY_INTEGER values require less storage than NUMBER
values. However, most BINARY_INTEGER operations are slower than
PLS_INTEGER operations. For more information, see “PLS_INTEGER”
on page 2 – 12.

A base type is the datatype from which a subtype is derived. A subtype
associates a base type with a constraint and so defines a subset of
values. For your convenience, PL/SQL predefines the following
BINARY_INTEGER subtypes:

• NATURAL (0 .. 2147483647)

• NATURALN (0 .. 2147483647)

• POSITIVE (1 .. 2147483647)

• POSITIVEN (1 .. 2147483647)

You can use these subtypes when you want to restrict a variable to
non–negative integer values. The subtypes NATURALN and
POSITIVEN are predefined as NOT NULL. For more information about
the NOT NULL constraint, see “Using NOT NULL” on page 2 – 23.

You use the NUMBER datatype to store fixed or floating–point numbers
of virtually any size. You can specify precision, which is the total number
of digits, and scale, which determines where rounding occurs. The
syntax follows:

NUMBER[(precision, scale)]

You cannot use constants or variables to specify precision and scale; you
must use integer literals.

The maximum precision of a NUMBER value is 38 decimal digits; the
magnitude range is 1.0E–129 .. 9.99E125. If you do not specify the
precision, it defaults to the maximum value supported by your system.

Scale can range from –84 to 127. For instance, a scale of 2 rounds to the
nearest hundredth (3.456 becomes 3.46). Scale can be negative, which
causes rounding to the left of the decimal point. For example, a scale
of –3 rounds to the nearest thousand (3456 becomes 3000). A scale of
zero rounds to the nearest whole number. If you do not specify the scale,
it defaults to zero.

Subtypes

PLS_INTEGER

2 – 12 PL/SQL User’s Guide and Reference

The NUMBER subtypes below have the same range of values as their
base type. For example, DECIMAL is just another name for NUMBER.

• DEC

• DECIMAL

• DOUBLE PRECISION

• INTEGER

• INT

• NUMERIC

• REAL

• SMALLINT

FLOAT is another subtype of NUMBER. However, you cannot specify a
scale for FLOAT variables; you can only specify a binary precision. The
maximum precision of a FLOAT value is 126 binary digits, which is
roughly equivalent to 38 decimal digits.

You can use these subtypes for compatibility with ANSI/ISO and IBM
types or when you want an identifier more descriptive than NUMBER.

You use the PLS_INTEGER datatype to store signed integers. Its
magnitude range is –2147483647 .. 2147483647. PLS_INTEGER values
require less storage than NUMBER values. Also, PLS_INTEGER
operations use machine arithmetic, so they are faster than NUMBER and
BINARY_INTEGER operations, which use library arithmetic. For better
performance, use PLS_INTEGER for all calculations that fall within its
magnitude range.

Although PLS_INTEGER and BINARY_INTEGER are both integer types
with the same magnitude range, they are not fully compatible. When a
PLS_INTEGER calculation overflows, an exception is raised. However,
when a BINARY_INTEGER calculation overflows, no exception is raised
if the result is assigned to a NUMBER variable.

Because of this small semantic difference, you might want to continue
using BINARY_INTEGER in old applications for compatibility. In new
applications, always use PLS_INTEGER for better performance.

CHAR

Subtype

LONG

2 – 13Fundamentals

You use the CHAR datatype to store fixed–length (blank–padded
if necessary) character data. How the data is represented internally
depends on the database character set, which might be 7–bit ASCII or
EBCDIC Code Page 500, for example.

The CHAR datatype takes an optional parameter that lets you specify a
maximum length up to 32767 bytes. The syntax follows:

CHAR[(maximum_length)]

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal. If you do not specify the maximum
length, it defaults to 1.

Remember, you specify the maximum length of a CHAR(n) variable in
bytes, not characters. So, if a CHAR(n) variable stores multi–byte
characters, its maximum length is less than n characters.

Although the maximum length of a CHAR(n) variable is 32767 bytes, the
maximum width of a CHAR database column is 255 bytes. Therefore,
you cannot insert values longer than 255 bytes into a CHAR column.
You can insert any CHAR(n) value into a LONG database column
because the maximum width of a LONG column is 2147483647 bytes or
2 gigabytes. However, you cannot select a value longer than 32767 bytes
from a LONG column into a CHAR(n) variable.

The CHAR subtype CHARACTER has the same range of values as its
base type. That is, CHARACTER is just another name for CHAR. You
can use this subtype for compatibility with ANSI/ISO and IBM types or
when you want an identifier more descriptive than CHAR.

You use the LONG datatype to store variable–length character strings.
The LONG datatype is like the VARCHAR2 datatype, except that the
maximum length of a LONG value is 32760 bytes.

You can insert any LONG value into a LONG database column because
the maximum width of a LONG column is 2147483647 bytes. However,
you cannot select a value longer than 32760 bytes from a LONG column
into a LONG variable.

LONG columns can store text, arrays of characters, or even short
documents. You can reference LONG columns in UPDATE, INSERT, and
(most) SELECT statements, but not in expressions, SQL function calls, or
certain SQL clauses such as WHERE, GROUP BY, and CONNECT BY.
For more information, see Oracle7 Server SQL Reference.

RAW

LONG RAW

ROWID

2 – 14 PL/SQL User’s Guide and Reference

You use the RAW datatype to store binary data or byte strings. For
example, a RAW variable might store a sequence of graphics characters
or a digitized picture. Raw data is like character data, except that
PL/SQL does not interpret raw data. Likewise, Oracle does no character
set conversions (from 7–bit ASCII to EBCDIC Code Page 500, for
example) when you transmit raw data from one system to another.

The RAW datatype takes a required parameter that lets you specify a
maximum length up to 32767 bytes. The syntax follows:

RAW(maximum_length)

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal.

Although the maximum length of a RAW variable is 32767 bytes, the
maximum width of a RAW database column is 255 bytes. Therefore, you
cannot insert values longer than 255 bytes into a RAW column. You can
insert any RAW value into a LONG RAW database column because the
maximum width of a LONG RAW column is 2147483647 bytes.
However, you cannot select a value longer than 32767 bytes from a
LONG RAW column into a RAW variable.

You use the LONG RAW datatype to store binary data or byte strings.
LONG RAW data is like LONG data, except that LONG RAW data is not
interpreted by PL/SQL. The maximum length of a LONG RAW value is
32760 bytes.

You can insert any LONG RAW value into a LONG RAW database
column because the maximum width of a LONG RAW column is
2147483647 bytes. However, you cannot select a value longer than 32760
bytes from a LONG RAW column into a LONG RAW variable.

Internally, every Oracle database table has a ROWID pseudocolumn,
which stores binary values called rowids. Rowids uniquely identify rows
and provide the fastest way to access particular rows. You use the
ROWID datatype to store rowids in a readable format. The maximum
length of a ROWID variable is 256 bytes.

When you select or fetch a rowid into a ROWID variable, you can use
the function ROWIDTOCHAR, which converts the binary value to an
18–byte character string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in
the block (the first row is 0), and FFFF is the database file.

VARCHAR2

Subtypes

2 – 15Fundamentals

These numbers are hexadecimal. For example, the rowid

0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, ROWID variables are compared to the ROWID pseudocolumn
in the WHERE clause of an UPDATE or DELETE statement to identify
the latest row fetched from a cursor. For an example, see “Fetching
Across Commits” on page 5 – 47.

You use the VARCHAR2 datatype to store variable–length character
data. How the data is represented internally depends on the database
character set.

The VARCHAR2 datatype takes a required parameter that specifies a
maximum length up to 32767 bytes. The syntax follows:

VARCHAR2(maximum_length)

You cannot use a constant or variable to specify the maximum length;
you must use an integer literal.

Remember, you specify the maximum length of a VARCHAR2(n)
variable in bytes, not characters. So, if a VARCHAR2(n) variable stores
multi–byte characters, its maximum length is less than n characters.

Although the maximum length of a VARCHAR2(n) variable is 32767
bytes, the maximum width of a VARCHAR2 database column is 2000
bytes. Therefore, you cannot insert values longer than 2000 bytes into a
VARCHAR2 column. You can insert any VARCHAR2(n) value into
a LONG database column because the maximum width of a LONG
column is 2147483647 bytes. However, you cannot select a value longer
than 32767 bytes from a LONG column into a VARCHAR2(n) variable.

Some important semantic differences between the CHAR and
VARCHAR2 base types are described in Appendix C.

The VARCHAR2 subtypes below have the same range of values as their
base type. For example, VARCHAR is just another name for
VARCHAR2.

• STRING

• VARCHAR

You can use these subtypes for compatibility with ANSI/ISO and IBM
types. However, the VARCHAR datatype might change to accommodate
emerging SQL standards. So, it is a good idea to use VARCHAR2 rather
than VARCHAR.

BOOLEAN

DATE

MLSLABEL

2 – 16 PL/SQL User’s Guide and Reference

You use the BOOLEAN datatype to store the values TRUE and FALSE
and the non–value NULL. Recall that NULL stands for a missing,
unknown, or inapplicable value.

The BOOLEAN datatype takes no parameters. Only the values TRUE
and FALSE and the non–value NULL can be assigned to a BOOLEAN
variable. You cannot insert the values TRUE and FALSE into a database
column. Furthermore, you cannot select or fetch column values into a
BOOLEAN variable.

You use the DATE datatype to store fixed–length date values. The DATE
datatype takes no parameters. Valid dates for DATE variables include
January 1, 4712 BC to December 31, 4712 AD.

When stored in a database column, date values include the time of day
in seconds since midnight. The date portion defaults to the first day of
the current month; the time portion defaults to midnight.

With Trusted Oracle, you use the MLSLABEL datatype to store
variable–length, binary operating system labels. Trusted Oracle uses
labels to control access to data. For more information, see Trusted Oracle7
Server Administrator’s Guide.

You can use the MLSLABEL datatype to define a database column.
Also, you can use the %TYPE and %ROWTYPE attributes to reference
the column. However, with standard Oracle, such columns can store
only nulls.

With Trusted Oracle, you can insert any valid operating system label
into a column of type MLSLABEL. If the label is in text format, Trusted
Oracle converts it to a binary value automatically. The text string can be
up to 255 bytes long. However, the internal length of an MLSLABEL
value is between 2 and 5 bytes.

With Trusted Oracle, you can also select values from a MLSLABEL
column into a character variable. Trusted Oracle converts the internal
binary value to a VARCHAR2 value automatically.

Defining Subtypes

2 – 17Fundamentals

User–Defined Subtypes

Each PL/SQL base type specifies a set of values and a set of operations
applicable to objects of that type. Subtypes specify the same set of
operations as their base type but only a subset of its values. Thus, a
subtype does not introduce a new type; it merely places an optional
constraint on its base type.

PL/SQL predefines several subtypes in package STANDARD. For
example, PL/SQL predefines the subtype CHARACTER, as follows:

SUBTYPE CHARACTER IS CHAR;

The subtype CHARACTER specifies the same set of values as its base
type CHAR. Thus, CHARACTER is an unconstrained subtype.

Subtypes can increase reliability, provide compatibility with ANSI/ISO
and IBM types, and improve readability by indicating the intended use
of constants and variables.

You can define your own subtypes in the declarative part of any
PL/SQL block, subprogram, or package using the syntax

SUBTYPE subtype_name IS base_type;

where subtype_name is a type specifier used in subsequent declarations
and base_type stands for the following syntax:

{ cursor_name%ROWTYPE

 | cursor_variable_name%ROWTYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE}

For example, all of the following subtype definitions are legal:

DECLARE

 SUBTYPE EmpDate IS DATE; –– based on DATE type

 SUBTYPE Counter IS NATURAL; –– based on NATURAL subtype

 TYPE NameTab IS TABLE OF VARCHAR2(10)

 INDEX BY BINARY_INTEGER;

 SUBTYPE EnameTab IS NameTab; –– based on TABLE type

 TYPE TimeTyp IS RECORD (minute INTEGER, hour INTEGER);

 SUBTYPE Clock IS TimeTyp; –– based on RECORD type

 SUBTYPE ID_Num IS emp.empno%TYPE; –– based on column type

 CURSOR c1 IS SELECT * FROM dept;

 SUBTYPE Dept_Rec IS c1%ROWTYPE; –– based on cursor rowtype

Using Subtypes

2 – 18 PL/SQL User’s Guide and Reference

However, you cannot specify a constraint on the base type. For example,
the following definitions are illegal:

DECLARE

 SUBTYPE Accumulator IS NUMBER(7,2); –– illegal; must be NUMBER

 SUBTYPE Delimiter IS CHAR(1); –– illegal; must be CHAR

 SUBTYPE Word IS VARCHAR2(15); –– illegal

Although you cannot define constrained subtypes directly, you can use a
simple workaround to define size–constrained subtypes indirectly.
Simply declare a size–constrained variable, then use %TYPE to provide
its datatype, as shown in the following example:

DECLARE

 temp VARCHAR2(15);

 SUBTYPE Word IS temp%TYPE; –– maximum size of Word is 15

Likewise, if you define a subtype using %TYPE to provide the datatype
of a database column, the subtype adopts the size constraint (if any) of
the column. However, the subtype does not adopt other kinds of
constraints such as NOT NULL.

Once you define a subtype, you can declare objects of that type. In the
example below, you declare two variables of type Counter. Notice how
the subtype name indicates the intended use of the variables.

DECLARE

 SUBTYPE Counter IS NATURAL;

 rows Counter;

 employees Counter;

The following example shows that you can constrain a user–defined
subtype when declaring variables of that type:

DECLARE

 SUBTYPE Accumulator IS NUMBER;

 total Accumulator(7,2);

Subtypes can increase reliability by detecting out–of–range values. In the
example below, you restrict the subtype Scale to storing integers in the
range –9 .. 9. If your program tries to store a number outside that range
in a Scale variable, PL/SQL raises an exception.

DECLARE

 temp NUMBER(1,0);

 SUBTYPE Scale IS temp%TYPE;

 x_axis Scale; –– magnitude range is –9 .. 9

 y_axis Scale;

BEGIN

 x_axis := 10; –– raises VALUE_ERROR

Type Compatibility

2 – 19Fundamentals

An unconstrained subtype is interchangeable with its base type. For
example, given the following declarations, the value of amount can be
assigned to total without conversion:

DECLARE

 SUBTYPE Accumulator IS NUMBER;

 amount NUMBER(7,2);

 total Accumulator;

BEGIN

 ...

 total := amount;

 ...

END;

Different subtypes are interchangeable if they have the same base type.
For instance, given the following declarations, the value of finished can
be assigned to debugging:

DECLARE

 SUBTYPE Sentinel IS BOOLEAN;

 SUBTYPE Switch IS BOOLEAN;

 finished Sentinel;

 debugging Switch;

BEGIN

 ...

 debugging := finished;

 ...

END;

Different subtypes are also interchangeable if their base types are in the
same datatype family. For example, given the following declarations, the
value of verb can be assigned to sentence:

DECLARE

 SUBTYPE Word IS CHAR;

 SUBTYPE Text IS VARCHAR2;

 verb Word;

 sentence Text;

BEGIN

 ...

 sentence := verb;

 ...

END;

Explicit Conversion

Implicit Conversion

2 – 20 PL/SQL User’s Guide and Reference

Datatype Conversion

Sometimes it is necessary to convert a value from one datatype to
another. For example, if you want to examine a rowid, you must convert
it to a character string. PL/SQL supports both explicit and implicit
(automatic) datatype conversion.

To specify conversions explicitly, you use built–in functions that convert
values from one datatype to another. Table 2 – 1 shows which function
to use in a given situation. For example, to convert a CHAR value
to a NUMBER value, you use the function TO_NUMBER. For more
information about these functions, see Oracle7 Server SQL Reference.

To

From CHAR DATE NUMBER RAW ROWID

CHAR TO_DATE TO_NUMBER HEXTORAW CHARTOROWID

DATE TO_CHAR

NUMBER TO_CHAR TO_DATE

RAW RAWTOHEX

ROWID ROWIDTOCHAR

Table 2 – 1 Conversion Functions

When it makes sense, PL/SQL can convert the datatype of a value
implicitly. This allows you to use literals, variables, and parameters of
one type where another type is expected. In the example below, the
CHAR variables start_time and finish_time hold string values
representing the number of seconds past midnight. The difference
between those values must be assigned to the NUMBER variable
elapsed_time. So, PL/SQL converts the CHAR values to NUMBER
values automatically.

DECLARE

 start_time CHAR(5);

 finish_time CHAR(5);

 elapsed_time NUMBER(5);

BEGIN

 /* Get system time as seconds past midnight. */

 SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO start_time FROM sys.dual;

 –– do something

 /* Get system time again. */

 SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO finish_time FROM sys.dual;

 /* Compute elapsed time in seconds. */

 elapsed_time := finish_time – start_time;

 INSERT INTO results VALUES (elapsed_time, ...);

END;

Implicit versus Explicit
Conversion

DATE Values

2 – 21Fundamentals

Before assigning a selected column value to a variable, PL/SQL will, if
necessary, convert the value from the datatype of the source column to
the datatype of the variable. This happens, for example, when you select
a DATE column value into a VARCHAR2 variable. Likewise, before
assigning the value of a variable to a database column, PL/SQL will, if
necessary, convert the value from the datatype of the variable to the
datatype of the target column.

If PL/SQL cannot determine which implicit conversion is needed, you
get a compilation error. In such cases, you must use a datatype
conversion function. Table 2 – 2 shows which implicit conversions
PL/SQL can do.

 To

From BIN_INT CHAR DATE LONG NUMBER PLS_INT RAW ROWID VARCHAR2

BIN_INT � � � � �

CHAR � � � � � � � �

DATE � � �

LONG � � �

NUMBER � � � � �

PLS_INT � � � � �

RAW � � �

ROWID � �

VARCHAR2 � � � � � � � �

Table 2 – 2 Implicit Conversions

It is your responsibility to ensure that values are convertible. For
instance, PL/SQL can convert the CHAR value ’02–JUN–92’ to a DATE
value, but PL/SQL cannot convert the CHAR value ’YESTERDAY’ to a
DATE value. Similarly, PL/SQL cannot convert a VARCHAR2 value
containing alphabetic characters to a NUMBER value.

Generally, it is poor programming practice to rely on implicit datatype
conversions because they can hamper performance and might change
from one software release to the next. Also, implicit conversions are
context sensitive and therefore not always predictable. Instead, use
datatype conversion functions. That way, your applications will be more
reliable and easier to maintain.

When you select a DATE column value into a CHAR or VARCHAR2
variable, PL/SQL must convert the internal binary value to a character
value. So, PL/SQL calls the function TO_CHAR, which returns a
character string in the default date format. To get other information such
as the time or Julian date, you must call TO_CHAR with a format mask.

RAW and LONG RAW
Values

2 – 22 PL/SQL User’s Guide and Reference

A conversion is also necessary when you insert a CHAR or VARCHAR2
value into a DATE column. So, PL/SQL calls the function TO_DATE,
which expects the default date format. To insert dates in other formats,
you must call TO_DATE with a format mask.

When you select a RAW or LONG RAW column value into a CHAR or
VARCHAR2 variable, PL/SQL must convert the internal binary value to
a character value. In this case, PL/SQL returns each binary byte of RAW
or LONG RAW data as a pair of characters. Each character represents
the hexadecimal equivalent of a nibble (half a byte). For example,
PL/SQL returns the binary byte 11111111 as the pair of characters ’FF’.
The function RAWTOHEX does the same conversion.

A conversion is also necessary when you insert a CHAR or VARCHAR2
value into a RAW or LONG RAW column. Each pair of characters in the
variable must represent the hexadecimal equivalent of a binary byte. If
either character does not represent the hexadecimal equivalent of a
nibble, PL/SQL raises an exception.

Declarations

Your program stores values in variables and constants. As the program
executes, the values of variables can change, but the values of constants
cannot.

You can declare variables and constants in the declarative part of any
PL/SQL block, subprogram, or package. Declarations allocate storage
space for a value, specify its datatype, and name the storage location so
that you can reference it. A couple of examples follow:

birthday DATE;

emp_count SMALLINT := 0;

The first declaration names a variable of type DATE. The second
declaration names a variable of type SMALLINT and uses the
assignment operator (:=) to assign an initial value of zero to the variable.

The next examples show that the expression following the assignment
operator can be arbitrarily complex and can refer to previously
initialized variables:

pi REAL := 3.14159;

radius REAL := 1;

area REAL := pi * radius**2;

Using DEFAULT

Using NOT NULL

2 – 23Fundamentals

By default, variables are initialized to NULL. For example, the following
declarations are equivalent:

birthday DATE;

birthday DATE := NULL;

In constant declarations, the keyword CONSTANT must precede the
type specifier, as the following example shows:

credit_limit CONSTANT REAL := 5000.00;

This declaration names a constant of type REAL and assigns an initial
(also final) value of 5000 to the constant. A constant must be initialized
in its declaration. Otherwise, you get a compilation error when the
declaration is elaborated. (The processing of a declaration by the
PL/SQL compiler is called elaboration.)

If you prefer, you can use the reserved word DEFAULT instead of the
assignment operator to initialize variables and constants. For example,
the declarations

tax_year SMALLINT := 95;

valid BOOLEAN := FALSE;

can be rewritten as follows:

tax_year SMALLINT DEFAULT 95;

valid BOOLEAN DEFAULT FALSE;

You can also use DEFAULT to initialize subprogram parameters, cursor
parameters, and fields in a user–defined record.

Besides assigning an initial value, declarations can impose the NOT
NULL constraint, as the following example shows:

acct_id INTEGER(4) NOT NULL := 9999;

You cannot assign nulls to a variable defined as NOT NULL. If you try,
PL/SQL raises the predefined exception VALUE_ERROR. The NOT
NULL constraint must be followed by an initialization clause. For
example, the following declaration is illegal:

acct_id INTEGER(5) NOT NULL; –– illegal; not initialized

Recall that the subtypes NATURALN and POSITIVEN are predefined as
NOT NULL. For instance, the following declarations are equivalent:

emp_count NATURAL NOT NULL := 0;

emp_count NATURALN := 0;

Using %TYPE

2 – 24 PL/SQL User’s Guide and Reference

In NATURALN and POSITIVEN declarations, the type specifier must be
followed by an initialization clause. Otherwise, you get a compilation
error. For example, the following declaration is illegal:

line_items POSITIVEN; –– illegal; not initialized

The %TYPE attribute provides the datatype of a variable or database
column. In the following example, %TYPE provides the datatype
of a variable:

credit REAL(7,2);

debit credit%TYPE;

Variables declared using %TYPE are treated like those declared using a
datatype specifier. For example, given the previous declarations,
PL/SQL treats debit like a REAL(7,2) variable.

The next example shows that a %TYPE declaration can include an
initialization clause:

balance NUMBER(7,2);

minimum_balance balance%TYPE := 10.00;

The %TYPE attribute is particularly useful when declaring variables that
refer to database columns. You can reference a table and column, or you
can reference an owner, table, and column, as in

my_dname scott.dept.dname%TYPE;

Using %TYPE to declare my_dname has two advantages. First, you
need not know the exact datatype of dname. Second, if the database
definition of dname changes, the datatype of my_dname changes
accordingly at run time.

Note, however, that a NOT NULL column constraint does not apply to
variables declared using %TYPE. In the next example, even though the
database column empno is defined as NOT NULL, you can assign a null
to the variable my_empno:

DECLARE

 my_empno emp.empno%TYPE;

 ...

BEGIN

 my_empno := NULL; –– this works

Using %ROWTYPE

Aggregate Assignment

2 – 25Fundamentals

The %ROWTYPE attribute provides a record type that represents a row
in a table (or view). The record can store an entire row of data selected
from the table or fetched from a cursor or cursor variable. In the
example below, you declare two records. The first record stores a row
selected from the emp table. The second record stores a row fetched from
the c1 cursor.

DECLARE

 emp_rec emp%ROWTYPE;

 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;

 dept_rec c1%ROWTYPE;

Columns in a row and corresponding fields in a record have the same
names and datatypes. In the following example, you select column
values into a record named emp_rec:

DECLARE

 emp_rec emp%ROWTYPE;

 ...

BEGIN

 SELECT * INTO emp_rec FROM emp WHERE ...

The column values returned by the SELECT statement are stored in
fields. To reference a field, you use dot notation. For example, you might
reference the deptno field as follows:

IF emp_rec.deptno = 20 THEN ...

Also, you can assign the value of an expression to a specific field, as the
following examples show:

emp_rec.ename := ’JOHNSON’;

emp_rec.sal := emp_rec.sal * 1.15;

A %ROWTYPE declaration cannot include an initialization clause.
However, there are two ways to assign values to all fields in a record at
once. First, PL/SQL allows aggregate assignment between entire records
if their declarations refer to the same table or cursor. For example, the
following assignment is legal:

DECLARE

 dept_rec1 dept%ROWTYPE;

 dept_rec2 dept%ROWTYPE;

 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;

 dept_rec3 c1%ROWTYPE;

BEGIN

 ...

 dept_rec1 := dept_rec2;

Using Aliases

2 – 26 PL/SQL User’s Guide and Reference

However, because dept_rec2 is based on a table and dept_rec3 is based on
a cursor, the following assignment is illegal:

dept_rec2 := dept_rec3; –– illegal

Second, you can assign a list of column values to a record by using the
SELECT or FETCH statement, as the example below shows. The column
names must appear in the order in which they were defined by the
CREATE TABLE or CREATE VIEW statement.

DECLARE

 dept_rec dept%ROWTYPE;

 ...

BEGIN

 SELECT deptno, dname, loc INTO dept_rec FROM dept

 WHERE deptno = 30;

However, you cannot assign a list of column values to a record by using
an assignment statement. So, the following syntax is illegal:

record_name := (value1, value2, value3, ...); –– illegal

Although you can retrieve entire records, you cannot insert or update
them. For example, the following statement is illegal:

INSERT INTO dept VALUES (dept_rec); –– illegal

Select–list items fetched from a cursor associated with %ROWTYPE
must have simple names or, if they are expressions, must have aliases. In
the following example, you use an alias called wages:

–– available online in file EXAMP4

DECLARE

 CURSOR my_cursor IS SELECT sal + NVL(comm, 0) wages, ename

 FROM emp;

 my_rec my_cursor%ROWTYPE;

BEGIN

 OPEN my_cursor;

 LOOP

 FETCH my_cursor INTO my_rec;

 EXIT WHEN my_cursor%NOTFOUND;

 IF my_rec.wages > 2000 THEN

 INSERT INTO temp VALUES (NULL, my_rec.wages,

 my_rec.ename);

 END IF;

 END LOOP;

 CLOSE my_cursor;

END;

For more information about database column aliases, see Oracle7 Server
SQL Reference.

Restrictions

2 – 27Fundamentals

PL/SQL does not allow forward references. You must declare a variable
or constant before referencing it in other statements, including other
declarative statements. For example, the following declaration of maxi
is illegal:

maxi INTEGER := 2 * mini; –– illegal

mini INTEGER := 15;

However, PL/SQL does allow the forward declaration of subprograms.
For more information, see “Forward Declarations” on page 7 – 8.

Some languages allow you to declare a list of variables that have the
same datatype. PL/SQL does not allow this. For example, the following
declaration is illegal:

i, j, k SMALLINT; –– illegal

The legal version follows:

i SMALLINT;

j SMALLINT;

k SMALLINT;

Naming Conventions

The same naming conventions apply to all PL/SQL program objects
and units including constants, variables, cursors, cursor variables,
exceptions, procedures, functions, and packages. Names can be simple,
qualified, remote, or both qualified and remote. For example, you might
use the procedure name raise_salary in any of the following ways:

raise_salary(...); –– simple

emp_actions.raise_salary(...); –– qualified

raise_salary@newyork(...); –– remote

emp_actions.raise_salary@newyork(...); –– qualified and remote

In the first case, you simply use the procedure name. In the second case,
you must qualify the name using dot notation because the procedure is
stored in a package called emp_actions. In the third case, you reference
the database link newyork because the (standalone) procedure is stored
in a remote database. In the fourth case, you qualify the procedure name
and reference a database link.

Synonyms

Scoping

Case Sensitivity

Name Resolution

2 – 28 PL/SQL User’s Guide and Reference

You can create synonyms to provide location transparency for remote
database objects such as tables, sequences, views, standalone
subprograms, and packages. However, you cannot create synonyms for
objects declared within subprograms or packages. That includes
constants, variables, cursors, cursor variables, exceptions, and
packaged procedures.

Within the same scope, all declared identifiers must be unique. So, even
if their datatypes differ, variables and parameters cannot share the same
name. For example, two of the following declarations are illegal:

DECLARE

 valid_id BOOLEAN;

 valid_id VARCHAR2(5); –– illegal duplicate identifier

 FUNCTION bonus (valid_id IN INTEGER) RETURN REAL IS ...

 –– illegal triplicate identifier

For the scoping rules that apply to identifiers, see “Scope and Visibility”
on page 2 – 30.

Like other identifiers, the names of constants, variables, and parameters
are not case sensitive. For instance, PL/SQL considers the following
names to be the same:

DECLARE

 zip_code INTEGER;

 Zip_Code INTEGER; –– same as zip_code

 ZIP_CODE INTEGER; –– same as zip_code and Zip_Code

In potentially ambiguous SQL statements, the names of local variables
and formal parameters take precedence over the names of database
tables. For example, the following UPDATE statement fails because
PL/SQL assumes that emp refers to the loop counter:

FOR emp IN 1..5 LOOP

 ...

 UPDATE emp SET bonus = 500 WHERE ...

END LOOP;

Likewise, the following SELECT statement fails because PL/SQL
assumes that emp refers to the formal parameter:

PROCEDURE calc_bonus (emp NUMBER, bonus OUT REAL) IS

 avg_sal REAL;

BEGIN

 SELECT AVG(sal) INTO avg_sal FROM emp WHERE ...

2 – 29Fundamentals

In such cases, you can prefix the table name with a username, as follows,
but it is better programming practice to rename the variable or
formal parameter.:

PROCEDURE calc_bonus (emp NUMBER, bonus OUT REAL) IS

 avg_sal REAL;

BEGIN

 SELECT AVG(sal) INTO avg_sal FROM scott.emp WHERE ...

Unlike the names of tables, the names of columns take precedence over
the names of local variables and formal parameters. For example, the
following DELETE statement removes all employees from the emp table,
not just KING, because Oracle assumes that both enames in the WHERE
clause refer to the database column:

DECLARE

 ename VARCHAR2(10) := ’KING’;

BEGIN

 DELETE FROM emp WHERE ename = ename;

In such cases, to avoid ambiguity, prefix the names of local variables and
formal parameters with my_, as follows:

DECLARE

 my_ename VARCHAR2(10);

Or, use a block label to qualify references, as in

<<main>>

DECLARE

 ename VARCHAR2(10) := ’KING’;

BEGIN

 DELETE FROM emp WHERE ename = main.ename;

The next example shows that you can use a subprogram name to qualify
references to local variables and formal parameters:

FUNCTION bonus (deptno IN NUMBER, ...) RETURN REAL IS

 job CHAR(10);

BEGIN

 ...

 SELECT ... WHERE deptno = bonus.deptno AND job = bonus.job;

 –– refers to formal parameter and local variable

For a full discussion of name resolution, see Oracle7 Server Application
Developer’s Guide.

2 – 30 PL/SQL User’s Guide and Reference

Scope and Visibility

References to an identifier are resolved according to its scope and
visibility. The scope of an identifier is that region of a program unit
(block, subprogram, or package) from which you can reference the
identifier. An identifier is visible only in the regions from which you can
reference the identifier using an unqualified name. Figure 2 – 2 shows
the scope and visibility of a variable named x, which is declared in an
enclosing block, then redeclared in a sub–block.

DECLARE
 x REAL;
BEGIN
 ...
 DECLARE
 x REAL;
 BEGIN
 ...
 END;
 ...
END;

DECLARE
 x REAL;
BEGIN
 ...
 DECLARE
 x REAL;
 BEGIN
 ...
 END;
 ...
END;

DECLARE
 x REAL;
BEGIN
 ...
 DECLARE
 x REAL;
 BEGIN
 ...
 END;
 ...
END;

DECLARE
 x REAL;
BEGIN
 ...
 DECLARE
 x REAL;
 BEGIN
 ...
 END;
 ...
END;

VisibilityScope

Outer x

Inner x

Figure 2 – 2 Scope and Visibility

Identifiers declared in a PL/SQL block are considered local to that block
and global to all its sub–blocks. If a global identifier is redeclared in a
sub–block, both identifiers remain in scope. Within the sub–block,
however, only the local identifier is visible because you must use a
qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you
can declare the same identifier in two different blocks. The two objects
represented by the identifier are distinct, and any change in one does
not affect the other.

2 – 31Fundamentals

However, a block cannot reference identifiers declared in other blocks
nested at the same level because those identifiers are neither local nor
global to the block. The following example illustrates the scope rules:

DECLARE

 a CHAR;

 b REAL;

BEGIN

 –– identifiers available here: a (CHAR), b

 DECLARE

 a INTEGER;

 c REAL;

 BEGIN

 –– identifiers available here: a (INTEGER), b, c

 END;

 DECLARE

 d REAL;

 BEGIN

 –– identifiers available here: a (CHAR), b, d

 END;

 –– identifiers available here: a (CHAR), b

END;

Recall that global identifiers can be redeclared in a sub–block, in which
case the local declaration prevails and the sub–block cannot reference
the global identifier unless you use a qualified name. The qualifier can
be the label of an enclosing block, as the following example shows:

<<outer>>

DECLARE

 birthdate DATE;

BEGIN

 DECLARE

 birthdate DATE;

 BEGIN

 ...

 IF birthdate = outer.birthdate THEN ...

As the next example shows, the qualifier can also be the name of an
enclosing subprogram:

PROCEDURE check_credit (...) IS

 rating NUMBER;

 FUNCTION valid (...) RETURN BOOLEAN IS

 rating NUMBER;

 BEGIN

 ...

 IF check_credit.rating < 3 THEN ...

However, within the same scope, a label and a subprogram cannot have
the same name.

Boolean Values

Database Values

2 – 32 PL/SQL User’s Guide and Reference

Assignments

Variables and constants are initialized every time a block or subprogram
is entered. By default, variables are initialized to NULL. So, unless you
expressly initialize a variable, its value is undefined, as the following
example shows:

DECLARE

 count INTEGER;

 ...

BEGIN

 count := count + 1; –– assigns a null to count

Therefore, never reference a variable before you assign it a value.

You can use assignment statements to assign values to a variable. For
example, the following statement assigns a new value to the variable
bonus, overwriting its old value:

bonus := salary * 0.15;

The expression following the assignment operator can be arbitrarily
complex, but it must yield a datatype that is the same as or convertible
to the datatype of the variable.

Only the values TRUE and FALSE and the non–value NULL can be
assigned to a Boolean variable. For example, given the declaration

DECLARE

 done BOOLEAN;

the following statements are legal:

BEGIN

 done := FALSE;

 WHILE NOT done LOOP ...

When applied to an expression, the relational operators return a Boolean
value. So, the following assignment is legal:

done := (count > 500);

Alternatively, you can use the SELECT (or FETCH) statement to have
Oracle assign values to a variable. For each item in the SELECT list,
there must be a corresponding, type–compatible variable in the INTO
list. An example follows:

SELECT ename, sal + comm INTO last_name, wages FROM emp

 WHERE empno = emp_id;

However, you cannot select column values into a Boolean variable.

Operator Precedence

2 – 33Fundamentals

Expressions and Comparisons

Expressions are constructed using operands and operators. An operand is
a variable, constant, literal, or function call that contributes a value to an
expression. An example of a simple arithmetic expression follows:

–X / 2 + 3

Unary operators such as the negation operator (–) operate on one
operand; binary operators such as the division operator (/) operate on
two operands. PL/SQL has no ternary operators.

The simplest expressions consist of a single variable, which yields a
value directly. PL/SQL evaluates (finds the current value of) an
expression by combining the values of the operands in ways specified
by the operators. This always yields a single value and datatype.
PL/SQL determines the datatype by examining the expression and the
context in which it appears.

The operations within an expression are done in a particular order
depending on their precedence (priority). Table 2 – 3 shows the default
order of operations from first to last (top to bottom).

Operator Operation

**, NOT exponentiation, logical negation

+, – identity, negation

*, / multiplication, division

+, –, || addition, subtraction, concatenation

=, !=, <, >, <=, >=,
IS NULL, LIKE, BETWEEN, IN

comparison

AND conjunction

OR inclusion

Table 2 – 3 Order of Operations

Operators with higher precedence are applied first. For example, both of
the following expressions yield 8 because division has a higher
precedence than addition:

5 + 12 / 4

12 / 4 + 5

Operators with the same precedence are applied in no particular order.

Logical Operators

2 – 34 PL/SQL User’s Guide and Reference

You can use parentheses to control the order of evaluation. For example,
the following expression yields 7, not 11, because parentheses override
the default operator precedence:

(8 + 6) / 2

In the next example, the subtraction is done before the division because
the most deeply nested subexpression is always evaluated first:

100 + (20 / 5 + (7 – 3))

The following example shows that you can always use parentheses to
improve readability, even when they are not needed:

(salary * 0.05) + (commission * 0.25)

The logical operators AND, OR, and NOT follow the tri–state logic of
the truth tables in Figure 2 – 3. AND and OR are binary operators; NOT
is a unary operator.

NOT TRUE FALSE NULL

FALSE TRUE NULL

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Figure 2 – 3 Truth Tables

As the truth tables show, AND returns the value TRUE only if both its
operands are true. On the other hand, OR returns the value TRUE if
either of its operands is true. NOT returns the opposite value (logical
negation) of its operand. For example, NOT TRUE returns FALSE.

NOT NULL returns NULL because nulls are indeterminate. It follows
that if you apply the NOT operator to a null, the result is also
indeterminate. Be careful. Nulls can cause unexpected results; see
“Handling Nulls” on page 2 – 39.

Order of Evaluation

2 – 35Fundamentals

When you do not use parentheses to specify the order of evaluation,
operator precedence determines the order. Compare the following
expressions:

NOT (valid AND done) | NOT valid AND done

If the Boolean variables valid and done have the value FALSE, the first
expression yields TRUE. However, the second expression yields FALSE
because NOT has a higher precedence than AND; therefore, the second
expression is equivalent to

(NOT valid) AND done

In the following example, notice that when valid has the value FALSE,
the whole expression yields FALSE regardless of the value of done:

valid AND done

Likewise, in the next example, when valid has the value TRUE, the
whole expression yields TRUE regardless of the value of done:

valid OR done

Usually, PL/SQL stops evaluating a logical expression as soon as the
result can be determined. This allows you to write expressions that
might otherwise cause an error. Consider the following OR expression:

DECLARE

 ...

 on_hand INTEGER;

 on_order INTEGER;

BEGIN

 ..

 IF (on_hand = 0) OR (on_order / on_hand < 5) THEN

 ...

 END IF;

END;

When the value of on_hand is zero, the left operand yields TRUE, so
PL/SQL need not evaluate the right operand. If PL/SQL were to
evaluate both operands before applying the OR operator, the right
operand would cause a division by zero error.

Comparison Operators

Relational Operators

IS NULL Operator

LIKE Operator

2 – 36 PL/SQL User’s Guide and Reference

Comparison operators compare one expression to another. The result is
always TRUE, FALSE, or NULL. Typically, you use comparison
operators in the WHERE clause of SQL data manipulation statements
and in conditional control statements.

The relational operators allow you to compare arbitrarily complex
expressions. The following list gives the meaning of each operator:

Operator Meaning

= is equal to

<>, !=, ~= is not equal to

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

The IS NULL operator returns the Boolean value TRUE if its operand is
null or FALSE if it is not null. Comparisons involving nulls always yield
NULL. Therefore, to test for nullity (the state of being null), do not use
the statement

IF variable = NULL THEN ...

Instead, use the following statement:

IF variable IS NULL THEN ...

You use the LIKE operator to compare a character value to a pattern.
Case is significant. LIKE returns the Boolean value TRUE if the character
patterns match or FALSE if they do not match.

The patterns matched by LIKE can include two special–purpose
characters called wildcards. An underscore (_) matches exactly one
character; a percent sign (%) matches zero or more characters. For
example, if the value of ename is ’JOHNSON’, the following expression
yields TRUE:

ename LIKE ’J%SON’

BETWEEN Operator

IN Operator

Concatenation
Operator

Boolean Expressions

2 – 37Fundamentals

The BETWEEN operator tests whether a value lies in a specified range.
It means ”greater than or equal to low value and less than or equal to high
value.” For example, the following expression yields FALSE:

45 BETWEEN 38 AND 44

The IN operator tests set membership. It means ”equal to any member
of.” The set can contain nulls, but they are ignored. For example, the
following statement does not delete rows in which the ename column
is null:

DELETE FROM emp WHERE ename IN (NULL, ’KING’, ’FORD’);

Furthermore, expressions of the form

value NOT IN set

yield FALSE if the set contains a null. For example, instead of deleting
rows in which the ename column is not null and not ’KING’, the
following statement deletes no rows:

DELETE FROM emp WHERE ename NOT IN (NULL, ’KING’);

The concatenation operator (||) appends one string to another. For
example, the expression

’suit’ || ’case’

returns the value ’suitcase’ .

If both operands have datatype CHAR, the concatenation operator
returns a CHAR value. Otherwise, it returns a VARCHAR2 value.

PL/SQL lets you compare variables and constants in both SQL and
procedural statements. These comparisons, called Boolean expressions,
consist of simple or complex expressions separated by relational
operators. Often, Boolean expressions are connected by the logical
operators AND, OR, and NOT. A Boolean expression always yields
TRUE, FALSE, or NULL.

In a SQL statement, Boolean expressions let you specify the rows in a
table that are affected by the statement. In a procedural statement,
Boolean expressions are the basis for conditional control. There are three
kinds of Boolean expressions: arithmetic, character, and date.

Arithmetic

Character

Date

Guidelines

2 – 38 PL/SQL User’s Guide and Reference

You can use the relational operators to compare numbers for equality or
inequality. Comparisons are quantitative; that is, one number is greater
than another if it represents a larger quantity. For example, given
the assignments

number1 := 75;

number2 := 70;

the following expression yields TRUE:

number1 > number2

Likewise, you can compare character values for equality or inequality.
Comparisons are based on the collating sequence used for the database
character set. A collating sequence is an internal ordering of the character
set, in which a range of numeric codes represents the individual
characters. One character value is greater than another if its internal
numeric value is larger. For example, given the assignments

string1 := ’Kathy’;

string2 := ’Kathleen’;

the following expression yields TRUE:

string1 > string2

However, there are semantic differences between the CHAR and
VARCHAR2 base types that come into play when you compare
character values. For more information, refer to Appendix C.

You can also compare dates. Comparisons are chronological; that is, one
date is greater than another if it is more recent. For example, given
the assignments

date1 := ’01–JAN–91’;

date2 := ’31–DEC–90’;

the following expression yields TRUE:

date1 > date2

In general, do not compare real numbers for exact equality or inequality.
Real numbers are stored as approximate values. So, for example, the
following IF condition might not yield TRUE:

count := 1;

IF count = 1.0 THEN ...

Handling Nulls

2 – 39Fundamentals

It is a good idea to use parentheses when doing comparisons. For
example, the following expression is illegal because 100 < tax yields
TRUE or FALSE, which cannot be compared with the number 500:

100 < tax < 500 –– illegal

The debugged version follows:

(100 < tax) AND (tax < 500)

A Boolean variable is itself either true or false. So, comparisons with the
Boolean values TRUE and FALSE are redundant. For example, assuming
the variable done has the datatype BOOLEAN, the IF statement

IF done = TRUE THEN ...

can be simplified as follows:

IF done THEN ...

When working with nulls, you can avoid some common mistakes by
keeping in mind the following rules:

• comparisons involving nulls always yield NULL

• applying the logical operator NOT to a null yields NULL

• in conditional control statements, if the condition yields NULL, its
associated sequence of statements is not executed

In the example below, you might expect the sequence of statements to
execute because x and y seem unequal. But, nulls are indeterminate.
Whether or not x is equal to y is unknown. Therefore, the IF condition
yields NULL and the sequence of statements is bypassed.

x := 5;

y := NULL;

...

IF x != y THEN –– yields NULL, not TRUE

 sequence_of_statements; –– not executed

END IF;

In the next example, you might expect the sequence of statements to
execute because a and b seem equal. But, again, that is unknown, so the
IF condition yields NULL and the sequence of statements is bypassed.

a := NULL;

b := NULL;

...

IF a = b THEN –– yields NULL, not TRUE

 sequence_of_statements; –– not executed

END IF;

NOT Operator

Zero–Length Strings

Concatenation Operator

Functions

2 – 40 PL/SQL User’s Guide and Reference

Recall that applying the logical operator NOT to a null yields NULL.
Thus, the following two statements are not always equivalent:

IF x > y THEN | IF NOT x > y THEN

 high := x; | high := y;

ELSE | ELSE

 high := y; | high := x;

END IF; | END IF;

The sequence of statements in the ELSE clause is executed when the IF
condition yields FALSE or NULL. So, if either or both x and y are null,
the first IF statement assigns the value of y to high, but the second IF
statement assigns the value of x to high. If neither x nor y is null, both IF
statements assign the same value to high.

PL/SQL treats any zero–length string like a null. This includes values
returned by character functions and Boolean expressions. For example,
the following statements assign nulls to the target variables:

null_string := TO_VARCHAR2(’’);

zip_code := SUBSTR(address, 25, 0);

valid := (name != ’’);

So, use the IS NULL operator to test for null strings, as follows:

IF my_string IS NULL THEN ...

The concatenation operator ignores null operands. For example, the
expression

’apple’ || NULL || NULL || ’sauce’

returns the value ’applesauce’ .

If a null argument is passed to a built–in function, a null is returned
except in the following cases.

The function DECODE compares its first argument to one or more
search expressions, which are paired with result expressions. Any
search or result expression can be null. If a search is successful, the
corresponding result is returned. In the following example, if the
column rating is null, DECODE returns the value 1000:

SELECT DECODE(rating, NULL, 1000, ’C’, 2000, ’B’, 4000, ’A’, 5000)

 INTO credit_limit FROM accts WHERE acctno = my_acctno;

The function NVL returns the value of its second argument if its first
argument is null. In the example below, if hire_date is null, NVL returns
the value of SYSDATE. Otherwise, NVL returns the value of hire_date:

start_date := NVL(hire_date, SYSDATE);

2 – 41Fundamentals

The function REPLACE returns the value of its first argument if its
second argument is null, whether the optional third argument is present
or not. For instance, after the assignment

new_string := REPLACE(old_string, NULL, my_string);

the values of old_string and new_string are the same.

If its third argument is null, REPLACE returns its first argument with
every occurrence of its second argument removed. For example, after
the assignments

syllabified_name := ’Gold–i–locks’;

name := REPLACE(syllabified_name, ’–’, NULL);

the value of name is ’Goldilocks’ .

If its second and third arguments are null, REPLACE simply returns its
first argument.

Built–In Functions

PL/SQL provides more than 75 powerful functions to help you
manipulate data. These built–in functions fall into the following
categories:

• error–reporting

• number

• character

• conversion

• date

• miscellaneous

Table 2 – 4 shows the functions in each category.

You can use all the functions in SQL statements except the error–
reporting functions SQLCODE and SQLERRM. Also, you can use all the
functions in procedural statements except the miscellaneous functions
DECODE, DUMP, and VSIZE.

Note: The SQL group functions AVG, MIN, MAX, COUNT, SUM,
STDDEV, and VARIANCE are not built into PL/SQL. Nevertheless, you
can use them in SQL statements (but not in procedural statements).

For descriptions of the error–reporting functions, see Chapter 10. For
descriptions of the other functions, see Oracle7 Server SQL Reference.

2 – 42 PL/SQL User’s Guide and Reference

Error Number Character Conversion Date Misc

SQLCODE ABS ASCII CHARTOROWID ADD_MONTHS DECODE

SQLERRM ACOS CHR CONVERT LAST_DAY DUMP

ASIN CONCAT HEXTORAW MONTHS_BETWEEN GREATEST

ATAN INITCAP RAWTOHEX NEW_TIME GREATEST_LB

ATAN2 INSTR ROWIDTOCHAR NEXT_DAY LEAST

CEIL INSTRB TO_CHAR ROUND LEAST_LB

COS LENGTH TO_DATE SYSDATE NVL

COSH LENGTHB TO_LABEL TRUNC UID

EXP LOWER TO_MULTI_BYTE USER

FLOOR LPAD TO_NUMBER USERENV

LN LTRIM TO_SINGLE_BYTE VSIZE

LOG NLS_INITCAP

MOD NLS_LOWER

POWER NLS_UPPER

ROUND NLSSORT

SIGN REPLACE

SIN RPAD

SINH RTRIM

SQRT SOUNDEX

TAN SUBSTR

TANH SUBSTRB

TRUNC TRANSLATE

UPPER

Table 2 – 4 Built–in Functions

C H A P T E R

3

T

3 – 1Control Structures

Control Structures

One ship drives east and another drives west
With the selfsame winds that blow.
’Tis the set of the sails and not the gales
Which tells us the way to go.

Ella Wheeler Wilcox

his chapter shows you how to structure the flow of control through a
PL/SQL program. You learn how statements are connected by simple
but powerful control structures that have a single entry and exit point.
Collectively, these structures can handle any situation. And, their proper
use leads naturally to a well–structured program.

IF–THEN

3 – 2 PL/SQL User’s Guide and Reference

Overview

According to the structure theorem, any computer program can be written
using the basic control structures shown in Figure 3 – 1. They can be
combined in any way necessary to deal with a given problem.

Selection Iteration Sequence

T F F

T

Figure 3 – 1 Control Structures

The selection structure tests a condition, then executes one sequence of
statements instead of another, depending on whether the condition is
true or false. A condition is any variable or expression that returns a
Boolean value (TRUE, FALSE, or NULL). The iteration structure
executes a sequence of statements repeatedly as long as a condition
holds true. The sequence structure simply executes a sequence of
statements in the order in which they occur.

Conditional Control: IF Statements

Often, it is necessary to take alternative actions depending on
circumstances. The IF statement lets you execute a sequence of
statements conditionally. That is, whether the sequence is executed or
not depends on the value of a condition. There are three forms of IF
statements: IF–THEN, IF–THEN–ELSE, and IF–THEN–ELSIF.

The simplest form of IF statement associates a condition with a sequence
of statements enclosed by the keywords THEN and END IF (not
ENDIF), as follows:

IF condition THEN

 sequence_of_statements;

END IF;

IF–THEN–ELSE

3 – 3Control Structures

The sequence of statements is executed only if the condition yields
TRUE. If the condition yields FALSE or NULL, the IF statement
does nothing. In either case, control passes to the next statement. An
example follows:

IF sales > quota THEN

 compute_bonus(empid);

 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;

END IF;

You might want to place brief IF statements on a single line, as in

IF x > y THEN high := x; END IF;

The second form of IF statement adds the keyword ELSE followed by an
alternative sequence of statements, as follows:

IF condition THEN

 sequence_of_statements1;

ELSE

 sequence_of_statements2;

END IF;

The sequence of statements in the ELSE clause is executed only if the
condition yields FALSE or NULL. Thus, the ELSE clause ensures that a
sequence of statements is executed. In the following example, the first or
second UPDATE statement is executed when the condition is true or
false, respectively:

IF trans_type = ’CR’ THEN

 UPDATE accounts SET balance = balance + credit WHERE ...

ELSE

 UPDATE accounts SET balance = balance – debit WHERE ...

END IF;

The THEN and ELSE clauses can include IF statements. That is, IF
statements can be nested, as the following example shows:

IF trans_type = ’CR’ THEN

 UPDATE accounts SET balance = balance + credit WHERE ...

ELSE

 IF new_balance >= minimum_balance THEN

 UPDATE accounts SET balance = balance – debit WHERE ...

 ELSE

 RAISE insufficient_funds;

 END IF;

END IF;

IF–THEN–ELSIF

3 – 4 PL/SQL User’s Guide and Reference

Sometimes you want to select an action from several mutually exclusive
alternatives. The third form of IF statement uses the keyword ELSIF (not
ELSEIF) to introduce additional conditions, as follows:

IF condition1 THEN

 sequence_of_statements1;

ELSIF condition2 THEN

 sequence_of_statements2;

ELSE

 sequence_of_statements3;

END IF;

If the first condition yields FALSE or NULL, the ELSIF clause tests
another condition. An IF statement can have any number of ELSIF
clauses; the final ELSE clause is optional. Conditions are evaluated one
by one from top to bottom. If any condition yields TRUE, its associated
sequence of statements is executed and control passes to the next
statement. If all conditions yield FALSE or NULL, the sequence in the
ELSE clause is executed. Consider the following example:

BEGIN

 ...

 IF sales > 50000 THEN

 bonus := 1500;

 ELSIF sales > 35000 THEN

 bonus := 500;

 ELSE

 bonus := 100;

 END IF;

 INSERT INTO payroll VALUES (emp_id, bonus, ...);

END;

If the value of sales is more than 50000, the first and second conditions
are true. Nevertheless, bonus is assigned the proper value of 1500
because the second condition is never tested. When the first condition
yields TRUE, its associated statement is executed and control passes to
the INSERT statement.

Guidelines

3 – 5Control Structures

Avoid clumsy IF statements like those in the following example:

DECLARE

 ...

 overdrawn BOOLEAN;

BEGIN

 ...

 IF new_balance < minimum_balance THEN

 overdrawn := TRUE;

 ELSE

 overdrawn := FALSE;

 END IF;

 ...

 IF overdrawn = TRUE THEN

 RAISE insufficient_funds;

 END IF;

END;

This code disregards two useful facts. First, the value of a Boolean
expression can be assigned directly to a Boolean variable. So, you can
replace the first IF statement with a simple assignment, as follows:

overdrawn := new_balance < minimum_balance;

Second, a Boolean variable is itself either true or false. So, you can
simplify the condition in the second IF statement, as follows:

IF overdrawn THEN ...

When possible, use the ELSIF clause instead of nested IF statements.
That way, your code will be easier to read and understand. Compare the
following IF statements:

IF condition1 THEN | IF condition1 THEN

 statement1; | statement1;

ELSE | ELSIF condition2 THEN

 IF condition2 THEN | statement2;

 statement2; | ELSIF condition3 THEN

 ELSE | statement3;

 IF condition3 THEN | END IF;

 statement3; |

 END IF; |

 END IF; |

END IF; |

These statements are logically equivalent, but the first statement
obscures the flow of logic, whereas the second statement reveals it.

LOOP

EXIT

3 – 6 PL/SQL User’s Guide and Reference

Iterative Control: LOOP and EXIT Statements

LOOP statements let you execute a sequence of statements multiple
times. There are three forms of LOOP statements: LOOP, WHILE–LOOP,
and FOR–LOOP.

The simplest form of LOOP statement is the basic (or infinite) loop,
which encloses a sequence of statements between the keywords LOOP
and END LOOP, as follows:

LOOP

 sequence_of_statements;

END LOOP;

With each iteration of the loop, the sequence of statements is executed,
then control resumes at the top of the loop. If further processing is
undesirable or impossible, you can use the EXIT statement to complete
the loop. You can place one or more EXIT statements anywhere inside a
loop, but nowhere outside a loop. There are two forms of EXIT
statements: EXIT and EXIT–WHEN.

The EXIT statement forces a loop to complete unconditionally. When an
EXIT statement is encountered, the loop completes immediately and
control passes to the next statement. An example follows:

LOOP

 ...

 IF credit_rating < 3 THEN

 ...

 EXIT; –– exit loop immediately

 END IF;

END LOOP;

–– control resumes here

The next example shows that you cannot use the EXIT statement to
complete a PL/SQL block:

BEGIN

 ...

 IF credit_rating < 3 THEN

 ...

 EXIT; –– illegal

 END IF;

END;

Remember, the EXIT statement must be placed inside a loop. To
complete a PL/SQL block before its normal end is reached, you can use
the RETURN statement. For more information, see “RETURN
Statement” on page 7 – 7.

EXIT–WHEN

Loop Labels

3 – 7Control Structures

The EXIT–WHEN statement allows a loop to complete conditionally.
When the EXIT statement is encountered, the condition in the
WHEN clause is evaluated. If the condition yields TRUE, the loop
completes and control passes to the next statement after the loop. An
example follows:

LOOP

 FETCH c1 INTO ...

 EXIT WHEN c1%NOTFOUND; –– exit loop if condition is true

 ...

END LOOP;

CLOSE c1;

Until the condition yields TRUE, the loop cannot complete. So,
statements within the loop must change the value of the condition. In
the last example, if the FETCH statement returns a row, the condition
yields FALSE. When the FETCH statement fails to return a row, the
condition yields TRUE, the loop completes, and control passes to the
CLOSE statement.

The EXIT–WHEN statement replaces a simple IF statement. For
example, compare the following statements:

IF count > 100 THEN | EXIT WHEN count > 100;

 EXIT; |

END IF; |

These statements are logically equivalent, but the EXIT–WHEN
statement is easier to read and understand.

Like PL/SQL blocks, loops can be labeled. The label, an undeclared
identifier enclosed by double angle brackets, must appear at the
beginning of the LOOP statement, as follows:

<<label_name>>

LOOP

 sequence_of_statements;

END LOOP;

Optionally, the label name can also appear at the end of the LOOP
statement, as the following example shows:

<<my_loop>>

LOOP

 ...

END LOOP my_loop;

When you nest labeled loops, you can use ending label names to
improve readability.

WHILE–LOOP

3 – 8 PL/SQL User’s Guide and Reference

With either form of EXIT statement, you can complete not only the
current loop, but any enclosing loop. Simply label the enclosing loop
that you want to complete. Then, use the label in an EXIT statement,
as follows:

<<outer>>

LOOP

 ...

 LOOP

 ...

 EXIT outer WHEN ... –– exit both loops

 END LOOP;

 ...

END LOOP outer;

Every enclosing loop up to and including the labeled loop is exited.

The WHILE–LOOP statement associates a condition with a sequence of
statements enclosed by the keywords LOOP and END LOOP, as follows:

WHILE condition LOOP

 sequence_of_statements;

END LOOP;

Before each iteration of the loop, the condition is evaluated. If the
condition yields TRUE, the sequence of statements is executed, then
control resumes at the top of the loop. If the condition yields FALSE or
NULL, the loop is bypassed and control passes to the next statement. An
example follows:

WHILE total <= 25000 LOOP

 ...

 SELECT sal INTO salary FROM emp WHERE ...

 total := total + salary;

END LOOP;

The number of iterations depends on the condition and is unknown
until the loop completes. Since the condition is tested at the top of the
loop, the sequence might execute zero times. In the last example, if the
initial value of total is greater than 25000, the condition yields FALSE
and the loop is bypassed.

Some languages have a LOOP UNTIL or REPEAT UNTIL structure,
which tests the condition at the bottom of the loop instead of at the top.
Therefore, the sequence of statements is executed at least once. PL/SQL
has no such structure, but you can easily build one, as follows:

LOOP

 sequence_of_statements;

 EXIT WHEN boolean_expression;

END LOOP;

FOR–LOOP

3 – 9Control Structures

To ensure that a WHILE loop executes at least once, use an initialized
Boolean variable in the condition, as follows:

done := FALSE;

WHILE NOT done LOOP

 sequence_of_statements;

 done := boolean_expression;

END LOOP;

A statement inside the loop must assign a new value to the Boolean
variable. Otherwise, you have an infinite loop. For example, the
following LOOP statements are logically equivalent:

WHILE TRUE LOOP | LOOP

 ... | ...

END LOOP; | END LOOP;

Whereas the number of iterations through a WHILE loop is unknown
until the loop completes, the number of iterations through a FOR loop is
known before the loop is entered. FOR loops iterate over a specified
range of integers. (Cursor FOR loops, which iterate over the result set of
a cursor, are discussed in Chapter 5.) The range is part of an iteration
scheme, which is enclosed by the keywords FOR and LOOP. The
syntax follows:

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP

 sequence_of_statements;

END LOOP;

The range is evaluated when the FOR loop is first entered and is never
re–evaluated. As the next example shows, the sequence of statements is
executed once for each integer in the range. After each iteration, the loop
counter is incremented.

FOR i IN 1..3 LOOP –– assign the values 1,2,3 to i

 sequence_of_statements; –– executes three times

END LOOP;

The following example shows that if the lower bound equals the higher
bound, the sequence of statements is executed once:

FOR i IN 3..3 LOOP –– assign the value 3 to i

 sequence_of_statements; –– executes one time

END LOOP;

Iteration Schemes

3 – 10 PL/SQL User’s Guide and Reference

By default, iteration proceeds upward from the lower bound to the
higher bound. However, if you use the keyword REVERSE, iteration
proceeds downward from the higher bound to the lower bound, as the
example below shows. After each iteration, the loop counter is
decremented.

FOR i IN REVERSE 1..3 LOOP –– assign the values 3,2,1 to i

 sequence_of_statements; –– executes three times

END LOOP;

Nevertheless, you write the range bounds in ascending (not descending)
order.

Inside a FOR loop, the loop counter can be referenced like a constant. So,
the loop counter can appear in expressions but cannot be assigned
values, as the following example shows:

FOR ctr IN 1..10 LOOP

 ...

 IF NOT finished THEN

 INSERT INTO ... VALUES (ctr, ...); –– legal

 factor := ctr * 2; –– legal

 ELSE

 ctr := 10; –– illegal

 END IF;

END LOOP;

The bounds of a loop range can be literals, variables, or expressions but
must evaluate to integers. For example, the following iteration schemes
are legal:

j IN –5..5

k IN REVERSE first..last

step IN 0..TRUNC(high/low) * 2

code IN ASCII(’A’)..ASCII(’J’)

As you can see, the lower bound need not be 1. However, the loop
counter increment (or decrement) must be 1. Some languages provide a
STEP clause, which lets you specify a different increment. An example
written in BASIC follows:

FOR J = 5 TO 15 STEP 5 :REM assign values 5,10,15 to J

 sequence_of_statements –– J has values 5,10,15

NEXT J

Dynamic Ranges

3 – 11Control Structures

PL/SQL has no such structure, but you can easily build one. Consider
the following example:

FOR j IN 5..15 LOOP –– assign values 5,6,7,... to j

 IF MOD(j, 5) = 0 THEN –– pass multiples of 5

 sequence_of_statements; –– j has values 5,10,15

 END IF;

END LOOP;

This loop is logically equivalent to the previous BASIC loop. Within
the sequence of statements, the loop counter has only the values 5, 10,
and 15.

You might prefer the less elegant but more efficient method shown in
the example below. Within the sequence of statements, each reference to
the loop counter is multiplied by the increment.

FOR j IN 1..3 LOOP –– assign values 1,2,3 to j

 sequence_of_statements; –– each j becomes j*5

END LOOP;

PL/SQL lets you determine the loop range dynamically at run time, as
the following example shows:

SELECT COUNT(empno) INTO emp_count FROM emp;

FOR i IN 1..emp_count LOOP

 ...

END LOOP;

The value of emp_count is unknown at compile time; the SELECT
statement returns the value at run time.

What happens if the lower bound of a loop range evaluates to a larger
integer than the upper bound? As the following example shows, the
sequence of statements within the loop is not executed and control
passes to the next statement:

–– limit becomes 1

FOR i IN 2..limit LOOP

 sequence_of_statements; –– executes zero times

END LOOP;

–– control passes here

Scope Rules

3 – 12 PL/SQL User’s Guide and Reference

The loop counter is defined only within the loop. You cannot reference it
outside the loop. After the loop is exited, the loop counter is undefined,
as the following example shows:

FOR ctr IN 1..10 LOOP

 ...

END LOOP;

sum := ctr – 1; –– illegal

You need not explicitly declare the loop counter because it is implicitly
declared as a local variable of type INTEGER. The next example shows
that the local declaration hides any global declaration:

DECLARE

 ctr INTEGER;

BEGIN

 ...

 FOR ctr IN 1..25 LOOP

 ...

 IF ctr > 10 THEN ... –– refers to loop counter

 END LOOP;

END;

To reference the global variable in this example, you must use a label
and dot notation, as follows:

<<main>>

DECLARE

 ctr INTEGER;

 ...

BEGIN

 ...

 FOR ctr IN 1..25 LOOP

 ...

 IF main.ctr > 10 THEN ... –– refers to global variable

 END LOOP;

END main;

The same scope rules apply to nested FOR loops. Consider the example
below. Both loop counters have the same name. So, to reference the
outer loop counter from the inner loop, you must use a label and dot
notation, as follows:

<<outer>>

FOR step IN 1..25 LOOP

 FOR step IN 1..10 LOOP

 ...

 IF outer.step > 15 THEN ...

 END LOOP;

END LOOP outer;

Using the EXIT Statement

3 – 13Control Structures

The EXIT statement allows a FOR loop to complete prematurely. For
example, the following loop normally executes ten times, but as soon as
the FETCH statement fails to return a row, the loop completes no matter
how many times it has executed:

FOR j IN 1..10 LOOP

 FETCH c1 INTO emp_rec;

 EXIT WHEN c1%NOTFOUND;

 ...

END LOOP;

Suppose you must exit from a nested FOR loop prematurely. You can
complete not only the current loop, but any enclosing loop. Simply label
the enclosing loop that you want to complete. Then, use the label in an
EXIT statement to specify which FOR loop to exit, as follows:

<<outer>>

FOR i IN 1..5 LOOP

 ...

 FOR j IN 1..10 LOOP

 FETCH c1 INTO emp_rec;

 EXIT outer WHEN c1%NOTFOUND; –– exit both FOR loops

 ...

 END LOOP;

END LOOP outer;

–– control passes here

Sequential Control: GOTO and NULL Statements

Unlike the IF and LOOP statements, the GOTO and NULL statements
are not crucial to PL/SQL programming. The structure of PL/SQL is
such that the GOTO statement is seldom needed. Occasionally, it can
simplify logic enough to warrant its use. The NULL statement can
make the meaning and action of conditional statements clear and so
improve readability.

Overuse of GOTO statements can result in complex, unstructured code
(sometimes called spaghetti code) that is hard to understand and
maintain. So, use GOTO statements sparingly. For example, to branch
from a deeply nested structure to an error–handling routine, raise an
exception rather than use a GOTO statement.

GOTO Statement

3 – 14 PL/SQL User’s Guide and Reference

The GOTO statement branches to a label unconditionally. The label must
be unique within its scope and must precede an executable statement or
a PL/SQL block. When executed, the GOTO statement transfers control
to the labeled statement or block. In the following example, you go to an
executable statement farther down in a sequence of statements:

BEGIN

 ...

 GOTO insert_row;

 ...

 <<insert_row>>

 INSERT INTO emp VALUES ...

END;

In the next example, you go to a PL/SQL block farther up in a sequence
of statements:

BEGIN

 ...

 <<update_row>>

 BEGIN

 UPDATE emp SET ...

 ...

 END;

 ...

 GOTO update_row;

 ...

END;

The label <<end_loop>> in the following example is illegal because it
does not precede an executable statement:

DECLARE

 done BOOLEAN;

BEGIN

 ...

 FOR i IN 1..50 LOOP

 IF done THEN

 GOTO end_loop;

 END IF;

 ...

 <<end_loop>> –– illegal

 END LOOP; –– not an executable statement

END;

Restrictions

3 – 15Control Structures

To debug the last example, simply add the NULL statement, as follows:

DECLARE

 done BOOLEAN;

BEGIN

 ...

 FOR i IN 1..50 LOOP

 IF done THEN

 GOTO end_loop;

 END IF;

 ...

 <<end_loop>>

 NULL; –– an executable statement

 END LOOP;

END;

As the following example shows, a GOTO statement can branch to an
enclosing block from the current block:

DECLARE

 my_ename CHAR(10);

BEGIN

 ...

 <<get_name>>

 SELECT ename INTO my_ename FROM emp WHERE ...

 ...

 BEGIN

 ...

 GOTO get_name; –– branch to enclosing block

 END;

END;

The GOTO statement branches to the first enclosing block in which the
referenced label appears.

Some possible destinations of a GOTO statement are illegal. Specifically,
a GOTO statement cannot branch into an IF statement, LOOP statement,
or sub–block. For example, the following GOTO statement is illegal:

BEGIN

 ...

 GOTO update_row; –– illegal branch into IF statement

 ...

 IF valid THEN

 ...

 <<update_row>>

 UPDATE emp SET ...

 END IF;

END;

3 – 16 PL/SQL User’s Guide and Reference

Also, a GOTO statement cannot branch from one IF statement clause to
another, as the following example shows:

BEGIN

 ...

 IF valid THEN

 ...

 GOTO update_row; –– illegal branch into ELSE clause

 ELSE

 ...

 <<update_row>>

 UPDATE emp SET ...

 END IF;

END;

The next example shows that a GOTO statement cannot branch from an
enclosing block into a sub–block:

BEGIN

 ...

 IF status = ’OBSOLETE’ THEN

 GOTO delete_part; –– illegal branch into sub–block

 END IF;

 ...

 BEGIN

 ...

 <<delete_part>>

 DELETE FROM parts WHERE ...

 END;

END;

Also, a GOTO statement cannot branch out of a subprogram, as the
following example shows:

DECLARE

 ...

 PROCEDURE compute_bonus (emp_id NUMBER) IS

 BEGIN

 ...

 GOTO update_row; –– illegal branch out of subprogram

 END;

BEGIN

 ...

 <<update_row>>

 UPDATE emp SET ...

END;

NULL Statement

3 – 17Control Structures

Finally, a GOTO statement cannot branch from an exception handler
into the current block. For example, the following GOTO statement
is illegal:

DECLARE

 ...

 pe_ratio REAL;

BEGIN

 ...

 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM ...

 <<insert_row>>

 INSERT INTO stats VALUES (pe_ratio, ...);

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 pe_ratio := 0;

 GOTO insert_row; –– illegal branch into current block

END;

However, a GOTO statement can branch from an exception handler into
an enclosing block.

The NULL statement explicitly specifies inaction; it does nothing other
than pass control to the next statement. It can, however, improve
readability. In a construct allowing alternative actions, the NULL
statement serves as a placeholder. It tells readers that the associated
alternative has not been overlooked, but that indeed no action is
necessary. In the following example, the NULL statement shows that no
action is taken for unnamed exceptions:

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 ROLLBACK;

 WHEN VALUE_ERROR THEN

 INSERT INTO errors VALUES ...

 COMMIT;

 WHEN OTHERS THEN

 NULL;

END;

Each clause in an IF statement must contain at least one executable
statement. The NULL statement meets this requirement. So, you can use
the NULL statement in clauses that correspond to circumstances in
which no action is taken. In the following example, the NULL statement
emphasizes that only top–rated employees receive bonuses:

IF rating > 90 THEN

 compute_bonus(emp_id);

ELSE

 NULL;

END IF;

3 – 18 PL/SQL User’s Guide and Reference

Also, the NULL statement is a handy way to create stubs when
designing applications from the top down. A stub is dummy
subprogram that allows you to defer the definition of a procedure or
function until you test and debug the main program. In the following
example, the NULL statement meets the requirement that at least one
statement must appear in the executable part of a subprogram:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS

BEGIN

 NULL;

END debit_account;

C H A P T E R

4

I

4 – 1PL/SQL Tables and User–Defined Records

PL/SQL Tables and
User–Defined Records

Knowledge is that area of ignorance that we arrange and classify.

Ambrose Bierce

n Chapter 2, you learned about the PL/SQL scalar datatypes, which
can store only one item of data. In this chapter, you learn about the
composite datatypes TABLE and RECORD, which can store collections
of data. You also learn how to reference and manipulate these collections
as whole objects.

Why Use PL/SQL
Tables?

Defining TABLE Types

4 – 2 PL/SQL User’s Guide and Reference

PL/SQL Tables

Objects of type TABLE are called PL/SQL tables, which are modeled as
(but not the same as) database tables. For example, a PL/SQL table of
employee names is modeled as a database table with two columns,
which store a primary key and character data, respectively. Although
you cannot use SQL statements to manipulate a PL/SQL table, its
primary key gives you array–like access to rows. Think of the key and
rows as the index and elements of a one–dimensional array.

Like an array, a PL/SQL table is an ordered collection of elements of the
same type. Each element has a unique index number that determines its
position in the ordered collection. However, PL/SQL tables differ from
arrays in two important ways. First, arrays have fixed lower and upper
bounds, but PL/SQL tables are unbounded. So, the size of a PL/SQL
table can increase dynamically. Second, arrays require consecutive index
numbers, but PL/SQL tables do not. This characteristic, called sparsity,
allows the use of meaningful index numbers. For example, you can use
a series of employee numbers (such as 7369, 7499, 7521, 7566, ...) to index
a PL/SQL table of employee names.

PL/SQL tables help you move bulk data. They can store columns or
rows of Oracle data, and they can be passed as parameters. So, PL/SQL
tables make it easy to move collections of data into and out of database
tables or between client–side applications and stored subprograms. You
can even use PL/SQL tables of records to simulate local database tables.

Also, with the Oracle Call Interface (OCI) or the Oracle Precompilers,
you can bind host arrays to PL/SQL tables declared as the formal
parameters of a subprogram. That allows you to pass host arrays to
stored functions and procedures.

To create PL/SQL tables, you take two steps. First, you define a TABLE
type, then declare PL/SQL tables of that type. You can define TABLE
types in the declarative part of any block, subprogram, or package using
the syntax

TYPE table_type_name IS TABLE OF datatype [NOT NULL]

 INDEX BY BINARY_INTEGER;

where table_type_name is a type specifier used in subsequent declarations
of PL/SQL tables.

Function Results

4 – 3PL/SQL Tables and User–Defined Records

The INDEX BY clause must specify datatype BINARY_INTEGER, which
has a magnitude range of –2147483647 .. 2147483647. If the element type
is a record type, every field in the record must have a scalar datatype
such as CHAR, DATE, or NUMBER.

To specify the element type, you can use %TYPE to provide the datatype
of a variable or database column. In the following example, you define a
TABLE type based on the ename column:

DECLARE

 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE

 INDEX BY BINARY_INTEGER;

The next example shows that you can add the NOT NULL constraint to
a TABLE type definition and so prevent the storing of nulls in PL/SQL
tables of that type:

DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE NOT NULL

 INDEX BY BINARY_INTEGER;

An initialization clause is not required (or allowed).

You can also use %ROWTYPE to specify the element type. In the
following example, you define a TABLE type based on the emp table:

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

In the final example, you use a RECORD type to specify the
element type:

DECLARE

 TYPE TimeRecTyp IS RECORD (

 hour SMALLINT := 0,

 minute SMALLINT := 0,

 second SMALLINT := 0);

 TYPE TimeTabTyp IS TABLE OF TimeRecTyp

 INDEX BY BINARY_INTEGER;

The example below shows that you can specify a TABLE type in the
RETURN clause of a function specification. That allows the function to
return a PL/SQL table of the same type.

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 ...

 FUNCTION top_n_sals (n INTEGER) RETURN EmpTabTyp IS ...

Declaring PL/SQL
Tables

As Parameters

4 – 4 PL/SQL User’s Guide and Reference

Once you define a TABLE type, you can declare PL/SQL tables of that
type, as the following examples show:

DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 sal_tab SalTabTyp; –– declare PL/SQL table

 emp_tab EmpTabTyp; –– declare another PL/SQL table

The identifiers sal_tab and emp_tab represent entire PL/SQL tables. Each
element of sal_tab will store an employee salary. Each element of emp_tab
will store a whole employee record.

A PL/SQL table is unbounded; its index can include any BINARY_
INTEGER value. So, you cannot initialize a PL/SQL table in its
declaration. For example, the following declaration is illegal:

sal_tab SalTabTyp := (1500, 2750, 2000, 950, 1800); –– illegal

PL/SQL tables follow the usual scoping and instantiation rules. In a
package, PL/SQL tables are instantiated when you first reference the
package and cease to exist when you end the database session. In a
block or subprogram, local PL/SQL tables are instantiated when you
enter the block or subprogram and cease to exist when you exit.

You can declare PL/SQL tables as the formal parameters of functions
and procedures. That way, you can pass PL/SQL tables to stored
subprograms and from one subprogram to another. In the following
example, you declare PL/SQL tables as the formal parameters of two
packaged procedures:

PACKAGE emp_actions IS

 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE

 INDEX BY BINARY_INTEGER;

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 ...

 PROCEDURE hire_batch (ename_tab IN EnameTabTyp,

 sal_tab IN SalTabTyp, ...);

 PROCEDURE log_names (ename_tab IN EnameTabTyp);

END emp_actions;

To define the behavior of formal parameters, you use parameter modes.
The OUT and IN OUT modes let you return values to the caller of a
subprogram when you exit. If you exit successfully, PL/SQL assigns
values to the actual parameters. However, if you exit with an unhandled
exception, PL/SQL does not assign values to the actual parameters.

Referencing PL/SQL
Tables

Assignments

4 – 5PL/SQL Tables and User–Defined Records

To reference elements in a PL/SQL table, you specify an index number
using the syntax

plsql_table_name(index)

where index is an expression that yields a BINARY_INTEGER value or a
value implicitly convertible to that datatype. In the following example,
you reference an element in the PL/SQL table hiredate_tab:

hiredate_tab(i + j – 1) ...

As the example below shows, the index number can be negative. (For an
exception, see “Using Host Arrays with PL/SQL Tables” on page 4 – 15.)

hiredate_tab(–5) ...

The following example shows that you can reference the elements of a
PL/SQL table in subprogram calls:

raise_salary(empno_tab(i), amount); –– call subprogram

You can assign one PL/SQL table to another only if they have the same
datatype. For example, the following assignment is legal:

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 TYPE TempTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 emp_tab1 EmpTabTyp;

 emp_tab2 EmpTabTyp;

BEGIN

 ...

 emp_tab2 := emp_tab1; –– assign one PL/SQL table to another

You can assign the value of an expression to a specific element in a
PL/SQL table using the following syntax:

plsql_table_name(index) := expression;

In the next example, you assign the sum of variables salary and increase
to an element in the PL/SQL table sal_tab:

sal_tab(i) := salary + increase;

Note: Until an element is assigned a value, it does not exist. If you
reference a nonexistent element, PL/SQL raises the predefined
exception NO_DATA_FOUND.

PL/SQL Tables of Records

Function Results

4 – 6 PL/SQL User’s Guide and Reference

With a PL/SQL table of records, you use the following syntax to
reference fields in a record:

plsql_table_name(index).field_name

For example, the following IF statement references a field in the record
stored by the first element of the PL/SQL table emp_tab:

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 emp_tab EmpTabTyp;

BEGIN

 ...

 IF emp_tab(1).job = ’CLERK’ THEN ...

END;

When calling a function that returns a PL/SQL table, you use the
following syntax to reference elements in the table:

function_name(parameters)(index)

For example, the following call to the function new_sals references the
third element in the PL/SQL table sal_tab:

DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 salary REAL;

 FUNCTION new_sals (max_sal REAL) RETURN SalTabTyp IS

 sal_tab SalTabTyp;

 BEGIN

 ...

 RETURN sal_tab; –– return PL/SQL table

 END;

BEGIN

 salary := new_sals(5000)(3); –– call function

 ...

END;

If the function result is a PL/SQL table of records, you use the following
syntax to reference fields in a record:

function_name(parameters)(index).field_name

4 – 7PL/SQL Tables and User–Defined Records

For example, the following call to the function new_depts references
the field loc in the record stored by the third element of the PL/SQL
table dept_tab:

DECLARE

 TYPE DeptTabTyp IS TABLE OF dept%ROWTYPE

 INDEX BY BINARY_INTEGER;

 FUNCTION new_depts (max_num INTEGER) RETURN DeptTabTyp IS

 dept_tab DeptTabTyp;

 BEGIN

 ...

 RETURN dept_tab;

 END;

BEGIN

 ...

 IF new_depts(90)(3).loc = ’BOSTON’ THEN ...

END;

Restriction
Currently, you cannot use the syntax above to call a parameterless
function because PL/SQL does not allow empty parameter lists. That is,
the following syntax is illegal:

function_name()(index) –– illegal; empty parameter list

Instead, declare a local PL/SQL table to which you can assign the
function result, then reference the PL/SQL table directly, as shown in the
following example:

DECLARE

 TYPE JobTabTyp IS TABLE OF emp.job%TYPE

 INDEX BY BINARY_INTEGER;

 job_tab JobTabTyp; –– declare local PL/SQL table

 job_title emp.job%TYPE;

 FUNCTION new_jobs RETURN JobTabTyp IS

 new_job_tab JobTabTyp;

 BEGIN

 ...

 RETURN new_job_tab; –– return PL/SQL table

 END;

BEGIN

 ...

 job_tab := new_jobs; –– assign function result

 job_title := job_tab(1); –– reference PL/SQL table

 ...

END;

Using PL/SQL Table
Attributes

Using EXISTS

Using COUNT

4 – 8 PL/SQL User’s Guide and Reference

Attributes are characteristics of an object. For example, a cursor has the
attributes %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT.
Likewise, a PL/SQL table has the attributes EXISTS, COUNT, FIRST,
LAST, PRIOR, NEXT, and DELETE. They make PL/SQL tables easier to
use and your applications easier to maintain. To apply the attributes to a
PL/SQL table, you use dot notation, as follows:

plsql_table_name.attribute_name

The attributes EXISTS, PRIOR, NEXT, and DELETE take parameters.
Each parameter must be an expression that yields a BINARY_INTEGER
value or a value implicitly convertible to that datatype.

DELETE acts like a procedure, which is called as a statement. However,
the other PL/SQL table attributes act like a function, which is called as
part of an expression.

EXISTS(n) returns TRUE if the nth element in a PL/SQL table exists.
Otherwise, EXISTS(n) returns FALSE. You can use EXISTS to avoid the
exception NO_DATA_FOUND, which is raised when you reference a
nonexistent element. In the following example, PL/SQL executes the
assignment statement only if the element sal_tab(i) exists:

IF sal_tab.EXISTS(i) THEN

 sal_tab(i) := sal_tab(i) + 500;

ELSE

 RAISE salary_missing;

END IF;

COUNT returns the number of elements that a PL/SQL table contains.
For example, if the PL/SQL table ename_tab contains 50 elements, the
following IF condition is true:

IF ename_tab.COUNT = 50 THEN

 ...

END;

COUNT is useful because the future size of a PL/SQL table is
unconstrained and therefore unknown. Suppose you fetch a column of
Oracle data into a PL/SQL table. How many elements does the PL/SQL
table contain? COUNT gives you the answer.

You can use COUNT wherever an integer expression is allowed. In the
following example, you use COUNT to specify the upper bound of a
loop range:

FOR i IN 1 .. job_tab.COUNT LOOP

 ...

END LOOP;

Using FIRST and LAST

Using PRIOR and NEXT

4 – 9PL/SQL Tables and User–Defined Records

FIRST and LAST return the first and last (smallest and largest) index
numbers in a PL/SQL table. If the PL/SQL table is empty, FIRST and
LAST return nulls. If the PL/SQL table contains only one element,
FIRST and LAST return the same index number, as the following
example shows:

IF sal_tab.FIRST = sal_tab.LAST THEN –– sal_tab has one element

 ...

END IF;

The next example shows that you can use FIRST and LAST to specify
the lower and upper bounds of a loop range provided each element in
that range exists:

FOR i IN emp_tab.FIRST .. emp_tab.LAST LOOP

 ...

END LOOP;

In fact, you can use FIRST or LAST wherever an integer expression is
allowed. In this example, you use FIRST to initialize a loop counter:

i BINARY_INTEGER := sal_tab.FIRST;

WHILE i IS NOT NULL LOOP

 ...

 IF sal_tab(i) > 5000 THEN

 RAISE over_limit;

 END IF;

END LOOP;

PRIOR(n) returns the index number that precedes index n in a PL/SQL
table. NEXT(n) returns the index number that succeeds index n. If n has
no predecessor, PRIOR(n) returns a null. Likewise, if n has no successor,
NEXT(n) returns a null.

PRIOR and NEXT do not wrap from one end of a PL/SQL table to the
other. For example, the following statement assigns a null to n because
the first element in a PL/SQL table has no predecessor:

n := sal_tab.PRIOR(sal_tab.FIRST); –– assigns NULL to n

Note that PRIOR is the inverse of NEXT. For example, the following
statement assigns index n to itself:

n := sal_tab.PRIOR(sal_tab.NEXT(n)); –– assigns n to n

Using DELETE

4 – 10 PL/SQL User’s Guide and Reference

You can use PRIOR or NEXT to traverse PL/SQL tables indexed by any
series of integers. (Recall that index numbers need not be consecutive.)
In the following example, the PL/SQL table is indexed by a series of
employee numbers, which begins with 1000:

i BINARY_INTEGER := 1000;

WHILE i IS NOT NULL LOOP

 raise_salary(empno_tab(i)); –– pass element to procedure

 i := empno_tab.NEXT(i); –– get index of next element

END LOOP;

Likewise, you can use PRIOR or NEXT to traverse PL/SQL tables from
which some elements have been deleted, as the following generic
example shows:

DECLARE

 ...

 i BINARY_INTEGER;

BEGIN

 ..

 i := any_tab.FIRST; –– get index of first element

 WHILE i IS NOT NULL LOOP

 ... –– process any_tab(i)

 i := any_tab.NEXT(i); –– get index of next element

 END LOOP;

END;

This attribute has three forms. DELETE removes all elements from a
PL/SQL table. DELETE(n) removes the nth element. If n is null,
DELETE(n) does nothing. DELETE(m, n) removes all elements in the
range m .. n. If m is larger than n or if m or n is null, DELETE(m, n)
does nothing.

DELETE lets you free the resources held by a PL/SQL table. DELETE(n)
and DELETE(m, n) let you prune a PL/SQL table. Consider the
following examples:

ename_tab.DELETE(3); –– delete element 3

ename_tab.DELETE(5, 5); –– delete element 5

ename_tab.DELETE(20, 30); –– delete elements 20 through 30

ename_tab.DELETE(–15, 0); –– delete elements –15 through 0

ename_tab.DELETE; –– delete entire PL/SQL table

If an element to be deleted does not exist, DELETE simply skips it; no
exception is raised.

Note: The amount of memory allocated to a PL/SQL table can increase
or decrease dynamically. As you delete elements, memory is freed page
by page. If you delete the entire PL/SQL table, all the memory is freed.

Restriction

Using PL/SQL Tables

Retrieving Oracle Data

4 – 11PL/SQL Tables and User–Defined Records

Currently, you cannot use PL/SQL table attributes in a SQL statement. If
you try, you get a compilation error, as the following example shows:

DECLARE

 TYPE PartTabTyp IS TABLE OF VARCHAR2(30)

 INDEX BY BINARY_INTEGER;

 part_tab PartTabTyp;

 part_count INTEGER;

BEGIN

 part_tab(65) := ’OIL PAN’;

 part_tab(97) := ’TRUNK LOCK’;

 part_tab(44) := ’SHOCK ABSORBER’;

 ...

 SELECT part_tab.COUNT –– causes compilation error

 INTO part_count FROM dual;

 ...

END;

Mainly, you use PL/SQL tables to move bulk data into and out of
database tables or between client–side applications and stored
subprograms.

You can retrieve Oracle data into a PL/SQL table in three ways: the
SELECT INTO statement lets you select a single row of data; the FETCH
statement or a cursor FOR loop lets you fetch multiple rows.

Using the SELECT INTO statement, you can select a column entry into a
scalar element. Or, you can select an entire row into a record element. In
the following example, you select a row from the database table dept into
a record stored by the first element of the PL/SQL table dept_tab:

DECLARE

 TYPE DeptTabTyp IS TABLE OF dept%ROWTYPE

 INDEX BY BINARY_INTEGER;

 dept_tab DeptTabTyp;

BEGIN

 /* Select entire row into record stored by first element. */

 SELECT * INTO dept_tab(1) FROM dept WHERE deptno = 10;

 IF dept_tab(1).dname = ’ACCOUNTING’ THEN ...

 ...

END;

4 – 12 PL/SQL User’s Guide and Reference

Using the FETCH statement, you can fetch an entire column of Oracle
data into a PL/SQL table of scalars. Or, you can fetch an entire table of
Oracle data into a PL/SQL table of records. In the following example,
you fetch rows from a cursor into the PL/SQL table of records emp_tab:

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 emp_tab EmpTabTyp;

 i BINARY_INTEGER := 0;

 CURSOR c1 IS SELECT * FROM emp;

BEGIN

 OPEN c1;

 LOOP

 i := i + 1;

 /* Fetch entire row into record stored by ith element. */

 FETCH c1 INTO emp_tab(i);

 EXIT WHEN c1%NOTFOUND;

 –– process data record

 END LOOP;

 CLOSE c1;

END;

After loading PL/SQL tables of records this way, you can use them to
simulate local database tables.

Instead of the FETCH statement, you can use a cursor FOR loop, which
implicitly declares its loop index as a record, opens the cursor associated
with a given query, repeatedly fetches rows of values into fields in the
record, then closes the cursor. In the following example, you use a cursor
FOR loop to fetch entire columns of Oracle data into the PL/SQL tables
ename_tab and sal_tab:

DECLARE

 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE

 INDEX BY BINARY_INTEGER;

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 ename_tab EnameTabTyp;

 sal_tab SalTabTyp;

 n BINARY_INTEGER := 0;

BEGIN

 /* Fetch entire columns into PL/SQL tables. */

 FOR emp_rec IN (SELECT ename, sal FROM emp) LOOP

 n := n + 1;

 ename_tab(n) := emp_rec.ename;

 sal_tab(n) := emp_rec.sal;

 END LOOP;

 ...

END;

4 – 13PL/SQL Tables and User–Defined Records

Alternatively, you can place the cursor FOR loop in a standalone
procedure. For example, given the declaration

CREATE PACKAGE emp_defs AS

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 ...

END emp_defs;

you might use the following standalone procedure to fetch all rows from
the database table emp into the PL/SQL table of records emp_tab:

CREATE PROCEDURE load_emp_tab (

 n IN OUT BINARY_INTEGER,

 emp_tab OUT emp_defs.EmpTabTyp) AS –– use packaged type

BEGIN

 n := 0;

 /* Fetch entire database table into PL/SQL table of records. */

 FOR emp_rec IN (SELECT * FROM emp) LOOP

 n := n + 1;

 emp_tab(n) := emp_rec; –– assign record to nth element

 END LOOP;

END;

You can also use a cursor FOR loop to fetch Oracle data into packaged
PL/SQL tables. For instance, given the declarations

CREATE PACKAGE emp_defs AS

 TYPE EmpnoTabTyp IS TABLE OF emp.empno%TYPE

 INDEX BY BINARY_INTEGER;

 empno_tab EmpnoTabTyp;

 ...

END emp_defs;

you might use the following block to fetch the database column empno
into the public PL/SQL table empno_tab:

DECLARE

 ...

 i BINARY_INTEGER := 0;

BEGIN

 /* Fetch entire column into public PL/SQL table. */

 FOR emp_rec IN (SELECT empno FROM emp ORDER BY empno) LOOP

 i := i + 1;

 emp_defs.empno_tab(i) := emp_rec.empno;

 END LOOP;

 ...

END;

Inserting Oracle Data

4 – 14 PL/SQL User’s Guide and Reference

You must use a loop to insert values from a PL/SQL table into a
database column. For example, given the declarations

CREATE PACKAGE emp_defs AS

 TYPE EmpnoTabTyp IS TABLE OF emp.empno%TYPE

 INDEX BY BINARY_INTEGER;

 TYPE EnameTabTyp IS TABLE OF emp.ename%TYPE

 INDEX BY BINARY_INTEGER;

 empno_tab EmpnoTabTyp;

 ename_tab EnameTabTyp;

 ...

END emp_defs;

you might use the following standalone procedure to insert values from
the PL/SQL tables empno_tab and ename_tab into the database table emp:

CREATE PROCEDURE insert_emp_ids (

 rows IN BINARY_INTEGER,

 empno_tab IN EmpnoTabTyp,

 ename_tab IN EnameTabTyp) AS

BEGIN

 FOR i IN 1..rows LOOP

 INSERT INTO emp (empno, ename)

 VALUES (empno_tab(i), ename_tab(i));

 END LOOP;

END;

Restriction
You cannot reference record variables in the VALUES clause. So, you
cannot insert entire records from a PL/SQL table of records into rows in
a database table. For example, the following INSERT statement is illegal:

DECLARE

 TYPE DeptTabTyp IS TABLE OF dept%ROWTYPE

 INDEX BY BINARY_INTEGER;

 dept_tab DeptTabTyp;

 ...

BEGIN

 ...

 FOR i IN dept_tab.FIRST .. dept_tab.LAST LOOP

 INSERT INTO dept VALUES (dept_tab(i)); –– illegal

 END LOOP;

END;

Instead, you must specify one or more fields in the record, as the
following example shows:

FOR i IN dept_tab.FIRST .. dept_tab.LAST LOOP

 INSERT INTO dept (deptno, dname)

 VALUES (dept_tab(i).deptno, dept_tab(i).dname);

END LOOP;

Using Host Arrays
with PL/SQL Tables

4 – 15PL/SQL Tables and User–Defined Records

With the Oracle Call Interface or the Oracle Precompilers, you can bind
host arrays of scalars (but not host arrays of structures) to PL/SQL
tables declared as the formal parameters of a subprogram. That allows
you to pass host arrays to stored functions and procedures.

You can use a BINARY_INTEGER variable or compatible host variable
to index the host arrays. Given the array subscript range m .. n, the
corresponding PL/SQL table index range is always 1 .. n – m + 1. For
example, if the array subscript range is 5 .. 10, the corresponding
PL/SQL table index range is 1 .. (10 – 5 + 1) or 1 .. 6.

To assign all the values in a host array to elements in a PL/SQL table,
you can use a subprogram call. In the Pro*C example below, you pass
the host array salary to a PL/SQL block. From the block, you call a local
function that declares the PL/SQL table sal_tab as one of its formal
parameters. The function call assigns all values in the actual parameter
salary to elements in the formal parameter sal_tab.

#include <stdio.h>

main()

{

 EXEC SQL BEGIN DECLARE SECTION;

 ...

 /* Declare host array. */

 float salary [100];

 EXEC SQL END DECLARE SECTION;

 /* Populate host array. */

 ...

 EXEC SQL EXECUTE

 DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 mid_salary REAL;

 n BINARY_INTEGER := 100;

 FUNCTION median (sal_tab SalTabTyp, n INTEGER)

 RETURN REAL IS

 BEGIN

 –– compute median salary

 END;

 BEGIN

 mid_salary := median(:salary, n); –– pass array

 ...

 END;

 END–EXEC;

 ...

}

4 – 16 PL/SQL User’s Guide and Reference

Conversely, you can use a subprogram call to assign all values in a
PL/SQL table to corresponding elements in a host array. In the Pro*C
example below, you call a standalone procedure (not shown), which
declares three PL/SQL tables as OUT formal parameters. The
corresponding actual parameters are host arrays. When the procedure
finishes fetching a batch of employee data into the PL/SQL tables, it
assigns all values in the PL/SQL tables to elements in the host arrays.

#include <stdio.h>

...

EXEC SQL BEGIN DECLARE SECTION;

 ...

 int array_size;

 int number_returned;

 int finished;

 /* Declare host arrays. */

 char emp_name[10][11];

 char job_title[10][10];

 float salary[10];

EXEC SQL END DECLARE SECTION;

...

main()

{

 ...

 array_size = 10; /* determines batch size */

 number_returned = 0; /* needed for last batch */

 finished = 0;

 /* Array fetch loop. */

 for (;;)

 {

 EXEC SQL EXECUTE

 BEGIN

 /* Call stored procedure to fetch a batch of data. */

 get_emps(:emp_name, :job_title, :salary,

 :array_size, :number_returned, :finished);

 END;

 END–EXEC;

 print_rows(number_returned);

 if (finished) break;

 }

 ...

}

4 – 17PL/SQL Tables and User–Defined Records

Table 4 – 1 shows the legal datatype conversions between row values in
a PL/SQL table and elements in a host array. For example, a host array
of type VARCHAR2 is compatible with a PL/SQL table of type LONG,
LONG RAW, RAW, or VARCHAR2.

 PL/SQL Table

Host Array CHAR DATE LONG LONG RAW NUMBER RAW ROWID VARCHAR2

CHARF �

CHARZ �

DATE �

DECIMAL �

DISPLAY �

FLOAT �

INTEGER �

LONG � �

LONG VARCHAR � � � �

LONG VARRAW � �

NUMBER �

RAW � �

ROWID �

STRING � � � �

UNSIGNED �

VARCHAR � � � �

VARCHAR2 � � � �

VARNUM �

VARRAW � �

Table 4 – 1 Legal Datatype Conversions

ARRAYLEN Statement

4 – 18 PL/SQL User’s Guide and Reference

Suppose you pass a host array to a PL/SQL block for processing. By
default, when binding the host array, the Oracle Precompilers use its
declared dimension. However, you might not want to process the entire
array, in which case you can use the ARRAYLEN statement to specify a
smaller dimension. ARRAYLEN associates the host array with a host
variable, which stores the smaller dimension.

Let us repeat the first example above using ARRAYLEN to override the
default dimension of the host array salary:

#include <stdio.h>

main()

{

 EXEC SQL BEGIN DECLARE SECTION;

 ...

 /* Declare host array. */

 float salary [100];

 int my_dim;

 EXEC SQL ARRAYLEN salary (my_dim);

 EXEC SQL END DECLARE SECTION;

 /* Populate host array. */

 ...

 /* Set smaller host array dimension. */

 my_dim = 25;

 EXEC SQL EXECUTE

 DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

 mid_salary REAL;

 FUNCTION median (sal_tab SalTabTyp, n INTEGER)

 RETURN REAL IS

 BEGIN

 ... –– compute median salary

 END;

 BEGIN

 mid_salary := median(:salary, :my_dim); –– pass array

 ...

 END;

 END–EXEC;

 ...

}

Only 25 array elements are passed to the PL/SQL block because
ARRAYLEN downsizes the host array from 100 to 25 elements. As a
result, when the PL/SQL block is sent to Oracle for execution, a much
smaller host array is sent along. This saves time and reduces
network traffic.

Defining RECORD
Types

4 – 19PL/SQL Tables and User–Defined Records

User–Defined Records

You can use the %ROWTYPE attribute to declare a record that
represents a row in a table or a row fetched from a cursor. But, you
cannot specify the datatypes of fields in the record or declare fields of
your own. The composite datatype RECORD lifts those restrictions.

As you might expect, objects of type RECORD are called records. Records
contain uniquely named fields, which can have different datatypes.
Suppose you have various data about an employee such as name, salary,
and hire date. These items are dissimilar in type but logically related. A
record containing a field for each item lets you treat the data as a
logical unit.

Records must be declared in two steps. First, you define a RECORD
type, then declare user–defined records of that type. You can define
RECORD types in the declarative part of any block, subprogram, or
package using the syntax

TYPE record_type_name IS RECORD (field[, field]...);

where record_type_name is a type specifier used in subsequent
declarations of records and field stands for the following syntax:

field_name datatype [[NOT NULL] {:= | DEFAULT} expr]

You can use the attributes %TYPE and %ROWTYPE to specify field
types. In the following example, you define a RECORD type
named DeptRecTyp:

DECLARE

 TYPE DeptRecTyp IS RECORD (

 deptno NUMBER(2),

 dname dept.dname%TYPE,

 loc dept.loc%TYPE);

Notice that the field declarations are like variable declarations. Each
field has a unique name and specific datatype.

The next example shows that you can initialize a RECORD type. When
you declare a record of type TimeTyp, its three fields assume an initial
value of zero.

DECLARE

 TYPE TimeTyp IS RECORD (

 seconds SMALLINT := 0,

 minutes SMALLINT := 0,

 hours SMALLINT := 0);

Nested Records

Function Results

Declaring Records

4 – 20 PL/SQL User’s Guide and Reference

You can add the NOT NULL constraint to any field declaration and so
prevent the assigning of nulls to that field. Fields declared as NOT
NULL must be initialized.

PL/SQL lets you define nested records. That is, a record can be the
component of another record, as the following example shows:

DECLARE

 TYPE TimeTyp IS RECORD (

 seconds SMALLINT,

 minutes SMALLINT,

 hours SMALLINT);

 TYPE MeetingTyp IS RECORD (

 day DATE,

 time TimeTyp, –– nested record

 place VARCHAR2(20),

 purpose VARCHAR2(50));

The example below shows that you can specify a RECORD type in the
RETURN clause of a function specification. That allows the function to
return a user–defined record of the same type.

DECLARE

 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);

 ...

 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS ...

Once you define a RECORD type, you can declare records of that type,
as the following example shows:

DECLARE

 TYPE EmpRecTyp IS RECORD (

 emp_id NUMBER(4),

 emp_name CHAR(10),

 job_title CHAR(9)

 hire_date DATE));

 emp_rec EmpRecTyp; –– declare user–defined record

The identifier emp_rec represents an entire record.

Like scalar variables, user–defined records can be declared as the formal
parameters of procedures and functions. An example follows:

CREATE PACKAGE emp_actions AS

 TYPE EmpRecTyp IS RECORD (

 emp_id NUMBER(4),

 last_name CHAR(10),

 job_title CHAR(14), ...);

 ...

 PROCEDURE hire_employee (emp_rec EmpRecTyp);

Referencing Records

4 – 21PL/SQL Tables and User–Defined Records

To reference individual fields in a record, you use dot notation and the
following syntax:

record_name.field_name

For example, you reference the field hire_date in the record emp_rec
as follows:

emp_rec.hire_date ...

You can assign the value of an expression to a specific field using the
following syntax:

record_name.field_name := expression;

In the next example, you convert an employee name to upper case:

emp_rec.ename := UPPER(emp_rec.ename);

Instead of assigning values separately to each field in a record, you can
assign values to all fields at once. This can be done in two ways. First,
you can assign one record to another if they have the same datatype, as
the following example shows:

DECLARE

 TYPE DeptRecTyp IS RECORD(...);

 dept_rec1 DeptRecTyp;

 dept_rec2 DeptRecTyp;

BEGIN

 ...

 dept_rec1 := dept_rec2; –– assign one record to another

Records that have different datatypes cannot be assigned to each other
even if their fields match exactly.

Note: A user–defined record and a %ROWTYPE record always have
different datatypes.

Second, you can use the SELECT or FETCH statement to fetch column
values into a record, as the example below shows. The column names
must appear in the same order as the fields in your record.

DECLARE

 TYPE DeptRecTyp IS RECORD(

 dept_no NUMBER(2),

 dept_name CHAR(14),

 location CHAR(13));

 dept_rec DeptRecTyp;

BEGIN

 SELECT deptno, dname, loc INTO dept_rec FROM dept WHERE ...

Nested Records

4 – 22 PL/SQL User’s Guide and Reference

However, you cannot use the INSERT statement to insert user–defined
records into a database table. So, the following statement is illegal:

INSERT INTO dept VALUES (dept_rec); –– illegal

Also, you cannot assign a list of values to a record using an assignment
statement. Therefore, the following syntax is illegal:

record_name := (value1, value2, value3, ...); –– illegal

Finally, records cannot be tested for equality, inequality, or nullity. For
instance, the following IF conditions are illegal:

IF dept_rec1 = dept_rec2 THEN ... –– illegal

IF emp_rec IS NULL THEN ... –– illegal

The example below shows that you can assign one nested record to
another if they have the same datatype. Such assignments are allowed
even if the parent records have different datatypes.

DECLARE

 TYPE TimeTyp IS RECORD (minutes SMALLINT, hours SMALLINT);

 TYPE MeetingTyp IS RECORD (

 day DATE,

 time TimeTyp, –– nested record

 room INTEGER(4),

 subject VARCHAR2(35));

 TYPE PartyTyp IS RECORD (

 day DATE,

 time TimeTyp, –– nested record

 place VARCHAR2(15));

 meeting MeetingTyp;

 seminar MeetingTyp;

 party PartyTyp;

 ...

BEGIN

 ...

 seminar.time := meeting.time; –– same parent type

 party.time := meeting.time; –– different parent types

 ...

END;

Function Results

4 – 23PL/SQL Tables and User–Defined Records

When calling a function that returns a user–defined record, you use the
following syntax to reference fields in the record:

function_name(parameters).field_name

For example, the following call to the function nth_highest_sal references
the field salary in the user–defined record emp_rec:

DECLARE

 TYPE EmpRecTyp IS RECORD (

 emp_id NUMBER(4),

 job_title CHAR(14),

 salary REAL);

 middle_sal REAL;

 FUNCTION nth_highest_sal (n INTEGER) RETURN EmpRecTyp IS

 emp_rec EmpRecTyp;

 BEGIN

 ...

 RETURN emp_rec; –– return user–defined record

 END;

BEGIN

 ...

 middle_sal := nth_highest_sal(10).salary; –– call function

To reference nested fields in a record returned by a function, you use the
following syntax:

function_name(parameters).field_name.nested_field_name

For example, the following call to the function calendar_item references
the nested field hours in the user–defined record meeting:

DECLARE

 TYPE TimeTyp IS RECORD (minutes SMALLINT, hours SMALLINT);

 TYPE MeetingTyp IS RECORD (

 day DATE,

 duration TimeTyp, –– nested record

 room INTEGER(4),

 subject VARCHAR2(35));

 ...

 FUNCTION calendar_item (priority INTEGER) RETURN MeetingTyp IS

 meeting MeetingTyp;

 BEGIN

 ...

 RETURN meeting; –– return user–defined record

 END;

BEGIN

 ...

 IF calendar_item(3).duration.hours > 2 THEN ...

Using Records

4 – 24 PL/SQL User’s Guide and Reference

Restriction
Currently, you cannot use the syntax above to call a parameterless
function because PL/SQL does not allow empty parameter lists. That is,
the following syntax is illegal:

function_name().field_name –– illegal; empty parameter list

You cannot just drop the empty parameter list because the following
syntax is also illegal:

function_name.field_name –– illegal; no parameter list

Instead, declare a local user–defined record to which you can assign the
function result, then reference its fields directly, as shown in the
following example:

DECLARE

 TYPE EmpRecTyp IS RECORD (..., salary REAL);

 emp_rec EmpRecTyp; –– declare record

 median REAL;

 FUNCTION median_sal RETURN EmpRecTyp IS ...

BEGIN

 ...

 emp_rec := median_sal; –– assign function result

 median := emp_rec.salary; –– reference field

The RECORD type lets you collect information about the attributes of
something. The information is easy to manipulate because you can refer
to the collection as a whole. In the following example, you collect
accounting figures from the database tables assets and liabilities, then use
ratio analysis to compare the performance of two subsidiary companies:

DECLARE

 TYPE FiguresTyp IS RECORD (cash REAL, notes REAL, ...);

 sub1_figs FiguresTyp;

 sub2_figs FiguresTyp;

 ...

 FUNCTION acid_test (figs FiguresTyp) RETURN REAL IS ...

BEGIN

 SELECT cash, notes, ... INTO sub1_figs FROM assets, liabilities

 WHERE assets.sub = 1 AND liabilities.sub = 1;

 SELECT cash, notes, ... INTO sub2_figs FROM assets, liabilities

 WHERE assets.sub = 2 AND liabilities.sub = 2;

 IF acid_test(sub1_figs) > acid_test(sub2_figs) THEN ...

 ...

END;

Notice how easy it is to pass the collected figures to the function
acid_test, which computes a financial ratio.

C H A P T E R

5

T

5 – 1Interaction with Oracle

Interaction with Oracle

Knowledge is of two kinds. We know a subject ourselves, or we know where we
can find information upon it.

Samuel Johnson

his chapter helps you harness the power of Oracle. You learn
how PL/SQL supports the SQL commands, functions, and operators
that let you manipulate Oracle data. You also learn how to manage
cursors, use cursor variables, and process transactions.

Data Manipulation

Transaction Control

SQL Functions

5 – 2 PL/SQL User’s Guide and Reference

SQL Support

By extending SQL, PL/SQL offers a unique combination of power
and ease of use. You can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation commands
(except EXPLAIN PLAN), transaction control commands, functions,
pseudocolumns, and operators. Also, PL/SQL conforms to SQL92, the
current ANSI/ISO SQL standard.

Note: PL/SQL does not support data definition commands such as
ALTER and CREATE. For an explanation and workaround, see “Using
DDL and Dynamic SQL” on page 5 – 7.

To manipulate Oracle data, you use the INSERT, UPDATE, DELETE,
SELECT, and LOCK TABLE commands. INSERT adds new rows of data
to database tables; UPDATE modifies rows; DELETE removes unwanted
rows; SELECT retrieves rows that meet your search criteria; and LOCK
TABLE temporarily limits access to a table.

Oracle is transaction oriented; that is, Oracle uses transactions to ensure
data integrity. A transaction is a series of SQL data manipulation
statements that does a logical unit of work. For example, two UPDATE
statements might credit one bank account and debit another.

Simultaneously, Oracle makes permanent or undoes all database
changes made by a transaction. If your program fails in the middle of a
transaction, Oracle detects the error and rolls back the transaction. Thus,
the database is restored to its former state automatically.

You use the COMMIT, ROLLBACK, SAVEPOINT, and SET
TRANSACTION commands to control transactions. COMMIT makes
permanent any database changes made during the current transaction.
ROLLBACK ends the current transaction and undoes any changes made
since the transaction began. SAVEPOINT marks the current point in the
processing of a transaction. Used with ROLLBACK, SAVEPOINT
undoes part of a transaction. SET TRANSACTION establishes a
read–only transaction.

PL/SQL lets you use all the SQL functions including the following
group functions, which summarize entire columns of Oracle data: AVG,
COUNT, MAX, MIN, STDDEV, SUM, and VARIANCE.

The group functions GLB and LUB are available only with Trusted
Oracle. GLB and LUB return the greatest lower bound and least upper
bound of an operating system label, respectively. For more information,
see Trusted Oracle7 Server Administrator’s Guide.

SQL Pseudocolumns

5 – 3Interaction with Oracle

You can use the group functions in SQL statements, but not in
procedural statements. Group functions operate on entire columns
unless you use the SELECT GROUP BY statement to sort returned rows
into subgroups. If you omit the GROUP BY clause, the group function
treats all returned rows as a single group.

You call a group function using the syntax

function_name([ALL | DISTINCT] expr)

where expr is an expression that refers to one or more database columns.
If you specify the ALL option (the default), the group function considers
all column values including duplicates. For example, the following
statement returns the sample standard deviation (s) of all values in the
comm column:

SELECT STDDEV(comm) INTO comm_sigma FROM emp;

If you specify the DISTINCT option, the group function considers only
distinct values. For example, the following statement returns the
number of different job titles in the emp table:

SELECT COUNT(DISTINCT job) INTO job_count FROM emp;

The COUNT function lets you specify the asterisk (*) option, which
returns the number of rows in a table. For example, the following
statement returns the number of employees in the emp table:

SELECT COUNT(*) INTO emp_count FROM emp;

Except for COUNT(*), all group functions ignore nulls.

PL/SQL recognizes the following SQL pseudocolumns, which return
specific data items: CURRVAL, LEVEL, NEXTVAL, ROWID, and
ROWNUM.

Pseudocolumns are not actual columns in a table but they behave like
columns. For example, you can select values from a pseudocolumn.
However, you cannot insert values into, update values in, or delete
values from a pseudocolumn.

You can use pseudocolumns in SQL statements, but not in procedural
statements. In the following example, you use the database sequence
empno_seq and the pseudocolumn NEXTVAL (which returns the next
value in a database sequence) to insert a new employee number into
the emp table:

INSERT INTO emp VALUES (empno_seq.NEXTVAL, new_ename, ...);

CURRVAL and NEXTVAL

LEVEL

ROWID

5 – 4 PL/SQL User’s Guide and Reference

Brief descriptions of the pseudocolumns follow. For more information,
see Oracle7 Server SQL Reference.

A sequence is a database object that generates sequential numbers. When
you create a sequence, you can specify its initial value and an increment.

CURRVAL returns the current value in a specified sequence. Before you
can reference CURRVAL in a session, you must use NEXTVAL to
generate a number. A reference to NEXTVAL stores the current sequence
number in CURRVAL. NEXTVAL increments the sequence and returns
the next value. To obtain the current or next value in a sequence, you
must use dot notation, as follows:

sequence_name.CURRVAL

sequence_name.NEXTVAL

After creating a sequence, you can use it to generate unique sequence
numbers for transaction processing. However, you can use CURRVAL
and NEXTVAL only in a select list, the VALUES clause, and the SET
clause. In the following example, you use a sequence to insert the same
employee number into two tables:

INSERT INTO emp VALUES (empno_seq.NEXTVAL, my_ename, ...);

INSERT INTO sals VALUES (empno_seq.CURRVAL, my_sal, ...);

If a transaction generates a sequence number, the sequence is
incremented immediately whether you commit or roll back
the transaction.

You use LEVEL with the SELECT CONNECT BY statement to organize
rows from a database table into a tree structure. LEVEL returns the level
number of a node in a tree structure. The root is level 1, children of the
root are level 2, grandchildren are level 3, and so on.

You specify the direction in which the query walks the tree (down from
the root or up from the branches) with the PRIOR operator. In the
START WITH clause, you specify a condition that identifies the root of
the tree.

ROWID returns the rowid (binary address) of a row in a database table.
Recall that PL/SQL provides a datatype also named ROWID. You can
use variables of type ROWID to store rowids in a readable format. In
the following example, you declare a variable named row_id for
that purpose:

DECLARE

 row_id ROWID;

ROWNUM

ROWLABEL Column

5 – 5Interaction with Oracle

When you select or fetch a rowid into a ROWID variable, you can use
the function ROWIDTOCHAR, which converts the binary value to an
18–byte character string. Then, you can compare the ROWID variable to
the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement to identify the latest row fetched from a cursor. For
an example, see “Fetching Across Commits” on page 5 – 47.

ROWNUM returns a number indicating the order in which a row was
selected from a table. The first row selected has a ROWNUM of 1, the
second row has a ROWNUM of 2, and so on. If a SELECT statement
includes an ORDER BY clause, ROWNUMs are assigned to the retrieved
rows before the sort is done.

You can use ROWNUM in an UPDATE statement to assign unique
values to each row in a table. Also, you can use ROWNUM in the
WHERE clause of a SELECT statement to limit the number of rows
retrieved, as follows:

DECLARE

 CURSOR c1 IS SELECT empno, sal FROM emp

 WHERE sal > 2000 AND ROWNUM < 10; –– returns 10 rows

The value of ROWNUM increases only when a row is retrieved, so the
only meaningful use of ROWNUM in a WHERE clause is

... WHERE ROWNUM < constant;

For example, the following condition cannot be met because the first
nine rows are never retrieved:

... WHERE ROWNUM = 10;

PL/SQL also recognizes the special column ROWLABEL, which
Trusted Oracle creates for every database table. Like other columns,
ROWLABEL can be referenced in SQL statements. However, with
standard Oracle, ROWLABEL returns a null. With Trusted Oracle,
ROWLABEL returns the operating system label for a row.

A common use of ROWLABEL is to filter query results. For example, the
following statement counts only those rows with a security level higher
than “unclassified”:

SELECT COUNT(*) INTO head_count FROM emp

 WHERE ROWLABEL > ’UNCLASSIFIED’;

SQL Operators

Comparison Operators

Set Operators

Row Operators

5 – 6 PL/SQL User’s Guide and Reference

PL/SQL lets you use all the SQL comparison, set, and row operators in
SQL statements. This section briefly describes some of these operators.
For more information, see Oracle7 Server SQL Reference.

Typically, you use comparison operators in the WHERE clause of a data
manipulation statement to form predicates, which compare one
expression to another and always yields TRUE, FALSE, or NULL. You
can use all the comparison operators listed below to form predicates.
Moreover, you can combine predicates using the logical operators AND,
OR, and NOT.

Compares a value to each value in a list or returned by a
subquery and yields TRUE if all of the individual
comparisons yield TRUE.

Compares a value to each value in a list or returned by a
subquery and yields TRUE if any of the individual
comparisons yields TRUE.

Tests whether a value lies in a specified range.

Returns TRUE if a subquery returns at least one row.

Tests for set membership.

Tests for nulls.

Tests whether a character string matches a specified pattern,
which can include wildcards.

Set operators combine the results of two queries into one result.
INTERSECT returns all distinct rows selected by both queries. MINUS
returns all distinct rows selected by the first query but not by the
second. UNION returns all distinct rows selected by either query.
UNION ALL returns all rows selected by either query, including
all duplicates.

Row operators return or reference particular rows. ALL retains
duplicate rows in the result of a query or in an aggregate expression.
DISTINCT eliminates duplicate rows from the result of a query or from
an aggregate expression. PRIOR refers to the parent row of the current
row returned by a tree–structured query. You must use this operator in
the CONNECT BY clause of such a query to define the parent–child
relationship.

ALL

ANY,
SOME

BETWEEN

EXISTS

IN

IS NULL

LIKE

SQL92 Conformance

Efficiency versus
Flexibility

5 – 7Interaction with Oracle

In late 1992, the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) adopted the
current SQL standard known informally as SQL92, which greatly
extends the previous SQL standard (SQL89).

Note: SQL92 is known officially as International Standard ISO/IEC
9075:1992, Database Language SQL, which is also available as ANSI
Document ANSI X3.135–1992.

SQL92 specifies a “conforming SQL language” and, to allow
implementation in stages, defines three language levels:

• Full SQL

• Intermediate SQL (a subset of Full SQL)

• Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.
PL/SQL fully supports Entry SQL.

Using DDL and Dynamic SQL

This section explains why PL/SQL does not support SQL data definition
language (DDL) or dynamic SQL, then shows how to solve the problem.

Before a PL/SQL program can be executed, it must be compiled. The
PL/SQL compiler resolves references to Oracle objects by looking up
their definitions in the data dictionary. Then, the compiler assigns
storage addresses to program variables that will hold Oracle data
so that Oracle can look up the addresses at run time. This process is
called binding.

How a database language implements binding affects runtime efficiency
and flexibility. Binding at compile time, called static or early binding,
increases efficiency because the definitions of database objects are
looked up then, not at run time. On the other hand, binding at run time,
called dynamic or late binding, increases flexibility because the
definitions of database objects can remain unknown until then.

Designed primarily for high–speed transaction processing, PL/SQL
increases efficiency by bundling SQL statements and avoiding runtime
compilation. Unlike SQL, which is compiled and executed statement–
by–statement at run time (late binding), PL/SQL is processed into
machine–readable p–code at compile time (early binding). At run time,
the PL/SQL engine simply executes the p–code.

Some Limitations

Overcoming the
Limitations

5 – 8 PL/SQL User’s Guide and Reference

However, this design imposes some limitations. For example, the
p–code includes references to database objects such as tables and stored
procedures. The PL/SQL compiler can resolve such references only if
the database objects are known at compile time. In the following
example, the compiler cannot process the procedure because the table is
undefined until the procedure is executed at run time:

CREATE PROCEDURE create_table AS

BEGIN

 CREATE TABLE dept (deptno NUMBER(2), ...); –– illegal

 ...

END;

In the next example, the compiler cannot bind the table reference in the
DROP TABLE statement because the table name is unknown until the
procedure is executed:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS

BEGIN

 DROP TABLE table_name; –– illegal

 ...

END;

However, the package DBMS_SQL, which is supplied with Oracle7,
allows PL/SQL to execute SQL data definition and data manipulation
statements dynamically at run time. For example, when called, the
following stored procedure drops a specified database table:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS

 cid INTEGER;

BEGIN

 /* Open new cursor and return cursor ID. */

 cid := DBMS_SQL.OPEN_CURSOR;

 /* Parse and immediately execute dynamic SQL statement built by

 concatenating table name to DROP TABLE command. */

 DBMS_SQL.PARSE(cid, ’DROP TABLE ’ || table_name, dbms_sql.v7);

 /* Close cursor. */

 DBMS_SQL.CLOSE_CURSOR(cid);

EXCEPTION

 /* If an exception is raised, close cursor before exiting. */

 WHEN OTHERS THEN

 DBMS_SQL.CLOSE_CURSOR(cid);

 RAISE; –– reraise the exception

END drop_table;

For more information about package DBMS_SQL, see Oracle7 Server
Application Developer’s Guide.

Explicit Cursors

Declaring a Cursor

5 – 9Interaction with Oracle

Managing Cursors

Recall from Chapter 1 that PL/SQL uses two types of cursors: implicit
and explicit. PL/SQL declares a cursor implicitly for all SQL data
manipulation statements, including queries that return only one row.
However, for queries that return more than one row, you must declare
an explicit cursor or use a cursor FOR loop.

The set of rows returned by a query can consist of zero, one, or multiple
rows, depending on how many rows meet your search criteria. When a
query returns multiple rows, you can explicitly declare a cursor to
process the rows. You can declare a cursor in the declarative part of any
PL/SQL block, subprogram, or package.

You use three commands to control a cursor: OPEN, FETCH, and
CLOSE. First, you initialize the cursor with the OPEN statement, which
identifies the result set. Then, you use the FETCH statement to retrieve
the first row. You can execute FETCH repeatedly until all rows have
been retrieved. When the last row has been processed, you release the
cursor with the CLOSE statement. You can process several queries in
parallel by declaring and opening multiple cursors.

Forward references are not allowed in PL/SQL. So, you must declare a
cursor before referencing it in other statements. When you declare a
cursor, you name it and associate it with a specific query using
the syntax

CURSOR cursor_name [(parameter[, parameter]...)]

 IS select_statement;

where parameter stands for the following syntax:

cursor_parameter_name [IN] datatype [{:= | DEFAULT} expr]

For example, you might declare cursors named c1 and c2, as follows:

DECLARE

 CURSOR c1 IS SELECT empno, ename, job, sal FROM emp

 WHERE sal > 2000;

 CURSOR c2 IS SELECT * FROM dept WHERE deptno = 10;

Opening a Cursor

5 – 10 PL/SQL User’s Guide and Reference

The cursor name is an undeclared identifier, not the name of a PL/SQL
variable. You cannot assign values to a cursor name or use it in an
expression. However, cursors and variables follow the same scoping
rules. Naming cursors after database tables is allowed but not
recommended.

A cursor can take parameters, which can appear in the associated query
wherever constants can appear. The formal parameters of a cursor must
be IN parameters. Therefore, they cannot return values to actual
parameters. Also, you cannot impose the NOT NULL constraint on a
cursor parameter.

As the example below shows, you can initialize cursor parameters to
default values. That way, you can pass different numbers of actual
parameters to a cursor, accepting or overriding the default values as you
please. Also, you can add new formal parameters without having to
change every reference to the cursor.

DECLARE

 CURSOR c1 (low INTEGER DEFAULT 0,

 high INTEGER DEFAULT 99) IS SELECT ...

The scope of cursor parameters is local to the cursor, meaning that they
can be referenced only within the query specified in the cursor
declaration. The values of cursor parameters are used by the associated
query when the cursor is opened.

Opening the cursor executes the query and identifies the result set,
which consists of all rows that meet the query search criteria. For
cursors declared using the FOR UPDATE clause, the OPEN statement
also locks those rows. An example of the OPEN statement follows:

DECLARE

 CURSOR c1 IS SELECT ename, job FROM emp WHERE sal < 3000;

 ...

BEGIN

 OPEN c1;

 ...

END;

Rows in the result set are not retrieved when the OPEN statement is
executed. Rather, the FETCH statement retrieves the rows.

Fetching with a Cursor

5 – 11Interaction with Oracle

Passing Parameters
You use the OPEN statement to pass parameters to a cursor. Unless you
want to accept default values, each formal parameter in the cursor
declaration must have a corresponding actual parameter in the OPEN
statement. For example, given the cursor declaration

DECLARE

 emp_name emp.ename%TYPE;

 salary emp.sal%TYPE;

 CURSOR c1 (name VARCHAR2, salary NUMBER) IS SELECT ...

any of the following statements opens the cursor:

OPEN c1(emp_name, 3000);

OPEN c1(’ATTLEY’, 1500);

OPEN c1(emp_name, salary);

In the last example, when the identifier salary is used in the cursor
declaration, it refers to the formal parameter. But, when it is used in the
OPEN statement, it refers to the PL/SQL variable. To avoid confusion,
use unique identifiers.

Formal parameters declared with a default value need not have a
corresponding actual parameter. They can simply assume their default
values when the OPEN statement is executed.

You can associate the actual parameters in an OPEN statement with the
formal parameters in a cursor declaration using positional or named
notation. (See “Positional and Named Notation” on page 7 – 12.) The
datatypes of each actual parameter and its corresponding formal
parameter must be compatible.

The FETCH statement retrieves the rows in the result set one at a time.
After each fetch, the cursor advances to the next row in the result set. An
example of the FETCH statement follows:

FETCH c1 INTO my_empno, my_ename, my_deptno;

For each column value returned by the query associated with the cursor,
there must be a corresponding variable in the INTO list. Also, their
datatypes must be compatible. Typically, you use the FETCH statement
as follows:

OPEN c1;

LOOP

 FETCH c1 INTO my_record;

 EXIT WHEN c1%NOTFOUND;

 –– process data record

END LOOP;

5 – 12 PL/SQL User’s Guide and Reference

The query can reference PL/SQL variables within its scope. However,
any variables in the query are evaluated only when the cursor is opened.
In the following example, each retrieved salary is multiplied by 2, even
though factor is incremented after each fetch:

DECLARE

 my_sal emp.sal%TYPE;

 my_job emp.job%TYPE;

 factor INTEGER := 2;

 CURSOR c1 IS SELECT factor*sal FROM emp WHERE job = my_job;

BEGIN

 ...

 OPEN c1; –– here factor equals 2

 LOOP

 FETCH c1 INTO my_sal;

 EXIT WHEN c1%NOTFOUND;

 ...

 factor := factor + 1; –– does not affect FETCH

 END LOOP;

END;

To change the result set or the values of variables in the query, you must
close and reopen the cursor with the input variables set to their new
values.

However, you can use a different INTO list on separate fetches with the
same cursor. Each fetch retrieves another row and assigns values to the
target variables, as the following example shows:

DECLARE

 CURSOR c1 IS SELECT ename FROM emp;

 name1 emp.ename%TYPE;

 name2 emp.ename%TYPE;

 name3 emp.ename%TYPE;

BEGIN

 OPEN c1;

 FETCH c1 INTO name1; –– this fetches first row

 FETCH c1 INTO name2; –– this fetches second row

 FETCH c1 INTO name3; –– this fetches third row

 ...

 CLOSE c1;

END;

If you fetch past the last row in the result set, the values of the target
variables are indeterminate.

Note: Eventually, the FETCH statement must fail to return a row; so
when that happens, no exception is raised. To detect the failure, you
must use the cursor attribute %FOUND or %NOTFOUND. For more
information, see “Using Cursor Attributes” on page 5 – 33.

Closing a Cursor

Using Subqueries

Implicit Cursors

5 – 13Interaction with Oracle

The CLOSE statement disables the cursor, and the result set becomes
undefined. An example of the CLOSE statement follows:

CLOSE c1;

Once a cursor is closed, you can reopen it. Any other operation on a
closed cursor raises the predefined exception INVALID_CURSOR.

In this context, a subquery is a query that appears in another query.
When evaluated, the subquery provides a value or set of values to the
query. Subqueries are most often used in the WHERE clause. For
example, the following query returns employees not located in Chicago:

DECLARE

 CURSOR c1 IS SELECT empno, ename FROM emp

 WHERE deptno IN (SELECT deptno FROM dept

 WHERE loc <> ’CHICAGO’);

 FROM emp GROUP BY deptno) t2

 WHERE t1.deptno = t2.deptno AND ”STAFF” => 5;

Using a subquery in the FROM clause, the following query returns the
number and name of each department with five or more employees:

DECLARE

 CURSOR c1 IS SELECT t1.deptno, dname, ”STAFF”

 FROM dept t1, (SELECT deptno, COUNT(*) ”STAFF”

 FROM emp GROUP BY deptno) t2

 WHERE t1.deptno = t2.deptno AND ”STAFF” => 5;

Whereas a subquery is evaluated only once per table, a correlated
subquery is evaluated once per row. Consider the query below, which
returns the name and salary of each employee whose salary exceeds the
departmental average. For each row in the emp table, the correlated
subquery computes the average salary for that row’s department. The
row is returned if that row’s salary exceeds the average.

DECLARE

 CURSOR c1 IS SELECT deptno, ename, sal FROM emp t

 WHERE sal > (SELECT AVG(sal) FROM emp

 WHERE t.deptno = deptno)

 ORDER BY deptno;

Oracle implicitly opens a cursor to process each SQL statement not
associated with an explicitly declared cursor. PL/SQL lets you refer to
the most recent implicit cursor as the “SQL” cursor.

You cannot use the OPEN, FETCH, and CLOSE statements to control the
SQL cursor. But, you can use cursor attributes to get information about
the most recently executed SQL statement. See “Using Cursor
Attributes” on page 5 – 33.

5 – 14 PL/SQL User’s Guide and Reference

Packaging Cursors

You can separate a cursor specification from its body for placement in a
package. That way, you can change the cursor body without having to
change the cursor specification. You code the cursor specification in the
package specification using the syntax

CURSOR cursor_name [(parameter[, parameter]...)]

 RETURN return_type;

where return_type must represent a record or a row in a database table.
In the following example, you use the %ROWTYPE attribute to provide
a record type that represents a row in the database table emp:

CREATE PACKAGE emp_actions AS

 /* Declare cursor specification. */

 CURSOR c1 RETURN emp%ROWTYPE;

 ...

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

 /* Define cursor body. */

 CURSOR c1 RETURN emp%ROWTYPE IS

 SELECT * FROM emp WHERE sal > 3000;

 ...

END emp_actions;

The cursor specification has no SELECT statement because the RETURN
clause defines the datatype of the result value. However, the cursor
body must have a SELECT statement and the same RETURN clause as
the cursor specification. Also, the number and datatypes of select items
in the SELECT statement must match the RETURN clause.

Packaged cursors increase flexibility. For instance, you can change the
cursor body in the last example, as follows, without having to change
the cursor specification:

CREATE PACKAGE BODY emp_actions AS

 /* Define cursor body. */

 CURSOR c1 RETURN emp%ROWTYPE IS

 SELECT * FROM emp WHERE deptno = 20; –– new WHERE clause

 ...

END emp_actions;

5 – 15Interaction with Oracle

Using Cursor FOR Loops

In most situations that require an explicit cursor, you can simplify
coding by using a cursor FOR loop instead of the OPEN, FETCH, and
CLOSE statements. A cursor FOR loop implicitly declares its loop index
as a %ROWTYPE record, opens a cursor, repeatedly fetches rows of
values from the result set into fields in the record, and closes the cursor
when all rows have been processed.

Consider the PL/SQL block below, which computes results from an
experiment, then stores the results in a temporary table. The FOR loop
index c1_rec is implicitly declared as a record. Its fields store all the
column values fetched from the cursor c1. Dot notation is used to
reference individual fields.

–– available online in file EXAMP7

DECLARE

 result temp.col1%TYPE;

 CURSOR c1 IS

 SELECT n1, n2, n3 FROM data_table WHERE exper_num = 1;

BEGIN

 FOR c1_rec IN c1 LOOP

 /* calculate and store the results */

 result := c1_rec.n2 / (c1_rec.n1 + c1_rec.n3);

 INSERT INTO temp VALUES (result, NULL, NULL);

 END LOOP;

 COMMIT;

END;

When the cursor FOR loop is entered, the cursor name cannot belong to
a cursor that was already opened by an OPEN statement or by an
enclosing cursor FOR loop. Before each iteration of the FOR loop,
PL/SQL fetches into the implicitly declared record, which is equivalent
to a record explicitly declared as follows:

c1_rec c1%ROWTYPE;

The record is defined only inside the loop. You cannot refer to its fields
outside the loop. For example, the following reference is illegal:

FOR c1_rec IN c1 LOOP

 ...

END LOOP;

result := c1_rec.n2 + 3; –– illegal

The sequence of statements inside the loop is executed once for each row
that satisfies the query associated with the cursor. When you leave the
loop, the cursor is closed automatically. This is true even if you use an
EXIT or GOTO statement to leave the loop prematurely or if an
exception is raised inside the loop.

Using Aliases

Passing Parameters

5 – 16 PL/SQL User’s Guide and Reference

Fields in the implicitly declared record hold column values from the
most recently fetched row. The fields have the same names as
corresponding columns in the query select list. But, what happens if a
select item is an expression? Consider the following example:

CURSOR c1 IS

 SELECT empno, sal+NVL(comm,0), job FROM ...

In such cases, you must include an alias for the select–item. In the next
example, wages is an alias for the select item sal+NVL(comm,0):

CURSOR c1 IS

 SELECT empno, sal+NVL(comm,0) wages, job FROM ...

To reference the corresponding field, you use the alias instead of a
column name, as follows:

IF emp_rec.wages < 1000 THEN ...

You can pass parameters to the cursor used in a cursor FOR loop. In the
following example, you pass a department number. Then, you compute
the total wages paid to employees in that department. Also, you
determine how many employees have salaries higher than $2000 and
how many have commissions larger than their salaries.

–– available online in file EXAMP8

DECLARE

 CURSOR emp_cursor(dnum NUMBER) IS

 SELECT sal, comm FROM emp WHERE deptno = dnum;

 total_wages NUMBER(11,2) := 0;

 high_paid NUMBER(4) := 0;

 higher_comm NUMBER(4) := 0;

BEGIN

 /* The number of iterations will equal the number of rows *

 * returned by emp_cursor. */

 FOR emp_record IN emp_cursor(20) LOOP

 emp_record.comm := NVL(emp_record.comm, 0);

 total_wages := total_wages + emp_record.sal +

 emp_record.comm;

 IF emp_record.sal > 2000.00 THEN

 high_paid := high_paid + 1;

 END IF;

 IF emp_record.comm > emp_record.sal THEN

 higher_comm := higher_comm + 1;

 END IF;

 END LOOP;

 INSERT INTO temp VALUES (high_paid, higher_comm,

 ’Total Wages: ’ || TO_CHAR(total_wages));

 COMMIT;

END;

What Are Cursor
Variables?

Why Use Cursor
Variables?

5 – 17Interaction with Oracle

Using Cursor Variables

Like a cursor, a cursor variable points to the current row in the result set
of a multi–row query. But, cursors differ from cursor variables the way
constants differ from variables. Whereas a cursor is static, a cursor
variable is dynamic because it is not tied to a specific query. You can
open a cursor variable for any type–compatible query. This gives you
more flexibility.

Also, you can assign new values to a cursor variable and pass it as a
parameter to subprograms, including subprograms stored in an Oracle
database. This gives you an easy way to centralize data retrieval.

Cursor variables are available to every PL/SQL client. For example, you
can declare a cursor variable in a PL/SQL host environment such as an
OCI or Pro*C program, then pass it as a bind variable to PL/SQL.
Moreover, application development tools such as Oracle Forms and
Oracle Reports, which have a PL/SQL engine, can use cursor variables
entirely on the client side.

The Oracle Server also has a PL/SQL engine. So, you can pass cursor
variables back and forth between an application and server via remote
procedure calls (RPCs).

Cursor variables are like C or Pascal pointers, which hold the memory
location (address) of some object instead of the object itself. So, declaring
a cursor variable creates a pointer, not an object. In PL/SQL, a pointer
has datatype REF X, where REF is short for REFERENCE and X stands
for a class of objects. Therefore, a cursor variable has datatype REF
CURSOR. Currently, cursor variables are the only REF variables that
you can declare.

To execute a multi–row query, Oracle opens an unnamed work area that
stores processing information. To access the information, you can use an
explicit cursor, which names the work area. Or, you can use a cursor
variable, which points to the work area. Whereas a cursor always refers
to the same query work area, a cursor variable can refer to different
work areas. So, cursors and cursor variables are not interoperable; that
is, you cannot use one where the other is expected.

Mainly, you use cursor variables to pass query result sets between
PL/SQL stored subprograms and various clients. Neither PL/SQL nor
any of its clients owns a result set; they simply share a pointer to the
query work area in which the result set is stored. For example, an OCI
client, Oracle Forms application, and Oracle Server can all refer to the
same work area.

Defining REF
CURSOR Types

5 – 18 PL/SQL User’s Guide and Reference

A query work area remains accessible as long as any cursor variable
points to it. Therefore, you can pass the value of a cursor variable freely
from one scope to another. For example, if you pass a host cursor
variable to a PL/SQL block embedded in a Pro*C program, the work
area to which the cursor variable points remains accessible after the
block completes.

If you have a PL/SQL engine on the client side, calls from client to
server impose no restrictions. For example, you can declare a cursor
variable on the client side, open and fetch from it on the server side, then
continue to fetch from it back on the client side.

Also, you can reduce network traffic by having a PL/SQL block open
(or close) several host cursor variables in a single round trip.

To create cursor variables, you take two steps. First, you define a REF
CURSOR type, then declare cursor variables of that type. You can define
REF CURSOR types in any PL/SQL block, subprogram, or package
using the syntax

TYPE ref_type_name IS REF CURSOR RETURN return_type;

where ref_type_name is a type specifier used in subsequent declarations
of cursor variables and return_type must represent a record or a row in a
database table. In the following example, you specify a return type that
represents a row in the database table dept:

DECLARE

 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive).
As the next example shows, a strong REF CURSOR type definition
specifies a return type, but a weak definition does not:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE; –– strong

 TYPE GenericCurTyp IS REF CURSOR; –– weak

Strong REF CURSOR types are less error prone because the PL/SQL
compiler lets you associate a strongly typed cursor variable only with
type–compatible queries. However, weak REF CURSOR types are more
flexible because the compiler lets you associate a weakly typed cursor
variable with any query.

Declaring Cursor
Variables

5 – 19Interaction with Oracle

Once you define a REF CURSOR type, you can declare cursor variables
of that type in any PL/SQL block or subprogram. In the following
example, you declare the cursor variable dept_cv:

DECLARE

 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

 dept_cv DeptCurTyp; –– declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike package
variables, cursor variables do not have persistent state. Remember,
declaring a cursor variable creates a pointer, not an object. So, cursor
variables cannot be saved in the database.

Cursor variables follow the usual scoping and instantiation rules. Local
PL/SQL cursor variables are instantiated when you enter a block or
subprogram and cease to exist when you exit.

In the RETURN clause of a REF CURSOR type definition, you can use
%ROWTYPE to specify a record type that represents a row returned by a
(previously declared) cursor variable, as follows:

DECLARE

 TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 tmp_cv TmpCurTyp; –– declare cursor variable

 TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;

 emp_cv EmpCurTyp; –– declare cursor variable

Likewise, you can use %TYPE to provide the datatype of a record
variable, as the following example shows:

DECLARE

 dept_rec dept%ROWTYPE; –– declare record variable

 TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;

 dept_cv DeptCurTyp; –– declare cursor variable

In the final example, you specify a user–defined RECORD type in the
RETURN clause:

DECLARE

 TYPE EmpRecTyp IS RECORD (

 empno NUMBER(4),

 ename VARCHAR2(1O),

 sal NUMBER(7,2));

 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;

 emp_cv EmpCurTyp; –– declare cursor variable

As Parameters

Controlling Cursor
Variables

Opening a Cursor Variable

5 – 20 PL/SQL User’s Guide and Reference

You can declare cursor variables as the formal parameters of functions
and procedures. In the following example, you define the REF CURSOR
type EmpCurTyp, then declare a cursor variable of that type as the formal
parameter of a procedure:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS ...

You use three statements to control a cursor variable: OPEN–FOR,
FETCH, and CLOSE. First, you OPEN a cursor variable FOR a
multi–row query. Then, you FETCH rows from the result set one at a
time. When all the rows are processed, you CLOSE the cursor variable.

The OPEN–FOR statement associates a cursor variable with a multi–row
query, executes the query, and identifies the result set. The statement
syntax is

OPEN {cursor_variable_name | :host_cursor_variable_name}

 FOR select_statement;

where host_cursor_variable_name identifies a cursor variable declared in a
PL/SQL host environment such as an OCI or Pro*C program.

Unlike cursors, cursor variables do not take parameters. No flexibility is
lost, however, because you can pass whole queries (not just parameters)
to a cursor variable. The query can reference bind variables and PL/SQL
variables, parameters, and functions but cannot be FOR UPDATE.

In the example below, you open the cursor variable emp_cv. Notice that
you can apply cursor attributes (%FOUND, %NOTFOUND, %ISOPEN,
and %ROWCOUNT) to a cursor variable.

IF NOT emp_cv%ISOPEN THEN

 /* Open cursor variable. */

 OPEN emp_cv FOR SELECT * FROM emp;

END IF;

Other OPEN–FOR statements can open the same cursor variable for
different queries. You need not close a cursor variable before reopening
it. (Recall that consecutive OPENs of a static cursor raise the predefined
exception CURSOR_ALREADY_OPEN.) When you reopen a cursor
variable for a different query, the previous query is lost.

5 – 21Interaction with Oracle

In a Stored Procedure
Typically, you open a cursor variable by passing it to a stored
procedure that declares a cursor variable as one of its formal
parameters. For example, the following packaged procedure opens the
cursor variable emp_cv:

CREATE PACKAGE emp_data AS

 ...

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);

END emp_data;

CREATE PACKAGE BODY emp_data AS

 ...

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS

 BEGIN

 OPEN emp_cv FOR SELECT * FROM emp;

 END open_emp_cv;

END emp_data;

When you declare a cursor variable as the formal parameter of a
subprogram that opens the cursor variable, you must specify the
IN OUT mode. That way, the subprogram can pass an open cursor back
to the caller.

Alternatively, you can use a standalone procedure to open the cursor
variable. Simply define the REF CURSOR type in a separate package,
then reference that type in the standalone procedure. For instance, if you
create the following (bodiless) package, you can create standalone
procedures that reference the types it defines:

CREATE PACKAGE cv_types AS

 TYPE GenericCurTyp IS REF CURSOR;

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

 ...

END cv_types;

In the following example, you create a standalone procedure that
references the REF CURSOR type EmpCurTyp, which is defined in the
package cv_types:

CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS

BEGIN

 OPEN emp_cv FOR SELECT * FROM emp;

END open_emp_cv;

5 – 22 PL/SQL User’s Guide and Reference

To centralize data retrieval, you can group type–compatible queries in a
stored procedure. In the example below, the packaged procedure
declares a selector as one of its formal parameters. (In this context, a
selector is a variable used to select one of several alternatives in a
conditional control statement.) When called, the procedure opens the
cursor variable emp_cv for the chosen query.

CREATE PACKAGE emp_data AS

 TYPE GenericCurTyp IS REF CURSOR;

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER);

END emp_data;

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;

 ELSIF choice = 2 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;

 ELSIF choice = 3 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;

 END IF;

 END open_emp_cv;

END emp_data;

For more flexibility, you can pass a cursor variable and selector to a
stored procedure that executes queries with different return types.
Consider the following example:

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN generic_cv FOR SELECT * FROM emp;

 ELSIF choice = 2 THEN

 OPEN generic_cv FOR SELECT * FROM dept;

 ELSIF choice = 3 THEN

 OPEN generic_cv FOR SELECT * FROM salgrade;

 END IF;

 END open_cv;

END emp_data;

Fetching from a Cursor
Variable

5 – 23Interaction with Oracle

Using a Bind Variable
You can declare a cursor variable in a PL/SQL host environment such as
an OCI or Pro*C program. To use the cursor variable, you must pass it as
a bind variable to PL/SQL. In the following Pro*C example, you pass a
host cursor variable and selector to a PL/SQL block, which opens the
cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 /* Declare host cursor variable. */

 SQL_CURSOR generic_cv;

 int choice;

EXEC SQL END DECLARE SECTION;

...

/* Initialize host cursor variable. */

EXEC SQL ALLOCATE :generic_cv;

...

/* Pass host cursor variable and selector to PL/SQL block. */

EXEC SQL EXECUTE

BEGIN

 IF :choice = 1 THEN

 OPEN :generic_cv FOR SELECT * FROM emp;

 ELSIF :choice = 2 THEN

 OPEN :generic_cv FOR SELECT * FROM dept;

 ELSIF :choice = 3 THEN

 OPEN :generic_cv FOR SELECT * FROM salgrade;

 END IF;

END;

END–EXEC;

Host cursor variables are compatible with any query return type. They
behave just like weakly typed PL/SQL cursor variables.

The FETCH statement retrieves rows one at a time from the result set of
a multi–row query. The statement syntax follows:

FETCH {cursor_variable_name | :host_cursor_variable_name}

 INTO {variable_name[, variable_name]... | record_name};

In the next example, you fetch rows from the cursor variable emp_cv into
the user–defined record emp_rec:

LOOP

 /* Fetch from cursor variable. */

 FETCH emp_cv INTO emp_rec;

 EXIT WHEN emp_cv%NOTFOUND; –– exit when last row is fetched

 –– process data record

END LOOP;

Closing a Cursor Variable

5 – 24 PL/SQL User’s Guide and Reference

Any variables in the associated query are evaluated only when the
cursor variable is opened. To change the result set or the values of
variables in the query, you must reopen the cursor variable with the
variables set to their new values. However, you can use a different INTO
clause on separate fetches with the same cursor variable. Each fetch
retrieves another row from the same result set.

PL/SQL makes sure the return type of the cursor variable is compatible
with the INTO clause of the FETCH statement. For each column value
returned by the query associated with the cursor variable, there must be
a corresponding, type–compatible field or variable in the INTO clause.
Also, the number of fields or variables must equal the number of
column values. Otherwise, you get an error.

The error occurs at compile time if the cursor variable is strongly typed
or at run time if it is weakly typed. At run time, PL/SQL raises the
predefined exception ROWTYPE_ MISMATCH before the first fetch. So,
if you trap the error and execute the FETCH statement using a different
INTO clause, no rows are lost.

When you declare a cursor variable as the formal parameter of a
subprogram that fetches from the cursor variable, you must specify the
IN (or IN OUT) mode. However, if the subprogram also opens the
cursor variable, you must specify the IN OUT mode.

If you try to fetch from a closed or never–opened cursor variable,
PL/SQL raises the predefined exception INVALID_CURSOR.

The CLOSE statement disables a cursor variable. After that, the
associated result set is undefined. The statement syntax follows:

CLOSE {cursor_variable_name | :host_cursor_variable_name);

In the following example, when the last row is processed, you close the
cursor variable emp_cv:

LOOP

 FETCH emp_cv INTO emp_rec;

 EXIT WHEN emp_cv%NOTFOUND;

 –– process data record

END LOOP;

/* Close cursor variable. */

CLOSE emp_cv;

When declaring a cursor variable as the formal parameter of a
subprogram that closes the cursor variable, you must specify the
IN (or IN OUT) mode.

If you try to close an already–closed or never–opened cursor variable,
PL/SQL raises the predefined exception INVALID_CURSOR.

Some Examples

5 – 25Interaction with Oracle

Consider the stored procedure below, which searches the database of a
main library for books, periodicals, and tapes. A master table stores the
title and category code (1 = book, 2 = periodical, 3 = tape) of each item.
Three detail tables store category–specific information. When called, the
procedure searches the master table by title, uses the associated category
code to pick an OPEN–FOR statement, then opens a cursor variable for a
query of the proper detail table.

CREATE PACKAGE cv_types AS

 TYPE LibCurTyp IS REF CURSOR;

 ...

END cv_types;

CREATE PROCEDURE find_item (title VARCHAR2(100),

 lib_cv IN OUT cv_types.LibCurTyp) AS

 code BINARY_INTEGER;

BEGIN

 SELECT item_code FROM titles INTO code

 WHERE item_title = title;

 IF code = 1 THEN

 OPEN lib_cv FOR SELECT * FROM books

 WHERE book_title = title;

 ELSIF code = 2 THEN

 OPEN lib_cv FOR SELECT * FROM periodicals

 WHERE periodical_title = title;

 ELSIF code = 3 THEN

 OPEN lib_cv FOR SELECT * FROM tapes

 WHERE tape_title = title;

 END IF;

END find_item;

A client–side application in a branch library might use the following
PL/SQL block to display the retrieved information:

DECLARE

 lib_cv cv_types.LibCurTyp;

 book_rec books%ROWTYPE;

 periodical_rec periodicals%ROWTYPE;

 tape_rec tapes%ROWTYPE;

BEGIN

 get_title(:title); –– title is a host variable

 find_item(:title, lib_cv);

 FETCH lib_cv INTO book_rec;

 display_book(book_rec);

5 – 26 PL/SQL User’s Guide and Reference

EXCEPTION

 WHEN ROWTYPE_MISMATCH THEN

 BEGIN

 FETCH lib_cv INTO periodical_rec;

 display_periodical(periodical_rec);

 EXCEPTION

 WHEN ROWTYPE_MISMATCH THEN

 FETCH lib_cv INTO tape_rec;

 display_tape(tape_rec);

 END;

END;

The following Pro*C program prompts the user to select a database
table, opens a cursor variable for a query of that table, then fetches rows
returned by the query:

#include <stdio.h>

#include <sqlca.h>

void sql_error();

main()

{

 char temp[32];

 EXEC SQL BEGIN DECLARE SECTION;

 char * uid = ”scott/tiger”;

 SQL_CURSOR generic_cv; /* cursor variable */

 int table_num; /* selector */

 struct /* EMP record */

 {

 int emp_num;

 char emp_name[11];

 char job_title[10];

 int manager;

 char hire_date[10];

 float salary;

 float commission;

 int dept_num;

 } emp_rec;

 struct /* DEPT record */

 {

 int dept_num;

 char dept_name[15];

 char location[14];

 } dept_rec;

 struct /* BONUS record */

 {

 char emp_name[11];

 char job_title[10];

 float salary;

 } bonus_rec;

 EXEC SQL END DECLARE SECTION;

5 – 27Interaction with Oracle

 /* Handle Oracle errors. */

 EXEC SQL WHENEVER SQLERROR DO sql_error();

 /* Connect to Oracle. */

 EXEC SQL CONNECT :uid;

 /* Initialize cursor variable. */

 EXEC SQL ALLOCATE :generic_cv;

 /* Exit loop when done fetching. */

 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)

 {

 printf(”\n1 = EMP, 2 = DEPT, 3 = BONUS”);

 printf(”\nEnter table number (0 to quit): ”);

 gets(temp);

 table_num = atoi(temp);

 if (table_num <= 0) break;

 /* Open cursor variable. */

 EXEC SQL EXECUTE

 BEGIN

 IF :table_num = 1 THEN

 OPEN :generic_cv FOR SELECT * FROM emp;

 ELSIF :table_num = 2 THEN

 OPEN :generic_cv FOR SELECT * FROM dept;

 ELSIF :table_num = 3 THEN

 OPEN :generic_cv FOR SELECT * FROM bonus;

 END IF;

 END;

 END–EXEC;

 for (;;)

 {

 switch (table_num)

 {

 case 1: /* Fetch row into EMP record. */

 EXEC SQL FETCH :generic_cv INTO :emp_rec;

 break;

 case 2: /* Fetch row into DEPT record. */

 EXEC SQL FETCH :generic_cv INTO :dept_rec;

 break;

 case 3: /* Fetch row into BONUS record. */

 EXEC SQL FETCH :generic_cv INTO :bonus_rec;

 break;

 }

 /* Process data record here. */

 }

Reducing Network
Traffic

5 – 28 PL/SQL User’s Guide and Reference

 /* Close cursor variable. */

 EXEC SQL CLOSE :generic_cv;

 }

 exit(0);

}

void sql_error()

{

 /* Handle SQL error here. */

}

When passing host cursor variables to PL/SQL, you can reduce network
traffic by grouping OPEN–FOR statements. For example, the following
PL/SQL block opens five cursor variables in a single round–trip:

/* anonymous PL/SQL block in host environment */

BEGIN

 OPEN :emp_cv FOR SELECT * FROM emp;

 OPEN :dept_cv FOR SELECT * FROM dept;

 OPEN :grade_cv FOR SELECT * FROM salgrade;

 OPEN :pay_cv FOR SELECT * FROM payroll;

 OPEN :ins_cv FOR SELECT * FROM insurance;

END;

This might be useful in Oracle Forms, for instance, when you want to
populate a multi–block form.

When you pass host cursor variables to a PL/SQL block for opening, the
query work areas to which they point remain accessible after the block
completes. That allows your OCI or Pro*C program to use these work
areas for ordinary cursor operations. In the following example, you
open five such work areas in a single round trip:

BEGIN

 OPEN :c1 FOR SELECT 1 FROM dual;

 OPEN :c2 FOR SELECT 1 FROM dual;

 OPEN :c3 FOR SELECT 1 FROM dual;

 OPEN :c4 FOR SELECT 1 FROM dual;

 OPEN :c5 FOR SELECT 1 FROM dual;

END;

The cursors assigned to c1, c2, c3, c4, and c5 behave normally, and you
can use them for any purpose. When finished, simply release the
cursors, as follows:

BEGIN

 CLOSE :c1;

 CLOSE :c2;

 CLOSE :c3;

 CLOSE :c4;

 CLOSE :c5;

END;

Avoiding Exceptions

5 – 29Interaction with Oracle

If both cursor variables involved in an assignment are strongly typed,
they must have the same datatype. In the following example, even
though the cursor variables have the same return type, the assignment
raises an exception because they have different datatypes:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 ...

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 tmp_cv IN OUT TmpCurTyp) IS

 BEGIN

 ...

 emp_cv := tmp_cv; –– causes ’wrong type’ error

 END;

However, if one or both cursor variables are weakly typed, they need
not have the same datatype.

If you try to fetch from, close, or apply cursor attributes to a cursor
variable that does not point to a query work area, PL/SQL raises the
predefined exception INVALID_CURSOR. You can make a cursor
variable (or parameter) point to a query work area in two ways:

• OPEN the cursor variable FOR the query.

• Assign to the cursor variable the value of an already OPENed
host cursor variable or PL/SQL cursor variable.

The following example shows how these ways interact:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 emp_cv1 EmpCurTyp;

 emp_cv2 EmpCurTyp;

 emp_rec emp%ROWTYPE;

BEGIN

 /* The following assignment is useless because emp_cv1

 does not point to a query work area yet. */

 emp_cv2 := emp_cv1; –– useless

 /* Make emp_cv1 point to a query work area. */

 OPEN emp_cv1 FOR SELECT * FROM emp;

 /* Use emp_cv1 to fetch first row from emp table. */

 FETCH emp_cv1 INTO emp_rec;

 /* The following fetch raises an exception because emp_cv2

 does not point to a query work area yet. */

 FETCH emp_cv2 INTO emp_rec; –– raises INVALID_CURSOR

5 – 30 PL/SQL User’s Guide and Reference

EXCEPTION

 WHEN INVALID_CURSOR THEN

 /* Make emp_cv1 and emp_cv2 point to same work area. */

 emp_cv2 := emp_cv1;

 /* Use emp_cv2 to fetch second row from emp table. */

 FETCH emp_cv2 INTO emp_rec;

 /* Reuse work area for another query. */

 OPEN emp_cv2 FOR SELECT * FROM old_emp;

 /* Use emp_cv1 to fetch first row from old_emp table.

 The following fetch succeeds because emp_cv1 and

 emp_cv2 point to the same query work area. */

 FETCH emp_cv1 INTO emp_rec; –– succeeds

END;

Be careful when passing cursor variables as parameters. At run time,
PL/SQL raises ROWTYPE_MISMATCH if the return types of the actual
and formal parameters are incompatible.

In the Pro*C example below, you define a packaged REF CURSOR type,
specifying the return type emp%ROWTYPE. Next, you create a
standalone procedure that references the new type. Then, inside a
PL/SQL block, you open a host cursor variable for a query of the dept
table. Later, when you pass the open host cursor variable to the stored
procedure, PL/SQL raises ROWTYPE_MISMATCH because the return
types of the actual and formal parameters are incompatible.

/* bodiless package */

CREATE PACKAGE cv_types AS

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 ...

END cv_types;

/* standalone procedure */

CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS

BEGIN

 OPEN emp_cv FOR SELECT * FROM emp;

END open_emp_cv;

/* anonymous PL/SQL block in Pro*C program */

EXEC SQL EXECUTE

 BEGIN

 OPEN :cv FOR SELECT * FROM dept;

 ...

 open_emp_cv(:cv); –– raises ROWTYPE_MISMATCH because emp and

 –– dept tables have different rowtypes

 END;

END–EXEC;

Guarding Against
Aliasing

5 – 31Interaction with Oracle

Like all pointers, cursor variables introduce the possibility of aliasing.
Consider the example below. After the assignment, emp_cv2 is an alias of
emp_cv1 because both point to the same query work area. So, both can
alter its state. That is why the first fetch from emp_cv2 fetches the third
row (not the first) and why the second fetch from emp_cv2 fails after you
close emp_cv1.

PROCEDURE get_emp_data (emp_cv1 IN OUT EmpCurTyp,

 emp_cv2 IN OUT EmpCurTyp) IS

 emp_rec emp%ROWTYPE;

BEGIN

 OPEN emp_cv1 FOR SELECT * FROM emp;

 emp_cv2 := emp_cv1;

 FETCH emp_cv1 INTO emp_rec; –– fetches first row

 FETCH emp_cv1 INTO emp_rec; –– fetches second row

 FETCH emp_cv2 INTO emp_rec; –– fetches third row

 CLOSE emp_cv1;

 FETCH emp_cv2 INTO emp_rec; –– raises INVALID_CURSOR

 ...

END get_emp_data;

Aliasing also occurs when the same actual parameter appears twice in a
subprogram call. Unless both formal parameters are IN parameters, the
result is indeterminate, as the following example shows:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 emp_cv EmpCurTyp;

 emp_rec emp%ROWTYPE;

 PROCEDURE open_emp_cv (cv1 IN OUT EmpCurTyp,

 cv2 IN OUT EmpCurTyp) IS

 BEGIN

 OPEN cv1 FOR SELECT * FROM emp WHERE ename = ’KING’;

 OPEN cv2 FOR SELECT * FROM emp WHERE ename = ’BLACK’;

 END open_emp_cv;

BEGIN

 open_emp_cv(emp_cv, emp_cv);

 FETCH emp_cv INTO emp_rec; –– indeterminate; might return

 –– row for ’KING’ or ’BLACK’

 ...

END;

Restrictions

5 – 32 PL/SQL User’s Guide and Reference

Currently, cursor variables are subject to the following restrictions, some
of which future releases of PL/SQL will remove:

• You cannot declare cursor variables in a package because they do
not have persistent state.

• Remote subprograms on another server cannot accept the values
of cursor variables. Therefore, you cannot use RPCs to pass cursor
variables from one server to another.

• If you pass a host cursor variable (bind variable) to PL/SQL, you
cannot fetch from it on the server side unless you also open it
there on the same server call.

• The query associated with a cursor variable in an OPEN–FOR
statement cannot be FOR UPDATE.

• You cannot use comparison operators to test cursor variables for
equality, inequality, or nullity. For example, the following IF
conditions are illegal:

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 tmp_cv IN OUT TmpCurTyp) IS

 BEGIN

 ...

 IF emp_cv = tmp_cv THEN ... –– illegal

 IF emp_cv IS NULL THEN ... –– illegal

 END;

• You cannot assign nulls to a cursor variable. For example, the
following assignment statement is illegal:

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS

 BEGIN

 emp_cv := NULL; –– illegal

 ...

 END;

• You cannot use REF CURSOR types to specify column types in a
CREATE TABLE or CREATE VIEW statement. So, database
columns cannot store the values of cursor variables.

• You cannot use a REF CURSOR type to specify the element type
of a PL/SQL table, which means that elements in a PL/SQL table
cannot store the values of cursor variables. For instance, the
following TABLE type definition is illegal:

 DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 TYPE EmpCurTabTyp IS TABLE OF EmpCurTyp –– illegal

 INDEX BY BINARY_INTEGER;

Explicit Cursor
Attributes

%FOUND

5 – 33Interaction with Oracle

• Cursors and cursor variables are not interoperable; that is, you
cannot use one where the other is expected. For example, the
following cursor FOR loop is illegal:

 DECLARE

 CURSOR emp_cur IS SELECT * FROM emp; –– static cursor

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 emp_cv EmpCurTyp; –– cursor variable

 BEGIN

 ...

 FOR emp_rec IN emp_cv LOOP ... –– illegal

 ...

 END LOOP;

 END;

• You cannot use cursor variables with dynamic SQL.

Using Cursor Attributes

Each cursor or cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or
cursor variable, these attributes return useful information about the
execution of a data manipulation statement. You can use cursor
attributes in procedural statements but not in SQL statements.

Explicit cursor attributes return information about the execution of a
multi–row query. When an explicit cursor or a cursor variable is opened,
the rows that satisfy the associated query are identified and form the
result set. Rows are fetched from the result set one at a time.

After a cursor or cursor variable is opened but before the first fetch,
%FOUND yields NULL. Thereafter, it yields TRUE if the last fetch
returned a row, or FALSE if the last fetch failed to return a row. In the
following example, you use %FOUND to select an action:

LOOP

 FETCH c1 INTO my_ename, my_sal, my_hiredate;

 IF c1%FOUND THEN –– fetch succeeded

 ...

 ELSE –– fetch failed, so exit loop

 EXIT;

 END IF;

END LOOP;

If a cursor or cursor variable is not open, referencing it with %FOUND
raises the predefined exception INVALID_CURSOR.

%ISOPEN

%NOTFOUND

%ROWCOUNT

5 – 34 PL/SQL User’s Guide and Reference

%ISOPEN yields TRUE if its cursor or cursor variable is open;
otherwise, %ISOPEN yields FALSE. In the following example, you use
%ISOPEN to select an action:

IF c1%ISOPEN THEN –– cursor is open

 ...

ELSE –– cursor is closed, so open it

 OPEN c1;

END IF;

%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND
yields FALSE if the last fetch returned a row, or TRUE if the last fetch
failed to return a row. In the following example, you use %NOTFOUND
to exit a loop when FETCH fails to return a row:

LOOP

 FETCH c1 INTO my_ename, my_sal, my_hiredate;

 EXIT WHEN c1%NOTFOUND;

 ...

END LOOP;

If a cursor or cursor variable is not open, referencing it with
%NOTFOUND raises INVALID_CURSOR.

When its cursor or cursor variable is opened, %ROWCOUNT is zeroed.
Before the first fetch, %ROWCOUNT yields 0. Thereafter, it yields the
number of rows fetched so far. The number is incremented if the last
fetch returned a row. In the next example, you use %ROWCOUNT to
take action if more than ten rows have been fetched:

LOOP

 FETCH c1 INTO my_ename, my_deptno;

 IF c1%ROWCOUNT > 10 THEN

 ...

 END IF;

 ...

END LOOP;

If a cursor or cursor variable is not open, referencing it with
%ROWCOUNT raises INVALID_CURSOR.

Some Examples

5 – 35Interaction with Oracle

Table 5 – 1 shows what each cursor attribute yields before and after you
execute an OPEN, FETCH, or CLOSE statement.

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

OPEN
before exception FALSE exception exception

OPEN
after NULL TRUE NULL 0

first
FETCH

before NULL TRUE NULL 0

FETCH after TRUE TRUE FALSE 1

middle
FETCH

before TRUE TRUE FALSE 1

FETCHes after TRUE TRUE FALSE data dependent

last
FETCH

before TRUE TRUE FALSE data dependent

FETCH after FALSE TRUE TRUE data dependent

CLOSE
before FALSE TRUE TRUE data dependent

CLOSE
after exception FALSE exception exception

Notes :
1. Referencing %FOUND, %NOTFOUND, or %ROWCOUNT before a cursor is
opened or after it is closed raises INVALID_CURSOR.
2. After the first FETCH, if the result set was empty, %FOUND yields FALSE,
%NOTFOUND yields TRUE, and %ROWCOUNT yields 0.

Table 5 – 1 Cursor Attribute Values

Suppose you have a table named data_table that holds data collected
from laboratory experiments, and you want to analyze the data from
experiment 1. In the following example, you compute the results and
store them in a database table named temp:

–– available online in file EXAMP5

DECLARE

 num1 data_table.n1%TYPE; –– Declare variables

 num2 data_table.n2%TYPE; –– having same types as

 num3 data_table.n3%TYPE; –– database columns

 result temp.col1%TYPE;

 CURSOR c1 IS

 SELECT n1, n2, n3 FROM data_table WHERE exper_num = 1;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO num1, num2, num3;

 EXIT WHEN c1%NOTFOUND; –– yields TRUE when FETCH

 –– finds no more rows

 result := num2/(num1 + num3);

 INSERT INTO temp VALUES (result, NULL, NULL);

 END LOOP;

 CLOSE c1;

 COMMIT;

END;

5 – 36 PL/SQL User’s Guide and Reference

In the next example, you check all storage bins that contain part number
5469, withdrawing their contents until you accumulate 1000 units:

–– available online in file EXAMP6

DECLARE

 CURSOR bin_cur(part_number NUMBER) IS

 SELECT amt_in_bin FROM bins

 WHERE part_num = part_number AND amt_in_bin > 0

 ORDER BY bin_num

 FOR UPDATE OF amt_in_bin;

 bin_amt bins.amt_in_bin%TYPE;

 total_so_far NUMBER(5) := 0;

 amount_needed CONSTANT NUMBER(5) := 1000;

 bins_looked_at NUMBER(3) := 0;

BEGIN

 OPEN bin_cur(5469);

 WHILE total_so_far < amount_needed LOOP

 FETCH bin_cur INTO bin_amt;

 EXIT WHEN bin_cur%NOTFOUND;

 –– if we exit, there’s not enough to fill the order

 bins_looked_at := bins_looked_at + 1;

 IF total_so_far + bin_amt < amount_needed THEN

 UPDATE bins SET amt_in_bin = 0

 WHERE CURRENT OF bin_cur;

 –– take everything in the bin

 total_so_far := total_so_far + bin_amt;

 ELSE –– we finally have enough

 UPDATE bins SET amt_in_bin = amt_in_bin

 – (amount_needed – total_so_far)

 WHERE CURRENT OF bin_cur;

 total_so_far := amount_needed;

 END IF;

 END LOOP;

 CLOSE bin_cur;

 INSERT INTO temp

 VALUES (NULL, bins_looked_at, ’<– bins looked at’);

 COMMIT;

END;

Implicit Cursor
Attributes

%FOUND

%ISOPEN

%NOTFOUND

%ROWCOUNT

5 – 37Interaction with Oracle

Implicit cursor attributes return information about the execution of an
INSERT, UPDATE, DELETE, or SELECT INTO statement. The values of
the cursor attributes always refer to the most recently executed SQL
statement. Before Oracle opens the SQL cursor, the implicit cursor
attributes yield NULL.

Until a SQL data manipulation statement is executed, %FOUND yields
NULL. Thereafter, %FOUND yields TRUE if an INSERT, UPDATE, or
DELETE statement affected one or more rows, or a SELECT INTO
statement returned one or more rows. Otherwise, %FOUND yields
FALSE. In the following example, you use %FOUND to insert a row if a
delete succeeds:

DELETE FROM emp WHERE empno = my_empno;

IF SQL%FOUND THEN –– delete succeeded

 INSERT INTO new_emp VALUES (my_empno, my_ename, ...);

 ...

END IF;

Oracle closes the SQL cursor automatically after executing its associated
SQL statement. As a result, %ISOPEN always yields FALSE.

%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND
yields TRUE if an INSERT, UPDATE, or DELETE statement affected no
rows, or a SELECT INTO statement returned no rows. Otherwise,
%NOTFOUND yields FALSE. In this example, you use %NOTFOUND
to insert a new row if an update fails:

UPDATE emp SET sal = sal * 1.05 WHERE empno = my_empno;

IF SQL%NOTFOUND THEN –– update failed

 INSERT INTO errors VALUES (...);

END IF;

%ROWCOUNT yields the number of rows affected by an INSERT,
UPDATE, or DELETE statement, or returned by a SELECT INTO
statement. %ROWCOUNT yields 0 if an INSERT, UPDATE, or DELETE
statement affected no rows, or a SELECT INTO statement returned no
rows. In the following example, you use %ROWCOUNT to take action if
more than ten rows have been deleted:

DELETE FROM emp WHERE ...

IF SQL%ROWCOUNT > 10 THEN –– more than 10 rows were deleted

 ...

END IF;

If a SELECT INTO statement returns more than one row, PL/SQL raises
the predefined exception TOO_MANY_ROWS and %ROWCOUNT
yields 1, not the actual number of rows that satisfy the query.

Guidelines

5 – 38 PL/SQL User’s Guide and Reference

The values of the cursor attributes always refer to the most recently
executed SQL statement, wherever that statement is. It might be in a
different scope (for example, in a sub–block). So, if you want to save an
attribute value for later use, assign it to a Boolean variable immediately.
In the following example, relying on the IF condition is dangerous
because the procedure check_status might have changed the value
of %NOTFOUND:

UPDATE parts SET quantity = quantity – 1 WHERE partno = part_id;

check_status(part_id); –– procedure call

IF SQL%NOTFOUND THEN –– dangerous!

You can debug the code as follows:

UPDATE parts SET quantity = quantity – 1 WHERE partno = part_id;

sql_notfound := SQL%NOTFOUND; –– assign value to Boolean variable

check_status(part_id);

IF sql_notfound THEN ...

If a SELECT INTO statement fails to return a row, PL/SQL raises the
predefined exception NO_DATA_FOUND whether you check
%NOTFOUND on the next line or not. Consider the following example:

BEGIN

 ...

 SELECT sal INTO my_sal FROM emp WHERE empno = my_empno;

 –– might raise NO_DATA_FOUND

 IF SQL%NOTFOUND THEN –– condition tested only when false

 ... –– this action is never taken

 END IF;

The check is useless because the IF condition is tested only when
%NOTFOUND is false. When PL/SQL raises NO_DATA_FOUND,
normal execution stops and control transfers to the exception–handling
part of the block.

However, a SELECT INTO statement that calls a SQL group function
never raises NO_DATA_FOUND because group functions always return
a value or a null. In such cases, %NOTFOUND yields FALSE, as the
following example shows:

BEGIN

 ...

 SELECT MAX(sal) INTO my_sal FROM emp WHERE deptno = my_deptno;

 –– never raises NO_DATA_FOUND

 IF SQL%NOTFOUND THEN –– always tested but never true

 ... –– this action is never taken

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND THEN ... –– never invoked

5 – 39Interaction with Oracle

Processing Transactions

This section explains how to do transaction processing. You learn the
basic techniques that safeguard the consistency of your database,
including how to control whether changes to Oracle data are made
permanent or undone. Before delving into the subject, you should know
the terms defined below.

The jobs or tasks that Oracle manages are called sessions. A user session
is started when you run an application program or an Oracle tool and
connect to Oracle. To allow user sessions to work “simultaneously” and
share computer resources, Oracle must control concurrency, the accessing
of the same data by many users. Without adequate concurrency controls,
there might be a loss of data integrity. That is, changes to data or
structures might be made in the wrong order.

Oracle uses locks to control concurrent access to data. A lock gives you
temporary ownership of a database resource such as a table or row of
data. Thus, data cannot be changed by other users until you finish with
it. You need never explicitly lock a resource because default locking
mechanisms protect Oracle data and structures. However, you can
request data locks on tables or rows when it is to your advantage to
override default locking. You can choose from several modes of locking
such as row share and exclusive.

A deadlock can occur when two or more users try to access the same
database object. For example, two users updating the same table might
wait if each tries to update a row currently locked by the other. Because
each user is waiting for resources held by another user, neither can
continue until Oracle breaks the deadlock by signaling an error to the
last participating transaction.

When a table is being queried by one user and updated by another at
the same time, Oracle generates a read–consistent view of the data for the
query. That is, once a query begins and as it proceeds, the data read by
the query does not change. As update activity continues, Oracle takes
snapshots of the table’s data and records changes in a rollback segment.
Oracle uses information in the rollback segment to build read–consistent
query results and to undo changes if necessary.

How Transactions
Guard Your Database

Using COMMIT

5 – 40 PL/SQL User’s Guide and Reference

Oracle is transaction oriented; that is, it uses transactions to ensure
data integrity. A transaction is a series of one or more logically related
SQL statements that accomplish a task. Oracle treats the series of SQL
statements as a unit so that all the changes brought about by the
statements are either committed (made permanent) or rolled back
(undone) at the same time. If your program fails in the middle of a
transaction, the database is automatically restored to its former state.

The first SQL statement in your program begins a transaction. When one
transaction ends, the next SQL statement automatically begins another
transaction. Thus, every SQL statement is part of a transaction. A
distributed transaction includes at least one SQL statement that updates
data at multiple nodes in a distributed database.

The COMMIT and ROLLBACK statements ensure that all database
changes brought about by SQL operations are either made permanent or
undone at the same time. All the SQL statements executed since the last
commit or rollback make up the current transaction. The SAVEPOINT
statement names and marks the current point in the processing of
a transaction.

The COMMIT statement ends the current transaction and makes
permanent any changes made during that transaction. Until you commit
the changes, other users cannot access the changed data; they see the
data as it was before you made the changes.

Consider a simple transaction that transfers money from one bank
account to another. The transaction requires two updates because it
debits the first account, then credits the second. In the example below,
after crediting the second account, you issue a commit, which makes the
changes permanent. Only then do other users see the changes.

BEGIN

 ...

 UPDATE accts SET bal = my_bal – debit

 WHERE acctno = 7715;

 ...

 UPDATE accts SET bal = my_bal + credit

 WHERE acctno = 7720;

 COMMIT WORK;

END;

The COMMIT statement releases all row and table locks. It also erases
any savepoints (discussed later) marked since the last commit or
rollback. The optional keyword WORK has no effect other than to
improve readability. The keyword END signals the end of a PL/SQL
block, not the end of a transaction. Just as a block can span multiple
transactions, a transaction can span multiple blocks.

Using ROLLBACK

5 – 41Interaction with Oracle

The COMMENT clause lets you specify a comment to be associated with
a distributed transaction. When you issue a commit, changes to each
database affected by a distributed transaction are made permanent.
However, if a network or machine fails during the commit, the state of
the distributed transaction might be unknown or in doubt. In that case,
Oracle stores the text specified by COMMENT in the data dictionary
along with the transaction ID. The text must be a quoted literal up to 50
characters long. An example follows:

COMMIT COMMENT ’In–doubt order transaction; notify Order Entry’;

PL/SQL does not support the FORCE clause, which, in SQL, manually
commits an in–doubt distributed transaction. For example, the following
COMMIT statement is illegal:

COMMIT FORCE ’23.51.54’; –– illegal

The ROLLBACK statement ends the current transaction and undoes any
changes made during that transaction. Rolling back is useful for two
reasons. First, if you make a mistake like deleting the wrong row from a
table, a rollback restores the original data. Second, if you start a
transaction that you cannot finish because an exception is raised or a
SQL statement fails, a rollback lets you return to the starting point to
take corrective action and perhaps try again.

Consider the example below, in which you insert information about an
employee into three different database tables. All three tables have a
column that holds employee numbers and is constrained by a unique
index. If an INSERT statement tries to store a duplicate employee
number, the predefined exception DUP_VAL_ON_INDEX is raised. In
that case, you want to undo all changes. So, you issue a rollback in the
exception handler.

DECLARE

 emp_id INTEGER;

 ...

BEGIN

 SELECT empno, ... INTO emp_id, ... FROM new_emp WHERE ...

 ...

 INSERT INTO emp VALUES (emp_id, ...);

 INSERT INTO tax VALUES (emp_id, ...);

 INSERT INTO pay VALUES (emp_id, ...);

 ...

EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK;

 ...

END;

Statement–Level Rollbacks

Using SAVEPOINT

5 – 42 PL/SQL User’s Guide and Reference

Before executing a SQL statement, Oracle marks an implicit savepoint.
Then, if the statement fails, Oracle rolls it back automatically. For
example, if an INSERT statement raises an exception by trying to insert a
duplicate value in a unique index, the statement is rolled back. Only
work started by the failed SQL statement is lost. Work done before that
statement in the current transaction is kept.

Oracle can also roll back single SQL statements to break deadlocks.
Oracle signals an error to one of the participating transactions and rolls
back the current statement in that transaction.

Before executing a SQL statement, Oracle must parse it, that is, examine
it to make sure it follows syntax rules and refers to valid database
objects. Errors detected while executing a SQL statement cause a
rollback, but errors detected while parsing the statement do not.

SAVEPOINT names and marks the current point in the processing of a
transaction. Used with the ROLLBACK TO statement, savepoints let you
undo parts of a transaction instead of the whole transaction. In the
example below, you mark a savepoint before doing an insert. If the
INSERT statement tries to store a duplicate value in the empno column,
the predefined exception DUP_VAL_ON_INDEX is raised. In that case,
you roll back to the savepoint, undoing just the insert.

DECLARE

 emp_id emp.empno%TYPE;

BEGIN

 ...

 UPDATE emp SET ... WHERE empno = emp_id;

 DELETE FROM emp WHERE ...

 ...

 SAVEPOINT do_insert;

 INSERT INTO emp VALUES (emp_id, ...);

EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK TO do_insert;

END;

When you roll back to a savepoint, any savepoints marked after that
savepoint are erased. However, the savepoint to which you roll back is
not erased. For example, if you mark five savepoints, then roll back to
the third, only the fourth and fifth are erased. A simple rollback or
commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances
of the SAVEPOINT statement are executed at each level in the recursive
descent. However, you can only rollback to the most recently
marked savepoint.

Implicit Rollbacks

Ending Transactions

5 – 43Interaction with Oracle

Savepoint names are undeclared identifiers and can be reused within a
transaction. This moves the savepoint from its old position to the current
point in the transaction. Thus, a rollback to the savepoint affects only the
current part of your transaction. An example follows:

BEGIN

 ...

 SAVEPOINT my_point;

 UPDATE emp SET ... WHERE empno = emp_id;

 ...

 SAVEPOINT my_point; –– move my_point to current point

 INSERT INTO emp VALUES (emp_id, ...);

 ...

EXCEPTION

 WHEN OTHERS THEN

 ROLLBACK TO my_point;

END;

By default, the number of active savepoints per session is limited to five.
An active savepoint is one marked since the last commit or rollback. You
or your DBA can raise the limit (up to 255) by increasing the value of the
Oracle initialization parameter SAVEPOINTS.

Before executing an INSERT, UPDATE, or DELETE statement, Oracle
marks an implicit savepoint (unavailable to you). If the statement fails,
Oracle rolls back to the savepoint. Normally, just the failed SQL
statement is rolled back, not the whole transaction. However, if the
statement raises an unhandled exception, the host environment
determines what is rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL
does not assign values to OUT parameters. Also, PL/SQL does not roll
back database work done by the subprogram.

It is good programming practice to commit or roll back every
transaction explicitly. Whether you issue the commit or rollback in your
PL/SQL program or in the host environment depends on the flow of
application logic. If you neglect to commit or roll back a transaction
explicitly, the host environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does
not include a COMMIT or ROLLBACK statement, the final state of your
transaction depends on what you do after running the block. If you
execute a data definition, data control, or COMMIT statement or if you
issue the EXIT, DISCONNECT, or QUIT command, Oracle commits the
transaction. If you execute a ROLLBACK statement or abort the
SQL*Plus session, Oracle rolls back the transaction.

Using SET
TRANSACTION

5 – 44 PL/SQL User’s Guide and Reference

In the Oracle Precompiler environment, if your program does not
terminate normally, Oracle rolls back your transaction. A program
terminates normally when it explicitly commits or rolls back work and
disconnects from Oracle using the RELEASE parameter, as follows:

EXEC SQL COMMIT WORK RELEASE;

In the OCI environment, if you issue the OLOGOF call, Oracle
automatically commits your transaction. Otherwise, Oracle rolls back
the transaction.

You use the SET TRANSACTION statement to begin a read–only or
read–write transaction, establish an isolation level, or assign your
current transaction to a specified rollback segment. Read–only
transactions are useful for running multiple queries against one or more
tables while other users update the same tables.

During a read–only transaction, all queries refer to the same snapshot of
the database, providing a multi–table, multi–query, read–consistent
view. Other users can continue to query or update data as usual. A
commit or rollback ends the transaction. In the example below, as a store
manager, you use a read–only transaction to gather sales figures for the
day, the past week, and the past month. The figures are unaffected by
other users updating the database during the transaction.

DECLARE

 daily_sales REAL;

 weekly_sales REAL;

 monthly_sales REAL;

BEGIN

 ...

 COMMIT; –– ends previous transaction

 SET TRANSACTION READ ONLY;

 SELECT SUM(amt) INTO daily_sales FROM sales

 WHERE dte = SYSDATE;

 SELECT SUM(amt) INTO weekly_sales FROM sales

 WHERE dte > SYSDATE – 7;

 SELECT SUM(amt) INTO monthly_sales FROM sales

 WHERE dte > SYSDATE – 30;

 COMMIT; –– ends read–only transaction

 ...

END;

The SET TRANSACTION statement must be the first SQL statement in a
read–only transaction and can only appear once in a transaction. If you
set a transaction to READ ONLY, subsequent queries see only changes
committed before the transaction began. The use of READ ONLY does
not affect other users or transactions.

Restrictions

Overriding Default
Locking

Using FOR UPDATE

5 – 45Interaction with Oracle

Only the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE,
COMMIT, and ROLLBACK statements are allowed in a read–only
transaction. Also, queries cannot be FOR UPDATE.

By default, Oracle locks data structures for you automatically. However,
you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or
deny access to a table for the duration of a transaction.

With the SELECT FOR UPDATE statement, you can explicitly lock
specific rows of a table to make sure they do not change before an
update or delete is executed. However, Oracle automatically obtains
row–level locks at update or delete time. So, use the FOR UPDATE
clause only if you want to lock the rows before the update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

When you declare a cursor that will be referenced in the CURRENT OF
clause of an UPDATE or DELETE statement, you must use the FOR
UPDATE clause to acquire exclusive row locks. An example follows:

DECLARE

 CURSOR c1 IS SELECT empno, sal FROM emp

 WHERE job = ’SALESMAN’ AND comm > sal FOR UPDATE NOWAIT;

The FOR UPDATE clause identifies the rows that will be updated or
deleted, then locks each row in the result set. This is useful when you
want to base an update on the existing values in a row. In that case,
you must make sure the row is not changed by another user before
the update.

The optional keyword NOWAIT tells Oracle not to wait if the table has
been locked by another user. Control is immediately returned to your
program so that it can do other work before trying again to acquire the
lock. If you omit the keyword NOWAIT, Oracle waits until the table is
available. The wait has no limit unless the table is remote, in which case
the Oracle initialization parameter DISTRIBUTED_LOCK_TIMEOUT
sets a limit.

All rows are locked when you open the cursor, not as they are fetched.
The rows are unlocked when you commit or roll back the transaction.
So, you cannot fetch from a FOR UPDATE cursor after a commit. (For a
workaround, see “Fetching Across Commits” on page 5 – 47.)

Using LOCK TABLE

5 – 46 PL/SQL User’s Guide and Reference

When querying multiple tables, you can use the FOR UPDATE clause to
confine row locking to particular tables. Rows in a table are locked only
if the FOR UPDATE OF clause refers to a column in that table. For
example, the following query locks rows in the emp table but not in
the dept table:

DECLARE

 CURSOR c1 IS SELECT ename, dname FROM emp, dept

 WHERE emp.deptno = dept.deptno AND job = ’MANAGER’

 FOR UPDATE OF sal;

You use the CURRENT OF clause in an UPDATE or DELETE statement
to refer to the latest row fetched from a cursor, as the following
example shows:

DECLARE

 CURSOR c1 IS SELECT empno, job, sal FROM emp FOR UPDATE;

 ...

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO ...

 ...

 UPDATE emp SET sal = new_sal WHERE CURRENT OF c1;

 END LOOP;

You use the LOCK TABLE statement to lock entire database tables in a
specified lock mode so that you can share or deny access to them. For
example, the statement below locks the emp table in row share mode.
Row share locks allow concurrent access to a table; they prevent other
users from locking the entire table for exclusive use. Table locks are
released when your transaction issues a commit or rollback.

LOCK TABLE emp IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table.
For example, many users can acquire row share locks on a table at the
same time, but only one user at a time can acquire an exclusive lock.
While one user has an exclusive lock on a table, no other users can
insert, delete, or update rows in that table. For more information about
lock modes, see Oracle7 Server Application Developer’s Guide.

A table lock never keeps other users from querying a table, and a query
never acquires a table lock. Only if two different transactions try to
modify the same row will one transaction wait for the other to complete.

Note: If your program includes SQL locking statements, make sure
the Oracle users requesting locks have the privileges needed to obtain
the locks.

Fetching Across Commits

5 – 47Interaction with Oracle

Remember, the FOR UPDATE clause acquires exclusive row locks. All
rows are locked when you open the cursor, and they are unlocked when
you commit your transaction. So, you cannot fetch from a FOR UPDATE
cursor after a commit. If you do, PL/SQL raises an exception. In the
following example, the cursor FOR loop fails after the tenth insert:

DECLARE

 CURSOR c1 IS SELECT ename FROM emp FOR UPDATE OF sal;

 ctr NUMBER := 0;

BEGIN

 FOR emp_rec IN c1 LOOP –– FETCHes implicitly

 ...

 ctr := ctr + 1;

 INSERT INTO temp VALUES (ctr, ’still going’);

 IF ctr >= 10 THEN

 COMMIT; –– releases locks

 END IF;

 END LOOP;

END;

If you want to fetch across commits, do not use the FOR UPDATE and
CURRENT OF clauses. Instead, use the ROWID pseudocolumn to mimic
the CURRENT OF clause. Simply select the rowid of each row into a
ROWID variable. Then, use the rowid to identify the current row during
subsequent updates and deletes. An example follows:

DECLARE

 CURSOR c1 IS SELECT ename, job, rowid FROM emp;

 my_ename emp.ename%TYPE;

 my_job emp.job%TYPE;

 my_rowid ROWID;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO my_ename, my_job, my_rowid;

 EXIT WHEN c1%NOTFOUND;

 UPDATE emp SET sal = sal * 1.05 WHERE rowid = my_rowid;

 –– this mimics WHERE CURRENT OF c1

 COMMIT;

 END LOOP;

 CLOSE c1;

END;

Be careful. In the last example, the fetched rows are not locked because
no FOR UPDATE clause is used. So, other users might unintentionally
overwrite your changes. Also, the cursor must have a read–consistent
view of the data, so rollback segments used in the update are not
released until the cursor is closed. This can slow down processing when
many rows are updated.

Dealing with Size
Limitations

5 – 48 PL/SQL User’s Guide and Reference

The next example shows that you can use the %ROWTYPE attribute
with cursors that reference the ROWID pseudocolumn:

DECLARE

 CURSOR c1 IS SELECT ename, sal, rowid FROM emp;

 emp_rec c1%ROWTYPE;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO emp_rec;

 EXIT WHEN c1%NOTFOUND;

 ...

 IF ... THEN

 DELETE FROM emp WHERE rowid = emp_rec.rowid;

 END IF;

 END LOOP;

 CLOSE c1;

END;

PL/SQL was designed primarily for transaction processing. As a result,
the PL/SQL compiler limits the number of tokens a block can generate.
Blocks that exceed the limit cause a program too large compilation error.
Generally, blocks larger than 64K exceed the token limit. However, much
smaller blocks can exceed the limit if they contain many variables or
complex SQL statements.

The best solution to this problem is to modularize your program by
defining subprograms (which can be stored in an Oracle database). For
more information, see Chapter 7.

Another solution is to break the block into two sub–blocks. Before the
first block terminates, have it insert any data the second block needs into
a database table called temp (for example). When the second block starts
executing, have it select the data from temp. This approximates the
passing of parameters from one procedure to another. The following
example shows two “parameter passing” PL/SQL blocks in a
SQL*Plus script:

DECLARE

 mode NUMBER;

 median NUMBER;

BEGIN

 ...

 INSERT INTO temp (col1, col2, col3)

 VALUES (mode, median, ’blockA’);

END;

/

...

5 – 49Interaction with Oracle

DECLARE

 mode NUMBER;

 median NUMBER;

BEGIN

 SELECT col1, col2 INTO mode, median FROM temp

 WHERE col3 = ’blockA’;

 ...

END;

/

The previous method works unless you must re–execute the first block
while the second block is still executing or unless two or more users
must run the script concurrently. To avoid these restrictions, embed your
PL/SQL blocks in a third–generation host language such as C, COBOL,
or FORTRAN. That way, you can re–execute the first block using
flow–of–control statements. Also, you can store data in global host
variables instead of using a temporary database table. In the following
example, you embed two PL/SQL blocks in a Pro*C program:

EXEC SQL BEGIN DECLARE SECTION;

 int my_empno;

 float my_sal, my_comm;

 short comm_ind;

 ...

EXEC SQL END DECLARE SECTION;

...

EXEC SQL EXECUTE

 BEGIN

 ...

 SELECT sal, comm INTO :my_sal, :my_comm:comm_ind FROM emp

 WHERE empno = :my_empno;

 IF :my_comm:comm_ind IS NULL THEN

 ...

 END IF;

 END;

END–EXEC;

...

EXEC SQL EXECUTE

 BEGIN

 ...

 IF :my_comm:comm_ind > 1000 THEN

 :my_sal := :my_sal * 1.10;

 UPDATE emp SET sal = :my_sal WHERE empno = :my_empno;

 END IF;

 END;

END–EXEC;

...

5 – 50 PL/SQL User’s Guide and Reference

C H A P T E R

6

R

6 – 1Error Handling

Error Handling

There is nothing more exhilarating than to be shot at without result.

Winston Churchill

untime errors arise from design faults, coding mistakes, hardware
failures, and many other sources. Although you cannot anticipate all
possible errors, you can plan to handle certain kinds of errors
meaningful to your PL/SQL program.

With many programming languages, unless you disable error checking,
a runtime error such as stack overflow or division by zero stops normal
processing and returns control to the operating system. With PL/SQL, a
mechanism called exception handling lets you “bulletproof” your
program so that it can continue operating in the presence of errors.

6 – 2 PL/SQL User’s Guide and Reference

Overview

In PL/SQL, a warning or error condition is called an exception.
Exceptions can be internally defined (by the runtime system) or user
defined. Examples of internally defined exceptions include division by
zero and out of memory. Some common internal exceptions have
predefined names, such as ZERO_DIVIDE and STORAGE_ERROR. The
other internal exceptions can be given names.

You can define exceptions of your own in the declarative part of any
PL/SQL block, subprogram, or package. For example, you might
define an exception named insufficient_funds to flag overdrawn bank
accounts. Unlike internal exceptions, user–defined exceptions must be
given names.

When an error occurs, an exception is raised. That is, normal execution
stops and control transfers to the exception–handling part of your
PL/SQL block or subprogram. Internal exceptions are raised implicitly
(automatically) by the runtime system. User–defined exceptions must
be raised explicitly by RAISE statements, which can also raise
predefined exceptions.

To handle raised exceptions, you write separate routines called exception
handlers. After an exception handler runs, the current block stops
executing and the enclosing block resumes with the next statement. If
there is no enclosing block, control returns to the host environment.

In the example below, you calculate and store a price–to–earnings ratio
for a company with ticker symbol XYZ. If the company has zero
earnings, the predefined exception ZERO_DIVIDE is raised. This stops
normal execution of the block and transfers control to the exception
handlers. The optional OTHERS handler catches all exceptions that the
block does not name specifically.

DECLARE

 pe_ratio NUMBER(3,1);

BEGIN

 SELECT price / earnings INTO pe_ratio FROM stocks

 WHERE symbol = ’XYZ’; –– might cause division–by–zero error

 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);

 COMMIT;

EXCEPTION –– exception handlers begin

 WHEN ZERO_DIVIDE THEN –– handles ’division by zero’ error

 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, NULL);

 COMMIT;

 ...

 WHEN OTHERS THEN –– handles all other errors

 ROLLBACK;

END; –– exception handlers and block end here

6 – 3Error Handling

The last example illustrates exception handling, not the effective use of
INSERT statements. For example, a better way to do the insert follows:

INSERT INTO stats (symbol, ratio)

 SELECT symbol, DECODE(earnings, 0, NULL, price / earnings)

 FROM stocks WHERE symbol = ’XYZ’;

In this example, a subquery supplies values to the INSERT statement. If
earnings are zero, the function DECODE returns a null. Otherwise,
DECODE returns the price–to–earnings ratio.

Advantages and Disadvantages of Exceptions

Using exceptions for error handling has several advantages. Without
exception handling, every time you issue a command, you must check
for execution errors, as follows:

BEGIN

 SELECT ...

 –– check for ’no data found’ error

 SELECT ...

 –– check for ’no data found’ error

 SELECT ...

 –– check for ’no data found’ error

 ...

END;

Error processing is not clearly separated from normal processing; nor is
it robust. If you neglect to code a check, the error goes undetected and is
likely to cause other, seemingly unrelated errors.

With exceptions, you can handle errors conveniently without the need to
code multiple checks, as follows:

BEGIN

 SELECT ...

 SELECT ...

 SELECT ...

 ...

EXCEPTION

 WHEN NO_DATA_FOUND THEN –– catches all ’no data found’ errors

 ...

END;

Notice how exceptions improve readability by letting you isolate
error–handling routines. The primary algorithm is not obscured by error
recovery algorithms.

Disadvantages

6 – 4 PL/SQL User’s Guide and Reference

Exceptions also improve reliability. You need not worry about checking
for an error at every point it might occur. Just add an exception handler
to your PL/SQL block. If the exception is ever raised in that block (or
any sub–block), you can be sure it will be handled.

Using exceptions for error handling has two disadvantages. First,
exceptions can trap only runtime errors. Therefore, a PL/SQL program
cannot trap and recover from compile–time (syntax and semantic) errors
such as table or view does not exist.

Second, exceptions can mask the statement that caused an error, as the
following example shows:

BEGIN

 SELECT ...

 SELECT ...

 SELECT ...

 ...

EXCEPTION

 WHEN NO_DATA_FOUND THEN ...

 –– Which SELECT statement caused the error?

END;

Normally, this is not a problem. But, if the need arises, you can use a
locator variable to track statement execution, as follows:

DECLARE

 stmt INTEGER := 1; –– designates 1st SELECT statement

BEGIN

 SELECT ...

 stmt := 2; –– designates 2nd SELECT statement

 SELECT ...

 stmt := 3; –– designates 3rd SELECT statement

 SELECT ...

 ...

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 INSERT INTO errors VALUES (’Error in statement ’ || stmt);

 ...

END;

6 – 5Error Handling

Predefined Exceptions

An internal exception is raised implicitly whenever your PL/SQL
program violates an Oracle rule or exceeds a system–dependent limit.
Every Oracle error has a number, but exceptions must be handled by
name. So, PL/SQL predefines some common Oracle errors as
exceptions. For example, PL/SQL raises the predefined exception
NO_DATA_FOUND if a SELECT INTO statement returns no rows.

To handle other Oracle errors, you can use the OTHERS handler. The
error–reporting functions SQLCODE and SQLERRM are especially
useful in the OTHERS handler because they return the Oracle error
code and message text. Alternatively, you can use the pragma
EXCEPTION_INIT to associate exception names with Oracle error
numbers. (See “Using EXCEPTION_INIT” on page 6 – 9.)

PL/SQL declares predefined exceptions globally in package
STANDARD, which defines the PL/SQL environment. So, you need not
declare them yourself. You can write handlers for predefined exceptions
using the names shown in the list below. Also shown are the
corresponding Oracle error codes and SQLCODE return values.

Exception Name Oracle Error SQLCODE Value

CURSOR_ALREADY_OPEN ORA–06511 –6511

DUP_VAL_ON_INDEX ORA–00001 –1

INVALID_CURSOR ORA–01001 –1001

INVALID_NUMBER ORA–01722 –1722

LOGIN_DENIED ORA–01017 –1017

NO_DATA–FOUND ORA–01403 +100

NOT_LOGGED_ON ORA–01012 –1012

PROGRAM_ERROR ORA–06501 –6501

ROWTYPE_MISMATCH ORA–06504 –6504

STORAGE_ERROR ORA–06500 –6500

TIMEOUT_ON_RESOURCE ORA–00051 –51

TOO_MANY_ROWS ORA–01422 –1422

VALUE_ERROR ORA–06502 –6502

ZERO_DIVIDE ORA–01476 –1476

For a complete list of the messages that Oracle or PL/SQL might issue,
see Oracle7 Server Messages.

6 – 6 PL/SQL User’s Guide and Reference

Brief descriptions of the predefined exceptions follow:

CURSOR_ALREADY_OPEN is raised if you try to open an already
open cursor. You must close a cursor before you can reopen it.

A cursor FOR loop automatically opens the cursor to which it refers.
Therefore, you cannot enter the loop if that cursor is already open, nor
can you open that cursor inside the loop.

DUP_VAL_ON_INDEX is raised if you try to store duplicate values in a
database column that is constrained by a unique index.

INVALID_CURSOR is raised if you try an illegal cursor operation. For
example, INVALID_CURSOR is raised if you close an unopened cursor.

INVALID_NUMBER is raised in a SQL statement if the conversion of a
character string to a number fails because the string does not represent a
valid number. For example, the following INSERT statement raises
INVALID_NUMBER when Oracle tries to convert ’HALL’ to a number:

INSERT INTO emp (empno, ename, deptno) VALUES (’HALL’, 7888, 20);

In procedural statements, VALUE_ERROR is raised instead.

LOGIN_DENIED is raised if you try logging on to Oracle with an
invalid username/password.

NO_DATA_FOUND is raised if a SELECT INTO statement returns no
rows or if you reference an uninitialized row in a PL/SQL table. The
FETCH statement is expected to return no rows eventually, so when that
happens, no exception is raised.

SQL group functions such as AVG and SUM always return a value or a
null. So, a SELECT INTO statement that calls a group function will
never raise NO_DATA_FOUND.

NOT_LOGGED_ON is raised if your PL/SQL program issues a
database call without being connected to Oracle.

PROGRAM_ERROR is raised if PL/SQL has an internal problem.

ROWTYPE_MISMATCH is raised if the host cursor variable and
PL/SQL cursor variable involved in an assignment have incompatible
return types. For example, when you pass an open host cursor variable
to a stored subprogram, if the return types of the actual and formal
parameters are incompatible, PL/SQL raises ROWTYPE_MISMATCH.

STORAGE_ERROR is raised if PL/SQL runs out of memory or if
memory is corrupted.

TIMEOUT_ON_RESOURCE is raised if a timeout occurs while Oracle
is waiting for a resource.

Declaring Exceptions

6 – 7Error Handling

TOO_MANY_ROWS is raised if a SELECT INTO statement returns
more than one row.

VALUE_ERROR is raised if an arithmetic, conversion, truncation, or
size–constraint error occurs. For example, when you select a column
value into a character variable, if the value is longer than the declared
length of the variable, PL/SQL aborts the assignment and raises
VALUE_ERROR.

In procedural statements, VALUE_ERROR is raised if the conversion of
a character string to a number fails. For example, the following
assignment statement raises VALUE_ERROR when PL/SQL tries to
convert ’HALL’ to a number:

DECLARE

 my_empno NUMBER(4);

 my_ename CHAR(10);

BEGIN

 my_empno := ’HALL’; –– raises VALUE_ERROR

In SQL statements, INVALID_NUMBER is raised instead.

ZERO_DIVIDE is raised if you try to divide a number by zero because
the result is undefined.

User–Defined Exceptions

PL/SQL lets you define exceptions of your own. Unlike predefined
exceptions, user–defined exceptions must be declared and must be
raised explicitly by RAISE statements.

Exceptions can be declared only in the declarative part of a PL/SQL
block, subprogram, or package. You declare an exception by introducing
its name, followed by the keyword EXCEPTION. In the following
example, you declare an exception named past_due:

DECLARE

 past_due EXCEPTION;

 acct_num NUMBER(5);

Exception and variable declarations are similar. But remember, an
exception is an error condition, not an object. Unlike variables,
exceptions cannot appear in assignment statements or SQL statements.
However, the same scope rules apply to variables and exceptions.

Scope Rules

6 – 8 PL/SQL User’s Guide and Reference

You cannot declare an exception twice in the same block. You can,
however, declare the same exception in two different blocks.

Exceptions declared in a block are considered local to that block and
global to all its sub–blocks. Because a block can reference only local or
global exceptions, enclosing blocks cannot reference exceptions declared
in a sub–block.

If you redeclare a global exception in a sub–block, the local declaration
prevails. So, the sub–block cannot reference the global exception unless
it was declared in a labeled block, in which case the following syntax
is valid:

block_label.exception_name

The next example illustrates the scope rules:

DECLARE

 past_due EXCEPTION;

 acct_num NUMBER;

BEGIN

 ...

 DECLARE –––––––––– sub–block begins

 past_due EXCEPTION; –– this declaration prevails

 acct_num NUMBER;

 BEGIN

 ...

 IF ... THEN

 RAISE past_due; –– this is not handled

 END IF;

 ...

 END; ––––––––––––– sub–block ends

EXCEPTION

 WHEN past_due THEN –– does not handle RAISEd exception

 ...

END;

The enclosing block does not handle the raised exception because the
declaration of past_due in the sub–block prevails. Though they share the
same name, the two past_due exceptions are different, just as the two
acct_num variables share the same name but are different variables.
Therefore, the RAISE statement and the WHEN clause refer to different
exceptions. To have the enclosing block handle the raised exception,
you must remove its declaration from the sub–block or define an
OTHERS handler.

Using
EXCEPTION_INIT

6 – 9Error Handling

To handle unnamed internal exceptions, you must use the OTHERS
handler or the pragma EXCEPTION_INIT. A pragma is a compiler
directive, which can be thought of as a parenthetical remark to the
compiler. Pragmas (also called pseudoinstructions) are processed at
compile time, not at run time. They do not affect the meaning of a
program; they simply convey information to the compiler. For example,
in the language Ada, the following pragma tells the compiler to
optimize the use of storage space:

pragma OPTIMIZE(SPACE);

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to
associate an exception name with an Oracle error number. That allows
you to refer to any internal exception by name and to write a specific
handler for it.

You code the pragma EXCEPTION_INIT in the declarative part of a
PL/SQL block, subprogram, or package using the syntax

PRAGMA EXCEPTION_INIT(exception_name, Oracle_error_number);

where exception_name is the name of a previously declared exception.
The pragma must appear somewhere after the exception declaration in
the same declarative part, as shown in the following example:

DECLARE

 insufficient_privileges EXCEPTION;

 PRAGMA EXCEPTION_INIT(insufficient_privileges, –1031);

 –––

 –– Oracle returns error number –1031 if, for example,

 –– you try to UPDATE a table for which you have

 –– only SELECT privileges

 –––

BEGIN

 ...

EXCEPTION

 WHEN insufficient_privileges THEN

 –– handle the error

 ...

END;

Using
raise_application_error

6 – 10 PL/SQL User’s Guide and Reference

Package DBMS_STANDARD, which is supplied with Oracle7, provides
language facilities that help your application interact with Oracle.
For example, the procedure raise_application_error lets you issue
user–defined error messages from stored subprograms. That way,
you can report errors to your application and avoid returning
unhandled exceptions.

To call raise_application_error, you use the syntax

raise_application_error(error_number, message[, {TRUE | FALSE}]);

where error_number is a negative integer in the range –20000 .. –20999
and message is a character string up to 2048 bytes long. If the optional
third parameter is TRUE, the error is placed on the stack of previous
errors. If the parameter is FALSE (the default), the error replaces all
previous errors. Package DBMS_STANDARD is an extension of package
STANDARD, so you need not qualify references to it.

An application can call raise_application_error only from an executing
stored subprogram. When called, raise_application_error ends the
subprogram and returns a user–defined error number and message to
the application. The error number and message can be trapped like any
Oracle error.

In the following example, you call raise_application_error if an employee’s
salary is missing:

CREATE PROCEDURE raise_salary (emp_id NUMBER, increase NUMBER) AS

 current_salary NUMBER;

BEGIN

 SELECT sal INTO current_salary FROM emp

 WHERE empno = emp_id;

 IF current_salary IS NULL THEN

 /* Issue user–defined error message. */

 raise_application_error(–20101, ’Salary is missing’);

 ELSE

 UPDATE emp SET sal = current_salary + increase

 WHERE empno = emp_id;

 END IF;

END raise_salary;

Redeclaring Predefined
Exceptions

6 – 11Error Handling

The calling application gets a PL/SQL exception, which it can process
using the error–reporting functions SQLCODE and SQLERRM in an
OTHERS handler. Also, it can use the pragma EXCEPTION_INIT to
map specific error numbers returned by raise_application_error to
exceptions of its own, as follows:

EXEC SQL EXECUTE

 DECLARE

 ...

 null_salary EXCEPTION;

 /* Map error number returned by raise_application_error

 to user–defined exception. */

 PRAGMA EXCEPTION_INIT(null_salary, –20101);

 BEGIN

 ...

 raise_salary(:emp_number, :amount);

 EXCEPTION

 WHEN null_salary THEN

 INSERT INTO emp_audit VALUES (:emp_number, ...);

 ...

 END;

END–EXEC;

This technique allows the calling application to handle error conditions
in specific exception handlers.

Remember, PL/SQL declares predefined exceptions globally in package
STANDARD, so you need not declare them yourself. Redeclaring
predefined exceptions is error prone because your local declaration
overrides the global declaration.

For example, if you declare an exception named invalid_number and then
PL/SQL raises the predefined exception INVALID_NUMBER internally,
a handler written for INVALID_NUMBER will not catch the internal
exception. In such cases, you must use dot notation to specify the
predefined exception, as follows:

EXCEPTION

 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN

 –– handle the error

 ...

 WHEN OTHERS THEN ...

END;

Using the RAISE
Statement

6 – 12 PL/SQL User’s Guide and Reference

How Exceptions Are Raised

Internal exceptions are raised implicitly by the runtime system, as are
user–defined exceptions that you have associated with an Oracle error
number using EXCEPTION_INIT. However, other user–defined
exceptions must be raised explicitly by RAISE statements.

PL/SQL blocks and subprograms should raise an exception only when
an error makes it undesirable or impossible to finish processing. You can
place RAISE statements for a given exception anywhere within the
scope of that exception. In the following example, you alert your
PL/SQL block to a user–defined exception named out_of_stock:

DECLARE

 out_of_stock EXCEPTION;

 number_on_hand NUMBER(4);

BEGIN

 ...

 IF number_on_hand < 1 THEN

 RAISE out_of_stock;

 END IF;

 ...

EXCEPTION

 WHEN out_of_stock THEN

 –– handle the error

END;

You can also raise a predefined exception explicitly. That way, an
exception handler written for the predefined exception can process other
errors, as the following example shows:

DECLARE

 acct_type INTEGER;

 ...

BEGIN

 ...

 IF acct_type NOT IN (1, 2, 3) THEN

 RAISE INVALID_NUMBER; –– raise predefined exception

 END IF;

 ...

EXCEPTION

 WHEN INVALID_NUMBER THEN

 ROLLBACK;

 ...

END;

6 – 13Error Handling

How Exceptions Propagate

When an exception is raised, if PL/SQL cannot find a handler for it in
the current block or subprogram, the exception propagates. That is, the
exception reproduces itself in successive enclosing blocks until a handler
is found or there are no more blocks to search. In the latter case, PL/SQL
returns an unhandled exception error to the host environment.

However, exceptions cannot propagate across remote procedure calls
(RPCs). Therefore, a PL/SQL block cannot catch an exception raised by
a remote subprogram. For a workaround, see “Using raise_application_
error” on page 6 – 10.

Figure 6 – 1, Figure 6 – 2, and Figure 6 – 3 illustrate the basic
propagation rules.

Exception A is handled
locally, then execution resumes
in the enclosing block

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...
EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Figure 6 – 1 Propagation Rules: Example 1

6 – 14 PL/SQL User’s Guide and Reference

Exception B propagates
to the first enclosing block with
an appropriate handler

Exception B is handled,
then control passes to the
host environment

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...
EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Figure 6 – 2 Propagation Rules: Example 2

Exception C has no
handler, so an unhandled
exception is returned to
the host environment

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...
EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Figure 6 – 3 Propagation Rules: Example 3

6 – 15Error Handling

An exception can propagate beyond its scope, that is, beyond the block
in which it was declared. Consider the following example:

BEGIN

 ...

 DECLARE –––––––––– sub–block begins

 past_due EXCEPTION;

 BEGIN

 ...

 IF ... THEN

 RAISE past_due;

 END IF;

 END; ––––––––––––– sub–block ends

EXCEPTION

 ...

 WHEN OTHERS THEN

 ROLLBACK;

END;

Because the block in which it was declared has no handler for the
exception named past_due, it propagates to the enclosing block. But,
according to the scope rules, enclosing blocks cannot reference
exceptions declared in a sub–block. So, only an OTHERS handler can
catch the exception.

Reraising an Exception

Sometimes, you want to reraise an exception, that is, handle it locally,
then pass it to an enclosing block. For example, you might want to roll
back a transaction in the current block, then log the error in an
enclosing block.

To reraise an exception, simply place a RAISE statement in the local
handler, as shown in the following example:

DECLARE

 out_of_balance EXCEPTION;

BEGIN

 ...

 BEGIN –––––––––– sub–block begins

 ...

 IF ... THEN

 RAISE out_of_balance; –– raise the exception

 END IF;

6 – 16 PL/SQL User’s Guide and Reference

 EXCEPTION

 WHEN out_of_balance THEN

 –– handle the error

 RAISE; –– reraise the current exception

 ...

 END; –––––––––––– sub–block ends

EXCEPTION

 WHEN out_of_balance THEN

 –– handle the error differently

 ...

END;

Omitting the exception name in a RAISE statement—allowed only in an
exception handler—reraises the current exception.

Handling Raised Exceptions

When an exception is raised, normal execution of your PL/SQL block or
subprogram stops and control transfers to its exception–handling part,
which is formatted as follows:

EXCEPTION

 WHEN exception_name1 THEN –– handler

 sequence_of_statements1

 WHEN exception_name2 THEN –– another handler

 sequence_of_statements2

 ...

 WHEN OTHERS THEN –– optional handler

 sequence_of_statements3

END;

To catch raised exceptions, you must write exception handlers. Each
handler consists of a WHEN clause, which specifies an exception,
followed by a sequence of statements to be executed when that
exception is raised. These statements complete execution of the block or
subprogram; control does not return to where the exception was raised.
In other words, you cannot resume processing where you left off.

The optional OTHERS exception handler, which is always the last
handler in a block or subprogram, acts as the handler for all exceptions
not named specifically. Thus, a block or subprogram can have only one
OTHERS handler.

Exceptions Raised in
Declarations

6 – 17Error Handling

As the following example shows, use of the OTHERS handler
guarantees that no exception will go unhandled:

EXCEPTION

 WHEN ... THEN

 –– handle the error

 WHEN ... THEN

 –– handle the error

 ...

 WHEN OTHERS THEN

 –– handle all other errors

END;

If you want two or more exceptions to execute the same sequence of
statements, list the exception names in the WHEN clause, separating
them by the keyword OR, as follows:

EXCEPTION

 WHEN over_limit OR under_limit OR VALUE_ERROR THEN

 –– handle the error

If any of the exceptions in the list is raised, the associated sequence of
statements is executed. The keyword OTHERS cannot appear in the
list of exception names; it must appear by itself. You can have any
number of exception handlers, and each handler can associate a list of
exceptions with a sequence of statements. However, an exception name
can appear only once in the exception–handling part of a PL/SQL block
or subprogram.

The usual scoping rules for PL/SQL variables apply, so you can
reference local and global variables in an exception handler. However,
when an exception is raised inside a cursor FOR loop, the cursor is
closed implicitly before the handler is invoked. Therefore, the values of
explicit cursor attributes are not available in the handler.

Exceptions can be raised in declarations by faulty initialization
expressions. For example, the following declaration raises an exception
because the constant limit cannot store numbers larger than 999:

DECLARE

 limit CONSTANT NUMBER(3) := 5000; –– raises an exception

BEGIN

 ...

EXCEPTION

 WHEN OTHERS THEN ... –– cannot catch the exception

Handlers in the current block cannot catch the raised exception because
an exception raised in a declaration propagates immediately to the
enclosing block.

Exceptions Raised in
Handlers

Branching to or from
an Exception Handler

Using SQLCODE and
SQLERRM

6 – 18 PL/SQL User’s Guide and Reference

Only one exception at a time can be active in the exception–handling
part of a block or subprogram. So, an exception raised inside a handler
propagates immediately to the enclosing block, which is searched to find
a handler for the newly raised exception. From there on, the exception
propagates normally. Consider the following example:

EXCEPTION

 WHEN INVALID_NUMBER THEN

 INSERT INTO ... –– might raise DUP_VAL_ON_INDEX

 WHEN DUP_VAL_ON_INDEX THEN –– cannot catch the exception

 ...

END;

A GOTO statement cannot branch to an exception handler; nor can it
branch from an exception handler into the current block. For example,
the following GOTO statement is illegal:

DECLARE

 pe_ratio NUMBER(3,1);

BEGIN

 DELETE FROM stats WHERE symbol = ’XYZ’;

 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks

 WHERE symbol = ’XYZ’;

 <<my_label>>

 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 pe_ratio := 0;

 GOTO my_label; –– illegal branch into current block

END;

However, a GOTO statement can branch from an exception handler into
an enclosing block.

In an exception handler, you can use the functions SQLCODE and
SQLERRM to find out which error occurred and to get the associated
error message.

For internal exceptions, SQLCODE returns the number of the Oracle
error. The number that SQLCODE returns is negative unless the Oracle
error is no data found, in which case SQLCODE returns +100. SQLERRM
returns the corresponding error message. The message begins with the
Oracle error code.

6 – 19Error Handling

For user–defined exceptions, SQLCODE returns +1 and SQLERRM
returns the message

User–Defined Exception

unless you used the pragma EXCEPTION_INIT to associate the
exception name with an Oracle error number, in which case SQLCODE
returns that error number and SQLERRM returns the corresponding
error message. The maximum length of an Oracle error message is 512
characters including the error code, nested messages, and message
inserts such as table and column names.

If no exception has been raised, SQLCODE returns zero and SQLERRM
returns the message

ORA–0000: normal, successful completion

You can pass an error number to SQLERRM, in which case SQLERRM
returns the message associated with that error number. Make sure you
pass negative error numbers to SQLERRM. In the following example,
you pass positive numbers and so get unwanted results:

DECLARE

 ...

 err_msg VARCHAR2(100);

BEGIN

 ...

 /* Get all Oracle error messages. */

 FOR err_num IN 1..9999 LOOP

 err_msg := SQLERRM(err_num); –– wrong; should be –err_num

 INSERT INTO errors VALUES (err_msg);

 END LOOP;

END;

Passing a positive number to SQLERRM always returns the message

User–Defined Exception

unless you pass +100, in which case SQLERRM returns this message:

ORA–01403: no data found

Passing a zero to SQLERRM always returns the following message:

ORA–0000: normal, successful completion

Unhandled Exceptions

6 – 20 PL/SQL User’s Guide and Reference

You cannot use SQLCODE or SQLERRM directly in a SQL statement.
For example, the following statement is illegal:

INSERT INTO errors VALUES (SQLCODE, SQLERRM);

Instead, you must assign their values to local variables, then use the
variables in the SQL statement, as the following example shows:

DECLARE

 err_num NUMBER;

 err_msg VARCHAR2(100);

BEGIN

 ...

EXCEPTION

 ...

 WHEN OTHERS THEN

 err_num := SQLCODE;

 err_msg := SUBSTR(SQLERRM, 1, 100);

 INSERT INTO errors VALUES (err_num, err_msg);

END;

The string function SUBSTR ensures that a VALUE_ERROR exception
(for truncation) is not raised when you assign the value of SQLERRM to
err_msg. SQLCODE and SQLERRM are especially useful in the OTHERS
exception handler because they tell you which internal exception
was raised.

Remember, if it cannot find a handler for a raised exception, PL/SQL
returns an unhandled exception error to the host environment, which
determines the outcome. For example, in the Oracle Precompilers
environment, any database changes made by a failed SQL statement or
PL/SQL block are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a
subprogram successfully, PL/SQL assigns values to OUT parameters.
However, if you exit with an unhandled exception, PL/SQL does not
assign values to OUT parameters. Also, if a stored subprogram fails
with an unhandled exception, PL/SQL does not roll back database work
done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERS handler at
the topmost level of every PL/SQL block and subprogram.

Continuing after an
Exception Is Raised

6 – 21Error Handling

Useful Techniques

In this section, you learn two useful techniques: how to continue after an
exception is raised and how to retry a transaction.

An exception handler lets you recover from an otherwise “fatal” error
before exiting a block. But, when the handler completes, the block
terminates. You cannot return to the current block from an exception
handler. In the following example, if the SELECT INTO statement raises
ZERO_DIVIDE, you cannot resume with the INSERT statement:

DECLARE

 pe_ratio NUMBER(3,1);

BEGIN

 DELETE FROM stats WHERE symbol = ’XYZ’;

 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks

 WHERE symbol = ’XYZ’;

 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);

EXCEPTION

 WHEN ZERO_DIVIDE THEN ...

Though PL/SQL does not support continuable exceptions, you can still
handle an exception for a statement, then continue with the next
statement. Simply place the statement in its own sub–block with its own
exception handlers. If an error occurs in the sub–block, a local handler
can catch the exception. When the sub–block terminates, the enclosing
block continues to execute at the point where the sub–block ends.
Consider the following example:

DECLARE

 pe_ratio NUMBER(3,1);

BEGIN

 DELETE FROM stats WHERE symbol = ’XYZ’;

 BEGIN –––––––––– sub–block begins

 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks

 WHERE symbol = ’XYZ’;

 EXCEPTION

 WHEN ZERO_DIVIDE THEN

 pe_ratio := 0;

 END; –––––––––– sub–block ends

 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);

EXCEPTION ...

In this example, if the SELECT INTO statement raises a ZERO_DIVIDE
exception, the local handler catches it and sets pe_ratio to zero. Execution
of the handler is complete, so the sub–block terminates, and execution
continues with the INSERT statement.

Retrying a Transaction

6 – 22 PL/SQL User’s Guide and Reference

After an exception is raised, rather than abandon your transaction, you
might want to retry it. The technique you use is simple. First, encase the
transaction in a sub–block. Then, place the sub–block inside a loop that
repeats the transaction.

Before starting the transaction, you mark a savepoint. If the transaction
succeeds, you commit, then exit from the loop. If the transaction fails,
control transfers to the exception handler, where you roll back to the
savepoint undoing any changes, then try to fix the problem.

Consider the example below. When the exception handler completes, the
sub–block terminates, control transfers to the LOOP statement in the
enclosing block, the sub–block starts executing again, and the
transaction is retried. You might want to use a FOR or WHILE loop to
limit the number of tries.

DECLARE

 name CHAR(20);

 ans1 CHAR(3);

 ans2 CHAR(3);

 ans3 CHAR(3);

 suffix NUMBER := 1;

BEGIN

 ...

 LOOP –– could be FOR i IN 1..10 LOOP to allow ten tries

 BEGIN –– sub–block begins

 SAVEPOINT start_transaction; –– mark a savepoint

 /* Remove rows from a table of survey results. */

 DELETE FROM results WHERE answer1 = ’NO’;

 /* Add a survey respondent’s name and answers. */

 INSERT INTO results VALUES (name, ans1, ans2, ans3);

 –– raises DUP_VAL_ON_INDEX if two respondents

 –– have the same name (because there is a unique

 –– index on the name column)

 COMMIT;

 EXIT;

 EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK TO start_transaction; –– undo changes

 suffix := suffix + 1; –– try to fix

 name := name || TO_CHAR(suffix); –– problem

 ...

 END; –– sub–block ends

 END LOOP;

END;

C H A P T E R

7

T

7 – 1Subprograms

Subprograms

Civilization advances by extending the number of important operations that we
can perform without thinking about them.

Alfred North Whitehead

his chapter shows you how to use subprograms, which let you name
and encapsulate a sequence of statements. Subprograms aid application
development by isolating operations. They are like building blocks,
which you can use to construct modular, maintainable applications.

7 – 2 PL/SQL User’s Guide and Reference

What Are Subprograms?

Subprograms are named PL/SQL blocks that can take parameters and
be invoked. PL/SQL has two types of subprograms called procedures and
functions. Generally, you use a procedure to perform an action and a
function to compute a value.

Like unnamed or anonymous PL/SQL blocks, subprograms have a
declarative part, an executable part, and an optional exception–handling
part. The declarative part contains declarations of types, cursors,
constants, variables, exceptions, and nested subprograms. These
objects are local and cease to exist when you exit the subprogram. The
executable part contains statements that assign values, control
execution, and manipulate Oracle data. The exception–handling part
contains exception handlers, which deal with exceptions raised
during execution.

Consider the following procedure named debit_account, which debits a
bank account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS

 old_balance REAL;

 new_balance REAL;

 overdrawn EXCEPTION;

BEGIN

 SELECT bal INTO old_balance FROM accts

 WHERE acctno = acct_id;

 new_balance := old_balance – amount;

 IF new_balance < 0 THEN

 RAISE overdrawn;

 ELSE

 UPDATE accts SET bal = new_balance

 WHERE acctno = acct_id;

 END IF;

EXCEPTION

 WHEN overdrawn THEN

 ...

END debit_account;

When invoked or called, this procedure accepts an account number and a
debit amount. It uses the account number to select the account balance
from the accts database table. Then, it uses the debit amount to compute
a new balance. If the new balance is less than zero, an exception is
raised; otherwise, the bank account is updated.

7 – 3Subprograms

Advantages of Subprograms

Subprograms provide extensibility; that is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that
creates new departments, you can easily write one, as follows:

PROCEDURE create_dept (new_dname CHAR, new_loc CHAR) IS

BEGIN

 INSERT INTO dept

 VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);

END create_dept;

Subprograms also provide modularity; that is, they let you break a
program down into manageable, well–defined logic modules. This
supports top–down design and the stepwise refinement approach to
problem solving.

Also, subprograms promote reusability and maintainability. Once
validated, a subprogram can be used with confidence in any number of
applications. Furthermore, only the subprogram is affected if its
definition changes. This simplifies maintenance and enhancement.

Finally, subprograms aid abstraction, the mental separation from
particulars. To use subprograms, you must know what they do, not how
they work. Therefore, you can design applications from the top down
without worrying about implementation details. Dummy subprograms
(stubs) allow you to defer the definition of procedures and functions
until you test and debug the main program.

Procedures

A procedure is a subprogram that performs a specific action. You write
procedures using the syntax

PROCEDURE name [(parameter[, parameter, ...])] IS

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

where parameter stands for the following syntax:

parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expr]

You cannot impose the NOT NULL constraint on a parameter.

7 – 4 PL/SQL User’s Guide and Reference

Also, you cannot specify a constraint on the datatype. For example, the
following declaration of emp_id is illegal:

PROCEDURE ... (emp_id NUMBER(4)) IS –– illegal; should be NUMBER

BEGIN ... END;

A procedure has two parts: the specification and the body. The
procedure specification begins with the keyword PROCEDURE and
ends with the procedure name or a parameter list. Parameter
declarations are optional. Procedures that take no parameters are
written without parentheses.

The procedure body begins with the keyword IS and ends with the
keyword END followed by an optional procedure name. The procedure
body has three parts: a declarative part, an executable part, and an
optional exception–handling part.

The declarative part contains local declarations, which are placed
between the keywords IS and BEGIN. The keyword DECLARE, which
introduces declarations in an anonymous PL/SQL block, is not used.
The executable part contains statements, which are placed between the
keywords BEGIN and EXCEPTION (or END). At least one statement
must appear in the executable part of a procedure. The NULL statement
meets this requirement. The exception–handling part contains exception
handlers, which are placed between the keywords EXCEPTION
and END.

Consider the procedure raise_salary, which increases the salary of
an employee:

PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS

 current_salary REAL;

 salary_missing EXCEPTION;

BEGIN

 SELECT sal INTO current_salary FROM emp

 WHERE empno = emp_id;

 IF current_salary IS NULL THEN

 RAISE salary_missing;

 ELSE

 UPDATE emp SET sal = sal + increase

 WHERE empno = emp_id;

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 INSERT INTO emp_audit VALUES (emp_id, ’No such number’);

 WHEN salary_missing THEN

 INSERT INTO emp_audit VALUES (emp_id, ’Salary is null’);

END raise_salary;

7 – 5Subprograms

When called, this procedure accepts an employee number and a salary
increase amount. It uses the employee number to select the current
salary from the emp database table. If the employee number is not found
or if the current salary is null, an exception is raised. Otherwise, the
salary is updated.

A procedure is called as a PL/SQL statement. For example, you might
call the procedure raise_salary as follows:

raise_salary(emp_num, amount);

Functions

A function is a subprogram that computes a value. Functions and
procedures are structured alike, except that functions have a RETURN
clause. You write functions using the syntax

FUNCTION name [(parameter[, parameter, ...])] RETURN datatype IS

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

where parameter stands for the following syntax:

parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expr]

Remember, you cannot impose the NOT NULL constraint on a
parameter, and you cannot specify a constraint on the datatype.

Like a procedure, a function has two parts: the specification and the
body. The function specification begins with the keyword FUNCTION
and ends with the RETURN clause, which specifies the datatype of the
result value. Parameter declarations are optional. Functions that take no
parameters are written without parentheses.

The function body begins with the keyword IS and ends with the
keyword END followed by an optional function name. The function
body has three parts: a declarative part, an executable part, and an
optional exception–handling part.

Restriction

7 – 6 PL/SQL User’s Guide and Reference

The declarative part contains local declarations, which are placed
between the keywords IS and BEGIN. The keyword DECLARE is not
used. The executable part contains statements, which are placed
between the keywords BEGIN and EXCEPTION (or END). One or more
RETURN statements must appear in the executable part of a function.
The exception–handling part contains exception handlers, which are
placed between the keywords EXCEPTION and END.

Consider the function sal_ok, which determines if an employee salary is
out of range:

FUNCTION sal_ok (salary REAL, title REAL) RETURN BOOLEAN IS

 min_sal REAL;

 max_sal REAL;

BEGIN

 SELECT losal, hisal INTO min_sal, max_sal

 FROM sals

 WHERE job = title;

 RETURN (salary >= min_sal) AND (salary <= max_sal);

END sal_ok;

When called, this function accepts an employee salary and job title. It
uses the job title to select range limits from the sals database table. The
function identifier, sal_ok, is set to a Boolean value by the RETURN
statement. If the salary is out of range, sal_ok is set to FALSE; otherwise,
sal_ok is set to TRUE.

A function is called as part of an expression. For example, the function
sal_ok might be called as follows:

IF sal_ok(new_sal, new_title) THEN ...

The function identifier acts like a variable whose value depends on the
parameters passed to it.

To be callable from SQL expressions, a stored function must obey certain
rules meant to control side effects. For standalone functions, Oracle can
enforce these rules by checking the function body. However, the body of
a packaged function is hidden. So, for packaged functions, you must use
the pragma RESTRICT_REFERENCES to enforce the rules. For more
information, see “Calling Stored Functions from SQL Expressions” in
Oracle7 Server Application Developer’s Guide.

7 – 7Subprograms

RETURN Statement

The RETURN statement immediately completes the execution of a
subprogram and returns control to the caller. Execution then resumes
with the statement following the subprogram call. (Do not confuse the
RETURN statement with the RETURN clause, which specifies the
datatype of the result value in a function specification.)

A subprogram can contain several RETURN statements, none of which
need be the last lexical statement. Executing any of them completes the
subprogram immediately. However, it is poor programming practice to
have multiple exit points in a subprogram.

In procedures, a RETURN statement cannot contain an expression. The
statement simply returns control to the caller before the normal end of
the procedure is reached.

However, in functions, a RETURN statement must contain an
expression, which is evaluated when the RETURN statement is
executed. The resulting value is assigned to the function identifier,
which acts like a variable of the type specified in the RETURN clause.
Observe how the function balance returns the balance of a specified
bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS

 acct_bal REAL;

BEGIN

 SELECT bal INTO acct_bal FROM accts

 WHERE acctno = acct_id;

 RETURN acct_bal;

END balance;

The following example shows that the expression in a function RETURN
statement can be arbitrarily complex:

FUNCTION compound (years NUMBER,

 amount NUMBER,

 rate NUMBER) RETURN NUMBER IS

BEGIN

 RETURN amount * POWER((rate / 100) + 1, years);

END compound;

A function must contain at least one RETURN statement. Otherwise,
PL/SQL raises the predefined exception PROGRAM_ERROR at
run time.

Forward Declarations

7 – 8 PL/SQL User’s Guide and Reference

Declaring Subprograms

You can declare subprograms in any PL/SQL block, subprogram, or
package. However, you must declare subprograms at the end of a
declarative section after all other program objects. For example, the
following procedure declaration is misplaced:

DECLARE

 PROCEDURE award_bonus (...) IS –– misplaced; must come last

 BEGIN

 ...

 END;

 rating NUMBER;

 CURSOR c1 IS SELECT * FROM emp;

PL/SQL requires that you declare an identifier before using it.
Therefore, you must declare a subprogram before calling it. For
example, the following declaration of procedure award_bonus is illegal
because award_bonus calls procedure calc_rating, which is not yet
declared when the call is made:

DECLARE

 ...

 PROCEDURE award_bonus (...) IS

 BEGIN

 calc_rating(...); –– undeclared identifier

 ...

 END;

 PROCEDURE calc_rating (...) IS

 BEGIN

 ...

 END;

In this case, you can solve the problem easily by placing procedure
calc_rating before procedure award_bonus. However, the easy solution
does not always work. For example, suppose the procedures are
mutually recursive (call each other) or you want to define them in
alphabetical order.

PL/SQL solves this problem by providing a special subprogram
declaration called a forward declaration. You can use forward
declarations to

• define subprograms in logical or alphabetical order

• define mutually recursive subprograms (see “Recursion” on
page 7 – 23)

• group subprograms in a package

In Packages

7 – 9Subprograms

A forward declaration consists of a subprogram specification terminated
by a semicolon. In the following example, the forward declaration
advises PL/SQL that the body of procedure calc_rating can be found
later in the block:

DECLARE

 PROCEDURE calc_rating (...); –– forward declaration

 ...

 /* Define subprograms in alphabetical order. */

 PROCEDURE award_bonus (...) IS

 BEGIN

 calc_rating(...);

 ...

 END;

 PROCEDURE calc_rating (...) IS

 BEGIN

 ...

 END;

Although the formal parameter list appears in the forward declaration,
it must also appear in the subprogram body. You can place the
subprogram body anywhere after the forward declaration, but they
must appear in the same program unit.

Forward declarations also let you group logically related subprograms
in a package. The subprogram specifications go in the package
specification, and the subprogram bodies go in the package body, where
they are invisible to applications. Thus, packages allow you to hide
implementation details. An example follows:

CREATE PACKAGE emp_actions AS –– package specification

 PROCEDURE hire_employee (emp_id INTGER, name VARCHAR2, ...);

 PROCEDURE fire_employee (emp_id INTEGER);

 PROCEDURE raise_salary (emp_id INTEGER, increase REAL);

 ...

END emp_actions;

CREATE PACKAGE BODY emp_actions AS –– package body

 PROCEDURE hire_employee (emp_id INTGER, name VARCHAR2, ...) IS

 BEGIN

 INSERT INTO emp VALUES (empno, ename, ...);

 END hire_employee;

Stored Subprograms

7 – 10 PL/SQL User’s Guide and Reference

 PROCEDURE fire_employee (emp_id INTEGER) IS

 BEGIN

 DELETE FROM emp

 WHERE empno = emp_id;

 END fire_employee;

 PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS

 salary REAL;

 BEGIN

 SELECT sal INTO salary FROM emp

 WHERE empno = emp_id;

 ...

 END raise_salary;

 ...

END emp_actions;

You can define subprograms in a package body without declaring their
specifications in the package specification. However, such subprograms
can be called only from inside the package. For more information about
packages, see Chapter 8.

Generally, tools (such as Oracle Forms) that incorporate the PL/SQL
engine can store subprograms locally for later, strictly local execution.
However, to become available for general use by all tools, subprograms
must be stored in an Oracle database.

To create subprograms and store them permanently in an Oracle
database, you use the CREATE PROCEDURE and CREATE FUNCTION
statements, which you can execute interactively from SQL*Plus or
Server Manager. For example, you might create the procedure
fire_employee, as follows:

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS

BEGIN

 DELETE FROM emp WHERE empno = emp_id;

END;

When creating subprograms, you can use the keyword AS instead
of IS in the specification for readability. For more information about
creating and using stored subprograms, see Oracle7 Server Application
Developer’s Guide.

7 – 11Subprograms

Actual versus Formal Parameters

Subprograms pass information using parameters. The variables or
expressions referenced in the parameter list of a subprogram call are
actual parameters. For example, the following procedure call lists two
actual parameters named emp_num and amount:

raise_salary(emp_num, amount);

The next procedure call shows that in some cases, expressions can be
used as actual parameters:

raise_salary(emp_num, merit + cola);

The variables declared in a subprogram specification and referenced in
the subprogram body are formal parameters. For example, the following
procedure declares two formal parameters named emp_id and increase:

PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS

 current_salary REAL;

 ...

BEGIN

 SELECT sal INTO current_salary FROM emp WHERE empno = emp_id;

 ...

 UPDATE emp SET sal = sal + increase WHERE empno = emp_id;

END raise_salary;

Though not necessary, it is good programming practice to use different
names for actual and formal parameters.

When you call procedure raise_salary, the actual parameters are
evaluated and the result values are assigned to the corresponding
formal parameters. Before assigning the value of an actual parameter to
a formal parameter, PL/SQL converts the datatype of the value if
necessary. For example, the following call to raise_salary is legal:

raise_salary(emp_num, ’2500’);

The actual parameter and its corresponding formal parameter must
have compatible datatypes. For instance, PL/SQL cannot convert
between the DATE and REAL datatypes. Also, the result value must be
convertible to the new datatype. The following procedure call raises the
predefined exception VALUE_ERROR because PL/SQL cannot convert
the second actual parameter to a number:

raise_salary(emp_num, ’$2500’); –– note the dollar sign

For more information, see “Datatype Conversion” on page 2 – 20.

Positional Notation

Named Notation

Mixed Notation

7 – 12 PL/SQL User’s Guide and Reference

Positional and Named Notation

When calling a subprogram, you can write the actual parameters using
either positional or named notation. That is, you can indicate the
association between an actual and formal parameter by position or
name. For example, given the declarations

DECLARE

 acct INTEGER;

 amt REAL;

 PROCEDURE credit (acctno INTEGER, amount REAL) IS

 BEGIN ... END;

you can call the procedure credit in four logically equivalent ways:

BEGIN

 ...

 credit(acct, amt); –– positional notation

 credit(amount => amt, acctno => acct); –– named notation

 credit(acctno => acct, amount => amt); –– named notation

 credit(acct, amount => amt); –– mixed notation

END;

The first procedure call uses positional notation. The PL/SQL compiler
associates the first actual parameter, acct, with the first formal
parameter, acctno. And, the compiler associates the second actual
parameter, amt, with the second formal parameter, amount.

The second procedure call uses named notation. The arrow (called an
association operator) associates the formal parameter to the left of the
arrow with the actual parameter to the right of the arrow.

The third procedure call also uses named notation and shows that you
can list the parameter pairs in any order. Therefore, you need not know
the order in which the formal parameters are listed.

The fourth procedure call shows that you can mix positional and named
notation. In this case, the first parameter uses positional notation, and
the second parameter uses named notation. Positional notation must
precede named notation. The reverse is not allowed. For example, the
following procedure call is illegal:

credit(acctno => acct, amt); –– illegal

IN Mode

OUT Mode

7 – 13Subprograms

Parameter Modes

You use parameter modes to define the behavior of formal parameters.
The three parameter modes, IN (the default), OUT, and IN OUT, can be
used with any subprogram. However, avoid using the OUT and IN OUT
modes with functions. The purpose of a function is to take zero or more
arguments (actual parameters) and return a single value. It is poor
programming practice to have a function return multiple values. Also,
functions should be free from side effects, which change the values of
variables not local to the subprogram.

An IN parameter lets you pass values to the subprogram being called.
Inside the subprogram, an IN parameter acts like a constant. Therefore,
it cannot be assigned a value. For example, the following assignment
statement causes a compilation error:

PROCEDURE debit_account (acct_id IN INTEGER, amount IN REAL) IS

 minimum_purchase CONSTANT REAL := 10.0;

 service_charge CONSTANT REAL := 0.50;

BEGIN

 ...

 IF amount < minimum_purchase THEN

 amount := amount + service_charge; –– causes syntax error

 END IF;

The actual parameter that corresponds to an IN formal parameter can be
a constant, literal, initialized variable, or expression.

Unlike OUT and IN OUT parameters, IN parameters can be initialized
to default values. For more information, see “Parameter Default Values”
on page 7 – 15.

An OUT parameter lets you return values to the caller of a subprogram.
Inside the subprogram, an OUT parameter acts like an uninitialized
variable. Therefore, its value cannot be assigned to another variable or
reassigned to itself. For instance, the following assignment statement
causes a compilation error:

PROCEDURE calc_bonus (emp_id IN INTEGER, bonus OUT REAL) IS

 hire_date DATE;

BEGIN

 SELECT sal * 0.10, hiredate INTO bonus, hire_date FROM emp

 WHERE empno = emp_id;

 IF MONTHS_BETWEEN(SYSDATE, hire_date) > 60 THEN

 bonus := bonus + 500; –– causes syntax error

 END IF;

IN OUT Mode

7 – 14 PL/SQL User’s Guide and Reference

The actual parameter that corresponds to an OUT formal parameter
must be a variable; it cannot be a constant or an expression. For
example, the following procedure call is illegal:

calc_bonus(7499, salary + commission); –– causes syntax error

An OUT actual parameter can have a value before the subprogram is
called. However, the value is lost when you call the subprogram. Inside
the subprogram, an OUT formal parameter cannot be used in an
expression; the only operation allowed on the parameter is to assign
it a value.

Before exiting a subprogram, explicitly assign values to all OUT formal
parameters. Otherwise, the values of corresponding actual parameters
are indeterminate. If you exit successfully, PL/SQL assigns values to the
actual parameters. However, if you exit with an unhandled exception,
PL/SQL does not assign values to the actual parameters.

An IN OUT parameter lets you pass initial values to the subprogram
being called and return updated values to the caller. Inside the
subprogram, an IN OUT parameter acts like an initialized variable.
Therefore, it can be assigned a value and its value can be assigned to
another variable. That means you can use an IN OUT formal parameter
as if it were a normal variable. You can change its value or reference the
value in any way, as the following example shows:

PROCEDURE calc_bonus (emp_id IN INTEGER, bonus IN OUT REAL) IS

 hire_date DATE;

 bonus_missing EXCEPTION;

BEGIN

 SELECT sal * 0.10, hiredate INTO bonus, hire_date FROM emp

 WHERE empno = emp_id;

 IF bonus IS NULL THEN

 RAISE bonus_missing;

 END IF;

 IF MONTHS_BETWEEN(SYSDATE, hire_date) > 60 THEN

 bonus := bonus + 500;

 END IF;

 ...

EXCEPTION

 WHEN bonus_missing THEN

 ...

END calc_bonus;

The actual parameter that corresponds to an IN OUT formal parameter
must be a variable; it cannot be a constant or an expression. Table 7 – 1
summarizes all you need to know about the parameter modes.

7 – 15Subprograms

IN OUT IN OUT

the default must be specified must be specified

passes values to a
subprogram

returns values to the
caller

passes initial values to a
subprogram and returns
updated values to the
caller

formal parameter acts
like a constant

formal parameter acts like
an uninitialized variable

formal parameter acts
like an initialized variable

formal parameter cannot
be assigned a value

formal parameter cannot
be used in an expression
and must be assigned a
value

formal parameter should
be assigned a value

actual parameter can be
a constant, initialized
variable, literal, or
expression

actual parameter must be
a variable

actual parameter must
be a variable

Table 7 – 1 Parameter Modes

Parameter Default Values

As the example below shows, you can initialize IN parameters to default
values. That way, you can pass different numbers of actual parameters
to a subprogram, accepting or overriding the default values as you
please. Moreover, you can add new formal parameters without having
to change every call to the subprogram.

PROCEDURE create_dept (

 new_dname CHAR DEFAULT ’TEMP’,

 new_loc CHAR DEFAULT ’TEMP’) IS

BEGIN

 INSERT INTO dept

 VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);

END create_dept;

If an actual parameter is not passed, the default value of its
corresponding formal parameter is used. Consider the following calls
to create_dept:

create_dept;

create_dept(’MARKETING’);

create_dept(’MARKETING’, ’NEW YORK’);

The first call passes no actual parameters, so both default values are
used. The second call passes one actual parameter, so the default value
for new_loc is used. The third call passes two actual parameters, so
neither default value is used.

7 – 16 PL/SQL User’s Guide and Reference

Usually, you can use positional notation to override the default values of
formal parameters. However, you cannot skip a formal parameter by
leaving out its actual parameter. For example, the following call
incorrectly associates the actual parameter ’NEW YORK’ with the
formal parameter new_dname:

create_dept(’NEW YORK’); –– incorrect

You cannot solve the problem by leaving a placeholder for the actual
parameter. For example, the following call is illegal:

create_dept(, ’NEW YORK’); –– illegal

In such cases, you must use named notation, as follows:

create_dept(new_loc => ’NEW YORK’);

Also, you cannot assign a null to an uninitialized formal parameter by
leaving out its actual parameter. For example, given the declaration

DECLARE

 FUNCTION gross_pay (

 emp_id IN NUMBER,

 st_hours IN NUMBER DEFAULT 40,

 ot_hours IN NUMBER) RETURN REAL IS

 BEGIN

 ...

 END;

the following function call does not assign a null to ot_hours:

IF gross_pay(emp_num) > max_pay THEN ... –– illegal

Instead, you must pass the null explicitly, as in

IF gross_pay(emp_num, ot_hour => NULL) > max_pay THEN ...

or you can initialize ot_hours to NULL, as follows:

ot_hours IN NUMBER DEFAULT NULL;

Finally, when creating a stored subprogram, you cannot use bind
variables in the DEFAULT clause. The following SQL*Plus example
raises a bad bind variable exception because at the time of creation, num is
just a placeholder whose value might change:

SQL> VARIABLE num NUMBER

SQL> CREATE FUNCTION gross_pay (emp_id IN NUMBER DEFAULT :num, ...

7 – 17Subprograms

Parameter Aliasing

To optimize execution, the PL/SQL compiler can choose different
methods of parameter passing (copy or reference) for different
parameters in the same subprogram call. When the compiler chooses the
copy method, the value of an actual parameter is copied into the
subprogram. When the compiler chooses the reference method, the
address of an actual parameter is passed to the subprogram.

The easy–to–avoid problem of aliasing occurs when a global variable
appears as an actual parameter in a subprogram call and then is
referenced within the subprogram. The result is indeterminate because it
depends on the method of parameter passing chosen by the compiler.
Consider the following example:

DECLARE

 rent REAL;

 PROCEDURE raise_rent (increase IN OUT REAL) IS

 BEGIN

 rent := rent + increase;

 /* At this point, if the compiler passed the address

 of the actual parameter to the subprogram, the same

 variable has two names. Thus, the term ’aliasing’. */

 ...

 END raise_rent;

 ...

BEGIN

 ...

 raise_rent(rent); –– indeterminate

Aliasing also occurs when the same actual parameter appears twice in a
subprogram call. Unless both formal parameters are IN parameters, the
result is indeterminate, as the following example shows:

DECLARE

 str VARCHAR2(10);

 PROCEDURE reverse (in_str VARCHAR2, out_str OUT VARCHAR2) IS

 BEGIN

 /* Reverse order of characters in string here. */

 ...

 /* At this point, whether the value of in_str

 is ’abcd’ or ’dcba’ depends on the methods of

 parameter passing chosen by the compiler. */

 END reverse;

 ...

BEGIN

 str := ’abcd’;

 reverse(str, str); –– indeterminate

7 – 18 PL/SQL User’s Guide and Reference

Overloading

PL/SQL lets you overload subprogram names. That is, you can use the
same name for several different subprograms as long as their formal
parameters differ in number, order, or datatype family. (Figure 2 – 1 on
page 2 – 10 shows the datatype families.)

Suppose you want to initialize the first n rows in two PL/SQL tables
that were declared as follows:

DECLARE

 TYPE DateTabTyp IS TABLE OF DATE

 INDEX BY BINARY_INTEGER;

 TYPE RealTabTyp IS TABLE OF REAL

 INDEX BY BINARY_INTEGER;

 hiredate_tab DateTabTyp;

 sal_tab RealTabTyp;

You might write the following procedure to initialize the PL/SQL table
named hiredate_tab:

PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS

BEGIN

 FOR i IN 1..n LOOP

 tab(i) := SYSDATE;

 END LOOP;

END initialize;

Also, you might write the next procedure to initialize the PL/SQL table
named sal_tab:

PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS

BEGIN

 FOR i IN 1..n LOOP

 tab(i) := 0.0;

 END LOOP;

END initialize;

Because the processing in these two procedures is the same, it is logical
to give them the same name.

You can place the two overloaded initialize procedures in the same block,
subprogram, or package. PL/SQL determines which of the two
procedures is being called by checking their formal parameters.

Restrictions

7 – 19Subprograms

Consider the example below. If you call initialize with a DateTabTyp
parameter, PL/SQL uses the first version of initialize. But, if you call
initialize with a RealTabTyp parameter, PL/SQL uses the second version.

DECLARE

 TYPE DateTabTyp IS TABLE OF DATE

 INDEX BY BINARY_INTEGER;

 TYPE RealTabTyp IS TABLE OF REAL

 INDEX BY BINARY_INTEGER;

 hiredate_tab DateTabTyp;

 comm_tab RealTabTyp;

 indx BINARY_INTEGER;

 ...

BEGIN

 indx := 50;

 initialize(hiredate_tab, indx); –– calls first version

 initialize(comm_tab, indx); –– calls second version

 ...

END;

Only local or packaged subprograms can be overloaded. Therefore, you
cannot overload standalone subprograms. Also, you cannot overload
two subprograms if their formal parameters differ only in name or
parameter mode. For example, you cannot overload the following
two procedures:

PROCEDURE reconcile (acctno IN INTEGER) IS

BEGIN

 ...

END;

PROCEDURE reconcile (acctno OUT INTEGER) IS

BEGIN

 ...

END;

Furthermore, you cannot overload two subprograms if their formal
parameters differ only in datatype and the different datatypes are in the
same family. For instance, you cannot overload the following procedures
because the datatypes INTEGER and REAL are in the same family:

PROCEDURE charge_back (amount INTEGER) IS

BEGIN

 ...

END;

PROCEDURE charge_back (amount REAL) IS

BEGIN

 ...

END;

How Calls Are
Resolved

7 – 20 PL/SQL User’s Guide and Reference

Likewise, you cannot overload two subprograms if their formal
parameters differ only in subtype and the different subtypes are based
on types in the same family. For example, you cannot overload the
following procedures because the base types CHAR and LONG are in
the same family:

DECLARE

 SUBTYPE Delimiter IS CHAR;

 SUBTYPE Text IS LONG;

 ...

 PROCEDURE scan (x Delimiter) IS

 BEGIN ... END;

 PROCEDURE scan (x Text) IS

 BEGIN ... END;

Finally, you cannot overload two functions that differ only in return type
(the datatype of the result value) even if the types are in different
families. For example, you cannot overload the following functions:

FUNCTION acct_ok (acct_id INTEGER) RETURN BOOLEAN IS

BEGIN ... END;

FUNCTION acct_ok (acct_id INTEGER) RETURN INTEGER IS

BEGIN ... END;

Figure 7 – 1 shows how the PL/SQL compiler resolves subprogram
calls. When the compiler encounters a procedure or function call, it tries
to find a declaration that matches the call. The compiler searches first in
the current scope and then, if necessary, in successive enclosing scopes.
The compiler stops searching if it finds one or more subprogram
declarations in which the subprogram name matches the name of the
called subprogram.

To resolve a call among possibly like–named subprograms at the same
level of scope, the compiler must find an exact match between the actual
and formal parameters. That is, they must match in number, order, and
datatype (unless some formal parameters were assigned default values).
If no match is found or if multiple matches are found, the compiler
generates a syntax error.

7 – 21Subprograms

compare name of called
subprogram with names of
any subprograms declared
in current scope

match(es) found?

compare actual parameter
list in subprogram call with
formal parameter list in
subprogram declaration(s)

match(es) found?

resolve call

multiple matches?

go to enclosing scope

enclosing scope?

generate syntax error

encounter subprogram call

No

No

Yes

Yes

Yes

No

Yes

No

Figure 7 – 1 How the PL/SQL Compiler Resolves Calls

Avoiding Errors

7 – 22 PL/SQL User’s Guide and Reference

In the following example, you call the enclosing procedure swap from
within the function valid. However, the compiler generates an error
because neither declaration of swap within the current scope matches the
procedure call:

PROCEDURE swap (d1 DATE, d2 DATE) IS

 date1 DATE;

 date2 DATE;

 FUNCTION valid (d DATE) RETURN BOOLEAN IS

 PROCEDURE swap (n1 INTEGER, n2 INTEGER) IS

 BEGIN ... END swap;

 PROCEDURE swap (n1 REAL, n2 REAL) IS

 BEGIN ... END swap;

 BEGIN

 ...

 swap(date1, date2);

 END valid;

BEGIN

 ...

END swap;

PL/SQL declares built–in functions globally in package STANDARD.
Redeclaring them locally is error prone because your local declaration
overrides the global declaration. Consider the following example, in
which you declare a function named sign, then within the scope of that
declaration, try to call the built–in function SIGN:

DECLARE

 x NUMBER;

 ...

BEGIN

 DECLARE

 FUNCTION sign (n NUMBER) RETURN NUMBER IS

 BEGIN

 IF n < 0 THEN RETURN –1; ELSE RETURN 1; END IF;

 END;

 BEGIN

 ...

 x := SIGN(0); –– assigns 1 to x

 END;

 ...

 x := SIGN(0); –– assigns 0 to x

END;

Inside the sub–block, PL/SQL uses your function definition, not the
built–in definition. To call the built–in function from inside the
sub–block, you must use dot notation, as follows:

x := STANDARD.SIGN(0); –– assigns 0 to x

Recursive
Subprograms

An Example

7 – 23Subprograms

Recursion

Recursion is a powerful technique for simplifying the design of
algorithms. Basically, recursion means self–reference. In a recursive
mathematical sequence, each term is derived by applying a formula to
preceding terms. The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, ...), which
was first used to model the growth of a rabbit colony, is an example.
Each term in the sequence (after the second) is the sum of the two terms
that immediately precede it.

In a recursive definition, something is defined in terms of simpler
versions of itself. Consider the definition of n factorial (n!), the product
of all integers from 1 to n:

n! = n * (n – 1)!

A recursive subprogram is one that calls itself. Think of a recursive call
as a call to some other subprogram that does the same task as your
subprogram. Each recursive call creates a new instance of any objects
declared in the subprogram, including parameters, variables, cursors,
and exceptions. Likewise, new instances of SQL statements are created
at each level in the recursive descent.

There must be at least two paths through a recursive subprogram: one
that leads to the recursive call and one that does not. That is, at least one
path must lead to a terminating condition. Otherwise, the recursion
would (theoretically) go on forever. In practice, if a recursive
subprogram strays into infinite regress, PL/SQL eventually runs out of
memory and raises the predefined exception STORAGE_ERROR.

To solve some programming problems, you must repeat a sequence of
statements until a condition is met. You can use iteration or recursion to
solve such problems. Recursion is appropriate when the problem can be
broken down into simpler versions of itself. For example, you can
evaluate 3! as follows:

0! = 1

1! = 1 * 0! = 1 * 1 = 1

2! = 2 * 1! = 2 * 1 = 2

3! = 3 * 2! = 3 * 2 = 6

Another Example

7 – 24 PL/SQL User’s Guide and Reference

To implement this algorithm, you might write the following recursive
function, which returns the factorial of a positive integer:

FUNCTION fac (n POSITIVE) RETURN INTEGER IS –– returns n!

BEGIN

 IF n = 1 THEN –– terminating condition

 RETURN 1;

 ELSE

 RETURN n * fac(n – 1); –– recursive call

 END IF;

END fac;

At each recursive call, n is decremented. Eventually, n becomes 1 and the
recursion stops.

Consider the procedure below, which finds the staff of a given manager.
The procedure declares two formal parameters, mgr_no and tier, which
represent the manager’s employee number and a tier in his or her
departmental organization. Staff members reporting directly to the
manager occupy the first tier. When called, the procedure accepts a
value for mgr_no but uses the default value of tier. For example, you
might call the procedure as follows:

find_staff(7839);

The procedure passes mgr_no to a cursor in a cursor FOR loop, which
finds staff members at successively lower tiers in the organization. At
each recursive call, a new instance of the FOR loop is created and
another cursor is opened, but prior cursors stay positioned on the next
row in their result sets. When a fetch fails to return a row, the cursor is
closed automatically and the FOR loop is exited. Since the recursive call
is inside the FOR loop, the recursion stops.

PROCEDURE find_staff (mgr_no NUMBER, tier NUMBER := 1) IS

 boss_name CHAR(10);

 CURSOR c1 (boss_no NUMBER) IS

 SELECT empno, ename FROM emp WHERE mgr = boss_no;

BEGIN

 /* Get manager’s name. */

 SELECT ename INTO boss_name FROM emp WHERE empno = mgr_no;

 IF tier = 1 THEN

 INSERT INTO staff –– single–column output table

 VALUES (boss_name || ’ manages the staff’);

 END IF;

Caution

7 – 25Subprograms

 /* Find staff members who report directly to manager. */

 FOR ee IN c1 (mgr_no) LOOP

 INSERT INTO staff

 VALUES (boss_name || ’ manages ’ || ee.ename

 || ’ on tier ’ || to_char(tier));

 /* Drop to next tier in organization. */

 find_staff(ee.empno, tier + 1); –– recursive call

 END LOOP;

 COMMIT;

END;

Unlike the initial call, each recursive call passes a second actual
parameter (the next tier) to the procedure.

The last example illustrates recursion, not the efficient use of
set–oriented SQL statements. You might want to compare the
performance of the recursive procedure to that of the following SQL
statement, which does the same task:

INSERT INTO staff

 SELECT PRIOR ename || ’ manages ’ || ename

 || ’ on tier ’ || to_char(LEVEL – 1)

 FROM emp

 START WITH empno = 7839

 CONNECT BY PRIOR empno = mgr;

The SQL statement is appreciably faster. However, the procedure is
more flexible. For example, a multi–table query cannot contain the
CONNECT BY clause. So, unlike the procedure, the SQL statement
cannot be modified to do joins. (A join combines rows from two or more
database tables.) In addition, a procedure can process data in ways that
a single SQL statement cannot.

Be careful where you place a recursive call. If you place it inside a cursor
FOR loop or between OPEN and CLOSE statements, another cursor is
opened at each call. As a result, your program might exceed the limit set
by the Oracle initialization parameter OPEN_CURSORS.

Mutual Recursion

7 – 26 PL/SQL User’s Guide and Reference

Subprograms are mutually recursive if they directly or indirectly call each
other. In the example below, the Boolean functions odd and even, which
determine whether a number is odd or even, call each other directly. The
forward declaration of odd is necessary because even calls odd, which is
not yet declared when the call is made. (See “Forward Declarations” on
page 7 – 8.)

FUNCTION odd (n NATURAL) RETURN BOOLEAN; –– forward declaration

FUNCTION even (n NATURAL) RETURN BOOLEAN IS

BEGIN

 IF n = 0 THEN

 RETURN TRUE;

 ELSE

 RETURN odd(n – 1); –– mutually recursive call

 END IF;

END even;

FUNCTION odd (n NATURAL) RETURN BOOLEAN IS

BEGIN

 IF n = 0 THEN

 RETURN FALSE;

 ELSE

 RETURN even(n – 1); –– mutually recursive call

 END IF;

END odd;

When a positive integer n is passed to odd or even, the functions call each
other by turns. At each call, n is decremented. Ultimately, n becomes
zero and the final call returns TRUE or FALSE. For instance, passing the
number 4 to odd results in this sequence of calls:

odd(4)

even(3)

odd(2)

even(1)

odd(0) –– returns FALSE

On the other hand, passing the number 4 to even results in the following
sequence of calls:

even(4)

odd(3)

even(2)

odd(1)

even(0) –– returns TRUE

Recursion versus
Iteration

7 – 27Subprograms

Unlike iteration, recursion is not essential to PL/SQL programming.
Any problem that can be solved using recursion can be solved using
iteration. Also, the iterative version of a subprogram is usually easier to
design than the recursive version. However, the recursive version is
usually simpler, smaller, and therefore easier to debug. Compare the
following functions, which compute the nth Fibonacci number:

–– recursive version

FUNCTION fib (n POSITIVE) RETURN INTEGER IS

BEGIN

 IF (n = 1) OR (n = 2) THEN

 RETURN 1;

 ELSE

 RETURN fib(n – 1) + fib(n – 2);

 END IF;

END fib;

–– iterative version

FUNCTION fib (n POSITIVE) RETURN INTEGER IS

 pos1 INTEGER := 1;

 pos2 INTEGER := 0;

 cum INTEGER;

BEGIN

 IF (n = 1) OR (n = 2) THEN

 RETURN 1;

 ELSE

 cum := pos1 + pos2;

 FOR i IN 3..n LOOP

 pos2 := pos1;

 pos1 := cum;

 cum := pos1 + pos2;

 END LOOP;

 RETURN cum;

 END IF;

END fib;

The recursive version of fib is more elegant than the iterative version.
However, the iterative version is more efficient; it runs faster and uses
less storage. That is because each recursive call requires additional time
and memory. As the number of recursive calls gets larger, so does the
difference in efficiency. Still, if you expect the number of recursive calls
to be small, you might choose the recursive version for its readability.

7 – 28 PL/SQL User’s Guide and Reference

C H A P T E R

8

T

8 – 1Packages

Packages

Good as it is to inherit a library, it is better to collect one.

Augustine Birrell

his chapter shows you how to bundle related PL/SQL programming
constructs into a package. The packaged constructs might include a
collection of procedures or a pool of type definitions and variable
declarations. For example, a Human Resources package might contain
hiring and firing procedures. Once written, your general–purpose
package is compiled, then stored in an Oracle database, where, like a
library unit, its contents can be shared by many applications.

8 – 2 PL/SQL User’s Guide and Reference

What Is a Package?

A package is a database object that groups logically related PL/SQL
types, objects, and subprograms. Packages usually have two parts, a
specification and a body, although sometimes the body is unnecessary.
The specification is the interface to your applications; it declares the
types, variables, constants, exceptions, cursors, and subprograms
available for use. The body fully defines cursors and subprograms, and
so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or
nested. Still, the format of a package is similar to that of a subprogram:

CREATE PACKAGE name AS –– specification (visible part)

 –– public type and object declarations

 –– subprogram specifications

END [name];

CREATE PACKAGE BODY name AS –– body (hidden part)

 –– private type and object declarations

 –– subprogram bodies

[BEGIN

 –– initialization statements]

END [name];

The specification holds public declarations, which are visible to your
application. The body holds implementation details and private
declarations, which are hidden from your application. As Figure 8 – 1
shows, you can think of the specification as an operational interface and
of the body as a “black box”:

Package DatabaseApplication

Specification

Body

Figure 8 – 1 Package Interface

You can debug, enhance, or replace a package body without changing
the interface (package specification) to the package body.

8 – 3Packages

To create packages and store them permanently in an Oracle database,
you use the CREATE PACKAGE and CREATE PACKAGE BODY
statements, which you can execute interactively from SQL*Plus or
Server Manager. For more information, see Oracle7 Server Application
Developer’s Guide.

In the example below, you package a record type, a cursor, and two
employment procedures. Notice that the procedure hire_employee uses
the database sequence empno_seq and the function SYSDATE to insert a
new employee number and hire date, respectively.

CREATE PACKAGE emp_actions AS –– specification

 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);

 CURSOR desc_salary RETURN EmpRecTyp;

 PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER);

 PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS –– body

 CURSOR desc_salary RETURN EmpRecTyp IS

 SELECT empno, sal FROM emp ORDER BY sal DESC;

 PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER) IS

 BEGIN

 INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,

 mgr, SYSDATE, sal, comm, deptno);

 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

END emp_actions;

Only the declarations in the package specification are visible and
accessible to applications. Implementation details in the package body
are hidden and inaccessible. So, you can change the body
(implementation) without having to recompile calling programs.

Modularity

Easier Application Design

Information Hiding

Added Functionality

Better Performance

8 – 4 PL/SQL User’s Guide and Reference

Advantages of Packages

Packages offer several advantages: modularity, easier application
design, information hiding, added functionality, and better
performance.

Packages let you encapsulate logically related types, objects, and
subprograms in a named PL/SQL module. Each package is easy to
understand, and the interfaces between packages are simple, clear, and
well defined. This aids application development.

When designing an application, all you need initially is the interface
information in the package specifications. You can code and compile a
specification without its body. Once the specification has been compiled,
stored subprograms that reference the package can be compiled as well.
You need not define the package bodies fully until you are ready to
complete the application.

With packages, you can specify which types, objects, and subprograms
are public (visible and accessible) or private (hidden and inaccessible).
For example, if a package contains four subprograms, three might be
public and one private. The package hides the definition of the private
subprogram so that only the package (not your application) is affected if
the definition changes. This simplifies maintenance and enhancement.
Also, by hiding implementation details from users, you protect the
integrity of the package.

Packaged public variables and cursors persist for the duration of a
session. So, they can be shared by all subprograms that execute in the
environment. Also, they allow you to maintain data across transactions
without having to store it in the database.

When you call a packaged subprogram for the first time, the whole
package is loaded into memory. Therefore, subsequent calls to related
subprograms in the package require no disk I/O.

In addition, packages stop cascading dependencies and so avoid
unnecessary recompiling. For example, if you change the definition of a
standalone function, Oracle must recompile all stored subprograms that
call the function. However, if you change the definition of a packaged
function, Oracle need not recompile the calling subprograms because
they do not depend on the package body.

8 – 5Packages

The Package Specification

The package specification contains public declarations. The scope of
these declarations is local to your database schema and global to the
package. So, the declared objects are accessible from your application
and from anywhere in the package. Figure 8 – 2 illustrates the scoping.

schema

package spec

package spec

other objects

package body

package body

procedure
function
procedure

function
function
procedure

Figure 8 – 2 Package Scope

The specification lists the package resources available to applications.
All the information your application needs to use the resources is in the
specification. For example, the following declaration shows that the
function named fac takes one argument of type INTEGER and returns a
value of type INTEGER:

FUNCTION fac (n INTEGER) RETURN INTEGER; –– returns n!

That is all the information you need to call the function. You need not
consider the underlying implementation of fac (whether it is iterative or
recursive, for example).

Only subprograms and cursors have an underlying implementation or
definition. So, if a specification declares only types, constants, variables,
and exceptions, the package body is unnecessary. Consider the
following bodiless package:

–– a bodiless package

CREATE PACKAGE trans_data AS

 TYPE TimeTyp IS RECORD (

 minute SMALLINT,

 hour SMALLINT);

Referencing Package
Contents

Restriction

8 – 6 PL/SQL User’s Guide and Reference

 TYPE TransTyp IS RECORD (

 category VARCHAR2,

 account INTEGER,

 amount REAL,

 time TimeTyp);

 minimum_balance CONSTANT REAL := 10.00;

 number_processed INTEGER;

 insufficient_funds EXCEPTION;

END trans_data;

The package trans_data needs no body because types, constants,
variables, and exceptions do not have an underlying implementation.
Such packages let you define global variables—usable by subprograms
and database triggers—that persist throughout a session.

To reference the types, objects, and subprograms declared within a
package specification, you use dot notation, as follows:

package_name.type_name

package_name.object_name

package_name.subprogram_name

You can reference package contents from a database trigger, a stored
subprogram, an Oracle Precompiler application, an OCI application, or
an Oracle tool such as SQL*Plus. For example, you might call the
packaged procedure hire_employee from SQL*Plus, as follows:

SQL> EXECUTE emp.actions.hire_employee(’TATE’, ’CLERK’, ...);

In the following example, you call the same procedure from an
anonymous PL/SQL block embedded in a Pro*C program:

EXEC SQL EXECUTE

 BEGIN

 emp_actions.hire_employee(:name, :title, ...);

 END;

END–EXEC;

The actual parameters name and title are host variables.

You cannot reference remote packaged variables directly or indirectly.
For example, you cannot call the following procedure remotely because
it references a packaged variable in a parameter initialization clause:

CREATE PACKAGE random AS

 seed NUMBER;

 PROCEDURE initialize (starter IN NUMBER := seed, ...);

 ...

END random;

8 – 7Packages

The Package Body

The package body implements the package specification. That is, the
package body contains the definition of every cursor and subprogram
declared in the package specification. Keep in mind that subprograms
defined in a package body are accessible outside the package only if
their specifications also appear in the package specification.

To match subprogram specifications and bodies, PL/SQL does a
token–by–token comparison of their headers. So, except for white space,
the headers must match word for word. Otherwise, PL/SQL raises
an exception, as the following example shows:

CREATE PACKAGE emp_actions AS

 ...

 PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

 ...

 PROCEDURE calc_bunus (date_hired DATE, ...) IS

 –– parameter declaration raises an exception because ’DATE’

 –– does not match ’emp.hiredate%TYPE’ word for word

 BEGIN

 ...

 END calc_bonus;

END emp_actions;

The package body can also contain private declarations, which define
types and objects necessary for the internal workings of the package.
The scope of these declarations is local to the package body. Therefore,
the declared types and objects are inaccessible except from within the
package body. Unlike a package specification, the declarative part of
a package body can contain subprogram bodies.

Following the declarative part of a package body is the optional
initialization part, which typically holds statements that initialize some
of the variables previously declared in the package.

The initialization part of a package plays a minor role because, unlike
subprograms, a package cannot be called or passed parameters. As a
result, the initialization part of a package is run only once, the first time
you reference the package.

Recall that if a specification declares only types, constants, variables,
and exceptions, the package body is unnecessary. However, the body
can still be used to initialize objects declared in the specification.

8 – 8 PL/SQL User’s Guide and Reference

Some Examples

Consider the package below named emp_actions. The package
specification declares the following types, objects, and subprograms:

• types EmpRecTyp and DeptRecTyp

• cursor desc_salary

• exception salary_missing

• functions hire_employee, nth_highest_salary, and rank

• procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference
its types, call its subprograms, use its cursor, and raise its exception.
When you create the package, it is stored in an Oracle database for
general use.

CREATE PACKAGE emp_actions AS

 /* Declare externally visible types, cursor, exception. */

 TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);

 TYPE DeptRecTyp IS RECORD (dept_id INTEGER, location VARCHAR2);

 CURSOR desc_salary RETURN EmpRecTyp;

 salary_missing EXCEPTION;

 /* Declare externally callable subprograms. */

 FUNCTION hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER) RETURN INTEGER;

 PROCEDURE fire_employee (emp_id INTEGER);

 PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER);

 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp;

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

 number_hired INTEGER; –– visible only in this package

 /* Fully define cursor specified in package. */

 CURSOR desc_salary RETURN EmpRecTyp IS

 SELECT empno, sal FROM emp ORDER BY sal DESC;

 /* Fully define subprograms specified in package. */

 FUNCTION hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

8 – 9Packages

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER) RETURN INTEGER IS

 new_empno INTEGER;

 BEGIN

 SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;

 INSERT INTO emp VALUES (new_empno, ename, job,

 mgr, SYSDATE, sal, comm, deptno);

 number_hired := number_hired + 1;

 RETURN new_empno;

 END hire_employee;

 PROCEDURE fire_employee (emp_id INTEGER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

 PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER) IS

 current_salary NUMBER;

 BEGIN

 SELECT sal INTO current_salary FROM emp

 WHERE empno = emp_id;

 IF current_salary IS NULL THEN

 RAISE salary_missing;

 ELSE

 UPDATE emp SET sal = sal + increase

 WHERE empno = emp_id;

 END IF;

 END raise_salary;

 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS

 emp_rec EmpRecTyp;

 BEGIN

 OPEN desc_salary;

 FOR i IN 1..n LOOP

 FETCH desc_salary INTO emp_rec;

 END LOOP;

 CLOSE desc_salary;

 RETURN emp_rec;

 END nth_highest_salary;

 /* Define local function, available only in package. */

 FUNCTION rank (emp_id INTEGER, job_title VARCHAR2)

 RETURN INTEGER IS

 /* Return rank (highest = 1) of employee in a given

 job classification based on performance rating. */

 head_count INTEGER;

 score NUMBER;

8 – 10 PL/SQL User’s Guide and Reference

 BEGIN

 SELECT COUNT(*) INTO head_count FROM emp

 WHERE job = job_title;

 SELECT rating INTO score FROM reviews

 WHERE empno = emp_id;

 score := score / 100; –– maximum score is 100

 RETURN (head_count + 1) – ROUND(head_count * score);

 END rank;

BEGIN –– initialization part starts here

 INSERT INTO emp_audit VALUES (SYSDATE, USER, ’EMP_ACTIONS’);

 number_hired := 0;

END emp_actions;

Remember, the initialization part of a package is run just once, the first
time you reference the package. So, in the last example, only one row is
inserted into the database table emp_audit. Likewise, the variable
number_hired is initialized only once.

Every time the procedure hire_employee is called, the variable
number_hired is updated. However, the count kept by number_hired is
session specific. That is, the count reflects the number of new employees
processed by one user, not the number processed by all users.

In the next example, you package some typical bank transactions.
Assume that debit and credit transactions are entered after business
hours via automatic teller machines, then applied to accounts the
next morning.

CREATE PACKAGE bank_transactions AS

 /* Declare externally visible constant. */

 minimum_balance CONSTANT NUMBER := 100.00;

 /* Declare externally callable procedures. */

 PROCEDURE apply_transactions;

 PROCEDURE enter_transaction (

 acct NUMBER,

 kind CHAR,

 amount NUMBER);

END bank_transactions;

CREATE PACKAGE BODY bank_transactions AS

 /* Declare global variable to hold transaction status. */

 new_status VARCHAR2(70) := ’Unknown’;

 /* Use forward declarations because apply_transactions

 calls credit_account and debit_account, which are not

 yet declared when the calls are made. */

 PROCEDURE credit_account (acct NUMBER, credit REAL);

 PROCEDURE debit_account (acct NUMBER, debit REAL);

8 – 11Packages

 /* Fully define procedures specified in package. */

 PROCEDURE apply_transactions IS

 /* Apply pending transactions in transactions table

 to accounts table. Use cursor to fetch rows. */

 CURSOR trans_cursor IS

 SELECT acct_id, kind, amount FROM transactions

 WHERE status = ’Pending’

 ORDER BY time_tag

 FOR UPDATE OF status; –– to lock rows

 BEGIN

 FOR trans IN trans_cursor LOOP

 IF trans.kind = ’D’ THEN

 debit_account(trans.acct_id, trans.amount);

 ELSIF trans.kind = ’C’ THEN

 credit_account(trans.acct_id, trans.amount);

 ELSE

 new_status := ’Rejected’;

 END IF;

 UPDATE transactions SET status = new_status

 WHERE CURRENT OF trans_cursor;

 END LOOP;

 END apply_transactions;

 PROCEDURE enter_transaction (

 /* Add a transaction to transactions table. */

 acct NUMBER,

 kind CHAR,

 amount NUMBER) IS

 BEGIN

 INSERT INTO transactions

 VALUES (acct, kind, amount, ’Pending’, SYSDATE);

 END enter_transaction;

 /* Define local procedures, available only in package. */

 PROCEDURE do_journal_entry (

 /* Record transaction in journal. */

 acct NUMBER,

 kind CHAR,

 new_bal NUMBER) IS

 BEGIN

 INSERT INTO journal

 VALUES (acct, kind, new_bal, sysdate);

 IF kind = ’D’ THEN

 new_status := ’Debit applied’;

 ELSE

 new_status := ’Credit applied’;

 END IF;

 END do_journal_entry;

8 – 12 PL/SQL User’s Guide and Reference

 PROCEDURE credit_account (acct NUMBER, credit REAL) IS

 /* Credit account unless account number is bad. */

 old_balance NUMBER;

 new_balance NUMBER;

 BEGIN

 SELECT balance INTO old_balance FROM accounts

 WHERE acct_id = acct

 FOR UPDATE OF balance; –– to lock the row

 new_balance := old_balance + credit;

 UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;

 do_journal_entry(acct, ’C’, new_balance);

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 new_status := ’Bad account number’;

 WHEN OTHERS THEN

 new_status := SUBSTR(SQLERRM,1,70);

 END credit_account;

 PROCEDURE debit_account (acct NUMBER, debit REAL) IS

 /* Debit account unless account number is bad or

 account has insufficient funds. */

 old_balance NUMBER;

 new_balance NUMBER;

 insufficient_funds EXCEPTION;

 BEGIN

 SELECT balance INTO old_balance FROM accounts

 WHERE acct_id = acct

 FOR UPDATE OF balance; –– to lock the row

 new_balance := old_balance – debit;

 IF new_balance >= minimum_balance THEN

 UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;

 do_journal_entry(acct, ’D’, new_balance);

 ELSE

 RAISE insufficient_funds;

 END IF;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 new_status := ’Bad account number’;

 WHEN insufficient_funds THEN

 new_status := ’Insufficient funds’;

 WHEN OTHERS THEN

 new_status := SUBSTR(SQLERRM,1,70);

 END debit_account;

END bank_transactions;

In this package, the initialization part is not used.

8 – 13Packages

Private versus Public Objects

Look again at the package emp_actions. The package body declares a
variable named number_hired, which is initialized to zero. Unlike items
declared in the specification of emp_actions, items declared in the body
are restricted to use within the package. Therefore, PL/SQL code
outside the package cannot reference the variable number_hired. Such
items are termed private.

However, items declared in the specification of emp_actions such as the
exception salary_missing are visible outside the package. Therefore, any
PL/SQL code can reference the exception salary_missing. Such items are
termed public.

When you must maintain items throughout a session or across
transactions, place them in the declarative part of the package body. For
example, the value of number_hired is retained between calls to
hire_employee. Remember, however, that the value of number_hired is
session specific.

If you must also make the items public, place them in the package
specification. For example, the constant minimum_balance declared in the
specification of the package bank_transactions is available for general use.

Note: When you call a packaged subprogram remotely, the whole
package is reinstantiated and its previous state is lost.

Overloading

Recall from Chapter 7 that PL/SQL allows two or more packaged
subprograms to have the same name. This option is useful when
you want a subprogram to accept parameters that have different
datatypes. For example, the following package defines two procedures
named journalize:

CREATE PACKAGE journal_entries AS

 PROCEDURE journalize (amount NUMBER, trans_date VARCHAR2);

 PROCEDURE journalize (amount NUMBER, trans_date NUMBER);

END journal_entries;

CREATE PACKAGE BODY journal_entries AS

 PROCEDURE journalize (amount NUMBER, trans_date VARCHAR2) IS

 BEGIN

 INSERT INTO journal

 VALUES (amount, TO_DATE(trans_date, ’DD–MON–YYYY’));

 END journalize;

8 – 14 PL/SQL User’s Guide and Reference

 PROCEDURE journalize (amount NUMBER, trans_date NUMBER) IS

 BEGIN

 INSERT INTO journal

 VALUES (amount, TO_DATE(trans_date, ’J’));

 END journalize;

END journal_entries;

The first procedure accepts trans_date as a character string, while the
second procedure accepts it as a number (the Julian day). Yet, each
procedure handles the data appropriately.

Package STANDARD

A package named STANDARD defines the PL/SQL environment. The
package specification globally declares types, exceptions, and
subprograms, which are available automatically to every PL/SQL
program. For example, package STANDARD declares the following
built–in function named ABS, which returns the absolute value of
its argument:

FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARD are directly visible to applications.
So, you can call ABS from a database trigger, a stored subprogram, an
Oracle Precompiler application, an OCI application, and various Oracle
tools including Oracle Forms, Oracle Reports, and SQL*Plus.

If you redeclare ABS in a PL/SQL program, your local declaration
overrides the global declaration. However, you can still call the built–in
function by using dot notation, as follows:

... STANDARD.ABS(x) ...

Most built–in functions are overloaded. For example, package
STANDARD contains the following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;

FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;

FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;

FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the number and
datatypes of the formal and actual parameters.

DBMS_STANDARD

DBMS_SQL

DBMS_ALERT

DBMS_OUTPUT

DBMS_PIPE

8 – 15Packages

Product–specific Packages

Oracle7 and various Oracle tools are supplied with product–specific
packages that help you build PL/SQL–based applications. For example,
Oracle7 is supplied with the packages DBMS_STANDARD, DBMS_SQL,
DBMS_ALERT, DBMS_OUTPUT, DBMS_PIPE, UTL_FILE, and others.
Brief descriptions of these packages follow; for more information, see
Oracle7 Server Application Developer’s Guide.

Package DBMS_STANDARD provides language facilities that help your
application interact with Oracle. For instance, a procedure named
raise_application_error lets you issue user–defined error messages. That
way, you can report errors to an application and avoid returning
unhandled exceptions. For an example, see “Using raise_application_
error” on page 6 – 10.

Package DBMS_SQL allows PL/SQL to execute SQL data definition and
data manipulation statements dynamically at run time. For an example,
see “Using DDL and Dynamic SQL” on page 5 – 7.

Package DBMS_ALERT lets you use database triggers to alert an
application when specific database values change. The alerts are
transaction based and asynchronous (that is, they operate independently
of any timing mechanism). For example, a company might use this
package to update the value of its investment portfolio as new stock and
bond quotes arrive.

Package DBMS_OUTPUT enables you to display output from PL/SQL
blocks and subprograms, which makes it easier to test and debug them.
The put_line procedure outputs information to a buffer in the SGA. You
display the information by calling the procedure get_line or by using the
command SET SERVEROUTPUT ON in SQL*Plus or Server Manager.
For an example, see “Displaying Output” on page 9 – 6.

Package DBMS_PIPE allows different sessions to communicate over
named pipes. (A pipe is an area of memory used by one process to pass
information to another.) You can use the procedures pack_message and
send_message to pack a message into a pipe, then send it to another
session in the same instance.

At the other end of the pipe, you can use the procedures receive_message
and unpack_message to receive and unpack (read) the message. Named
pipes are useful in many ways. For example, you can write routines in C
that allow external servers to collect information, then send it through
pipes to procedures stored in an Oracle database.

UTL_FILE

8 – 16 PL/SQL User’s Guide and Reference

Package UTL_FILE allows your PL/SQL programs to read and write
operating system (OS) text files. It provides a restricted version of
standard OS stream file I/O, including open, put, get, and close
operations.

When you want to read or write a text file, you call the function fopen,
which returns a file handle for use in subsequent procedure calls. For
example, the procedure put_line writes a text string and line terminator
to an open file. The procedure get_line reads a line of text from an open
file into an output buffer.

PL/SQL file I/O is available on both the client and server sides.
However, on the server side, file access is restricted to those directories
explicitly listed in the accessible directories list, which is stored in the
Oracle initialization file.

Guidelines

When writing packages, keep them as general as possible so they can be
reused in future applications. Avoid writing packages that duplicate
some feature already provided by Oracle.

Package specifications reflect the design of your application. So, define
them before the package bodies. Place in a specification only the types,
objects, and subprograms that must be visible to users of the package.
That way, other developers cannot misuse the package by basing their
code on irrelevant implementation details.

To reduce the need for recompiling when code is changed, place as few
items as possible in a package specification. Changes to a package body
do not require Oracle to recompile dependent procedures. However,
changes to a package specification require Oracle to recompile every
stored subprogram that references the package.

P A R T

 II Language Reference

C H A P T E R

9

Y

9 – 1Execution Environments

Execution
Environments

Three things are to be looked to in a building: that it stand on the right spot;
that it be securely founded; that it be successfully executed.

Goethe

ou can use PL/SQL with a variety of application development tools.
This chapter shows you how to use PL/SQL in the SQL*Plus, Oracle
Precompiler, and OCI environments.

Inputting an
Anonymous Block

Executing an
Anonymous Block

9 – 2 PL/SQL User’s Guide and Reference

SQL*Plus Environment

After entering the SQL*Plus environment, you can use PL/SQL in
several ways:

• input, store, and run a PL/SQL block

• create, load, and run a script containing PL/SQL blocks,
subprograms, and/or packages

• pass bind variables to PL/SQL

• call a PL/SQL stored subprogram

Note: This section discusses these topics briefly. For a full discussion,
see SQL*Plus User’s Guide and Reference.

Every PL/SQL block begins with the keyword DECLARE or, if the block
has no declarative part, with the keyword BEGIN. Typing either
keyword at the SQL*Plus prompt (SQL>) signals SQL*Plus to

• clear the SQL buffer

• enter INPUT mode

• ignore semicolons (the SQL statement terminator)

SQL*Plus expects you to input an unlabeled PL/SQL block, so you
cannot start with a block label.

You input the PL/SQL block line by line. Ending the block with a
period (.) on a line by itself stores the block in the SQL buffer.

You can save your PL/SQL block in a script file as follows:

SQL> SAVE <filename>

If you want to edit the file, you can use the SQL*Plus line editor. For
instructions, see SQL*Plus User’s Guide and Reference. After editing the
file, you can save it again as follows:

SQL> SAVE <filename> REPLACE

After inputting a PL/SQL block, you need not end it with a period.
Ending the block with a slash (/) on a line by itself stores the block in
the SQL buffer, then runs the block. Once it is stored in the SQL buffer,
you can run the PL/SQL block again, as follows:

SQL> RUN or SQL> /

When the block is finished running, you are returned to the SQL*Plus
prompt. The SQL buffer is not cleared until you start inputting the next
SQL statement or PL/SQL block.

Creating a Script

Loading and Running
a Script

9 – 3Execution Environments

You can use your favorite text editor to create scripts containing
SQL*Plus statements and PL/SQL blocks, subprograms, and/or
packages. In the following example, a PL/SQL block is preceded by
SQL*Plus statements that set up a report:

CLEAR BREAKS

CLEAR COLUMNS

COLUMN ENAME HEADING Name

TTITLE ’CLERICAL STAFF’

DECLARE

 avg_sal NUMBER(7,2);

BEGIN

 SELECT AVG(sal) INTO avg_sal FROM emp;

 IF avg_sal < 1500 THEN

 UPDATE emp SET sal = sal * 1.05 WHERE job = ’CLERK’;

 END IF;

END;

/

SELECT ENAME, SAL FROM EMP WHERE JOB = ’CLERK’;

The two CLEAR statements get rid of any settings left over from a
previous report. The COLUMN statement changes the ENAME column
heading to Name. The TTITLE statement specifies a title that appears at
the top of each page in the report. The semicolon (;) following each
SQL*Plus statement executes that statement. Likewise, the slash (/)
following the PL/SQL block executes that block.

After invoking SQL*Plus, you can load and run a script in one step,
as follows:

SQL> START <filename> or SQL> @<filename>

Your PL/SQL block can take advantage of the SQL*Plus substitution
variable feature. Before running a script, SQL*Plus prompts for the
value of any variable prefixed with an ampersand (&). In the following
example, SQL*Plus prompts for the value of num:

SQL> BEGIN

 2 FOR i IN 1..&num LOOP ...

 ...

 8 END;

 9 /

Enter value for num:

Creating a Stored
Subprogram, Package,
or Trigger

Using Bind Variables

9 – 4 PL/SQL User’s Guide and Reference

To create PL/SQL subprograms, packages, and triggers and store them
permanently in an Oracle database, you use the following SQL
commands:

• CREATE FUNCTION

• CREATE PACKAGE

• CREATE PACKAGE BODY

• CREATE PROCEDURE

• CREATE TRIGGER

When you type any of these commands, SQL*Plus clears the SQL buffer
and enters INPUT mode. In the following example, you input a PL/SQL
procedure, then create and store it in the database by typing a slash:

SQL> CREATE PROCEDURE create_dept (new_name CHAR, new_loc CHAR) AS

 2 BEGIN

 3 INSERT INTO dept

 4 VALUES (deptno_seq.NEXTVAL, new_name, new_loc);

 5 END create_dept;

 6 /

Procedure created.

If SQL*Plus tells you that the subprogram, package, or trigger was
created with compilation errors, you can view them by typing the
SQL*Plus command SHOW ERRORS, as follows:

SQL> SHOW ERRORS

A bind variable is a variable you declare in SQL*Plus, then pass to one or
more PL/SQL programs, which can use it like any other variable. Both
SQL*Plus and PL/SQL can reference the bind variable, and SQL*Plus
can display its value.

To declare a bind variable, you use the SQL*Plus command VARIABLE.
In the following example, you declare a variable of type NUMBER:

VARIABLE return_code NUMBER

Note: If you declare a bind variable with the same name as a PL/SQL
program variable, the latter takes precedence.

To reference a bind variable in PL/SQL, you must prefix its name with a
colon(:), as the following example shows:

:return_code := 0;

IF credit_check_ok(acct_no) THEN

 :return_code := 1;

END IF;

9 – 5Execution Environments

To display the value of a bind variable in SQL*Plus, you use the PRINT
command, as follows:

SQL> PRINT return_code

RETURN_CODE

–––––––––––

 1

In the script below, you declare a bind variable of type REFCURSOR.
(The SQL*Plus datatype REFCURSOR lets you declare cursor variables,
which you can use to return query results from stored subprograms.)
You use the SQL*Plus command SET AUTOPRINT ON to display the
query results automatically.

CREATE PACKAGE emp_data AS

 TYPE EmpRecTyp IS RECORD (

 emp_id NUMBER(4),

 emp_name CHAR(10),

 job_title CHAR(9),

 dept_name CHAR(14),

 dept_loc CHAR(13));

 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;

 PROCEDURE get_staff (dept_no IN NUMBER, emp_cv IN OUT

EmpCurTyp);

END;

/

CREATE PACKAGE BODY emp_data AS

 PROCEDURE get_staff (dept_no IN NUMBER, emp_cv IN OUT

EmpCurTyp) IS

 BEGIN

 OPEN emp_cv FOR

 SELECT empno, ename, job, dname, loc FROM emp, dept

 WHERE emp.deptno = dept_no AND

 emp.deptno = dept.deptno

 ORDER BY empno;

 END;

END;

/

COLUMN EMPNO HEADING Number

COLUMN ENAME HEADING Name

COLUMN JOB HEADING JobTitle

COLUMN DNAME HEADING Department

COLUMN LOC HEADING Location

SET AUTOPRINT ON

VARIABLE cv REFCURSOR

EXECUTE emp_data.get_staff(20, :cv)

Calling Stored
Subprograms

Displaying Output

9 – 6 PL/SQL User’s Guide and Reference

From SQL*Plus, you can call standalone and packaged subprograms
stored in a local or remote database. For example, you might call the
local standalone procedure create_dept, as follows:

SQL> EXECUTE create_dept(’ADVERTISING’, ’NEW YORK’)

This call is equivalent to the following call issued from an anonymous
PL/SQL block:

SQL> BEGIN create_dept(’ADVERTISING’, ’NEW YORK’); END;

In the next example, you use the database link newyork to call the remote
stored procedure raise_salary:

SQL> EXECUTE raise_salary@newyork(7499, 1500)

You can create synonyms to provide location transparency for remote
standalone procedures.

Currently, PL/SQL does not support I/O. However, the package
DBMS_OUTPUT (supplied with Oracle7) allows you to display output
from PL/SQL blocks and subprograms, which makes it easier to test
and debug them. The procedure put_line lets you output information to
a buffer. The SQL*Plus command SET SERVEROUTPUT ON lets you
display the information. For example, suppose you create the following
stored procedure:

CREATE PROCEDURE calc_payroll (payroll IN OUT REAL) AS

 CURSOR c1 IS SELECT sal,comm FROM emp;

BEGIN

 payroll := 0;

 FOR c1rec IN c1 LOOP

 c1rec.comm := NVL(c1rec.comm, 0);

 payroll := payroll + c1rec.sal + c1rec.comm;

 END LOOP;

 /* Display debug info. */

 dbms_output.put_line(’payroll: ’ || TO_CHAR(payroll));

END calc_payroll;

When you issue the following commands, SQL*Plus displays the value
of payroll calculated by the procedure:

SQL> SET SERVEROUTPUT ON

SQL> VARIABLE num NUMBER

SQL> EXECUTE calc_payroll(:num)

For more information about package DBMS_OUTPUT, see Oracle7 Server
Application Developer’s Guide.

Embedding PL/SQL
Blocks

Using Host Variables

Some Examples

9 – 7Execution Environments

Oracle Precompiler Environment

The Oracle Precompilers allow you to embed PL/SQL blocks within
programs written in any of the following high–level languages: Ada, C,
COBOL, FORTRAN, Pascal, and PL/I. Such programs and languages
are called host programs and host languages, respectively.

After writing a program, you precompile the source file. The
precompiler checks the program for syntax errors, then generates a
modified source file, which can be compiled, linked, and executed in the
usual way.

You can embed a PL/SQL block wherever you can embed a SQL
statement; the precompiler treats them alike. To embed a PL/SQL block
in your host program, you must place the block between the keywords
EXEC SQL EXECUTE and END–EXEC, as follows:

EXEC SQL EXECUTE

 BEGIN

 ...

 END;

END–EXEC;

Be sure to follow the keyword END–EXEC with the host–language
statement terminator.

You use host variables to pass values and status codes back and forth
between a host program and an embedded PL/SQL block. You declare
host variables in the program Declare Section using regular host language
syntax. Inside a PL/SQL block, the scope of host variables is global.

Both the host program and the PL/SQL block can set and reference the
value of a host variable. The value of an input host variable is set by the
host program and referenced by Oracle. Conversely, the value of an
output host variable is set by Oracle and referenced by the host program.

All references to host variables in a PL/SQL block must be prefixed with
a colon. That way, the precompiler can tell host variables from PL/SQL
variables and database objects.

The Pro*C program below illustrates the use of host variables in a
PL/SQL block. The program prompts the user for the name of an
employee, then passes the name to an embedded PL/SQL block, which
uses the name to query an Oracle database. Finally, the results of the
query are passed back to the host program, which displays them.

9 – 8 PL/SQL User’s Guide and Reference

–– available online in file EXAMP9

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;

 VARCHAR empname[11];

 VARCHAR jobtype[9];

 VARCHAR hired[9];

 int salary;

 int dept;

 int served_longer;

 int higher_sal;

 int total_in_dept;

 VARCHAR uid[20];

 VARCHAR pwd[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sqlerror();

main()

{

 /* Set up userid and password */

 strcpy (uid.arr,”scott”);

 uid.len = strlen(uid.arr);

 strcpy (pwd.arr,”tiger”);

 pwd.len = strlen(pwd.arr);

 printf(”\n\n\tEmbedded PL/SQL Demo\n\n”);

 printf(”Trying to connect...”);

 /* Check for SQL errors */

 EXEC SQL WHENEVER SQLERROR DO sqlerror();

 /* Connect to Oracle */

 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

 printf(” connected.\n”);

 for (;;) /* Loop indefinitely */

 {

 printf(”\n** Name of employee? (<CR> to quit) ”);

 gets(empname.arr); /* Get the name */

 if (strlen(empname.arr) == 0) /* No name entered, */

 {

 EXEC SQL COMMIT WORK RELEASE; /* so log off Oracle */

 exit(0); /* and exit program */

 }

 empname.len = strlen(empname.arr);

 jobtype.len = 9;

 hired.len = 9;

9 – 9Execution Environments

 /* ––––– Begin PL/SQL block ––––– */

 EXEC SQL EXECUTE

 BEGIN

 SELECT job, hiredate, sal, deptno

 INTO :jobtype, :hired, :salary, :dept FROM emp

 WHERE ename = UPPER(:empname);

 /* Get number of people whose length *

 * of service is longer */

 SELECT COUNT(*) INTO :served_longer FROM emp

 WHERE hiredate < :hired;

 /* Get number of people with a higher salary */

 SELECT COUNT(*) INTO :higher_sal FROM emp

 WHERE sal > :salary;

 /* Get number of people in same department */

 SELECT COUNT(*) INTO :total_in_dept FROM emp

 WHERE deptno = :dept;

 END;

 END–EXEC;

 /* ––––– End PL/SQL block ––––– */

 /* Null–terminate character strings returned by Oracle */

 jobtype.arr[jobtype.len] = ’\0’;

 hired.arr[hired.len] = ’\0’;

 /* Display the information */

 printf(”\n%s’s job is: %s\n”, empname.arr, jobtype.arr);

 printf(”Hired on: %s\n”, hired.arr);

 printf(” %d people have served longer\n”, served_longer);

 printf(”Salary is: %d\n”, salary);

 printf(” %d people have a higher salary\n”, higher_sal);

 printf(”Department number is: %d\n”, dept);

 printf(” %d people in the department\n”, total_in_dept);

 } /* End of loop */

}

void sqlerror()

{

 /* Avoid infinite loop if rollback causes an error */

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf(”\nOracle error detected:\n”);

 /* Print error message and disconnect from Oracle */

 printf(”\n%.70s\n”, sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;

 exit(1);

}

Notice that the host variable empname is assigned a value before the
PL/SQL block is entered and that the other host variables are assigned
values inside the block. When necessary, Oracle converts between its
internal datatypes and standard host–language datatypes.

9 – 10 PL/SQL User’s Guide and Reference

The next Pro*C example shows how two PL/SQL banking transactions
might be implemented:

–– available online in file EXAMP10

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;

 int acct, amount;

 VARCHAR tran_type[10];

 VARCHAR status[65];

 VARCHAR uid[20];

 VARCHAR pwd[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sqlerror();

main()

{

 /* Set up userid and password */

 strcpy (uid.arr,”scott”);

 uid.len=strlen(uid.arr);

 strcpy (pwd.arr,”tiger”);

 pwd.len=strlen(pwd.arr);

 printf(”\n\n\tEmbedded PL/SQL Demo\n\n”);

 printf(”Trying to connect...”);

 /* Check for SQL errors */

 EXEC SQL WHENEVER SQLERROR DO sqlerror();

 /* Connect to Oracle */

 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

 printf(” connected.\n”);

 for (;;) /* Loop indefinitely */

 {

 printf(”\n\n** Account number? (–1 to quit)”);

 scanf(”%d”, &acct);

 if (acct == –1) /* Disconnect from Oracle and */

 { /* exit program if acct is –1 */

 EXEC SQL COMMIT WORK RELEASE;

 exit(0);

 }

 printf(”\n Transaction type? (C)redit or (D)ebit ”);

 scanf(”%s”, &tran_type.arr);

 tran_type.len = 1; /* Only want first character */

9 – 11Execution Environments

 printf(”\n Transaction amount? (in whole dollars) ”);

 scanf(”%d”, &amount);

 /* ––––– Begin PL/SQL block ––––– */

 EXEC SQL EXECUTE

 DECLARE

 old_bal NUMBER(11,2);

 no_account EXCEPTION;

 BEGIN

 :tran_type := UPPER(:tran_type);

 IF :tran_type = ’C’ THEN –– credit the account

 UPDATE accounts SET bal = bal + :amount

 WHERE account_id = :acct;

 IF SQL%ROWCOUNT = 0 THEN –– no rows affected

 RAISE no_account;

 ELSE

 :status := ’Credit complete.’;

 END IF;

 ELSIF :tran_type = ’D’ THEN –– debit the account

 SELECT bal INTO old_bal FROM accounts

 WHERE account_id = :acct;

 IF old_bal >= :amount THEN –– has sufficient funds

 UPDATE accounts SET bal = bal – :amount

 WHERE account_id = :acct;

 :status := ’Debit applied’;

 ELSE

 :status := ’Insufficient funds’;

 END IF;

 ELSE

 :status := :tran_type || ’ is an illegal transaction’;

 END IF;

 COMMIT;

 EXCEPTION

 WHEN NO_DATA_FOUND OR no_account THEN

 :status := ’Nonexistent account’;

 WHEN OTHERS THEN

 :status := ’Error: ’ || SQLERRM(SQLCODE);

 END;

 END–EXEC;

 /* ––––– End the PL/SQL block ––––– */

 status.arr[status.len] = ’\0’; /* null–terminate string */

 printf(”\n\n Status: %s”, status.arr);

 } /* End of loop */

}

Using Indicator
Variables

9 – 12 PL/SQL User’s Guide and Reference

void sqlerror()

{

 /* Avoid infinite loop if rollback causes an error */

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf(”\nOracle error detected:\n”);

 /* Print error message and disconnect from Oracle */

 printf(”\n%.70s\n”, sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;

 exit(1);

}

You can associate any host variable with an optional indicator variable.
An indicator variable is an integer variable that indicates the value or
condition of a host variable. You use indicator variables to assign nulls
to input host variables and to detect nulls or truncated values in output
host variables.

For input host variables, the values your program can assign to an
indicator variable have the following meanings:

–1 Ignoring the value of the host variable, Oracle will assign a null
to the database column.

>= 0 Oracle will assign the value of the host variable to the database
column.

For output host variables, the values Oracle can assign to an indicator
variable have the following meanings:

–2 Oracle assigned a truncated column value to the host variable
but could not store the original length of the column value in
the indicator variable because the number was too large.

–1 The database column contains a null, so the value of the host
variable is indeterminate.

0 Oracle assigned an intact column value to the host variable.

> 0 Oracle assigned a truncated column value to the host variable
and stored the original length of the column value in the indi-
cator variable.

An indicator variable must be defined in the Declare Section as a 2–byte
integer and, in SQL statements, must be prefixed with a colon and
appended to its host variable unless you use the keyword INDICATOR,
as follows:

:host_variable INDICATOR :indicator_variable

9 – 13Execution Environments

A host language needs indicator variables because it cannot manipulate
nulls. PL/SQL meets this need by allowing an embedded PL/SQL block
to accept nulls from the host program and return nulls or truncated
values to it.

In the following Pro*COBOL example, the PL/SQL block uses an
indicator variable to return a null status code to the host program:

EXEC SQL EXECUTE

BEGIN

 ...

 SELECT ENAME, COMM INTO :MY–ENAME, :MY–COMM:COMM–IND FROM EMP

 WHERE EMPNO = :MY–EMPNO

END;

END–EXEC.

MOVE MY–COMM TO MY–COMM–OUT.

DISPLAY ”Commission: ”

 WITH NO ADVANCING.

IF COMM–IND = –1

* If the value returned by an indicator variable is –1,

* its output host variable is null.

 DISPLAY ”N/A”

ELSE

 DISPLAY MY–COMM–OUT.

Inside a PL/SQL block, an indicator variable must be prefixed with a
colon and appended to its host variable.

You cannot refer to an indicator variable by itself. Furthermore, if you
refer to a host variable with its indicator variable, you must always refer
to it that way in the same block. In the next example, because the host
variable appears with its indicator variable in the SELECT statement, it
must also appear that way in the IF statement:

EXEC SQL EXECUTE

DECLARE

 ...

 status_unknown EXCEPTION;

BEGIN

 ...

 SELECT ename, job INTO :my_ename, :my_job:job_ind FROM emp

WHERE empno = :my_empno;

 IF :my_job:job_ind IS NULL THEN

 RAISE status_unknown;

 END IF;

 ...

END;

END–EXEC;

Nulls

Truncated Values

9 – 14 PL/SQL User’s Guide and Reference

Although you cannot refer directly to indicator variables inside a
PL/SQL block, PL/SQL checks their values upon entering the block and
sets their values correctly upon exiting the block.

Upon entering a block, if an indicator variable has a value of –1,
PL/SQL assigns a null to the host variable. Upon exiting the block, if a
host variable is null, PL/SQL assigns a value of –1 to the indicator
variable. In the following example, the exception name_missing is raised
if the indicator variable ename_ind had a value of –1 before the PL/SQL
block was entered:

EXEC SQL EXECUTE

DECLARE

 ...

 name_missing EXCEPTION;

BEGIN

 ...

 IF :my_ename:ename_ind IS NULL THEN

 RAISE name_missing;

 END IF;

 ...

EXCEPTION

 WHEN name_missing THEN

 ...

END;

END–EXEC;

PL/SQL does not raise an exception when a truncated string value is
assigned to a host variable. However, if you use an indicator variable,
PL/SQL sets it to the original length of the string. In the following
example, the host program will be able to tell, by checking the value of
ename_ind, if a truncated value was assigned to my_ename:

EXEC SQL EXECUTE

DECLARE

 new_ename CHAR(10);

 ...

BEGIN

 ...

 :my_ename:ename_ind := new_ename;

 ...

END;

END–EXEC;

Using the VARCHAR
Pseudotype

9 – 15Execution Environments

You can use the VARCHAR pseudotype to declare variable–length
character strings. (A pseudotype is a datatype not native to your host
language.) VARCHAR variables have a 2–byte length field followed by a
string field of up to 65533 bytes. For example, the Pro*C Precompiler
expands the declaration

EXEC SQL BEGIN DECLARE SECTION;

 VARCHAR my_ename[10]

EXEC SQL END DECLARE SECTION;

into the following data structure:

struct {

 unsigned short len;

 unsigned char arr[10];

} my_ename;

To get the length of a VARCHAR, simply refer to its length field. You
need not use a string function or character–counting algorithm.

Oracle automatically sets the length field of a VARCHAR output host
variable. However, to use a VARCHAR output host variable in your
PL/SQL block, you must initialize the length field before entering
the PL/SQL block. So, set the length field to the declared (maximum)
length of the VARCHAR, as shown in the following Pro*C example:

EXEC SQL BEGIN DECLARE SECTION;

 int my_empno;

 VARCHAR my_ename[10] /* declare variable–length string */

 float my_sal;

 ...

EXEC SQL END DECLARE SECTION;

 ...

 my_ename.len = 10; /* initialize length field */

 EXEC SQL EXECUTE

 BEGIN

 SELECT ename, sal INTO :my_ename, :my_sal FROM emp

 WHERE empno = :my_empno;

 ...

 END;

 END–EXEC;

Using the DECLARE
TABLE Statement

Using the SQLCHECK
Option

Using Dynamic SQL

9 – 16 PL/SQL User’s Guide and Reference

If an embedded PL/SQL block refers to a database table that does not
yet exist, the precompiler generates an error. To avoid such errors, you
can use the DECLARE TABLE statement to tell the precompiler what the
table will look like. In the following Pro*C example, you declare
the dept table:

EXEC SQL DECLARE dept TABLE(

 deptno NUMBER(2),

 dname VARCHAR2(14),

 loc VARCHAR2(13));

If you use DECLARE TABLE to define a table that already exists, the
precompiler uses your definition, ignoring the one in the Oracle data
dictionary. Note that you cannot use the DECLARE TABLE statement
inside a PL/SQL block.

The Oracle Precompilers can help you debug a program by checking the
syntax and semantics of embedded SQL statements and PL/SQL blocks.
You control the level of checking by entering the SQLCHECK option
inline or on the command line. You can specify the following values
for SQLCHECK:

• SEMANTICS

• SYNTAX

• NONE

However, if you embed PL/SQL blocks in your program, you must
specify SQLCHECK=SEMANTICS. When SQLCHECK=SEMANTICS,
the precompiler checks the syntax and semantics of SQL data
manipulation statements and PL/SQL blocks.

The precompiler gets information needed for the semantic check by
using embedded DECLARE TABLE statements or by connecting to
Oracle and accessing the data dictionary. So, unless every database
table referenced in a SQL statement or PL/SQL block is defined by a
DECLARE TABLE statement., you must specify the option USERID on
the command line. For more information see Programmer’s Guide to the
Oracle Precompilers.

Unlike static SQL statements, dynamic SQL statements are not
embedded in your source program. Instead, they are stored in character
strings input to (or built by) the program at run time. For example, they
might be entered interactively or read from a file.

The Oracle Precompilers treat a PL/SQL block like a single SQL
statement. So, like a SQL statement, a PL/SQL block can be stored in a
string host variable for processing by dynamic SQL commands.

With Method 1

With Method 2

9 – 17Execution Environments

However, recall from Chapter 2 that you cannot use single–line
comments in a PL/SQL block that will be processed dynamically.
Instead, use multi–line comments.

Following is a brief look at how PL/SQL is used with dynamic SQL
Methods 1, 2, and 4. For more information, see Programmer’s Guide to the
Oracle Precompilers.

If your PL/SQL block contains no host variables, you can use Method 1
to execute the PL/SQL string in the usual way. In the following Pro*C
example, you prompt the user for a PL/SQL block, store it in a string
host variable named user_block, then execute it:

main()

{

 printf(”\nEnter a PL/SQL block: ”);

 scanf(”%s”, user_block);

 EXEC SQL EXECUTE IMMEDIATE :user_block;

When you store a PL/SQL block in a string host variable, omit the
keywords EXEC SQL EXECUTE, the keyword END–EXEC, and the
statement terminator.

If your PL/SQL block contains a known number of input and output
host variables, you can use dynamic SQL Method 2 to prepare and
execute the PL/SQL string in the usual way. In the Pro*C example
below, the PL/SQL block uses one host variable named my_empno. The
program prompts the user for a PL/SQL block, stores it in a string host
variable named user_block, then prepares and executes the block:

main()

{

 printf(”\nEnter a PL/SQL block: ”);

 scanf(”%s”, user_block);

 EXEC SQL PREPARE my_block FROM :user_block;

 EXEC SQL EXECUTE my_block USING :my_empno;

Note that my_block is an identifier used by the precompiler, not a host or
program variable.

The precompiler treats all PL/SQL host variables as input host variables
whether they serve as input or output host variables (or both) inside the
PL/SQL block. So, you must put all host variables in the USING clause.

When the PL/SQL string is executed, host variables in the USING clause
replace corresponding placeholders in the prepared string. Although the
precompiler treats all PL/SQL host variables as input host variables,
values are assigned correctly. Input (program) values are assigned to
input host variables, and output (column) values are assigned to output
host variables.

With Method 4

Mimicking
Dynamic SQL

9 – 18 PL/SQL User’s Guide and Reference

If your PL/SQL block contains an unknown number of input or output
host variables, you must use Method 4. To do so, you set up a bind
descriptor for all the input and output host variables. Executing the
DESCRIBE BIND VARIABLES statement stores information about input
and output host variables in the bind descriptor.

Without dynamic SQL, you cannot use PL/SQL variables in a query to
specify database columns. Consider the SELECT statement below, which
does not assign a value from the ename database column to the variable
my_ename. Instead, if the emp table has a column named colx, a value
from that column is assigned to my_ename. If the table has no such
column, the value of PL/SQL variable colx (that is, the string value
’ename’) is assigned to my_ename.

DECLARE

 colx VARCHAR2(10);

 my_ename VARCHAR2(10);

 ...

BEGIN

 colx := ’ename’;

 SELECT colx INTO my_ename FROM emp WHERE ...

 ...

END;

However, you can mimic dynamic SQL by using the DECODE function.
In the following example, the data returned depends on the value
of my_column:

DECLARE

 my_column VARCHAR2(10);

 my_data emp.ename%TYPE;

BEGIN

 ...

 my_column := ’hiredate’;

 ...

 SELECT DECODE(my_column, ’ename’, ename, ’hiredate’,

 TO_CHAR(hiredate, ’ddmmyy’), ’empno’, empno)

 INTO my_data FROM emp WHERE ... ;

END;

The value that DECODE returns is always forced to the datatype of the
first result expression. In this example, the first result expression is
ename, which has datatype VARCHAR2, so the returned value is
forced to type VARCHAR2. Thus, my_data is correctly declared
as emp.ename%TYPE.

You can use this technique in many environments. For example, it works
in SQL*Plus and Oracle Forms.

Calling Stored
Subprograms

9 – 19Execution Environments

To call a stored subprogram from a host program, you must use an
anonymous PL/SQL block. In the following example, you call the
standalone procedure create_dept:

EXEC SQL EXECUTE

BEGIN

 create_dept(:number, :name, :location);

END;

END–EXEC;

Notice that the actual parameters number, name, and location are host
variables.

In the next example, the procedure create_dept is part of a package
named emp_actions, so you must use dot notation to qualify the
procedure call:

EXEC SQL EXECUTE

BEGIN

 emp_actions.create_dept(:number, :name, :location);

END;

END–EXEC;

OCI Environment

The OCI processes SQL statements and PL/SQL blocks similarly with
one exception. Inside a PL/SQL block, you must use the OBNDRA,
OBINDPS, or OBNDRV call, not ODEFIN or ODEFINPS, to bind all
placeholders in a SQL or PL/SQL statement. This holds for both input
and output placeholders. The ODEFIN and ODEFINPS calls are not
supported for PL/SQL blocks.

In PL/SQL, all queries must have an INTO clause containing
placeholders (host variables and/or PL/SQL variables) that correspond
to items in the select list. For example, the following SELECT statement
is not valid inside a PL/SQL block:

SELECT ename, sal FROM emp;

Instead, it must be coded as follows:

SELECT ename, sal INTO :my_ename, :my_sal FROM emp;

In the last statement, my_ename and my_sal are SQL placeholders that
correspond to the ename and sal columns in the select list. You must bind
these placeholders using the OBNDRA, OBINDPS, or OBNDRV call.
You can bind host arrays to PL/SQL tables using the OBNDRA or
OBINDPS call.

A Complete Example

9 – 20 PL/SQL User’s Guide and Reference

Also, you must use named placeholders such as my_ename in PL/SQL
blocks. Numbered placeholders such as 10 and the corresponding
OBNDRN call are not supported for PL/SQL blocks.

The OCI program below, which is written in C, shows how two PL/SQL
banking transactions might be implemented. You can find listings of the
header files ocidfn.h and ocidem.h, in Programmer’s Guide to the Oracle
Call Interface.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <oratypes.h>

#include <ocidfn.h>

#ifdef __STDC__

#include <ociapr.h>

#else

#include <ocikpr.h>

#endif

#include <ocidem.h>

Cda_Def cda;

Lda_Def lda;

ub1 hda[256];

text sqlstm[2048];

void error_handler();

main()

{

 int acct_number;

 text trans_type[1];

 float trans_amt;

 text status[80];

 if (olog(&lda, hda, ”scott/tiger”, –1, (text *) 0, –1,

 (text *) 0, –1, OCI_LM_DEF))

 {

 printf(”Connect failed.\n”);

 exit(EXIT_FAILURE);

 }

 if (oopen(&cda, &lda, (text *) 0, –1, –1, (text *) 0, –1))

 {

 printf(”Error opening cursor. Exiting...\n”);

 exit(EXIT_FAILURE);

 }

 printf(”\nConnected to Oracle.\n”);

 /* Construct a PL/SQL block. */

 strcpy(sqlstm, ”DECLARE\

 old_bal NUMBER(9,2);\

 err_msg CHAR(70);\

 nonexistent EXCEPTION;\

9 – 21Execution Environments

 BEGIN\

 :xtrans_type := UPPER(:xtrans_type);\

 IF :xtrans_type = ’C’ THEN\

 UPDATE ACCTS SET BAL = BAL + :xtrans_amt\

 WHERE ACCTID = :xacct_number;\

 IF SQL%ROWCOUNT = 0 THEN\

 RAISE nonexistent;\

 ELSE\

 :xstatus := ’Credit applied’;\

 END IF;\

 ELSIF :xtrans_type = ’D’ THEN\

 SELECT BAL INTO old_bal FROM accts\

 WHERE acctid = :xacct_number;\

 IF old_bal = :xtrans_amt THEN\

 UPDATE accts SET bal = bal – :xtrans_amt\

 WHERE acctid = :xacct_number;\

 :xstatus := ’Debit applied’;\

 ELSE\

 :xstatus := ’Insufficient funds’;\

 END IF;\

 ELSE\

 :xstatus := ’Invalid type: ’ || :xtrans_type;\

 END IF;\

 COMMIT;\

 EXCEPTION\

 WHEN NO_DATA_FOUND OR nonexistent THEN\

 :xstatus := ’Nonexistent account’;\

 WHEN OTHERS THEN\

 err_msg := SUBSTR(SQLERRM, 1, 70);\

 :xstatus := ’Error: ’ || err_msg;\

 END;”);

 /* Parse the PL/SQL block. */

 if (oparse(&cda, sqlstm, –1, 0, 2))

 {

 error_handler(&cda);

 exit(EXIT_FAILURE);

 }

 /* Bind the status variable. */

 if (obndrv(&cda,

 ”:xstatus”,

 –1,

 status,

 70,

 5,

 –1,

 (text *) 0,

 (text *) 0, –1, –1))

9 – 22 PL/SQL User’s Guide and Reference

 {

 error_handler(&cda);

 exit(EXIT_FAILURE);

 }

 /* Bind the transaction type variable. */

 if (obndrv(&cda,

 ”:xtrans_type”,

 –1,

 trans_type,

 1,

 1,

 –1,

 (text *) 0,

 (text *) 0, –1, –1))

 {

 error_handler(&cda);

 exit(EXIT_FAILURE);

 }

 /* Bind the account number. */

 if (obndrv(&cda,

 ”:xacct_number”,

 –1,

 &acct_number,

 sizeof (int),

 3,

 –1,

 (text *) 0,

 (text *) 0, –1, –1))

 {

 error_handler(&cda);

 exit(EXIT_FAILURE);

 }

 /* Bind the transaction amount variable. */

 if (obndrv(&cda,

 ”:xtrans_amt”,

 –1,

 &trans_amt,

 sizeof (float),

 4,

 –1,

 (text *) 0,

 (text *) 0, –1, –1))

 {

 error_handler(&cda);

 exit(EXIT_FAILURE);

 }

Calling Stored
Subprograms

9 – 23Execution Environments

 for (;;)

 {

 printf(”\nAccount number: ”);

 scanf(”%d”, &acct_number);

 fflush(stdin);

 if (acct_number == 0)

 break;

 printf(”Transaction type (D or C): ”);

 scanf(”%c”, trans_type);

 fflush(stdin);

 printf(”Transaction amount: ”);

 scanf(”%f”, &trans_amt);

 fflush(stdin);

 /* Execute the block. */

 if (oexec(&cda))

 error_handler(&cda);

 printf(”%s\n”, status);

 }

 printf(”Have a good day!\n”);

 exit(EXIT_SUCCESS);

}

void

error_handler(cursor)

 Cda_Def *cursor;

{

 sword n;

 text msg[512];

 printf(”\n–– ORACLE error––\n”);

 printf(”\n”);

 n = oerhms(&lda, cursor–>rc, msg, (sword) sizeof msg);

 fprintf(stderr, ”%s\n”, msg);

 if (cursor–>fc > 0)

 fprintf(stderr, ”Processing OCI function %s”,

 oci_func_tab[cursor–>fc]);

}

To call a stored subprogram from an OCI program, you must use an
anonymous PL/SQL block. In the following C example, a call to the
standalone procedure raise_salary is copied into the string variable
plsql_block:

strcpy(plsql_block, ”BEGIN raise_salary(:emp_id, :amount); END;”);

Then, the PL/SQL string can be bound and executed like a SQL
statement.

9 – 24 PL/SQL User’s Guide and Reference

C H A P T E R

10

T

10 – 1Language Elements

Language Elements

Grammar, which knows how to control even kings.

Molière

his chapter is a quick reference guide to PL/SQL syntax; it shows
you how commands, parameters, and other language elements are
sequenced to form PL/SQL statements. Also, to save you time and
trouble, it provides usage notes and short examples.

10 – 2 PL/SQL User’s Guide and Reference

The following sections are arranged alphabetically for easy reference:

Assignment Statement LOOP Statement
Blocks NULL Statement
CLOSE Statement OPEN Statement
Comments OPEN–FOR Statement
COMMIT Statement Packages
Constants and Variables PL/SQL Table Attributes
Cursor Attributes PL/SQL Tables
Cursors Procedures
Cursor Variables RAISE Statement
DELETE Statement Records
EXCEPTION_INIT Pragma RETURN Statement
Exceptions ROLLBACK Statement
EXIT Statement %ROWTYPE Attribute
Expressions SAVEPOINT Statement
FETCH Statement SELECT INTO Statement
Functions SET TRANSACTION Statement
GOTO Statement SQL Cursor
IF Statement SQLCODE Function
INSERT Statement SQLERRM Function
Literals %TYPE Attribute
LOCK TABLE Statement UPDATE Statement

Each of these sections has some or all of the following subsections:

Description
Syntax
Keyword and Parameter Description
Usage Notes
Examples
Related Topics

The syntax of PL/SQL is described using a simple variant of
Backus–Naur Form (BNF). BNF is a metalanguage used mainly to define
the syntax of computer languages. If you are unfamiliar with BNF, do
not worry. The next section tells you all you need to know.

10 – 3Language Elements

Reading Syntax Definitions

This chapter is not meant to provide a formal language definition. So, it
defines syntax using a BNF–style grammar less concise but more
readable than BNF.

When you are unsure of the syntax to use in a PL/SQL statement, trace
through its syntax definition, reading from left to right and top to
bottom. You can verify or construct any PL/SQL statement that way.

Syntax definitions use the following symbols and lexical conventions:

This symbol means “is defined as.”

Brackets enclose optional items.

Braces enclose items only one of which is required.

A vertical bar separates alternatives within brackets
or braces.

An ellipsis shows that the preceding syntactic element
can be repeated.

Lower case denotes a syntactic element for which you
must substitute a literal, identifier, or construct,
whichever is appropriate.

Upper case denotes PL/SQL keywords, which must
be spelled as shown but can be entered in lower or
mixed case.

Punctuation other than brackets, braces, vertical bars,
and ellipses must be entered as shown.

::=

[]

{ }

|

...

lower case

UPPER CASE

punctuation

Description

Syntax

Keyword and
Parameter Description

cursor_variable_name

host_cursor_variable_
name

host_variable_name

indicator_name

parameter_name

10 – 4 PL/SQL User’s Guide and Reference

Assignment Statement

An assignment statement sets the current value of a variable, field,
parameter, or element. The statement consists of an assignment target
followed by the assignment operator and an expression. When the
statement is executed, the expression is evaluated and the resulting
value is stored in the target. For more information, see “Assignments”
on page 2 – 32.

assignment_statement ::=

{ cursor_variable_name

 | :host_cursor_variable_name

 | :host_variable_name[:indicator_name]

 | parameter_name

 | plsql_table_name(index)

 | record_name.field_name

 | variable_name} := expression;

This identifies a PL/SQL cursor variable previously declared within the
current scope. Only the value of another cursor variable can be assigned
to a cursor variable.

This identifies a cursor variable declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. The datatype of the host
cursor variable is compatible with the return type of any PL/SQL cursor
variable. Host variables must be prefixed with a colon.

This identifies a variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. Host variables must be prefixed
with a colon. For more information, see “Using Host Variables” on
page 9 – 7.

This identifies an indicator variable declared in a PL/SQL host
environment and passed to PL/SQL. Indicator variables must be
prefixed with a colon. An indicator variable “indicates” the value or
condition of its associated host variable. For example, in the Oracle
Precompiler environment, indicator variables let you detect nulls or
truncated values in output host variables. For more information, see
“Using Indicator Variables” on page 9 – 12.

This identifies a formal OUT or IN OUT parameter of the subprogram in
which the assignment statement appears.

plsql_table_name

index

record_name.field_name

variable_name

expression

Usage Notes

10 – 5Language Elements

This identifies a PL/SQL table previously declared within the
current scope.

This is a numeric expression that must yield a value of type
BINARY_INTEGER or a value implicitly convertible to that datatype.
For more information, see “Datatype Conversion” on page 2 – 20.

This identifies a field in a user–defined or %ROWTYPE record
previously declared within the current scope.

This identifies a PL/SQL variable previously declared within the
current scope.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the assignment statement is executed, the expression
is evaluated and the resulting value is stored in the assignment target.
The value and target must have compatible datatypes.

By default, unless a variable is initialized in its declaration, it is
initialized to NULL every time a block or subprogram is entered. So,
never reference a variable before you assign it a value.

You cannot assign nulls to a variable defined as NOT NULL. If you try,
PL/SQL raises the predefined exception VALUE_ERROR.

Only the values TRUE and FALSE and the non–value NULL can be
assigned to a Boolean variable. When applied to an expression, the
relational operators return a Boolean value. So, the following
assignment is legal:

DECLARE

 out_of_range BOOLEAN;

 ...

BEGIN

 ...

 out_of_range := (salary < minimum) OR (salary > maximum);

As the next example shows, you can assign the value of an expression to
a specific field in a record:

DECLARE

 emp_rec emp%ROWTYPE;

BEGIN

 ...

 emp_rec.sal := current_salary + increase;

Examples

Related Topics

10 – 6 PL/SQL User’s Guide and Reference

Moreover, you can assign values to all fields in a record at once. PL/SQL
allows aggregate assignment between entire records if their declarations
refer to the same cursor or table. For example, the following assignment
is legal:

DECLARE

 emp_rec1 emp%ROWTYPE;

 emp_rec2 emp%ROWTYPE;

 dept_rec dept%ROWTYPE;

BEGIN

 ...

 emp_rec1 := emp_rec2;

The next assignment is illegal because you cannot use the assignment
operator to assign a list of values to a record:

dept_rec := (60, ’PUBLICITY’, ’LOS ANGELES’);

Using the following syntax, you can assign the value of an expression to
a specific element in a PL/SQL table:

plsql_table_name(index) := expression;

In the following example, you assign the uppercase value of last_name to
the third row in PL/SQL table ename_tab:

ename_tab(3) := UPPER(last_name);

Several examples of assignment statements follow:

wages := hours_worked * hourly_salary;

country := ’France’;

costs := labor + supplies;

done := (count > 100);

dept_rec.loc := ’BOSTON’;

comm_tab(5) := sales * 0.15;

 Constants and Variables, Expressions, SELECT INTO Statement

Description

Syntax

Keyword and
Parameter Description

label_name

10 – 7Language Elements

Blocks

The basic program unit in PL/SQL is the block. A PL/SQL block is
defined by the keywords DECLARE, BEGIN, EXCEPTION, and END.
These keywords partition the PL/SQL block into a declarative part, an
executable part, and an exception–handling part. Only the executable
part is required.

You can nest a block within another block wherever you can place an
executable statement. For more information, see “Block Structure” on
page 1 – 3 and “Scope and Visibility” on page 2 – 30.

plsql_block ::=

[<<label_name>>]

[DECLARE

 object_declaration [object_declaration] ...

 [subprogram_declaration [subprogram_declaration] ...]]

BEGIN

 seq_of_statements

[EXCEPTION

 exception_handler [exception_handler] ...]

END [label_name];

object_declaration ::=

{ constant_declaration

 | cursor_declaration

 | cursor_variable_declaration

 | exception_declaration

 | plsql_table_declaration

 | record_declaration

 | variable_declaration}

subprogram_declaration ::=

{function_declaration | procedure_declaration}

This is an undeclared identifier that optionally labels a PL/SQL block. If
used, label_name must be enclosed by double angle brackets and must
appear at the beginning of the block. Optionally, label_name can also
appear at the end of the block.

DECLARE

constant_declaration

cursor_declaration

cursor_variable_
declaration

exception_declaration

plsql_table_declaration

10 – 8 PL/SQL User’s Guide and Reference

A global identifier declared in an enclosing block can be redeclared
in a sub–block, in which case the local declaration prevails and the
sub–block cannot reference the global identifier. To reference the global
identifier, you must use a block label to qualify the reference, as the
following example shows:

<<outer>>

DECLARE

 x INTEGER;

BEGIN

 ...

 DECLARE

 x INTEGER;

 BEGIN

 ...

 IF x = outer.x THEN –– refers to global x

 ...

 END IF;

 END;

END outer;

This keyword signals the start of the declarative part of a PL/SQL block,
which contains local declarations. Objects declared locally exist only
within the current block and all its sub–blocks and are not visible to
enclosing blocks. The declarative part of a PL/SQL block is optional. It
is terminated implicitly by the keyword BEGIN, which introduces the
executable part of the block.

PL/SQL does not allow forward references. So, you must declare an
object before referencing it in other statements, including other
declarative statements. Also, you must declare subprograms at the end
of a declarative section after all other program objects.

This construct declares a constant. For the syntax of constant_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares an explicit cursor. For the syntax of
cursor_declaration, see “Cursors” on page 10 – 23.

This construct declares a cursor variable. For the syntax of
cursor_variable_declaration, see “Cursor Variables” on page 10 – 27.

This construct declares an exception. For the syntax of
exception_declaration, see “Exceptions” on page 10 – 36.

This construct declares a PL/SQL table. For the syntax of
plsql_table_declaration, see “PL/SQL Tables” on page 10 – 82.

record_declaration

variable_declaration

function_declaration

procedure_declaration

BEGIN

seq_of_statements

10 – 9Language Elements

This construct declares a user–defined record. For the syntax of
record_declaration, see “Records” on page 10 – 93.

This construct declares a variable. For the syntax of variable_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares a function. For the syntax of function_declaration,
see “Functions” on page 10 – 51.

This construct declares a procedure. For the syntax of
procedure_declaration, see “Procedures” on page 10 – 87.

This keyword signals the start of the executable part of a PL/SQL block,
which contains executable statements. The executable part of a PL/SQL
block is required. That is, a block must contain at least one executable
statement. The NULL statement meets this requirement.

This represents a sequence of executable (not declarative) statements,
which can include SQL statements and PL/SQL blocks (sometimes
called block statements). The syntax of seq_of_statements follows:

seq_of_statements ::=

statement [statement] ...

Statements are used to create algorithms. Besides SQL statements,
PL/SQL has flow–of–control and error–handling statements. PL/SQL
statements are free format. That is, they can continue from line to line,
providing you do not split keywords, delimiters, or literals across lines.
A semicolon (;) must terminate every PL/SQL statement. The syntax of
statement follows:

statement ::=

[<<label_name>>]

{ assignment_statement

 | exit_statement

 | goto_statement

 | if_statement

 | loop_statement

 | null_statement

 | plsql_block

 | raise_statement

 | return_statement

 | sql_statement}

EXCEPTION

exception_handler

END

10 – 10 PL/SQL User’s Guide and Reference

PL/SQL supports a subset of SQL statements that includes data
manipulation, cursor control, and transaction control statements but
excludes data definition and data control statements such as ALTER,
CREATE, GRANT, and REVOKE. The syntax of sql_statement follows:

sql_statement ::=

{ close_statement

 | commit_statement

 | delete_statement

 | fetch_statement

 | insert_statement

 | lock_table_statement

 | open_statement

 | open–for_statement

 | rollback_statement

 | savepoint_statement

 | select_statement

 | set_transaction_statement

 | update_statement}

This keyword signals the start of the exception–handling part of a
PL/SQL block. When an exception is raised, normal execution of the
block stops and control transfers to the appropriate exception handler.
After the exception handler completes, execution proceeds with the
statement following the block.

If there is no exception handler for the raised exception in the current
block, control passes to the enclosing block. This process repeats until an
exception handler is found or there are no more enclosing blocks. If
PL/SQL can find no exception handler for the exception, execution
stops and an unhandled exception error is returned to the host
environment. For more information, see Chapter 6.

This construct associates an exception with a sequence of statements,
which is executed when that exception is raised. For the syntax of
exception_handler, see “Exceptions” on page 10 – 36.

This keyword signals the end of a PL/SQL block. It must be the last
keyword in a block. Neither the END IF in an IF statement nor the END
LOOP in a LOOP statement can substitute for the keyword END.

END does not signal the end of a transaction. Just as a block can span
multiple transactions, a transaction can span multiple blocks.

Example

Related Topics

10 – 11Language Elements

The following PL/SQL block declares several variables and constants,
then calculates a ratio using values selected from a database table:

–– available online in file EXAMP11

DECLARE

 numerator NUMBER;

 denominator NUMBER;

 the_ratio NUMBER;

 lower_limit CONSTANT NUMBER := 0.72;

 samp_num CONSTANT NUMBER := 132;

BEGIN

 SELECT x, y INTO numerator, denominator FROM result_table

 WHERE sample_id = samp_num;

 the_ratio := numerator/denominator;

 IF the_ratio > lower_limit THEN

 INSERT INTO ratio VALUES (samp_num, the_ratio);

 ELSE

 INSERT INTO ratio VALUES (samp_num, –1);

 END IF;

 COMMIT;

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 INSERT INTO ratio VALUES (samp_num, 0);

 COMMIT;

 WHEN OTHERS THEN

 ROLLBACK;

END;

Constants and Variables, Exceptions, Functions, Procedures

Description

Syntax

Keyword and
Parameter Description

cursor_name

cursor_variable_name

host_cursor_variable_
name

Usage Notes

Example

Related Topics

10 – 12 PL/SQL User’s Guide and Reference

CLOSE Statement

The CLOSE statement allows resources held by an open cursor or cursor
variable to be reused. No more rows can be fetched from a closed cursor
or cursor variable. For more information, see “Managing Cursors” on
page 5 – 9.

close_statement ::=

CLOSE { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name};

This identifies an explicit cursor previously declared within the current
scope and currently open.

This identifies a PL/SQL cursor variable (or parameter) previously
declared within the current scope and currently open.

This identifies a cursor variable declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. The datatype of the host
cursor variable is compatible with the return type of any PL/SQL cursor
variable. Host variables must be prefixed with a colon.

Once a cursor or cursor variable is closed, you can reopen it using the
OPEN or OPEN–FOR statement, respectively. If you reopen a cursor
without closing it first, PL/SQL raises the predefined exception
CURSOR_ALREADY_OPEN. However, you need not close a cursor
variable before reopening it.

If you try to close an already–closed or never–opened cursor or cursor
variable, PL/SQL raises the predefined exception INVALID_CURSOR.

In the following example, after the last row is fetched and processed,
you close the cursor variable emp_cv:

LOOP

 FETCH emp_cv INTO emp_rec;

 EXIT WHEN emp_cv%NOTFOUND;

 ... –– process data record

END LOOP;

/* Close cursor variable. */

CLOSE emp_cv;

FETCH Statement, OPEN Statement, OPEN–FOR Statement

Description

Syntax

Usage Notes

Examples

10 – 13Language Elements

Comments

Comments describe the purpose and use of code segments and so
promote readability. PL/SQL supports two comment styles: single–line
and multi–line. Single–line comments begin with a double
hyphen (– –) anywhere on a line and extend to the end of the line.
Multi–line comments begin with a slash–asterisk (/*), end with an
asterisk–slash (*/), and can span multiple lines. For more information,
see “Comments” on page 2 – 8.

comment ::=

{–– text | /* text */}

Comments can appear within a statement at the end of a line. However,
you cannot nest comments.

You cannot use single–line comments in a PL/SQL block that will be
processed dynamically by an Oracle Precompiler program because
end–of–line characters are ignored. As a result, single–line comments
extend to the end of the block, not just to the end of a line. Instead, use
multi–line comments.

While testing or debugging a program, you might want to disable a line
of code. The following example shows how you can “comment–out”
the line:

–– UPDATE dept SET loc = my_loc WHERE deptno = my_deptno;

You can use multi–line comment delimiters to comment–out whole
sections of code.

The following examples show various comment styles:

–– compute the area of a circle

area := pi * radius**2; –– pi equals 3.14159

/* Compute the area of a circle. */

area := pi * radius**2; /* pi equals 3.14159 */

/*

 The following line computes the area of a circle using pi,

 which is the ratio between the circumference and diameter.

 Pi is an irrational number, meaning that it cannot be

 expressed as the ratio between two integers.

*/

area := pi * radius**2;

Description

Syntax

Keyword and
Parameter Description

WORK

COMMENT

Usage Notes

10 – 14 PL/SQL User’s Guide and Reference

COMMIT Statement

The COMMIT statement explicitly makes permanent any changes made
to the database during the current transaction. Changes made to the
database are not considered permanent until they are committed. A
commit also makes the changes visible to other users. For more
information, see “Processing Transactions” on page 5 – 39.

commit_statement ::=

COMMIT [WORK] [COMMENT ’text’];

This keyword is optional and has no effect except to improve readability.

This keyword specifies a comment to be associated with the current
transaction and is typically used with distributed transactions. The text
must be a quoted literal no more than 50 characters long.

The COMMIT statement releases all row and table locks. It also erases
any savepoints you marked since the last commit or rollback. Until your
changes are committed, the following conditions hold:

• You can see the changes when you query the tables you modified,
but other users cannot see the changes.

• If you change your mind or need to correct a mistake, you can use
the ROLLBACK statement to roll back (undo) the changes.

If you commit while a cursor that was declared using FOR UPDATE is
open, a subsequent fetch on that cursor raises an exception. The cursor
remains open, however, so you should close it. For more information,
see “Using FOR UPDATE” on page 5 – 45.

When a distributed transaction fails, the text specified by COMMENT
helps you diagnose the problem. If a distributed transaction is ever in
doubt, Oracle stores the text in the data dictionary along with the
transaction ID. For more information about distributed transactions, see
Oracle7 Server Concepts.

Related Topics

10 – 15Language Elements

PL/SQL does not support the FORCE clause, which, in SQL, manually
commits an in–doubt distributed transaction. For example, the following
COMMIT statement is illegal:

COMMIT FORCE ’23.51.54’; –– illegal

With embedded SQL, the optional RELEASE parameter is allowed after
COMMIT WORK. The keyword RELEASE acts like a “disconnect”
statement, which logs you off the database once your transaction is
committed. PL/SQL does not support data control statements such as
CONNECT, GRANT, or REVOKE. Therefore, it does not support the
RELEASE parameter.

ROLLBACK Statement, SAVEPOINT Statement

Description

Syntax

Keyword and
Parameter Description

constant_name

CONSTANT

record_name.field_name

scalar_type_name

10 – 16 PL/SQL User’s Guide and Reference

Constants and Variables

You can declare constants and variables in the declarative part of any
PL/SQL block, subprogram, or package. Declarations allocate storage
space for a value, specify its datatype, and name the storage location so
that you can reference it. Declarations can also assign an initial value
and impose the NOT NULL constraint. For more information, see
“Declarations” on page 2 – 22.

constant_declaration ::=

constant_name CONSTANT

 { record_name.field_name%TYPE

 | scalar_type_name

 | table_name.column_name%TYPE

 | variable_name%TYPE} [NOT NULL] {:= | DEFAULT} expression;

variable_declaration ::=

variable_name

 { cursor_name%ROWTYPE

 | cursor_variable_name%TYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | record_name.field_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [[NOT NULL] {:= | DEFAULT} expression];

This identifies a program constant. For naming conventions, see
“Identifiers” on page 2 – 4.

This keyword denotes the declaration of a constant. You must initialize a
constant in its declaration. Once initialized, the value of a constant
cannot be changed.

This identifies a field in a user–defined or %ROWTYPE record
previously declared within the current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2. For more information, see “Datatypes” on
page 2 – 10.

table_name.column_name

variable_name

cursor_name

cursor_variable_name

plsql_table_name

record_name

table_name

%ROWTYPE

%TYPE

NOT NULL

expression

10 – 17Language Elements

This identifies a database table and column that must be accessible
when the declaration is elaborated.

This identifies a program variable. For naming conventions, see
“Identifiers” on page 2 – 4.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor. Fields in the
record and corresponding columns in the row have the same names
and datatypes.

This attribute provides the datatype of a previously declared field,
record, PL/SQL table, database column, or variable.

This constraint prevents the assigning of nulls to a variable or constant.
At run time, trying to assign a null to a variable defined as NOT NULL
raises the predefined exception VALUE_ERROR. The constraint NOT
NULL must be followed by an initialization clause.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the declaration is elaborated, the value of expression
is assigned to the constant or variable. The value and the constant or
variable must have compatible datatypes.

Usage Notes

Examples

Related Topics

10 – 18 PL/SQL User’s Guide and Reference

Constants and variables are initialized every time a block or
subprogram is entered. By default, variables are initialized to NULL. So,
unless you expressly initialize a variable, its value is undefined.

Whether public or private, constants and variables declared in a package
specification are initialized only once per session.

An initialization clause is required when declaring NOT NULL
variables and when declaring constants.

You cannot use the attribute %ROWTYPE to declare a constant. If you
use %ROWTYPE to declare a variable, initialization is not allowed.

Several examples of variable and constant declarations follow:

credit_limit CONSTANT NUMBER := 5000;

invalid BOOLEAN := FALSE;

acct_id INTEGER(4) NOT NULL DEFAULT 9999;

pi CONSTANT REAL := 3.14159;

last_name VARCHAR2(20);

my_ename emp.ename%TYPE;

Assignment Statement, Expressions, %ROWTYPE Attribute,
%TYPE Attribute

Description

Syntax

Keyword and
Parameter Description

cursor_name

cursor_variable_name

host_cursor_variable_
name

SQL

%FOUND

10 – 19Language Elements

Cursor Attributes

Cursors and cursor variables have four attributes that give you useful
information about the execution of a data manipulation statement. For
more information, see “Using Cursor Attributes” on page 5 – 33.

There are two kinds of cursors: implicit and explicit. PL/SQL implicitly
declares a cursor for all SQL data manipulation statements, including
single–row queries. For multi–row queries, you can explicitly declare a
cursor or cursor variable to process the rows.

cursor_attribute ::=

{ cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name

 | SQL}{%FOUND | %ISOPEN | %NOTFOUND | %ROWCOUNT}

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable (or parameter) previously
declared within the current scope.

This identifies a cursor variable declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. The datatype of the host
cursor variable is compatible with the return type of any PL/SQL cursor
variable. Host variables must be prefixed with a colon.

This is the name of the implicit SQL cursor. For more information, see
“SQL Cursor” on page 10 – 108.

This is a cursor attribute, which can be appended to the name of a cursor
or cursor variable. After a cursor is opened but before the first fetch,
cursor_name%FOUND yields NULL. Thereafter, it yields TRUE if the last
fetch returned a row, or FALSE if the last fetch failed to return a row.

Until a SQL statement is executed, SQL%FOUND yields NULL.
Thereafter, it yields TRUE if the statement affected any rows, or FALSE
if it affected no rows.

%ISOPEN

%NOTFOUND

%ROWCOUNT

Usage Notes

10 – 20 PL/SQL User’s Guide and Reference

This is a cursor attribute, which can be appended to the name of a cursor
or cursor variable. If a cursor is open, cursor_name%ISOPEN yields
TRUE; otherwise, it yields FALSE.

Oracle automatically closes the implicit SQL cursor after executing its
associated SQL statement, so SQL%ISOPEN always yields FALSE.

This is a cursor attribute, which can be appended to the name of a cursor
or cursor variable. After a cursor is opened but before the first fetch,
cursor_name%NOTFOUND yields NULL. Thereafter, it yields FALSE if
the last fetch returned a row, or TRUE if the last fetch failed to return
a row.

Until a SQL statement is executed, SQL%NOTFOUND yields NULL.
Thereafter, it yields FALSE if the statement affected any rows, or TRUE
if it affected no rows.

This is a cursor attribute, which can be appended to the name of a cursor
or cursor variable. When a cursor is opened, %ROWCOUNT is zeroed.
Before the first fetch, cursor_name%ROWCOUNT yields 0. Thereafter, it
yields the number of rows fetched so far. The number is incremented if
the latest fetch returned a row.

Until a SQL statement is executed, SQL%ROWCOUNT yields NULL.
Thereafter, it yields the number of rows affected by the statement.
SQL%ROWCOUNT yields 0 if the statement affected no rows.

You can use the cursor attributes in procedural statements but not in
SQL statements.

The cursor attributes apply to every cursor or cursor variable. So, for
example, you can open multiple cursors, then use %FOUND or
%NOTFOUND to tell which cursors have rows left to fetch. Likewise,
you can use %ROWCOUNT to tell how many rows have been fetched
so far.

If a cursor or cursor variable is not open, referencing it with %FOUND,
%NOTFOUND, or %ROWCOUNT raises the predefined exception
INVALID_CURSOR.

When a cursor or cursor variable is opened, the rows that satisfy the
associated query are identified and form the result set. Rows are fetched
from the result set one at a time.

If a SELECT INTO statement returns more than one row, PL/SQL raises
the predefined exception TOO_MANY_ROWS and sets %ROWCOUNT
to 1, not the actual number of rows that satisfy the query.

Examples

10 – 21Language Elements

The PL/SQL block below uses %FOUND to select an action. The IF
statement either inserts a row or exits the loop unconditionally.

–– available online in file EXAMP12

DECLARE

 CURSOR num1_cur IS SELECT num FROM num1_tab

 ORDER BY sequence;

 CURSOR num2_cur IS SELECT num FROM num2_tab

 ORDER BY sequence;

 num1 num1_tab.num%TYPE;

 num2 num2_tab.num%TYPE;

 pair_num NUMBER := 0;

BEGIN

 OPEN num1_cur;

 OPEN num2_cur;

 LOOP –– loop through the two tables and get

 –– pairs of numbers

 FETCH num1_cur INTO num1;

 FETCH num2_cur INTO num2;

 IF (num1_cur%FOUND) AND (num2_cur%FOUND) THEN

 pair_num := pair_num + 1;

 INSERT INTO sum_tab VALUES (pair_num, num1 + num2);

 ELSE

 EXIT;

 END IF;

 END LOOP;

 CLOSE num1_cur;

 CLOSE num2_cur;

END;

The next example uses the same block. However, instead of using
%FOUND in an IF statement, it uses %NOTFOUND in an EXIT
WHEN statement.

–– available online in file EXAMP13

DECLARE

 CURSOR num1_cur IS SELECT num FROM num1_tab

 ORDER BY sequence;

 CURSOR num2_cur IS SELECT num FROM num2_tab

 ORDER BY sequence;

 num1 num1_tab.num%TYPE;

 num2 num2_tab.num%TYPE;

 pair_num NUMBER := 0;

BEGIN

 OPEN num1_cur;

 OPEN num2_cur;

 LOOP –– loop through the two tables and get

 –– pairs of numbers

 FETCH num1_cur INTO num1;

 FETCH num2_cur INTO num2;

Related Topics

10 – 22 PL/SQL User’s Guide and Reference

 EXIT WHEN (num1_cur%NOTFOUND) OR (num2_cur%NOTFOUND);

 pair_num := pair_num + 1;

 INSERT INTO sum_tab VALUES (pair_num, num1 + num2);

 END LOOP;

 CLOSE num1_cur;

 CLOSE num2_cur;

END;

In the following example, you use %ISOPEN to make a decision:

IF NOT (emp_cur%ISOPEN) THEN

 OPEN emp_cur;

END IF;

FETCH emp_cur INTO emp_rec;

The following PL/SQL block uses %ROWCOUNT to fetch the names
and salaries of the five highest–paid employees:

–– available online in file EXAMP14

DECLARE

 CURSOR c1 is

 SELECT ename, empno, sal FROM emp

 ORDER BY sal DESC; –– start with highest–paid employee

 my_ename CHAR(10);

 my_empno NUMBER(4);

 my_sal NUMBER(7,2);

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO my_ename, my_empno, my_sal;

 EXIT WHEN (c1%ROWCOUNT > 5) OR (c1%NOTFOUND);

 INSERT INTO temp VALUES (my_sal, my_empno, my_ename);

 COMMIT;

 END LOOP;

 CLOSE c1;

END;

In the final example, you use %ROWCOUNT to raise an exception if an
unexpectedly high number of rows is deleted:

DELETE FROM accts WHERE status = ’BAD DEBT’;

IF SQL%ROWCOUNT > 10 THEN

 RAISE out_of_bounds;

END IF;

Cursors, Cursor Variables

Description

Syntax

10 – 23Language Elements

Cursors

To execute a multi–row query, Oracle opens an unnamed work area that
stores processing information. A cursor lets you name the work area,
access the information, and process the rows individually. For more
information, see “Managing Cursors” on page 5 – 9.

cursor_declaration ::=

CURSOR cursor_name [(cursor_parameter_declaration[,

 cursor_parameter_declaration]...)] IS select_statement;

cursor_specification ::=

CURSOR cursor_name [(cursor_parameter_declaration[,

 cursor_parameter_declaration]...)]

 RETURN { cursor_name%ROWTYPE

 | record_name%TYPE

 | record_type_name

 | table_name%ROWTYPE};

cursor_body ::=

CURSOR cursor_name [(cursor_parameter_declaration[,

 cursor_parameter_declaration]...)]

 RETURN { cursor_name%ROWTYPE

 | record_name%TYPE

 | record_type_name

 | table_name%ROWTYPE} IS select_statement;

cursor_parameter_declaration ::=

cursor_parameter_name [IN]

 { cursor_name%ROWTYPE

 | cursor_variable_name%TYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [{:= | DEFAULT} expression]

Keyword and
Parameter Description

cursor_parameter_name

select_statement

RETURN

cursor_name

record_name

record_type_name

table_name

%ROWTYPE

10 – 24 PL/SQL User’s Guide and Reference

This identifies a cursor parameter; that is, a variable declared as the
formal parameter of a cursor. A cursor parameter can appear in a query
wherever a constant can appear. The formal parameters of a cursor must
be IN parameters. The query can also reference other PL/SQL variables
within its scope.

This is a query that returns a result set of rows. If the cursor declaration
declares parameters, each parameter must be used in the query. The
syntax of select_statement is like that of select_into_statement, which is
defined in “SELECT INTO Statement” on page 10 – 104, except that
select_statement cannot have an INTO clause.

This keyword introduces the RETURN clause, which specifies the
datatype of a cursor result value. You can use the %ROWTYPE attribute
in the RETURN clause to provide a record type that represents a row in
a database table or a row returned by a previously declared cursor. Also,
you can use the %TYPE attribute to provide the datatype of a previously
declared record.

A cursor body must have a SELECT statement and the same RETURN
clause as its corresponding cursor specification. Also, the number, order,
and datatypes of select items in the SELECT clause must match the
RETURN clause.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a RECORD type previously defined within the current
scope. For more information, see “User–Defined Records” on
page 4 – 19.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor. Fields in the
record and corresponding columns in the row have the same names
and datatypes.

%TYPE

cursor_variable_name

scalar_type_name

plsql_table_name

variable_name

expression

Usage Notes

10 – 25Language Elements

This attribute provides the datatype of a previously declared field,
record, PL/SQL table, database column, or variable.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2, which must be specified without constraints.
For more information, see “Datatypes” on page 2 – 10.

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a PL/SQL variable previously declared within the
current scope.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the declaration is elaborated, the value of expression
is assigned to the parameter. The value and the parameter must have
compatible datatypes.

You must declare a cursor before referencing it in an OPEN, FETCH, or
CLOSE statement. And, you must declare a variable before referencing it
in a cursor declaration. The word SQL is reserved by PL/SQL for use as
the default name for implicit cursors and cannot be used in a cursor
declaration.

You cannot assign values to a cursor name or use it in an expression.
However, cursors and variables follow the same scoping rules. For more
information, see “Scope and Visibility” on page 2 – 30.

You retrieve data from a cursor by opening it, then fetching from it.
Because the FETCH statement specifies the target variables, using an
INTO clause in the SELECT statement of a cursor_declaration is
redundant and invalid.

The scope of cursor parameters is local to the cursor, meaning that they
can be referenced only within the query used in the cursor declaration.
The values of cursor parameters are used by the associated query when
the cursor is opened. The query can also reference other PL/SQL
variables within its scope.

Examples

Related Topics

10 – 26 PL/SQL User’s Guide and Reference

The datatype of a cursor parameter must be specified without
constraints. For example, the following parameter declarations
are illegal:

CURSOR c1 (emp_id NUMBER NOT NULL, dept_no NUMBER(2)) –– illegal

Two examples of cursor declarations follow:

CURSOR c1 IS

 SELECT ename, job, sal FROM emp WHERE deptno = 20;

CURSOR c2 (start_date DATE) IS

 SELECT empno, sal FROM emp WHERE hiredate > start_date;

CLOSE Statement, FETCH Statement, OPEN Statement,
SELECT INTO Statement

Description

Syntax

Keyword and
Parameter Description

ref_type_name

REF CURSOR

RETURN

10 – 27Language Elements

Cursor Variables

To execute a multi–row query, Oracle opens an unnamed work area that
stores processing information. To access the information, you can use an
explicit cursor, which names the work area. Or, you can use a cursor
variable, which points to the work area. Whereas a cursor always refers
to the same query work area, a cursor variable can refer to different
work areas. Cursor variables are like C or Pascal pointers, which hold
the memory location (address) of some object instead of the object itself.
So, declaring a cursor variable creates a pointer, not an object. For more
information, see “Using Cursor Variables” on page 5 – 17.

To create cursor variables, you take two steps. First, you define a REF
CURSOR type, then declare cursor variables of that type.

ref_type_definition ::=

TYPE ref_type_name IS REF CURSOR

 RETURN { cursor_name%ROWTYPE

 | cursor_variable_name%ROWTYPE

 | record_name%TYPE

 | record_type_name

 | table_name%ROWTYPE};

cursor_variable_declaration ::=

cursor_variable_name ref_type_name;

This is a user–defined type specifier, which is used in subsequent
declarations of PL/SQL cursor variables. For naming conventions, see
“Identifiers” on page 2 – 4.

In PL/SQL, pointers have datatype REF X, where REF is short for
REFERENCE and X stands for a class of objects. Therefore, cursor
variables have datatype REF CURSOR. Currently, cursor variables are
the only REF variables that you can declare.

This keyword introduces the RETURN clause, which specifies the
datatype of a cursor variable result value. You can use the %ROWTYPE
attribute in the RETURN clause to provide a record type that represents
a row in a database table or a row returned by a previously declared
cursor or cursor variable. Also, you can use the %TYPE attribute to
provide the datatype of a previously declared record.

cursor_name

cursor_variable_name

record_name

record_type_name

table_name

%ROWTYPE

%TYPE

Usage Notes

10 – 28 PL/SQL User’s Guide and Reference

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a RECORD type previously defined within the
current scope. For more information, see “User–Defined Records” on
page 4 – 19.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor or cursor
variable. Fields in the record and corresponding columns in the row
have the same names and datatypes.

This attribute provides the datatype of a previously declared
user–defined record.

Cursor variables are available to every PL/SQL client. For example, you
can declare a cursor variable in a PL/SQL host environment such as an
OCI or Pro*C program, then pass it as a bind variable to PL/SQL.
Moreover, application development tools such as Oracle Forms and
Oracle Reports, which have a PL/SQL engine, can use cursor variables
entirely on the client side.

The Oracle Server also has a PL/SQL engine. So, you can pass cursor
variables back and forth between an application and server via remote
procedure calls (RPCs). And, if you have a PL/SQL engine on the client
side, calls from client to server impose no restrictions. For example, you
can declare a cursor variable on the client side, open and fetch from it on
the server side, then continue to fetch from it back on the client side.

Mainly, you use cursor variables to pass query result sets between
PL/SQL stored subprograms and various clients. Neither PL/SQL nor
any of its clients owns a result set; they simply share a pointer to the
query work area in which the result set is stored. For example, an OCI
client, Oracle Forms application, and Oracle Server can all refer to the
same work area.

10 – 29Language Elements

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). A
strong REF CURSOR type definition specifies a return type, but a weak
definition does not. Strong REF CURSOR types are less error prone
because the PL/SQL compiler lets you associate a strongly typed cursor
variable only with type–compatible queries. However, weak REF
CURSOR types are more flexible because the compiler lets you associate
a weakly typed cursor variable with any query.

Once you define a REF CURSOR type, you can declare cursor variables
of that type. They follow the usual scoping and instantiation rules. Local
PL/SQL cursor variables are instantiated when you enter a block or
subprogram and cease to exist when you exit.

You use three statements to control a cursor variable: OPEN–FOR,
FETCH, and CLOSE. First, you OPEN a cursor variable FOR a
multi–row query. Then, you FETCH rows from the result set one at a
time. When all the rows are processed, you CLOSE the cursor variable.

Other OPEN–FOR statements can open the same cursor variable for
different queries. You need not close a cursor variable before reopening
it. When you reopen a cursor variable for a different query, the previous
query is lost.

PL/SQL makes sure the return type of the cursor variable is compatible
with the INTO clause of the FETCH statement. For each column value
returned by the query associated with the cursor variable, there must be
a corresponding, type–compatible field or variable in the INTO clause.
Also, the number of fields or variables must equal the number of
column values. Otherwise, you get an error.

If both cursor variables involved in an assignment are strongly typed,
they must have the same datatype. However, if one or both cursor
variables are weakly typed, they need not have the same datatype.

When declaring a cursor variable as the formal parameter of a
subprogram that fetches from or closes the cursor variable, you must
specify the IN (or IN OUT) mode. If the subprogram opens the cursor
variable, you must specify the IN OUT mode.

Be careful when passing cursor variables as parameters. At run time,
PL/SQL raises ROWTYPE_MISMATCH if the return types of the actual
and formal parameters are incompatible.

You can apply the cursor attributes %FOUND, %NOTFOUND,
%ISOPEN, and %ROWCOUNT to a cursor variable. For more
information, see “Using Cursor Attributes” on page 5 – 33.

10 – 30 PL/SQL User’s Guide and Reference

If you try to fetch from, close, or apply cursor attributes to a cursor
variable that does not point to a query work area, PL/SQL raises the
predefined exception INVALID_CURSOR. You can make a cursor
variable (or parameter) point to a query work area in two ways:

• OPEN the cursor variable FOR the query.

• Assign to the cursor variable the value of an already OPENed
host cursor variable or PL/SQL cursor variable.

A query work area remains accessible as long as any cursor variable
points to it. Therefore, you can pass the value of a cursor variable freely
from one scope to another. For example, if you pass a host cursor
variable to a PL/SQL block embedded in a Pro*C program, the work
area to which the cursor variable points remains accessible after the
block completes.

Currently, cursor variables are subject to the following restrictions, some
of which future releases of PL/SQL will remove:

• You cannot declare cursor variables in a package because they do
not have persistent state.

• Remote subprograms on another server cannot accept the values
of cursor variables. Therefore, you cannot use RPCs to pass cursor
variables from one server to another.

• If you pass a host cursor variable (bind variable) to PL/SQL, you
cannot fetch from it on the server side unless you also open it
there on the same server call.

• The query associated with a cursor variable in an OPEN–FOR
statement cannot be FOR UPDATE.

• You cannot use comparison operators to test cursor variables for
equality, inequality, or nullity.

• You cannot assign nulls to a cursor variable.

• You cannot use REF CURSOR types to specify column types in a
CREATE TABLE or CREATE VIEW statement. So, database
columns cannot store the values of cursor variables.

• Cursors and cursor variables are not interoperable; that is, you
cannot use one where the other is expected.

• You cannot use a REF CURSOR type to specify the element type
of a PL/SQL table, which means that elements in a PL/SQL table
cannot store the values of cursor variables.

• You cannot use cursor variables with dynamic SQL.

Examples

10 – 31Language Elements

You can declare a cursor variable in a PL/SQL host environment such as
an OCI or Pro*C program. To use the host cursor variable, you must
pass it as a bind variable to PL/SQL. In the following Pro*C example,
you pass a host cursor variable and selector to a PL/SQL block, which
opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 /* Declare host cursor variable. */

 SQL_CURSOR generic_cv;

 int choice;

EXEC SQL END DECLARE SECTION;

...

/* Initialize host cursor variable. */

EXEC SQL ALLOCATE :generic_cv;

...

/* Pass host cursor variable and selector to PL/SQL block. */

EXEC SQL EXECUTE

BEGIN

 IF :choice = 1 THEN

 OPEN :generic_cv FOR SELECT * FROM emp;

 ELSIF :choice = 2 THEN

 OPEN :generic_cv FOR SELECT * FROM dept;

 ELSIF :choice = 3 THEN

 OPEN :generic_cv FOR SELECT * FROM salgrade;

 END IF;

END;

END–EXEC;

Host cursor variables are compatible with any query return type. They
behave just like weakly typed PL/SQL cursor variables.

When passing host cursor variables to PL/SQL, you can reduce network
traffic by grouping OPEN–FOR statements. For example, the following
PL/SQL block opens three cursor variables in a single round–trip:

/* anonymous PL/SQL block in host environment */

BEGIN

 OPEN :emp_cv FOR SELECT * FROM emp;

 OPEN :dept_cv FOR SELECT * FROM dept;

 OPEN :grade_cv FOR SELECT * FROM salgrade;

END;

Related Topics

10 – 32 PL/SQL User’s Guide and Reference

You can also pass a cursor variable to PL/SQL by calling a stored
procedure that declares a cursor variable as one of its formal
parameters. To centralize data retrieval, you can group type–compatible
queries in a packaged procedure, as the following example shows:

CREATE PACKAGE emp_data AS

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER);

END emp_data;

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;

 ELSIF choice = 2 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;

 ELSIF choice = 3 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;

 END IF;

 END open_emp_cv;

END emp_data;

Alternatively, you can use a standalone procedure to open the cursor
variable. Simply define the REF CURSOR type in a separate package,
then reference that type in the standalone procedure. For instance, if you
create the following (bodiless) package, you can create standalone
procedures that reference the types it defines:

CREATE PACKAGE cv_types AS

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

 TYPE BonusCurTyp IS REF CURSOR RETURN bonus%ROWTYPE;

 ...

END cv_types;

CLOSE Statement, Cursor Attributes, Cursors, FETCH Statement,
OPEN–FOR Statement

Description

Syntax

Keyword and
Parameter Description

table_reference

subquery

alias

WHERE search_condition

WHERE CURRENT OF
cursor_name

10 – 33Language Elements

DELETE Statement

The DELETE statement removes entire rows of data from a specified
table or view. For a full description of the DELETE statement, see
Oracle7 Server SQL Reference.

delete_statement ::=

DELETE [FROM] {table_reference | (subquery)} [alias]

 [WHERE {search_condition | CURRENT OF cursor_name}];

table_reference ::=

[schema_name.]{table_name | view_name}[@dblink_name]

This specifies a table or view, which must be accessible when
you execute the DELETE statement, and for which you must have
DELETE privileges.

This is a select statement that provides a value or set of values to the
DELETE statement. The syntax of subquery is like the syntax of
select_into_statement defined in “SELECT INTO Statement” on
page 10 – 104, except that subquery cannot have an INTO clause.

This is another (usually short) name for the referenced table or view and
is typically used in the WHERE clause.

This clause conditionally chooses rows to be deleted from the referenced
table or view. Only rows that meet the search condition are deleted. If
you omit the WHERE clause, all rows in the table or view are deleted.

This clause refers to the latest row processed by the FETCH statement
associated with the cursor identified by cursor_name. The cursor must be
FOR UPDATE and must be open and positioned on a row. If the cursor
is not open, the CURRENT OF clause causes an error.

If the cursor is open, but no rows have been fetched or the last fetch
returned no rows, PL/SQL raises the predefined exception
NO_DATA_FOUND.

Usage Notes

Example

Related Topics

10 – 34 PL/SQL User’s Guide and Reference

You can use the DELETE WHERE CURRENT OF statement after a fetch
from an open cursor (this includes implicit fetches executed in a cursor
FOR loop), provided the associated query is FOR UPDATE. This
statement deletes the current row; that is, the one just fetched.

The implicit SQL cursor and the cursor attributes %NOTFOUND,
%FOUND, and %ROWCOUNT let you access useful information about
the execution of a DELETE statement.

A DELETE statement might delete one or more rows or no rows. If one
or more rows are deleted, you get the following results:

• SQL%NOTFOUND yields FALSE

• SQL%FOUND yields TRUE

• SQL%ROWCOUNT yields the number of rows deleted

If no rows are deleted, you get these results:

• SQL%NOTFOUND yields TRUE

• SQL%FOUND yields FALSE

• SQL%ROWCOUNT yields 0

The following statement deletes from the bonus table all employees
whose sales were below quota:

DELETE FROM bonus WHERE sales_amt < quota;

FETCH Statement, SELECT Statement

Description

Syntax

Keyword and
Parameter Description

PRAGMA

exception_name

error_number

Usage Notes

Example

Related Topics

10 – 35Language Elements

EXCEPTION_INIT Pragma

The pragma EXCEPTION_INIT associates an exception name with an
Oracle error number. That allows you to refer to any internal exception
by name and to write a specific handler for it instead of using the
OTHERS handler. For more information, see “Using EXCEPTION_INIT”
on page 6 – 9.

exception_init_pragma ::=

PRAGMA EXCEPTION_INIT (exception_name, error_number);

This keyword signifies that the statement is a pragma (compiler
directive). Pragmas are processed at compile time, not at run time. They
do not affect the meaning of a program; they simply convey information
to the compiler.

This identifies a user–defined exception previously declared within the
current scope.

This is any valid Oracle error number. These are the same error numbers
returned by the function SQLCODE.

You can use EXCEPTION_INIT in the declarative part of any PL/SQL
block, subprogram, or package. The pragma must appear in the same
declarative part as its associated exception, somewhere after the
exception declaration.

Be sure to assign only one exception name to an error number.

The following pragma associates the exception insufficient_privileges with
Oracle error –1031:

DECLARE

 insufficient_privileges EXCEPTION;

 PRAGMA EXCEPTION_INIT(insufficient_privileges, –1031);

BEGIN

 ...

EXCEPTION

 WHEN insufficient_privileges THEN

 –– handle the error

END;

Exceptions, SQLCODE Function

Description

Syntax

Keyword and
Parameter Description

WHEN

exception_name

OTHERS

seq_of_statements

10 – 36 PL/SQL User’s Guide and Reference

Exceptions

An exception is a runtime error or warning condition, which can be
predefined or user–defined. Predefined exceptions are raised implicitly
(automatically) by the runtime system. User–defined exceptions must be
raised explicitly by RAISE statements. To handle raised exceptions, you
write separate routines called exception handlers. For more information,
see Chapter 6.

exception_declaration ::=

exception_name EXCEPTION;

exception_handler ::=

WHEN {exception_name [OR exception_name] ... | OTHERS}

 THEN seq_of_statements

This keyword introduces an exception handler. You can have multiple
exceptions execute the same sequence of statements by following the
keyword WHEN with a list of the exceptions, separating them by the
keyword OR. If any exception in the list is raised, the associated
statements are executed.

Each WHEN clause can associate a different sequence of statements with
a list of exceptions. However, an exception name can appear only once
in the exception–handling part of a PL/SQL block or subprogram.

This identifies a predefined exception such as ZERO_DIVIDE, or a
user–defined exception previously declared within the current scope.

This keyword stands for all the exceptions not explicitly named in the
exception–handling part of the block. The use of OTHERS is optional
and is allowed only as the last exception handler. You cannot include
OTHERS in a list of exceptions following the keyword WHEN.

This construct represents a sequence of statements. For the syntax of
seq_of_statements, see “Blocks” on page 10 – 7.

Usage Notes

10 – 37Language Elements

An exception declaration can appear only in the declarative part of a
block, subprogram, or package. The scope rules for exceptions and
variables are the same. But, unlike variables, exceptions cannot be
passed as parameters to subprograms.

Some exceptions are predefined by PL/SQL. For a list of these
exceptions, see “Predefined Exceptions” on page 6 – 5. PL/SQL declares
predefined exceptions globally in package STANDARD, so you need not
declare them yourself.

Redeclaring predefined exceptions is error prone because your local
declaration overrides the global declaration. In such cases, you must use
dot notation to specify the predefined exception, as follows:

EXCEPTION

 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN ...

The exception–handling part of a PL/SQL block is optional. Exception
handlers must come at the end of the block. They are introduced by the
keyword EXCEPTION. The exception–handling part of the block is
terminated by the same keyword END that terminates the entire block.

An exception should be raised only when an error occurs that makes it
impossible or undesirable to continue processing. If there is no
exception handler in the current block for a raised exception, the
exception propagates according to the following rules:

• If there is an enclosing block for the current block, the exception is
passed on to that block. The enclosing block then becomes the
current block. If a handler for the raised exception is not found,
the process repeats.

• If there is no enclosing block for the current block, an unhandled
exception error is passed back to the host environment.

However, exceptions cannot propagate across remote procedure calls
(RPCs). Therefore, a PL/SQL block cannot catch an exception raised by
a remote subprogram. For a workaround, see “Using raise_application_
error” on page 6 – 10.

Only one exception at a time can be active in the exception–handling
part of a block. Therefore, if an exception is raised inside a handler, the
block that encloses the current block is the first block searched to find a
handler for the newly raised exception. From there on, the exception
propagates normally.

An exception handler can reference only those variables that the current
block can reference.

Example

Related Topics

10 – 38 PL/SQL User’s Guide and Reference

The following PL/SQL block has two exception handlers:

DELARE

 bad_emp_id EXCEPTION;

 bad_acct_no EXCEPTION;

 ...

BEGIN

 ...

EXCEPTION

 WHEN bad_emp_id OR bad_acct_no THEN –– user–defined

 ROLLBACK;

 WHEN ZERO_DIVIDE THEN –– predefined

 INSERT INTO inventory VALUES (part_number, quantity);

 COMMIT;

END;

Blocks, EXCEPTION_INIT Pragma, RAISE Statement

Description

Syntax

Keyword and
Parameter Description

EXIT

label_name

boolean_expression

Usage Notes

10 – 39Language Elements

EXIT Statement

You use the EXIT statement to exit a loop. The EXIT statement has two
forms: the unconditional EXIT and the conditional EXIT WHEN. With
either form, you can name the loop to be exited. For more information,
see “Iterative Control” on page 3 – 6.

exit_statement ::=

EXIT [label_name] [WHEN boolean_expression];

An unconditional EXIT statement (that is, one without a WHEN clause)
exits the current loop immediately. Execution resumes with the
statement following the loop.

This identifies the loop to be exited. You can exit not only the current
loop but any enclosing labeled loop.

This is an expression that yields the Boolean value TRUE, FALSE, or
NULL. It is evaluated with each iteration of the loop in which the EXIT
WHEN statement appears. If the expression yields TRUE, the current
loop (or the loop labeled by label_name) is exited immediately. For the
syntax of boolean_expression, see “Expressions” on page 10 – 41.

The EXIT statement can be used only inside a loop.

PL/SQL allows you to code an infinite loop. For example, the following
loop will never terminate in the normal way:

WHILE TRUE LOOP

 ...

END LOOP;

In such cases, you must use an EXIT statement to exit the loop.

If you use an EXIT statement to exit a cursor FOR loop prematurely, the
cursor is closed automatically. The cursor is also closed automatically if
an exception is raised inside the loop.

Examples

Related Topics

10 – 40 PL/SQL User’s Guide and Reference

The EXIT statement in the following example is illegal because you
cannot exit from a block directly; you can exit only from a loop:

DECLARE

 amount NUMBER;

 maximum NUMBER;

BEGIN

 ...

 BEGIN

 ...

 IF amount >= maximum THEN

 EXIT; –– illegal

 END IF;

 END;

 ...

END;

The following loop normally executes ten times, but it will exit
prematurely if there are less than ten rows to fetch:

FOR i IN 1..10

 FETCH c1 INTO emp_rec;

 EXIT WHEN c1%NOTFOUND;

 total_comm := total_comm + emp_rec.comm;

END LOOP;

The following example illustrates the use of loop labels:

<<outer>>

FOR i IN 1..10 LOOP

 ...

 <<inner>>

 FOR j IN 1..100 LOOP

 ...

 EXIT outer WHEN ... –– exits both loops

 END LOOP inner;

END LOOP outer;

Expressions, LOOP Statements

Description

Syntax

10 – 41Language Elements

Expressions

An expression is an arbitrarily complex combination of variables,
constants, literals, operators, and function calls. The simplest expression
consists of a single variable.

The PL/SQL compiler determines the datatype of an expression from
the types of the variables, constants, literals, and operators that
comprise the expression. Every time the expression is evaluated, a single
value of that type results. For more information, see “Expressions and
Comparisons” on page 2 – 33.

expression ::=

[(]{ boolean_expression

 | character_expression

 | date_expression

 | numeric_expression}[)]

boolean_expression ::=

[NOT] { boolean_constant_name

 | boolean_function_call

 | boolean_literal

 | boolean_variable_name

 | other_boolean_form}

[{AND | OR} [NOT] { boolean_constant_name

 | boolean_function_call

 | boolean_literal

 | boolean_variable_name

 | other_boolean_form}] ...

other_boolean_form ::=

expression

 { relational_operator expression

 | IS [NOT] NULL

 | [NOT] LIKE pattern

 | [NOT] BETWEEN expression AND expression

 | [NOT] IN (expression[, expression]...)

 | { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name

 | SQL}{%FOUND | %ISOPEN | %NOTFOUND}

 | plsql_table_name.EXISTS(index)}

10 – 42 PL/SQL User’s Guide and Reference

numeric_expression ::=

{ { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name

 | SQL}%ROWCOUNT

 | :host_variable_name[:indicator_name]

 | numeric_constant_name

 | numeric_function_call

 | numeric_literal

 | numeric_variable_name

 | plsql_table_name{ .COUNT

 | .FIRST

 | .LAST

 | .NEXT(index)

 | .PRIOR(index)}}[**exponent]

[{+ | – | * | /}

 { { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name

 | SQL}%ROWCOUNT

 | :host_variable_name[:indicator_name]

 | numeric_constant_name

 | numeric_function_call

 | numeric_literal

 | numeric_variable_name

 | plsql_table_name{ .COUNT

 | .FIRST

 | .LAST

 | .NEXT(index)

 | .PRIOR(index)}}[**exponent]]...

character_expression ::=

{ character_constant_name

 | character_function_call

 | character_literal

 | character_variable_name

 | :host_variable_name[:indicator_name]}

[|| { character_constant_name

 | character_function_call

 | character_literal

 | character_variable_name

 | :host_variable_name[:indicator_name]}]...

Keyword and
Parameter Description

boolean_expression

character_expression

date_expression

numeric_expression

NOT, AND, OR

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

relational_operator

10 – 43Language Elements

date_expression ::=

{ date_constant_name

 | date_function_call

 | date_literal

 | date_variable_name

 | :host_variable_name[:indicator_name]}

[{+ | –} numeric_expression]...

This is an expression that yields the Boolean value TRUE, FALSE, or
NULL.

This is an expression that yields a character or character string.

This is an expression that yields a date/time value.

This is an expression that yields an integer or real value.

These are logical operators, which follow the tri–state logic of the truth
tables on page 2 – 34. AND returns the value TRUE only if both its
operands are true. OR returns the value TRUE if either of its operands is
true. NOT returns the opposite value (logical negation) of its operand.
NOT NULL returns NULL because nulls are indeterminate. For more
information, see “Logical Operators” on page 2 – 34.

This identifies a constant of type BOOLEAN, which must be initialized
to the value TRUE or FALSE or the non–value NULL. Arithmetic
operations on Boolean constants are illegal.

This is any function call that returns a Boolean value.

This is the predefined value TRUE or FALSE or the non–value NULL,
which stands for a missing, unknown, or inapplicable value. You cannot
insert the value TRUE or FALSE into a database column.

This identifies a variable of type BOOLEAN. Only the values TRUE and
FALSE and the non–value NULL can be assigned to a BOOLEAN
variable. You cannot select or fetch column values into a BOOLEAN
variable. Also, arithmetic operations on Boolean variables are illegal.

This operator allows you to compare expressions. For the meaning of
each operator, see “Comparison Operators” on page 2 – 36.

IS [NOT] NULL

[NOT] LIKE

pattern

[NOT] BETWEEN

[NOT] IN

cursor_name

cursor_variable_name

host_cursor_variable_
name

SQL

%FOUND, %ISOPEN,
%NOTFOUND,
%ROWCOUNT

plsql_table_name

10 – 44 PL/SQL User’s Guide and Reference

This comparison operator returns the Boolean value TRUE if its operand
is null, or FALSE if its operand is not null.

This comparison operator compares a character value to a pattern. Case
is significant. LIKE returns the Boolean value TRUE if the character
patterns match, or FALSE if they do not match.

This is a character string compared by the LIKE operator to a specified
string value. It can include two special–purpose characters called
wildcards. An underscore (_) matches exactly one character; a percent
sign (%) matches zero or more characters.

This comparison operator tests whether a value lies in a specified range.
It means “greater than or equal to low value and less than or equal
to high value.”

This comparison operator tests set membership. It means “equal to any
member of.” The set can contain nulls, but they are ignored. Also,
expressions of the form

value NOT IN set

yield FALSE if the set contains a null.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a cursor variable declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. Host cursor variables must be
prefixed with a colon.

This identifies a cursor opened implicitly by Oracle to process a SQL
data manipulation statement. The implicit SQL cursor always refers to
the most recently executed SQL statement.

These are cursor attributes. When appended to the name of a cursor or
cursor variable, these attributes return useful information about the
execution of a multi–row query. You can also append them to the
implicit SQL cursor. For more information, see “Using Cursor
Attributes” on page 5 – 33.

This identifies a PL/SQL table previously declared within the
current scope.

EXISTS, COUNT, FIRST,
LAST, NEXT, PRIOR

index

host_variable_name

indicator_name

numeric_constant_name

numeric_function_call

numeric_literal

numeric_variable_name

NULL

exponent

+, –, /, *, **

10 – 45Language Elements

These are PL/SQL table attributes. When appended to the name of a
PL/SQL table, these attributes return useful information. For example,
EXISTS(n) returns TRUE if the nth element of a PL/SQL table exists.
Otherwise, EXISTS(n) returns FALSE. For more information, see “Using
PL/SQL Table Attributes” on page 4 – 8.

This is a numeric expression that must yield a value of type
BINARY_INTEGER or a value implicitly convertible to that datatype.

This identifies a variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host variable
must be implicitly convertible to the appropriate PL/SQL datatype.
Also, host variables must be prefixed with a colon. For more
information, see “Using Host Variables” on page 9 – 7.

This identifies an indicator variable declared in a PL/SQL host
environment and passed to PL/SQL. Indicator variables must be
prefixed with a colon. An indicator variable “indicates” the value or
condition of its associated host variable. For example, in the Oracle
Precompiler environment, indicator variables can detect nulls or
truncated values in output host variables. For more information, see
“Using Indicator Variables” on page 9 – 12.

This identifies a previously declared constant that stores a numeric
value. It must be initialized to a numeric value or a value implicitly
convertible to a numeric value.

This is a function call that returns a numeric value or a value implicitly
convertible to a numeric value.

This is a literal that represents a numeric value or a value implicitly
convertible to a numeric value.

This identifies a previously declared variable that stores a numeric
value.

This keyword represents a null; it stands for a missing, unknown, or
inapplicable value. When NULL is used in a numeric or date expression,
the result is always a null.

This is an expression that must yield a numeric value.

These symbols are the addition, subtraction, division, multiplication,
and exponentiation operators, respectively.

character_constant_name

character_function_call

character_literal

character_variable_name

||

date_constant_name

date_function_call

date_literal

date_variable_name

Usage Notes

10 – 46 PL/SQL User’s Guide and Reference

This identifies a previously declared constant that stores a character
value. It must be initialized to a character value or a value implicitly
convertible to a character value.

This is a function call that returns a character value or a value implicitly
convertible to a character value.

This is a literal that represents a character value or a value implicitly
convertible to a character value.

This identifies a previously declared variable that stores a character
value.

This is the concatenation operator. As the following example shows, the
result of concatenating string1 with string2 is a character string that
contains string1 followed by string2:

’Good’ || ’ morning!’ yields ’Good morning!’

The next example shows that nulls have no effect on the result of a
concatenation:

’suit’ || NULL || ’case’ yields ’suitcase’

A string zero characters in length (’’) is called a null string and is treated
like a null.

This identifies a previously declared constant that stores a date value. It
must be initialized to a date value or a value implicitly convertible to a
date value.

This is a function call that returns a date value or a value implicitly
convertible to a date value.

This is a literal that represents a date value or a value implicitly
convertible to a date value.

This identifies a previously declared variable that stores a date value.

In a Boolean expression, you can only compare values that have
compatible datatypes. For more information, see “Datatype Conversion”
on page 2 – 20.

In conditional control statements, if a Boolean expression yields TRUE,
its associated sequence of statements is executed. But, if the expression
yields FALSE or NULL, its associated sequence of statements is not
executed.

Examples

Related Topics

10 – 47Language Elements

When PL/SQL evaluates a boolean expression, NOT has the highest
precedence, AND has the next–highest precedence, and OR has the
lowest precedence. However, you can use parentheses to override the
default operator precedence.

The relational operators can be applied to operands of type BOOLEAN.
By definition, TRUE is greater than FALSE. Comparisons involving nulls
always yield a null.

The value of a Boolean expression can be assigned only to Boolean
variables, not to host variables or database columns. Also, datatype
conversion to or from type BOOLEAN is not supported.

You can use the addition and subtraction operators to increment or
decrement a date value, as the following examples show:

hire_date := ’10–MAY–95’;

hire_date := hire_date + 1; –– makes hire_date ’11–MAY–95’

hire_date := hire_date – 5; –– makes hire_date ’06–MAY–95’

Within an expression, operations occur in their predefined order of
precedence. From first to last (top to bottom), the default order of
operations is

parentheses
exponents
unary operators
multiplication and division
addition, subtraction, and concatenation

PL/SQL evaluates operators of equal precedence in no particular order.
When parentheses enclose an expression that is part of a larger
expression, PL/SQL evaluates the parenthesized expression first, then
uses the result value in the larger expression. When parenthesized
expressions are nested, PL/SQL evaluates the innermost expression first
and the outermost expression last.

Several examples of expressions follow:

(a + b) > c –– Boolean expression

NOT finished –– Boolean expression

TO_CHAR(acct_no) –– character expression

’Fat ’ || ’cats’ –– character expression

’15–NOV–95’ –– date expression

MONTHS_BETWEEN(d1, d2) –– date expression

pi * r**2 –– numeric expression

emp_cv%ROWCOUNT –– numeric expression

Assignment Statement, Constants and Variables, EXIT Statement, IF
Statement, LOOP Statements

Description

Syntax

Keyword and
Parameter Description

cursor_name

cursor_variable_name

host_cursor_variable_
name

variable_name[,
variable_name]...

record_name

Usage Notes

10 – 48 PL/SQL User’s Guide and Reference

FETCH Statement

The FETCH statement retrieves rows of data one at a time from the
result set of a multi–row query. The data is stored in variables or fields
that correspond to the columns selected by the query. For more
information, see “Managing Cursors” on page 5 – 9.

fetch_statement ::=

FETCH { cursor_name

 | cursor_variable_name

 | :host_cursor_variable_name}

 INTO {variable_name[, variable_name]... | record_name};

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable (or parameter) previously
declared within the current scope.

This identifies a cursor variable declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. The datatype of the host
cursor variable is compatible with the return type of any PL/SQL cursor
variable. Host variables must be prefixed with a colon.

This identifies a list of previously declared scalar variables into which
column values are fetched. For each column value returned by the query
associated with the cursor or cursor variable, there must be a
corresponding, type–compatible variable in the list.

This identifies a user–defined or %ROWTYPE record into which rows of
values are fetched. For each column value returned by the query
associated with the cursor or cursor variable, there must be a
corresponding, type–compatible field in the record.

You must use either a cursor FOR loop or the FETCH statement to
process a multi–row query.

Any variables in the WHERE clause of the query are evaluated only
when the cursor or cursor variable is opened. To change the result set or
the values of variables in the query, you must reopen the cursor or
cursor variable with the variables set to their new values.

Examples

10 – 49Language Elements

To reopen a cursor, you must close it first. However, you need not close
a cursor variable before reopening it.

You can use different INTO lists on separate fetches with the same
cursor or cursor variable. Each fetch retrieves another row and assigns
values to the target variables.

If you FETCH past the last row in the result set, the values of the target
fields or variables are indeterminate and the %NOTFOUND attribute
yields TRUE.

PL/SQL makes sure the return type of a cursor variable is compatible
with the INTO clause of the FETCH statement. For each column value
returned by the query associated with the cursor variable, there must be
a corresponding, type–compatible field or variable in the INTO clause.
Also, the number of fields or variables must equal the number of
column values.

When you declare a cursor variable as the formal parameter of a
subprogram that fetches from the cursor variable, you must specify the
IN (or IN OUT) mode. However, if the subprogram also opens the
cursor variable, you must specify the IN OUT mode.

Eventually, the FETCH statement must fail to return a row; so when that
happens, no exception is raised. To detect the failure, you must use the
cursor attribute %FOUND or %NOTFOUND. For more information, see
“Using Cursor Attributes” on page 5 – 33.

PL/SQL raises the predefined exception INVALID_CURSOR if you try
to fetch from a closed or never–opened cursor or cursor variable.

The following example shows that any variables in the query associated
with a cursor are evaluated only when the cursor is opened:

DECLARE

 my_sal NUMBER(7,2);

 num INTEGER(2) := 2;

 CURSOR emp_cur IS SELECT num*sal FROM emp;

BEGIN

 OPEN emp_cur; –– num equals 2 here

 LOOP

 FETCH emp_cur INTO my_sal;

 EXIT WHEN emp_cur%NOTFOUND;

 –– process the data

 num := num + 1; –– does not affect next FETCH; sal will

 –– be multiplied by 2

 END LOOP;

 CLOSE emp_cur;

END;

Related Topics

10 – 50 PL/SQL User’s Guide and Reference

In this example, each retrieved value equals 2 * sal, even though num is
incremented after each fetch. To change the result set or the values of
variables in the query, you must close and reopen the cursor with the
variables set to their new values.

In the following Pro*C example, you fetch rows from a host cursor
variable into a host record (struct) named emp_rec:

/* Exit loop when done fetching. */

EXEC SQL WHENEVER NOTFOUND DO break;

for (;;)

{

 /* Fetch row into record. */

 EXEC SQL FETCH :emp_cur INTO :emp_rec;

 /* process the data. */

}

The next example shows that you can use a different INTO clause on
separate fetches with the same cursor variable. Each fetch retrieves
another row from the same result set.

/* Exit loop when done fetching. */

EXEC SQL WHENEVER NOTFOUND DO break;

for (;;)

{

 /* Fetch row from result set. */

 EXEC SQL FETCH :emp_cur INTO :emp_rec1;

 /* Fetch next row from same result set. */

 EXEC SQL FETCH :emp_cur INTO :emp_rec2;

 /* process the data. */

}

CLOSE Statement, Cursors, Cursor Variables, LOOP Statements, OPEN
Statement, OPEN–FOR Statement

Description

Syntax

10 – 51Language Elements

Functions

A function is a named program unit that takes parameters and returns a
computed value. For more information, see “Functions” on page 7 – 5.

A function has two parts: the specification and the body. The function
specification begins with the keyword FUNCTION and ends with the
RETURN clause, which specifies the datatype of the result value.
Parameter declarations are optional. Functions that take no parameters
are written without parentheses.

The function body begins with the keyword IS and ends with the
keyword END followed by an optional function name. The function
body has three parts: an optional declarative part, an executable part,
and an optional exception–handling part.

The declarative part contains declarations of types, cursors, constants,
variables, exceptions, and subprograms. These objects are local and
cease to exist when you exit the function. The executable part contains
statements that assign values, control execution, and manipulate Oracle
data. The exception–handling part contains exception handlers, which
deal with exceptions raised during execution.

function_specification ::=

FUNCTION function_name [(parameter_declaration[,

 parameter_declaration]...)]

RETURN return_type;

function_body ::=

FUNCTION function_name [(parameter_declaration[,

 parameter_declaration]...)]

RETURN return_type IS

 [[object_declaration [object_declaration] ...]

 [subprogram_declaration [subprogram_declaration] ...]]

BEGIN

 seq_of_statements

[EXCEPTION

 exception_handler [exception_handler] ...]

END [function_name];

Keyword and
Parameter Description

function_name

parameter_name

10 – 52 PL/SQL User’s Guide and Reference

parameter_declaration ::=

parameter_name [IN | OUT | IN OUT]

 { cursor_name%ROWTYPE

 | cursor_variable_name%TYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [{:= | DEFAULT} expression]

return_type ::=

{ cursor_name%ROWTYPE

 | cursor_variable_name%ROWTYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE}

object_declaration ::=

{ constant_declaration

 | cursor_declaration

 | cursor_variable_declaration

 | exception_declaration

 | plsql_table_declaration

 | record_declaration

 | variable_declaration}

subprogram_declaration ::=

{function_declaration | procedure_declaration}

This identifies a user–defined function. For naming conventions, see
“Identifiers” on page 2 – 4.

This identifies a formal parameter, which is a variable declared in a
function specification and referenced in the function body.

IN, OUT, IN OUT

:= | DEFAULT

expression

RETURN

cursor_name

cursor_variable_name

plsql_table_name

record_name

scalar_type_name

table_name

table_name.column_name

variable_name

10 – 53Language Elements

These parameter modes define the behavior of formal parameters. An
IN parameter lets you pass values to the subprogram being called. An
OUT parameter lets you return values to the caller of the subprogram.
An IN OUT parameter lets you pass initial values to the subprogram
being called and return updated values to the caller.

This operator or keyword allows you to initialize IN parameters to
default values.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the declaration is elaborated, the value of expression
is assigned to the parameter. The value and the parameter must have
compatible datatypes.

This keyword introduces the RETURN clause, which specifies the
datatype of the result value.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2, which must be specified without constraints.
For more information, see “Datatypes” on page 2 – 10.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This identifies a database table and column that must be accessible
when the declaration is elaborated.

This identifies a PL/SQL variable previously declared within the
current scope.

%ROWTYPE

%TYPE

constant_declaration

cursor_declaration

cursor_variable_
declaration

exception_declaration

plsql_table_declaration

record_declaration

variable_declaration

function_declaration

procedure_declaration

exception_handler

Usage Notes

10 – 54 PL/SQL User’s Guide and Reference

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor or cursor
variable. Fields in the record and corresponding columns in the row
have the same names and datatypes.

This attribute provides the datatype of a previously declared field,
record, PL/SQL table, database column, or variable.

This construct declares a constant. For the syntax of constant_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares an explicit cursor. For the syntax of
cursor_declaration, see “Cursors” on page 10 – 23.

This construct declares a cursor variable. For the syntax of
cursor_variable_declaration, see “Cursor Variables” on page 10 – 27.

This construct declares an exception. For the syntax of
exception_declaration, see “Exceptions” on page 10 – 36.

This construct declares a PL/SQL table. For the syntax of
plsql_table_declaration, see “PL/SQL Tables” on page 10 – 82.

This construct declares a user–defined record. For the syntax of
record_declaration, see “Records” on page 10 – 93.

This construct declares a variable. For the syntax of variable_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares a nested function.

This construct declares a procedure. For the syntax of
procedure_declaration, see “Procedures” on page 10 – 87.

This construct associates an exception with a sequence of statements,
which is executed when that exception is raised. For the syntax of
exception_handler, see “Exceptions” on page 10 – 36.

Every function must contain at least one RETURN statement. Otherwise,
PL/SQL raises the predefined exception PROGRAM_ERROR at
run time.

A function is called as part of an expression. For example, the function
sal_ok might be called as follows:

promotable := sal_ok(new_sal, new_title) AND (rating > 3);

Example

Related Topics

10 – 55Language Elements

To be callable from SQL expressions, a stored function must obey certain
rules meant to control side effects. For standalone functions, Oracle can
enforce these rules by checking the function body. However, the body of
a packaged function is hidden. So, for packaged functions, you must use
the pragma RESTRICT_REFERENCES to enforce the rules. For more
information, see “Calling Stored Functions from SQL Expressions” in
Oracle7 Server Application Developer’s Guide.

You can write the function specification and body as a unit. Or, you can
separate the function specification from its body. That way, you can hide
implementation details by placing the function in a package. You can
define functions in a package body without declaring their specifications
in the package specification. However, such functions can be called only
from inside the package.

Inside a function, an IN parameter acts like a constant. Therefore, it
cannot be assigned a value. An OUT parameter acts like an uninitialized
variable. So, its value cannot be assigned to another variable or
reassigned to itself. An IN OUT parameter acts like an initialized
variable. Therefore, it can be assigned a value, and its value can be
assigned to another variable. For summary information about the
parameter modes, see Table 7 – 1 on page 7 – 15.

Avoid using the OUT and IN OUT modes with functions. The purpose
of a function is to take zero or more parameters and return a single
value. It is poor programming practice to have a function return
multiple values. Also, functions should be free from side effects, which
change the values of variables not local to the subprogram. Thus, a
function should not change the values of its actual parameters.

Functions can be defined using any Oracle tool that supports PL/SQL.
However, to become available for general use, functions must be
CREATEd and stored in an Oracle database. You can issue the CREATE
FUNCTION statement interactively from SQL*Plus or Server Manager.
For the full syntax of the CREATE FUNCTION statement, see Oracle7
Server SQL Reference.

The following function returns the balance of a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS

 acct_bal REAL;

BEGIN

 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;

 RETURN acct_bal;

END balance;

Packages, PL/SQL Tables, Procedures, Records

Description

Syntax

Keyword and
Parameter Description

label_name

Usage Notes

10 – 56 PL/SQL User’s Guide and Reference

GOTO Statement

The GOTO statement branches unconditionally to a statement label or
block label. The label must be unique within its scope and must precede
an executable statement or a PL/SQL block. The GOTO statement
transfers control to the labelled statement or block. For more
information, see “GOTO Statement” on page 3 – 14.

label_declaration ::=

<<label_name>>

goto_statement ::=

GOTO label_name;

This is an undeclared identifier that labels an executable statement or a
PL/SQL block. You use a GOTO statement to transfer control to the
statement or block following <<label_name>>.

Some possible destinations of a GOTO statement are illegal. In
particular, a GOTO statement cannot branch into an IF statement, LOOP
statement, or sub–block. For example, the following GOTO statement is
illegal:

BEGIN

 ...

 GOTO update_row; –– illegal branch into IF statement

 ...

 IF valid THEN

 ...

 <<update_row>>

 UPDATE emp SET ...

 END IF;

END;

From the current block, a GOTO statement can branch to another place
in the block or into an enclosing block, but not into an exception handler.
From an exception handler, a GOTO statement can branch into an
enclosing block, but not into the current block.

If you use the GOTO statement to exit a cursor FOR loop prematurely,
the cursor is closed automatically. The cursor is also closed
automatically if an exception is raised inside the loop.

Examples

10 – 57Language Elements

A given label can appear only once in a block. However, the label can
appear in other blocks including enclosing blocks and sub–blocks. If a
GOTO statement cannot find its target label in the current block, it
branches to the first enclosing block in which the label appears.

A GOTO label cannot precede just any keyword. It must precede an
executable statement or a PL/SQL block. For example, the following
GOTO statement is illegal:

BEGIN

 ...

 FOR ctr IN 1..50 LOOP

 DELETE FROM emp WHERE ...

 IF SQL%FOUND THEN

 GOTO end_loop; –– illegal

 END IF;

 ...

 <<end_loop>>

 END LOOP; –– not an executable statement

END;

To debug the last example, simply add the NULL statement, as follows:

BEGIN

 ...

 FOR ctr IN 1..50 LOOP

 DELETE FROM emp WHERE ...

 IF SQL%FOUND THEN

 GOTO end_loop;

 END IF;

 ...

 <<end_loop>>

 NULL; –– an executable statement that specifies inaction

 END LOOP;

END;

For more examples of legal and illegal GOTO statements, see “GOTO
Statement” on page 3 – 14.

Description

Syntax

Keyword and
Parameter Description

boolean_expression

THEN

ELSIF

ELSE

Usage Notes

10 – 58 PL/SQL User’s Guide and Reference

IF Statement

The IF statement lets you execute a sequence of statements conditionally.
Whether the sequence is executed or not depends on the value of a
Boolean expression. For more information, see “Conditional Control” on
page 3 – 2.

if_statement ::=

IF boolean_expression THEN

 seq_of_statements

[ELSIF boolean_expression THEN

 seq_of_statements

[ELSIF boolean_expression THEN

 seq_of_statements] ...]

[ELSE

 seq_of_statements]

END IF;

This is an expression that yields the Boolean value TRUE, FALSE, or
NULL. It is associated with a sequence of statements, which is executed
only if the expression yields TRUE. For the syntax of boolean_expression,
see “Expressions” on page 10 – 41.

This keyword associates the Boolean expression that precedes it with the
sequence of statements that follows it. If the expression yields TRUE, the
associated sequence of statements is executed.

This keyword introduces a Boolean expression to be evaluated if the
expression following IF and all the expressions following any preceding
ELSIFs yield FALSE or NULL.

If control reaches this keyword, the sequence of statements that follows
it is executed.

There are three forms of IF statements: IF–THEN, IF–THEN–ELSE, and
IF–THEN–ELSIF. The simplest form of IF statement associates a Boolean
expression with a sequence of statements enclosed by the keywords
THEN and END IF. The sequence of statements is executed only if the
expression yields TRUE. If the expression yields FALSE or NULL,
the IF statement does nothing. In either case, control passes to the
next statement.

Examples

Related Topics

10 – 59Language Elements

The second form of IF statement adds the keyword ELSE followed by an
alternative sequence of statements. The sequence of statements in the
ELSE clause is executed only if the Boolean expression yields FALSE or
NULL. Thus, the ELSE clause ensures that a sequence of statements is
executed.

The third form of IF statement uses the keyword ELSIF to introduce
additional Boolean expressions. If the first expression yields FALSE or
NULL, the ELSIF clause evaluates another expression. An IF statement
can have any number of ELSIF clauses; the final ELSE clause is optional.
Boolean expressions are evaluated one by one from top to bottom. If any
expression yields TRUE, its associated sequence of statements is
executed and control passes to the next statement. If all expressions
yield FALSE or NULL, the sequence in the ELSE clause is executed.

An IF statement never executes more than one sequence of statements
because processing is complete after any sequence of statements is
executed. However, the THEN and ELSE clauses can include more IF
statements. That is, IF statements can be nested.

In the example below, if shoe_count has a value of 10, both the first and
second Boolean expressions yield TRUE. Nevertheless, order_quantity is
assigned the proper value of 50 because processing of an IF statement
stops after an expression yields TRUE and its associated sequence of
statements is executed. The expression associated with ELSIF is never
evaluated and control passes to the INSERT statement.

IF shoe_count < 20 THEN

 order_quantity := 50;

ELSIF shoe_count < 30 THEN

 order_quantity := 20;

ELSE

 order_quantity := 10;

END IF;

INSERT INTO purchase_order VALUES (shoe_type, order_quantity);

In the following example, depending on the value of score, one of two
status messages is inserted into the grades table:

IF score < 70 THEN

 fail := fail + 1;

 INSERT INTO grades VALUES (student_id, ’Failed’);

ELSE

 pass := pass + 1;

 INSERT INTO grades VALUES (student_id, ’Passed’);

END IF;

Expressions

Description

Syntax

Keyword and
Parameter Description

table_reference

column_name[,
column_name]...

sql_expression

VALUES (...)

10 – 60 PL/SQL User’s Guide and Reference

INSERT Statement

The INSERT statement adds new rows of data to a specified database
table or view. For a full description of the INSERT statement, see Oracle7
Server SQL Reference.

insert_statement ::=

INSERT INTO {table_reference | (subquery)}

 [(column_name[, column_name]...)]

 {VALUES (sql_expression[, sql_expression]...) | subquery};

table_reference ::=

[schema_name.]{table_name | view_name}[@dblink_name]

This identifies a table or view that must be accessible when you execute
the INSERT statement, and for which you must have INSERT privileges.

This identifies a list of columns in a database table or view. Column
names need not appear in the order in which they were defined by the
CREATE TABLE or CREATE VIEW statement. However, no column
name can appear more than once in the list. If the list does not include
all the columns in a table, the missing columns are set to NULL or to a
default value specified in the CREATE TABLE statement.

This is any expression valid in SQL. For more information, see Oracle7
Server SQL Reference.

This clause assigns the values of expressions to corresponding columns
in the column list. If there is no column list, the first value is inserted
into the first column defined by the CREATE TABLE statement, the
second value is inserted into the second column, and so on.

There must be only one value for each column in the column list. The
first value is associated with the first column, the second value is
associated with the second column, and so on. If there is no column list,
you must supply a value for each column in the table.

The datatypes of the values being inserted must be compatible with the
datatypes of corresponding columns in the column list. For more
information, see “Datatypes” on page 2 – 10.

subquery

Usage Notes

Examples

Related Topics

10 – 61Language Elements

This is a select statement that provides a value or set of values to the
INSERT statement. The syntax of subquery is like the syntax of
select_into_statement defined in “SELECT INTO Statement” on
page 10 – 104, except that subquery cannot have an INTO clause.

As many rows are added to the table as are returned by the subquery in
the VALUES clause. The subquery must return a value for every column
in the column list or for every column in the table if there is no
column list.

All character and date literals in the VALUES list must be enclosed by
single quotes (’). Numeric literals are not enclosed by quotes.

The implicit SQL cursor and cursor attributes %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN let you access useful
information about the execution of an INSERT statement.

An INSERT statement might insert one or more rows or no rows. If one
or more rows are inserted, you get the following results:

• SQL%NOTFOUND yields FALSE

• SQL%FOUND yields TRUE

• SQL%ROWCOUNT yields the number of rows inserted

If no rows are inserted, you get these results:

• SQL%NOTFOUND yields TRUE

• SQL%FOUND yields FALSE

• SQL%ROWCOUNT yields 0

The following examples show various forms of INSERT statement:

INSERT INTO bonus SELECT ename, job, sal, comm FROM emp

 WHERE comm > sal * 0.25;

...

INSERT INTO emp (empno, ename, job, sal, comm, deptno)

 VALUES (4160, ’STURDEVIN’, ’SECURITY GUARD’, 2045, NULL, 30);

...

INSERT INTO dept

 VALUES (my_deptno, UPPER(my_dname), ’CHICAGO’);

SELECT Statement

Description

Syntax

Keyword and
Parameter Description

integer

real_number

digit

char

TRUE, FALSE

NULL

10 – 62 PL/SQL User’s Guide and Reference

Literals

A literal is an explicit numeric, character, string, or Boolean value not
represented by an identifier. The numeric literal 135 and the string
literal ’hello world’ are examples. For more information, see “Literals”
on page 2 – 7.

numeric_literal ::=

[+ | –]{integer | real_number}

integer ::=

digit[digit]...

real_number ::=

{ integer[.integer]

 | integer.

 | .integer}[{E | e}[+ | –]integer]

character_literal ::=

{’character’ | ’’’’}

string_literal ::=

’{character[character]... | ’’[’’]...}’

boolean_literal ::=

{TRUE | FALSE | NULL}

This is an optionally signed whole number without a decimal point.

This is an optionally signed whole or fractional number with a
decimal point.

This is one of the numerals 0 .. 9.

This is a member of the PL/SQL character set. For more information, see
“Character Set” on page 2 – 2.

This is a predefined Boolean value.

This is a predefined non–value, which stands for a missing, unknown,
or inapplicable value.

Usage Notes

Examples

Related Topics

10 – 63Language Elements

Two kinds of numeric literals can be used in arithmetic expressions:
integers and reals. Numeric literals must be separated by punctuation.
Space characters can be used in addition to the punctuation.

A character literal is an individual character enclosed by single quotes
(apostrophes). Character literals include all the printable characters in
the PL/SQL character set: letters, numerals, spaces, and special symbols.
PL/SQL is case sensitive within character literals. So, for example,
PL/SQL considers the literals ’Q’ and ’q’ to be different.

A string literal is a sequence of zero or more characters enclosed by
single quotes. The null string (’’) contains zero characters. To represent
an apostrophe within a string, write two single quotes. PL/SQL is case
sensitive within string literals. So, for example, PL/SQL considers the
literals ’white’ and ’White’ to be different.

Also, trailing blanks are significant within string literals, so ’White’ and
’White ’ are different. How a string literal compares to a variable does
not depend on the variable; trailing blanks in a literal are never trimmed.

Unlike the non–value NULL, the Boolean values TRUE and FALSE
cannot be inserted into a database column.

Several examples of numeric literals follow:

25 6.34 7E2 25e–03 .1 1. +17 –4.4

Several examples of character literals follow:

’H’ ’&’ ’ ’ ’9’ ’]’ ’g’

A few examples of string literals follow:

’$5,000’

’02–AUG–87’

’Don’’t leave without saving your work.’

Constants and Variables, Expressions

Description

Syntax

Keyword and
Parameter Description

table_reference

lock_mode

NOWAIT

Usage Notes

Example

Related Topics

10 – 64 PL/SQL User’s Guide and Reference

LOCK TABLE Statement

The LOCK TABLE statement lets you lock entire database tables in a
specified lock mode so that you can share or deny access to tables while
maintaining their integrity. For more information, see “Using LOCK
TABLE” on page 5 – 46.

lock_table_statement ::=

LOCK TABLE table_reference[, table_reference]...

 IN lock_mode MODE [NOWAIT];

table_reference ::=

[schema_name.]{table_name | view_name}[@dblink_name]

This identifies a table or view that must be accessible when you execute
the LOCK TABLE statement.

This parameter specifies the lock mode. It must be one of the following:
ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE
ROW EXCLUSIVE, or EXCLUSIVE.

This optional keyword tells Oracle not to wait if the table has been
locked by another user. Control is immediately returned to your
program, so it can do other work before trying again to acquire the lock.

If you omit the keyword NOWAIT, Oracle waits until the table is
available; the wait has no set limit. Table locks are released when your
transaction issues a commit or rollback.

A table lock never keeps other users from querying a table, and a query
never acquires a table lock.

If your program includes SQL locking statements, make sure the Oracle
users requesting locks have the privileges needed to obtain the locks.
Your DBA can lock any table. Other users can lock tables they own or
tables for which they have a privilege, such as SELECT, INSERT,
UPDATE, or DELETE.

The following statement locks the accts table in shared mode:

LOCK TABLE accts IN SHARE MODE;

COMMIT Statement, ROLLBACK Statement, UPDATE Statement

Description

Syntax

10 – 65Language Elements

LOOP Statements

LOOP statements execute a sequence of statements multiple times. The
loop encloses the sequence of statements that is to be repeated. PL/SQL
provides the following types of loop statements:

• basic loop

• WHILE loop

• FOR loop

• cursor FOR loop

For more information, see “Iterative Control” on page 3 – 6.

basic_loop_statement ::=

[<<label_name>>]

LOOP

 seq_of_statements

END LOOP [label_name];

while_loop_statement ::=

[<<label_name>>]

WHILE boolean_expression

LOOP

 seq_of_statements

END LOOP [label_name];

for_loop_statement ::=

[<<label_name>>]

FOR index_name IN [REVERSE] lower_bound..upper_bound

LOOP

 seq_of_statements

END LOOP [label_name];

cursor_for_loop_statement ::=

[<<label_name>>]

FOR record_name IN

 { cursor_name [(cursor_parameter_name[,

 cursor_parameter_name]...)]

 | (select_statement)}

LOOP

 seq_of_statements

END LOOP [label_name];

Keyword and
Parameter Description

label_name

basic_loop_statement

while_loop_statement

boolean_expression

10 – 66 PL/SQL User’s Guide and Reference

This is an undeclared identifier that optionally labels a loop. If used,
label_name must be enclosed by double angle brackets and must appear
at the beginning of the loop. Optionally, label_name can also appear at
the end of the loop.

You can use label_name in an EXIT statement to exit the loop labelled by
label_name.

You cannot reference the index of a FOR loop from a nested FOR loop if
both indexes have the same name unless the outer loop is labeled by
label_name and you use dot notation, as follows:

label_name.index_name

In the following example, you compare two loop indexes that have the
same name, one used by an enclosing loop, the other by a nested loop:

<<outer>>

FOR ctr IN 1..20 LOOP

 ...

 <<inner>>

 FOR ctr IN 1..10 LOOP

 IF outer.ctr > ctr THEN ...

 ...

 END LOOP inner;

END LOOP outer;

The simplest form of LOOP statement is the basic (or infinite) loop,
which encloses a sequence of statements between the keywords LOOP
and END LOOP. With each iteration of the loop, the sequence of
statements is executed, then control resumes at the top of the loop. If
further processing is undesirable or impossible, you can use the EXIT,
GOTO, or RAISE statement to complete the loop. A raised exception will
also complete the loop.

The WHILE–LOOP statement associates a Boolean expression with a
sequence of statements enclosed by the keywords LOOP and END
LOOP. Before each iteration of the loop, the expression is evaluated. If
the expression yields TRUE, the sequence of statements is executed, then
control resumes at the top of the loop. If the expression yields FALSE or
NULL, the loop is bypassed and control passes to the next statement.

This is an expression that yields the Boolean value TRUE, FALSE, or
NULL. It is associated with a sequence of statements, which is executed
only if the expression yields TRUE. For the syntax of boolean_expression,
see “Expressions” on page 10 – 41.

for_loop_statement

index_name

lower_bound,
upper_bound

10 – 67Language Elements

Whereas the number of iterations through a WHILE loop is unknown
until the loop completes, the number of iterations through a FOR loop is
known before the loop is entered. Numeric FOR loops iterate over a
specified range of integers. (Cursor FOR loops, which iterate over the
result set of a cursor, are discussed later.) The range is part of an
iteration scheme, which is enclosed by the keywords FOR and LOOP.

The range is evaluated when the FOR loop is first entered and is never
re–evaluated. The sequence of statements in the loop is executed once
for each integer in the range defined by lower_bound..upper_bound. After
each iteration, the loop index is incremented.

This is an undeclared identifier that names the loop index (sometimes
called a loop counter). Its scope is the loop itself. Therefore, you cannot
reference the index outside the loop.

The implicit declaration of index_name overrides any other declaration
outside the loop. So, another variable with the same name cannot be
referenced inside the loop unless a label is used, as follows:

<<main>>

DECLARE

 num NUMBER;

BEGIN

 ...

 FOR num IN 1..10 LOOP

 ...

 IF main.num > 5 THEN –– refers to the variable num,

 ... –– not to the loop index

 END IF;

 END LOOP;

END main;

Inside a loop, its index is treated like a constant. The index can appear in
expressions, but cannot be assigned a value.

These are expressions that must yield integer values. The expressions
are evaluated only when the loop is first entered.

By default, the loop index is assigned the value of lower_bound. If that
value is not greater than the value of upper_bound, the sequence of
statements in the loop is executed, then the index is incremented. If the
value of the index is still not greater than the value of upper_bound, the
sequence of statements is executed again. This process repeats until the
value of the index is greater than the value of upper_bound. At that point,
the loop completes.

REVERSE

cursor_for_loop_
statement

cursor_name

record_name

10 – 68 PL/SQL User’s Guide and Reference

By default, iteration proceeds upward from the lower bound to the
upper bound. However, if you use the keyword REVERSE, iteration
proceeds downward from the upper bound to the lower bound. After
each iteration, the loop index is decremented.

In this case, the loop index is assigned the value of upper_bound. If that
value is not less than the value of lower_bound, the sequence of
statements in the loop is executed, then the index is decremented. If the
value of the index is still not less than the value of lower_bound, the
sequence of statements is executed again. This process repeats until the
value of the index is less than the value of lower_bound. At that point, the
loop completes. An example follows:

FOR i IN REVERSE 1..10 LOOP –– i starts at 10, ends at 1

 –– statements here execute 10 times

END LOOP;

A cursor FOR loop implicitly declares its loop index as a %ROWTYPE
record, opens a cursor, repeatedly fetches rows of values from the result
set into fields in the record, and closes the cursor when all rows have
been processed. Thus, the sequence of statements in the loop is executed
once for each row that satisfies the query associated with cursor_name.

This identifies an explicit cursor previously declared within the current
scope. When the cursor FOR loop is entered, cursor_name cannot refer to
a cursor already opened by an OPEN statement or an enclosing cursor
FOR loop.

This identifies an implicitly declared record. The record has the same
structure as a row retrieved by cursor_name and is equivalent to a record
declared as follows:

record_name cursor_name%ROWTYPE;

The record is defined only inside the loop. You cannot refer to its fields
outside the loop. The implicit declaration of record_name overrides any
other declaration outside the loop. So, another record with the same
name cannot be referenced inside the loop unless a label is used.

Fields in the record store column values from the implicitly fetched row.
The fields have the same names and datatypes as their corresponding
columns. To access field values, you use dot notation, as follows:

record_name.field_name

Select–items fetched from the FOR loop cursor must have simple names
or, if they are expressions, must have aliases. In the following example,
wages is an alias for the select item sal+NVL(comm,0):

CURSOR c1 IS SELECT empno, sal+NVL(comm,0) wages, job ...

cursor_parameter_name

select_statement

Usage Notes

Example

Related Topics

10 – 69Language Elements

This identifies a cursor parameter; that is, a variable declared as the
formal parameter of a cursor. A cursor parameter can appear in a query
wherever a constant can appear. The formal parameters of a cursor must
be IN parameters. For the syntax of cursor_parameter_declaration, see
“Cursors” on page 10 – 23.

This is a query associated with an internal cursor unavailable to you.
PL/SQL automatically declares, opens, fetches from, and closes the
internal cursor. Because select_statement is not an independent statement,
the implicit SQL cursor does not apply to it.

The syntax of select_statement is like the syntax of select_into_ statement
defined in “SELECT INTO Statement” on page 10 – 104, except that
select_statement cannot have an INTO clause.

You can use the EXIT WHEN statement to exit any loop prematurely. If
the Boolean expression in the WHEN clause yields TRUE, the loop is
exited immediately. For more information, see “EXIT Statement” on
page 10 – 39.

When you exit a cursor FOR loop, the cursor is closed automatically
even if you use an EXIT or GOTO statement to exit the loop
prematurely. The cursor is also closed automatically if an exception is
raised inside the loop.

The following cursor FOR loop calculates a bonus, then inserts the result
into a database table:

DECLARE

 bonus REAL;

 CURSOR c1 IS SELECT empno, sal, comm FROM emp;

BEGIN

 FOR c1rec IN c1 LOOP

 bonus := (c1rec.sal * 0.05) + (c1rec.comm * 0.25);

 INSERT INTO bonuses VALUES (c1rec.empno, bonus);

 END LOOP;

 COMMIT;

END;

Cursors, EXIT Statement, FETCH Statement, OPEN Statement,
%ROWTYPE Attribute

Description

Syntax

Usage Notes

Examples

10 – 70 PL/SQL User’s Guide and Reference

NULL Statement

The NULL statement explicitly specifies inaction; it does nothing other
than pass control to the next statement. In a construct allowing
alternative actions, the NULL statement serves as a placeholder. For
more information, see “NULL Statement” on page 3 – 17.

null_statement ::=

NULL;

The NULL statement improves readability by making the meaning and
action of conditional statements clear. It tells readers that the associated
alternative has not been overlooked, but that indeed no action is
necessary.

Each clause in an IF statement must contain at least one executable
statement. The NULL statement meets this requirement. So, you can use
the NULL statement in clauses that correspond to circumstances in
which no action is taken.

Do not confuse the NULL statement with the Boolean non–value NULL;
they are unrelated.

In the following example, the NULL statement emphasizes that only
salespeople receive commissions:

IF job_title = ’SALESPERSON’ THEN

 compute_commission(emp_id);

ELSE

 NULL;

END IF;

In the next example, the NULL statement shows that no action is taken
for unnamed exceptions:

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 ROLLBACK;

 ...

 WHEN OTHERS THEN

 NULL;

END;

Description

Syntax

Keyword and
Parameter Description

cursor_name

cursor_parameter_name

Usage Notes

10 – 71Language Elements

OPEN Statement

The OPEN statement executes the multi–row query associated with an
explicit cursor. It also allocates resources used by Oracle to process the
query and identifies the result set, which consists of all rows that meet
the query search criteria. The cursor is positioned before the first row in
the result set. For more information, see “Managing Cursors” on
page 5 – 9.

open_statement ::=

OPEN cursor_name [(cursor_parameter_name[,

 cursor_parameter_name]...)];

This identifies an explicit cursor previously declared within the current
scope and not currently open.

This identifies a cursor parameter; that is, a variable declared as the
formal parameter of a cursor. A cursor parameter can appear in a query
wherever a constant can appear. For the syntax of cursor_parameter_
declaration, see “Cursors” on page 10 – 23.

Generally, PL/SQL parses an explicit cursor only the first time it is
opened and parses a SQL statement (thereby creating an implicit cursor)
only the first time the statement is executed. All the parsed SQL
statements are cached. A SQL statement must be reparsed only if it is
bumped out of the cache by a new SQL statement.

So, although you must close a cursor before you can reopen it, PL/SQL
need not reparse the associated SELECT statement. If you close, then
immediately reopen the cursor, a reparse is definitely not needed.

Rows in the result set are not retrieved when the OPEN statement is
executed. The FETCH statement retrieves the rows. With a FOR
UPDATE cursor, the rows are locked when the cursor is opened.

If a cursor is currently open, you cannot use its name in a cursor
FOR loop.

If formal parameters are declared, actual parameters must be passed to
the cursor. The values of actual parameters are used when the cursor is
opened. The datatypes of the formal and actual parameters must be
compatible. The query can also reference PL/SQL variables declared
within its scope.

Examples

Related Topics

10 – 72 PL/SQL User’s Guide and Reference

Unless you want to accept default values, each formal parameter in the
cursor declaration must have a corresponding actual parameter in the
OPEN statement. Formal parameters declared with a default value need
not have a corresponding actual parameter. They can simply assume
their default values when the OPEN statement is executed.

The formal parameters of a cursor must be IN parameters. Therefore,
they cannot return values to actual parameters.

You can associate the actual parameters in an OPEN statement with the
formal parameters in a cursor declaration using positional or named
notation. For more information, see “Positional and Named Notation”
on page 7 – 12.

Given the cursor declaration

CURSOR parts_cur IS SELECT part_num, part_price FROM parts;

the following statement opens the cursor:

OPEN parts_cur;

Given the cursor declaration

CURSOR emp_cur(my_ename CHAR, my_comm NUMBER DEFAULT 0)

 IS SELECT * FROM emp WHERE ...

any of the following statements opens the cursor:

OPEN emp_cur(’LEE’);

OPEN emp_cur(’BLAKE’, 300);

OPEN emp_cur(employee_name, 150);

OPEN emp_cur(’TRUSDALE’, my_comm);

In the last example, an actual parameter in the OPEN statement has the
same name as its corresponding formal parameter in the cursor
declaration. To avoid confusion, use unique identifiers.

CLOSE Statement, Cursors, FETCH Statement, LOOP Statements

Description

Syntax

Keyword and
Parameter Description

cursor_variable_name

host_cursor_variable_
name

select_statement

Usage Notes

10 – 73Language Elements

OPEN–FOR Statement

The OPEN–FOR statement executes the multi–row query associated
with a cursor variable. It also allocates resources used by Oracle to
process the query and identifies the result set, which consists of all rows
that meet the query search criteria. The cursor variable is positioned
before the first row in the result set. For more information, see “Using
Cursor Variables” on page 5 – 17.

open–for_statement ::=

OPEN {cursor_variable_name | :host_cursor_variable_name}

 FOR select_statement;

This identifies a cursor variable (or parameter) previously declared
within the current scope.

This identifies a cursor variable previously declared in a PL/SQL host
environment and passed to PL/SQL as a bind variable. The datatype of
the host cursor variable is compatible with the return type of any
PL/SQL cursor variable. Host variables must be prefixed with a colon.

This is a query associated with cursor_variable, which returns a set of
values. The query can reference bind variables and PL/SQL variables,
parameters, and functions but cannot be FOR UPDATE. The syntax of
select_statement is similar to the syntax for select_into_statement defined in
“SELECT INTO Statement” on page 10 – 104, except that select_statement
cannot have an INTO clause.

You can declare a cursor variable in a PL/SQL host environment such as
an OCI or Pro*C program. To open the host cursor variable, you can
pass it as a bind variable to an anonymous PL/SQL block. You can
reduce network traffic by grouping OPEN–FOR statements. For
example, the following PL/SQL block opens five cursor variables in a
single round–trip:

/* anonymous PL/SQL block in host environment */

BEGIN

 OPEN :emp_cv FOR SELECT * FROM emp;

 OPEN :dept_cv FOR SELECT * FROM dept;

 OPEN :grade_cv FOR SELECT * FROM salgrade;

 OPEN :pay_cv FOR SELECT * FROM payroll;

 OPEN :ins_cv FOR SELECT * FROM insurance;

END;

Examples

10 – 74 PL/SQL User’s Guide and Reference

Other OPEN–FOR statements can open the same cursor variable for
different queries. You need not close a cursor variable before reopening
it. When you reopen a cursor variable for a different query, the previous
query is lost.

Unlike cursors, cursor variables do not take parameters. No flexibility is
lost, however, because you can pass whole queries (not just parameters)
to a cursor variable.

You can pass a cursor variable to PL/SQL by calling a stored procedure
that declares a cursor variable as one of its formal parameters. However,
remote subprograms on another server cannot accept the values of
cursor variables. Therefore, you cannot use a remote procedure call
(RPC) to open a cursor variable.

When you declare a cursor variable as the formal parameter of a
subprogram that opens the cursor variable, you must specify the
IN OUT mode. That way, the subprogram can pass an open cursor back
to the caller.

In the following Pro*C example, you pass a host cursor variable and
selector to a PL/SQL block, which opens the cursor variable for the
chosen query:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 /* Declare host cursor variable. */

 SQL_CURSOR generic_cv;

 int choice;

EXEC SQL END DECLARE SECTION;

...

/* Initialize host cursor variable. */

EXEC SQL ALLOCATE :generic_cv;

...

/* Pass host cursor variable and selector to PL/SQL block. */

EXEC SQL EXECUTE

BEGIN

 IF :choice = 1 THEN

 OPEN :generic_cv FOR SELECT * FROM emp;

 ELSIF :choice = 2 THEN

 OPEN :generic_cv FOR SELECT * FROM dept;

 ELSIF :choice = 3 THEN

 OPEN :generic_cv FOR SELECT * FROM salgrade;

 END IF;

END;

END–EXEC;

Related Topics

10 – 75Language Elements

To centralize data retrieval, you can group type–compatible queries in a
stored procedure. When called, the following packaged procedure opens
the cursor variable emp_cv for the chosen query:

CREATE PACKAGE emp_data AS

 TYPE GenericCurTyp IS REF CURSOR;

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER);

END emp_data;

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;

 ELSIF choice = 2 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;

 ELSIF choice = 3 THEN

 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;

 END IF;

 END open_emp_cv;

END emp_data;

For more flexibility, you can pass a cursor variable to a stored procedure
that executes queries with different return types, as follows:

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,

 choice IN NUMBER) IS

 BEGIN

 IF choice = 1 THEN

 OPEN generic_cv FOR SELECT * FROM emp;

 ELSIF choice = 2 THEN

 OPEN generic_cv FOR SELECT * FROM dept;

 ELSIF choice = 3 THEN

 OPEN generic_cv FOR SELECT * FROM salgrade;

 END IF;

 END open_cv;

END emp_data;

CLOSE Statement, Cursor Variables, FETCH Statement, LOOP
Statements

Description

Syntax

10 – 76 PL/SQL User’s Guide and Reference

Packages

A package is a database object that groups logically related PL/SQL
types, objects, and subprograms. Packages have two parts: a
specification and a body. For more information, see Chapter 8.

package_specification ::=

PACKAGE package_name IS

 {object_declaration | spec_declaration}

 [{object_declaration | spec_declaration}]...

END [package_name];

package_body ::=

PACKAGE BODY package_name IS

 [[object_declaration [object_declaration] ...]

 [body_declaration [body_declaration] ...]]

[BEGIN

 seq_of_statements]

END [package_name];

object_declaration ::=

{ constant_declaration

 | cursor_declaration

 | exception_declaration

 | plsql_table_declaration

 | record_declaration

 | variable_declaration}

spec_declaration ::=

{ cursor_specification

 | function_specification

 | procedure_specification}

body_declaration ::=

{ cursor_body

 | function_body

 | procedure_body}

Keyword and
Parameter Description

package_name

constant_declaration

cursor_declaration

exception_declaration

plsql_table_declaration

record_declaration

variable_declaration

cursor_specification

function_specification

procedure_specification

cursor_body

procedure_body

function_body

10 – 77Language Elements

This identifies a package. For naming conventions, see “Identifiers” on
page 2 – 4.

This construct declares a constant. For the syntax of constant_declaration,
see “Constants and Variables” on page 10 – 16.

This construct, which cannot contain a RETURN clause, declares an
explicit cursor. For the syntax of cursor_declaration, see “Cursors”
on page 10 – 23.

This construct declares an exception. For the syntax of
exception_declaration, see “Exceptions” on page 10 – 36.

This construct declares a PL/SQL table. For the syntax of
plsql_table_declaration, see “PL/SQL Tables” on page 10 – 82.

This construct declares a user–defined record. For the syntax of
record_declaration, see “Records” on page 10 – 93.

This construct declares a variable. For the syntax of variable_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares the interface to an explicit cursor. For the syntax
of cursor_specification, see “Cursors” on page 10 – 23.

This construct declares the interface to a function. For the syntax of
function_specification, see “Functions” on page 10 – 51.

This construct declares the interface to a procedure. For the syntax of
procedure_specification, see “Procedures” on page 10 – 87.

This construct defines the underlying implementation of an explicit
cursor. For the syntax of cursor_body, see “Cursors” on page 10 – 23.

This construct defines the underlying implementation of a procedure.
For the syntax of procedure_body, see “Procedures” on page 10 – 87.

This construct defines the underlying implementation of a function. For
the syntax of function_body, see “Functions” on page 10 – 51.

Usage Notes

Related Topics

10 – 78 PL/SQL User’s Guide and Reference

You cannot define packages in a PL/SQL block or subprogram.
However, you can use any Oracle tool that supports PL/SQL to create
and store packages in an Oracle database. You can issue the CREATE
PACKAGE and CREATE PACKAGE BODY statements interactively
from SQL*Plus or Server Manager and from an Oracle Precompiler or
OCI host program. For the full syntax of the CREATE PACKAGE
statement, see Oracle7 Server SQL Reference.

Most packages have a specification and a body. The specification is the
interface to your applications; it declares the types, variables, constants,
exceptions, cursors, and subprograms available for use. The body fully
defines cursors and subprograms, and so implements the specification.

Only subprograms and cursors have an underlying implementation
(definition). So, if a specification declares only types, constants,
variables, and exceptions, the package body is unnecessary. However,
the body can still be used to initialize objects declared in the
specification, as the following example shows:

CREATE PACKAGE emp_actions AS

 ...

 number_hired INTEGER;

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

BEGIN

 number_hired := 0;

END emp_actions;

You can code and compile a specification without its body. Once the
specification has been compiled, stored subprograms that reference the
package can be compiled as well. You need not define the package
bodies fully until you are ready to complete the application.

Furthermore, you can debug, enhance, or replace a package body
without changing the interface (package specification) to the package
body. That means you need not recompile calling programs.

Cursors and subprograms declared in a package specification must be
defined in the package body. Other program objects declared in the
package specification cannot be redeclared in the package body.

To match subprogram specifications and bodies, PL/SQL does a
token–by–token comparison of their headers. So, except for white space,
the headers must match word for word. Otherwise, PL/SQL raises
an exception.

Cursors, Exceptions, Functions, PL/SQL Tables, Procedures, Records

Description

Syntax

Keyword and
Parameter Description

plsql_table_name

COUNT

DELETE

10 – 79Language Elements

PL/SQL Table Attributes

Every PL/SQL table has the attributes EXISTS, COUNT, FIRST, LAST,
PRIOR, NEXT, and DELETE. They make PL/SQL tables easier to use
and your applications easier to maintain.

The attributes EXISTS, PRIOR, NEXT, and DELETE take parameters.
Each parameter must be an expression that yields a BINARY_INTEGER
value or a value implicitly convertible to that datatype.

DELETE acts like a procedure, which is called as a statement. The other
PL/SQL table attributes act like a function, which is called as part of an
expression. For more information, see “Using PL/SQL Table Attributes”
on page 4 – 8.

plsql_table_attribute ::=

plsql_table_name{ .COUNT

 | .DELETE[(index[, index])]

 | .EXISTS(index)

 | .FIRST

 | .LAST

 | .NEXT(index)

 | .PRIOR(index)}

This identifies a PL/SQL table previously declared within the
current scope.

This is a PL/SQL table attribute, which can be appended to the name of
a PL/SQL table. COUNT returns the number of elements that a PL/SQL
table contains.

This is a PL/SQL table attribute, which can be appended to the name of
a PL/SQL table. This attribute has three forms. DELETE removes all
elements from a PL/SQL table. DELETE(n) removes the nth element. If n
is null, DELETE(n) does nothing. DELETE(m, n) removes all elements in
the range m .. n. If m is larger than n or if m or n is null, DELETE(m, n)
does nothing.

index

EXISTS

FIRST, LAST

NEXT, PRIOR

Usage Notes

Examples

10 – 80 PL/SQL User’s Guide and Reference

This is a numeric expression that must yield a value of type
BINARY_INTEGER or a value implicitly convertible to that datatype.
For more information, see “Datatype Conversion” on page 2 – 20.

This is a PL/SQL table attribute, which can be appended to the name of
a PL/SQL table. EXISTS(n) returns TRUE if the nth element in a PL/SQL
table exists. Otherwise, EXISTS(n) returns FALSE.

These are PL/SQL table attributes, which can be appended to the name
of a PL/SQL table. FIRST and LAST return the first and last (smallest
and largest) index numbers in a PL/SQL table. If the PL/SQL table is
empty, FIRST and LAST return nulls. If the PL/SQL table contains only
one element, FIRST and LAST return the same index number.

These are PL/SQL table attributes, which can be appended to the name
of a PL/SQL table. NEXT(n) returns the index number that succeeds
index n in a PL/SQL table. PRIOR(n) returns the index number that
precedes index n. If n has no successor, NEXT(n) returns a null.
Likewise, if n has no predecessor, PRIOR(n) returns a null.

Currently, you cannot use PL/SQL table attributes in a SQL statement. If
you try, you get a compilation error.

DELETE lets you free the resources held by a PL/SQL table. DELETE(n)
and DELETE(m, n) let you prune a PL/SQL table. If an element to be
deleted does not exist, DELETE simply skips it; no exception is raised.

The amount of memory allocated to a PL/SQL table can increase or
decrease dynamically. As you delete elements, memory is freed page by
page. If you delete the entire PL/SQL table, all the memory is freed.

You can use EXISTS to avoid the exception NO_DATA_FOUND, which
is raised when you reference a nonexistent element.

You can use PRIOR or NEXT to traverse PL/SQL tables from which
some elements have been deleted.

In the following example, you delete elements 20 through 30 from a
PL/SQL table:

ename_tab.DELETE(20, 30);

The next example shows that you can use FIRST and LAST to specify
the lower and upper bounds of a loop range provided each element in
that range exists:

FOR i IN emp_tab.FIRST .. emp_tab.LAST LOOP

 ...

END LOOP;

Related Topics

10 – 81Language Elements

In the following example, PL/SQL executes the assignment statement
only if the element sal_tab(i) exists:

IF sal_tab.EXISTS(i) THEN

 sal_tab(i) := sal_tab(i) + 500;

ELSE

 RAISE salary_missing;

END IF;

You can use PRIOR or NEXT to traverse PL/SQL tables from which
some elements have been deleted, as the following generic
example shows:

DECLARE

 ...

 i BINARY_INTEGER;

BEGIN

 ..

 i := any_tab.FIRST; –– get index of first element

 WHILE i IS NOT NULL LOOP

 ... –– process any_tab(i)

 i := any_tab.NEXT(i); –– get index of next element

 END LOOP;

END;

PL/SQL Tables

Description

Syntax

Keyword and
Parameter Description

table_type_name

cursor_name

record_type_name

10 – 82 PL/SQL User’s Guide and Reference

PL/SQL Tables

PL/SQL tables are objects of type TABLE, which are modelled as (but
not the same as) database tables. PL/SQL tables use a primary key to
give you array–like access to rows. Like an array, a PL/SQL table is an
ordered collection of elements of the same type. Each element has a
unique index number that determines its position in the ordered
collection.

However, PL/SQL tables differ from arrays in two important ways.
First, arrays have fixed lower and upper bounds, but PL/SQL tables are
unbounded. So, the size of a PL/SQL table can increase dynamically.
Second, arrays require consecutive index numbers, but PL/SQL tables
do not. So, a PL/SQL table can be indexed by any series of integers. For
more information, see “PL/SQL Tables” on page 4 – 2.

To create PL/SQL tables, you must take two steps. First, you define a
TABLE type, then declare PL/SQL tables of that type.

table_type_definition ::=

TYPE table_type_name IS TABLE OF

 { cursor_name%ROWTYPE

 | record_type_name

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [NOT NULL] INDEX BY BINARY_INTEGER;

plsql_table_declaration ::=

plsql_table_name table_type_name;

This identifies a user–defined type specifier, which is used in
subsequent declarations of PL/SQL tables.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a RECORD type previously defined within the current
scope. For more information, see “User–Defined Records” on
page 4 – 19.

record_name

scalar_type_name

table_name

table_name.column_name

variable_name

%ROWTYPE

%TYPE

INDEX BY BINARY
INTEGER

plsql_table_name

Usage Notes

10 – 83Language Elements

This identifies a user–defined record previously declared within the
current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2, which must be specified without constraints.
For more information, see “Datatypes” on page 2 – 10.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This identifies a database table and column that must be accessible
when the declaration is elaborated.

This identifies a PL/SQL variable previously declared within the
current scope.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor. Fields in the
record and corresponding columns in the row have the same names
and datatypes.

This attribute provides the datatype of a previously declared record,
database column, or variable.

The index of a PL/SQL table must have datatype BINARY_INTEGER,
which can represent signed integers. The magnitude range of a
BINARY_INTEGER value is –2147483647 .. 2147483647.

This identifies an entire PL/SQL table.

You can define TABLE types in the declarative part of any block,
subprogram, or package. To specify the element type, you can use
%TYPE or %ROWTYPE.

A PL/SQL table is unbounded; its index can include any BINARY_
INTEGER value. So, you cannot initialize a PL/SQL table in its
declaration. For example, the following declaration is illegal:

sal_tab SalTabTyp := (1500, 2750, 2000, 950, 1800); –– illegal

The INDEX BY clause must specify datatype BINARY_INTEGER, which
has a magnitude range of –2147483647 .. 2147483647. If the element type
is a record type, every field in the record must have a scalar datatype
such as CHAR, DATE, or NUMBER.

You can declare PL/SQL tables as the formal parameters of functions
and procedures. That way, you can pass PL/SQL tables to stored
subprograms and from one subprogram to another.

10 – 84 PL/SQL User’s Guide and Reference

PL/SQL tables follow the usual scoping and instantiation rules. In a
package, PL/SQL tables are instantiated when you first reference the
package and cease to exist when you end the database session. In a
block or subprogram, local PL/SQL tables are instantiated when you
enter the block or subprogram and cease to exist when you exit.

Every PL/SQL table has the attributes EXISTS, COUNT, FIRST, LAST,
PRIOR, NEXT, and DELETE. They make PL/SQL tables easier to use
and your applications easier to maintain. For more information, see
“Using PL/SQL Table Attributes” on page 4 – 8.

The first reference to an element in a PL/SQL table must be an
assignment. Until an element is assigned a value, it does not exist. If you
reference a nonexistent element, PL/SQL raises the predefined
exception NO_DATA_FOUND.

To reference elements in a PL/SQL table, you specify an index number
using the following syntax:

plsql_table_name(index)

When calling a function that returns a PL/SQL table, you use the
following syntax to reference elements in the table:

function_name(parameters)(index)

If the function result is a PL/SQL table of records, you use the following
syntax to reference fields in a record:

function_name(parameters)(index).field_name

Currently, you cannot use the syntax above to call a parameterless
function because PL/SQL does not allow empty parameter lists. That is,
the following syntax is illegal:

function_name()(index) –– illegal; empty parameter list

Instead, declare a local PL/SQL table to which you can assign the
function result, then reference the PL/SQL table directly.

You can retrieve Oracle data into a PL/SQL table in three ways: the
SELECT INTO statement lets you select a single row of data; the FETCH
statement or a cursor FOR loop lets you fetch multiple rows.

Using the SELECT INTO statement, you can select a column entry into a
scalar element. Or, you can select an entire row into a record element.
Using the FETCH statement or a cursor FOR loop, you can fetch an
entire column of Oracle data into a PL/SQL table of scalars. Or, you can
fetch an entire table of Oracle data into a PL/SQL table of records.

Examples

10 – 85Language Elements

You cannot reference record variables in the VALUES clause. So, you
cannot insert entire records from a PL/SQL table of records into rows in
a database table.

With the Oracle Call Interface (OCI) or the Oracle Precompilers, you can
bind host arrays to PL/SQL tables declared as the formal parameters of
a subprogram. That allows you to pass host arrays to stored functions
and procedures.

You can use a BINARY_INTEGER variable or compatible host variable
to index the host arrays. Given the array subscript range m .. n, the
corresponding PL/SQL table index range is always 1 .. n – m + 1. For
example, if the array subscript range is 5 .. 10, the corresponding
PL/SQL table index range is 1 .. (10 – 5 + 1) or 1 .. 6.

In the following example, you define a TABLE type named SalTabTyp:

DECLARE

 TYPE SalTabTyp IS TABLE OF emp.sal%TYPE

 INDEX BY BINARY_INTEGER;

Once you define type SalTabTyp, you can declare PL/SQL tables of that
type, as follows:

sal_tab SalTabTyp;

The identifier sal_tab represents an entire PL/SQL table.

In the next example, you assign the sum of variables salary and increase
to the tenth row in PL/SQL table sal_tab:

sal_tab(10) := salary * increase;

In the following example, you select a row from the database table dept
into a record stored by the first element of the PL/SQL table dept_tab:

DECLARE

 TYPE DeptTabTyp IS TABLE OF dept%ROWTYPE

 INDEX BY BINARY_INTEGER;

 dept_tab DeptTabTyp;

BEGIN

 /* Select entire row into record stored by first element. */

 SELECT * INTO dept_tab(1) FROM dept WHERE deptno = 10;

 IF dept_tab(1).dname = ’ACCOUNTING’ THEN

 ...

 END IF;

 ...

END;

Related Topics

10 – 86 PL/SQL User’s Guide and Reference

In the final example, you fetch rows from a cursor into the PL/SQL table
of records emp_tab:

DECLARE

 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE

 INDEX BY BINARY_INTEGER;

 emp_tab EmpTabTyp;

 i BINARY_INTEGER := 0;

 CURSOR c1 IS SELECT * FROM emp;

BEGIN

 OPEN c1;

 LOOP

 i := i + 1;

 /* Fetch entire row into record stored by ith element. */

 FETCH c1 INTO emp_tab(i);

 EXIT WHEN c1%NOTFOUND;

 –– process data record

 END LOOP;

 CLOSE c1;

END;

Functions, PL/SQL Table Attributes, Procedures, Records

Description

Syntax

10 – 87Language Elements

Procedures

A procedure is a named PL/SQL block, which can take parameters and
be invoked. Generally, you use a procedure to perform an action. For
more information, see “Procedures” on page 7 – 3.

A procedure has two parts: the specification and the body. The
procedure specification begins with the keyword PROCEDURE and
ends with the procedure name or a parameter list. Parameter
declarations are optional. Procedures that take no parameters are
written without parentheses.

The procedure body begins with the keyword IS and ends with the
keyword END followed by an optional procedure name. The procedure
body has three parts: an optional declarative part, an executable part,
and an optional exception–handling part.

The declarative part contains declarations of types, cursors, constants,
variables, exceptions, and subprograms. These objects are local and
cease to exist when you exit the procedure. The executable part contains
statements that assign values, control execution, and manipulate Oracle
data. The exception–handling part contains exception handlers, which
deal with exceptions raised during execution.

procedure_specification ::=

PROCEDURE procedure_name (parameter_declaration[,

 parameter_declaration]...)];

procedure_body ::=

PROCEDURE procedure_name [(parameter_declaration[,

 parameter_declaration]...)] IS

 [[object_declaration [object_declaration] ...]

 [subprogram_declaration [subprogram_declaration] ...]]

BEGIN

 seq_of_statements

[EXCEPTION

 exception_handler [exception_handler] ...]

END [procedure_name];

procedure_name

parameter_name

IN, OUT, IN OUT

:= | DEFAULT

expression

10 – 88 PL/SQL User’s Guide and Reference

parameter_declaration ::=

parameter_name [IN | OUT | IN OUT]

 { cursor_name%ROWTYPE

 | cursor_variable_name%TYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [{:= | DEFAULT} expression]

object_declaration ::=

{ constant_declaration

 | cursor_declaration

 | cursor_variable_declaration

 | exception_declaration

 | plsql_table_declaration

 | record_declaration

 | variable_declaration}

subprogram_declaration ::=

{function_declaration | procedure_declaration}

This identifies a user–defined procedure. For naming conventions, see
“Identifiers” on page 2 – 4.

This identifies a formal parameter, which is a variable declared in a
procedure specification and referenced in the procedure body.

These parameter modes define the behavior of formal parameters. An
IN parameter lets you pass values to the subprogram being called. An
OUT parameter lets you return values to the caller of the subprogram.
An IN OUT parameter lets you pass initial values to the subprogram
being called and return updated values to the caller.

This operator or keyword allows you to initialize IN parameters to
default values.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the declaration is elaborated, the value of expression
is assigned to the parameter. The value and the parameter must have
compatible datatypes.

cursor_name

cursor_variable_name

plsql_table_name

record_name

scalar_type_name

table_name

table_name.column_name

variable_name

%ROWTYPE

%TYPE

constant_declaration

cursor_declaration

cursor_variable_
declaration

exception_declaration

10 – 89Language Elements

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2, which must be specified without constraints.
For more information, see “Datatypes” on page 2 – 10.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This identifies a database table and column that must be accessible
when the declaration is elaborated.

This identifies a PL/SQL variable previously declared within the
current scope.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor. Fields in the
record and corresponding columns in the row have the same names
and datatypes.

This attribute provides the datatype of a field, record, PL/SQL table,
database column, or variable.

This construct declares a constant. For the syntax of constant_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares an explicit cursor. For the syntax of
cursor_declaration, see “Cursors” on page 10 – 23.

This construct declares a cursor variable. For the syntax of
cursor_variable_declaration, see “Cursor Variables” on page 10 – 27.

This construct declares an exception. For the syntax of
exception_declaration, see “Exceptions” on page 10 – 36.

plsql_table_declaration

record_declaration

variable_declaration

function_declaration

procedure_declaration

exception_handler

Usage Notes

10 – 90 PL/SQL User’s Guide and Reference

This construct declares a PL/SQL table. For the syntax of
plsql_table_declaration, see “PL/SQL Tables” on page 10 – 82.

This construct declares a user–defined record. For the syntax of
record_declaration, see “Records” on page 10 – 93.

This construct declares a variable. For the syntax of variable_declaration,
see “Constants and Variables” on page 10 – 16.

This construct declares a nested function.

This construct declares a procedure. For the syntax of
procedure_declaration, see “Procedures” on page 10 – 87.

This construct associates an exception with a sequence of statements,
which is executed when that exception is raised. For the syntax of
exception_handler, see “Exceptions” on page 10 – 36.

At least one statement must appear in the executable part of a
procedure. The NULL statement meets this requirement.

A procedure is called as a PL/SQL statement. For example, the
procedure raise_salary might be called as follows:

raise_salary(emp_num, amount);

Inside a procedure, an IN parameter acts like a constant. Therefore, it
cannot be assigned a value. An OUT parameter acts like an uninitialized
variable. So, its value cannot be assigned to another variable or
reassigned to itself. An IN OUT parameter acts like an initialized
variable. Therefore, it can be assigned a value, and its value can be
assigned to another variable. For summary information about the
parameter modes, see Table 7 – 1 on page 7 – 15.

Before exiting a procedure, explicitly assign values to all OUT formal
parameters. Otherwise, the values of corresponding actual parameters
are indeterminate. If you exit successfully, PL/SQL assigns values to the
actual parameters. However, if you exit with an unhandled exception,
PL/SQL does not assign values to the actual parameters.

Unlike OUT and IN OUT parameters, IN parameters can be initialized
to default values. For more information, see “Parameter Default Values”
on page 7 – 15.

Examples

Related Topics

10 – 91Language Elements

You can write the procedure specification and body as a unit. Or, you
can separate the procedure specification from its body. That way, you
can hide implementation details by placing the procedure in a package.
You can define procedures in a package body without declaring their
specifications in the package specification. However, such procedures
can be called only from inside the package.

Procedures can be defined using any Oracle tool that supports PL/SQL.
To become available for general use, however, procedures must be
CREATEd and stored in an Oracle database. You can issue the CREATE
PROCEDURE statement interactively from SQL*Plus or Server Manager.
For the full syntax of the CREATE PROCEDURE statement, see Oracle7
Server SQL Reference.

The following procedure debits a bank account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS

 old_balance REAL;

 new_balance REAL;

 overdrawn EXCEPTION;

BEGIN

 SELECT bal INTO old_balance FROM accts WHERE acctno = acct_id;

 new_balance := old_balance – amount;

 IF new_balance < 0 THEN

 RAISE overdrawn;

 ELSE

 UPDATE accts SET bal = new_balance WHERE acctno = acct_id;

 END IF;

EXCEPTION

 WHEN overdrawn THEN

 ...

END debit_account;

In the following example, you call the procedure using named notation:

debit_account(amount => 500, acct_id => 10261);

Functions, Packages, PL/SQL Tables, Records

Description

Syntax

Keyword and
Parameter Description

exception_name

Usage Notes

Example

Related Topics

10 – 92 PL/SQL User’s Guide and Reference

RAISE Statement

The RAISE statement stops normal execution of a PL/SQL block or
subprogram and transfers control to the appropriate exception handler.
For more information, see “User–Defined Exceptions” on page 6 – 7.

Normally, predefined exceptions are raised implicitly by the runtime
system. However, RAISE statements can also raise predefined
exceptions. User–defined exceptions must be raised explicitly by
RAISE statements.

raise_statement ::=

RAISE [exception_name];

This identifies a predefined or user–defined exception. For a list of the
predefined exceptions, see “Predefined Exceptions” on page 6 – 5.

PL/SQL blocks and subprograms should RAISE an exception only
when an error makes it impractical or impossible to continue processing.
You can code a RAISE statement for a given exception anywhere within
the scope of that exception.

When an exception is raised, if PL/SQL cannot find a handler for it in
the current block, the exception propagates. That is, the exception
reproduces itself in successive enclosing blocks until a handler is found
or there are no more blocks to search. In the latter case, PL/SQL returns
an unhandled exception error to the host environment.

Omitting the exception name in a RAISE statement, which is allowed
only in an exception handler, reraises the current exception. When a
parameterless RAISE statement executes in an exception handler, the
first block searched is the enclosing block, not the current block.

In the following example, you raise an exception when an inventoried
part is out of stock:

IF quantity_on_hand = 0 THEN

 RAISE out_of_stock;

END IF;

Exceptions

Description

Syntax

Keyword and
Parameter Description

record_type_name

cursor_name

cursor_variable_name

local_field_name

10 – 93Language Elements

Records

Records are objects of type RECORD. Records have uniquely named
fields that can store data values of different types. For more information,
see “User–Defined Records” on page 4 – 19.

To create records, you must take two steps. First, you define a RECORD
type, then declare user–defined records of that type.

record_type_definition ::=

TYPE record_type_name IS RECORD (field_declaration[,

 field_declaration]...);

record_declaration ::=

record_name record_type_name;

field_declaration ::=

field_name

 { cursor_name%ROWTYPE

 | cursor_variable_name%TYPE

 | local_field_name%TYPE

 | plsql_table_name%TYPE

 | record_name%TYPE

 | scalar_type_name

 | table_name%ROWTYPE

 | table_name.column_name%TYPE

 | variable_name%TYPE} [[NOT NULL] {:= | DEFAULT} expression]

This identifies a user–defined type specifier, which is used in
subsequent declarations of records. For naming conventions, see
“Identifiers” on page 2 – 4.

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a field previously declared in the same user–defined
record definition.

plsql_table_name

record_name

scalar_type_name

table_name

table_name.column_name

variable_name

%ROWTYPE

%TYPE

NOT NULL

:= | DEFAULT

expression

10 – 94 PL/SQL User’s Guide and Reference

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a user–defined record previously declared within the
current scope.

This identifies a predefined scalar datatype such as BOOLEAN,
NUMBER, or VARCHAR2, which must be specified without constraints.
For more information, see “Datatypes” on page 2 – 10.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

This identifies a database table and column that must be accessible
when the declaration is elaborated.

This identifies a PL/SQL variable previously declared within the
current scope.

This attribute provides a record type that represents a row in a database
table or a row fetched from a previously declared cursor. Fields in the
record and corresponding columns in the row have the same names
and datatypes.

This attribute provides the datatype of a field, record, PL/SQL table,
database column, or variable.

This constraint prevents the assigning of nulls to a field. At run time,
trying to assign a null to a field defined as NOT NULL raises the
predefined exception VALUE_ERROR. The constraint NOT NULL must
be followed by an initialization clause.

This operator or keyword allows you to initialize fields to default
values.

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the declaration is elaborated, the value of expression
is assigned to the field. The value and the field must have compatible
datatypes.

Usage Notes

10 – 95Language Elements

You can define RECORD types and declare user–defined records in the
declarative part of any block, subprogram, or package. Also, a record
can be initialized in its declaration, as the following example shows:

DECLARE

 TYPE TimeTyp IS RECORD(

 second SMALLINT := 0,

 minute SMALLINT := 0,

 hour SMALLINT := 0);

The next example shows that you can use the %TYPE attribute to specify
a field datatype. It also shows that you can add the NOT NULL
constraint to any field declaration and so prevent the assigning of nulls
to that field.

DECLARE

 TYPE DeptRecTyp IS RECORD(

 deptno NUMBER(2) NOT NULL,

 dname dept.dname%TYPE,

 loc dept.loc%TYPE);

 dept_rec DeptRecTyp;

To reference individual fields in a record, you use dot notation. For
example, you might assign a value to the dname field in the dept_rec
record as follows:

dept_rec.dname := ’PURCHASING’;

Instead of assigning values separately to each field in a record, you can
assign values to all fields at once. This can be done in two ways. First,
PL/SQL lets you assign one record to another if they have the same
datatype. Note, however, that even if their fields match exactly, a
user–defined record and a %ROWTYPE record have different types.
Second, you can assign a list of column values to a record by using the
SELECT or FETCH statement. Just make sure the column names appear
in the same order as the fields in your record.

You can declare and reference nested records. That is, a record can be the
component of another record, as the following example shows:

DECLARE

 TYPE TimeTyp IS RECORD(

 minute SMALLINT,

 hour SMALLINT);

 TYPE MeetingTyp IS RECORD(

 day DATE,

 time TimeTyp, –– nested record

 place CHAR(20),

 purpose CHAR(50));

10 – 96 PL/SQL User’s Guide and Reference

 TYPE PartyTyp IS RECORD(

 day DATE,

 time TimeTyp, –– nested record

 loc CHAR(15));

 meeting MeetingTyp;

 seminar MeetingTyp;

 party PartyTyp;

The next example shows that you can assign one nested record to
another if they have the same datatype:

seminar.time := meeting.time;

Such assignments are allowed even if the containing records have
different datatypes.

User–defined records follow the usual scoping and instantiation rules.
In a package, they are instantiated when you first reference the package
and cease to exist when you exit the application or end the database
session. In a block or subprogram, they are instantiated when you enter
the block or subprogram and cease to exist when you exit the block or
subprogram.

Like scalar variables, user–defined records can be declared as the formal
parameters of procedures and functions. The restrictions that apply to
scalar parameters also apply to user–defined records.

You can specify a RECORD type in the RETURN clause of a function
specification. That allows the function to return a user–defined record of
the same type. When calling a function that returns a user–defined
record, you use the following syntax to reference fields in the record:

function_name(parameters).field_name

To reference nested fields in a record returned by a function, you use the
following syntax:

function_name(parameters).field_name.nested_field_name

Currently, you cannot use the syntax above to call a parameterless
function because PL/SQL does not allow empty parameter lists. That is,
the following syntax is illegal:

function_name().field_name –– illegal; empty parameter list

You cannot just drop the empty parameter list because the following
syntax is also illegal:

function_name.field_name –– illegal; no parameter list

Instead, declare a local user–defined record to which you can assign the
function result, then reference its fields directly.

Example

Related Topics

10 – 97Language Elements

In the following example, you define a RECORD type named
DeptRecTyp, declare a record named dept_rec, then select a row of values
into the record:

DECLARE

 TYPE DeptRecTyp IS RECORD(

 deptno NUMBER(2),

 dname CHAR(14),

 loc CHAR(13));

 dept_rec DeptRecTyp;

 ...

BEGIN

 SELECT deptno, dname, loc INTO dept_rec FROM dept

 WHERE deptno = 20;

 ...

END;

Assignment Statement, Functions, PL/SQL Tables, Procedures

Description

Syntax

Keyword and
Parameter Description

expression

Usage Notes

10 – 98 PL/SQL User’s Guide and Reference

RETURN Statement

The RETURN statement immediately completes the execution of a
subprogram and returns control to the caller. Execution then resumes
with the statement following the subprogram call. In a function, the
RETURN statement also sets the function identifier to the result value.
For more information, see “RETURN Statement” on page 7 – 7.

return_statement ::=

RETURN [expression];

This is an arbitrarily complex combination of variables, constants,
literals, operators, and function calls. The simplest expression consists of
a single variable. For the syntax of expression, see “Expressions” on
page 10 – 41. When the RETURN statement is executed, the value of
expression is assigned to the function identifier.

Do not confuse the RETURN statement with the RETURN clause, which
specifies the datatype of the result value in a function specification.

A subprogram can contain several RETURN statements, none of which
need be the last lexical statement. Executing any of them completes the
subprogram immediately. However, it is poor programming practice to
have multiple exit points in a subprogram.

In procedures, a RETURN statement cannot contain an expression. The
statement simply returns control to the caller before the normal end of
the procedure is reached.

However, in functions, a RETURN statement must contain an
expression, which is evaluated when the RETURN statement is
executed. The resulting value is assigned to the function identifier.
Therefore, a function must contain at least one RETURN statement.
Otherwise, PL/SQL raises the predefined exception
PROGRAM_ERROR at run time.

The RETURN statement can also be used in an anonymous block to exit
the block (and all enclosing blocks) immediately, but the RETURN
statement cannot contain an expression.

Example

Related Topics

10 – 99Language Elements

In the following example, the function balance RETURNs the balance of
a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS

 acct_bal REAL;

BEGIN

 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;

 RETURN acct_bal;

END balance;

Functions, Procedures

Description

Syntax

Keyword and
Parameter Description

ROLLBACK

WORK

ROLLBACK TO

SAVEPOINT

savepoint_name

Usage Notes

Related Topics

10 – 100 PL/SQL User’s Guide and Reference

ROLLBACK Statement

The ROLLBACK statement is the inverse of the COMMIT statement. It
undoes some or all database changes made during the current
transaction. For more information, see “Processing Transactions” on
page 5 – 39.

rollback_statement ::=

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

When a parameterless ROLLBACK statement is executed, all database
changes made during the current transaction are undone.

This keyword is optional and has no effect except to improve readability.

This statement undoes all database changes (and releases all locks
acquired) since the savepoint identified by savepoint_name was marked.

This keyword is optional and has no effect except to improve readability.

This is an undeclared identifier, which marks the current point in the
processing of a transaction. For naming conventions, see “Identifiers” on
page 2 – 4.

All savepoints marked after the savepoint to which you roll back are
erased. However, the savepoint to which you roll back is not erased. For
example, if you mark savepoints A, B, C, and D in that order, then roll
back to savepoint B, only savepoints C and D are erased.

An implicit savepoint is marked before executing an INSERT, UPDATE,
or DELETE statement. If the statement fails, a rollback to the implicit
savepoint is done. Normally, just the failed SQL statement is rolled back,
not the whole transaction. However, if the statement raises an
unhandled exception, the host environment determines what is rolled
back. For more information, see “Unhandled Exceptions” on page 6 – 20.

COMMIT Statement, SAVEPOINT Statement

Description

Syntax

Keyword and
Parameter Description

cursor_name

cursor_variable_name

table_name

Usage Notes

10 – 101Language Elements

%ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row
in a database table. The record can store an entire row of data selected
from the table or fetched from a cursor or cursor variable. Fields in a
record and corresponding columns in a row have the same names
and datatypes.

You can use the %ROWTYPE attribute in variable declarations as a
datatype specifier. Variables declared using %ROWTYPE are treated like
those declared using a datatype name. For more information, see “Using
%ROWTYPE” on page 2 – 25.

rowtype_attribute ::=

{cursor_name | cursor_variable_name | table_name}%ROWTYPE

This identifies an explicit cursor previously declared within the
current scope.

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a database table (or view) that must be accessible when
the declaration is elaborated.

The %ROWTYPE attribute lets you declare records structured like a row
of data in a database table. In the following example, you declare a
record that can store an entire row from the emp table:

emp_rec emp%ROWTYPE;

The column values returned by the SELECT statement are stored in
fields. To reference a field, you use dot notation. For example, you might
reference the deptno field as follows:

IF emp_rec.deptno = 20 THEN ...

You can assign the value of an expression to a specific field, as the
following example shows:

emp_rec.sal := average * 1.15;

There are two ways to assign values to all fields in a record at once.
First, PL/SQL allows aggregate assignment between entire records if
their declarations refer to the same table or cursor.

Examples

Related Topics

10 – 102 PL/SQL User’s Guide and Reference

Second, you can assign a list of column values to a record by using the
SELECT or FETCH statement. The column names must appear in the
order in which they were defined by the CREATE TABLE or CREATE
VIEW statement. Select–items fetched from a cursor associated with
%ROWTYPE must have simple names or, if they are expressions, must
have aliases.

In the example below, you use %ROWTYPE to declare two records. The
first record stores a row selected from the emp table. The second record
stores a row fetched from the c1 cursor.

DECLARE

 emp_rec emp%ROWTYPE;

 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;

 dept_rec c1%ROWTYPE;

In the next example, you select a row from the emp table into a
%ROWTYPE record:

DECLARE

 emp_rec emp%ROWTYPE;

 ...

BEGIN

 SELECT * INTO emp_rec FROM emp WHERE empno = my_empno;

 IF (emp_rec.deptno = 20) AND (emp_rec.sal > 2000) THEN

 ...

 END IF;

END;

Constants and Variables, Cursors, Cursor Variables, FETCH Statement

Description

Syntax

Keyword and
Parameter Description

savepoint_name

Usage Notes

Related Topics

10 – 103Language Elements

SAVEPOINT Statement

The SAVEPOINT statement names and marks the current point in the
processing of a transaction. With the ROLLBACK TO statement,
savepoints let you undo parts of a transaction instead of the whole
transaction. For more information, see “Processing Transactions” on
page 5 – 39.

savepoint_statement ::=

SAVEPOINT savepoint_name;

This is an undeclared identifier, which marks the current point in the
processing of a transaction. For naming conventions, see “Identifiers” on
page 2 – 4.

When you roll back to a savepoint, any savepoints marked after that
savepoint are erased. However, the savepoint to which you roll back is
not erased. A simple rollback or commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances
of the SAVEPOINT statement are executed at each level in the recursive
descent. However, you can only roll back to the most recently marked
savepoint.

Savepoint names can be reused within a transaction. This moves the
savepoint from its old position to the current point in the transaction.

An implicit savepoint is marked before executing an INSERT, UPDATE,
or DELETE statement. If the statement fails, a rollback to the implicit
savepoint is done. Normally, just the failed SQL statement is rolled back,
not the whole transaction. However, if the statement raises an
unhandled exception, the host environment determines what is rolled
back. For more information, see “Unhandled Exceptions” on page 6 – 20.

By default, the number of active savepoints per user process is limited to
5. You or your DBA can raise the limit (up to 255) by increasing the
value of the Oracle initialization parameter SAVEPOINTS.

COMMIT Statement, ROLLBACK Statement

Description

Syntax

Keyword and
Parameter Description

select_item

variable_name[,
variable_name]...

record_name

subquery

10 – 104 PL/SQL User’s Guide and Reference

SELECT INTO Statement

The SELECT INTO statement retrieves data from one or more database
tables, then assigns the selected values to variables or fields. For a full
description of the SELECT statement, see Oracle7 Server SQL Reference.

select_into_statement ::=

SELECT [DISTINCT | ALL] {* | select_item[, select_item]...}

 INTO {variable_name[, variable_name]... | record_name}

 FROM {table_reference | (subquery)} [alias]

 [, {table_reference | (subquery)} [alias]]...

 rest_of_select_statement;

select_item ::=

{ function_name[(parameter_name[, parameter_name]...)]

 | NULL

 | numeric_literal

 | [schema_name.]{table_name | view_name}.*

 | [[schema_name.]{table_name. | view_name.}]column_name

 | sequence_name.{CURRVAL | NEXTVAL}

 | ’text’} [[AS] alias]

table_reference ::=

[schema_name.]{table_name | view_name}[@dblink_name]

This is a value returned by the SELECT statement, then assigned to the
corresponding variable or field in the INTO clause.

This identifies a list of previously declared scalar variables into which
select_item values are fetched. For each select_item value returned by the
query, there must be a corresponding, type–compatible variable in
the list.

This identifies a user–defined or %ROWTYPE record into which rows of
values are fetched. For each select_item value returned by the query,
there must be a corresponding, type–compatible field in the record.

This is query that provides a value or set of values to the SELECT
statement. The syntax of subquery is like the syntax of select_into_
statement, except that subquery cannot have an INTO clause.

alias

rest_of_select_statement

Usage Notes

Example

Related Topics

10 – 105Language Elements

This is another (usually short) name for the referenced column, table, or
view, and can be used in the WHERE clause.

This is anything that can legally follow the FROM clause in a SELECT
statement.

The implicit SQL cursor and the cursor attributes %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN let you access useful
information about the execution of a SELECT INTO statement.

When you use a SELECT INTO statement to assign values to variables,
it should return only one row. If it returns more than one row, you get
the following results:

• PL/SQL raises the predefined exception TOO_MANY_ROWS

• SQLCODE returns –1422 (Oracle error code ORA–01422)

• SQLERRM returns the Oracle error message single–row query
returns more than one row

• SQL%NOTFOUND yields FALSE

• SQL%FOUND yields TRUE

• SQL%ROWCOUNT yields 1

If no rows are returned, you get these results:

• PL/SQL raises the predefined exception NO_DATA_FOUND
unless the SELECT statement called a SQL group function such as
AVG or SUM. (SQL group functions always return a value or a
null. So, a SELECT INTO statement that calls a group function
never raises NO_DATA_FOUND.)

• SQLCODE returns +100 (Oracle error code ORA–01403)

• SQLERRM returns the Oracle error message no data found

• SQL%NOTFOUND yields TRUE

• SQL%FOUND yields FALSE

• SQL%ROWCOUNT yields 0

The following SELECT statement returns an employee’s name, job title,
and salary from the emp database table:

SELECT ename, job, sal INTO my_ename, my_job, my_sal FROM emp

 WHERE empno = my_empno;

Assignment Statement, FETCH Statement, %ROWTYPE Attribute

Description

Syntax

Keyword and
Parameter Description

READ ONLY

READ WRITE

ISOLATION LEVEL

USE ROLLBACK
SEGMENT

10 – 106 PL/SQL User’s Guide and Reference

SET TRANSACTION Statement

The SET TRANSACTION statement begins a read–only or read–write
transaction, establishes an isolation level, or assigns the current
transaction to a specified rollback segment. Read–only transactions are
useful for running multiple queries against one or more tables while
other users update the same tables. For more information, see “Using
SET TRANSACTION” on page 5 – 44.

set_transaction_statement ::=

SET TRANSACTION

 { READ ONLY

 | READ WRITE

 | ISOLATION LEVEL {SERIALIZABLE | READ COMMITTED}

 | USE ROLLBACK SEGMENT rollback_segment_name};

This clause establishes the current transaction as read–only. If a
transaction is set to READ ONLY, subsequent queries see only changes
committed before the transaction began. The use of READ ONLY does
not affect other users or transactions.

This clause establishes the current transaction as read–write. The use of
READ WRITE does not affect other users or transactions. If the
transaction executes a data manipulation statement, Oracle assigns the
transaction to a rollback segment.

This clause specifies how transactions that modify the database are
handled. When you specify SERIALIZABLE, if a serializable transaction
trys to execute a SQL data manipulation statement that modifies any
table already modified by an uncommitted transaction, the statement
fails. To enable SERIALIZABLE mode, your DBA must set the Oracle
initialization parameter COMPATIBLE to 7.3.0 or higher.

When you specify READ COMMITTED, if a transaction includes SQL
data manipulation statements that require row locks held by another
transaction, the statement waits until the row locks are released.

This clause assigns the current transaction to the specified rollback
segment and establishes the transaction as read–write. You cannot use
this parameter with the READ ONLY parameter in the same transaction
because read–only transactions do not generate rollback information.

Usage Notes

Example

Related Topics

10 – 107Language Elements

The SET TRANSACTION statement must be the first SQL statement in
your transaction and can appear only once in the transaction.

Only the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE,
COMMIT, and ROLLBACK statements are allowed in a read–only
transaction. For example, including an INSERT statement raises an
exception. Also, queries cannot be FOR UPDATE.

In the following example, you establish a read–only transaction:

COMMIT; –– end previous transaction

SET TRANSACTION READ ONLY;

SELECT ... FROM emp WHERE ...

SELECT ... FROM dept WHERE ...

SELECT ... FROM emp WHERE ...

COMMIT; –– end read–only transaction

COMMIT Statement, ROLLBACK Statement, SAVEPOINT Statement

Description

Syntax

Keyword and
Parameter Description

SQL

%FOUND

%ISOPEN

%NOTFOUND

%ROWCOUNT

Usage Notes

10 – 108 PL/SQL User’s Guide and Reference

SQL Cursor

Oracle implicitly opens a cursor to process each SQL statement not
associated with an explicit cursor. PL/SQL lets you refer to the most
recent implicit cursor as the “SQL” cursor. The SQL cursor has four
attributes: %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT.
They give you useful information about the execution of INSERT,
UPDATE, DELETE, and SELECT INTO statements. For more
information, see “Managing Cursors” on page 5 – 9.

sql_cursor ::=

SQL{%FOUND | %ISOPEN | %NOTFOUND | %ROWCOUNT}

This is the name of the implicit SQL cursor.

This attribute yields TRUE if an INSERT, UPDATE, or DELETE
statement affected one or more rows or a SELECT INTO statement
returned one or more rows. Otherwise, it yields FALSE.

This attribute always yields FALSE because Oracle closes the SQL cursor
automatically after executing its associated SQL statement.

This attribute is the logical opposite of %FOUND. It yields TRUE if an
INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT
INTO statement returned no rows. Otherwise, it yields FALSE.

This attribute yields the number of rows affected by an INSERT,
UPDATE, or DELETE statement, or returned by a SELECT INTO
statement.

You can use cursor attributes in procedural statements but not in SQL
statements. Before Oracle opens the SQL cursor automatically, the
implicit cursor attributes yield NULL.

The values of cursor attributes always refer to the most recently
executed SQL statement, wherever that statement appears. It might be in
a different scope. So, if you want to save an attribute value for later use,
assign it to a Boolean variable immediately.

If a SELECT INTO statement fails to return a row, PL/SQL raises the
predefined exception NO_DATA_FOUND whether you check
SQL%NOTFOUND on the next line or not.

Examples

Related Topics

10 – 109Language Elements

However, a SELECT INTO statement that calls a SQL group function
never raises NO_DATA_FOUND. That is because group functions such
as AVG and SUM always return a value or a null. In such cases,
SQL%NOTFOUND yields FALSE.

In the following example, %NOTFOUND is used to insert a row if an
update affects no rows:

UPDATE emp SET sal = sal * 1.05 WHERE empno = my_empno;

IF SQL%NOTFOUND THEN

 INSERT INTO emp VALUES (my_empno, my_ename, ...);

END IF;

In the next example, you use %ROWCOUNT to raise an exception if
more than 100 rows are deleted:

DELETE FROM parts WHERE status = ’OBSOLETE’;

IF SQL%ROWCOUNT > 100 THEN –– more than 100 rows were deleted

 RAISE large_deletion;

END IF;

Cursors, Cursor Attributes

Description

Syntax

Usage Notes

Related Topics

10 – 110 PL/SQL User’s Guide and Reference

SQLCODE Function

The function SQLCODE returns the number code associated with the
most recently raised exception. SQLCODE is meaningful only in an
exception handler. Outside a handler, SQLCODE always returns zero.

For internal exceptions, SQLCODE returns the number of the associated
Oracle error. The number that SQLCODE returns is negative unless the
Oracle error is no data found, in which case SQLCODE returns +100.

For user–defined exceptions, SQLCODE returns +1 unless you used the
pragma EXCEPTION_INIT to associate the exception with an Oracle
error number, in which case SQLCODE returns that error number. For
more information, see “Using SQLCODE and SQLERRM” on
page 6 – 18.

sqlcode_function ::=

SQLCODE

You cannot use SQLCODE directly in a SQL statement. For example, the
following statement is illegal:

INSERT INTO errors VALUES (SQLCODE, ...);

Instead, you must assign the value of SQLCODE to a local variable, then
use the variable in the SQL statement, as follows:

DECLARE

 my_sqlcode NUMBER;

BEGIN

 ...

EXCEPTION

 ...

 WHEN OTHERS THEN

 my_sqlcode := SQLCODE;

 INSERT INTO errors VALUES (my_sqlcode, ...);

END;

SQLCODE is especially useful in the OTHERS exception handler
because it lets you identify which internal exception was raised.

Exceptions, SQLERRM Function

Description

Syntax

Keyword and
Parameter Description

error_number

Usage Notes

10 – 111Language Elements

SQLERRM Function

The function SQLERRM returns the error message associated with its
error–number argument or, if the argument is omitted, with the current
value of SQLCODE. SQLERRM with no argument is meaningful only in
an exception handler. Outside a handler, SQLERRM with no argument
always returns the message normal, successful completion.

For internal exceptions, SQLERRM returns the message associated with
the Oracle error that occurred. The message begins with the Oracle
error code.

For user–defined exceptions, SQLERRM returns the message
user–defined exception unless you used the pragma EXCEPTION_INIT to
associate the exception with an Oracle error number, in which case
SQLERRM returns the corresponding error message. For more
information, see “Using SQLCODE and SQLERRM” on page 6 – 18.

sqlerrm_function ::=

SQLERRM [(error_number)]

This must be a valid Oracle error number. For a list of Oracle errors, see
Oracle7 Server Messages.

You can pass an error number to SQLERRM, in which case SQLERRM
returns the message associated with that error number. The error
number passed to SQLERRM should be negative. Passing a zero to
SQLERRM always returns the following message:

ORA–0000: normal, successful completion

Passing a positive number to SQLERRM always returns the message

User–Defined Exception

unless you pass +100, in which case SQLERRM returns the
following message:

ORA–01403: no data found

You cannot use SQLERRM directly in a SQL statement. For example, the
following statement is illegal:

INSERT INTO errors VALUES (SQLERRM, ...);

Related Topics

10 – 112 PL/SQL User’s Guide and Reference

Instead, you must assign the value of SQLERRM to a local variable, then
use the variable in the SQL statement, as follows:

DECLARE

 my_sqlerrm CHAR(150);

 ...

BEGIN

 ...

EXCEPTION

 ...

 WHEN OTHERS THEN

 my_sqlerrm := SUBSTR(SQLERRM, 1, 150);

 INSERT INTO errors VALUES (my_sqlerrm, ...);

END;

The string function SUBSTR ensures that a VALUE_ERROR exception
(for truncation) is not raised when you assign the value of SQLERRM to
my_sqlerrm. SQLERRM is especially useful in the OTHERS exception
handler because it lets you identify which internal exception was raised.

Exceptions, SQLCODE Function

Description

Syntax

Keyword and
Parameter Description

cursor_variable_name

plsql_table_name

record_name

record_name.field_name

table_name.column_name

variable_name

Usage Notes

Related Topics

10 – 113Language Elements

%TYPE Attribute

The %TYPE attribute provides the datatype of a field, record, PL/SQL
table, database column, or variable. You can use the %TYPE attribute as
a datatype specifier when declaring constants, variables, fields, and
parameters. For more information, see “Using %TYPE” on page 2 – 24.

type_attribute ::=

{ cursor_variable_name

 | plsql_table_name

 | record_name

 | record_name.field_name

 | table_name.column_name

 | variable_name}%TYPE

This identifies a PL/SQL cursor variable previously declared within the
current scope.

This identifies a PL/SQL table previously declared within the
current scope.

This identifies a user–defined or %ROWTYPE record previously
declared within the current scope.

This identifies a field in a user–defined or %ROWTYPE record
previously declared within the current scope.

This refers to a table and column that must be accessible when the
declaration is elaborated.

This is the name of a variable previously declared in the same scope. For
naming conventions, see “Identifiers” on page 2 – 4.

The %TYPE attribute is particularly useful when declaring variables,
fields, and parameters that refer to database columns. However, the
NOT NULL column constraint does not apply to objects declared
using %TYPE.

Constants and Variables, %ROWTYPE Attribute

Description

Syntax

Keyword and
Parameter Description

table_reference

subquery

alias

column_name

sql_expression

10 – 114 PL/SQL User’s Guide and Reference

UPDATE Statement

The UPDATE statement changes the values of specified columns in one
or more rows in a table or view. For a full description of the UPDATE
statement, see Oracle7 Server SQL Reference.

update_statement ::=

UPDATE {table_reference | (subquery)} [alias]

 SET { column_name = {sql_expression | (subquery)}

 | (column_name[, column_name]...) = (subquery)}

 [, { column_name = {sql_expression | (subquery)}

 | (column_name[, column_name]...) = (subquery)}]...

 [WHERE {search_condition | CURRENT OF cursor_name}];

table_reference ::=

[schema_name.]{table_name | view_name}[@dblink_name]

This specifies a table or view, which must be accessible when you
execute the UPDATE statement, and for which you must have
UPDATE privileges.

This is a select statement that provides a value or set of values to the
UPDATE statement. The syntax of subquery is like the syntax of
select_into_statement defined in “SELECT INTO Statement” on
page 10 – 104, except that subquery cannot have an INTO clause.

This is another (usually short) name for the referenced table or view and
is typically used in the WHERE clause.

This is the name of the column (or one of the columns) to be updated. It
must be the name of a column in the referenced table or view. A column
name cannot be repeated in the column_name list. Column names need
not appear in the UPDATE statement in the same order that they appear
in the table or view.

This is any expression valid in SQL. For more information, see Oracle7
Server SQL Reference.

SET column_name =
sql_expression

SET column_name =
subquery

SET (column_name[,
column_name]...) =
subquery

WHERE search_condition

WHERE CURRENT OF
cursor_name

10 – 115Language Elements

This clause assigns the value of sql_expression to the column identified by
column_name. If sql_expression contains references to columns in the table
being updated, the references are resolved in the context of the current
row. The old column values are used on the right side of the equal sign.

In the following example, you increase every employee’s salary by 10%.
The original value of the sal column is multiplied by 1.1, then the result
is assigned to the sal column.

UPDATE emp SET sal = sal * 1.1;

This clause assigns the value retrieved from the database by subquery to
the column identified by column_name. The subquery must return
exactly one row and one column.

This clause assigns the values retrieved from the database by subquery to
the columns in the column_name list. The subquery must return exactly
one row, which includes all the columns listed in parentheses on the left
side of the equal sign.

The column values returned by subquery are assigned to the columns in
the column_name list in order. Thus, the first value is assigned to the first
column in the column_name list, the second value is assigned to the
second column in the column_name list, and so on.

In the following correlated query, the column item_id is assigned the
value stored in item_num, and the column price is assigned the value
stored in item_price:

UPDATE inventory inv –– alias

 SET (item_id, price) = (SELECT item_num, item_price

 FROM item_table

 WHERE item_name = inv.item_name);

This clause chooses which rows to update in the database table. Only
rows that meet the search condition are updated. If you omit the search
condition, all rows in the table are updated.

This clause refers to the latest row processed by the FETCH statement
associated with the cursor identified by cursor_name. The cursor must be
FOR UPDATE and must be open and positioned on a row. If the cursor
is not open, the CURRENT OF clause causes an error.

If the cursor is open, but no rows have been fetched or the last fetch
returned no rows, PL/SQL raises the predefined exception
NO_DATA_FOUND.

Usage Notes

Examples

Related Topics

10 – 116 PL/SQL User’s Guide and Reference

You can use the UPDATE WHERE CURRENT OF statement after a fetch
from an open cursor (this includes implicit fetches executed in a cursor
FOR loop), provided the associated query is FOR UPDATE. This
statement updates the current row; that is, the one just fetched.

The implicit SQL cursor and the cursor attributes %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN let you access useful
information about the execution of an UPDATE statement.

An UPDATE statement might update one or more rows or no rows. If
one or more rows are updated, you get the following results:

• SQL%NOTFOUND yields FALSE

• SQL%FOUND yields TRUE

• SQL%ROWCOUNT yields the number of rows updated

If no rows are updated, you get these results:

• SQL%NOTFOUND yields TRUE

• SQL%FOUND yields FALSE

• SQL%ROWCOUNT yields 0

In the following example, a 10% raise is given to all analysts and clerks
in department 20:

UPDATE emp SET sal = sal * 1.10

 WHERE (job = ’ANALYST’ OR job = ’CLERK’) AND DEPTNO = 20;

In the next example, an employee named Ford is promoted to the
position of Analyst and her salary is raised by 15%:

UPDATE emp SET job = ’ANALYST’, sal = sal * 1.15

 WHERE ename = ’FORD’;

DELETE Statement, FETCH Statement

P A R T

 III Appendices

A P P E N D I X

A
T

A – 1New Features

New Features

his appendix surveys the new features in release 2.3 of PL/SQL.
Designed to meet your practical needs, these features will help you
build effective, reliable applications.

A – 2 PL/SQL User’s Guide and Reference

Support for File I/O

The new package UTL_FILE, which is supplied with the Oracle Server,
allows your PL/SQL programs to read and write operating system (OS)
text files. It provides a restricted version of standard OS stream file I/O,
including open, put, get, and close operations.

When you want to read or write a text file, you call the function fopen,
which returns a file handle for use in subsequent procedure calls. For
example, the procedure put_line writes a text string and line terminator
to an open file. The procedure get_line reads a line of text from an open
file into an output buffer.

PL/SQL file I/O is available on both the client and server sides.
However, on the server side, file access is restricted to those directories
explicitly listed in the accessible directories list, which is part of the Oracle
initialization file.

For more information, see Oracle7 Server Application Developer’s Guide.

PL/SQL Table Improvements

Now, you can declare PL/SQL tables of records as well as PL/SQL
tables of scalars. That means a PL/SQL table can store rows (not just a
column) of Oracle data. PL/SQL tables of records make it easy to move
collections of data into and out of database tables or between client–side
applications and stored subprograms. You can even use PL/SQL tables
of records to simulate local database tables.

Also, several new attributes give you previously unavailable
information about a PL/SQL table. Attributes are characteristics of an
object. Every PL/SQL table has the attributes EXISTS, COUNT, FIRST,
LAST, PRIOR, NEXT, and DELETE. They make PL/SQL tables easier to
use and your applications easier to maintain.

For example, COUNT returns the number of elements that a PL/SQL
table contains. COUNT is useful because the size of a PL/SQL table is
unconstrained. Suppose you fetch a column of Oracle data into a
PL/SQL table. How many elements does the PL/SQL table contain?
COUNT gives you the answer.

To apply the attributes to a PL/SQL table, you use dot notation, as the
following example shows:

IF ename_tab.COUNT = 50 THEN ...

For more information, see “PL/SQL Tables” on page 4 – 2.

A – 3New Features

Cursor Variable Improvements

Now, cursor variables are available to every PL/SQL client. For
example, you can declare a cursor variable in a PL/SQL host
environment such as an OCI or Pro*C program, then pass it as a bind
variable to PL/SQL. Moreover, application development tools such as
Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use
cursor variables entirely on the client side.

The Oracle Server also has a PL/SQL engine. So, you can pass cursor
variables back and forth between an application and server via remote
procedure calls (RPCs). And, if you have a PL/SQL engine on the client
side, calls from client to server impose no restrictions. For example, you
can declare a cursor variable on the client side, open and fetch from it on
the server side, then continue to fetch from it back on the client side.

Furthermore, now you can define weak (nonrestrictive) REF CURSOR
types. As the following example shows, a strong REF CURSOR type
definition specifies a return type, but a weak definition does not:

DECLARE

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE; –– strong

 TYPE GenericCurTyp IS REF CURSOR; –– weak

Weak REF CURSOR types are more flexible because PL/SQL lets you
associate a weakly typed cursor variable with any query.

Also, now you can apply the cursor attributes %FOUND, %ISOPEN,
%NOTFOUND, and %ROWCOUNT to a cursor variable. They return
useful information about the execution of a multi–row query.

For more information, see “Using Cursor Variables” on page 5 – 17.

New Fast–Integer Datatype

You can use the new datatype PLS_INTEGER to boost performance.
Like BINARY_INTEGER values, PLS_INTEGER values require less
storage than NUMBER values. But, PLS_INTEGER operations use
machine arithmetic, so they are considerably faster than BINARY_
INTEGER operations, which use library arithmetic.

For more information, see “PLS_INTEGER” on page 2 – 12.

A – 4 PL/SQL User’s Guide and Reference

Full Support for Subqueries

Formerly, PL/SQL allowed subqueries only in the SET, VALUES, and
WHERE clauses. Now, PL/SQL also allows subqueries in the FROM
clause. Among other things, this adds flexibility to your cursor
definitions.

For an example, see “Using Subqueries” on page 5 – 13.

New Remote Dependency Mode

Formerly, Oracle used only timestamps to manage remote dependencies
among PL/SQL library units (packages and stored subprograms).
Whenever a library unit was recompiled, the server timestamped it.
At run time, dependent subprograms on a client system or on another
server were invalidated because their timestamps were no longer
current. Often, the resulting recompilations were needless because the
specification of the library unit had not been altered.

Needless recompilations can slow network traffic and affect
performance. Furthermore, if a client system has no PL/SQL compiler,
invalidated applications cannot be recompiled.

Now, Oracle can use timestamps or signatures to manage remote
dependencies. (The signature of a subprogram includes its name and the
number, datatypes, and modes of its parameters.) When Oracle uses the
signature of a remote library unit, dependent subprograms are
invalidated only if the signature or specification of the unit was altered.
So, dependent subprograms are recompiled only when necessary.

To have Oracle use signatures instead of timestamps, you set the
following parameter in the Oracle initialization file:

REMOTE_DEPENDENCIES_MODE = SIGNATURE

You can reset the parameter dynamically, as the following Pro*C
example shows:

EXEC SQL ALTER SESSION

 SET REMOTE_DEPENDENCIES_MODE = TIMESTAMP;

For more information, see Oracle7 Server Application Developer’s Guide.

A P P E N D I X

B
T

B – 1Sample Programs

Sample Programs

his appendix provides several PL/SQL programs to guide you in
writing your own. The sample programs illustrate the following
important PL/SQL concepts and features:

• FOR loops

• cursors

• scoping

• batch transaction processing

• embedded PL/SQL

• calling a stored procedure

B – 2 PL/SQL User’s Guide and Reference

Running the Samples

The sample programs in this appendix and many others throughout
this Guide are available online. Therefore, they are preceded by the
following comment:

–– available online in file <filename>

The list below gives their locations in this Guide and the names of the
corresponding online files. However, the exact name and storage
location of an online file are system dependent.

Location in Guide Online File

Chapter 1, page 1 – 2 EXAMP1

Chapter 1, page 1 – 8 EXAMP2

Chapter 1, page 1 – 10 EXAMP3

Chapter 2, page 2 – 26 EXAMP4

Chapter 5, page 5 – 35 EXAMP5

Chapter 5, page 5 – 36 EXAMP6

Chapter 5, page 5 – 15 EXAMP7

Chapter 5, page 5 – 16 EXAMP8

Chapter 9, page 9 – 8 EXAMP9

Chapter 9, page 9 – 10 EXAMP10

Chapter 10, page 10 – 11 EXAMP11

Chapter 10, page 10 – 21 EXAMP12

Chapter 10, page 10 – 21 EXAMP13

Chapter 10, page 10 – 22 EXAMP14

Appendix B, page B – 11 SAMPLE1

Appendix B, page B – 12 SAMPLE2

Appendix B, page B – 13 SAMPLE3

Appendix B, page B – 14 SAMPLE4

Appendix B, page B – 18 SAMPLE5

Appendix B, page B – 22 SAMPLE6

Creating the Tables

EXAMPBLD Script

B – 3Sample Programs

Some samples are run interactively from SQL*Plus; others are run
from Pro*C programs. You can experiment with the samples from any
Oracle account. However, the Pro*C examples expect you to use the
SCOTT/TIGER account.

Before trying the samples, you must create some database tables, then
load the tables with data. You do that by running two SQL*Plus scripts,
EXAMPBLD and EXAMPLOD, supplied with PL/SQL. These scripts
can be found in the PL/SQL installation library. Check the Oracle
installation or user’s guide for your system.

Below is a listing of the SQL*Plus script EXAMPBLD. The CREATE
statements in this script build the database tables processed by the
sample programs. To run the script, invoke SQL*Plus, then issue the
following command:

SQL> START EXAMPBLD

set compatibility V6
/

drop table accounts

/

create table accounts(

 account_id number(4) not null,

 bal number(11,2))

/

create unique index accounts_index on accounts (account_id)

/

drop table action

/

create table action(

 account_id number(4) not null,

 oper_type char(1) not null,

 new_value number(11,2),

 status char(45),

 time_tag date not null)

/

drop table bins

/

create table bins(

 bin_num number(2) not null,

 part_num number(4),

 amt_in_bin number(4))

/

drop table data_table

/

B – 4 PL/SQL User’s Guide and Reference

create table data_table(

 exper_num number(2),

 n1 number(5),

 n2 number(5),

 n3 number(5))

/

drop table emp

/

create table emp(

 empno number(4) not null,

 ename char(10),

 job char(9),

 mgr number(4),

 hiredate date,

 sal number(7,2),

 comm number(7,2),

 deptno number(2))

/

drop table inventory

/

create table inventory(

 prod_id number(5) not null,

 product char(15),

 quantity number(5))

/

drop table journal

/

create table journal(

 account_id number(4) not null,

 action char(45) not null,

 amount number(11,2),

 date_tag date not null)

/

drop table num1_tab

/

create table num1_tab(

 sequence number(3) not null,

 num number(4))

/

drop table num2_tab

/

B – 5Sample Programs

create table num2_tab(

 sequence number(3) not null,

 num number(4))

/

drop table purchase_record

/

create table purchase_record(

 mesg char(45),

 purch_date date)

/

drop table ratio

/

create table ratio(

 sample_id number(3) not null,

 ratio number)

/

drop table result_table

/

create table result_table(

 sample_id number(3) not null,

 x number,

 y number)

/

drop table sum_tab

/

create table sum_tab(

 sequence number(3) not null,

 sum number(5))

/

drop table temp

/

create table temp(

 num_col1 number(9,4),

 num_col2 number(9,4),

 char_col char(55))

/

create or replace package personnel as

 type charArrayTyp is table of varchar2(10)

 index by binary_integer;

 type numArrayTyp is table of float

 index by binary_integer;

B – 6 PL/SQL User’s Guide and Reference

 procedure get_employees(

 dept_number in integer,

 batch_size in integer,

 found in out integer,

 done_fetch out integer,

 emp_name out charArrayTyp,

 job–title out charArrayTyp,

 salary out numArrayTyp);

end personnel;

/

create or replace package body personnel as

 cursor get_emp (dept_number integer) is

 select ename, job, sal from emp

 where deptno = dept_number;

 procedure get_employees(

 dept_number in integer,

 batch_size in integer,

 found in out integer,

 done_fetch out integer,

 emp_name out charArrayTyp,

 job_title out charArrayTyp,

 salary out numArrayTyp) is

 begin

 if not get_emp%isopen then

 open get_emp(dept_number);

 end if;

 done_fetch := 0;

 found := 0;

 for i in 1..batch_size loop

 fetch get_emp into emp_name(i),

 job_title(i), salary(i);

 if get_emp%notfound then

 close get_emp;

 done_fetch := 1;

 exit;

 else

 found := found + 1;

 end if;

 end loop;

 end get_employees;

end personnel;

/

Loading the Data

EXAMPLOD Script

B – 7Sample Programs

Below is a listing of the SQL*Plus script EXAMPLOD. The INSERT
statements in this script load (or reload) the database tables processed
by the sample programs. To run the script, invoke SQL*Plus in the same
Oracle account from which you ran EXAMPBLD, then issue the
following command:

SQL> START EXAMPLOD

delete from accounts
/

insert into accounts values (1,1000.00)

/

insert into accounts values (2,2000.00)

/

insert into accounts values (3,1500.00)

/

insert into accounts values (4,6500.00)

/

insert into accounts values (5,500.00)

/

delete from action

/

insert into action values

 (3,’u’,599,null,sysdate)

/

insert into action values

 (6,’i’,20099,null,sysdate)

/

insert into action values

 (5,’d’,null,null,sysdate)

/

insert into action values

 (7,’u’,1599,null,sysdate)

/

insert into action values

 (1,’i’,399,null,sysdate)

/

insert into action values

 (9,’d’,null,null,sysdate)

/

insert into action values

 (10,’x’,null,null,sysdate)

/

delete from bins

/

B – 8 PL/SQL User’s Guide and Reference

insert into bins values (1, 5469, 650)

/

insert into bins values (2, 7243, 450)

/

insert into bins values (3, 5469, 120)

/

insert into bins values (4, 5469, 300)

/

insert into bins values (5, 6085, 415)

/

insert into bins values (6, 5469, 280)

/

insert into bins values (7, 8159, 619)

/

delete from data_table

/

insert into data_table values

 (1, 10, 167, 17)

/

insert into data_table values

 (1, 16, 223, 35)

/

insert into data_table values

 (2, 34, 547, 2)

/

insert into data_table values

 (3, 23, 318, 11)

/

insert into data_table values

 (1, 17, 266, 15)

/

insert into data_table values

 (1, 20, 117, 9)

/

delete from emp

/

insert into emp values

 (7369,’SMITH’,’CLERK’,7902,TO_DATE(’12–17–80’,’MM–DD–YY’),

 800,NULL,20)

/

insert into emp values

 (7499,’ALLEN’,’SALESMAN’,7698,TO_DATE(’02–20–81’,’MM–DD–YY’),

 1600,300,30)

/

insert into emp values

 (7521,’WARD’,’SALESMAN’,7698,TO_DATE(’02–22–81’,’MM–DD–YY’),

 1250,500,30)

/

B – 9Sample Programs

insert into emp values

 (7566,’JONES’,’MANAGER’,7839,TO_DATE(’04–02–81’,’MM–DD–YY’),

 2975,NULL,20)

/

insert into emp values

(7654,’MARTIN’,’SALESMAN’,7698,TO_DATE(’09–28–81’,’MM–DD–YY’),

 1250,1400,30)

/

insert into emp values

 (7698,’BLAKE’,’MANAGER’,7839,TO_DATE(’05–1–81’,’MM–DD–YY’),

 2850,NULL,30)

/

insert into emp values

 (7782,’CLARK’,’MANAGER’,7839,TO_DATE(’06–9–81’,’MM–DD–YY’),

 2450,NULL,10)

/

insert into emp values

 (7788,’SCOTT’,’ANALYST’,7566,SYSDATE–85,3000,NULL,20)

/

insert into emp values

 (7839,’KING’,’PRESIDENT’,NULL,TO_DATE(’11–17–81’,’MM–DD–YY’),

 5000,NULL,10)

/

insert into emp values

 (7844,’TURNER’,’SALESMAN’,7698,TO_DATE(’09–8–81’,’MM–DD–YY’),

 1500,0,30)

/

insert into emp values

 (7876,’ADAMS’,’CLERK’,7788,SYSDATE–51,1100,NULL,20)

/

insert into emp values

 (7900,’JAMES’,’CLERK’,7698,TO_DATE(’12–3–81’,’MM–DD–YY’),

 950,NULL,30)

/

insert into emp values

 (7902,’FORD’,’ANALYST’,7566,TO_DATE(’12–3–81’,’MM–DD–YY’),

 3000,NULL,20)

/

insert into emp values

 (7934,’MILLER’,’CLERK’,7782,TO_DATE(’01–23–82’,’MM–DD–YY’),

 1300,NULL,10)

/

delete from inventory

/

insert into inventory values

 (’TENNIS RACKET’, 3)

/

B – 10 PL/SQL User’s Guide and Reference

insert into inventory values

 (’GOLF CLUB’, 4)

/

insert into inventory values

 (’SOCCER BALL’, 2)

/

delete from journal

/

delete from num1_tab

/

insert into num1_tab values (1, 5)

/

insert into num1_tab values (2, 7)

/

insert into num1_tab values (3, 4)

/

insert into num1_tab values (4, 9)

/

delete from num2_tab

/

insert into num2_tab values (1, 15)

/

insert into num2_tab values (2, 19)

/

insert into num2_tab values (3, 27)

/

delete from purchase_record

/

delete from ratio

/

delete from result_table

/

insert into result_table values (130, 70, 87)

/

insert into result_table values (131, 77, 194)

/

insert into result_table values (132, 73, 0)

/

insert into result_table values (133, 81, 98)

/

delete from sum_tab

/

delete from temp

/

commit

Input Table

PL/SQL Block

Output Table

B – 11Sample Programs

Sample 1. FOR Loop

The following example uses a simple FOR loop to insert ten rows into a
database table. The values of a loop index, counter variable, and either
of two character strings are inserted. Which string is inserted depends
on the value of the loop index.

Not applicable.

–– available online in file SAMPLE1
DECLARE

 x NUMBER := 100;

BEGIN

 FOR i IN 1..10 LOOP

 IF MOD(i,2) = 0 THEN –– i is even

 INSERT INTO temp VALUES (i, x, ’i is even’);

 ELSE

 INSERT INTO temp VALUES (i, x, ’i is odd’);

 END IF;

 x := x + 100;

 END LOOP;

 COMMIT;

END;

SQL> SELECT * FROM temp ORDER BY col1;

COL1 COL2 MESSAGE

––––– ––––––– –––––––––

 1 100 i is odd

 2 200 i is even

 3 300 i is odd

 4 400 i is even

 5 500 i is odd

 6 600 i is even

 7 700 i is odd

 8 800 i is even

 9 900 i is odd

 10 1000 i is even

10 records selected.

Input Table

PL/SQL Block

B – 12 PL/SQL User’s Guide and Reference

Sample 2. Cursors

The next example uses a cursor to select the five highest paid employees
from the emp table.

SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;

ENAME EMPNO SAL

–––––––––– ––––––––––– ––––––––

KING 7839 5000

SCOTT 7788 3000

FORD 7902 3000

JONES 7566 2975

BLAKE 7698 2850

CLARK 7782 2450

ALLEN 7499 1600

TURNER 7844 1500

MILLER 7934 1300

WARD 7521 1250

MARTIN 7654 1250

ADAMS 7876 1100

JAMES 7900 950

SMITH 7369 800

14 records selected.

–– available online in file SAMPLE2
DECLARE

 CURSOR c1 is

 SELECT ename, empno, sal FROM emp

 ORDER BY sal DESC; –– start with highest paid employee

 my_ename CHAR(10);

 my_empno NUMBER(4);

 my_sal NUMBER(7,2);

BEGIN

 OPEN c1;

 FOR i IN 1..5 LOOP

 FETCH c1 INTO my_ename, my_empno, my_sal;

 EXIT WHEN c1%NOTFOUND; /* in case the number requested */

 /* is more than the total */

 /* number of employees */

 INSERT INTO temp VALUES (my_sal, my_empno, my_ename);

 COMMIT;

 END LOOP;

 CLOSE c1;

END;

Output Table

Input Table

PL/SQL Block

B – 13Sample Programs

SQL> SELECT * FROM temp ORDER BY col1 DESC;

 COL1 COL2 MESSAGE

––––––––– –––––––– –––––––

 5000 7839 KING

 3000 7902 FORD

 3000 7788 SCOTT

 2975 7566 JONES

 2850 7698 BLAKE

Sample 3. Scoping

The following example illustrates block structure and scope rules. An
outer block declares two variables named x and counter and loops four
times. Inside this loop is a sub–block that also declares a variable
named x. The values inserted into the temp table show that the two x’s
are indeed different.

Not applicable.

–– available online in file SAMPLE3
DECLARE

 x NUMBER := 0;

 counter NUMBER := 0;

BEGIN

 FOR i IN 1..4 LOOP

 x := x + 1000;

 counter := counter + 1;

 INSERT INTO temp VALUES (x, counter, ’outer loop’);

 /* start an inner block */

 DECLARE

 x NUMBER := 0; –– this is a local version of x

 BEGIN

 FOR i IN 1..4 LOOP

 x := x + 1; –– this increments the local x

 counter := counter + 1;

 INSERT INTO temp VALUES (x, counter, ’inner loop’);

 END LOOP;

 END;

 END LOOP;

 COMMIT;

END;

Output Table

B – 14 PL/SQL User’s Guide and Reference

SQL> SELECT * FROM temp ORDER BY col2;

 COL1 COL2 MESSAGE

––––––– –––––––– –––––––––––––

 1000 1 OUTER loop

 1 2 inner loop

 2 3 inner loop

 3 4 inner loop

 4 5 inner loop

 2000 6 OUTER loop

 1 7 inner loop

 2 8 inner loop

 3 9 inner loop

 4 10 inner loop

 3000 11 OUTER loop

 1 12 inner loop

 2 13 inner loop

 3 14 inner loop

 4 15 inner loop

 4000 16 OUTER loop

 1 17 inner loop

 2 18 inner loop

 3 19 inner loop

 4 20 inner loop

20 records selected.

Sample 4. Batch Transaction Processing

In the next example the accounts table is modified according to
instructions stored in the action table. Each row in the action table
contains an account number, an action to be taken (I, U, or D for insert,
update, or delete), an amount by which to update the account, and a
time tag used to sequence the transactions.

On an insert, if the account already exists, an update is done instead. On
an update, if the account does not exist, it is created by an insert. On a
delete, if the row does not exist, no action is taken.

Input Tables

PL/SQL Block

B – 15Sample Programs

SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL

–––––––––– –––––––––

 1 1000

 2 2000

 3 1500

 4 6500

 5 500

SQL> SELECT * FROM action ORDER BY time_tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG

–––––––––– – –––––––––– –––––––––––––––––––––––– –––––––––

 3 u 599 18–NOV–88

 6 i 20099 18–NOV–88

 5 d 18–NOV–88

 7 u 1599 18–NOV–88

 1 i 399 18–NOV–88

 9 d 18–NOV–88

 10 x 18–NOV–88

7 records selected.

–– available online in file SAMPLE4
DECLARE

 CURSOR c1 IS

 SELECT account_id, oper_type, new_value FROM action

 ORDER BY time_tag

 FOR UPDATE OF status;

BEGIN

 FOR acct IN c1 LOOP –– process each row one at a time

 acct.oper_type := upper(acct.oper_type);

 /*––*/

 /* Process an UPDATE. If the account to */

 /* be updated doesn’t exist, create a new */

 /* account. */

 /*––*/

 IF acct.oper_type = ’U’ THEN

 UPDATE accounts SET bal = acct.new_value

 WHERE account_id = acct.account_id;

B – 16 PL/SQL User’s Guide and Reference

 IF SQL%NOTFOUND THEN –– account didn’t exist. Create it.

 INSERT INTO accounts

 VALUES (acct.account_id, acct.new_value);

 UPDATE action SET status =

 ’Update: ID not found. Value inserted.’

 WHERE CURRENT OF c1;

 ELSE

 UPDATE action SET status = ’Update: Success.’

 WHERE CURRENT OF c1;

 END IF;

 /*––*/

 /* Process an INSERT. If the account already */

 /* exists, do an update of the account */

 /* instead. */

 /*––*/

 ELSIF acct.oper_type = ’I’ THEN

 BEGIN

 INSERT INTO accounts

 VALUES (acct.account_id, acct.new_value);

 UPDATE action set status = ’Insert: Success.’

 WHERE CURRENT OF c1;

 EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN –– account already exists

 UPDATE accounts SET bal = acct.new_value

 WHERE account_id = acct.account_id;

 UPDATE action SET status =

 ’Insert: Acct exists. Updated instead.’

 WHERE CURRENT OF c1;

 END;

 /*––*/

 /* Process a DELETE. If the account doesn’t */

 /* exist, set the status field to say that */

 /* the account wasn’t found. */

 /*––*/

 ELSIF acct.oper_type = ’D’ THEN

 DELETE FROM accounts

 WHERE account_id = acct.account_id;

 IF SQL%NOTFOUND THEN –– account didn’t exist.

 UPDATE action SET status = ’Delete: ID not found.’

 WHERE CURRENT OF c1;

 ELSE

 UPDATE action SET status = ’Delete: Success.’

 WHERE CURRENT OF c1;

 END IF;

Output Tables

B – 17Sample Programs

 /*––*/

 /* The requested operation is invalid. */

 /*––*/

 ELSE –– oper_type is invalid

 UPDATE action SET status =

 ’Invalid operation. No action taken.’

 WHERE CURRENT OF c1;

 END IF;

 END LOOP;

 COMMIT;

END;

SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL

–––––––––– –––––––––

 1 399

 2 2000

 3 599

 4 6500

 6 20099

 7 1599

6 records selected.

SQL> SELECT * FROM action ORDER BY time_tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG

–––––––––– – –––––––––– –––––––––––––––––––––––– –––––––––

 3 u 599 Update: Success. 18–NOV–88

 6 i 20099 Insert: Success. 18–NOV–88

 5 d Delete: Success. 18–NOV–88

 7 u 1599 Update: ID not found. 18–NOV–88

 Value inserted.

 1 i 399 Insert: Acct exists. 18–NOV–88

 Updated instead.

 9 d Delete: ID not found. 18–NOV–88

 10 x Invalid operation. 18–NOV–88

 No action taken.

7 records selected.

Input Table

PL/SQL Block in a C
Program

B – 18 PL/SQL User’s Guide and Reference

Sample 5. Embedded PL/SQL

The following example shows how you can embed PL/SQL in a
high–level host language such as C and demonstrates how a banking
debit transaction might be done.

SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL

–––––––––– –––––––––

 1 1000

 2 2000

 3 1500

 4 6500

 5 500

/* available online in file SAMPLE5 */

#include <stdio.h>

 char buf[20];

EXEC SQL BEGIN DECLARE SECTION;

 int acct;

 double debit;

 double new_bal;

 VARCHAR status[65];

 VARCHAR uid[20];

 VARCHAR pwd[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

main()

{

 extern double atof();

 strcpy (uid.arr,”scott”);

 uid.len=strlen(uid.arr);

 strcpy (pwd.arr,”tiger”);

 pwd.len=strlen(pwd.arr);

 printf(”\n\n\tEmbedded PL/SQL Debit Transaction Demo\n\n”);

 printf(”Trying to connect...”);

 EXEC SQL WHENEVER SQLERROR GOTO errprint;

 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

 printf(” connected.\n”);

B – 19Sample Programs

for (;;) /* Loop infinitely */

{

 printf(”\n** Debit which account number? (–1 to end) ”);

 gets(buf);

 acct = atoi(buf);

 if (acct == –1) /* Need to disconnect from Oracle */

 { /* and exit loop if account is –1 */

 EXEC SQL COMMIT RELEASE;

 exit(0);

 }

 printf(” What is the debit amount? ”);

 gets(buf);

 debit = atof(buf);

 /* –––––––––––––––––––––––––––––––––– */

 /* ––––– Begin the PL/SQL block ––––– */

 /* –––––––––––––––––––––––––––––––––– */

 EXEC SQL EXECUTE

 DECLARE

 insufficient_funds EXCEPTION;

 old_bal NUMBER;

 min_bal NUMBER := 500;

 BEGIN

 SELECT bal INTO old_bal FROM accounts

 WHERE account_id = :acct;

 –– If the account doesn’t exist, the NO_DATA_FOUND

 –– exception will be automatically raised.

 :new_bal := old_bal – :debit;

 IF :new_bal >= min_bal THEN

 UPDATE accounts SET bal = :new_bal

 WHERE account_id = :acct;

 INSERT INTO journal

 VALUES (:acct, ’Debit’, :debit, SYSDATE);

 :status := ’Transaction completed.’;

 ELSE

 RAISE insufficient_funds;

 END IF;

 COMMIT;

Interactive Session

B – 20 PL/SQL User’s Guide and Reference

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 :status := ’Account not found.’;

 :new_bal := –1;

 WHEN insufficient_funds THEN

 :status := ’Insufficient funds.’;

 :new_bal := old_bal;

 WHEN OTHERS THEN

 ROLLBACK;

 :status := ’Error: ’ || SQLERRM(SQLCODE);

 :new_bal := –1;

 END;

 END–EXEC;

 /* –––––––––––––––––––––––––––––––– */

 /* ––––– End the PL/SQL block ––––– */

 /* –––––––––––––––––––––––––––––––– */

 status.arr[status.len] = ’\0’; /* null–terminate */

 /* the string */

 printf(”\n\n Status: %s\n”, status.arr);

 if (new_bal >= 0)

 printf(” Balance is now: $%.2f\n”, new_bal);

} /* End of loop */

errprint:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf(”\n\n>>>>> Error during execution:\n”);

 printf(”%s\n”,sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK RELEASE;

 exit(1);

}

Embedded PL/SQL Debit Transaction Demo

Trying to connect... connected.

** Debit which account number? (–1 to end) 1

 What is the debit amount? 300

 Status: Transaction completed.

 Balance is now: $700.00

** Debit which account number? (–1 to end) 1

 What is the debit amount? 900

 Status: Insufficient funds.

 Balance is now: $700.00

Output Tables

B – 21Sample Programs

** Debit which account number? (–1 to end) 2

 What is the debit amount? 500

 Status: Transaction completed.

 Balance is now: $1500.00

** Debit which account number? (–1 to end) 2

 What is the debit amount? 100

 Status: Transaction completed.

 Balance is now: $1400.00

** Debit which account number? (–1 to end) 99

 What is the debit amount? 100

 Status: Account not found.

** Debit which account number? (–1 to end) –1

SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL

–––––––––– –––––

 1 700

 2 1400

 3 1500

 4 6500

 5 500

SQL> SELECT * FROM journal ORDER BY date_tag;

ACCOUNT_ID ACTION AMOUNT DATE_TAG

–––––––––– –––––––––––––––––––––––––– –––––––––– –––––––––

 1 Debit 300 28–NOV–88

 2 Debit 500 28–NOV–88

 2 Debit 100 28–NOV–88

Input Table

Stored Procedure

B – 22 PL/SQL User’s Guide and Reference

Sample 6. Calling a Stored Procedure

This Pro*C program connects to Oracle, prompts the user for a
department number, then calls a procedure named get_employees, which
is stored in a package named personnel. The procedure declares three
PL/SQL tables as OUT formal parameters, then fetches a batch of
employee data into the PL/SQL tables. The matching actual parameters
are host arrays. When the procedure finishes, it automatically assigns all
row values in the PL/SQL tables to corresponding elements in the host
arrays. The program calls the procedure repeatedly, displaying each
batch of employee data, until no more data is found.

SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;

ENAME EMPNO SAL

–––––––––– ––––––––––– ––––––––

KING 7839 5000

SCOTT 7788 3000

FORD 7902 3000

JONES 7566 2975

BLAKE 7698 2850

CLARK 7782 2450

ALLEN 7499 1600

TURNER 7844 1500

MILLER 7934 1300

WARD 7521 1250

MARTIN 7654 1250

ADAMS 7876 1100

JAMES 7900 950

SMITH 7369 800

14 records selected.

/* available online in file SAMPLE6 */
#include <stdio.h>

#include <string.h>

typedef char asciz;

EXEC SQL BEGIN DECLARE SECTION;

 /* Define type for null–terminated strings. */

 EXEC SQL TYPE asciz IS STRING(20);

 asciz username[20];

 asciz password[20];

 int dept_no; /* which department to query */

 char emp_name[10][21];

 char job[10][21];

 float salary[10];

B – 23Sample Programs

 int done_flag;

 int array_size;

 int num_ret; /* number of rows returned */

 int SQLCODE;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE sqlca;

int print_rows(); /* produces program output */

int sqlerror(); /* handles unrecoverable errors */

main()

{

 int i;

 /* Connect to Oracle. */

 strcpy(username, ”SCOTT”);

 strcpy(password, ”TIGER”);

 EXEC SQL WHENEVER SQLERROR DO sqlerror();

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 printf(”\nConnected to Oracle as user: %s\n\n”, username);

 printf(”Enter department number: ”);

 scanf(”%d”, &dept_no);

 fflush(stdin);

 /* Print column headers. */

 printf(”\n\n”);

 printf(”%–10.10s%–10.10s%s\n”, ”Employee”, ”Job”, ”Salary”);

 printf(”%–10.10s%–10.10s%s\n”, ”––––––––”, ”–––”, ”––––––”);

 /* Set the array size. */

 array_size = 10;

 done_flag = 0;

 num_ret = 0;

 /* Array fetch loop – ends when NOT FOUND becomes true. */

 for (;;)

 {

 EXEC SQL EXECUTE

 BEGIN personnel.get_employees

 (:dept_no, :array_size, :num_ret, :done_flag,

 :emp_name, :job, :salary);

 END;

 END–EXEC;

Interactive Session

B – 24 PL/SQL User’s Guide and Reference

 print_rows(num_ret);

 if (done_flag)

 break;

 }

 /* Disconnect from Oracle. */

 EXEC SQL COMMIT WORK RELEASE;

 exit(0);

}

print_rows(n)

int n;

{

 int i;

 if (n == 0)

 {

 printf(”No rows retrieved.\n”);

 return;

 }

 for (i = 0; i < n; i++)

 printf(”%10.10s%10.10s%6.2f\n”,

 emp_name[i], job[i], salary[i]);

}

sqlerror()

{

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf(”\nOracle error detected:”);

 printf(”\n% .70s \n”, sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;

 exit(1);

}

Connected to Oracle as user: SCOTT

Enter department number: 20

Employee Job Salary

–––––––– ––– ––––––

SMITH CLERK 800.00

JONES MANAGER 2975.00

SCOTT ANALYST 3000.00

ADAMS CLERK 1100.00

FORD ANALYST 3000.00

A P P E N D I X

C
T

C – 1CHAR versus VARCHAR2 Semantics

CHAR versus
VARCHAR2 Semantics

his appendix explains the semantic differences between the CHAR
and VARCHAR2 base types. These subtle but important differences
come into play when you assign, compare, insert, update, select, or fetch
character values.

C – 2 PL/SQL User’s Guide and Reference

Assigning Character Values

When you assign a character value to a CHAR variable, if the value is
shorter than the declared length of the variable, PL/SQL blank–pads the
value to the declared length. So, information about trailing blanks is lost.
For example, given the following declaration, the value of name includes
six trailing blanks, not just one:

name CHAR(10) := ’CHEN ’; –– note trailing blank

If the character value is longer than the declared length of the CHAR
variable, PL/SQL aborts the assignment and raises the predefined
exception VALUE_ERROR. PL/SQL neither truncates the value nor tries
to trim trailing blanks. For example, given the declaration

acronym CHAR(4);

the following assignment raises VALUE_ERROR:

acronym := ’SPCA � ’; –– note trailing blank

When you assign a character value to a VARCHAR2 variable, if the
value is shorter than the declared length of the variable, PL/SQL neither
blank–pads the value nor strips trailing blanks. Character values are
assigned intact, so no information is lost. If the character value is longer
than the declared length of the VARCHAR2 variable, PL/SQL aborts the
assignment and raises VALUE_ERROR. PL/SQL neither truncates the
value nor tries to trim trailing blanks.

Comparing Character Values

You can use the relational operators to compare character values for
equality or inequality. Comparisons are based on the collating sequence
used for the database character set. One character value is greater than
another if it follows it in the collating sequence. For example, given
the declarations

name1 VARCHAR2(10) := ’COLES’;

name2 VARCHAR2(10) := ’COLEMAN’;

the following IF condition is true:

IF name1 > name2 THEN ...

C – 3CHAR versus VARCHAR2 Semantics

ANSI/ISO SQL requires that two character values being compared have
equal lengths. So, if both values in a comparison have datatype CHAR,
blank–padding semantics are used. That is, before comparing character
values of unequal length, PL/SQL blank–pads the shorter value to the
length of the longer value. For example, given the declarations

name1 CHAR(5) := ’BELLO’;

name2 CHAR(10) := ’BELLO ’; –– note trailing blanks

the following IF condition is true:

IF name1 = name2 THEN ...

If either or both values in a comparison have datatype VARCHAR2,
non–blank–padding semantics are used. That is, when comparing
character values of unequal length, PL/SQL makes no adjustments and
uses the exact lengths. For example, given the declarations

name1 VARCHAR2(10) := ’DOW’;

name2 VARCHAR2(10) := ’DOW ’; –– note trailing blanks

the following IF condition is false:

IF name1 = name2 THEN ...

If one value in a comparison has datatype VARCHAR2 and the other
value has datatype CHAR, non–blank–padding semantics are used. But,
remember, when you assign a character value to a CHAR variable, if the
value is shorter than the declared length of the variable, PL/SQL
blank–pads the value to the declared length. So, given the declarations

name1 VARCHAR2(10) := ’STAUB’;

name2 CHAR(10) := ’STAUB’; –– PL/SQL blank–pads value

the following IF condition is false because the value of name2 includes
five trailing blanks:

IF name1 = name2 THEN ...

All string literals have datatype CHAR. So, if both values in a
comparison are literals, blank–padding semantics are used. If one
value is a literal, blank–padding semantics are used only if the other
value has datatype CHAR.

C – 4 PL/SQL User’s Guide and Reference

Inserting Character Values

When you insert the value of a PL/SQL character variable into an
Oracle database column, whether the value is blank–padded or not
depends on the column type, not on the variable type.

When you insert a character value into a CHAR database column,
Oracle does not strip trailing blanks. If the value is shorter than the
defined width of the column, Oracle blank–pads the value to the defined
width. As a result, information about trailing blanks is lost. If the
character value is longer than the defined width of the CHAR column,
Oracle aborts the insert and generates an error.

When you insert a character value into a VARCHAR2 database column,
Oracle does not strip trailing blanks. If the value is shorter than the
defined width of the column, Oracle does not blank–pad the value.
Character values are stored intact, so no information is lost. If the
character value is longer than the defined width of the VARCHAR2
column, Oracle aborts the insert and generates an error.

The same rules apply when updating.

Selecting Character Values

When you select a value from an Oracle database column into a PL/SQL
character variable, whether the value is blank–padded or not depends
on the variable type, not on the column type.

When you select a column value into a CHAR variable, if the value is
shorter than the declared length of the variable, PL/SQL blank–pads the
value to the declared length. As a result, information about trailing
blanks is lost. If the character value is longer than the declared length of
the CHAR variable, PL/SQL aborts the assignment and raises the
predefined exception VALUE_ERROR.

When you select a column value into a VARCHAR2 variable, if the value
is shorter than the declared length of the variable, PL/SQL neither
blank–pads the value nor strips trailing blanks. Character values are
stored intact, so no information is lost. For example, when you select a
blank–padded CHAR column value into a VARCHAR2 variable, the
trailing blanks are not stripped. If the character value is longer than the
declared length of the VARCHAR2 variable, PL/SQL aborts the
assignment and raises VALUE_ERROR.

The same rules apply when fetching.

C – 5CHAR versus VARCHAR2 Semantics

Guidelines

In a given execution environment, whether CHAR is equivalent to
VARCHAR2 or not is determined by a command or option that sets
Oracle Version 6 or Oracle7 compatibility. For example, in the SQL*Plus
environment, you issue the SET COMPATIBILITY command, specifying
the value V6 or V7 (the default), as follows:

SQL> SET COMPATIBILITY V6

As the next example shows, in the Oracle Precompiler environment, you
enter the runtime option DBMS on the command line, specifying the
value V6, V7, or NATIVE (the default). NATIVE specifies the version of
Oracle resident on your system, which must be version 6 or later.

... DBMS=V6

When selecting data over a V7–to–V6 link, use VARCHAR2 variables in
the WHERE clause instead of CHAR variables. Otherwise, you might
get an unsupported network datatype error.

When inserting character values, you can ensure that no trailing blanks
are stored by using the RTRIM function, which trims trailing blanks. An
example follows:

my_empno := 7471;

my_ename := ’LEE ’; –– note trailing blanks

...

INSERT INTO emp

 VALUES (my_empno, RTRIM(my_ename), ...); –– inserts ’LEE’

C – 6 PL/SQL User’s Guide and Reference

A P P E N D I X

D
T

D – 1PL/SQL Wrapper

PL/SQL Wrapper

his appendix shows you how to run the PL/SQL Wrapper, a
standalone utility that converts PL/SQL source code into portable object
code. You can use the Wrapper to deliver PL/SQL applications without
exposing your source code.

D – 2 PL/SQL User’s Guide and Reference

Advantages of Wrapping

The PL/SQL Wrapper converts PL/SQL source code into an
intermediate form of object code. By hiding application internals, the
Wrapper prevents

• misuse of your application by other developers

• exposure of your algorithms to business competitors

Wrapped code is as portable as source code. The PL/SQL compiler
recognizes and loads wrapped compilation units automatically. Other
advantages include

• platform independence—you need not deliver multiple versions
of the same compilation unit

• dynamic loading—users need not shut down and relink to add a
new feature

• dynamic binding—external references are resolved at load time

• strict dependency checking—invalidated program units are
recompiled automatically

• normal importing and exporting—the Import/Export utility
accepts wrapped files

Running the PL/SQL Wrapper

To run the PL/SQL Wrapper, enter the WRAP command at your system
prompt using the following syntax:

WRAP INAME=input_file [ONAME=output_file]

You can use uppercase or lowercase. Leave no space around the equal
signs because spaces delimit individual arguments.

The WRAP command requires only one argument, which is

INAME=input_file

where input_file is the path and name of the Wrapper input file. You
need not specify the file extension because it defaults to sql. For
example, the following commands are equivalent:

WRAP INAME=/mydir/myfile

WRAP INAME=/mydir/myfile.sql

Input and Output Files

D – 3PL/SQL Wrapper

However, you can specify a different file extension as the following
example shows:

WRAP INAME=/mydir/myfile.src

Optionally, the WRAP command takes a second argument, which is

ONAME=output_file

where output_file is the path and name of the Wrapper output file. You
need not specify the output file because its name defaults to that of the
input file and its extension defaults to plb (PL/SQL binary). For
example, the following commands are equivalent:

WRAP INAME=/mydir/myfile

WRAP INAME=/mydir/myfile.sql ONAME=/mydir/myfile.plb

However, you can use the option ONAME to specify a different file
name and extension, as the following example shows:

WRAP INAME=/mydir/myfile ONAME=/yourdir/yourfile.obj

The input file can contain any combination of SQL statements. However,
the PL/SQL Wrapper wraps only the following CREATE statements,
which define PL/SQL packages and standalone subprograms:

• CREATE [OR REPLACE] PACKAGE

• CREATE [OR REPLACE] PACKAGE BODY

• CREATE [OR REPLACE] FUNCTION

• CREATE [OR REPLACE] PROCEDURE

All other SQL statements are passed intact to the output file. Comment
lines (beginning with REM or – –) are deleted unless they appear in a
package or subprogram definition.

A wrapped package or subprogram definition has the form

<header> WRAPPED <body>

where header begins with the reserved word CREATE and ends with the
name of the package or subprogram, and body is an intermediate form of
object code that looks like a random sequence of characters. The
keyword WRAPPED tells the PL/SQL compiler that the package or
subprogram is wrapped.

Error Detection

D – 4 PL/SQL User’s Guide and Reference

The header can contain comments. For example, the Wrapper converts

CREATE OR REPLACE PACKAGE

–– Author: J Smith

–– Date: 11/15/94

mypkg AS ...

into

CREATE OR REPLACE PACKAGE

–– Author: J Smith

–– Date: 11/15/94

mypkg WRAPPED 8c724af33 ...

Generally, the output file is much larger than the input file.

If your input file contains syntactic errors, the PL/SQL Wrapper detects
and reports them. However, the Wrapper cannot detect semantic errors
because it does not resolve external references. That is done at compile
time. So, only the PL/SQL compiler can detect semantic errors.

A P P E N D I X

E
T

E – 1Reserved Words

Reserved Words

he words listed in this appendix are reserved by PL/SQL; that is,
they have a special syntactic meaning to PL/SQL. So, you should not
use them to name program objects such as constants, variables, or
cursors. Also, some of these words (marked by an asterisk) are reserved
by SQL. So, you should not use them to name database objects such as
columns, tables, or indexes.

E – 2 PL/SQL User’s Guide and Reference

PL/SQL Reserved Words

ABORT

ACCEPT

ACCESS*

ADD*

ALL*

ALTER*

AND*

ANY*

ARRAY

ARRAYLEN

AS*

ASC*

ASSERT

ASSIGN

AT

AUDIT*

AUTHORIZATION

AVG

BASE_TABLE

BEGIN

BETWEEN*

BINARY_INTEGER

BODY

BOOLEAN

BY*

CASE

CHAR*

CHAR_BASE

CHECK*

CLOSE

CLUSTER*

CLUSTERS

COLAUTH

COLUMN*

COMMENT*

COMMIT

COMPRESS*

CONNECT*

CONSTANT

CRASH

CREATE*

CURRENT*

CURRVAL

CURSOR

DATABASE

DATA_BASE

DATE*

DBA

DEBUGOFF

DEBUGON

DECLARE

DECIMAL*

DEFAULT*

DEFINITION

DELAY

DELETE*

DELTA

DESC*

DIGITS

DISPOSE

DISTINCT*

DO

DROP*

ELSE*

ELSIF

END

ENTRY

EXCEPTION

EXCEPTION_INIT

EXCLUSIVE*

EXISTS*

EXIT

FALSE

FETCH

FILE*

FLOAT*

FOR*

FORM

FROM*

FUNCTION

GENERIC

GOTO

GRANT*

GROUP*

HAVING*

IDENTIFIED*

IF

IMMEDIATE*

IN*

INCREMENT*

INDEX*

INDEXES

INDICATOR

INITIAL*

INSERT*

INTEGER*

INTERFACE

INTERSECT*

INTO*

IS*

LEVEL*

LIKE*

LIMITED

LOCK*

LONG*

LOOP

MAX

MAXEXTENTS*

MIN

MINUS*

MLSLABEL

MOD

MODE*

MODIFY*

NATURAL

NATURALN

NEW

NEXTVAL

NOAUDIT*

NOCOMPRESS*

NOT*

E – 3Reserved Words

NOWAIT*

NULL*

NUMBER*

NUMBER_BASE

OF*

OFFLINE*

ON*

ONLINE*

OPEN

OPTION*

OR*

ORDER*

OTHERS

OUT

PACKAGE

PARTITION

PCTFREE*

PLS_INTEGER

POSITIVE

POSITIVEN

PRAGMA

PRIOR*

PRIVATE

PRIVILEGES*

PROCEDURE

PUBLIC*

RAISE

RANGE

RAW*

REAL

RECORD

REF

RELEASE

REMR

RENAME*

RESOURCE*

RETURN

REVERSE

REVOKE*

ROLLBACK

ROW*

ROWID*

ROWLABEL*

ROWNUM*

ROWS*

ROWTYPE

RUN

SAVEPOINT

SCHEMA

SELECT*

SEPARATE

SESSION*

SET*

SHARE*

SIZE*

SMALLINT*

SPACE

SQL

SQLCODE

SQLERRM

START*

STATEMENT

STDDEV

SUBTYPE

SUCCESSFUL*

SUM

SYNONYM*

SYSDATE*

TABAUTH

TABLE*

TABLES

TASK

TERMINATE

THEN*

TO*

TRIGGER*

TRUE

TYPE

UID*

UNION*

UNIQUE*

UPDATE*

USE

USER*

VALIDATE*

VALUES*

VARCHAR*

VARCHAR2*

VARIANCE

VIEW*

VIEWS

WHEN

WHENEVER*

WHERE*

WHILE

WITH*

WORK

WRITE

XOR

Index – 1

Index

Symbols
+ addition operator, 2 – 3
:= assignment operator, 1 – 4, 2 – 4
=> association operator, 2 – 4
% attribute indicator, 2 – 3
’ character string delimiter, 2 – 3
. component selector, 2 – 3
|| concatenation operator, 2 – 4, 2 – 37
/ division operator, 2 – 3
** exponentiation operator, 2 – 4
(expression or list delimiter, 2 – 3
) expression or list delimiter, 2 – 3
: host variable indicator, 2 – 3
, item separator, 2 – 3
<< label delimiter, 2 – 4
>> label delimiter, 2 – 4
*/ multi–line comment delimiter, 2 – 4
/* multi–line comment delimiter, 2 – 4
* multiplication operator, 2 – 3
” quoted identifier delimiter, 2 – 3
.. range operator, 2 – 4
!= relational operator, 2 – 4
^= relational operator, 2 – 4
= relational operator, 2 – 3
< relational operator, 2 – 3
<= relational operator, 2 – 4
<> relational operator, 2 – 4
> relational operator, 2 – 3
>= relational operator, 2 – 4

~= relational operator, 2 – 4
@ remote access indicator, 2 – 3
–– single–line comment indicator, 2 – 4, 2 – 8
; statement terminator, 2 – 3
– subtraction/negation operator, 2 – 3

A
abstraction, 7 – 3
actual parameter, 5 – 11
address, 5 – 17
aggregate assignment, 2 – 25
aliasing, 5 – 31
aliasing, parameter, 7 – 17
ALL comparison operator, 5 – 6
ALL option, 5 – 3
ALL row operator, 5 – 6
AND logical operator, 2 – 34
anonymous PL/SQL block, 7 – 2
ANY comparison operator, 5 – 6
apostrophe, 2 – 8
architecture, 1 – 15
arithmetic operators, 2 – 3
ARRAYLEN statement, 4 – 18
assignment

aggregate, 2 – 25
character string, C – 2
cursor variable, 5 – 29
field, 4 – 21
PL/SQL table, 4 – 5

Index – 2 PL/SQL User’s Guide and Reference

record, 4 – 21
semantics, C – 2

assignment statement, syntax, 10 – 4
association operator, 7 – 12
asterisk (*) option, 5 – 3
asynchronous operation, 8 – 15
attribute, 1 – 7

COUNT, 4 – 8
cursor, 5 – 33, 10 – 19
DELETE, 4 – 10
EXISTS, 4 – 8
FIRST, 4 – 9
LAST, 4 – 9
NEXT, 4 – 9
PL/SQL table, 4 – 8, 10 – 79
PRIOR, 4 – 9
%ROWTYPE, 2 – 25, 10 – 101
%TYPE, 2 – 24, 10 – 113

AVG group function, 5 – 2

B
Bachus–Naur Form (BNF), 10 – 2
base type, 2 – 11, 2 – 17
basic loop, 3 – 6
BETWEEN comparison operator, 2 – 37
binary operator, 2 – 33
BINARY_INTEGER datatype, 2 – 11
bind variable, 5 – 20
binding, 5 – 7
blank–padding semantics, C – 3
block

anonymous, 7 – 2
label, 2 – 31
maximum size, 5 – 48
PL/SQL, 10 – 7
structure, 1 – 3

body
cursor, 5 – 14
function, 7 – 5
package, 8 – 7
procedure, 7 – 4

Boolean
expression, 2 – 37
literal, 2 – 8
value, 2 – 37

BOOLEAN datatype, 2 – 16
built–in function, 2 – 41

C
call, subprogram, 7 – 12
carriage return, 2 – 3
case sensitivity

identifier, 2 – 5
string literal, 2 – 8

case, upper and lower, v
CHAR column, maximum width, 2 – 13
CHAR datatype, 2 – 13
character literal, 2 – 7
character set, 2 – 2
CHARACTER subtype, 2 – 13
character value

assigning, C – 2
comparing, C – 2
inserting, C – 4
selecting, C – 4

CLOSE statement, 5 – 13, 5 – 24
syntax, 10 – 12

collating sequence, 2 – 38
column alias, 5 – 16

when needed, 2 – 26
column, ROWLABEL, 5 – 5
comment

multi–line, 2 – 9
restrictions, 2 – 9
single–line, 2 – 8
syntax, 10 – 13
using to disable code, 2 – 8

COMMENT clause, 5 – 41
commit, 5 – 40
COMMIT statement, 5 – 40

syntax, 10 – 14

Index – 3

comparison
of character values, C – 2
of expressions, 2 – 37
operators, 2 – 36, 5 – 6

compilation, using the PL/SQL Wrapper, D – 1
compiler. See PL/SQL compiler
component

PL/SQL table, 4 – 2
record, 4 – 20

composite type, 2 – 10
concatenation operator, 2 – 37

treatment of nulls, 2 – 40
concurrency, 5 – 39
conditional control, 3 – 2
constant

declaring, 2 – 23
syntax, 10 – 16

constraint
datatype, 7 – 4
NOT NULL, 2 – 23
where not allowed, 2 – 18, 7 – 4

control structure, 3 – 1, 3 – 2
conditional, 3 – 2
iterative, 3 – 6
sequential, 3 – 13

conventions
naming, 2 – 27
notational, v

conversion function, when needed, 2 – 21
conversion, datatype, 2 – 20
correlated subquery, 5 – 13
COUNT attribute, 4 – 8
COUNT group function, 5 – 2
CURRENT OF clause, 5 – 46
current row, 1 – 5
CURRVAL pseudocolumn, 5 – 4
cursor, 1 – 5

analogy, 1 – 5
attribute, 5 – 33
closing, 5 – 13
declaring, 5 – 9
explicit, 5 – 9
fetching from, 5 – 11
implicit, 5 – 13
opening, 5 – 10

packaged, 5 – 14
parameterized, 5 – 11
RETURN clause, 5 – 14
scope rules, 5 – 10
syntax, 10 – 23

cursor attribute
explicit, 5 – 33
%FOUND, 5 – 33, 5 – 37
implicit, 5 – 37
%ISOPEN, 5 – 34, 5 – 37
%NOTFOUND, 5 – 34, 5 – 37
%ROWCOUNT, 5 – 34, 5 – 37
syntax, 10 – 19
values, 5 – 35

cursor FOR loop, 5 – 15
passing parameters to, 5 – 16

cursor variable, 5 – 17
assignment, 5 – 29
closing, 5 – 24
declaring, 5 – 19
fetching from, 5 – 23
opening, 5 – 20
restrictions, 5 – 32
syntax, 10 – 27
using to reduce network traffic, 5 – 28
See also cursor

CURSOR_ALREADY_OPEN exception, 6 – 6

D
data encapsulation, 1 – 13
data integrity, 5 – 39
data lock, 5 – 39
database changes

making permanent, 5 – 40
undoing, 5 – 41

datatype, 2 – 10
BINARY_INTEGER, 2 – 11
BOOLEAN, 2 – 16
CHAR, 2 – 13
constraint, 7 – 4
DATE, 2 – 16
families, 2 – 10
implicit conversion, 2 – 20
LONG, 2 – 13
LONG RAW, 2 – 14

Index – 4 PL/SQL User’s Guide and Reference

MLSLABEL, 2 – 16
NUMBER, 2 – 11
PLS_INTEGER, 2 – 12
RAW, 2 – 14
RECORD, 4 – 19
REF CURSOR, 5 – 17
ROWID, 2 – 14
scalar versus composite, 2 – 10
TABLE, 4 – 2
VARCHAR2, 2 – 15

date
converting, 2 – 21
default value, 2 – 16
TO_CHAR default format, 2 – 22

DATE datatype, 2 – 16
DBMS_ALERT package, 8 – 15
DBMS_OUTPUT package, 8 – 15
DBMS_PIPE package, 8 – 15
DBMS_SQL package, 5 – 8, 8 – 15
DBMS_STANDARD package, 8 – 15
DDL, support for, 5 – 7
deadlock, 5 – 39

effect on transactions, 5 – 42
how broken, 5 – 42

DEC subtype, 2 – 12
DECIMAL subtype, 2 – 12
declaration

constant, 2 – 23
cursor, 5 – 9
cursor variable, 5 – 19
exception, 6 – 7
forward, 7 – 8
PL/SQL table, 4 – 4
subprogram, 7 – 8
user–defined record, 4 – 20
variable, 2 – 22

declarative part
function, 7 – 6
PL/SQL block, 1 – 3
procedure, 7 – 4

Declare Section, 9 – 7
DECLARE TABLE statement, 9 – 16
DECODE function

treatment of nulls, 2 – 40
using to mimic dynamic SQL, 9 – 18

default parameter value, 7 – 15
DEFAULT reserved word, 2 – 23
DELETE attribute, 4 – 10
DELETE statement, syntax, 10 – 33
delimiter, list, 2 – 3
dependency, remote, A – 4
DEPT table, v
digits of precision, 2 – 11
DISTINCT row operator, 5 – 6
distributed transaction, 5 – 40
division by zero, 6 – 7
division operator, 2 – 3
dot notation, v, 1 – 7

referencing global variables, 3 – 12
referencing package contents, 8 – 6
referencing record fields, 2 – 25

DOUBLE PRECISION subtype, 2 – 12
DUP_VAL_ON_INDEX exception, 6 – 6
dynamic FOR–loop range, 3 – 11
dynamic SQL

EXECUTE statement, 9 – 17
mimicking, 9 – 18
PREPARE statement, 9 – 17
support for, 5 – 7
USING clause, 9 – 17

E
elaboration, 2 – 23
ellipsis, v
ELSE clause, 3 – 3
ELSIF clause, 3 – 4
embedded PL/SQL

calling stored subprograms, 9 – 19
handling nulls, 9 – 13
languages supported, 9 – 7
using ARRAYLEN statement, 4 – 18

EMP table, v
encapsulation, data, 1 – 13
END IF reserved words, 3 – 2
END LOOP reserved words, 3 – 8
Entry SQL, support for, 5 – 7

Index – 5

environment
OCI, 9 – 19
Oracle Precompilers, 9 – 7
SQL*Plus, 9 – 2

error. See exception
error message, maximum length, 6 – 19
evaluation, 2 – 33
EXAMPBLD script, B – 3
EXAMPLOD script, B – 7
exception, 6 – 2

declaring, 6 – 7
EXCEPTION_INIT pragma, 6 – 9
predefined, 6 – 5
propagation, 6 – 13
raised in declaration, 6 – 17
raised in handler, 6 – 18
raising with RAISE statement, 6 – 12
reraising, 6 – 15
ROWTYPE_MISMATCH, 5 – 30
scope rules, 6 – 8
syntax, 10 – 36
user–defined, 6 – 7
WHEN clause, 6 – 17

exception handler, 6 – 16
branching from, 6 – 18
OTHERS handler, 6 – 2
using RAISE statement in, 6 – 16
using SQLCODE function in, 6 – 18
using SQLERRM function in, 6 – 18

exception–handling part
function, 7 – 6
PL/SQL block, 1 – 3
procedure, 7 – 4

EXCEPTION_INIT pragma, 6 – 9
syntax, 10 – 35
using with raise_application_error, 6 – 11

executable part
function, 7 – 6
PL/SQL block, 1 – 3
procedure, 7 – 4

execution environment, 1 – 15, 9 – 1
EXISTS attribute, 4 – 8
EXISTS comparison operator, 5 – 6

EXIT statement, 3 – 6, 3 – 13
syntax, 10 – 39
WHEN clause, 3 – 7
where allowed, 3 – 6

explicit cursor, 5 – 9
exponentiation operator, 2 – 4
expression

Boolean, 2 – 37
how evaluated, 2 – 33
parentheses in, 2 – 34
syntax, 10 – 41

extensibility, 7 – 3

F
FALSE value, 2 – 8
features, new, A – 1
FETCH statement, 5 – 11, 5 – 23

syntax, 10 – 48
fetching across commits, 5 – 47
Fibonacci sequence, 7 – 23, 7 – 27
field, 4 – 19

assigning values, 4 – 21
file I/O, 8 – 16
FIRST attribute, 4 – 9
FLOAT subtype, 2 – 12
FOR loop, 3 – 9

cursor, 5 – 15
dynamic range, 3 – 11
iteration scheme, 3 – 10
loop counter, 3 – 9
nested, 3 – 12

FOR UPDATE clause, 5 – 10, 5 – 20
when to use, 5 – 45

formal parameter, 5 – 11
format

function, 7 – 5
package, 8 – 2
packaged procedure, 7 – 9
procedure, 7 – 3

format mask, when needed, 2 – 21
forward declaration, 7 – 8

when needed, 7 – 8, 7 – 26
forward reference, 2 – 27

Index – 6 PL/SQL User’s Guide and Reference

%FOUND cursor attribute
using with explicit cursor, 5 – 33
using with implicit cursor, 5 – 37

function
body, 7 – 5
call, 7 – 6
kinds, 2 – 41
parameter, 7 – 5
parts, 7 – 5
result value, 7 – 7
RETURN clause, 4 – 3, 7 – 5
specification, 7 – 5
syntax, 10 – 51
See also built–in function, group function

G
GLB group function, 5 – 2
GOTO statement, 3 – 14

label, 3 – 14
misuse, 3 – 15
restriction, 6 – 18
syntax, 10 – 56

GROUP BY clause, 5 – 3
group function

AVG, 5 – 2
COUNT, 5 – 2
GLB, 5 – 2
LUB, 5 – 2
MAX, 5 – 2
MIN, 5 – 2
STDDEV, 5 – 2
SUM, 5 – 2
treatment of nulls, 5 – 3
VARIANCE, 5 – 2

H
handler. See exception handler
handling exceptions, 6 – 1

raised in declaration, 6 – 17
raised in handler, 6 – 18
using OTHERS handler, 6 – 16

hexadecimal number, 2 – 15
hidden declaration, 8 – 2
hiding, information, 1 – 13

host array, using with PL/SQL table, 4 – 15
host language, 9 – 7
host program, 9 – 7
host variable, 9 – 7

converting datatype, 9 – 9
declaring, 9 – 7
referencing, 9 – 7
scope rules, 9 – 7

I
identifier

forming, 2 – 4
maximum length, 2 – 5
quoted, 2 – 6
scope rules, 2 – 30

IF statement, 3 – 2
ELSE clause, 3 – 3
ELSIF clause, 3 – 4
syntax, 10 – 58
THEN clause, 3 – 2

implicit cursor, 5 – 13
attribute, 5 – 37

implicit datatype conversion, 2 – 20
implicit declaration

cursor FOR loop record, 5 – 15
FOR loop counter, 3 – 12

IN comparison operator, 2 – 37, 5 – 6
IN OUT parameter mode, 7 – 14
IN parameter mode, 7 – 13
index

cursor FOR loop, 5 – 15
PL/SQL table, 4 – 2

INDEX BY clause, 4 – 3
indicator variable, 9 – 12
infinite loop, 3 – 6
information hiding, 1 – 13, 8 – 4
initialization

package, 8 – 7
record, 4 – 19
using DEFAULT, 2 – 23
variable, 2 – 32
when required, 2 – 23

INSERT statement, syntax, 10 – 60

Index – 7

instantiation, 4 – 4
INT subtype, 2 – 12
INTEGER subtype, 2 – 12
interoperability, 5 – 17
INTERSECT set operator, 5 – 6
INTO clause, 5 – 23
INTO list, 5 – 11, 5 – 12
INVALID_CURSOR exception, 6 – 6
INVALID_NUMBER exception, 6 – 6
IS NULL comparison operator, 2 – 36, 5 – 6
%ISOPEN cursor attribute

using with explicit cursor, 5 – 34
using with implicit cursor, 5 – 37

iteration
scheme, 3 – 10
versus recursion, 7 – 27

iterative control, 3 – 6

J
join, 7 – 25

L
label

block, 2 – 31
GOTO statement, 3 – 14
loop, 3 – 7

LAST attribute, 4 – 9
LEVEL pseudocolumn, 5 – 4
lexical unit, 2 – 2
library, 8 – 1
LIKE comparison operator, 2 – 36, 5 – 6
literal

Boolean, 2 – 8
character, 2 – 7
definition, 2 – 7
numeric, 2 – 7
string, 2 – 8
syntax, 10 – 62

local subprogram, 1 – 16

lock, 5 – 39
modes, 5 – 39
overriding, 5 – 45
using FOR UPDATE clause, 5 – 45

LOCK TABLE statement, 5 – 46
syntax, 10 – 64

logical operator, 2 – 34
LOGIN_DENIED exception, 6 – 6
LONG datatype, 2 – 13

maximum length, 2 – 13
restrictions, 2 – 13

LONG RAW datatype, 2 – 14
converting, 2 – 22
maximum length, 2 – 14

loop
counter, 3 – 9
kinds, 3 – 6
label, 3 – 7

LOOP statement, 3 – 6
forms, 3 – 6
syntax, 10 – 65

LUB group function, 5 – 2

M
maintainability, 7 – 3
MAX group function, 5 – 2
maximum length

CHAR value, 2 – 13
identifier, 2 – 5
LONG RAW value, 2 – 14
LONG value, 2 – 13
Oracle error message, 6 – 19
RAW value, 2 – 14
VARCHAR2 value, 2 – 15

maximum precision, 2 – 11
membership test, 2 – 37
MIN group function, 5 – 2
MINUS set operator, 5 – 6
mixed notation, 7 – 12
MLSLABEL datatype, 2 – 16
mode, parameter

IN, 7 – 13
IN OUT, 7 – 14
OUT, 7 – 13

Index – 8 PL/SQL User’s Guide and Reference

modularity, 1 – 12, 7 – 3, 8 – 4
multi–line comment, 2 – 9
multiplication operator, 2 – 3
mutual recursion, 7 – 26

N
name

cursor, 5 – 10
qualified, 2 – 27
savepoint, 5 – 43
variable, 2 – 28

name resolution, 2 – 28
named notation, 7 – 12
naming conventions, 2 – 27
NATURAL subtype, 2 – 11
NATURALN subtype, 2 – 11
nesting

block, 1 – 3
FOR loop, 3 – 12
record, 4 – 20

network traffic, reducing, 1 – 19
new features, A – 1
NEXT attribute, 4 – 9
NEXTVAL pseudocolumn, 5 – 4
nibble, 2 – 22
NO_DATA_FOUND exception, 6 – 6
non–blank–padding semantics, C – 3
NOT logical operator, 2 – 34

treatment of nulls, 2 – 40
NOT NULL constraint

effect on %TYPE declaration, 2 – 24
restriction, 5 – 10, 7 – 3
using in field declaration, 4 – 20
using in TABLE type definition, 4 – 3
using in variable declaration, 2 – 23

NOT_LOGGED_ON exception, 6 – 6
notation

mixed, 7 – 12
positional versus named, 7 – 12

notational conventions, v

%NOTFOUND cursor attribute
using with explicit cursor, 5 – 34
using with implicit cursor, 5 – 37

NOWAIT parameter, 5 – 45
null

detecting with indicator variable, 9 – 14
handling, 2 – 39

NULL statement, 3 – 17
syntax, 10 – 70
using in a procedure, 7 – 4

nullity, 2 – 36
NUMBER datatype, 2 – 11
numeric literal, 2 – 7
NUMERIC subtype, 2 – 12
NVL function, treatment of nulls, 2 – 40

O
OCI (Oracle Call Interface)

calling a stored subprogram, 9 – 23
environment, 9 – 19

OPEN statement, 5 – 10
syntax, 10 – 71

OPEN–FOR statement, 5 – 20
syntax, 10 – 73

operator
comparison, 2 – 36
concatenation, 2 – 37
logical, 2 – 34
precedence, 2 – 33
relational, 2 – 36

OR logical operator, 2 – 34
OR reserved word, 6 – 17
Oracle Call Interface (OCI), 9 – 19
Oracle Precompilers

ARRAYLEN statement, 4 – 18
DECLARE TABLE statement, 9 – 16
environment, 9 – 7
SQLCHECK option, 9 – 16
VARCHAR pseudotype, 9 – 15

Oracle, Trusted, 2 – 10
order of evaluation, 2 – 33, 2 – 35
OTHERS exception handler, 6 – 2, 6 – 17
OUT parameter mode, 7 – 13

Index – 9

overloading, 7 – 18
packaged subprogram, 8 – 13
restrictions, 7 – 19
using subtypes, 7 – 20

P
p–code, 5 – 7
package, 8 – 1

advantages, 8 – 4
bodiless, 8 – 5
body, 8 – 2
creating, 8 – 3
initializing, 8 – 7
private versus public objects, 8 – 13
product–specific, 6 – 10
referencing, 8 – 6
scope, 8 – 5
specification, 8 – 2
syntax, 10 – 76

package, product–specific, 8 – 15
packaged cursor, 5 – 14
packaged subprogram, 1 – 16, 7 – 9

calling, 8 – 6
overloading, 8 – 13

parameter
actual versus formal, 7 – 11
aliasing, 7 – 17
cursor, 5 – 11
default values, 7 – 15
modes, 7 – 13

parentheses, 2 – 34
pattern matching, 2 – 36
performance, 1 – 18
pipe, 8 – 15
PL/SQL

advantages, 1 – 17
architecture, 1 – 15
block structure, 1 – 3
execution environments, 1 – 15
new features, A – 1
performance, 1 – 18
portability, 1 – 19
procedural aspects, 1 – 2
reserved words, E – 1

sample programs, B – 1
support for SQL, 1 – 18

PL/SQL block
anonymous, 1 – 3, 7 – 2
maximum size, 5 – 48
syntax, 10 – 7

PL/SQL compiler
how aliasing occurs, 7 – 17
how calls are resolved, 7 – 20
how it works, 5 – 7
how references are resolved, 5 – 7

PL/SQL engine, 1 – 15
in Oracle Server, 1 – 16
in Oracle tools, 1 – 17

PL/SQL syntax, 10 – 1
PL/SQL table, 4 – 2

assigning values to elements, 4 – 5
attributes, 4 – 8
declaring, 4 – 4
inserting Oracle data, 4 – 14
primary key, 4 – 2
referencing, 4 – 5
restriction, 4 – 7, 4 – 14
retrieving Oracle data, 4 – 11
scope, 4 – 4
syntax, 10 – 82
using host array, 4 – 15

PL/SQL table attribute
COUNT, 4 – 8
DELETE, 4 – 10
EXISTS, 4 – 8
FIRST, 4 – 9
LAST, 4 – 9
NEXT, 4 – 9
PRIOR, 4 – 9
syntax, 10 – 79

PL/SQL Wrapper, D – 1
input and output files, D – 3
running, D – 2

PLS_INTEGER datatype, 2 – 12
pointer, 5 – 17
portability, 1 – 19
positional notation, 7 – 12
POSITIVE subtype, 2 – 11
POSITIVEN subtype, 2 – 11

Index – 10 PL/SQL User’s Guide and Reference

pragma, 6 – 9
EXCEPTION_INIT, 6 – 9
RESTRICT_REFERENCES, 7 – 6

precedence, operator, 2 – 33
precision of digits, specifying, 2 – 11
predefined exception

list of, 6 – 5
raising explicitly, 6 – 12
redeclaring, 6 – 11

predicate, 5 – 6
primary key, PL/SQL table, 4 – 2
PRIOR attribute, 4 – 9
PRIOR row operator, 5 – 4, 5 – 6
private object, 8 – 13
procedure, 7 – 1

body, 7 – 4
calling, 7 – 5
packaged, 7 – 9
parameter, 7 – 3
parts, 7 – 4
specification, 7 – 4
syntax, 10 – 87

productivity, 1 – 18
program unit, 1 – 12
PROGRAM_ERROR exception, 6 – 6
propagation, exception, 6 – 13
pseudocolumn, 5 – 3

CURRVAL, 5 – 4
LEVEL, 5 – 4
NEXTVAL, 5 – 4
ROWID, 5 – 4
ROWNUM, 5 – 5

pseudoinstruction, 6 – 9
pseudotype. See VARCHAR pseudotype
public object, 8 – 13

Q
qualifier

using subprogram name as, 2 – 29
when needed, 2 – 27, 2 – 31

query work area, 5 – 17
quoted identifier, 2 – 6

R
RAISE statement, 6 – 12

syntax, 10 – 92
using in exception handler, 6 – 16

raise_application_error procedure, 6 – 10
raising an exception, 6 – 12
RAW datatype, 2 – 14

converting, 2 – 22
maximum length, 2 – 14

read consistency, 5 – 39, 5 – 44
READ ONLY parameter, 5 – 44
read–only transaction, 5 – 44
readability, 3 – 17
REAL subtype, 2 – 12
record, 4 – 19

assignment, 4 – 21
declaring, 4 – 20
implicit declaration, 5 – 15
initializing, 4 – 19
nesting, 4 – 20
referencing, 4 – 21
restriction, 4 – 24
%ROWTYPE, 5 – 15
scope, 4 – 20
syntax, 10 – 93

RECORD datatype, 4 – 19
defining, 4 – 19

recursion, 7 – 23
infinite, 7 – 23
mutual, 7 – 26
terminating condition, 7 – 23
versus iteration, 7 – 27

REF CURSOR datatype, 5 – 17
defining, 5 – 18

reference type, 2 – 10
relational operator, 2 – 36
remote dependency, A – 4
REPEAT UNTIL structure, mimicking, 3 – 8
REPLACE function, treatment of nulls, 2 – 41
reraising an exception, 6 – 15
reserved words, E – 1

misuse of, 2 – 5
using as quoted identifier, 2 – 6

Index – 11

RESTRICT_REFERENCES pragma, 7 – 6
result set, 1 – 5, 5 – 10
result value, function, 7 – 5
RETURN clause

cursor, 5 – 14
function, 7 – 5

RETURN statement, 7 – 7
syntax, 10 – 98

return type, 5 – 18, 7 – 20
reusability, 7 – 3
REVERSE reserved word, 3 – 10
rollback

purpose, 5 – 40
statement–level, 5 – 42

rollback segment, 5 – 39
ROLLBACK statement, 5 – 41

effect on savepoints, 5 – 42
implicit, 5 – 43
syntax, 10 – 100

row lock, 5 – 45
row operator, 5 – 6
%ROWCOUNT cursor attribute

using with explicit cursor, 5 – 34
using with implicit cursor, 5 – 37

rowid, 2 – 14
ROWID datatype, 2 – 14
ROWID pseudocolumn, 5 – 4

using to mimic CURRENT OF clause, 5 – 47
ROWIDTOCHAR function, 5 – 5
ROWLABEL column, 5 – 5
ROWNUM pseudocolumn, 5 – 5
%ROWTYPE attribute

syntax, 10 – 101
using in record declaration, 2 – 25

ROWTYPE_MISMATCH exception, 6 – 6
RPC (remote procedure call), 6 – 13
RTRIM function, using to insert data, C – 5
runtime error, 6 – 1

S
sample database table

DEPT table, v
EMP table, v

sample programs, B – 1
savepoint name, reusing, 5 – 43
SAVEPOINT statement, 5 – 42

syntax, 10 – 103
scalar type, 2 – 10
scale, specifying, 2 – 11
scheme, iteration, 3 – 10
scientific notation, 2 – 7
scope, 2 – 30

cursor, 5 – 10
cursor parameter, 5 – 10
definition, 2 – 30
exception, 6 – 8
host variable, 9 – 7
identifier, 2 – 30
loop counter, 3 – 12
package, 8 – 5
PL/SQL table, 4 – 4
record, 4 – 20

script, SQL*Plus, 9 – 3
SELECT INTO statement, syntax, 10 – 104
selector, 5 – 22, 5 – 23
semantics

assignment, C – 2
blank–padding, C – 3
non–blank–padding, C – 3
string comparison, C – 2

separator, 2 – 3
sequence, 5 – 4
sequential control, 3 – 13
server, integration with PL/SQL, 1 – 19
session, 5 – 39
session–specific variables, 8 – 10
set operator, 5 – 6
SET TRANSACTION statement, 5 – 44

syntax, 10 – 106
side effects, 7 – 13
signature, A – 4
significant characters, 2 – 5

Index – 12 PL/SQL User’s Guide and Reference

single–line comment, 2 – 8
size constraint, subtype, 2 – 18
SMALLINT subtype, 2 – 12
snapshot, 5 – 39
SOME comparison operator, 5 – 6
spaces, where allowed, 2 – 2
spaghetti code, 3 – 13
sparsity, 4 – 2
specification

cursor, 5 – 14
function, 7 – 5
package, 8 – 5
procedure, 7 – 4

SQL
comparison operators, 5 – 6
data manipulation statements, 5 – 2
pseudocolumn, 5 – 3
row operators, 5 – 6
set operators, 5 – 6
support in PL/SQL, 1 – 18

SQL cursor, syntax, 10 – 108
SQL standards conformance, 5 – 7
SQL*Plus

calling a stored subprogram, 9 – 6
environment, 9 – 2
executing a PL/SQL block, 9 – 2
SET COMPATIBILITY command, C – 5
substitution variable, 9 – 3
using a script, 9 – 3

SQL92 conformance, 5 – 7
SQLCHECK option, 9 – 16
SQLCODE function, 6 – 18

syntax, 10 – 110
SQLERRM function, 6 – 18

syntax, 10 – 111
standalone subprogram, 1 – 16
START WITH clause, 5 – 4
statement

assignment, 10 – 4
CLOSE, 5 – 13, 5 – 24, 10 – 12
COMMIT, , 5 – 40, 10 – 14
DELETE, 10 – 33
EXIT, 3 – 6, 10 – 39
FETCH, 5 – 11, 5 – 23, 10 – 48

GOTO, 3 – 14, 10 – 56
IF, 3 – 12, 10 – 58
INSERT, 10 – 60
LOCK TABLE, 5 – 46, 10 – 64
LOOP, 3 – 6, 10 – 65
NULL, 3 – 17, 10 – 70
OPEN, 5 – 10, 10 – 71
OPEN–FOR, 5 – 20, 10 – 73
RAISE, 6 – 12, 10 – 92
RETURN, 7 – 7, 10 – 98
ROLLBACK, 5 – 41, 10 – 100
SAVEPOINT, 5 – 42, 10 – 103
SELECT INTO, 10 – 104
SET TRANSACTION, 5 – 44, 10 – 106
terminator, 2 – 3
UPDATE, 10 – 114

statement–level rollback, 5 – 42
STDDEV group function, 5 – 2
STEP clause, mimicking, 3 – 10
stepwise refinement, 1 – 3
STORAGE_ERROR exception, 6 – 6

when raised, 7 – 23
stored subprogram, 1 – 16, 7 – 10
string comparison semantics, C – 2
string literal, 2 – 8
STRING subtype, 2 – 15
structure theorem, 3 – 2
stub, 3 – 18, 7 – 3
subprogram

advantages, 7 – 3
declaring, 7 – 8
how calls are resolved, 7 – 18, 7 – 20
local, 1 – 16
overloading, 7 – 18
packaged, 1 – 16, 7 – 9
parts, 7 – 2
procedure versus function, 7 – 5
recursive, 7 – 23
standalone, 1 – 16
stored, 1 – 16, 7 – 10
See also function; procedure

subquery, 5 – 13
substitution variable, 9 – 3
SUBSTR function, 6 – 20
subtraction operator, 2 – 3

Index – 13

subtype, 2 – 11, 2 – 17
CHARACTER, 2 – 13
compatibility, 2 – 19
DEC, 2 – 12
DECIMAL, 2 – 12
defining, 2 – 17
DOUBLE PRECISION, 2 – 12
FLOAT, 2 – 12
INT, 2 – 12
INTEGER, 2 – 12
NATURAL, 2 – 11
NATURALN, 2 – 11
NUMERIC, 2 – 12
overloading, 7 – 20
POSITIVE, 2 – 11
POSITIVEN, 2 – 11
REAL, 2 – 12
SMALLINT, 2 – 12
STRING, 2 – 15
VARCHAR, 2 – 15

SUM group function, 5 – 2
support for SQL, 5 – 2
syntax definition, 10 – 1

T
tab, 2 – 3
TABLE datatype, 4 – 2

defining, 4 – 2
table, PL/SQL, 4 – 2
terminating condition, 7 – 23
terminator, statement, 2 – 3
ternary operator, 2 – 33
THEN clause, 3 – 2
TIMEOUT_ON_RESOURCE exception, 6 – 6
timestamp, A – 4
TOO_MANY_ROWS exception, 6 – 7
top–down design, 1 – 13
trailing blanks, how handled, C – 4
transaction, 5 – 2, 5 – 40

committing, 5 – 40
distributed, 5 – 40
read–only, 5 – 44
rolling back, 5 – 41

transaction processing, 5 – 2, 5 – 39
TRUE value, 2 – 8
truncation, 6 – 7

detecting with indicator variable, 9 – 14
when performed, C – 4

Trusted Oracle, 2 – 10
truth tables, 2 – 34
%TYPE attribute

syntax, 10 – 113
using in field declaration, 4 – 19
using in variable declaration, 2 – 24

type definition
RECORD, 4 – 19
REF CURSOR, 5 – 18
TABLE, 4 – 2

U
unary operator, 2 – 33
underscore, 2 – 4
unhandled exception, 6 – 13, 6 – 20
UNION ALL set operator, 5 – 6
UNION set operator, 5 – 6
UPDATE statement, syntax, 10 – 114
user session, 5 – 39
user–defined

exception, 6 – 7
record, 4 – 19
subtype, 2 – 17

user–defined record
declaring, 4 – 20
referencing, 4 – 21
restriction, 4 – 24

UTL_FILE package, 8 – 16

V
VALUE_ERROR exception, 6 – 7
VARCHAR pseudotype, 9 – 15
VARCHAR subtype, 2 – 15

ending properly, 5 – 43
VARCHAR2 datatype, 2 – 15

Index – 14 PL/SQL User’s Guide and Reference

variable
assigning values, 2 – 32
declaring, 2 – 22
initializing, 2 – 32
session–specific, 8 – 10
syntax, 10 – 16

VARIANCE group function, 5 – 2
visibility

of package contents, 8 – 2
versus scope, 2 – 30

W
WHEN clause, 3 – 7, 6 – 16
WHILE loop, 3 – 8
wildcard, 2 – 36
words, reserved, E – 1
work area, query, 5 – 17

Z
ZERO_DIVIDE exception, 6 – 7

Reader’s Comment Form

PL/SQL�User’s Guide and Reference
Part No. A32542–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle7 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Oracle Library - Top
	Title
	Preface
	Audience
	What’s New in This Edition?
	How This Guide Is Organized
	User’s Guide
	Language Reference
	Appendices

	Notational Conventions
	Sample Database Tables
	Sample Data

	Your Comments Are Welcome

	Table of Contents
	Part I: User’s Guide
	1: Overview
	Main Features
	Block Structure
	Variables and Constants
	Cursors
	Cursor FOR Loops
	Cursor Variables
	Attributes
	Control Structures
	PL/SQL Tables
	User–Defined Records
	Modularity
	Information Hiding
	Error Handling

	Architecture
	In the Oracle Server
	In Oracle Tools

	Advantages of PL/SQL
	Support for SQL
	Higher Productivity
	Better Performance
	Portability
	Integration with Oracle

	2: Fundamentals
	Character Set
	Lexical Units
	Delimiters
	Identifiers
	Literals
	Comments

	Datatypes
	BINARY_INTEGER
	NUMBER
	PLS_INTEGER
	CHAR
	LONG
	RAW
	LONG RAW
	ROWID
	VARCHAR2
	BOOLEAN
	DATE
	MLSLABEL

	User–Defined Subtypes
	Defining Subtypes
	Using Subtypes

	Datatype Conversion
	Explicit Conversion
	Implicit Conversion
	Implicit versus Explicit Conversion
	DATE Values
	RAW and LONG RAW Values

	Declarations
	Using DEFAULT
	Using NOT NULL
	Using %TYPE
	Using %ROWTYPE
	Restrictions

	Naming Conventions
	Synonyms
	Scoping
	Case Sensitivity
	Name Resolution

	Scope and Visibility
	Assignments
	Boolean Values
	Database Values

	Expressions and Comparisons
	Operator Precedence
	Logical Operators
	Comparison Operators
	Concatenation Operator
	Boolean Expressions
	Handling Nulls

	Built–In Functions

	3: Control Structures
	Overview
	Conditional Control: IF Statements
	IF–THEN
	IF–THEN–ELSE
	IF–THEN–ELSIF
	Guidelines

	Iterative Control: LOOP and EXIT Statements
	LOOP
	WHILE–LOOP
	FOR–LOOP

	Sequential Control: GOTO and NULL Statements
	GOTO Statement
	NULL Statement

	4: PL/SQL Tables and User–Defined Records
	PL/SQL Tables
	Why Use PL/SQL Tables?
	Defining TABLE Types
	Declaring PL/SQL Tables
	Referencing PL/SQL Tables
	Using PL/SQL Table Attributes
	Using PL/SQL Tables
	Using Host Arrays with PL/SQL Tables

	User–Defined Records
	Defining RECORD Types
	Declaring Records
	Referencing Records
	Using Records

	5: Interaction with Oracle
	SQL Support
	Data Manipulation
	Transaction Control
	SQL Functions
	SQL Pseudocolumns
	ROWLABEL Column
	SQL Operators
	SQL92 Conformance

	Using DDL and Dynamic SQL
	Efficiency versus Flexibility
	Some Limitations
	Overcoming the Limitations

	Managing Cursors
	Explicit Cursors
	Implicit Cursors

	Packaging Cursors
	Using Cursor FOR Loops
	Using Aliases
	Passing Parameters

	Using Cursor Variables
	What Are Cursor Variables?
	Why Use Cursor Variables?
	Defining REF CURSOR Types
	Declaring Cursor Variables
	Controlling Cursor Variables
	Some Examples
	Reducing Network Traffic
	Avoiding Exceptions
	Guarding Against Aliasing
	Restrictions

	Using Cursor Attributes
	Explicit Cursor Attributes
	Implicit Cursor Attributes

	Processing Transactions
	How Transactions Guard Your Database
	Using COMMIT
	Using ROLLBACK
	Using SAVEPOINT
	Implicit Rollbacks
	Ending Transactions
	Using SET TRANSACTION
	Overriding Default Locking
	Dealing with Size Limitations

	6: Error Handling
	Overview
	Advantages and Disadvantages of Exceptions
	Disadvantages

	Predefined Exceptions
	User–Defined Exceptions
	Declaring Exceptions
	Scope Rules
	Using EXCEPTION_INIT
	Using raise_application_error
	Redeclaring Predefined Exceptions

	How Exceptions Are Raised
	Using the RAISE Statement

	How Exceptions Propagate
	Reraising an Exception
	Handling Raised Exceptions
	Exceptions Raised in Declarations
	Exceptions Raised in Handlers
	Branching to or from an Exception Handler
	Using SQLCODE and SQLERRM
	Unhandled Exceptions

	Useful Techniques
	Continuing after an Exception Is Raised
	Retrying a Transaction

	7: Subprograms
	What Are Subprograms?
	Advantages of Subprograms
	Procedures
	Functions
	Restriction

	RETURN Statement
	Declaring Subprograms
	Forward Declarations
	Stored Subprograms

	Actual versus Formal Parameters
	Positional and Named Notation
	Positional Notation
	Named Notation
	Mixed Notation

	Parameter Modes
	IN Mode
	OUT Mode
	IN OUT Mode

	Parameter Default Values
	Parameter Aliasing
	Overloading
	Restrictions
	How Calls Are Resolved

	Recursion
	Recursive Subprograms
	Caution
	Mutual Recursion
	Recursion versus Iteration

	8: Packages
	What Is a Package?
	Advantages of Packages
	The Package Specification
	Referencing Package Contents

	The Package Body
	Some Examples
	Private versus Public Objects
	Overloading
	Package STANDARD
	Product–specific Packages
	DBMS_STANDARD
	DBMS_SQL
	DBMS_ALERT
	DBMS_OUTPUT
	DBMS_PIPE
	UTL_FILE

	Guidelines

	Part II: Language Reference
	9: Execution Environments
	SQL*Plus Environment
	Inputting an Anonymous Block
	Executing an Anonymous Block
	Creating a Script
	Loading and Running a Script
	Creating a Stored Subprogram, Package, or Trigger
	Using Bind Variables
	Calling Stored Subprograms
	Displaying Output

	Oracle Precompiler Environment
	Embedding PL/SQL Blocks
	Using Host Variables
	Using Indicator Variables
	Using the VARCHAR Pseudotype
	Using the DECLARE TABLE Statement
	Using the SQLCHECK Option
	Using Dynamic SQL
	Mimicking Dynamic SQL
	Calling Stored Subprograms

	OCI Environment
	Calling Stored Subprograms

	10: Language Elements
	Reading Syntax Definitions
	Assignment Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Blocks
	Description
	Syntax
	Keyword and Parameter Description
	Example
	Related Topics

	CLOSE Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	Comments
	Description
	Syntax
	Usage Notes
	Examples

	COMMIT Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	Constants and Variables
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Cursor Attributes
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Cursors
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Cursor Variables
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	DELETE Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	EXCEPTION_INIT Pragma
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	Exceptions
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	EXIT Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Expressions
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	FETCH Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Functions
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	GOTO Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples

	IF Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	INSERT Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Literals
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	LOCK TABLE Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	LOOP Statements
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	NULL Statement
	Description
	Syntax
	Usage Notes
	Examples

	OPEN Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	OPEN–FOR Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Packages
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	PL/SQL Table Attributes
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	PL/SQL Tables
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Procedures
	Description
	Syntax
	Usage Notes
	Examples
	Related Topics

	RAISE Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	Records
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	RETURN Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	ROLLBACK Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	%ROWTYPE Attribute
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	SAVEPOINT Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	SELECT INTO Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	SET TRANSACTION Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Example
	Related Topics

	SQL Cursor
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	SQLCODE Function
	Description
	Syntax
	Usage Notes
	Related Topics

	SQLERRM Function
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	%TYPE Attribute
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Related Topics

	UPDATE Statement
	Description
	Syntax
	Keyword and Parameter Description
	Usage Notes
	Examples
	Related Topics

	Part III: Appendices
	Ap A: New Features
	Support for File I/O
	PL/SQL Table Improvements
	Cursor Variable Improvements
	New Fast–Integer Datatype
	Full Support for Subqueries
	New Remote Dependency Mode

	Ap B: Sample Programs
	Running the Samples
	Creating the Tables
	Loading the Data

	Sample 1. FOR Loop
	Input Table
	PL/SQL Block
	Output Table

	Sample 2. Cursors
	Input Table
	PL/SQL Block
	Output Table

	Sample 3. Scoping
	Input Table
	PL/SQL Block
	Output Table

	Sample 4. Batch Transaction Processing
	Input Tables
	PL/SQL Block
	Output Tables

	Sample 5. Embedded PL/SQL
	Input Table
	PL/SQL Block in a C Program
	Interactive Session
	Output Tables

	Sample 6. Calling a Stored Procedure
	Input Table
	Stored Procedure
	Interactive Session

	Ap C: CHAR versus VARCHAR2 Semantics
	Assigning Character Values
	Comparing Character Values
	Inserting Character Values
	Selecting Character Values
	Guidelines

	Ap D: PL/SQL Wrapper
	Advantages of Wrapping
	Running the PL/SQL Wrapper
	Input and Output Files
	Error Detection

	Ap E: Reserved Words
	PL/SQL Reserved Words

	Index
	Reader's Comment Form

