
Oracle7� Server
Concepts
Release 7.3
February 1996
Part No. A32534–1

Oracle7� Server Concepts, Release 7.3
Part No. A32534–1
Copyright � 1993, 1996 Oracle Corporation
All rights reserved. Printed in the U.S.A.
Contributing Authors: Steven Bobrowski, Cynthia Chin–Lee, Cindy Closkey,
John Frazzini, Danny Sokolsky

Technical Illustrator: Valarie Moore

Contributors: Richard Allen, David Anderson, Andre Bakker, Bill Bridge, Atif
Chaudry, Jeff Cohen, Sandy Dreskin, Jason Durbin, Ahmed Ezzat, Anurag
Gupta, Gary Hallmark, Michael Hartstein, Terry Hayes, Ken Jacobs, Sandeep
Jain, Amit Jasuja, Hakan Jakobsson, Robert Jenkins, Jr., Jonathan Klein, R.
Kleinro, Robert Kooi, Juan Loaiza, Brom Mahbod, William Maimone, Andrew
Mendelsohn, Mark Moore, Mark Porter, Maria Pratt, Tuomas Pystenen, Patrick
Ritto, Hasan Rizvi, Hari Sankar, Gordon Smith, Leng Leng Tan, Lynne Thieme,
Alex Tsukerman, Joyo Wijaya, Linda Willis

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error free.

Oracle, Pro*Ada, Pro*COBOL, Pro*FORTRAN, Pro*Pascal, Pro*PL/I,
SQL*DBA,SQL*Loader, SQL*Net, SQL*Plus, and SQL*ReportWriter are
registered trademarks of Oracle Corporation.

Oracle7, Oracle Forms, Oracle Parallel Server, PL/SQL, and Pro*C are
trademarks of Oracle Corporation.

VMS is a registered trademark of Digital Equipment Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

T

Preface i

Preface

Preface

his manual describes all features of the Oracle7 Server, a relational
database management system (RDBMS). This manual describes how
how Oracle functions. It lays a conceptual foundation for much of the
practical information contained in other Oracle7 Server manuals.

Information in this manual applies to the Oracle7 Server running on all
operating systems. It provides information about the base Oracle
Server product and the special options, including the:

• distributed option

• advanced replication option

• parallel query option

• Parallel Server option

Any chapter of this manual that applies to a particular option only is
indicated on its first page.

What You Should
Already Know

If You’re Interested in
Installation and
Migration

If You’re Interested in
Database
Administration

If You’re Interested in
Application Design

Oracle7 Server Conceptsii

Audience

This manual is written for database administrators, system
administrators, and database application developers.

You should be familiar with relational database concepts and with the
operating system environment under which they are running Oracle.

As a prerequisite, all readers should read the first chapter,
“Introduction to the Oracle Server”. Chapter 1 is a comprehensive
introduction to the concepts and terminology used throughout the
remainder of this manual.

This manual is not an installation or migration guide. Therefore, if your
primary interest is installation, refer to your operating system–specific
Oracle documentation, or if your primary interest is database and
application migration, refer to Oracle7 Server Migration.

While this manual describes the architecture, processes, structures, and
other concepts of the Oracle Server, it does not explain how to
administer the Oracle Server. For that information, see the Oracle7
Server Administrator’s Guide.

In addition to administrators, experienced users of Oracle and
advanced database application designers will find information in this
manual useful. However, database application developers should also
refer to the Oracle7 Server Application Developer’s Guide and to the
documentation for the tool or language product they are using to
develop Oracle database applications.

Part I
What is Oracle?

Part II
Basic Database
Operation

Part III
Database Structures

Preface iii

How Oracle7 Server Concepts Is Organized

This manual is divided into the chapters described below.

Chapter 1 Introduction to the Oracle Server

This chapter provides the “big picture”, outlining the concepts and
terminology you need to understand the Oracle Server. You should
read this overview before using the detailed information in the
remainder of this manual.

Chapter 2 Database and Instance Startup and Shutdown

This chapter describes how the database administrator (DBA) can
control the accessibility of an Oracle database system. This chapter also
describes the parameters that control how the database operates.

Chapter 3 Data Blocks, Extents, and Segments

This chapter discusses how data is stored and how storage space is
allocated for and consumed by various objects within an Oracle
database. The space management background information here
supplements that in the following two chapters.

Chapter 4 Tablespaces and Datafiles

This chapter discusses how physical storage space in an Oracle
database is divided into logical divisions called tablespaces. The
physical operating system files associated with tablespaces, called
datafiles, are also discussed.

Chapter 5 Schema Objects

This chapter describes the objects that can be created in the domain of a
specific user (a schema), including tables, views, numeric sequences,
and synonyms. Indexes and clusters, optional structures that make
data retrieval more efficient, are also described.

Part IV
System Architecture

Part V
Data Access

Oracle7 Server Conceptsiv

Chapter 6 Datatypes

This chapter describes the types of data that can be stored in an Oracle
database table, such as fixed– and variable–length character strings,
numbers, dates, and binary large objects (BLOBs). Among the issues
covered are the following:

• how data of different types is physically stored

• datatype size limits

• conversion of Oracle datatypes from one to another

• how datatypes of other systems are mapped to Oracle datatypes

Chapter 7 Data Integrity

This chapter discusses data integrity and the declarative integrity
constraints used to enforce it.

Chapter 8 The Data Dictionary

This chapter describes the data dictionary, which is a set of reference
tables and views that contain read–only information about an Oracle
database.

Chapter 9 Memory Structures and Processes

This chapter describes the memory structures and processes that make
up an Oracle database system. This chapter also describes the different
process configurations available for Oracle.

Chapter 10 Data Concurrency

This chapter explains how Oracle provides concurrent access to and
maintains the accuracy of shared information in a multi–user
environment. It describes the automatic mechanisms that Oracle uses
to guarantee that the concurrent operations of multiple users do not
interfere with each other.

Chapter 11 SQL and PL/SQL

This chapter briefly describes SQL (the Structured Query Language),
the language used to communicate with Oracle, as well as PL/SQL,
Oracle’s procedural language extension to SQL.

Chapter 12 Transaction Management

This chapter defines the concept of transactions and explains the SQL
statements used to control them. Transactions are logical units of work
that are executed together as a unit.

Part VI
Programmatic
Constructs

Part VII
Database Security

Part VIII
Distributed Processing
and Distributed
Databases

Preface v

Chapter 13 The Optimizer

This chapter explains how the optimizer works. The optimizer is the
part of Oracle that chooses the most efficient way to execute each SQL
statement.

Chapter 14 Procedures and Packages

This chapter discusses the procedural language constructs called
procedures, functions, and packages, which are PL/SQL program units
that are stored in the database.

Chapter 15 Database Triggers

This chapter describes the procedural language constructs called
triggers, procedures that are implicitly executed when anyone inserts
rows into, updates, or deletes rows from a database table.

Chapter 16 Dependencies Among Schema Objects

This chapter explains how Oracle manages the dependencies for objects
such as procedures, packages, triggers, and views.

Chapter 17 Database Access

This chapter describes how user access to data and database resources
is controlled.

Chapter 18 Privileges and Roles

This chapter discusses system and object security.

Chapter 19 Auditing

This chapter discusses how Oracle’s auditing feature tracks database
activity.

Chapter 20 Client/Server Architecture

This chapter discusses distributed processing environments and the
Oracle Server.

Chapter 21 Distributed Databases

This chapter discusses the Oracle Server’s distributed architecture,
remote data access, and table replication.

Part IX
Database Backup and
Recovery

Reference

Oracle7 Server Conceptsvi

Chapter 22 Recovery Structures

This chapter describes the files and structures used for database
recovery: the redo log files and the control files. Media and software
failure are covered.

Chapter 23 Database Backup

This chapter discusses how to protect an Oracle database from possible
failures.

Chapter 24 Database Recovery

This chapter explains how to recover a database from failures.

Appendix A Operating System–Specific Information

This appendix lists all of the operating system–specific references
within this manual.

How to Use This Manual

Every reader of this manual should read Chapter 1, “Introduction to the
Oracle Server”. This overview of the concepts and terminology related
to Oracle provides a foundation for the more detailed information that
follows in later chapters.

Each part of this manual addresses a specific audience within the
general audiences previously described. For example, after reading
Chapter 1, administrators interested primarily in managing security
should focus on the information presented in Part VII , “Database
Security”.

Special Icons

OSDoc

Text of the Manual

UPPERCASE Characters

Italicized Characters

Code Examples

Preface vii

Conventions Used in This Manual

This manual uses different fonts to represent different types of
information.

Special icons alert you to particular information within the body of this
manual:

Suggestion: The lightbulb highlights suggestions and
practical tips that could save time, make procedures easier, and
so on.

Warning: The warning symbol highlights text that warns you
of actions that could be particularly damaging or fatal to your
operations.

Additional Information: The OSDoc icon refers you to the
Oracle operating system–specific documentation for additional
information.

The following sections describe the conventions used in the text of this
manual.

Uppercase text is used to call attention to command keywords, object
names, parameters, filenames, and so on.

For example, “If you create a private rollback segment, the name must
be included in the ROLLBACK_SEGMENTS parameter of the
parameter file.”

Italicized words within text are book titles or emphasized words.

SQL, Server Manager line mode, and SQL*Plus commands/statements
appear separated from the text of paragraphs in a monospaced font.
For example:

INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);

ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or
quotation marks. All punctuation in example statements is required.
All example statements terminate with a semicolon (;). Depending on
the application, a semicolon or other terminator may or may not be
required to end a statement.

Uppercase words in example statements indicate the keywords within
Oracle SQL. When you issue statements, however, keywords are not
case sensitive.

Oracle7 Server Conceptsviii

Lowercase words in example statements indicate words supplied only
for the context of the example. For example, lowercase words may
indicate the name of a table, column, or file.

Your Comments Are Welcome

We value and appreciate your comments as an Oracle customer. As we
write, revise, and evaluate our documentation, your opinions are the
most important input we receive. At the back of this manual is a
Reader’s Comment Form which we encourage you to use to tell us
what you like and dislike about this manual or other Oracle manuals. If
the form has been used or you would like to contact us, please contact
us at the following address:

Oracle7 Server Documentation Manager
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065

Contents ix

Contents

PART I WHAT IS ORACLE?

Chapter 1 Introduction to the Oracle Server 1–1.
Databases and Information Management 1–2.
The Oracle Server 1–4.

Structured Query Language (SQL) 1–4.
Database Structure 1–5.
An Oracle Instance 1–5.

Database Structure and Space Management 1–7.
Relational Database Management Systems 1–7.
Logical Database Structures 1–8.
Physical Database Structures 1–15.
The Data Dictionary 1–16.

Oracle Server Architecture 1–17.
Memory Structures and Processes 1–17.
Memory Structures 1–18.
Processes 1–20.
The Program Interface 1–22.
An Example of How Oracle Works 1–23.

Data Access 1–24.
SQL—The Structured Query Language 1–24.
Transactions 1–25.
PL/SQL 1–27.
Data Integrity 1–28.

Data Concurrency and Consistency 1–30.

Oracle7 Server Conceptsx

Concurrency 1–30.
Read Consistency 1–31.
Locking 1–32.

Database Security 1–33.
Security Mechanisms 1–34.
Trusted Oracle 1–39.

Database Backup and Recovery 1–40.
Why Is Recovery Important? 1–40.
Types of Failures 1–40.
Structures Used for Recovery 1–42.
Basic Recovery Steps 1–44.

Distributed Processing and Distributed Databases 1–45.
Client/Server Architecture: Distributed Processing 1–45.
Distributed Databases 1–45.
Table Replication 1–47.
Oracle and SQL*Net 1–48.

PART II BASIC DATABASE OPERATION

Chapter 2 Database and Instance Startup and Shutdown 2–1.
Introduction to Database Startup and Database Shutdown 2–2.

Connecting with Administrator Privileges 2–2.
Database and Instance Startup 2–3.

Starting an Instance 2–3.
Mounting a Database 2–3.
Opening a Database 2–4.

Database and Instance Shutdown 2–5.
Closing a Database 2–5.
Dismounting a Database 2–6.
Shutting Down an Instance 2–6.

Parameter Files 2–6.
An Example of a Parameter File 2–7.
Changing Parameter Values 2–7.

Contents xi

PART III DATABASE STRUCTURES

Chapter 3 Data Blocks, Extents, and Segments 3–1.
The Relationships Between Data Blocks, Extents, and Segments 3–2

Data Blocks 3–2.
Extents 3–3.
Segments 3–3.

Data Blocks 3–3.
Data Block Format 3–3.
An Introduction to PCTFREE, PCTUSED, and Row

Chaining 3–5.
Extents 3–10.

When Extents Are Allocated for Segments 3–10.
How Extents Are Allocated for Segments 3–13.
When Extents Are Deallocated 3–14.
Determining Sizes and Limits of Segment Extents 3–15.

Segments 3–15.
Data Segments 3–16.
Index Segments 3–16.
Rollback Segments 3–16.

Temporary Segments 3–28.
Operations Requiring Temporary Segments 3–28.
How Temporary Segments Are Allocated 3–28.

Chapter 4 Tablespaces and Datafiles 4–1.
An Introduction to Tablespaces and Datafiles 4–2.
Tablespaces 4–3.

The SYSTEM Tablespace 4–4.
Allocating More Space for a Database 4–4.
Online and Offline Tablespaces 4–6.
Read–Only Tablespaces 4–8.
Temporary Tablespaces 4–9.

Datafiles 4–10.
Datafile Contents 4–10.
Size of Datafiles 4–11.
Offline Datafiles 4–11.

Oracle7 Server Conceptsxii

Chapter 5 Schema Objects 5–1.
Overview of Schema Objects 5–2.
Tables 5–3.

How Table Data Is Stored 5–3.
Nulls 5–6.
Default Values for Columns 5–7.

Views 5–8.
Storage for Views 5–9.
How Views Are Used 5–10.
The Mechanics of Views 5–11.
Dependencies and Views 5–12.
Updatable Join Views 5–12.
Partition Views 5–13.

The Sequence Generator 5–16.
Synonyms 5–17.
Indexes 5–18.

Unique and Non–Unique Indexes 5–19.
Composite Indexes 5–19.
Indexes and Keys 5–20.
How Indexes Are Stored 5–20.

Clusters 5–23.
Performance Considerations 5–25.
Format of Clustered Data Blocks 5–26.
The Cluster Key 5–26.
The Cluster Index 5–27.

Hash Clusters 5–27.
How Data Is Stored in a Hash Cluster 5–28.
Hash Key Values 5–30.
Hash Functions 5–31.
Allocation of Space for a Hash Cluster 5–32.

Chapter 6 Datatypes 6–1.
Oracle Datatypes 6–2.

Character Datatypes 6–2.
NUMBER Datatype 6–4.
DATE Datatype 6–6.
LONG Datatype 6–7.
RAW and LONG RAW Datatypes 6–8.
ROWIDs and the ROWID Datatype 6–9.
The MLSLABEL Datatype 6–11.
Summary of Oracle Datatype Information 6–12.

Contents xiii

ANSI, DB2, and SQL/DS Datatypes 6–14.
Data Conversion 6–15.

Rule 1: Assignments 6–15.
Rule 2: Expression Evaluation 6–16.

Chapter 7 Data Integrity 7–1.
Definition of Data Integrity 7–2.

Types of Data Integrity 7–2.
How Oracle Enforces Data Integrity 7–3.

An Introduction to Integrity Constraints 7–5.
Advantages of Integrity Constraints 7–5.
The Performance Cost of Integrity Constraints 7–6.

Types of Integrity Constraints 7–7.
NOT NULL Integrity Constraints 7–7.
UNIQUE Key Integrity Constraints 7–8.
PRIMARY KEY Integrity Constraints 7–10.
Referential Integrity and FOREIGN KEY (Referential)

Integrity Constraints 7–11.
Actions Defined by Referential Integrity Constraints 7–15.
CHECK Integrity Constraints 7–16.

The Mechanisms of Constraint Checking 7–17.
Default Column Values and Integrity Constraint Checking 7–19.

Chapter 8 The Data Dictionary 8–1.
An Introduction to the Data Dictionary 8–2.
The Structure of the Data Dictionary 8–3.
SYS, the Owner of the Data Dictionary 8–3.
How the Data Dictionary Is Used 8–3.

How Oracle and Other Oracle Products Use the Data
Dictionary 8–4.

How Oracle Users Can Use the Data Dictionary 8–5.
The Dynamic Performance Tables 8–7.

Oracle7 Server Conceptsxiv

PART IV SYSTEM ARCHITECTURE

Chapter 9 Memory Structures and Processes 9–1.
An Oracle Instance 9–2.
Process Structure 9–3.

Single–Process Oracle Instance 9–3.
Multiple–Process Oracle Instance 9–4.

Oracle Memory Structures 9–15.
Virtual Memory 9–15.
Software Code Areas 9–16.
System Global Area (SGA) 9–16.
Program Global Area (PGA) 9–26.
Sort Areas 9–28.
Sort Direct Writes 9–29.

Variations in Oracle Configuration 9–29.
Connections, Sessions, and User Processes 9–30.
Oracle Using Combined User/Server Processes 9–31.
Oracle Using Dedicated Server Processes 9–32.
The Multi–Threaded Server 9–34.

Examples of How Oracle Works 9–39.
An Example of Oracle Using Dedicated Server Processes 9–39. .
An Example of Oracle Using the Multi–Threaded Server 9–40. .

The Program Interface 9–41.
Program Interface Structure 9–41.
The Program Interface Drivers 9–42.
Operating System Communications Software 9–42.

Chapter 10 Data Concurrency 10–1.
Data Concurrency in a Multi–user Environment 10–2.

General Concurrency Issues 10–2.
Locking Mechanisms 10–3.

How Oracle Controls Data Concurrency 10–5.
Multiversion Concurrency Control 10–5.
Statement Level Read Consistency 10–7.
Transaction Level Read Consistency 10–7.
Oracle Isolation Levels 10–8.
Setting the Isolation Level 10–8.
Additional Considerations for Serializable Isolation 10–10.
Comparing Read Committed and Serializable Isolation 10–12. . . .

How Oracle Locks Data 10–16.

Contents xv

Transactions and Data Concurrency 10–17.
Types of Locks 10–18.
Data Locks 10–19.
DDL Locks (Dictionary Locks) 10–26.
Internal Locks and Latches 10–27.
Explicit (Manual) Data Locking 10–29.
Oracle Lock Management Services 10–36.

PART V DATA ACCESS

Chapter 11 SQL and PL/SQL 11–1.
Structured Query Language (SQL) 11–2.

SQL Statements 11–2.
Identifying Non–Standard SQL 11–5.
Recursive SQL 11–6.
Cursors 11–6.
Shared SQL 11–6.
What Is Parsing? 11–6.

PL/SQL 11–7.
How PL/SQL Executes 11–8.
Language Constructs for PL/SQL 11–9.

Chapter 12 Transaction Management 12–1.
Introduction to Transactions 12–2.

Statement Execution and Transaction Control 12–3.
Statement–Level Rollback 12–4.

Oracle and Transaction Management 12–4.
Committing Transactions 12–5.
Rolling Back Transactions 12–6.
Savepoints 12–6.

Discrete Transaction Management 12–7.

Chapter 13 The Optimizer 13–1.
What Is Optimization? 13–2.

Execution Plans 13–2.
Oracle’s Approaches to Optimization 13–6.
Histograms 13–8.

How Oracle Optimizes SQL Statements 13–9.
Types of SQL Statements 13–10.

Oracle7 Server Conceptsxvi

Choosing Access Paths 13–11.
Optimizing Distributed Statements 13–17.

PART VI PROGRAMMATIC CONSTRUCTS

Chapter 14 Procedures and Packages 14–1.
An Introduction to Stored Procedures and Packages 14–2.

Stored Procedures and Functions 14–2.
Packages 14–3.
PL/SQL 14–5.

Procedures and Functions 14–5.
How Procedures Are Used 14–6.
Applications for Procedures 14–7.
Anonymous PL/SQL Blocks vs. Stored Procedures 14–8.
Standalone Procedures vs. Package Procedures 14–8.
Dependency Tracking for Stored Procedures 14–8.

Packages 14–9.
Applications for Packages 14–12.
Dependency Tracking for Packages 14–14.

How Oracle Stores Procedures and Packages 14–14.
Compiling Procedures and Packages 14–14.
Storing the Compiled Code in Memory 14–14.
Storing Procedures or Packages in Database 14–14.

How Oracle Executes Procedures and Packages 14–15.
Verifying User Access 14–15.
Verifying Procedure Validity 14–16.
Executing a Procedure 14–16.

Chapter 15 Database Triggers 15–1.
An Introduction to Triggers 15–2.

How Triggers Are Used 15–3.
A Cautionary Note about Trigger Use 15–3.
Database Triggers vs. Oracle Forms Triggers 15–4.
Triggers vs. Declarative Integrity Constraints 15–5.

Parts of a Trigger 15–5.
Triggering Event or Statement 15–6.
Trigger Restriction 15–7.
Trigger Action 15–7.
Types of Triggers 15–7.

Trigger Execution 15–11.

Contents xvii

The Execution Model for Triggers and Integrity Constraint
Checking 15–11.

Data Access for Triggers 15–13.
Storage for Triggers 15–14.
Execution of Triggers 15–15.
Dependency Maintenance for Triggers 15–15.

Chapter 16 Dependencies Among Schema Objects 16–1.
An Introduction to Dependency Issues 16–2.

Compiling Views and PL/SQL Program Units 16–4.
Advanced Dependency Management Topics 16–6.

Dependency Management and Non–Existent Schema
Objects 16–6.

Shared SQL Dependency Management 16–7.
Package Invalidations and Session State 16–8.
Local and Remote Dependency Management 16–8.

PART VII DATABASE SECURITY

Chapter 17 Database Access 17–1.
Schemas, Database Users, and Security Domains 17–2.
User Authentication 17–3.

Authenticating Users Using the Operating System 17–3.
Authenticating Users Using Network Authentication 17–4.
Authenticating Users Using the Oracle Database 17–4.
Password Encryption while Connecting 17–4.
Database Administrator Authentication 17–4.

User Tablespace Settings and Quotas 17–6.
Default Tablespace 17–6.
Temporary Tablespace 17–6.
Tablespace Access and Quotas 17–6.

The User Group PUBLIC 17–7.
User Resource Limits and Profiles 17–8.

Types of System Resources and Limits 17–9.
Profiles 17–11.

Licensing 17–12.
Concurrent Usage Licensing 17–12.
Named User Licensing 17–14.

Oracle7 Server Conceptsxviii

Chapter 18 Privileges and Roles 18–1.
Privileges 18–2.

System Privileges 18–2.
Object Privileges 18–3.

Roles 18–10.
Common Uses for Roles 18–10.
The Mechanisms of Roles 18–11.
Granting and Revoking Roles 18–12.
Who Can Grant or Revoke Roles? 18–12.
Who Can Grant or Revoke Roles? 18–12.
Who Can Grant or Revoke Roles? 18–12.
Naming Roles 18–12.
Security Domains of a Role and a User Granted Roles 18–12.
Data Definition Language Statements and Roles 18–13.
Predefined Roles 18–14.
The Operating System and Roles 18–14.
Roles in a Distributed Environment 18–14.

Chapter 19 Auditing 19–1.
Introduction to Auditing 19–2.

Auditing Features 19–2.
Auditing Mechanisms 19–4.

Statement Auditing 19–6.
Privilege Auditing 19–7.
Object Auditing 19–7.

Object Audit Options for Views and Procedures 19–8.
Focusing Statement, Privilege, and Object Auditing 19–9.

Auditing Successful and Unsuccessful Statement
Executions 19–9.

Auditing BY SESSION versus BY ACCESS 19–9.
Auditing By User 19–11.

Contents xix

PART VIII DISTRIBUTED PROCESSING AND DISTRIBUTED DATABASES

Chapter 20 Client/Server Architecture 20–1.
The Oracle Client/Server Architecture 20–2.

Distributed Processing 20–2.
SQL*Net 20–5.

How SQL*Net Works 20–5.

Chapter 21 Distributed Databases 21–1.
An Introduction to Distributed Databases 21–2.

Clients, Servers, and Nodes 21–2.
Site Autonomy 21–3.
Schema Objects and Naming in a Distributed Database 21–4. . . .
Database Links 21–5.
Statements and Transactions in a Distributed Database 21–6. . . .
Two–Phase Commit Mechanism 21–6.
Transparency in a Distributed Database System 21–7.
SQL*Net and Network Independence 21–8.
Heterogeneous Distributed Database Systems 21–8.

Replicating Data 21–10.

PART IX DATABASE BACKUP AND RECOVERY

Chapter 22 Recovery Structures 22–1.
An Introduction to Database Recovery and Recovery

Structures 22–2.
Errors and Failures 22–2.
Structures Used for Database Recovery 22–5.

The Online Redo Log 22–6.
Online Redo Log File Contents 22–6.
How Online Redo Log Files Are Written 22–7.

The Archived Redo Log 22–16.
The Mechanics of Archiving 22–16.
Archived Redo Log File Contents 22–17.
Database Archiving Modes 22–18.

Control Files 22–21.
Control File Contents 22–21.
Multiplexed Control Files 22–22.

Survivability 22–23.

Oracle7 Server Conceptsxx

Planning for Disaster Recovery 22–23.
Standby Database 22–23.

Chapter 23 Database Backup 23–1.
An Introduction to Database Backups 23–2.

Full Backups 23–2.
Partial Backups 23–3.
The Export and Import Utilities 23–8.

Read–Only Tablespaces and Backup 23–8.

Chapter 24 Database Recovery 24–1.
Recovery Procedures 24–2.
Recovery Features 24–2.
An Introduction to Database Recovery 24–3.

Database Buffers and DBWR 24–3.
The Redo Log and Rolling Forward 24–3.
Rollback Segments and Rolling Back 24–4.

Performing Recovery in Parallel 24–5.
What Situations Benefit from Parallel Recovery 24–5.
Recovery Processes 24–5.

Recovery from Instance Failure 24–7.
Read–Only Tablespaces and Instance Recovery 24–7.

Recovery from Media Failure 24–8.
Read–Only Tablespaces and Media Recovery 24–8.
Complete Media Recovery 24–10.
Incomplete Media Recovery 24–14.

Appendix A Operating System–Specific Information A–1.

Index

P A R T

 I What Is Oracle?

C H A P T E R

1

T

Introduction to the Oracle Server 1–1

Introduction to the
Oracle Server

I am Sir Oracle,
And when I ope my lips, let no dog bark!

Shakespeare: The Merchant of Venice

his chapter is an overview of the Oracle Server. It presents
information that will help you use the rest of this book. It includes:

• Databases and Information Management

• The Oracle Server

• Database Structure and Space Management

• Oracle Server Architecture

• Data Access

• Data Concurrency and Consistency

• Database Security

• Database Backup and Recovery

• Distributed Processing and Distributed Databases

Oracle7 Server Concepts1–2

Databases and Information Management

A database server is the key to solving the problems of information
management. In general, a server must reliably manage a large amount
of data in a multi–user environment so that many users can
concurrently access the same data. All this must be accomplished while
delivering high performance. A database server must also prevent
unauthorized access and provide efficient solutions for failure recovery.
The Oracle Server provides efficient and effective solutions with the
following features:

To take full advantage of a given computer system
or network, Oracle allows processing to be split
between the database server and the client
application programs. The computer running the
database management system handles all of the
database server responsibilities while the
workstations running the database application
concentrate on the interpretation and display of
data.

Oracle supports the largest of databases,
potentially terabytes in size. To make efficient use
of expensive hardware devices, it allows full
control of space usage.

Oracle supports large numbers of concurrent users
executing a variety of database applications
operating on the same data. It minimizes data
contention and guarantees data concurrency.

Oracle maintains the preceding features with a
high degree of overall system performance.
Database users do not suffer from slow processing
performance.

At some sites, Oracle works 24 hours per day with
no down time to limit database throughput.
Normal system operations such as database
backup and partial computer system failures do
not interrupt database use.

Oracle can selectively control the availability of
data, at the database level and sub–database level.
For example, an administrator can disallow use of
a specific application so that the application’s data
can be reloaded, without affecting other
applications.

client/server
(distributed
processing)
environments

large databases
and space
management

many concurrent
database users

high transaction
processing
performance

high availability

controlled
availability

Introduction to the Oracle Server 1–3

Oracle adheres to industry accepted standards for
the data access language, operating systems, user
interfaces, and network communication protocols.
It is an “open” system that protects a customer’s
investment.

Release 7.3 of the Oracle Server has been certified
by the U.S. National Institute of Standards and
Technology as 100% compliant with Entry Level of
the ANSI/ISO SQL92 (Structured Query
Language) standard. Oracle fully satisfies the
requirements of the U.S. Government’s FIPS127–2
standard and includes a “flagger” to highlight
non–standard SQL usage.

Also, Oracle7 has been evaluated by the U.S.
Government’s National Computer Security Center
(NCSC) as compliant with the Orange Book
security criteria; the Oracle7 Server and Trusted
Oracle7 comply with the C2 and B1 Orange Book
levels, respectively, as well as with comparable
European ITSEC security criteria.

Oracle also supports the Simple Network
Management Protocol (SNMP) standard for system
management. This protocol allows administrators
to manage heterogeneous systems with a single
administration interface.

To protect against unauthorized database access
and use, Oracle provides fail–safe security features
to limit and monitor data access. These features
make it easy to manage even the most complex
design for data access.

Oracle enforces data integrity, “business rules” that
dictate the standards for acceptable data. As a
result, the costs of coding and managing checks in
many database applications are eliminated.

For networked, distributed environments, Oracle
combines the data physically located on different
computers into one logical database that can be
accessed by all network users. Distributed systems
have the same degree of user transparency and
data consistency as non–distributed systems, yet
receive the advantages of local database
management.

openness,
industry
standards

manageable
security

database enforced
integrity

distributed
systems

Structured Query
Language (SQL)

Oracle7 Server Concepts1–4

Oracle also offers the heterogeneous option that
allows users to access data on some non–Oracle
databases transparently.

Oracle software is ported to work under different
operating systems. Applications developed for
Oracle can be ported to any operating system with
little or no modification.

Oracle software is compatible with industry
standards, including most industry standard
operating systems. Applications developed for
Oracle can be used on virtually any system with
little or no modification.

Oracle software allows different types of
computers and operating systems to share
information across networks.

Oracle software lets you replicate groups of tables
and their supporting objects to multiple sites.
Oracle supports replication of both data– and
schema–level changes to these sites. Oracle’s
flexible replication technology supports basic
primary site replication as well as advanced
dynamic and shared–ownership models.

The following sections provide a comprehensive overview of the
Oracle architecture. Each major section describes a different part of the
overall architecture.

The Oracle Server

The Oracle Server is a relational database management system that
provides an open, comprehensive, and integrated approach to
information management. An Oracle Server consists of an Oracle
database and an Oracle instance. The following sections describe the
relationship between the database and the instance.

SQL (pronounced SEQUEL) is the programming language that defines
and manipulates the database. SQL databases are relational databases;
this means simply that data is stored in a set of simple relations. A
database can have one or more tables. And each table has columns and
rows. A table that has an employee database, for example, might have
a column called employee number and each row in that column would
be an employee’s employee number.

portability

compatibility

connectibility

replicated
environments

Database Structure

An Oracle Instance

Introduction to the Oracle Server 1–5

You can define and manipulate data in a table with SQL commands.
You use data definition language (DDL) commands to set up the data.
DDL commands include commands to creating and altering databases
and tables.

You can update, delete, or retrieve data in a table with data
manipulation commands (DML). DML commands include commands
to alter and fetch dat. The most common SQL command is the SELECT
command, which allows you to retrieve data from the database.

In addition to SQL commands, the Oracle Server has a procedural
language called PL/SQL. PL/SQL enables the programmer to program
SQL statements. It allows you to control the flow of a SQL program, to
use variables, and to write error–handling procedures.

An Oracle database has both a physical and a logical structure. Because
the physical and logical server structure are separate, the physical
storage of data can be managed without affecting the access to logical
storage structures.

Physical Database Structure An Oracle database’s physical structure is
determined by the operating system files that constitute the database.
Each Oracle database is made of three types of files: one or more
datafiles, two or more redo log files, and one or more control files. The
files of an Oracle database provide the actual physical storage for
database information.

Logical Database Structure An Oracle database’s logical structure is
determined by

• one or more tablespaces. (A tablespace is a logical area of storage
explained later in this chapter.)

• the database’s schema objects. A schema is a collection of objects.
Schema objects are the logical structures that directly refer to the
database’s data. Schema objects include such structures as tables,
views, sequences, stored procedures, synonyms, indexes,
clusters, and database links.

The logical storage structures, including tablespaces, segments, and
extents, dictate how the physical space of a database is used. The
schema objects and the relationships among them form the relational
design of a database.

Every time a database is started, a system global area (SGA) is
allocated and Oracle background processes are started. The system
global area is a an area of memory used for database information
shared by the database users. The combination of the background

Communications
Software and SQL*Net

The Oracle Parallel
Server: Multiple Instance
Systems

Oracle7 Server Concepts1–6

processes and memory buffers is called an Oracle instance. Figure 1 – 1
illustrates a multiple process Oracle instance.

ARCHLGWRDBWRSMONPMONRECO
ArchiverLog WriterDatabaseSystemProcessRecoverer

UserUserUserUser

Oracle Processes
(background processes)

User processes

System Global Area
(SGA)

(RECO) Monitor
(PMON)

Monitor
(SMON)

Writer
(DBWR) (LGWR) (ARCH)

Figure 1 – 1 An Oracle Instance

An Oracle instance has two types of processes: user processes and
Oracle processes.

A user process executes the code of an application program (such as an
Oracle Forms application) or an Oracle Tool (such as Server Manager).

Oracle processes are server processes that perform work for user
processes and background processes that perform maintenance work
for the Oracle Server.

If the user and server processes are on different computers of a
network or if the user processes connect to shared server processes
through dispatcher processes, the user process and server process
communicate using SQL*Net. Dispatchers are optional background
processes, present only when a multi–threaded server configuration is
used. SQL*Net is Oracle’s interface to standard communications
protocols that allows for the proper transmission of data between
computers. See “Oracle and SQL*Net” on page 1–48.

Some hardware architectures (for example, shared disk systems) allow
multiple computers to share access to data, software, or peripheral
devices. Oracle with the Parallel Server option can take advantage of
such architecture by running multiple instances that “share” a single
physical database. In appropriate applications, the Oracle Parallel

Relational Database
Management Systems

Introduction to the Oracle Server 1–7

Server allows access to a single database by the users on multiple
machines with increased performance.

Database Structure and Space Management

This section describes the architecture of an Oracle database, including
the physical and logical structures that make up a database. This
discussion provides an understanding of Oracle’s solutions to
controlled data availability, the separation of logical and physical data
structures, and fine–grained control of disk space management.

Database management systems have evolved from hierarchical to
network to relational models. Today, the most widely accepted
database model is the relational model. The relational model has three
major aspects:

Structures are well–defined objects (such as tables,
views, indexes, and so on) that store or access the
data of a database. Structures and the data
contained within them can be manipulated by
operations.

Operations are clearly defined actions that allow
users to manipulate the data and structures of a
database. The operations on a database must
adhere to a predefined set of integrity rules.

Integrity rules are the laws that govern which
operations are allowed on the data and structures
of a database. Integrity rules protect the data and
the structures of a database.

Relational database management systems offer benefits such as

• independence of physical data storage and logical database
structure

• variable and easy access to all data

• complete flexibility in database design

• reduced data storage and redundancy

An Oracle database is a collection of data that is treated as a unit. The
general purpose of a database is to store and retrieve related
information. The database has logical structures and physical structures.

Structures

Operations

Integrity Rules

Open and Closed
Databases

Logical Database
Structures

Tablespaces

Oracle7 Server Concepts1–8

An Oracle database can be open (accessible) or closed (not accessible). In
normal situations, the database is open and available for use. However,
the database is sometimes closed for specific administrative functions
that require the database’s data to be unavailable to users.

The following sections explain logical database structures, including
tablespaces, schema objects, data blocks, extents, and segments.

A database is divided into logical storage units called tablespaces. A
tablespace is used to group related logical structures together. For
example, tablespaces commonly group all of an application’s objects to
simplify certain administrative operations.

Databases, Tablespaces, and Datafiles The relationship among databases,
tablespaces, and datafiles (datafiles are described in the
next section) is illustrated in Figure 1 – 2.

Database

System Tablespace

DATA1.ORA DATA2.ORA DATA3.ORA

USERS Tablespace

1 Mb 1 Mb 4 Mb

Figure 1 – 2 Databases, Tablespaces, and Datafiles

This figure illustrates the following:

• Each database is logically divided into one or more tablespaces.

• One or more datafiles are explicitly created for each tablespace to
physically store the data of all logical structures in a tablespace.

• The combined size of a tablespace’s datafiles is the total storage
capacity of the tablespace (SYSTEM tablespace has 2 Mb storage
capacity while USERS tablespace has 4 Mb).

• The combined storage capacity of a database’s tablespaces is the
total storage capacity of the database (6 Mb).

Online and Offline Tablespaces A tablespace can be online (accessible) or
offline (not accessible). A tablespace is normally online so that users can
access the information within the tablespace. However, sometimes a
tablespace may be taken offline to make a portion of the database

Schemas and Schema
Objects

Introduction to the Oracle Server 1–9

unavailable while allowing normal access to the remainder of the
database. This makes many administrative tasks easier to perform.

A schema is a collection of objects. Schema objects are the logical
structures that directly refer to the database’s data. Schema objects
include such structures as tables, views, sequences, stored procedures,
synonyms, indexes, clusters, and database links. (There is no
relationship between a tablespace and a schema; objects in the same
schema can be in different tablespaces, and a tablespace can hold
objects from different schemas.)

Tables A table is the basic unit of data storage in an Oracle database.
The tables of a database hold all of the user–accessible data.

Table data is stored in rows and columns. Every table is defined with a
table name and set of columns. Each column is given a column name, a
datatype (such as CHAR, DATE, or NUMBER), and a width (which may
be predetermined by the datatype, as in DATE) or scale and precision
(for the NUMBER datatype only). Once a table is created, valid rows of
data can be inserted into it. The table’s rows can then be queried,
deleted, or updated.

To enforce defined business rules on a table’s data, integrity constraints
and triggers can also be defined for a table. For more information, see
“Data Integrity” on page 1–28.

Views A view is a custom–tailored presentation of the data in one or
more tables. A view can also be thought of as a “stored query”.

Views do not actually contain or store data; rather, they derive their
data from the tables on which they are based, referred to as the base
tables of the views. Base tables can in turn be tables or can themselves
be views.

Like tables, views can be queried, updated, inserted into, and deleted
from, with restrictions. All operations performed on a view actually
affect the base tables of the view.

Views are often used to do the following:

• Provide an additional level of table security by restricting access
to a predetermined set of rows and columns of a table. For
example, a view of a table can be created so that columns with
sensitive data (for example, salary information) are not included
in the definition of the view.

• Hide data complexity. For example, a single view can combine 12
monthly sales tables to provide a year of data for analysis and
reporting. A single view can also be used to create a join, which

Oracle7 Server Concepts1–10

is a display of related columns or rows in multiple tables.
However, the view hides the fact that this data actually
originates from several tables.

• Simplify commands for the user. For example, views allow users
to select information from multiple tables without requiring the
users to actually know how to perform a correlated subquery.

• Present the data in a different perspective from that of the base
table. For example, views provide a means to rename columns
without affecting the tables on which the view is based.

• Store complex queries. For example, a query might perform
extensive calculations with table information. By saving this
query as a view, the calculations are performed only when the
view is queried.

Views that involve a join (a SELECT statement that selects data from
multiple tables) of two or more tables can only be updated under
certain conditions. For information about updatable join views, see
”Modifying a Join View” in the Oracle7 Server Application Developer’s
Guide.

Sequences A sequence generates a serial list of unique numbers for
numeric columns of a database’s tables. Sequences simplify application
programming by automatically generating unique numerical values for
the rows of a single table or multiple tables.

For example, assume two users are simultaneously inserting new
employee rows into the EMP table. By using a sequence to generate
unique employee numbers for the EMPNO column, neither user has to
wait for the other to input the next available employee number. The
sequence automatically generates the correct values for each user.

Sequence numbers are independent of tables, so the same sequence can
be used for one or more tables. After creation, a sequence can be
accessed by various users to generate actual sequence numbers.

Program Units The term “program unit” is used in this manual to refer
to stored procedures, functions, and packages.

Note: The information in this section applies only to Oracle
with the procedural option installed (PL/SQL.).

A procedure or function is a set of SQL and PL/SQL (Oracle’s procedural
language extension to SQL) statements grouped together as an
executable unit to perform a specific task. For more information about
SQL and PL/SQL, see “Data Access” on page 1–24.

Introduction to the Oracle Server 1–11

Procedures and functions allow you to combine the ease and flexibility
of SQL with the procedural functionality of a structured programming
language. Using PL/SQL, such procedures and functions can be
defined and stored in the database for continued use. Procedures and
functions are identical, except that functions always return a single
value to the caller, while procedures do not return a value to the caller.

Packages provide a method of encapsulating and storing related
procedures, functions, and other package constructs together as a unit
in the database. While packages provide the database administrator or
application developer organizational benefits, they also offer increased
functionality and database performance.

Synonyms A synonym is an alias for a table, view, sequence, or program
unit. A synonym is not actually an object itself, but instead is a direct
reference to an object. Synonyms are used to

• mask the real name and owner of an object

• provide public access to an object

• provide location transparency for tables, views, or program units
of a remote database

• simplify the SQL statements for database users

A synonym can be public or private. An individual user can create a
private synonym, which is available only to that user. Database
administrators most often create public synonyms that make the base
schema object available for general, system–wide use by any database
user.

Indexes, Clusters, and Hash Clusters Indexes, clusters, and hash clusters
are optional structures associated with tables, which can be created to
increase the performance of data retrieval.

Indexes are created to increase the performance of data retrieval. Just as
the index in this manual helps you locate specific information faster
than if there were no index, an Oracle index provides a faster access
path to table data. When processing a request, Oracle can use some or
all of the available indexes to locate the requested rows efficiently.
Indexes are useful when applications often query a table for a range of
rows (for example, all employees with a salary greater than 1000
dollars) or a specific row.

Indexes are created on one or more columns of a table. Once created, an
index is automatically maintained and used by Oracle. Changes to table
data (such as adding new rows, updating rows, or deleting rows) are
automatically incorporated into all relevant indexes with complete
transparency to the users.

Oracle7 Server Concepts1–12

Indexes are logically and physically independent of the data. They can
be dropped and created any time with no effect on the tables or other
indexes. If an index is dropped, all applications continue to function;
however, access to previously indexed data may be slower.

Clusters are an optional method of storing table data. Clusters are
groups of one or more tables physically stored together because they
share common columns and are often used together. Because related
rows are physically stored together, disk access time improves.

The related columns of the tables in a cluster are called the cluster key.
The cluster key is indexed so that rows of the cluster can be retrieved
with a minimum amount of I/O. Because the data in a cluster key of an
index cluster (a non–hash cluster) is stored only once for multiple
tables, clusters may store a set of tables more efficiently than if the
tables were stored individually (not clustered). Figure 1 – 3 illustrates
how clustered and non–clustered data is physically stored.

Clusters also can improve performance of data retrieval, depending on
data distribution and what SQL operations are most often performed
on the clustered data. In particular, clustered tables that are queried in
joins benefit from the use of clusters because the rows common to the
joined tables are retrieved with the same I/O operation.

Like indexes, clusters do not affect application design. Whether or not a
table is part of a cluster is transparent to users and to applications.
Data stored in a clustered table is accessed via SQL in the same way as
data stored in a non–clustered table.

Hash clusters also cluster table data in a manner similar to normal,
index clusters (clusters keyed with an index rather than a hash
function). However, a row is stored in a hash cluster based on the result
of applying a hash function to the row’s cluster key value. All rows with
the same hash key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index
cluster when a table is often queried with equality queries (for
example, return all rows for department 10). For such queries, the
specified cluster key value is hashed. The resulting hash key value
points directly to the area on disk that stores the specified rows.

Database Links A database link is a named object that describes a “path”
from one database to another. Database links are implicitly used when
a reference is made to a global object name in a distributed database.
Also see “Distributed Databases” on page 1–45.

Data Blocks, Extents, and
Segments

Introduction to the Oracle Server 1–13

NEW YORK

Unclustered Tables
Related data stored

apart, taking up
more space

10 DNAME LOC

Cluster Key
(DEPTO) EMPNO ENAME DEPTNO . . .

EMP Table

EMPNO ENAME . . .

20 DNAME LOC

EMPNO ENAME . . .

Clustered Tables
Related data stored

together, more
efficiently

DEPTNO DNAME LOC

DEPT Table

SALES BOSTON

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

ADMIN

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

932
100
1139
1277
1321
1841

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

10
20

SALES
ADMIN

BOSTON
NEW YORK

Figure 1 – 3 Clustered and Unclustered Tables

Oracle allows fine–grained control of disk space usage through the
logical storage structures, including data blocks, extents, and segments.
For more information on these, see Chapter 3 of this manual.

Oracle Data Blocks At the finest level of granularity, an Oracle
database’s data is stored in data blocks. One data block corresponds to a
specific number of bytes of physical database space on disk. A data
block size is specified for each Oracle database when the database is
created. A database uses and allocates free database space in Oracle
data blocks.

Oracle7 Server Concepts1–14

Extents The next level of logical database space is called an extent. An
extent is a specific number of contiguous data blocks, obtained in a
single allocation, used to store a specific type of information.

Segments The level of logical database storage above an extent is called
a segment. A segment is a set of extents allocated for a certain logical
structure. For example, the different types of segments include the
following:

Each non–clustered table has a data segment. All of
the table’s data is stored in the extents of its data
segment. Each cluster has a data segment. The data
of every table in the cluster is stored in the cluster’s
data segment.

Each index has an index segment that stores all of
its data.

One or more rollback segments are created by the
database administrator for a database to
temporarily store “undo” information. This
information is used:

• to generate read–consistent database
information. See “Read–Consistency” on page
1–31.

• during database recovery. See “Database Backup
and Recovery” on page 1–40.

• to rollback uncommitted transactions for users

Temporary segments are created by Oracle when a
SQL statement needs a temporary work area to
complete execution. When the statement finishes
execution, the temporary segment’s extents are
returned to the system for future use.

Oracle dynamically allocates space when the existing extents of a
segment become full. Therefore, when the existing extents of a segment
are full, Oracle allocates another extent for that segment as needed.
Because extents are allocated as needed, the extents of a segment may
or may not be contiguous on disk.

Data Segment

Index Segment

Rollback Segment

Temporary
Segment

Physical Database
Structures

Datafiles

Redo Log Files

Introduction to the Oracle Server 1–15

The following sections explain the physical database structures of an
Oracle database, including datafiles, redo log files, and control files.

Every Oracle database has one or more physical datafiles. A database’s
datafiles contain all the database data. The data of logical database
structures such as tables and indexes is physically stored in the
datafiles allocated for a database.

The following are characteristics of datafiles:

• A datafile can be associated with only one database.

• Database files can have certain characteristics set to allow them
to automatically extend when the database runs out of space.

• One or more datafiles form a logical unit of database storage
called a tablespace, as discussed earlier in this chapter.

The Use of Datafiles The data in a datafile is read, as needed, during
normal database operation and stored in the memory cache of Oracle.
For example, assume that a user wants to access some data in a table of
a database. If the requested information is not already in the memory
cache for the database, it is read from the appropriate datafiles and
stored in memory.

Modified or new data is not necessarily written to a datafile
immediately. To reduce the amount of disk access and increase
performance, data is pooled in memory and written to the appropriate
datafiles all at once, as determined by the DBWR background process
of Oracle. (For more information about Oracle’s memory and process
structures and the algorithm for writing database data to the datafiles,
see “Oracle Server Architecture” on page 1–17.)

Every Oracle database has a set of two or more redo log files. The set of
redo log files for a database is collectively known as the database’s redo
log. The primary function of the redo log is to record all changes made
to data. Should a failure prevent modified data from being
permanently written to the datafiles, the changes can be obtained from
the redo log and work is never lost.

Redo log files are critical in protecting a database against failures. To
protect against a failure involving the redo log itself, Oracle allows a
multiplexed redo log so that two or more copies of the redo log can be
maintained on different disks.

The Use of Redo Log Files The information in a redo log file is used only
to recover the database from a system or media failure that prevents
database data from being written to a database’s datafiles.

Control Files

The Data Dictionary

Oracle7 Server Concepts1–16

For example, if an unexpected power outage abruptly terminates
database operation, data in memory cannot be written to the datafiles
and the data is lost. However, any lost data can be recovered when the
database is opened, after power is restored. By applying the
information in the most recent redo log files to the database’s datafiles,
Oracle restores the database to the time at which the power failure
occurred.

The process of applying the redo log during a recovery operation is
called rolling forward. See “Database Backup and Recovery” on
page 1–40.

Every Oracle database has a control file. A control file contains entries
that specify the physical structure of the database. For example, it
contains the following types of information:

• database name

• names and locations of a database’s datafiles and redo log files

• time stamp of database creation

Like the redo log, Oracle allows the control file to be multiplexed for
protection of the control file.

The Use of Control Files Every time an instance of an Oracle database is
started, its control file is used to identify the database and redo log files
that must be opened for database operation to proceed. If the physical
makeup of the database is altered (for example, a new datafile or redo
log file is created), the database’s control file is automatically modified
by Oracle to reflect the change.

A database’s control file is also used if database recovery is necessary.
See “Database Backup and Recovery” on page 1–40.

Each Oracle database has a data dictionary. An Oracle data dictionary is
a set of tables and views that are used as a read–only reference about the
database. For example, a data dictionary stores information about both
the logical and physical structure of the database. In addition to this
valuable information, a data dictionary also stores such information as

• the valid users of an Oracle database

• information about integrity constraints defined for tables in the
database

• how much space is allocated for a schema object and how much
of it is being used

Memory Structures and
Processes

Introduction to the Oracle Server 1–17

A data dictionary is created when a database is created. To accurately
reflect the status of the database at all times, the data dictionary is
automatically updated by Oracle in response to specific actions (such as
when the structure of the database is altered). The data dictionary is
critical to the operation of the database, which relies on the data
dictionary to record, verify, and conduct ongoing work. For example,
during database operation, Oracle reads the data dictionary to verify
that schema objects exist and that users have proper access to them.

Oracle Server Architecture

The following section discusses the memory and process structures
used by an Oracle Server to manage a database. Among other things,
the architectural features discussed in this section provide an
understanding of Oracle’s capabilities to support

• many users concurrently accessing a single database

• the high performance required by concurrent multi–user,
multi–application database systems

An Oracle Server uses memory structures and processes to manage and
access the database. All memory structures exist in the main memory
of the computers that constitute the database system. Processes are jobs
or tasks that work in the memory of these computers.

Figure 1 – 4 shows a typical variation of the Oracle Server memory and
process structures.

Memory Structures

Oracle7 Server Concepts1–18

RECO PMON SMON

System Global Area

LGWR

ARCHCKPT Offline
Storage
Device

LCK

Control
Files

Redo Log
Files

Database
Files

DBWR

Shared
Server

Process

Dedicated
Server

Process

User
Process

D000

User

User Processes

Process

Redo Log
Buffer

Database
Buffer Cache

n

Legend:

LCK
RECO
PMON
SMON
CKPT
ARCH
DBWR
LGWR

n Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

Figure 1 – 4 Memory Structures and Processes of Oracle

Oracle creates and uses memory structures to complete several jobs.
For example, memory is used to store program code being executed
and data that is shared among users. Several basic memory structures
are associated with Oracle: the system global area (which includes the
database buffers, redo log buffers, and the shared pool) and the
program global areas. The following sections explain each in detail.

System Global Area
(SGA)

Introduction to the Oracle Server 1–19

The System Global Area (SGA) is a shared memory region that contains
data and control information for one Oracle instance. An SGA and the
Oracle background processes constitute an Oracle instance. (See
“Background Processes” on page 1–21 for information about the Oracle
background processes and “An Oracle Instance” on page 1–5 for
information about Oracle instances.)

Oracle allocates the system global area when an instance starts and
deallocates it when the instance shuts down. Each instance has its own
system global area.

Users currently connected to an Oracle Server share the data in the
system global area. For optimal performance, the entire system global
area should be as large as possible (while still fitting in real memory) to
store as much data in memory as possible and minimize disk I/O. The
information stored within the system global area is divided into several
types of memory structures, including the database buffers, redo log
buffer, and the shared pool. These areas have fixed sizes and are
created during instance startup.

Database Buffer Cache Database buffers of the system global area store
the most recently used blocks of database data; the set of database
buffers in an instance is the database buffer cache. These buffers can
contain modified data that has not yet been permanently written to
disk. Because the most recently (and often the most frequently) used
data is kept in memory, less disk I/O is necessary and performance is
increased.

Redo Log Buffer The redo log buffer of the system global area stores redo
entries — a log of changes made to the database. The redo entries stored
in the redo log buffers are written to an online redo log file, which is
used if database recovery is necessary. Its size is static.

Shared Pool The shared pool is a portion of the system global area that
contains shared memory constructs such as shared SQL areas. A shared
SQL area is required to process every unique SQL statement submitted
to a database (see “SQL Statements” on page 1–24). A shared SQL area
contains information such as the parse tree and execution plan for the
corresponding statement. A single shared SQL area is used by multiple
applications that issue the same statement, leaving more shared
memory for other uses.

Cursors A cursor is a handle (a name or pointer) for the memory
associated with a specific statement. Although most Oracle users rely
on the automatic cursor handling of the Oracle utilities, the
programmatic interfaces offer application designers more control over
cursors. For example, in precompiler application development, a cursor
is a named resource available to a program and can be specifically used

Program Global Area
(PGA)

Processes

User (Client) Processes

Oracle Processes

Oracle7 Server Concepts1–20

for the parsing of SQL statements embedded within the application.
The application developer can code an application so that it controls
the phases of SQL statement execution and thus improve application
performance.

The Program Global Area (PGA) is a memory buffer that contains data
and control information for a server process. A PGA is created by
Oracle when a server process is started. The information in a PGA
depends on the configuration of Oracle.

A process is a “thread of control” or a mechanism in an operating
system that can execute a series of steps. Some operating systems use
the terms job or task. A process normally has its own private memory
area in which it runs.

An Oracle Server has two general types of processes: user processes
and Oracle processes.

A user process is created and maintained to execute the software code of
an application program (such as a Pro*C/C++ program) or an Oracle
tool (such as Server Manager). The user process also manages the
communication with the server processes. User processes communicate
with the server processes through the program interface, described
later in this section.

Oracle processes are called by other processes to perform functions on
behalf of the invoking process. The different types of Oracle processes
and their specific functions are discussed in the following sections.

Server Processes Oracle creates server processes to handle requests from
connected user processes. A server process is in charge of
communicating with the user process and interacting with Oracle to
carry out requests of the associated user process. For example, if a user
queries some data that is not already in the database buffers of the
system global area, the associated server process reads the proper data
blocks from the datafiles into the system global area.

Oracle can be configured to vary the number of user processes per
server process. In a dedicated server configuration, a server process
handles requests for a single user process. A multi–threaded server
configuration allows many user processes to share a small number of
server processes, minimizing the number of server processes and
maximizing the utilization of available system resources.

On some systems, the user and server processes are separate, while on
others they are combined into a single process. If a system uses the
multi–threaded server or if the user and server processes run on

Introduction to the Oracle Server 1–21

different machines, the user and server processes must be separate.
Client/server systems separate the user and server processes and
execute them on different machines.

Background Processes Oracle creates a set of background processes for
each instance. They consolidate functions that would otherwise be
handled by multiple Oracle programs running for each user process.
The background processes asynchronously perform I/O and monitor
other Oracle processes to provide increased parallelism for better
performance and reliability.

An SGA and the Oracle background processes constitute an Oracle
instance. (See “System Global Area (SGA)” on page 1–19 for
information about the system global area and “An Oracle Instance” on
page 1–5 for information about Oracle instances.)

Each Oracle instance may use several background processes. The
names of these processes are DBWR, LGWR, CKPT, SMON, PMON,
ARCH, RECO, Dnnn and LCKn. Each background process is described
in the following sections.

Database Writer (DBWR) The Database Writer writes modified blocks
from the database buffer cache to the datafiles. Because of the way
Oracle performs logging, DBWR does not need to write blocks when a
transaction commits (see “Transactions” on page 1–25). Instead, DBWR
is optimized to minimize disk writes. In general, DBWR writes only
when more data needs to be read into the system global area and too
few database buffers are free. The least recently used data is written to
the datafiles first.

Log Writer (LGWR) The Log Writer writes redo log entries to disk.
Redo log data is generated in the redo log buffer of the system global
area. As transactions commit and the log buffer fills, LGWR writes redo
log entries into an online redo log file.

Checkpoint (CKPT) At specific times, all modified database buffers in
the system global area are written to the datafiles by DBWR; this event
is called a checkpoint. The Checkpoint process is responsible for
signalling DBWR at checkpoints and updating all the datafiles and
control files of the database to indicate the most recent checkpoint.
CKPT is optional; if CKPT is not present, LGWR assumes the
responsibilities of CKPT.

System Monitor (SMON) The system monitor performs instance recovery
at instance startup. In a multiple instance system (one that uses the
Parallel Server), SMON of one instance can also perform instance
recovery for other instances that have failed. SMON also cleans up
temporary segments that are no longer in use and recovers dead

The Program Interface

Oracle7 Server Concepts1–22

transactions skipped during crash and instance recovery because of
file–read or offline errors. These transactions are eventually recovered
by SMON when the tablespace or file is brought back online. SMON
also coalesces free extents within the database to make free space
contiguous and easier to allocate.

Process Monitor (PMON) The process monitor performs process recovery
when a user process fails. PMON is responsible for cleaning up the
cache and freeing resources that the process was using. PMON also
checks on dispatcher (see below) and server processes and restarts
them if they have failed.

Archiver (ARCH) The archiver copies the online redo log files to archival
storage when they are full. ARCH is active only when a database’s redo
log is used in ARCHIVELOG mode. (See “The Redo Log” on page
1–42).

Recoverer (RECO) The recoverer is used to resolve distributed
transactions that are pending due to a network or system failure in a
distributed database. At timed intervals, the local RECO attempts to
connect to remote databases and automatically complete the commit or
rollback of the local portion of any pending distributed transactions.

Dispatcher (Dnnn) Dispatchers are optional background processes,
present only when a multi–threaded server configuration is used. At
least one dispatcher process is created for every communication
protocol in use (D000, . . ., Dnnn). Each dispatcher process is
responsible for routing requests from connected user processes to
available shared server processes and returning the responses back to
the appropriate user processes.

Lock (LCK n) Up to ten lock processes (LCK0, . . ., LCK9) are used for
inter–instance locking when the Oracle Parallel Server is used; see “The
Oracle Parallel Server: Multiple Instance Systems” on page 1–6 for
more information about this configuration.

The program interface is the mechanism by which a user process
communicates with a server process. It serves as a method of standard
communication between any client tool or application (such as Oracle
Forms) and Oracle software. Its functions are to

• act as a communications mechanism, by formatting data
requests, passing data, and trapping and returning errors

• perform conversions and translations of data, particularly
between different types of computers or to external user
program datatypes

An Example of How
Oracle Works

Introduction to the Oracle Server 1–23

The following example illustrates an Oracle configuration where the
user and associated server process are on separate machines (connected
via a network).

1. An instance is currently running on the computer that is executing
Oracle (often called the host or database server).

2. A computer used to run an application (a local machine or client
workstation) runs the application in a user process. The client
application attempts to establish a connection to the server using
the proper SQL*Net driver.

3. The server is running the proper SQL*Net driver. The server
detects the connection request from the application and creates a
(dedicated) server process on behalf of the user process.

4. The user executes a SQL statement and commits the transaction.
For example, the user changes a name in a row of a table.

5. The server process receives the statement and checks the shared
pool for any shared SQL area that contains an identical SQL
statement. If a shared SQL area is found, the server process checks
the user’s access privileges to the requested data and the
previously existing shared SQL area is used to process the
statement; if not, a new shared SQL area is allocated for the
statement so that it can be parsed and processed.

6. The server process retrieves any necessary data values from the
actual datafile (table) or those stored in the system global area.

7. The server process modifies data in the system global area. The
DBWR process writes modified blocks permanently to disk when
doing so is efficient. Because the transaction committed, the LGWR
process immediately records the transaction in the online redo log
file.

8. If the transaction is successful, the server process sends a message
across the network to the application. If it is not successful, an
appropriate error message is transmitted.

9. Throughout this entire procedure, the other background processes
run, watching for conditions that require intervention. In addition,
the database server manages other users’ transactions and prevents
contention between transactions that request the same data.

These steps describe only the most basic level of operations that Oracle
performs.

SQL—The Structured
Query Language

SQL Statements

Oracle7 Server Concepts1–24

Data Access

This section introduces how Oracle meets the general requirements for
a DBMS to do the following:

• adhere to industry accepted standards for a data access language

• control and preserve the consistency of a database’s information
while manipulating its data

• provide a system for defining and enforcing rules to maintain the
integrity of a database’s information

• provide high performance

SQL is a simple, powerful database access language that is the standard
language for relational database management systems. The SQL
implemented by Oracle Corporation for Oracle is 100 percent
compliant with the ANSI/ISO standard SQL data language.

All operations on the information in an Oracle database are performed
using SQL statements. A SQL statement is a string of SQL text that is
given to Oracle to execute. A statement must be the equivalent of a
complete SQL sentence, as in

SELECT ename, deptno FROM emp;

Only a complete SQL statement can be executed, whereas a sentence
fragment, such as the following, generates an error indicating that more
text is required before a SQL statement can execute:

SELECT ename

A SQL statement can be thought of as a very simple, but powerful,
computer program or instruction.

SQL statements are divided into the following categories:

• Data Definition Language (DDL) statements

• Data Manipulation Language (DML) statements

• transaction control statements

• session control statements

• system control statements

• embedded SQL statements

Data Definition Statements (DDL) DDL statements define, maintain, and
drop objects when they are no longer needed. DDL statements also
include statements that permit a user to grant other users the privileges,

Transactions

Introduction to the Oracle Server 1–25

or rights, to access the database and specific objects within the
database. (See “Database Security” on page 1–33.)

Data Manipulation Statements (DML) DML statements manipulate the
database’s data. For example, querying, inserting, updating, and
deleting rows of a table are all DML operations; locking a table or view
and examining the execution plan of an SQL statement are also DML
operations.

Transaction Control Statements Transaction control statements manage
the changes made by DML statements. They allow the user or
application developer to group changes into logical transactions. (See
“Transactions” on page 1–25) Examples include COMMIT,
ROLLBACK, and SAVEPOINT.

Session Control Statements Session control statements allow a user to
control the properties of his current session, including enabling and
disabling roles and changing language settings. The two session control
statements are ALTER SESSION and SET ROLE.

System Control Statements System control commands change the
properties of the Oracle Server instance. The only system control
command is ALTER SYSTEM; it allows you to change such settings as
the minimum number of shared servers, to kill a session, and to
perform other tasks.

Embedded SQL Statements Embedded SQL statements incorporate
DDL, DML, and transaction control statements in a procedural
language program (such as those used with the Oracle Precompilers).
Examples include OPEN, CLOSE, FETCH, and EXECUTE.

A transaction is a logical unit of work that comprises one or more SQL
statements executed by a single user. According to the ANSI/ISO SQL
standard, with which Oracle is compatible, a transaction begins with
the user’s first executable SQL statement. A transaction ends when it is
explicitly committed or rolled back (both terms are discussed later in
this section) by that user.

Consider a banking database. When a bank customer transfers money
from a savings account to a checking account, the transaction might
consist of three separate operations: decrease the savings account,
increase the checking account, and record the transaction in the
transaction journal.

Oracle must guarantee that all three SQL statements are performed to
maintain the accounts in proper balance. When something prevents one
of the statements in the transaction from executing (such as a hardware
failure), the other statements of the transaction must be undone; this is

Committing and Rolling
Back Transactions

Oracle7 Server Concepts1–26

called “rolling back.” If an error occurs in making either of the updates,
then neither update is made.

Figure 1 – 5 illustrates the banking transaction example.

UPDATE savings_accounts
SET balance = balance – 500
WHERE account = 3209;

UPDATE checking_accounts
SET balance = balance + 500
WHERE account = 3208;

INSERT INTO journal VALUES
(journal_seq.NEXTVAL, ’1B’
3209, 3208, 500);

COMMIT WORK;

Transaction Begins

Transaction Ends

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction

Figure 1 – 5 A Banking Transaction

The changes made by the SQL statements that constitute a transaction
can be either committed or rolled back. After a transaction is
committed or rolled back, the next transaction begins with the next
SQL statement.

Committing a transaction makes permanent the changes resulting from
all SQL statements in the transaction. The changes made by the SQL
statements of a transaction become visible to other user sessions’
transactions that start only after the transaction is committed.

Rolling back a transaction retracts any of the changes resulting from the
SQL statements in the transaction. After a transaction is rolled back, the
affected data is left unchanged as if the SQL statements in the
transaction were never executed.

Savepoints

Data Consistency Using
Transactions

PL/SQL

Introduction to the Oracle Server 1–27

For long transactions that contain many SQL statements, intermediate
markers, or savepoints, can be declared. Savepoints can be used to
divide a transaction into smaller parts.

By using savepoints, you can arbitrarily mark your work at any point
within a long transaction. This allows you the option of later rolling
back all work performed from the current point in the transaction to a
declared savepoint within the transaction. For example, you can use
savepoints throughout a long complex series of updates, so if you make
an error, you do not need to resubmit every statement.

Transactions provide the database user or application developer with
the capability of guaranteeing consistent changes to data, as long as the
SQL statements within a transaction are grouped logically. A
transaction should consist of all of the necessary parts for one logical
unit of work — no more and no less. Data in all referenced tables are in
a consistent state before the transaction begins and after it ends.
Transactions should consist of only the SQL statements that comprise
one consistent change to the data.

For example, recall the banking example. A transfer of funds between
two accounts (the transaction) should include increasing one account
(one SQL statement), decreasing another account (one SQL statement),
and the record in the transaction journal (one SQL statement). All
actions should either fail or succeed together; the credit should not be
committed without the debit. Other non–related actions, such as a new
deposit to one account, should not be included in the transfer of funds
transaction; such statements should be in other transactions.

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL
combines the ease and flexibility of SQL with the procedural
functionality of a structured programming language, such as IF ...
THEN, WHILE, and LOOP.

When designing a database application, a developer should consider
the advantages of using stored PL/SQL:

• Because PL/SQL code can be stored centrally in a database,
network traffic between applications and the database is
reduced, so application and system performance increases.

• Data access can be controlled by stored PL/SQL code. In this
case, users of PL/SQL can access data only as intended by the
application developer (unless another access route is granted).

• PL/SQL blocks can be sent by an application to a database,
executing complex operations without excessive network traffic.

Procedures and Functions

Packages

Database Triggers

Data Integrity

Oracle7 Server Concepts1–28

Even when PL/SQL is not stored in the database, applications can send
blocks of PL/SQL to the database rather than individual SQL
statements, thereby again reducing network traffic.

The following sections describe the different program units that can be
defined and stored centrally in a database.

Procedures and functions consist of a set of SQL and PL/SQL statements
that are grouped together as a unit to solve a specific problem or
perform a set of related tasks. A procedure is created and stored in
compiled form in the database and can be executed by a user or a
database application. Procedures and functions are identical except that
functions always return a single value to the caller, while procedures
do not return values to the caller.

Packages provide a method of encapsulating and storing related
procedures, functions, variables, and other package constructs together
as a unit in the database. While packages allow the administrator or
application developer the ability to organize such routines, they also
offer increased functionality (for example, global package variables can
be declared and used by any procedure in the package) and
performance (for example, all objects of the package are parsed,
compiled, and loaded into memory once).

Oracle allows you to write procedures that are automatically executed
as a result of an insert in, update to, or delete from a table. These
procedures are called database triggers.

Database triggers can be used in a variety of ways for the information
management of your database. For example, they can be used to
automate data generation, audit data modifications, enforce complex
integrity constraints, and customize complex security authorizations.

It is very important to guarantee that data adheres to certain business
rules, as determined by the database administrator or application
developer. For example, assume that a business rule says that no row in
the INVENTORY table can contain a numeric value greater than 9 in
the SALE_DISCOUNT column. If an INSERT or UPDATE statement
attempts to violate this integrity rule, Oracle must roll back the invalid
statement and return an error to the application. Oracle provides
integrity constraints and database triggers as solutions to manage a
database’s data integrity rules.

Integrity Constraints

Introduction to the Oracle Server 1–29

An integrity constraint is a declarative way to define a business rule for
a column of a table. An integrity constraint is a statement about a
table’s data that is always true:

• If an integrity constraint is created for a table and some existing
table data does not satisfy the constraint, the constraint cannot
be enforced.

• After a constraint is defined, if any of the results of a DML
statement violate the integrity constraint, the statement is rolled
back and an error is returned.

Integrity constraints are defined with a table and are stored as part of
the table’s definition, centrally in the database’s data dictionary, so that
all database applications must adhere to the same set of rules. If a rule
changes, it need only be changed once at the database level and not
many times for each application.

The following integrity constraints are supported by Oracle:

Disallows nulls (empty entries) in a table’s column.

Disallows duplicate values in a column or set of
columns.

Disallows duplicate values and nulls in a column
or set of columns.

Requires each value in a column or set of columns
match a value in a related table’s UNIQUE or
PRIMARY KEY (FOREIGN KEY integrity
constraints also define referential integrity actions
that dictate what Oracle should do with dependent
data if the data it references is altered).

Disallows values that do not satisfy the logical
expression of the constraint.

Keys The term “key” is used in the definitions of several types of
integrity constraints. A key is the column or set of columns included in
the definition of certain types of integrity constraints. Keys describe the
relationships between the different tables and columns of a relational
database. The different types of keys include

The column or set of columns included in the
definition of a table’s PRIMARY KEY constraint. A
primary key’s values uniquely identify the rows in
a table. Only one primary key may be defined per
table.

NOT NULL

UNIQUE

PRIMARY KEY

FOREIGN KEY

CHECK

primary key

Database Triggers

Concurrency

Oracle7 Server Concepts1–30

The column or set of columns included in the
definition of a UNIQUE constraint.

The column or set of columns included in the
definition of a referential integrity constraint.

The unique key or primary key of the same or
different table that is referenced by a foreign key.

Individual values in a key are called key values.

Centralized actions can be defined using a non–declarative approach
(writing PL/SQL code) with database triggers. A database trigger is a
stored procedure that is fired (implicitly executed) when an INSERT,
UPDATE, or DELETE statement is issued against the associated table.
Database triggers can be used to customize a database management
system with such features as value–based auditing and the enforcement
of complex security checks and integrity rules. For example, a database
trigger might be created to allow a table to be modified only during
normal business hours.

Note: While database triggers allow you to define and enforce
integrity rules, a database trigger is not the same as an integrity
constraint. Among other things, a database trigger defined to
enforce an integrity rule does not check data already loaded
into a table. Therefore, it is strongly recommended that you use
database triggers only when the integrity rule cannot be
enforced by integrity constraints.

Data Concurrency and Consistency

This section explains the software mechanisms used by Oracle to fulfill
the following important requirements of an information management
system:

• Data must be read and modified in a consistent fashion.

• Data concurrency of a multi–user system must be maximized.

• High performance is required for maximum productivity from
the many users of the database system.

A primary concern of a multi–user database management system is
how to control concurrency, or the simultaneous access of the same data
by many users. Without adequate concurrency controls, data could be
updated or changed improperly, compromising data integrity.

unique key

foreign key

referenced key

Read Consistency

Read Consistency,
Rollback Segments, and
Transactions

Introduction to the Oracle Server 1–31

If many people are accessing the same data, one way of managing data
concurrency is to make each user wait his or her turn. The goal of a
database management system is to reduce that wait so it is either
non–existent or negligible to each user. All DML statements should
proceed with as little interference as possible and destructive
interactions between concurrent transactions must be prevented.
Destructive interaction is any interaction that incorrectly updates data
or incorrectly alters underlying data structures. Neither performance
nor data integrity can be sacrificed.

Oracle resolves such issues by using various types of locks and a
multiversion consistency model. Both features are discussed later in
this section. These features are based on the concept of a transaction.
As discussed in “Data Consistency Using Transactions” on page 1–27, it
is the application designer’s responsibility to ensure that transactions
fully exploit these concurrency and consistency features.

Read consistency, as supported by Oracle, does the following:

• guarantees that the set of data seen by a statement is consistent
with respect to a single point–in–time and does not change
during statement execution (statement–level read consistency)

• ensures that readers of database data do not wait for writers or
other readers of the same data

• ensures that writers of database data do not wait for readers of
the same data

• ensures that writers only wait for other writers if they attempt to
update identical rows in concurrent transactions

The simplest way to think of Oracle’s implementation of read
consistency is to imagine each user operating a private copy of the
database, hence the multiversion consistency model.

To manage the multiversion consistency model, Oracle must create a
read–consistent set of data when a table is being queried (read) and
simultaneously updated (written). When an update occurs, the original
data values changed by the update are recorded in the database’s
rollback segments. As long as this update remains part of an
uncommitted transaction, any user that later queries the modified data
views the original data values — Oracle uses current information in the
system global area and information in the rollback segments to
construct a read–consistent view of a table’s data for a query. Only when
a transaction is committed are the changes of the transaction made
permanent. Statements, which start after the user’s transaction is
committed, only see the changes made by the committed transaction.

Read–Only Transactions

Locking

Automatic Locking

Oracle7 Server Concepts1–32

Note that a transaction is key to Oracle’s strategy for providing read
consistency. This unit of committed (or uncommitted) SQL statements

• dictates the start point for read–consistent views generated on
behalf of readers

• controls when modified data can be seen by other transactions of
the database for reading or updating

By default, Oracle guarantees statement–level read consistency. The set
of data returned by a single query is consistent with respect to a single
point in time. However, in some situations, you may also require
transaction–level read consistency — the ability to run multiple queries
within a single transaction, all of which are read–consistent with
respect to the same point in time, so that queries in this transaction do
not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if
you are doing no updating, you may prefer a read–only transaction.
After indicating that your transaction is read–only, you can execute as
many queries as you like against any table, knowing that the results of
each query are consistent with respect to the same point in time.

Oracle also uses locks to control concurrent access to data. Locks are
mechanisms intended to prevent destructive interaction between users
accessing Oracle data.

Locks are used to achieve two important database goals:

Ensures that the data a user is viewing or changing
is not changed (by other users) until the user is
finished with the data.

Ensures that the database’s data and structures
reflect all changes made to them in the correct
sequence.

Locks guarantee data integrity while allowing maximum concurrent
access to the data by unlimited users.

Oracle locking is performed automatically and requires no user action.
Implicit locking occurs for SQL statements as necessary, depending on
the action requested.

Oracle’s sophisticated lock manager automatically locks table data at
the row level. By locking table data at the row level, contention for the
same data is minimized.

consistency

integrity

Manual Locking

Introduction to the Oracle Server 1–33

Oracle’s lock manager maintains several different types of row locks,
depending on what type of operation established the lock. In general,
there are two types of locks: exclusive locks and share locks. Only one
exclusive lock can be obtained on a resource (such as a row or a table);
however, many share locks can be obtained on a single resource. Both
exclusive and share locks always allow queries on the locked resource,
but prohibit other activity on the resource (such as updates and
deletes).

Under some circumstances, a user may want to override default
locking. Oracle allows manual override of automatic locking features at
both the row level (by first querying for the rows that will be updated
in a subsequent statement) and the table level.

Database Security

Multi–user database systems, such as Oracle, include security features
that control how a database is accessed and used. For example, security
mechanisms do the following:

• prevent unauthorized database access

• prevent unauthorized access to schema objects

• control disk usage

• control system resource usage (such as CPU time)

• audit user actions

Associated with each database user is a schema by the same name. A
schema is a logical collection of objects (tables, views, sequences,
synonyms, indexes, clusters, procedures, functions, packages, and
database links). By default, each database user creates and has access to
all objects in the corresponding schema.

Database security can be classified into two distinct categories: system
security and data security.

System security includes the mechanisms that control the access and use
of the database at the system level. For example, system security
includes:

• valid username/password combinations

• the amount of disk space available to the objects of a user

• the resource limits for a user

Security Mechanisms

Oracle7 Server Concepts1–34

System security mechanisms check:

• whether a user is authorized to connect to the database

• whether database auditing is active

• which system operations a user can perform

Data security includes the mechanisms that control the access and use of
the database at the object level. For example, data security includes

• which users have access to a specific schema object and the
specific types of actions allowed for each user on the object (for
example, user SCOTT can issue SELECT and INSERT statements
but not DELETE statements using the EMP table)

• the actions, if any, that are audited for each schema object

The Oracle Server provides discretionary access control, which is a means
of restricting access to information based on privileges. The
appropriate privilege must be assigned to a user in order for that user
to access an object. Appropriately privileged users can grant other
users privileges at their discretion; for this reason, this type of security
is called “discretionary”.

Oracle manages database security using several different facilities:

• database users and schemas

• privileges

• roles

• storage settings and quotas

• resource limits

• auditing

Figure 1 – 6 illustrates the relationships of the different Oracle security
facilities, and the following sections provide an overview of users,
privileges, and roles.

Database Users and
Schemas

Privileges

Introduction to the Oracle Server 1–35

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users

Figure 1 – 6 Oracle Security Features

Each Oracle database has a list of usernames. To access a database, a
user must use a database application and attempt a connection with a
valid username of the database. Each username has an associated
password to prevent unauthorized use.

Security Domain Each user has a security domain — a set of properties
that determine such things as the

• actions (privileges and roles) available to the user

• tablespace quotas (available disk space) for the user

• system resource limits (for example, CPU processing time) for
the user

Each property that contributes to a user’s security domain is discussed
in the following sections.

A privilege is a right to execute a particular type of SQL statement.
Some examples of privileges include the

• right to connect to the database (create a session)

• right to create a table in your schema

• right to select rows from someone else’s table

• right to execute someone else’s stored procedure

The privileges of an Oracle database can be divided into two distinct
categories: system privileges and object privileges.

Roles

Oracle7 Server Concepts1–36

System Privileges System privileges allow users to perform a particular
systemwide action or a particular action on a particular type of object.
For example, the privileges to create a tablespace or to delete the rows
of any table in the database are system privileges. Many system
privileges are available only to administrators and application
developers because the privileges are very powerful.

Object Privileges Object privileges allow users to perform a particular
action on a specific object. For example, the privilege to delete rows of
a specific table is an object privilege. Object privileges are granted
(assigned) to end–users so that they can use a database application to
accomplish specific tasks.

Granting Privileges Privileges are granted to users so that users can
access and modify data in the database. A user can receive a privilege
two different ways:

• Privileges can be granted to users explicitly. For example, the
privilege to insert records into the EMP table can be explicitly
granted to the user SCOTT.

• Privileges can be granted to roles (a named group of privileges),
and then the role can be granted to one or more users. For
example, the privilege to insert records into the EMP table can be
granted to the role named CLERK, which in turn can be granted
to the users SCOTT and BRIAN.

Because roles allow for easier and better management of privileges,
privileges are normally granted to roles and not to specific users. The
following section explains more about roles and their use.

Oracle provides for easy and controlled privilege management through
roles. Roles are named groups of related privileges that are granted to
users or other roles. The following properties of roles allow for easier
privilege management:

• reduced granting of privileges — Rather than explicitly granting the
same set of privileges to many users, a database administrator
can grant the privileges for a group of related users granted to a
role. And then the database administrator can grant the role to
each member of the group.

• dynamic privilege management — When the privileges of a group
must change, only the privileges of the role need to be modified.
The security domains of all users granted the group’s role
automatically reflect the changes made to the role.

Storage Settings and
Quotas

Introduction to the Oracle Server 1–37

• selective availability of privileges — The roles granted to a user can
be selectively enabled (available for use) or disabled (not
available for use). This allows specific control of a user’s
privileges in any given situation.

• application awareness — A database application can be designed
to enable and disable selective roles automatically when a user
attempts to use the application.

Database administrators often create roles for a database application.
The DBA grants an application role all privileges necessary to run the
application. The DBA then grants the application role to other roles or
users. An application can have several different roles, each granted a
different set of privileges that allow for more or less data access while
using the application.

The DBA can create a role with a password to prevent unauthorized
use of the privileges granted to the role. Typically, an application is
designed so that when it starts, it enables the proper role. As a result,
an application user does not need to know the password for an
application’s role.

Oracle provides means for directing and limiting the use of disk space
allocated to the database on a per user basis, including default and
temporary tablespaces and tablespace quotas.

Default Tablespace Each user is associated with a default tablespace.
When a user creates a table, index, or cluster and no tablespace is
specified to physically contain the object, the user’s default tablespace
is used if the user has the privilege to create the object and a quota in
the specified default tablespace. The default tablespace feature
provides Oracle with information to direct space usage in situations
where object location is not specified.

Temporary Tablespace Each user has a temporary tablespace. When a
user executes a SQL statement that requires the creation of temporary
segments (such as the creation of an index), the user’s temporary
tablespace is used. By directing all users’ temporary segments to a
separate tablespace, the temporary tablespace feature can reduce I/O
contention among temporary segments and other types of segments.

Tablespace Quotas Oracle can limit the collective amount of disk space
available to the objects in a schema. Quotas (space limits) can be set for
each tablespace available to a user. The tablespace quota security
feature permits selective control over the amount of disk space that can
be consumed by the objects of specific schemas.

Profiles and Resource
Limits

Auditing

Oracle7 Server Concepts1–38

Each user is assigned a profile that specifies limitations on several
system resources available to the user, including the

• number of concurrent sessions the user can establish

• CPU processing time

– available to the user’s session

– available to a single call to Oracle made by a
SQL statement

• amount of logical I/O

– available to the user’s session

– available to a single call to Oracle made by a
SQL statement

• amount of idle time for the user’s session allowed

• amount of connect time for the user’s session allowed

Different profiles can be created and assigned individually to each user
of the database. A default profile is present for all users not explicitly
assigned a profile. The resource limit feature prevents excessive
consumption of global database system resources.

Oracle permits selective auditing (recorded monitoring) of user actions
to aid in the investigation of suspicious database use. Auditing can be
performed at three different levels: statement auditing, privilege
auditing, and object auditing.

Statement auditing is the auditing of specific SQL
statements without regard to specifically named
objects. (In addition, database triggers allow a DBA
to extend and customize Oracle’s built–in auditing
features.)

Statement auditing can be broad and audit all users
of the system or can be focused to audit only
selected users of the system. For example,
statement auditing by user can audit connections
to and disconnections from the database by the
users SCOTT and LORI.

Privilege auditing is the auditing of the use of
powerful system privileges without regard to
specifically named objects. Privilege auditing can
be broad and audit all users or can be focused to
audit only selected users.

statement
auditing

privilege auditing

Trusted Oracle

Introduction to the Oracle Server 1–39

Object auditing is the auditing of accesses to specific
schema objects without regard to user. Object
auditing monitors the statements permitted by
object privileges, such as SELECT or DELETE
statements on a given table.

For all types of auditing, Oracle allows the selective auditing of
successful statement executions, unsuccessful statement executions, or
both. This allows monitoring of suspicious statements, regardless of
whether the user issuing a statement has the appropriate privileges to
issue the statement.

The results of audited operations are recorded in a table referred to as
the audit trail. Predefined views of the audit trail are available so that
you can easily retrieve audit records.

Trusted Oracle is Oracle Corporation’s multilevel secure database
management system product. It is designed to provide the high level of
secure data management capabilities required by organizations
processing sensitive or classified information. Trusted Oracle is
compatible with Oracle base products and applications, and it supports
all of the functionality of standard Oracle.

In addition, Trusted Oracle enforces mandatory access control (also called
MAC) across a wide range of multilevel secure operating system
environments. Mandatory access control is a means of restricting access
to information based on labels. A user’s label indicates what
information a user is permitted to access and the type of access (read or
write) that the user is allowed to perform. An object’s label indicates
the sensitivity of the information that the object contains. A user’s label
must meet certain criteria, determined by MAC policy, in order for
him/her to be allowed to access a labeled object. Because this type of
access control is always enforced above any discretionary controls
implemented by users, this type of security is called “mandatory”.

See the Trusted Oracle7 Server Administrator’s Guide for more
information.

object auditing

Why Is Recovery
Important?

Types of Failures

Oracle7 Server Concepts1–40

Database Backup and Recovery

This section covers the structures and software mechanisms used by
Oracle to provide

• database recovery required by different types of failures

• flexible recovery operations to suit any situation

• availability of data during backup and recovery operations so
that users of the system can continue to work

In every database system, the possibility of a system or hardware
failure always exists. Should a failure occur and affect the database, the
database must be recovered. The goals after a failure are to ensure that
the effects of all committed transactions are reflected in the recovered
database and to return to normal operation as quickly as possible while
insulating users from problems caused by the failure.

Several circumstances can halt the operation of an Oracle database. The
most common types of failure are described below:

User errors can require a database to be recovered
to a point in time before the error occurred. For
example, a user might accidentally drop a table. To
allow recovery from user errors and accommodate
other unique recovery requirements, Oracle
provides for exact point–in–time recovery. For
example, if a user accidentally drops a table, the
database can be recovered to the instant in time
before the table was dropped.

Statement failure occurs when there is a logical
failure in the handling of a statement in an Oracle
program (for example, the statement is not a valid
SQL construction). When statement failure occurs,
the effects (if any) of the statement are
automatically undone by Oracle and control is
returned to the user.

A process failure is a failure in a user process
accessing Oracle, such as an abnormal
disconnection or process termination. The failed
user process cannot continue work, although
Oracle and other user processes can. The Oracle
background process PMON automatically detects
the failed user process or is informed of it by
SQL*Net. PMON resolves the problem by rolling

user error

statement and
process failure

Introduction to the Oracle Server 1–41

back the uncommitted transaction of the user
process and releasing any resources that the
process was using.

Common problems such as erroneous SQL
statement constructions and aborted user processes
should never halt the database system as a whole.
Furthermore, Oracle automatically performs
necessary recovery from uncommitted transaction
changes and locked resources with minimal impact
on the system or other users.

Instance failure occurs when a problem arises that
prevents an instance (system global area and
background processes) from continuing work.
Instance failure may result from a hardware
problem such as a power outage, or a software
problem such as an operating system crash. When
an instance failure occurs, the data in the buffers of
the system global area is not written to the
datafiles.

Instance failure requires instance recovery. Instance
recovery is automatically performed by Oracle
when the instance is restarted. The redo log is used
to recover the committed data in the SGA’s
database buffers that was lost due to the instance
failure.

An error can arise when trying to write or read a
file that is required to operate the database. This is
called disk failure because there is a physical
problem reading or writing physical files on disk.
A common example is a disk head crash, which
causes the loss of all files on a disk drive. Different
files may be affected by this type of disk failure,
including the datafiles, the redo log files, and the
control files. Also, because the database instance
cannot continue to function properly, the data in
the database buffers of the system global area
cannot be permanently written to the datafiles.

A disk failure requires media recovery. Media
recovery restores a database’s datafiles so that the
information in them corresponds to the most recent
time point before the disk failure, including the
committed data in memory that was lost because

instance failure

media (disk)
failure

Structures Used for
Recovery

The Redo Log

Oracle7 Server Concepts1–42

of the failure. To complete a recovery from a disk
failure, the following is required: backups of the
database’s datafiles, and all online and necessary
archived redo log files.

Oracle provides for complete and quick recovery from all possible
types of hardware failures including disk crashes. Options are provided
so that a database can be completely recovered or partially recovered to
a specific point in time.

If some datafiles are damaged in a disk failure but most of the database
is intact and operational, the database can remain open while the
required tablespaces are individually recovered. Therefore, undamaged
portions of a database are available for normal use while damaged
portions are being recovered.

Oracle uses several structures to provide complete recovery from an
instance or disk failure: the redo log, rollback segments, a control file,
and necessary database backups.

As described in “Redo Log Files” on page 1–15, the redo log is a set of
files that protect altered database data in memory that has not been
written to the datafiles. The redo log can be comprised of two parts: the
online redo log and the archived redo log.

The Online Redo Log The online redo log is a set of two or more online
redo log files that record all committed changes made to the database.
Whenever a transaction is committed, the corresponding redo entries
temporarily stored in redo log buffers of the system global area are
written to an online redo log file by the background process LGWR.

The online redo log files are used in a cyclical fashion; for example, if
two files constitute the online redo log, the first file is filled, the second
file is filled, the first file is reused and filled, the second file is reused
and filled, and so on. Each time a file is filled, it is assigned a log
sequence number to identify the set of redo entries.

To avoid losing the database due to a single point of failure, Oracle can
maintain multiple sets of online redo log files. A multiplexed online redo
log consists of copies of online redo log files physically located on
separate disks; changes made to one member of the group are made to
all members.

If a disk that contains an online redo log file fails, other copies are still
intact and available to Oracle. System operation is not interrupted and
the lost online redo log files can be easily recovered using an intact
copy.

Control Files

Rollback Segments

Database Backups

Introduction to the Oracle Server 1–43

The Archived Redo Log Optionally, filled online redo files can be
archived before being reused, creating an archived redo log. Archived
(offline) redo log files constitute the archived redo log.

The presence or absence of an archived redo log is determined by the
mode that the redo log is using:

The filled online redo log files are archived before
they are reused in the cycle.

The filled online redo log files are not archived.

In ARCHIVELOG mode, the database can be completely recovered
from both instance and disk failure. The database can also be backed
up while it is open and available for use. However, additional
administrative operations are required to maintain the archived redo
log.

If the database’s redo log is operated in NOARCHIVELOG mode, the
database can be completely recovered from instance failure, but not
from a disk failure. Additionally, the database can be backed up only
while it is completely closed. Because no archived redo log is created,
no extra work is required by the database administrator.

The control files of a database keep, among other things, information
about the file structure of the database and the current log sequence
number being written by LGWR. During normal recovery procedures,
the information in a control file is used to guide the automated
progression of the recovery operation.

Multiplexed Control Files This feature is similar to the multiplexed
redo log feature: a number of identical control files may be maintained
by Oracle, which updates all of them simultaneously.

As described in “Segments” on page 1–14, rollback segments record
rollback information used by several functions of Oracle. During
database recovery, after all changes recorded in the redo log have been
applied, Oracle uses rollback segment information to undo any
uncommitted transactions. Because rollback segments are stored in the
database buffers, this important recovery information is automatically
protected by the redo log.

Because one or more files can be physically damaged as the result of a
disk failure, media recovery requires the restoration of the damaged
files from the most recent operating system backup of a database. There
are several ways to back up the files of a database.

Full Backups A full backup is an operating system backup of all
datafiles, online redo log files, and the control file that constitutes an

ARCHIVELOG

NOARCHIVELOG

Basic Recovery Steps

Rolling Forward

Rolling Back

Oracle7 Server Concepts1–44

Oracle database. Full backups are performed when the database is
closed and unavailable for use.

Partial Backups A partial backup is an operating system backup of part
of a database. The backup of an individual tablespace’s datafiles or the
backup of a control file are examples of partial backups. Partial
backups are useful only when the database’s redo log is operated in
ARCHIVELOG mode.

A variety of partial backups can be taken to accommodate any backup
strategy. For example, you can back up datafiles and control files when
the database is open or closed, or when a specific tablespace is online
or offline. Because the redo log is operated in ARCHIVELOG mode,
additional backups of the redo log are not necessary; the archived redo
log is a backup of filled online redo log files.

Due to the way in which DBWR writes database buffers to datafiles, at
any given point in time, a datafile may contain some data blocks
tentatively modified by uncommitted transactions and may not contain
some blocks modified by committed transactions. Therefore, two
potential situations can result after a failure:

• Blocks containing committed modifications were not written to
the datafiles, so the changes may only appear in the redo log.
Therefore, the redo log contains committed data that must be
applied to the datafiles.

• Since the redo log may have contained data that was not
committed, uncommitted transaction changes applied by the
redo log during recovery must be erased from the datafiles.

To solve this situation, two separate steps are always used by Oracle
during recovery from an instance or media failure: rolling forward and
rolling back.

The first step of recovery is to roll forward, that is, reapply to the
datafiles all of the changes recorded in the redo log. Rolling forward
proceeds through as many redo log files as necessary to bring the
datafiles forward to the required time.

If all needed redo information is online, Oracle performs this recovery
step automatically when the database starts. After roll forward, the
datafiles contain all committed changes as well as any uncommitted
changes that were recorded in the redo log.

The roll forward is only half of recovery. After the roll forward, any
changes that were not committed must be undone. After the redo log
files have been applied, then the rollback segments are used to identify

Client/Server
Architecture:
Distributed Processing

Distributed Databases

Introduction to the Oracle Server 1–45

and undo transactions that were never committed, yet were recorded
in the redo log. This process is called rolling back. Oracle completes this
step automatically.

Distributed Processing and Distributed Databases

As computer networking becomes more and more prevalent in today’s
computing environments, database management systems must be able
to take advantage of distributed processing and storage capabilities.
This section explains the architectural features of Oracle that meet these
requirements.

Distributed processing uses more than one processor to divide the
processing for a set of related jobs. Distributed processing reduces the
processing load on a single processor by allowing different processors
to concentrate on a subset of related tasks, thus improving the
performance and capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed
processing by using its client/server architecture. In this architecture, the
database system is divided into two parts: a front–end or a client
portion and a back–end or a server portion.

Client The client portion is the front–end database application and
interacts with a user through the keyboard, display, and pointing
device such as a mouse. The client portion has no data access
responsibilities; it concentrates on requesting, processing, and
presenting data managed by the server portion. The client workstation
can be optimized for its job. For example, it might not need large disk
capacity or it might benefit from graphic capabilities.

Server The server portion runs Oracle software and handles the
functions required for concurrent, shared data access. The server
portion receives and processes SQL and PL/SQL statements
originating from client applications. The computer that manages the
server portion can be optimized for its duties. For example, it can have
large disk capacity and fast processors.

Note: The information in this section regarding distributed
updates and two–phase commit applies only for those systems
using Oracle with the distributed option.

A distributed database is a network of databases managed by multiple
database servers that appears to a user as a single logical database. The

Location Transparency

Site Autonomy

Distributed Data
Manipulation

Two–Phase Commit

Oracle7 Server Concepts1–46

data of all databases in the distributed database can be simultaneously
accessed and modified. The primary benefit of a distributed database is
that the data of physically separate databases can be logically combined
and potentially made accessible to all users on a network.

Each computer that manages a database in the distributed database is
called a node. The database to which a user is directly connected is
called the local database. Any additional databases accessed by this
user are called remote databases. When a local database accesses a
remote database for information, the local database is a client of the
remote server (client/server architecture, discussed previously).

While a distributed database allows increased access to a large amount
of data across a network, it must also provide the ability to hide the
location of the data and the complexity of accessing it across the
network. The distributed DBMS must also preserve the advantages of
administrating each local database as though it were non–distributed.

Location transparency occurs when the physical location of data is
transparent to the applications and users of a database system. Several
Oracle features, such as views, procedures, and synonyms, can provide
location transparency. For example, a view that joins table data from
several databases provides location transparency because the user of
the view does not need to know from where the data originates.

Site autonomy means that each database participating in a distributed
database is administered separately and independently from the other
databases, as though each database were a non–networked database.
Although each database can work with others, they are distinct,
separate systems that are cared for individually.

The Oracle distributed database architecture supports all DML
operations, including queries, inserts, updates, and deletes of remote
table data. To access remote data, a reference is made including the
remote object’s global object name — no coding or complex syntax is
required to access remote data. For example, to query a table named
EMP in the remote database named SALES, you reference the table’s
global object name:

SELECT * FROM emp@sales;

Oracle provides the same assurance of data consistency in a distributed
environment as in a non–distributed environment. Oracle provides this
assurance using the transaction model and a two–phase commit
mechanism. As in non–distributed systems, transactions should be
carefully planned to include a logical set of SQL statements that should
all succeed or fail as a unit. Oracle’s two–phase commit mechanism

Table Replication

Introduction to the Oracle Server 1–47

guarantees that no matter what type of system or network failure
might occur, a distributed transaction either commits on all involved
nodes or rolls back on all involved nodes to maintain data consistency
across the global distributed database.

Complete Transparency to Database Users The Oracle two–phase
commit mechanism is completely transparent to users that issue
distributed transactions. A simple COMMIT statement denoting the
end of a transaction automatically triggers the two–phase commit
mechanism to commit the transaction; no coding or complex statement
syntax is required to include distributed transactions within the body
of a database application.

Automatic Recovery from System or Network Failures The RECO
(recoverer) background process automatically resolves the outcome of
in–doubt distributed transactions — distributed transactions in which the
commit was interrupted by any type of system or network failure.
After the failure is repaired and communication is reestablished, the
RECO of each local Oracle Server automatically commits or rolls back
any in–doubt distributed transactions consistently on all involved
nodes.

Optional Manual Override Capability In the event of a long–term
failure, Oracle allows each local administrator to manually commit or
roll back any distributed transactions that are in doubt as a result of the
failure. This option allows the local database administrator to free up
any locked resources that may be held indefinitely as a result of the
long–term failure.

Facilities for Distributed Recovery If a database must be recovered to a
point in the past, Oracle’s recovery facilities allow database
administrators at other sites to return their databases to the earlier
point in time also. This ensures that the global database remains
consistent.

Note: The information in this section applies only to Oracle
with the distributed or advanced replication options.

Distributed database systems often locally replicate remote tables that
are frequently queried by local users. By having copies of heavily
accessed data on several nodes, the distributed database does not need
to send information across a network repeatedly, thus helping to
maximize the performance of the database application.

Data can be replicated using snapshots or replicated master tables.
Replicated master tables require the replication option. For more

Oracle and SQL*Net

Oracle7 Server Concepts1–48

information about replicating data, see Oracle7 Server Distributed
Systems, Volume II.

SQL*Net is Oracle’s mechanism for interfacing with the communication
protocols used by the networks that facilitate distributed processing
and distributed databases. Communication protocols define the way
that data is transmitted and received on a network. In a networked
environment, an Oracle database server communicates with client
workstations and other Oracle database servers using Oracle software
called SQL*Net. SQL*Net supports communications on all major
network protocols, ranging from those supported by PC LANs to those
used by the largest of mainframe computer systems.

Using SQL*Net, the application developer does not have to be
concerned with supporting network communications in a database
application. If a new protocol is used, the database administrator
makes some minor changes, while the application requires no
modifications and continues to function.

P A R T

 II Basic Database
Operation

C H A P T E R

2

T

Database and Instance Startup and Shutdown 2–1

Database and Instance
Startup and Shutdown

Greetings, Prophet;
The Great Work begins:
The Messenger has arrived.

Tony Kushner: Angels in America, Part I

his chapter explains the concepts involved in starting and stopping
an Oracle instance and database. It includes:

• Introduction to Database Startup and Database Shutdown

• Database and Instance Startup

• Database and Instance Shutdown

• Parameter Files

If you are using Trusted Oracle, refer to the Trusted Oracle7 Server
Administrator’s Guide for more information about starting up and
shutting down in that environment.

Connecting with
Administrator
Privileges

OSDoc

Oracle7 Server Concepts2–2

Introduction to Database Startup and Database Shutdown

An Oracle database may not always be available to all users. The
database administrator can start up a database so that it is open. When
a database is open, users can access the information that it contains. If a
database is open, the database administrator can shut down the
database so that it is closed. When a database is closed, users cannot
access the information that it contains.

Only a database administrator can open or close a database. Normal
users do not have control over the current status of an Oracle database.
Security for database startup and shutdown is controlled via
connections to Oracle with administrator privileges.

Database startup and shutdown are powerful administrative options
and are protected by the ability to connect to Oracle with administrator
privileges.

Depending on the operating system, one of the following prerequisites
is required to connect to Oracle with administrator privileges:

• The user’s operating system account has operating system
privileges that allow him/her to connect using administrator
privileges.

• The user is granted the SYSDBA or SYSOPER privileges and the
database uses password files to authenticate database
administrators.

• The database has a password for the INTERNAL login, and the
user knows the password.

In addition, users can connect with administrator privileges only to
dedicated servers (not shared servers).

When you connect with administrator privileges, you are placed in the
schema owned by SYS.

These requirements provide extra security to prevent unauthorized
users from starting up or shutting down any Oracle databases.

For more information about password files and authentication schemes
for database administrators, see Chapter 17, “Database Access”.

Additional Information: For information on how
administrator privileges work on your operating system, see
your operating system–specific Oracle documentation.

Starting an Instance

Restricted Mode of
Instance Startup

Forcing an Instance to
Startup in Abnormal
Situations

Mounting a Database

Database and Instance Startup and Shutdown 2–3

Database and Instance Startup

There are three steps to starting a database and making it available for
systemwide use:

1. Start an instance.

2. Mount the database.

3. Open the database.

Starting an instance includes the allocation of an SGA — a shared area
of memory used for database information — and creation of the
background processes. Instance startup anticipates a database being
mounted by the instance. If an instance has been started but not yet
mounted, no database is associated with these memory structures and
processes.

Before an instance actually is created, Oracle reads a parameter file,
which determines the instance initialization. This file includes
parameters that control such things as the size of the SGA, the name of
the database to which the instance can connect, and so on.

Note: See “Parameter Files” on page 2–6 for more
information about parameter files. See Chapter 9, “Memory
Structures and Processes”, for more information about the
terms “SGA”, “background processes”, and “instance”.

You can start an instance in or alter an existing instance to be in
restricted mode. This limits connections to only those users who have
been granted the RESTRICTED SESSION system privilege.

In unusual circumstances, an instance might not be shut down
“cleanly”, for example, one of the instance’s processes might not be
killed. In such situations, the database might return an error during
normal instance startup. To resolve this problem, the database
administrator must kill all remnant Oracle processes of the previous
instance and then start the new instance.

Mounting a database associates a database with a previously started
instance. After an instance mounts a database, the database remains
closed and is accessible only to database administrators. The database
administrator might want to start an instance and only mount the
database to complete specific maintenance operations.

Modes of Mounting a
Database with the Parallel
Server

Opening a Database

Instance Recovery

Oracle7 Server Concepts2–4

When an instance mounts a database, the instance finds the control files
and opens them. The control files are specified in the CONTROL_FILES
initialization parameter in the parameter file used to start the instance.
Once the database’s control files are opened, Oracle reads them to get
the names of the database’s datafiles and redo log files.

If Oracle allows multiple instances to mount the same database
concurrently, the DBA can choose whether to run the database in
exclusive or parallel mode.

Exclusive Mode If the first instance that mounts a database does so in
exclusive mode, only that instance can mount the database. Versions of
Oracle that do not support the Parallel Server option only allow an
instance to mount a database in exclusive mode.

Parallel Mode If the first instance that mounts a database is started in
parallel mode (also called “shared mode“), other instances that are
started in parallel mode can also mount the database. The number of
instances that can mount the database is subject to a predetermined
maximum. See Oracle7 Parallel Server Concepts & Administration for
more information about the use of multiple instances with a single
database.

Opening a mounted database makes the database available for normal
database operations. Any valid user can connect to the database and
access its information once it is open. Usually, the database
administrator opens the database to make it available for general use.

When you open the database, Oracle opens the online datafiles and
online redo log files. If a tablespace was offline when the database was
previously shut down, the tablespace and its corresponding datafiles
will still be offline when you reopen the database. See “Online and
Offline Tablespaces” on page 4–6.

If any of the datafiles or redo log files are not present when you
attempt to open the database, Oracle returns an error. You must
perform recovery on a backup of any damaged or missing database
files before you can open the database.

If the database was shut down either because the database
administrator aborted its instance or because a power failure occurred
while the database was running, Oracle automatically performs
instance recovery when the database is reopened. See Chapter 24,
“Database Recovery”, for complete information concerning instance
recovery.

Rollback Segment
Acquisition

Resolution of In–Doubt
Distributed Transaction

Closing a Database

Closing the Database by
Aborting the Instance

Database and Instance Startup and Shutdown 2–5

As an instance opens a database, the instance attempts to acquire one
or more rollback segments. See “Instances and Types of Rollback
Segments” on page 3–23.

Assume that a database is abruptly shut down (for example, a power
failure occurs or the instance is aborted) and one or more distributed
transactions have not been committed or rolled back. When you reopen
the database and instance recovery is complete, the RECO background
process automatically, immediately, and consistently resolves any
distributed transactions that have been committed or rolled back. For
information about distributed transactions, see Chapter 21,
“Distributed Databases”. For information about recovery from failures
associated with distributed transactions, see Oracle7 Server Distributed
Systems, Volume I.

Database and Instance Shutdown

There are three steps to shutting down an instance and the database to
which it is connected:

1. Close the database.

2. Dismount the database.

3. Shut down the instance.

Oracle automatically performs all three steps when an instance is shut
down.

The first step of database shutdown is closing the database. When you
close a database, Oracle writes all database data and recovery data in
the SGA to the datafiles and redo log files, respectively. After this
operation, Oracle closes all online datafiles and online redo log files.
Any offline datafiles of any offline tablespaces will have been closed
already. When you subsequently reopen the database, the tablespace
that was offline and its datafiles remain offline and closed, respectively.
The control files remain open after a database is closed but still
mounted.

In rare emergency situations, you can abort the instance of an open
database to close and completely shut down the database
instantaneously. This process is fast because the operation of writing all
data in the buffers of the SGA to the datafiles and redo log files is
skipped. The subsequent reopening of the database requires instance
recovery, which Oracle performs automatically.

Dismounting a
Database

Shutting Down an
Instance

Abnormal Instance
Shutdown

Oracle7 Server Concepts2–6

Note: If a system crash or power failure occurs while the
database is open, the instance is, in effect, “aborted”, and
instance recovery is performed when the database is reopened.

The second step accomplished during database shutdown is
dismounting or disassociating the database from an instance. After you
dismount a database, only an instance remains in the memory of your
computer.

After a database is dismounted, Oracle closes the control files of the
database.

The final step in database shutdown is shutting down the instance.
When you shut down an instance, the SGA is removed from memory
and the background processes are terminated.

In unusual circumstances, shutdown of an instance might not occur
cleanly; all memory structures might not be removed from memory or
one of the background processes might not be killed. When remnants of
previous instances exist, subsequent instance startup most likely will
fail. To handle this problem, the database administrator can force the
new instance to start up by first removing the remnants of the previous
instance and then starting a new instance, or by issuing a SHUTDOWN
ABORT statement.

Parameter Files

To start an instance, Oracle must read a parameter file.A parameter file is
a text file containing a list of instance configuration parameters. You set
these parameters to particular values and to initialize many of the
memory and process settings of an Oracle instance. Among other
things, the parameters of this file tell Oracle the following:

• the name of the database for which to start up an instance

• how much memory to use for memory structures in the SGA

• what to do with filled online redo log files

• the names and locations of the database’s control files

• the names of private rollback segments in the database

An Example of a
Parameter File

Changing Parameter
Values

Database and Instance Startup and Shutdown 2–7

The following is an example of a typical parameter file:

db_block_buffers = 550

db_name = ORA7PROD

db_domain = US.ACME.COM

license_max_users = 64

control_files = filename1, filename2

log_archive_dest = c:\logarch

log_archive_format = arch%S.ora

log_archive_start = TRUE

log_buffer = 64512

log_checkpoint_interval = 256000

rollback_segments = rs_one, rs_two

Oracle treats string literals defined for National Language Support
(NLS) parameters in the file as if they are in the database character set.

Most parameters belong to one of the following groups:

• parameters that name things (such as files)

• parameters that set limits (such as maximums)

• parameters affecting capacity, called variable parameters (such as
the DB_BLOCK_BUFFERS parameter, which specifies the
number of data blocks to allocate in the computer’s memory for
the SGA)

The database administrator can adjust variable parameters to improve
the performance of a database system. Exactly which parameters most
affect a system is a function of numerous database characteristics and
variables.

Oracle7 Server Concepts2–8

P A R T

 III Database Structures

C H A P T E R

3

T

Data Blocks, Extents, and Segments 3–1

Data Blocks, Extents,
and Segments

He was not merely a chip of the old block, but the old block itself.

Edmund Burke: On Pitt’s first speech

his chapter describes the nature of and relationships between
logical storage structures in the Oracle Server. It includes:

• The Relationship Between Data Blocks, Extents, and Segments

• Data Blocks

• Extents

• Segments

• Temporary Segments

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for more information about storage in that
environment.

Data Blocks

Oracle7 Server Concepts3–2

The Relationships Between Data Blocks, Extents, and Segments

Oracle allocates database space for all data in a database. The units of
logical database allocation are data blocks, extents, and segments. The
following illustration shows the relationships between these data
structures:

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

Database Blocks

Segment
112Kb

Extent
28Kb

Extent
84Kb

Figure 3 – 1 The Relationship Among Segments, Extents, and Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also
called logical blocks, Oracle blocks, or pages). One data block
corresponds to a specific number of bytes of physical database space on
disk. You set the data block size for every Oracle database when you
create the database. This data block size should be a multiple of the
operating system’s block size within the maximum limit. Oracle data
blocks are the smallest units of storage that Oracle can use or allocate.

Extents

Segments

Data Block Format

Data Blocks, Extents, and Segments 3–3

In contrast, all data at the physical, operating system level is stored in
bytes. Each operating system has what is called a block size. Oracle
requests data in multiples of Oracle blocks, not operating system
blocks. Therefore, you should set the Oracle block size to a multiple of
the operating system block size to avoid unnecessary I/O.

The next level of logical database space is called an extent. An extent is
a specific number of contiguous data blocks that is allocated for storing
a specific type of information.

The level of logical database storage above an extent is called a segment.
A segment is a set of extents that have been allocated for a specific type
of data structure, and that all are stored in the same tablespace. For
example, each table’s data is stored in its own data segment, while each
index’s data is stored in its own index segment.

Oracle allocates space for segments in extents. Therefore, when the
existing extents of a segment are full, Oracle allocates another extent
for that segment. Because extents are allocated as needed, the extents of
a segment may or may not be contiguous on disk. The segments also
can span files, but the individual extents cannot.

Data Blocks

Oracle manages the storage space in the datafiles of a database in units
called data blocks. A data block is the smallest unit of I/O used by a
database.

The Oracle block format is similar regardless of whether the data block
contains table, index, or clustered data. Figure 3 – 2 illustrates the
format of a data block.

Header (Common and
Variable)

Table Directory

Row Directory

Row Data

Oracle7 Server Concepts3–4

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data

Figure 3 – 2 Data Block Format

The header contains general block information, such as the block
address and the type of segment; for example, data, index, or rollback.
While some block overhead is fixed in size, the total block overhead
size is variable. On average, the fixed and variable portions of data
block overhead total 84 to 107 bytes.

This portion of the block contains information about the tables having
rows in this block.

This portion of the block contains row information about the actual
rows in the block (including addresses for each row piece in the row
data area).

Once the space has been allocated in the row directory of a block’s
header, this space is not reclaimed when the row is deleted. Therefore,
a block that is currently empty but had up to 50 rows at one time
continues to have 100 bytes allocated in the header for the row
directory. Oracle only reuses this space as new rows are inserted in the
block.

This portion of the block contains table or index data. Rows can span
blocks; see “Row Chaining across Data Blocks” on page 3–10.

Free Space

Space Used for
Transaction Entries

An Introduction to
PCTFREE, PCTUSED,
and Row Chaining

The PCTFREE Parameter

Data Blocks, Extents, and Segments 3–5

Free space is used for inserting new rows and for updates to rows that
require additional space (for example, when a trailing null is updated
to a non–null value). Whether issued insertions actually occur in a
given data block is a function of the value for the space management
parameter PCTFREE and the amount of current free space in that data
block. See “An Introduction to PCTFREE, PCTUSED, and Row
Chaining” on page 3–5 for more information on space management
parameters.

Data blocks allocated for the data segment of a table, cluster, or the
index segment of an index can also use free space for transaction
entries. A transaction entry is required in a block for each INSERT,
UPDATE, DELETE, and SELECT...FOR UPDATE statement accessing
one or more rows in the block. The space required for transaction
entries is operating system dependent; however, transaction entries in
most operating systems require approximately 23 bytes.

Two space management parameters, PCTFREE and PCTUSED, allow a
developer to control the use of free space for inserts of and updates to
the rows in data blocks. You specify these parameters only when
creating or altering tables or clusters (data segments). You can also
specify the storage parameter PCTFREE when creating or altering
indexes (index segments).

The PCTFREE parameter is used to set the percentage of a block to be
reserved (kept free) for possible updates to rows that already are
contained in that block. For example, assume that you specify the
following parameter within a CREATE TABLE statement:

PCTFREE 20

This states that 20% of each data block used for this table’s data
segment will be kept free and available for possible updates to the
existing rows already within each block. Figure 3 – 3 illustrates
PCTFREE.

The PCTUSED Parameter

Oracle7 Server Concepts3–6

PCTFREE = 20

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Database Block

Figure 3 – 3 PCTFREE

Notice that before the block reaches PCTFREE, the free space of the
data block is filled by both the insertion of new rows and by the growth
of the data block header.

After a data block becomes full, as determined by PCTFREE, Oracle
does not consider the block for the insertion of new rows until the
percentage of the block being used falls below the parameter
PCTUSED. Before this value is achieved, Oracle uses the free space of
the data block only for updates to rows already contained in the data
block. For example, assume that you specify the following parameter
within a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is not
considered for the insertion of any new rows until the amount of used
space in the block falls to 39% or less (assuming that the block’s used
space has previously reached PCTFREE). Figure 3 – 4 illustrates this.

How PCTFREE and
PCTUSED Work Together

Data Blocks, Extents, and Segments 3–7

No new rows are
inserted until amount
of used space falls
below 40%

PCTFREE = 40
Database Block

61% Free
Space

Figure 3 – 4 PCTUSED

PCTFREE and PCTUSED work together to optimize the utilization of
space in the data blocks of the extents within a data segment.
Figure 3 – 5 illustrates how PCTFREE and PCTUSED work together to
govern the free space of a data block.

Oracle7 Server Concepts3–8

Database Block
PCTFREE = 20, PCTUSED = 40

2

3 4

Updates to existing rows.
use the free space
reserved in the block.
No new rrows can be
inserted into the block

Rows are inserted up to
80% only, since
PCTFREE says that 20%

After the amount of used
space falls below 40%
new rows can again be

Rows are inserted up to
80% only, since
PCTFREE says that
20% of the block must
remain open for updates

1

until the amount of used
space is 39% or less.

of existing rows. This
cycle continues . . .

of the block must remain
open for updates of
existing rows.

inserted into this block.

Figure 3 – 5 Maintaining the Free Space of Data Blocks with PCTFREE and
PCTUSED

How Oracle Uses
PCTFREE and PCTUSED

Availability and
Compression of Free
Space in a Data Block

Data Blocks, Extents, and Segments 3–9

In a newly allocated data block, the space available for inserts is the
block size minus the sum of the block overhead and PCTFREE.
Updates to existing data can use any available space in the block;
therefore, updates can reduce the available space of a block to less than
PCTFREE, the space reserved for updates but not accessible to inserts.

For each data and index segment, Oracle maintains one or more free
lists; a free list is a list of data blocks that have been allocated for that
segment’s extents and have free space greater than PCTFREE; these
blocks are available for inserts. When you issue an INSERT statement,
Oracle checks a free list of the table for the first available block and
uses it if possible; if the free space in that block is not large enough to
accommodate the INSERT statement, and it is at least PCTUSED,
Oracle takes the block off the free list. Multiple free lists per segment
can reduce contention for free lists when concurrent inserts take place.

After you issue DELETE and UPDATE statements, Oracle checks to see
if the space being used in the block is less than PCTUSED; if it is, the
block goes to the beginning of the free list, and it is the first of the
available blocks to be used.

Two types of statements return space to the free space of one or more
data blocks: DELETE statements, and UPDATE statements that update
existing values to smaller values. The released space from these types
of statements is available for subsequent INSERT statements under the
following conditions:

• If the INSERT statement is in the same transaction and
subsequent to the statement that frees space, the INSERT
statement can use the space made available.

• If the INSERT statement is in one transaction and the statement
that frees space is in a second transaction (perhaps being
executed by another user), the INSERT statement can only use
the space made available after the second transaction commits,
and only if the space is needed.

Released space may or may not be contiguous with the main area of
free space in a data block. Oracle coalesces the free space of a data
block only when an INSERT or UPDATE statement attempts to use a
block that contains enough free space to contain a new row piece, yet
the free space is fragmented so that the row piece cannot be inserted in
a contiguous section of the block. Oracle does this compression only in
such situations so that the performance of a database system is not
decreased by the continuous and unnecessary compression of the free
space in data blocks as each DELETE or UPDATE statement is issued.

Row Chaining across Data
Blocks

When Extents Are
Allocated for Segments

Oracle7 Server Concepts3–10

In some circumstances, all of the data for a row in a table may not be
able to fit in the same data block. When this occurs, Oracle stores the
data for the row in a chain of data blocks (one or more) reserved for
that segment. Row chaining most often occurs with large rows (for
example, rows that contain a column of datatype LONG or LONG
RAW).

Note: The format of a row and a row piece are described in
“Row Format and Size” on page 5–4.

If a table contains a column of datatype LONG, which can hold up to
two gigabytes of information, the data for a row may need to be
chained to one or more data blocks. Nothing can be done to avoid this
type of row chaining.

If a row in a data block is updated so that the overall row length
increases and the block’s free space has been completely filled, the data
for the entire row is migrated to a new data block, assuming the entire
row can fit in a new block. Oracle preserves the original row piece of a
migrated row to point to the new block containing the migrated row;
the ROWID of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with
this row decreases because Oracle must scan more than one data block
to retrieve the information for the row. For information about reducing
migrated rows and improving I/O performance, see Oracle7 Server
Tuning.

Extents

An extent is a logical unit of database storage space allocation made up
of a number of contiguous data blocks. Each segment is composed of
one or more extents. When the existing space in a segment is
completely used, Oracle allocates a new extent for the segment.

This section describes how extents are allocated for segments.

No matter what type, each segment in a database is created with at
least one extent to hold its data. This extent is called the segment’s
initial extent.

Note: Rollback segments always have at least two extents.

For example, when you create a table, its data segment contains an
initial extent of a specified number of data blocks. Although no rows
have been inserted yet, the Oracle data blocks that correspond to the
initial extent are reserved for that table’s rows.

Extents and the Parallel
Query Option

Data Blocks, Extents, and Segments 3–11

If the data blocks of a segment’s initial extent become full and more
space is required to hold new data, Oracle automatically allocates an
incremental extent for that segment. An incremental extent is a
subsequent extent of the same or greater size than the previous extent
in that segment. The next section explains the factors controlling the
size of incremental extents.

For maintenance purposes, each segment in a database contains a
segment header block that describes the characteristics of that segment
and a directory (list) of the extents in that segment.

When you use the parallel query option to create indexes and
non–clustered tables in parallel, each query server allocates a new
extent and fills the extent with the table or index’s data. Thus, if you
create an index with a degree of parallelism of three, there will be at
least three extents for that index initially.

Serial operations require the object to have at least one extent. Parallel
creations require that non–clustered tables or indexes have at least as
many extents as there are query servers that create the object.

When you create a table or index with the parallel query option, it is
possible to create “pockets” of free space. This occurs when you specify
more query servers than there are datafiles in the tablespace. Oracle
cannot coalesce this free space with other free space, so this space is
available only for subsequent inserts into that table.

For example, if you specify a degree of parallelism of three for a
CREATE TABLE ... AS <subquery> statement but there is only one
datafile in the tablespace, the situation illustrated in Figure 3 – 6 can
arise. Oracle can only coalesce the free space in the last extent of a table
or index in each datafile, so all “pockets” of free space within internal
table extents of a datafile cannot be coalesced with other free space and
allocated as extents.

Oracle7 Server Concepts3–12

DATA1.ORA

CREATE TABLE emp
 AS SELECT ...

USERS Tablespace

Query
Server

Query
Server

Query
Server

EXTENT 1

Free space
for INSERTS

Free space
for INSERTS

Free space can be
coalesced with
other free space

EXTENT 1

EXTENT 1

Figure 3 – 6 Unusable Free Space

To alleviate the free space problem, set the degree of parallelism to less
than or equal to the number of datafiles in the tablespace that you are
placing the non–clustered table or index. Oracle assigns query servers
to datafiles in a round–robin fashion, so specifying fewer query servers
than datafiles ensures that all free space can be used later by all tables
in the tablespace for subsequent extent allocation.

For more information about the parallel query option and creating
non–clustered tables and indexes in parallel, see Oracle7 Server Tuning.

For more information about datafiles and tablespaces, see Chapter 4,
“Tablespaces and Datafiles”.

How Extents Are
Allocated for Segments

Data Blocks, Extents, and Segments 3–13

Oracle controls the allocation of extents for a given segment. The
procedure to allocate a new extent for a segment is as follows:

1. Oracle searches through the free space (in the tablespace that
contains the segment) for the first free, contiguous set of data
blocks of an incremental extent’s size or larger. Oracle finds the free
space for the new extent by using the following algorithm:

1.1 Oracle searches for a contiguous set of data blocks that matches
the size of new extent, then adds one block to reduce internal
fragmentation. For example, if a new extent requires 19 data
blocks, Oracle searches for exactly 20 contiguous data blocks.
However, if the new extent is 5 or fewer blocks, Oracle does
not add an extra block to the request.

1.2 If an exact match is not found, Oracle then searches for a set of
contiguous data blocks equal to or greater than the amount
needed. If Oracle finds a group of contiguous blocks that is at
least five blocks greater than the size of the extent that is
needed, it splits the group of blocks into separate extents, one
of which is the size it needs; if Oracle finds a group of blocks
that is larger than the size it needs, but less than five blocks
larger, it allocates all the contiguous blocks.

Continuing with the example, if Oracle does not find a set of
exactly 20 contiguous data blocks, Oracle then searches for a
set of contiguous data blocks greater than 20. If the first set that
Oracle finds contains 25 or more blocks, it breaks the blocks up
and allocates twenty of them to the new extent. Otherwise, it
allocates all of the blocks (between 21 and 24) to the new
extent.

1.3 If Oracle does not find a larger set of contiguous data blocks,
Oracle then coalesces any free, adjacent data blocks in the
corresponding tablespace so that larger sets of contiguous data
blocks are formed. (The SMON background process also
periodically coalesces adjacent free space.) After coalescing a
tablespace’s data blocks, Oracle performs the searches
described in 1.1. and 1.2.. again. If an extent cannot be allocated
after the second search, Oracle returns an error.

2. Once Oracle finds the necessary free space in the tablespace, Oracle
allocates a portion of the free space that corresponds to the size of
the incremental extent. If Oracle had found a larger amount of free
space than was required for the extent, Oracle leaves the remainder
as free space (no smaller than five contiguous blocks).

When Extents Are
Deallocated

For More Information on
Deallocating Extents

Non–Clustered Tables,
Snapshots, and Snapshot
Logs

Oracle7 Server Concepts3–14

3. Oracle updates the segment header and data dictionary to show
that a new extent has been allocated and that the allocated space is
no longer free.

Usually, Oracle clears the blocks of a newly allocated extent when the
extent is first used. In a few cases, however, such as when a database
administrator issues an ALTER TABLE or ALTER CLUSTER statement
with the ALLOCATE EXTENT option while using free list groups,
Oracle clears the extent’s blocks when it allocates the extent.

In general, the extents of a segment do not return to the tablespace until
you drop the object whose data is stored in the segment (using a DROP
TABLE or DROP CLUSTER statement). Exceptions to this include the
following:

• The owner of a table or cluster, or a user with the DELETE ANY
privilege, can truncate the table or cluster with a
TRUNCATE...DROP STORAGE statement.

• Periodically, Oracle may deallocate one or more extents of a
rollback segment.

• A DBA can deallocate unused extents using the following SQL
syntax:

ALTER TABLE table_name DEALLOCATE UNUSED

See Oracle7 Server Administrator’s Guide and Oracle7 Server SQL
Reference.

When extents are freed, Oracle updates the data dictionary to reflect
the regained extents as available space. All data in the blocks of freed
extents is inaccessible, and Oracle clears out the data when the blocks
are subsequently reused for other extents.

As long as a non–clustered table (including an underlying table for a
snapshot or snapshot log) exists or until you truncate the table, any
data block allocated to its data segment remains allocated for the table;
Oracle inserts new rows into a block if there is enough room. Even if
you delete all rows of a table, Oracle does not reclaim the data blocks
for use by other objects in the tablespace.

When you drop a non–clustered table, Oracle reclaims all the extents of
its data and index segments for the tablespaces that they were in and
makes the extents available for other objects in the tablespace.
Subsequently, when other segments require large extents, Oracle
identifies and combines contiguous reclaimed extents to form the
requested larger extents.

Clustered Tables and
Snapshots

Indexes

Rollback Segments

Temporary Segments

Determining Sizes and
Limits of Segment
Extents

Data Blocks, Extents, and Segments 3–15

Clustered tables and snapshots store their information in the data
segment created for the cluster. Therefore, if you drop a clustered table,
the data segment remains for the other tables in the cluster, and no
extents are deallocated. You can also truncate clusters (except for hash
clusters) to free extents.

All extents allocated to an index segment remain allocated as long as
the index exists. When you drop the index or associated table or
cluster, Oracle reclaims the extents for other uses within the tablespace.

Oracle periodically checks to see if the rollback segments of the
database have grown larger than their optimal size. If a rollback
segment is larger than is optimal (that is, it has too many extents), then
Oracle automatically deallocates one or more extents from the rollback
segment. See “How Extents Are Deallocated from a Rollback Segment”
on page 3–22 for more information.

When Oracle completes the execution of a statement requiring a
temporary segment, Oracle automatically drops the temporary
segment and returns the extents allocated for that segment to the
associated tablespace.

Storage parameters expressed in terms of extents define every segment.
Storage parameters apply to all types of segments. They control how
Oracle allocates free database space for a given segment. For example,
you can determine how much space is initially reserved for a table’s
data segment or you can limit the number of extents the table can
allocate by specifying the storage parameters of a table in the
STORAGE clause of the CREATE TABLE statement.

Segments

A segment is a set of extents that contain all the data for a specific
logical storage structure within a tablespace. For example, for each
table, Oracle allocates one or more extents to form that table’s data
segment, and, for each index, Oracle allocates one or more extents to
form its index segment.

Data Segments

Index Segments

Rollback Segments

Oracle7 Server Concepts3–16

There are four types of segments used in Oracle databases:

• data segments

• index segments

• rollback segments

• temporary segments

The following sections discuss each type of segment.

Every non–clustered table (including snapshots and snapshot logs) in
an Oracle database has a single data segment to hold all of its data.
Oracle creates this data segment when you create the object with the
CREATE TABLE/SNAPSHOT/SNAPSHOT LOG command.

Every cluster in an Oracle database uses a single data segment to hold
the data for all of its tables. Oracle creates the data segment for the
cluster when you issue the CREATE CLUSTER command.

The storage parameters for a table, snapshot, snapshot log, or cluster
control the way that its data segment’s extents are allocated. You can
set these storage parameters directly with the CREATE TABLE/
SNAPSHOT/ SNAPSHOT LOG/CLUSTER or ALTER TABLE/
SNAPSHOT/ SNAPSHOT LOG/CLUSTER commands; these affect the
efficiency of data retrieval and storage for the data segment associated
with the object. For more information on the various CREATE and
ALTER commands, see the Oracle7 Server SQL Reference.

Every index in an Oracle database has a single index segment to hold
all of its data. Oracle creates the index segment for the index when you
issue the CREATE INDEX command. This command allows you to
specify the storage parameters for the extents of the index segment and
the tablespace in which to create the index segment. (The segments of a
table and an index associated with it do not have to occupy the same
tablespace.) Setting the storage parameters directly affects the efficiency
of data retrieval and storage.

Each database contains one or more rollback segments. A rollback
segment is a portion of the database that records the actions of
transactions if the transaction should be rolled back (undone). Rollback
segments are used to provide read consistency, to rollback transactions,
and to recover the database.

Contents of a Rollback
Segment

When Rollback
Information Is Required

Data Blocks, Extents, and Segments 3–17

For specific information about how rollback segments function in these
situations, see the appropriate sections of this book:

Topic Section Name Page

Read Consistency Multiversion Concurrency Control 10–5

Transaction Rollback Rolling Back Transactions 12–6

Database Recovery Rollback Segments and Rolling Back 24–4

Information in a rollback segment consists of several rollback entries.
Among other information, a rollback entry includes block information
(the filename and block ID corresponding to the data that was
changed) and the data as it existed before an operation in a transaction.
Oracle links rollback entries for the same transaction, so the entries can
easily be found if necessary for transaction rollback.

Database users or administrators cannot access or read rollback
segments; only Oracle can write to or read them. (They are owned by
the user SYS, no matter which user creates them.)

Because rollback entries change data blocks, Oracle also records
changes to them in the redo log. This second recording of the rollback
information is very important for active transactions not yet committed
at the time of the system crash. If a system crash occurs, Oracle
automatically restores the rollback segment information, including the
rollback entries for active transactions, as part of instance or media
recovery. Oracle performs rollbacks of transactions that had not been
committed or rolled back at the time of the failure after recovery is
complete.

Oracle maintains a transaction table for each rollback segment contained
in a database. Each table is a list of all transactions that use the
associated rollback segment and the rollback entries for each change
performed by these transactions. Oracle uses the rollback entries in a
rollback segment to perform a transaction rollback and to create
read–consistent results for queries.

Rollback segments record the data prior to change on a per transaction
basis. For every transaction, Oracle links each new change to the
previous change. If you must roll back the transaction, Oracle applies
the changes in the chain to the data blocks in an order that restores the
data to its previous state.

Similarly, when Oracle needs to provide a read–consistent set of results
for a query, it can use information in rollback segments to create a set of
data consistent with respect to a single point in time.

Transactions and Rollback
Segments

Oracle7 Server Concepts3–18

All types of rollbacks use the same procedures:

• statement level rollback (due to statement or deadlock execution
error)

• rollback to a savepoint

• rollback of a transaction due to user request

• rollback of a transaction due to abnormal process termination

• rollback of all outstanding transactions when an instance
terminates abnormally

• rollback of incomplete transactions during recovery

Each time a user’s transaction begins, Oracle assigns the transaction to
a rollback segment:

• Oracle can assign a transaction automatically to the next
available rollback segment. The transaction assignment occurs
when you issue the first DML or DDL statement in the
transaction. Oracle never assigns read–only transactions
(transactions that contain only queries) to a rollback segment,
regardless of whether the transaction begins with a SET
TRANSACTION READ ONLY statement.

• An application can assign a transaction explicitly to a specific
rollback segment. At the start of a transaction, a developer or
user can specify a particular rollback segment that Oracle should
use when executing the transaction. This allows the developer or
user to select a large or small rollback segment, as appropriate
for the transaction.

For the duration of a transaction, the associated user process writes
rollback information only to the assigned rollback segment.

When you commit a transaction, Oracle releases the rollback
information, but does not immediately destroy it. The information
remains in the rollback segment to create read–consistent views of
pertinent data for queries that started before the transaction
committed. To guarantee that rollback data is available for as long as
possible for such views, Oracle writes the extents of rollback segments
sequentially. When the last extent of the rollback segment becomes full,
Oracle continues writing rollback data by wrapping around to the first
extent in the segment. A long–running transaction (idle or active) may
require a new extent to be allocated for the rollback segment. See
Figure 3 – 7, Figure 3 – 8, and Figure 3 – 9 for more information about
how transactions use the extents of a rollback segment.

OSDoc

How Extents Are Used
and Allocated for
Rollback Segments

Data Blocks, Extents, and Segments 3–19

Each rollback segment can handle a certain number of transactions
from one instance. Unless you explicitly assign transactions to
particular rollback segments, Oracle distributes active transactions
across available rollback segments so that all rollback segments are
assigned approximately the same number of active transactions.
Distribution does not depend on the size of the available rollback
segments. Therefore, in environments where all transactions generate
the same amount of rollback information, all rollback segments can be
the same size.

Additional Information: The number of transactions that a
rollback segment can handle is an operating system–specific
function of the data block size. See your Oracle operating
system–specific documentation for more information.

When you create a rollback segment, you can specify storage
parameters to control the allocation of extents for that segment. Each
rollback segment must have at least two extents allocated.

A transaction writes sequentially to a single rollback segment. Each
transaction writes to only one extent of the rollback segment at any
given time. Furthermore, many active transactions (transactions in
progress, not committed or rolled back) can write concurrently to a
single rollback segment, even the same extent of a rollback segment;
however, each block in a rollback segment’s extent can contain
information for a single transaction only.

When a transaction runs out of space in the current extent and needs to
continue writing, Oracle must find an available extent of the same
rollback segment in which to write. Oracle has two options:

• It can reuse an extent already allocated to the rollback segment.

• It can acquire (and allocate) a new extent for the rollback
segment.

The first transaction that needs to acquire more rollback space checks
the next extent of the rollback segment. If the next extent of the rollback
segment does not contain active undo information, Oracle makes it the
current extent, and all transactions that need more space from then on
can write rollback information to the new current extent. Figure 3 – 7
illustrates two transactions, T1 and T2, which continue writing from
the third extent to the fourth extent of a rollback segment.

Oracle7 Server Concepts3–20

T2

T1

Active extent without space

update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

E1

E3

E2

Rollback Segment

Non–active extent with space

E4

Figure 3 – 7 Use of Allocated Extents in a Rollback Segment

As the transactions continue writing and fill the current extent, Oracle
checks the next extent already allocated for the rollback segment to
determine if it is available. In Figure 3 – 8, when E4 is completely full,
T1 and T2 continue any further writing to the next extent allocated for
the rollback segment that is available; in this figure, E1 is this extent.
This figure shows the cyclical nature of extent use in rollback
segments.

Data Blocks, Extents, and Segments 3–21

T1

Active extent without space

Non–active extent with space

E4

E2

E3

update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

E1

Rollback Segment

T2

Figure 3 – 8 Cyclical Use of the Allocated Extents in a Rollback Segment

To continue writing rollback information for a transaction, Oracle
always tries to reuse the next extent in the ring first. However, if the
next extent contains active data, then Oracle must allocate a new
extent. Oracle can allocate new extents for a rollback segment until the
number of extents reaches the value set for the rollback segment’s
storage parameter MAXEXTENTS.

Figure 3 – 9 shows when a new extent must be allocated for a rollback
segment. The uncommitted transactions are long running (either idle,
active, or persistent in–doubt distributed transactions). At this time,
they are writing to the fourth extent, E4, in the rollback segment.
However, when E4 is completely full, the transactions cannot continue
further writing to the next extent in sequence, E1, because it contains
active rollback entries. Therefore, Oracle allocates a new extent, E5, for
this rollback segment, and the transactions continue writing to this
new extent.

How Extents Are
Deallocated from a
Rollback Segment

Oracle7 Server Concepts3–22

T1

Active extent without space

Non–active extent with space

E4

E2

E3

update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

E1

Rollback Segment

T2

Figure 3 – 9 Allocation of a New Extent for a Rollback Segment

When you create or alter a rollback segment, you can use the storage
parameter OPTIMAL, which applies only to rollback segments, to
specify the optimal size of the rollback segment in bytes. If a
transaction needs to continue writing rollback information from one
extent to another extent in the rollback segment, Oracle compares the
current size of the rollback segment to the segment’s optimal size. If the
rollback segment is larger than its optimal size and the extents
immediately following the extent just filled are inactive, Oracle
deallocates consecutive non–active extents from the rollback segment
until the total size of the rollback segment is equal to or as close to but
not less than its optimal size. Oracle always frees the oldest inactive
extents, as these are the least likely to be used by consistent reads. A
rollback segment’s OPTIMAL setting cannot be less than the combined
space allocated for the minimum number of extents for the segment:

(INITIAL + NEXT + NEXT + ... up to MINEXTENTS) bytes

Instances and Types of
Rollback Segments

Data Blocks, Extents, and Segments 3–23

When you drop a rollback segment, Oracle returns all extents of the
rollback segment to its tablespace. The returned extents are then
available to other segments in the tablespace.

When an instance opens a database, it must acquire one or more
rollback segments so that the instance can handle rollback information
produced by subsequent transactions. An instance can acquire both
private and public rollback segments. A private rollback segment is
acquired explicitly by an instance when the instance opens a database.
Public rollback segments form a pool of rollback segments that any
instance requiring a rollback segment can use.

Any number of private and public rollback segments can exist in a
database. As an instance opens a database, the instance attempts to
acquire one or more rollback segments according to the following rules:

• The instance must acquire at least one rollback segment. If the
instance is the only instance accessing the database, it acquires
the SYSTEM segment; if the instance is one of several instances
accessing the database, it acquires the SYSTEM rollback segment
and at least one other rollback segment. If it cannot, Oracle
returns an error, and the instance cannot open the database.

• The instance first tries to acquire all private rollback segments
specified by the instance’s ROLLBACK_SEGMENTS parameter.
If one instance opens a database and attempts to acquire a
private rollback segment already claimed by another instance,
the second instance trying to acquire the rollback segment
receives an error during startup. An error is also returned if an
instance attempts to acquire a private rollback segment that does
not exist.

• The instance always attempts to acquire at least the number of
rollback segments equal to the quotient of the values for the
following initialization parameters:

CEIL(TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT)

CEIL is a SQL function that returns the smallest integer greater
than or equal to the numeric input. In the example above, if
TRANSACTIONS equal 155 and
TRANSACTIONS_PER_ROLLBACK_SEGMENT equal 10, then
the instance will try to acquire at least 16 rollback segments.

• If the instance already has acquired enough private rollback
segments in Step 2, no further action is required. However, if an
instance requires more rollback segments, the instance attempts
to acquire public rollback segments. (An instance can open the

The Rollback Segment
SYSTEM

Rollback Segment States

Oracle7 Server Concepts3–24

database even if the instance cannot acquire the number of
rollback segments given by the division above.)

Note: The TRANSACTIONS_PER_ROLLBACK_SEGMENT
parameter does not limit the number of transactions that can
use a rollback segment. Rather, it determines the number of
rollback segments an instance attempts to acquire when
opening a database.

Once an instance claims a public rollback segment, no other instance
can use that segment until either the rollback segment is taken offline or
the instance that claimed the rollback segment is shut down.

Note: A database used by the Oracle Parallel Server optionally
can have only public and no private segments, as long as the
number of segments in the database is high enough to ensure
that each instance that opens the database can acquire at least
two rollback segments, one of which is the SYSTEM rollback
segment (see the following section). However, when using the
Oracle Parallel Server, you may want to use private rollback
segments. See Oracle7 Parallel Server Concepts & Administration
for more information about rollback segment use in an Oracle
Parallel Server.

Oracle creates an initial rollback segment called SYSTEM whenever a
database is created. This segment is in the SYSTEM tablespace and uses
that tablespace’s default storage parameters. You cannot drop the
SYSTEM rollback segment. An instance always acquires the SYSTEM
rollback segment in addition to any other rollback segments it needs.

If there are multiple rollback segments, Oracle tries to use the SYSTEM
rollback segment only for special system transactions and distributes
user transactions among other rollback segments; if there are too many
transactions for the non–SYSTEM rollback segments, Oracle uses the
SYSTEM segment as necessary. In general, after database creation, you
should create at least one additional rollback segment in the SYSTEM
tablespace.

A rollback segment is always in one of several states, depending on
whether it is offline, acquired by an instance, involved in an unresolved
transaction, in need of recovery, or dropped. The state of the rollback
segment determines whether it can be used in transactions, as well as
which administrative procedures a DBA can perform on it.

Data Blocks, Extents, and Segments 3–25

The rollback segment states are the following:

Has not been acquired (brought online) by any
instance.

Has been acquired (brought online) by an instance;
may contain data from active transactions.

Contains data from uncommitted transactions that
cannot be rolled back (because the data files
involved are inaccessible), or is corrupted.

Contains data from an in–doubt transaction (that
is, an unresolved distributed transaction).

Has been dropped (The space once allocated to this
rollback segment will later be used when a new
rollback segment is created).

Figure 3 – 10 shows how a rollback segment moves from one state to
another.

OFFLINE

ONLINE

NEEDS
RECOVERY

PARTLY
AVAILABLE

INVALID

Oracle7 Server Concepts3–26

Rollback segment is dropped

Media failure makes data held by
in–doubt transaction inaccessible

Media failure
makes data
inaccessible,
or segment
is corrupted

Network failure
causes transaction
holding data to be
in–doubt

In–doubt
transaction
is resolved

Rollback
segment is
brought
online

Rollback
segment
is dropped

Distributed
transaction
is resolved

Rollback
segment
is brought
offline

Data is
successfully
recovered

OFFLINE INVALID

PARTLY
AVAILABLE ONLINE NEEDS

RECOVERY

Figure 3 – 10 Rollback Segment States and State Transitions

PARTLY AVAILABLE and NEEDS RECOVERY Rollback Segments The
PARTLY AVAILABLE and NEEDS RECOVERY states are very similar:
a rollback segment in either state usually contains data from an
unresolved transaction. The differences between the two states are the
following:

• A PARTLY AVAILABLE rollback segment is being used by an
in–doubt distributed transaction, that cannot be resolved
because of a network failure. A NEEDS RECOVERY rollback
segment is being used by a transaction (local or distributed) that
cannot be resolved because of a local media failure, such as a
missing or corrupted datafile, or is itself corrupted.

• Oracle or a DBA can bring a PARTLY AVAILABLE rollback
segment online. In contrast, you must take a NEEDS RECOVERY

Deferred Rollback
Segments

Data Blocks, Extents, and Segments 3–27

rollback segment OFFLINE before it can be brought online. (If
you recover the database and thereby resolve the transaction,
Oracle automatically changes the state of the NEEDS
RECOVERY rollback segment to OFFLINE.)

• A DBA can drop a NEEDS RECOVERY rollback segment. (This
allows the DBA to drop corrupted segments.) A PARTLY
AVAILABLE segment cannot be dropped; you must first resolve
the in–doubt transaction, either automatically by the RECO
process or manually. (See Oracle7 Server Distributed Systems,
Volume I for information about failures in distributed
transactions.)

If you bring a PARTLY AVAILABLE rollback segment online (by a
command or during instance startup), Oracle can use it for new
transactions. However, the in–doubt transaction still holds some of its
transaction table entries, so the number of new transactions that can
use the rollback segment is limited. (See “When Rollback Information Is
Required” on page 3–17 for information on the transaction table.)

Also, until you resolve the in–doubt transaction, the transaction
continues to hold the extents it acquired in the rollback segment,
preventing other transactions from using them. Thus, the rollback
segment might need to acquire new extents for the active transactions,
and therefore grow. To prevent the rollback segment from growing, a
database administrator might prefer to create a new rollback segment
for transactions to use until the in–doubt transaction is resolved, rather
than bring the PARTLY AVAILABLE segment online.

Viewing the State of a Rollback Segment The data dictionary table
DBA_ROLLBACK_SEGS lists the status (state) of each rollback
segment, along with other rollback segment information.

When a tablespace goes offline such that transactions cannot be rolled
back immediately, Oracle writes a deferred rollback segment. The deferred
rollback segment contains the rollback entries that could not be applied
to the tablespace, so they can be applied when the tablespace comes
back online. These segments disappear as soon as the tablespace is
brought back online and recovered. Oracle automatically creates
deferred rollback segments in the SYSTEM tablespace.

Operations Requiring
Temporary Segments

How Temporary
Segments Are
Allocated

Oracle7 Server Concepts3–28

Temporary Segments

When processing queries, Oracle often requires temporary workspace
for intermediate stages of SQL statement processing. Oracle
automatically allocates this disk space called a temporary segment.
Typically, Oracle requires a temporary segment as a work area for
sorting. Oracle does not create a segment if the sorting operation can be
done in memory or if Oracle finds some other way to perform the
operation using indexes.

The following commands may require the use of a temporary segment:

• CREATE INDEX

• SELECT ... ORDER BY

• SELECT DISTINCT ...

• SELECT ... GROUP BY

• SELECT ... UNION

• SELECT ... INTERSECT

• SELECT ... MINUS

• unindexed joins

• certain correlated subqueries

For example, if a query contains a DISTINCT clause, a GROUP BY, and
an ORDER BY, Oracle can require as many as two temporary segments.
If applications often issue statements in the list above, the database
administrator may want to improve performance by adjusting the
initialization parameter SORT_AREA_SIZE. For more information on
SORT_AREA_SIZE and other initialization parameters, see the Oracle7
Server Reference.

Oracle allocates temporary segments as needed during a user session.
For example, a user might issue a query that requires three temporary
segments. Oracle drops temporary segments when the statement
completes. The default storage characteristics of the containing
tablespace determine those of the extents of the temporary segment.

Oracle creates temporary segments in the temporary tablespace of the
user issuing the statement. You specify this tablespace with a CREATE
USER or an ALTER USER command using the TEMPORARY
TABLESPACE option. Otherwise, the default temporary tablespace is
the SYSTEM tablespace. For more information about assigning a user’s
temporary segment tablespace, see Chapter 17, “Database Access”.

Data Blocks, Extents, and Segments 3–29

Because allocation and deallocation of temporary segments occur
frequently, it is reasonable to create a special tablespace for temporary
segments. By doing so, you can distribute I/O across disk devices, and
you may avoid fragmentation of the SYSTEM and other tablespaces
that otherwise would hold temporary segments.

The redo log does not contain entries for changes to temporary
segments used for sort operations.

Oracle7 Server Concepts3–30

C H A P T E R

4

T

Tablespaces and Datafiles 4–1

Tablespaces and
Datafiles

Space — the final frontier...

Gene Roddenberry: Star Trek

his chapter describes tablespaces, the primary logical storage
structures of any Oracle database, and the physical datafiles that
correspond to each tablespace. The chapter includes:

• An Introduction to Tablespaces and Datafiles

• Tablespaces

• Datafiles

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for more information about tablespaces and
datafiles in that environment.

Oracle7 Server Concepts4–2

An Introduction to Tablespaces and Datafiles

Oracle stores data logically in tablespaces and physically in datafiles
associated with the corresponding tablespace. Figure 4 – 1 illustrates
this relationship.

Objects
(stored in tablespaces–

may span several datafiles)

Table

Index

Index

Index

Index

Index

Index

Index

Index

Index

Index

Table

Table

Database Files
(physical structures associated

with only one tablespace)

Tablespace
(one or more datafiles)

Figure 4 – 1 Datafiles and Tablespaces

Although databases, tablespaces, datafiles, and segments are closely
related, they have important differences:

An Oracle database is comprised of one or more
logical storage units called tablespaces. The
database’s data is collectively stored in the
database’s tablespaces.

Each tablespace in an Oracle database is comprised
of one or more operating system files called
datafiles. A tablespace’s datafiles physically store
the associated database data on disk.

databases and
tablespaces

tablespaces and
datafiles

Tablespaces and Datafiles 4–3

A database’s data is collectively stored in the
datafiles that constitute each tablespace of the
database. For example, the simplest Oracle
database would have one tablespace and one
datafile. A more complicated database might have
three tablespaces, each comprised of two datafiles
(for a total of six datafiles).

When a schema object such as a table or index is
created, its segment is created within a designated
tablespace in the database. For example, suppose
you create a table in a specific tablespace using the
CREATE TABLE command with the TABLESPACE
option. Oracle allocates the space for this table’s
data segment in one or more of the datafiles that
constitute the specified tablespace. An object’s
segment allocates space in only one tablespace of a
database. See Chapter 3, “Data Blocks, Extents, and
Segments”, for more information about extents and
segments and how they relate to tablespaces.

The following sections further explain tablespaces and datafiles.

Tablespaces

A database is divided into one or more logical storage units called
tablespaces. A database administrator can use tablespaces to do the
following:

• control disk space allocation for database data

• assign specific space quotas for database users

• control availability of data by taking individual tablespaces
online or offline

• perform partial database backup or recovery operations

• allocate data storage across devices to improve performance

A database administrator can create new tablespaces, add and remove
datafiles from tablespaces, set and alter default segment storage
settings for segments created in a tablespace, make a tablespace
read–only or writeable, make a tablespace temporary or permanent,
and drop tablespaces.

databases and
datafiles

schema objects,
segments, and
tablespaces

The SYSTEM
Tablespace

Allocating More Space
for a Database

Oracle7 Server Concepts4–4

This section includes the following topics:

• The SYSTEM Tablespace

• Allocating More Space for a Database

• Online and Offline Tablespaces

• Read–Only Tablespaces

• Temporary Tablespaces

Every Oracle database contains a tablespace named SYSTEM that
Oracle creates automatically when the database is created. The
SYSTEM tablespace always contains the data dictionary tables for the
entire database.

A small database might need only the SYSTEM tablespace; however, it
is recommended that you create at least one additional tablespace to
store user data separate from data dictionary information. This allows
you more flexibility in various database administration operations and
can reduce contention among dictionary objects and schema objects for
the same datafiles.

Note: The SYSTEM tablespace must always be kept online. See
“Online and Offline Tablespaces” on page 4–6.

All data stored on behalf of stored PL/SQL program units (procedures,
functions, packages and triggers) resides in the SYSTEM tablespace. If
you create many of these PL/SQL objects, the database administrator
needs to plan for the space in the SYSTEM tablespace that these objects
use. For more information about these objects and the space that they
require, see Chapter 14, “Procedures and Packages”, and Chapter 15,
“Database Triggers”.

To enlarge a database, you have three options. You can add another
datafile to one of its existing tablespaces, thereby increasing the amount
of disk space allocated for the corresponding tablespace. Figure 4 – 2
illustrates this kind of space increase.

Tablespaces and Datafiles 4–5

Database

System Tablespace

DATA1.ORA DATA2.ORA DATA3.ORA

Database size and
tablespace size increase
with the addition of
datafiles

ALTER TABLESPACEsystem
ADD DATAFILE ’DATA2.ORA’

ALTER TABLESPACEsystem
ADD DATAFILE ’DATA3.ORA’

Single Tablespace

Figure 4 – 2 Enlarging a Database by Adding a Datafile to a Tablespace

Alternatively, a database administrator can create a new tablespace
(defined by an additional datafile) to increase the size of a database.
Figure 4 – 3 illustrates this.

Database

System Tablespace

DATA1.ORA DATA2.ORA DATA3.ORA

CREATE TABLESPACE users
DATAFILE ’DATA3.ORA’

USERS Tablespace

Two Tablespaces

Figure 4 – 3 Enlarging a Database by Adding a New Tablespace

Online and Offline
Tablespaces

Oracle7 Server Concepts4–6

The size of a tablespace is the size of the datafile(s) that constitute the
tablespace, and the size of a database is the collective size of the
tablespaces that constitute the database.

The third option is to change a datafile’s size or allow datafiles in
existing tablespaces to grow dynamically as more space is needed. You
accomplish this by altering existing files or by adding files with
dynamic extension properties. Figure 4 – 4 illustrates this.

Database

System Tablespace

DATA1.ORA DATA2.ORA

ALTER DATABASE
DATAFILE ’DATA3.ORA’

USERS Tablespace

AUTOEXTEND ON NEXT 20M
MAXSIZE 1000M;

DATA3.ORA

20 M

20 M

Figure 4 – 4 Enlarging a Database by Dynamically Sizing Datafiles

For more information about increasing the amount of space in your
database, see the Oracle7 Server Administrator’s Guide.

A database administrator can bring any tablespace (except the SYSTEM
tablespace) in an Oracle database online (accessible) or offline (not
accessible) whenever the database is open.

Note: The SYSTEM tablespace must always be online because
the data dictionary must always be available to Oracle.

When a Tablespace Goes
Offline

Using Tablespaces for
Special Procedures

Tablespaces and Datafiles 4–7

A tablespace is normally online so that the data contained within it is
available to database users. However, the database administrator might
take a tablespace offline for any of the following reasons:

• to make a portion of the database unavailable, while allowing
normal access to the remainder of the database

• to perform an offline tablespace backup (although a tablespace
can be backed up while online and in use)

• to make an application and its group of tables temporarily
unavailable while updating or maintaining the application

When a tablespace goes offline, Oracle does not permit any subsequent
SQL statements to reference objects contained in the tablespace. Active
transactions with completed statements that refer to data in a
tablespace that has been taken offline are not affected at the transaction
level. Oracle saves rollback data corresponding to statements that affect
data in the offline tablespace in a deferred rollback segment (in the
SYSTEM tablespace). When the tablespace is brought back online,
Oracle applies the rollback data to the tablespace, if needed.

You cannot take a tablespace offline if it contains any rollback segments
that are in use.

When a tablespace goes offline or comes back online, it is recorded in
the data dictionary in the SYSTEM tablespace. If a tablespace was
offline when you shut down a database, the tablespace remains offline
when the database is subsequently mounted and reopened.

You can bring a tablespace online only in the database in which it was
created because the necessary data dictionary information is
maintained in the SYSTEM tablespace of that database. An offline
tablespace cannot be read or edited by any utility other than Oracle.
Thus, tablespaces cannot be transferred from database to database
(transfer of Oracle data can be achieved with tools described in Oracle7
Server Utilities).

Oracle automatically changes a tablespace from online to offline when
certain errors are encountered (for example, when the database writer
process, DBWR, fails in several attempts to write to a datafile of the
tablespace). Users trying to access tables in the tablespace with the
problem receive an error. If the problem that causes this disk I/O to fail
is media failure, the tablespace must be recovered after you correct the
hardware problem.

By using multiple tablespaces to separate different types of data, the
database administrator can also take specific tablespaces offline for
certain procedures, while other tablespaces remain online and the

Read–Only
Tablespaces

Making a Tablespace
Read–Only

Read–Only vs. Online or
Offline

Oracle7 Server Concepts4–8

information in them is still available for use. However, special
circumstances can occur when tablespaces are taken offline. For
example, if two tablespaces are used to separate table data from index
data, the following is true:

• If the tablespace containing the indexes is offline, queries can still
access table data because queries do not require an index to
access the table data.

• If the tablespace containing the tables is offline, the table data in
the database is not accessible because the tables are required to
access the data.

In summary, if Oracle determines that it has enough information in the
online tablespaces to execute a statement, it will do so. If it needs data
in an offline tablespace, then it causes the statement to fail.

The primary purpose of read–only tablespaces is to eliminate the need
to perform backup and recovery of large, static portions of a database.
Oracle never updates the files of a read–only tablespace, and therefore
the files can reside on read–only media, such as CD ROMs or WORM
drives.

Note: Because you can only bring a tablespace online in the
database in which it was created, read–only tablespaces are not
meant to satisfy archiving or data publishing requirements.

Whenever you create a new tablespace, it is always created as
read–write. The READ ONLY option of the ALTER TABLESPACE
command allows you to change the tablespace to read–only, making all
of its associated datafiles read–only as well. You can then use the
READ WRITE option to make a read–only tablespace writeable again.

Read–only tablespaces cannot be modified. Therefore, they do not need
repeated backup. Also, should you need to recover your database, you
do not need to recover any read–only tablespaces, because they could
not have been modified.

You can drop items, such as tables and indexes, from a read–only
tablespace, just as you can drop items from an offline tablespace.
However, you cannot create or alter objects in a read–only tablespace.

Use the SQL command ALTER TABLESPACE to change a tablespace to
read–only. For information on the ALTER TABLESPACE command, see
the Oracle7 Server SQL Reference.

Making a tablespace read–only does not change its offline or online
status.

Restrictions on
Read–Only Tablespaces

Read–Only Tablespaces
and Recovery

Temporary Tablespaces

Tablespaces and Datafiles 4–9

Offline datafiles cannot be accessed. Bringing a datafile in a read–only
tablespace online makes the file readable. The file cannot be written to
unless its associated tablespace is returned to the read–write state. The
files of a read–only tablespace can independently be taken online or
offline using the DATAFILE option of the ALTER DATABASE
command.

You cannot add datafiles to a tablespace that is read–only, even if you
take the tablespace offline. When you add a datafile, Oracle must
update the file header, and this write operation is not allowed.

To update a read–only tablespace, you must first make the tablespace
writeable. After updating the tablespace, you can then reset it to be
read–only.

Read–only tablespaces have several implications upon instance or
media recovery. See Chapter 24, “Database Recovery”, for more
information about recovery.

Space management for sort operations is performed more efficiently
using temporary tablespaces designated exclusively for sorts. This
scheme effectively eliminates serialization of space management
operations involved in the allocation and deallocation of sort space. All
operations that use sorts, including joins, index builds, ordering
(ORDER BY), the computation of aggregates (GROUP BY), and the
ANALYZE command to collect optimizer statistics, benefit from
temporary tablespaces. The performance gains are significant in
parallel server environments.

A temporary tablespace is a tablespace that can only be used for sort
segments. No permanent objects can reside in a temporary tablespace.
Sort segments are used when a segment is shared by multiple sort
operations. One sort segment exists in every instance that performs a
sort operation in a given tablespace.

Temporary tablespaces provide performance improvements when you
have multiple sorts that are too large to fit into memory. The sort
segment of a given temporary tablespace is created at the time of the
first sort operation. The sort segment grows by allocating extents until
the segment size is equal to or greater than the total storage demands
of all of the active sorts running on that instance.

You create temporary tablespaces using the following SQL syntax:

CREATE TABLESPACE tablespace TEMPORARY

You can also alter a tablespace from PERMANENT to TEMPORARY or
vice versa using the following syntax:

OSDoc

Datafile Contents

Oracle7 Server Concepts4–10

ALTER TABLESPACE tablespace TEMPORARY

For more information on the CREATE TABLESPACE and ALTER
TABLESPACE Commands, see Chapter 4 of Oracle7 Server SQL
Reference.

Datafiles

A tablespace in an Oracle database consists of one or more physical
datafiles. A datafile can be associated with only one tablespace, and
only one database.

When a datafile is created for a tablespace, Oracle creates the file by
allocating the specified amount of disk space plus the overhead
required for the file header. When a datafile is created, the operating
system is responsible for clearing old information and authorizations
from a file before allocating it to Oracle. If the file is large, this process
might take a significant amount of time.

Additional Information: For information on the amount of
space required for the file header of datafiles on your operating
system, see your Oracle operating system specific
documentation.

Since the first tablespace in any database is always the SYSTEM
tablespace, Oracle automatically allocates the first datafiles of any
database for the SYSTEM tablespace during database creation.

After a datafile is initially created, the allocated disk space does not
contain any data; however, Oracle reserves the space to hold only the
data for future segments of the associated tablespace — it cannot store
any other program’s data. As a segment (such as the data segment for a
table) is created and grows in a tablespace, Oracle uses the free space in
the associated datafiles to allocate extents for the segment.

The data in the segments of objects (data segments, index segments,
rollback segments, and so on) in a tablespace are physically stored in
one or more of the datafiles that constitute the tablespace. Note that a
schema object does not correspond to a specific datafile; rather, a
datafile is a repository for the data of any object within a specific
tablespace. Oracle allocates the extents of a single segment in one or
more datafiles of a tablespace; therefore, an object can “span” one or
more datafiles. Unless table “striping” is used, the database
administrator and end–users cannot control which datafile stores an
object.

Size of Datafiles

Offline Datafiles

Tablespaces and Datafiles 4–11

You can alter the size of a datafile after its creation or you can specify
that a datafile should dynamically grow as objects in the tablespace
grow. This functionality allows you to have fewer datafiles per
tablespace and can simplify administration of datafiles.

For more information about resizing datafiles, see the Oracle7 Server
Administrator’s Guide.

You can take tablespaces offline (make unavailable) or bring them online
(make available) at any time. Therefore, all datafiles making up a
tablespace are taken offline or brought online as a unit when you take
the tablespace offline or bring it online, respectively. You can take
individual datafiles offline; however, this is normally done only during
certain database recovery procedures.

Oracle7 Server Concepts4–12

C H A P T E R

5

T

Schema Objects 5–1

Schema Objects

My object all sublime
I shall achieve in time —
To let the punishment fit the crime.

Sir William Schwenck Gilbert: The Mikado

his chapter discusses the different types of objects contained in a
user’s schema. It includes:

• Overview of Schema Objects

• Tables

• Views

• The Sequence Generator

• Synonyms

• Indexes

• Clusters

• Hash Clusters

Certain kinds of schema objects are discussed in more detail elsewhere
in this manual. Specifically, procedures, functions, and packages are
discussed in Chapter 14, “Procedures and Packages”, database triggers
in Chapter 15, “Database Triggers, and snapshots are covered in
Chapter 21, “Distributed Databases”.

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for additional information about schema objects
in that environment.

Oracle7 Server Concepts5–2

Overview of Schema Objects

Associated with each database user is a schema. A schema is a collection
of schema objects. Examples of schema objects include tables, views,
sequences, synonyms, indexes, clusters, database links, procedures,
and packages. This chapter explains tables, views, sequences,
synonyms, indexes, and clusters.

Schema objects are logical data storage structures. Schema objects do
not have a one–to–one correspondence to physical files on disk that
store their information. However, Oracle stores a schema object
logically within a tablespace of the database. The data of each object is
physically contained in one or more of the tablespace’s datafiles. For
some objects such as tables, indexes, and clusters, you can specify how
much disk space Oracle allocates for the object within the tablespace’s
datafiles. Figure 5 – 1 illustrates the relationship among objects,
tablespaces, and datafiles.

Index

Index

Index

Index

Index

Table

Cluster

Database

Table

Index

Table

Index

Index

Index

System Tablespace

Index Index

Index

Table

Index

Table

Index

Data Tablespace

Drive 1 Drive 2

DDBFILE1 DBFILE2 DBFILE3

Figure 5 – 1 Schema Objects, Tablespaces, and Datafiles

There is no relationship between schemas and tablespaces: a tablespace
can contain objects from different schemas, and the objects for a
schema can be contained in different tablespaces.

How Table Data Is
Stored

Schema Objects 5–3

Tables

Tables are the basic unit of data storage in an Oracle database. Data is
stored in rows and columns. You define a table with a table name (such as
EMP) and set of columns. You give each column a column name (such as
EMPNO, ENAME, and JOB), a datatype (such as VARCHAR2, DATE, or
NUMBER), and a width (the width might be predetermined by the
datatype, as in DATE) or precision and scale (for columns of the
NUMBER datatype only). A row is a collection of column information
corresponding to a single record.

Note: See Chapter 6, “Datatypes”, for a discussion of the
Oracle datatypes.

You can optionally specify rules for each column of a table. These rules
are called integrity constraints. One example is a NOT NULL integrity
constraint. This constraint forces the column to contain a value in every
row. See Chapter 7, “Data Integrity”, for more information about
integrity constraints.

Once you create a table, you insert rows of data using SQL statements.
Table data can then be queried, deleted, or updated using SQL.

Figure 5 – 2 shows a table named EMP.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Column not
allowing nulls

Column
allowing
nulls

Rows Columns Column names

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CLERK
SALESMAN
SALESMAN
MANAGER

7902
7698
7698
7839

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

800.00
1600.00
1250.00
2975.00

300.00
300.00
500.00

20
30
30
20

Figure 5 – 2 The EMP Table

When you create a non–clustered table, Oracle automatically allocates a
data segment in a tablespace to hold the table’s future data. You can
control the allocation of space for a table’s data segment and use of this
reserved space in the following ways:

• You can control the amount of space allocated to the data
segment by setting the storage parameters for the data segment.

Row Format and Size

Oracle7 Server Concepts5–4

• You can control the use of the free space in the data blocks that
constitute the data segment’s extents by setting the PCTFREE
and PCTUSED parameters for the data segment.

Oracle stores data for a clustered table in the data segment created for
the cluster. Storage parameters cannot be specified when a clustered
table is created or altered; the storage parameters set for the cluster
always control the storage of all tables in the cluster.

The tablespace that contains a non–clustered table’s data segment is
either the table owner’s default tablespace or a tablespace specifically
named in the CREATE TABLE statement. See “User Tablespace Settings
and Quotas” on page 17–6.

Oracle stores each row of a database table as one or more row pieces. If
an entire row can be inserted into a single data block, Oracle stores the
row as one row piece. However, if all of a row’s data cannot be inserted
into a single data block or an update to an existing row causes the row
to outgrow its data block, Oracle stores the row using multiple row
pieces. A data block usually contains only one row piece per row. When
Oracle must store a row in more than one row piece, it is “chained”
across multiple blocks. A chained row’s pieces are chained together
using the ROWIDs of the pieces. See “Row Chaining across Data
Blocks” on page 3–10.

Each row piece, chained or unchained, contains a row header and data
for all or some of the row’s columns. Individual columns might also
span row pieces and, consequently, data blocks. Figure 5 – 3 shows the
format of a row piece.

Schema Objects 5–5

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value

Figure 5 – 3 The Format of a Row Piece

The row header precedes the data and contains information about

• row pieces

• (for chained row pieces) chaining

• columns in the row piece

• (for clustered data) cluster keys

A non–clustered row fully contained in one block has at least three
bytes of row header. After the row header information, each row
contains column length and data. The column length requires one byte
for columns that store 250 bytes or less, or three bytes for columns that
store more than 250 bytes, and precedes the column data. Space
required for column data depends on the datatype. If the datatype of a
column is variable length, the space required to hold a value can grow
and shrink with updates to the data.

Column Order

ROWIDs of Row Pieces

Nulls

Oracle7 Server Concepts5–6

To conserve space, a null in a column only stores the column length
(zero). Oracle does not store data for the null column. Also, for trailing
null columns, Oracle does not store the column length because the row
header signals the start of a new row (for example, the last three
columns of a table are null, thus there is no information stored for those
columns).

Note: Each row uses two bytes in the data block header’s row
directory.

Clustered rows contain the same information as non–clustered rows. In
addition, they contain information that references the cluster key to
which they belong. See “Clusters” on page 5–23.

The column order is the same for all rows in a given table. Columns are
usually stored in the order in which they were listed in the CREATE
TABLE statement, but this is not guaranteed. For example, if you create
a table with a column of datatype LONG, Oracle always stores this
column last. Also, if a table is altered so that a new column is added,
the new column becomes the last column stored.

In general, you should try to place columns that frequently contain
nulls last so that rows take less space. Note, though, that if the table
you are creating includes a LONG column as well, the benefits of
placing frequently null columns last are lost.

The ROWID identifies each row piece by its location or address. Once
assigned, a given row piece retains its ROWID until the corresponding
row is deleted, or exported and imported using the IMPORT and
EXPORT utilities. If the cluster key values of a row change, the row
keeps the same ROWID, but also gets an additional pointer ROWID for
the new values.

Because ROWIDs are constant for the lifetime of a row piece, it is
useful to reference ROWIDs in SQL statements such as SELECT,
UPDATE, and DELETE. See “ROWIDs and the ROWID Datatype” on
page 6–9.

A null is the absence of a value in a column of a row. Nulls indicate
missing, unknown, or inapplicable data. A null should not be used to
imply any other value, such as zero. A column allows nulls unless a
NOT NULL or PRIMARY KEY integrity constraint has been defined for
the column, in which case no row can be inserted without a value for
that column.

Default Values for
Columns

When Default Values Are
Inserted Relative to
Integrity Constraint
Checking

Schema Objects 5–7

Nulls are stored in the database if they fall between columns with data
values. In these cases they require one byte to store the length of the
column (zero). Trailing nulls in a row require no storage because a new
row header signals that the remaining columns in the previous row are
null. In tables with many columns, the columns more likely to contain
nulls should be defined last to conserve disk space.

Most comparisons between nulls and other values are by definition
neither true nor false, but unknown. To identify nulls in SQL, use the IS
NULL predicate. Use the SQL function NVL to convert nulls to
non–null values. For more information about comparisons using IS
NULL and the NVL function, see Oracle7 Server SQL Reference.

Nulls are not indexed, except when the cluster key column value is
null.

You can assign a column of a table a default value so that when a new
row is inserted and a value for the column is omitted, a default value is
supplied automatically. Default column values work as though an
INSERT statement actually specifies the default value.

Legal default values include any literal or expression that does not refer
to a column, LEVEL, ROWNUM, or PRIOR. Default values can include
the functions SYSDATE, USER, USERENV, and UID. The datatype of
the default literal or expression must match or be convertible to the
column datatype.

If a default value is not explicitly defined for a column, the default for
the column is implicitly set to NULL.

Integrity constraint checking occurs after the row with a default value
is inserted. For example, in Figure 5 – 4, a row is inserted into the EMP
table that does not include a value for the employee’s department
number. Because no value is supplied for the employee’s department
number, the DEPTNO column’s default value “20” is supplied. After
the default value is supplied, the FOREIGN KEY integrity constraint
defined on the DEPTNO column is checked.

Oracle7 Server Concepts5–8

INSERT
INTO

Table DEPT

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Default Value
(if no value is given for
this column, the default of
20 is used)

Table EMP

Foreign Key

New row to be inserted, without value for DEPTNO column.

DEPNO DNAME LOC

Parent Key

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7691 OSTER SALESMAN 7521 06–APR–90 2975.00 400.00

7329
7499
7521
7566
7691

SMITH
ALLEN
WARD
JONES
OSTER

CEO
VP_SALES
MANAGER
SALESMAN
SALESMAN

7329
7499
7521
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90
06–APR–90

9000.00
7500.00
5000.00
2975.00
2975.00

100.00
200.00
400.00
400.00

20
30
30
30
20

Figure 5 – 4 DEFAULT Column Values

Views

A view is a tailored presentation of the data contained in one or more
tables (or other views). A view takes the output of a query and treats it
as a table; therefore, a view can be thought of as a “stored query” or a
“virtual table”. You can use views in most places where a table can be
used.

For example, the EMP table has several columns and numerous rows of
information. If you only want users to see five of these columns, or
only specific rows, you can create a view of that table for other users to
access. Figure 5 – 5 shows an example of a view called STAFF derived
from the base table EMP. Notice that the view shows only five of the
columns in the base table.

For More Information

Storage for Views

Schema Objects 5–9

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

SAL COMM

800.00
1600.00
1250.00
2975.00

300.00
300.00
5.00

DEPTNO

20
30
30
20

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

DEPTNO

20
30
30
20

EMP

STAFFView

Base Table

Figure 5 – 5 An Example of a View

Since views are derived from tables, many similarities exist between
the two. For example, you can define views with up to 254 columns,
just like a table. You can query views, and with some restrictions you
can update, insert into, and delete from views. All operations
performed on a view actually affect data in some base table of the view
and are subject to the integrity constraints and triggers of the base
tables.

See Oracle7 Server SQL Reference.

Note: You cannot explicitly define integrity constraints and
triggers on views, but you can define them for the underlying
base tables referenced by the view.

Unlike a table, a view is not allocated any storage space, nor does a
view actually contain data; rather, a view is defined by a query that
extracts or derives data from the tables the view references. These
tables are called base tables. Base tables can in turn be actual tables or
can be views themselves (including snapshots). Because a view is based
on other objects, a view requires no storage other than storage for the
definition of the view (the stored query) in the data dictionary.

How Views Are Used

Oracle7 Server Concepts5–10

Views provide a means to present a different representation of the data
that resides within the base tables. Views are very powerful because
they allow you to tailor the presentation of data to different types of
users. Views are often used

• to provide an additional level of table security by restricting access to
a predetermined set of rows and/or columns of a table

For example, Figure 5 – 5 shows how the STAFF view does not show
the SAL or COMM columns of the base table EMP.

• to hide data complexity

For example, a single view might be defined with a join, which is a
collection of related columns or rows in multiple tables. However,
the view hides the fact that this information actually originates from
several tables.

• to simplify commands for the user

For example, views allow users to select information from multiple
tables without actually knowing how to perform a join.

• to present the data in a different perspective from that of the base
table

For example, the columns of a view can be renamed without
affecting the tables on which the view is based.

• to isolate applications from changes in definitions of base tables

For example, if a view’s defining query references three columns of a
four column table and a fifth column is added to the table, the view’s
definition is not affected and all applications using the view are not
affected.

• to express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view
with a table, or a view can be defined that joins a UNION view with
a table. For information about GROUP BY or UNION, see the Oracle7
Server SQL Reference.

• to save complex queries

For example, a query could perform extensive calculations with table
information. By saving this query as a view, the calculations can be
performed each time the view is queried.

• to achieve improvements in availability and performance

For example, a database administrator can divide a large table into
smaller tables (partitions) for many reasons, including partition level

The Mechanics of
Views

NLS Parameters

Using Indexes

Schema Objects 5–11

load, purge, backup, restore, reorganization, and index building.
Once partition views are defined, users can query partitions, rather
than very large tables. This ability to prune unneeded partitions from
queries increases performance and availability.

Oracle stores a view’s definition in the data dictionary as the text of the
query that defines the view. When you reference a view in a SQL
statement, Oracle merges the statement that references the view with
the query that defines the view and then parses the merged statement
in a shared SQL area and executes it. Oracle parses a statement that
references a view in a new shared SQL area only if no existing shared
SQL area contains an identical statement. Therefore, you obtain the
benefit of reduced memory usage associated with shared SQL when
you use views.

In evaluating views containing string literals or SQL functions that
have NLS parameters as arguments (such as TO_CHAR, TO_DATE,
and TO_NUMBER), Oracle takes default values for these parameters
from the NLS parameters for the session. You can override these
default values by specifying NLS parameters explicitly in the view
definition.

Oracle determines whether to use indexes for a query against a view by
transforming the original query when merging it with the view’s
defining query. Consider the view

CREATE VIEW emp_view AS

SELECT empno, ename, sal, loc

FROM emp, dept

WHERE emp.deptno = dept.deptno AND dept.deptno = 10;

Now consider the following user–issued query:

SELECT ename

FROM emp_view

WHERE empno = 9876;

The final query constructed by Oracle is

SELECT ename

FROM emp, dept

WHERE emp.deptno = dept.deptno AND

 dept.deptno = 10 AND

 emp.empno = 9876;

In all possible cases, Oracle merges a query against a view with the
view’s defining query (and those of the underlying views). Oracle
optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle can use indexes on any

Dependencies and
Views

Updatable Join Views

Oracle7 Server Concepts5–12

referenced base table columns, whether the columns are referenced in
the view definition or the user query against the view.

In some cases, Oracle cannot merge the view definition with the
user–issued query. In such cases, Oracle may not use all indexes on
referenced columns.

Because a view is defined by a query that references other objects
(tables, snapshots, or other views), a view is dependent on the
referenced objects. Oracle automatically handles the dependencies for
views. For example, if you drop a base table of a view and then
re–create it, Oracle determines whether the new base table is acceptable
to the existing definition of the view. See Chapter 16, “Dependencies
Among Schema Objects”, for a complete discussion of dependencies in
a database.

A join view is defined as a view with more than one table or view in its
FROM clause and which does not use any of these clauses: DISTINCT,
AGGREGATION, GROUP BY, START WITH, CONNECT BY,
ROWNUM, and set operations (UNION ALL, INTERSECT, and so on).

An updatable join view is a join view, which involves two or more base
tables or views, where UPDATE, INSERT, and DELETE operations are
permitted. The data dictionary views, ALL_UPDATABLE_COLUMNS,
DBA_UPDATABLE_COLUMNS, and USER_UPDATABLE_COLUMNS,
contain information that indicates which of the view columns are
updatable.

Partition Views

Schema Objects 5–13

Table 5 – 1 lists rules for updatable join views.

Rule Description

General Rule Any INSERT, UPDATE, or DELETE operation on a join view can
modify only one underlying base table at a time.

UPDATE Rule All updatable columns of a join view must map to columns of a
key preserved table. If the view is defined with the WITH
CHECK OPTION clause, then all join columns and all columns
of repeated tables are non–updatable.

DELETE Rule Rows from a join view can be deleted as long as there is exactly
one key–preserved table in the join. If the view is defined with
the WITH CHECK OPTION clause and the key preserved table
is repeated, then the rows cannot be deleted from the view.

INSERT Rule An INSERT statement must not, explicitly or implicitly, refer to
the columns of a non–key preserved table. If the join view is
defined with the WITH CHECK OPTION clause, then INSERT
statements are not permitted.

Table 5 – 1 Rules for INSERT, UPDATE, and DELETE on Join
Views

The database administrator can use partition views to divide a very
large table into multiple smaller pieces (or partitions) to achieve
significant improvements in availability, administration and
performance. The basic idea behind partition views is simple: divide
the large table into multiple physical tables using a partitioning criteria;
glue the partitions together into a whole for query purposes. A
partition view can assign key ranges to partitions. Queries that use a
key range to select from a partitions view will access only the partitions
that lie within the key range.

For example, sales data for a calendar year may be broken up into four
separate tables, one per quarter: Q1_SALES, Q2_SALES, Q3_SALES
and Q4_SALES.

Partition Views Using
Check Constraints

Partition Views Using
WHERE Clauses

Oracle7 Server Concepts5–14

A partition view may then be defined by using check constraints or by
using WHERE clauses. Here is the preferred method that uses check
constraints:

ALTER TABLE Q1_SALES ADD CONSTRAINT C0 check (sale_date between

 ’jan–1–1995’ and ’mar–31–1995’);

ALTER TABLE Q2_SALES ADD CONSTRAINT C1 check (sale_date between

 ’apr–1–1995’ and ’jun–30–1995’);

ALTER TABLE Q3_SALES ADD CONSTRAINT C2 check (sale_date between

 ’jul–1–1995’ and ’sep–30–1995’);

ALTER TABLE Q4_SALES ADD CONSTRAINT C3 check (sale_date between

 ’oct–1–1995’ and ’dec–31–1995’);

CREATE VIEW sales AS

 SELECT * FROM Q1_SALES UNION ALL

 SELECT * FROM Q2_SALES UNION ALL

 SELECT * FROM Q3_SALES UNION ALL

 SELECT * FROM Q4_SALES;

This method has several advantages. The check constraint predicates
are not evaluated per row for queries. The predicates guard against
inserting rows in the wrong partitions. It is easier to query the
dictionary and find the partitioning criteria.

Alternatively, you can express the criteria in the WHERE clause of a
view definition:

CREATE VIEW sales AS

 SELECT * FROM Q1_SALES WHERE sale_date between

 ’jan–1–1995’ and ’mar–31–1995’ UNION ALL

 SELECT * FROM Q2_SALES WHERE sale_date between

 ’apr–1–1995’ and ’jun–30–1995’ UNION ALL

 SELECT * FROM Q3_SALES WHERE sale_date between

 ’jul–1–1995’ and ’sep–30–1995’ UNION ALL

 SELECT * FROM Q4_SALES WHERE sale_date between

 ’oct–1–1995’ and ’dec–31–1995’;

This method has several drawbacks. First, the partitioning predicate is
applied at runtime for all rows in all partitions that are not skipped.
Second, if the user mistakenly inserts a row with sale_date =
’apr–4–1995’ in Q1_SALES, the row will “disappear” from the partition
view. Finally, the partitioning criteria are difficult to retrieve from the
data dictionary because they are all embedded in one long view
definition.

Benefits of Partition Views

Schema Objects 5–15

However, using WHERE clauses to define partition views has one
advantage over using check constraints: the partition can be on a
remote database with WHERE clauses. For example, you can use a
WHERE clause to define a partition on a remote database as in this
example:

SELECT * FROM eastern_sales@east.acme.com WHERE LOC = ’EAST’

 UNION ALL

 SELECT * FROM western_sales@west.acme.com WHERE LOC = ’WEST’;

Because queries against eastern sales data do not need to fetch any
western data, users will get increased performance. This cannot be
done with constraints because the distributed query facility does not
retrieve check constrains from remote databases.

Partition views enable data management operations like data loads,
index creation, and data purges at the partition level, rather than on the
entire table, resulting in significantly reduced times for these
operations. Because the partitions are independent of each other,
unavailability of a piece (or a subset of pieces) does not affect access to
the rest of the data. The Oracle server incorporates the intelligence to
explicitly recognize partition views. This knowledge is exploited in
query optimization and query execution in several ways:

• partition elimination

For each query, depending on the selection criteria specified,
unneeded partitions can be eliminated. For example, if a query only
involves Q1 sales data, there is no need to retrieve data for the
remaining three quarters. Such intelligent elimination can drastically
reduce the data volume, resulting in substantial improvements in
query performance.

• partition–level query optimization

Query execution is optimized at the level of underlying physical
tables, selecting the most appropriate access path for each piece
based on the amount of data to be examined. Consider an example of
a partition view ORDERS consisting of 12 partitions, one for each
month: ORDERS_JAN, ORDERS_FEB,, ORDERS_DEC. Consider
the following query against this view:

 SELECT orderno, value, custno FROM orders

 WHERE order_date BETWEEN ’30–JAN–95’ AND ’25–FEB–95’;

This query involves just a few days of data for ORDERS_JAN and
most of the data for ORDERS_FEB. Given this, the optimizer may
come up with a plan that uses indexed access of ORDERS_JAN and a

For More Information

Oracle7 Server Concepts5–16

full scan of the table ORDERS_FEB. Examination of the remaining 10
partitions will be eliminated since the query does not involve them.

Partition views are especially useful in data warehouse environments
where there is a common need to store and analyze large amounts of
historical data.

See Oracle7 Server Tuning.

The Sequence Generator

The sequence generator provides a sequential series of numbers. The
sequence generator is especially useful in multi–user environments for
generating unique sequential numbers without the overhead of disk
I/O or transaction locking. Therefore, the sequence generator reduces
“serialization” where the statements of two transactions must generate
sequential numbers at the same time. By avoiding the serialization that
results when multiple users wait for each other to generate and use a
sequence number, the sequence generator improves transaction
throughput and a user’s wait is considerably shorter.

Sequence numbers are Oracle integers defined in the database of up to
38 digits. A sequence definition indicates general information: the
name of the sequence, whether it ascends or descends, the interval
between numbers, and other information. One important part of a
sequence’s definition is whether Oracle should cache sets of generated
sequence numbers in memory. Oracle stores the definitions of all
sequences for a particular database as rows in a single data dictionary
table in the SYSTEM tablespace. Therefore, all sequence definitions are
always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the
sequence. You can issue a statement to generate a new sequence
number or use the current sequence number. Once a statement in a
user’s session generates a sequence number, the particular sequence
number is available only to that session; each user that references a
sequence has access to its own, current sequence number.

Sequence numbers are generated independently of tables. Therefore,
the same sequence generator can be used for one or for multiple tables.
Sequence number generation is useful to generate unique primary keys
for your data automatically and to coordinate keys across multiple
rows or tables. Individual sequence numbers can be skipped if they
were generated and used in a transaction that was ultimately rolled

Schema Objects 5–17

back. Applications can make provisions to catch and reuse these
sequence numbers, if desired.

For more performance implications when using sequences, see the
Oracle7 Server Application Developer’s Guide.

Synonyms

A synonym is an alias for any table, view, snapshot, sequence,
procedure, function, or package. Because a synonym is simply an alias,
it requires no storage other than its definition in the data dictionary.

Synonyms are often used for security and convenience. For example,
they can do the following:

• mask the name and owner of an object

• provide location transparency for remote objects of a distributed
database

• simplify SQL statements for database users

You can create both public and private synonyms. A public synonym is
owned by the special user group named PUBLIC and every user in a
database can access it. A private synonym is contained in the schema of
a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and non–distributed
database environments because they hide the identity of the underlying
object, including its location in a distributed system. This is
advantageous because if the underlying object must be renamed or
moved, only the synonym needs to be redefined and applications based
on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed
database system. The following example shows how and why public
synonyms are often created by a database administrator to hide the
identity of a base table and reduce the complexity of SQL statements.
Assume the following:

• There is a table called SALES_DATA, contained in the schema
owned by the user named JWARD.

• The SELECT privilege for the SALES_DATA table is granted
 to PUBLIC.

At this point, you would have to query the table SALES_DATA with a
SQL statement similar to the one below:

Oracle7 Server Concepts5–18

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table
along with the table name to perform the query.

Assume that the database administrator creates a public synonym with
the following SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table
SALES_DATA with a simple SQL statement:

SELECT * FROM sales;

Notice that the public synonym SALES hides the name of the table
SALES_DATA and the name of the schema that contains the table.

Indexes

Indexes are optional structures associated with tables and clusters. You
can create indexes explicitly to speed SQL statement execution on a
table. Just as the index in this manual helps you locate information
faster than if there were no index, an Oracle index provides a faster
access path to table data. Indexes are the primary means of reducing
disk I/O when properly used.

The absence or presence of an index does not require a change in the
wording of any SQL statement. An index is merely a fast access path to
the data; it affects only the speed of execution. Given a data value that
has been indexed, the index points directly to the location of the rows
containing that value.

Indexes are logically and physically independent of the data in the
associated table. You can create or drop an index at anytime without
effecting the base tables or other indexes. If you drop an index, all
applications continue to work; however, access of previously indexed
data might be slower. Indexes, as independent structures, require
storage space.

Oracle automatically maintains and uses indexes once they are created.
Oracle automatically reflects changes to data, such as adding new
rows, updating rows, or deleting rows, in all relevant indexes with no
additional action by users.

Retrieval performance of indexed data remains almost constant, even
as new rows are inserted. However, the presence of many indexes on a

Unique and
Non–Unique Indexes

Composite Indexes

Schema Objects 5–19

table decreases the performance of updates, deletes, and inserts
because Oracle must also update the indexes associated with the table.

Indexes can be unique or non–unique. Unique indexes guarantee that
no two rows of a table have duplicate values in the columns that define
the index. Non–unique indexes do not impose this restriction on the
column values.

Oracle recommends that you do not explicitly define unique indexes on
tables; uniqueness is strictly a logical concept and should be associated
with the definition of a table. Alternatively, define UNIQUE integrity
constraints on the desired columns. Oracle enforces UNIQUE integrity
constraints by automatically defining a unique index on the unique key.

A composite index (also called a concatenated index) is an index that you
create on multiple columns in a table. Columns in a composite index
can appear in any order and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements
in which the WHERE clause references all or the leading portion of the
columns in the composite index. Therefore, you should give some
thought to the order of the columns used in the definition; generally,
the most commonly accessed or most selective columns go first. For
more information on composite indexes, see Oracle7 Server Tuning.

Figure 5 – 6 illustrates the VENDOR_PARTS table that has a composite
index on the VENDOR_ID and PART_NO columns.

Indexes and Keys

How Indexes Are
Stored

Oracle7 Server Concepts5–20

VENDOR_PARTS
VEND ID PART NO UNIT COST

10–440
10–441

457
10–440

457
08–300
08–300

457

.25

.39
4.95
.27

5.10
1.33
1.19
5.28

1012
1012
1012
1010
1010
1220
1012
1292

Concatenated Index
(index with multiple columns)

Figure 5 – 6 Indexes, Primary keys, Unique Keys, and Foreign Keys

No more than 16 columns can form the composite index, and a key
value cannot exceed roughly one–half (minus some overhead) the
available data space in a data block.

Although the terms are often used interchangeably, you should
understand the distinction between “indexes” and “keys”. Indexes are
structures actually stored in the database, which users create, alter, and
drop using SQL statements. You create an index to provide a fast access
path to table data. Keys are strictly a logical concept. Keys correspond
to another feature of Oracle called integrity constraints.

Integrity constraints enforce the business rules of a database; see
Chapter 7, “Data Integrity”. Because Oracle uses indexes to enforce
some integrity constraints, the terms key and index are often are used
interchangeably; however, they should not be confused with each other.

When you create an index, Oracle automatically allocates an index
segment to hold the index’s data in a tablespace. You control allocation
of space for an index’s segment and use of this reserved space in the
following ways:

• Set the storage parameters for the index segment to control the
allocation of the index segment’s extents.

• Set the PCTFREE parameter for the index segment to control the
free space in the data blocks that constitute the index segment’s
extents.

The tablespace of an index’s segment is either the owner’s default
tablespace or a tablespace specifically named in the CREATE INDEX
statement. You do not have to place an index in the same tablespace as
its associated table. Furthermore, you can improve performance of
queries that use an index by storing an index and its table in different

Format of Index Blocks

OSDoc

The Internal Structure of
Indexes

Schema Objects 5–21

tablespaces located on different disk drives because Oracle can retrieve
both index and table data in parallel. See “User Tablespace Settings and
Quotas” on page 17–6.

Space available for index data is the Oracle block size minus block
overhead, entry overhead, ROWID, and one length byte per value
indexed. The number of bytes required for the overhead of an index
block is operating system dependent.

Additional Information: See your Oracle operating
system–specific documentation for more information about the
overhead of an index block.

When you create an index, Oracle fetches and sorts the columns to be
indexed, and stores the ROWID along with the index value for each
row. Then Oracle loads the index from the bottom up. For example,
consider the statement:

CREATE INDEX emp_ename ON emp(ename);

Oracle sorts the EMP table on the ENAME column. It then loads the
index with the ENAME and corresponding ROWID values in this
sorted order. When it uses the index, Oracle does a quick search
through the sorted ENAME values and then uses the associated
ROWID values to locate the rows having the sought ENAME value.

Though Oracle accepts the keywords ASC, DESC, COMPRESS, and
NOCOMPRESS in the CREATE INDEX command, they have no effect
on index data, which is stored using rear compression in the branch
nodes but not in the leaf nodes.

Oracle uses B*–tree indexes that are balanced to equalize access times
to any row. The theory of B*–tree indexes is beyond the scope of this
manual; for more information you can refer to computer science texts
dealing with data structures. Figure 5 – 7 illustrates the structure of a
B*–tree index.

Oracle7 Server Concepts5–22

KING
MILLER
TURNER

JAMES
JONES

KING
MARTIN

BLAKE
CLARK
FORD

MILLER
SCOTT
SMITH

TURNER
WARD

ADAMS
ALLEN

<KING
KING

BLAKE – ROWID
CLARK – ROWID
FORD – ROWID

<BLAKE
BLAKE
JAMES

Figure 5 – 7 Internal Structure of a B*–Tree Index

The upper blocks (branch blocks) of a B*–tree index contain index data
that points to lower level index blocks. The lowest level index blocks
(leaf blocks) contain every indexed data value and a corresponding
ROWID used to locate the actual row; the leaf blocks are doubly linked.
Indexes in columns containing character data are based on the binary
values of the characters in the database character set.

For a unique index, there is one ROWID per data value. For a
non–unique index, the ROWID is included in the key in sorted order,
so non–unique indexes are sorted by the index key and ROWID. Key
values containing all nulls are not indexed, except for cluster indexes.
Two rows can both contain all nulls and not violate a unique index.

Schema Objects 5–23

The B*–tree structure has the following advantages:

• All leaf blocks of the tree are at the same depth, so retrieval of
any record from anywhere in the index takes approximately the
same amount of time.

• B*–tree indexes automatically stay balanced.

• All blocks of the B*–tree are three–quarters full on the average.

• B*–trees provide excellent retrieval performance for a wide range
of queries, including exact match and range searches.

• Inserts, updates, and deletes are efficient, maintaining key order
for fast retrieval.

• B*–tree performance is good for both small and large tables, and
does not degrade as the size of a table grows.

Clusters

Clusters are an optional method of storing table data. A cluster is a
group of tables that share the same data blocks because they share
common columns and are often used together. For example, the EMP
and DEPT table share the DEPTNO column. When you cluster the EMP
and DEPT tables (see Figure 5 – 8), Oracle physically stores all rows for
each department from both the EMP and DEPT tables in the same data
blocks.

Oracle7 Server Concepts5–24

NEW YORK

Unclustered Tables
Related data stored

apart, taking up
more space

10 DNAME LOC

Cluster Key
(DEPTO) EMPNO ENAME DEPTNO . . .

EMP Table

EMPNO ENAME . . .

20 DNAME LOC

EMPNO ENAME . . .

Clustered Tables
Related data stored

together, more
efficiently

DEPTNO DNAME LOC

DEPT Table

SALES BOSTON

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

ADMIN

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

932
100
1139
1277
1321
1841

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

10
20

SALES
ADMIN

BOSTON
NEW YORK

Figure 5 – 8 Clustered Table Data

Performance
Considerations

Schema Objects 5–25

Because clusters store related rows of different tables together in the
same data blocks, properly used clusters offer two primary benefits:

• Disk I/O is reduced and access time improves for joins of
clustered tables.

• In a cluster, a cluster key value is the value of the cluster key
columns for a particular row. Each cluster key value is stored
only once each in the cluster and the cluster index, no matter
how many rows of different tables contain the value.

Therefore, less storage might be required to store related
table and index data in a cluster than is necessary in
non–clustered table format. For example, notice how each
cluster key (each DEPTNO) is stored just once for many
rows that contain the same value in both the EMP and
DEPT tables.

Clusters can reduce the performance of INSERT statements as
compared with storing a table separately with its own index. This
disadvantage relates to the use of space and the number of blocks that
must be visited to scan a table; because multiple tables have data in
each block, more blocks must be used to store a clustered table than if
that table were stored non–clustered.

To identify data that would be better stored in clustered form than
non–clustered, look for tables that are related via referential integrity
constraints and tables that are frequently accessed together using a join.
If you cluster tables on the columns used to join table data, you reduce
the number of data blocks that must be accessed to process the query;
all the rows needed for a join on a cluster key are in the same block.
Therefore, performance for joins is improved. Similarly, it might be
useful to cluster an individual table. For example, the EMP table could
be clustered on the DEPTNO column to cluster the rows for employees
in the same department. This would be advantageous if applications
commonly process rows department by department.

Like indexes, clusters do not affect application design. The existence of
a cluster is transparent to users and to applications. You access data
stored in a clustered table via SQL just like data stored in a
non–clustered table.

For more information about the performance implications of using
clusters, see Oracle7 Server Tuning.

Format of Clustered
Data Blocks

The Cluster Key

Oracle7 Server Concepts5–26

In general, clustered data blocks have an identical format to
non–clustered data blocks with the addition of data in the table
directory. However, Oracle stores all rows that share the same cluster
key value in the same data block.

When you create a cluster, specify the average amount of space
required to store all the rows for a cluster key value using the SIZE
parameter of the CREATE CLUSTER command. SIZE determines the
maximum number of cluster keys that can be stored per data block.

For example, if each data block has 1700 bytes of available space and
the specified cluster key size is 500 bytes, each data block can
potentially hold rows for three cluster keys. If SIZE is greater than the
amount of available space per data block, each data block holds rows
for only one cluster key value.

Although the maximum number of cluster key values per data block is
fixed by SIZE, Oracle does not actually reserve space for each cluster
key value nor does it guarantee the number of cluster keys that are
assigned to a block. For example, if SIZE determines that three cluster
key values are allowed per data block, this does not prevent rows for
one cluster key value from taking up all of the available space in the
block. If more rows exist for a given key than can fit in a single block,
the block is chained, as necessary.

A cluster key value is stored only once in a data block.

The cluster key is the column, or group of columns, that the clustered
tables have in common. You specify the columns of the cluster key
when creating the cluster. You subsequently specify the same columns
when creating every table added to the cluster.

For each column specified as part of the cluster key (when creating the
cluster), every table created in the cluster must have a column that
matches the size and type of the column in the cluster key. No more
than 16 columns can form the cluster key, and a cluster key value
cannot exceed roughly one–half (minus some overhead) the available
data space in a data block. The cluster key cannot include a LONG or
LONG RAW column.

You can update the data values in clustered columns of a table.
However, because the placement of data depends on the cluster key,
changing the cluster key for a row might cause Oracle to physically
relocate the row. Therefore, columns that are updated often are not
good candidates for the cluster key.

The Cluster Index

Schema Objects 5–27

You must create an index on the cluster key columns after you have
created a cluster. A cluster index is an index defined specifically for a
cluster. Such an index contains an entry for each cluster key value. To
locate a row in a cluster, the cluster index is used to find the cluster key
value, which points to the data block associated with that cluster key
value. Therefore, Oracle accesses a given row with a minimum of two
I/Os (possibly more, depending on the number of levels that must be
traversed in the index).

You must create a cluster index before you can execute any DML
statements (including INSERT and SELECT statements) against the
clustered tables. Therefore, you cannot load data into a clustered table
until you create the cluster index.

Like a table index, Oracle stores a cluster index in an index segment.
Therefore, you can place a cluster in one tablespace and the cluster
index in a different tablespace.

A cluster index is unlike a table index in the following ways:

• Keys that are all null have an entry in the cluster index.

• Index entries point to the first block in the chain for a given
cluster key value.

• A cluster index contains one entry per cluster key value, rather
than one entry per cluster row.

• The absence of a table index does not affect users, but clustered
data cannot be accessed unless there is a cluster index.

If you drop a cluster index, data in the cluster remains but becomes
unavailable until you create a new cluster index. You might want to
drop a cluster index to move the cluster index to another tablespace or
to change its storage characteristics; however, you must re–create the
cluster’s index to allow access to data in the cluster.

Hash Clusters

Hashing is an optional way of storing table data to improve the
performance of data retrieval. To use hashing, you create a hash cluster
and load tables into the cluster. Oracle physically stores the rows of a
table in a hash cluster and retrieves them according to the results of a
hash function.

Oracle uses a hash function to generate a distribution of numeric values,
called hash values, which are based on specific cluster key values. The
key of a hash cluster (like the key of an index cluster) can be a single

How Data Is Stored in
a Hash Cluster

Oracle7 Server Concepts5–28

column or composite key (multiple column key). To find or store a row
in a hash cluster, Oracle applies the hash function to the row’s cluster
key value; the resulting hash value corresponds to a data block in the
cluster, which Oracle then reads or writes on behalf of the issued
statement.

A hash cluster is an alternative to a non–clustered table with an index
or an index cluster. With an indexed table or index cluster, Oracle
locates the rows in a table using key values that Oracle stores in a
separate index.

To find or store a row in an indexed table or cluster, at least two I/Os
must be performed (but often more): one or more I/Os to find or store
the key value in the index, and another I/O to read or write the row in
the table or cluster. In contrast, Oracle uses a hash function to locate a
row in a hash cluster (no I/O is required). As a result, a minimum of
one I/O operation is necessary to read or write a row in a hash cluster.

A hash cluster stores related rows together in the same data blocks.
Rows in a hash cluster are stored together based on their hash value.

Note: In contrast, an index cluster stores related rows of
clustered tables together based on each row’s cluster key value.

When you create a hash cluster, Oracle allocates an initial amount of
storage for the cluster’s data segment. Oracle bases the amount of
storage initially allocated for a hash cluster on the predicted number
and predicted average size of the hash key’s rows in the cluster.

Figure 5 – 9 illustrates data retrieval for a table in a hash cluster as well
as a table with an index. The following sections further explain the
internal operations of hash cluster storage.

Schema Objects 5–29

237 TRIALNO Other Columns . . .

Hash

Cluster Holding the TRAIL Table

Key
Cluster
Key

238

TRIALNO Other Columns . . .

TRIAL Table

I/O
I/O

11103–rowidI/O

TRIALNO Index

SELECT . . . FROM trial
WHERE trialno=11103;

I/O

Several I/Os with
use of index

Perhaps one I/O
with hash cluster

I/O

12917
13021
12981

. . .

. . .

. . .

11028
11021
11103

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

12917
13021
12981
11028
11021
11103

Figure 5 – 9 Hashing vs. Indexing: Data Storage and Information Retrieval

Hash Key Values

Oracle7 Server Concepts5–30

To find or store a row in a hash cluster, Oracle applies the hash function
to the row’s cluster key value. The resulting hash value corresponds to
a data block in the cluster, which Oracle then reads or writes on behalf
of an issued statement. The number of hash values for a hash cluster is
fixed at creation and is determined by the HASHKEYS parameter of
the CREATE CLUSTER command.

The value of HASHKEYS limits the number of unique hash values that
can be generated by the hash function used for the cluster. Oracle
rounds the number you specify for HASHKEYS to the nearest prime
number. For example, setting HASHKEYS to 100 means that for any
cluster key value, the hash function generates values between 0 and 100
(there will be 101 hash values).

Therefore, the distribution of rows in a hash cluster is directly
controlled by the value set for the HASHKEYS parameter. With a larger
number of hash keys for a given number of rows, the likelihood of a
collision (two cluster key values having the same hash value) decreases.
Minimizing the number of collisions is important because overflow
blocks (thus extra I/O) might be necessary to store rows with hash
values that collide.

The maximum number of hash keys assigned per data block is
determined by the SIZE parameter of the CREATE CLUSTER
command. SIZE is an estimate of the total amount of space in bytes
required to store the average number of rows associated with each hash
value. For example, if the available free space per data block is 1700
bytes and SIZE is set to 500 bytes, three hash keys are assigned per data
block.

Note: The importance of the SIZE parameter of hash clusters is
analogous to that of the SIZE parameter for index clusters.
However, with index clusters, SIZE applies to rows with the
same cluster key value instead of the same hash value.

Although the maximum number of hash key values per data block is
determined by SIZE, Oracle does not actually reserve space for each
hash key value in the block. For example, if SIZE determines that three
hash key values are allowed per block, this does not prevent rows for
one hash key value from taking up all of the available space in the
block. If there are more rows for a given hash key value than can fit in a
single block, the block is chained, as necessary.

Note that each row’s hash value is not stored as part of the row;
however, the cluster key value for each row is stored. Therefore, when
determining the proper value for SIZE, the cluster key value must be
included for every row to be stored.

Hash Functions

Using Oracle’s Internal
Hash Function

Specifying the Cluster
Key as the Hash Function

Specifying a
User–Defined Hash
Function

Schema Objects 5–31

A hash function is a function applied to a cluster key value that returns
a hash value. Oracle then uses the hash value to locate the row in the
proper data block of the hash cluster. The job of a hash function is to
provide the maximum distribution of rows among the available hash
values of the cluster. To achieve this goal, a hash function must
minimize the number of collisions.

When you create a cluster, you can use the internal hash function of
Oracle or bypass the use of this function. The internal hash function
allows the cluster key to be a single column or composite key.

Furthermore, the cluster key can be comprised of columns of any
datatype (except LONG and LONG RAW). The internal hash function
offers sufficient distribution of cluster key values among available hash
keys, producing a minimum number of collisions for any type of
cluster key.

In cases where the cluster key is already a unique identifier that is
uniformly distributed over its range, you might want to bypass the
internal hash function and simply specify the column on which to hash.

Instead of using the internal hash function to generate a hash value,
Oracle checks the cluster key value. If the cluster key value is less than
HASHKEYS, the hash value is the cluster key value; however, if the
cluster key value is equal to or greater than HASHKEYS, Oracle
divides the cluster key value by the number specified for HASHKEYS,
and the remainder is the hash value; that is, the hash value is the
cluster key value mod the number of hash keys.

Use the HASH IS parameter of the CREATE CLUSTER command to
specify the cluster key column if cluster key values are distributed
evenly throughout the cluster. The cluster key must be comprised of a
single column that contains only zero scale numbers (integers). If the
internal hash function is bypassed and a non–integer cluster key value
is supplied, the operation (INSERT or UPDATE statement) is rolled
back and an error is returned.

You can also specify any SQL expression as the hash function for a hash
cluster. If your cluster key values are not evenly distributed among the
cluster, you should consider creating your own hash function that more
efficiently distributes cluster rows among the hash values.

For example, if you have a hash cluster containing employee
information and the cluster key is the employee’s home area code, it is
likely that many employees will hash to the same hash value. To
alleviate this problem, you can place the following expression in the
HASH IS clause of the CREATE CLUSTER command:

Allocation of Space for
a Hash Cluster

Oracle7 Server Concepts5–32

MOD((emp.home_area_code + emp.home_prefix + emp.home_suffix), 101)

The expression takes the area code column and adds the phone prefix
and suffix columns, divides by the number of hash values (in this case
101), and then uses the remainder as the hash value. The result is
cluster rows more evenly distributed among the various hash values.

As with other types of segments, the allocation of extents during the
creation of a hash cluster is controlled by the INITIAL, NEXT, and
MINEXTENTS parameters of the STORAGE clause. However, with
hash clusters, an initial portion of space, called the hash table, is
allocated at creation so that all hash keys of the cluster can be mapped,
with the total space equal to SIZE * HASHKEYS. Therefore, initial
allocation of space for a hash cluster is also dependent on the values of
SIZE and HASHKEYS. The larger of (SIZE*HASHKEYS) and that
specified by the STORAGE clause (INITIAL, NEXT, and so on) is used.

Space subsequently allocated to a hash cluster is used to hold the
overflow of rows from data blocks that are already full. For example,
assume the original data block for a given hash key is full. A user
inserts a row into a clustered table such that the row’s cluster key
hashes to the hash value that is stored in a full data block; therefore, the
row cannot be inserted into the root block (original block) allocated for
the hash key. Instead, the row is inserted into an overflow block that is
chained to the root block of the hash key.

Frequent collisions might or might not result in a larger number of
overflow blocks within a hash cluster (thus reducing data retrieval
performance). If a collision occurs and there is no space in the original
block allocated for the hash key, an overflow block must be allocated to
hold the new row. The likelihood of this happening is largely
dependent on the average size of each hash key value and
corresponding data, specified when the hash cluster is created, as
illustrated in Figure 5 – 10.

Schema Objects 5–33

Header

Row hash key = 0
Row hash key = 0

Row hash key = 2

Row hash key = 3

Row hash key = 3

Row hash key = 4

Row hash key = 1

Row hash key = 7

Row hash key = 5

Row hash key = 1

Collision for
these hash
key values

Stored
in an
overflow
block

Size = 160; 12 hash key
values per block.
Smaller rows fit in
remaining space, even
after collisions.

Size = 500; 3 hash key
values per block.
Larger rows cannot
fit in remaining spaces
after collisions.

Hash Keys:
0, 1, 2, 3, 4,
5, 6, 7, 8, 9

Row hash key 0,1,2

Figure 5 – 10 Collisions and Overflow Blocks in a Hash Cluster

If the average size is small and each row has a unique hash key value,
many hash key values can be assigned per data block. In this case, a
small colliding row can likely fit into the space of the root block for the
hash key. However, if the average hash key value size is large or each
hash key value corresponds to multiple rows, only a few hash key
values can be assigned per data block. In this case, it is likely that the
large row will not be able to fit in the root block allocated for the hash
key value and an overflow block is allocated.

Oracle7 Server Concepts5–34

C H A P T E R

6

T

Datatypes 6–1

Datatypes

I am the voice of today, the herald of tomorrow.
...I am the leaden army that conquers the world — I am TYPE.

Frederic William Goudy: The Type Speaks

his chapter discusses the Oracle datatypes, their properties, and
how they map to non–Oracle datatypes. It includes:

• Oracle Datatypes

• ANSI, DB2, and SQL/DS Datatypes

• Data Conversions

Character Datatypes

CHAR Datatype

Oracle7 Server Concepts6–2

Oracle Datatypes

The following sections describe the Oracle datatypes that you can use
in column definitions:

• CHAR

• VARCHAR2

• VARCHAR

• NUMBER

• DATE

• LONG

• RAW

• LONG RAW

• ROWID

• MLSLABEL

The CHAR and VARCHAR2 datatypes store alphanumeric data.
Character data is stored in strings, with byte values corresponding to
the character encoding scheme (generally called a character set or code
page). The database’s character set is established when you create the
database, and never changes. Examples of character sets are 7–bit
ASCII (American Standard Code for Information Interchange),
EBCDIC (Extended Binary Coded Decimal Interchange Code) Code
Page 500, and Japan Extended UNIX. Oracle supports both single–byte
and multi–byte encoding schemes.

The CHAR datatype stores fixed–length character strings. When you
create a table with a CHAR column, you must specify a column length
(in bytes, not characters) between 1 and 255 for the CHAR column
(default is 1). Oracle then guarantees the following:

• When you insert or update a row in the table, the value for the
CHAR column has the fixed length.

• If you give a shorter value, the value is blank–padded to the
fixed length.

• If you give a longer value with trailing blanks, blanks are
trimmed from the value to the fixed length.

• If a value is too large, Oracle returns an error.

VARCHAR2 Datatype

VARCHAR Datatype

How to Choose the
Correct Character
Datatype

Datatypes 6–3

Oracle compares CHAR values using the blank–padded comparison
semantics. See Oracle7 Server SQL Reference for more information on
comparison semantics.

The VARCHAR2 datatype stores variable–length character strings.
When you create a table with a VARCHAR2 column, you specify a
maximum column length (in bytes, not characters) between 1 and 2000
for the VARCHAR2 column. For each row, Oracle stores each value in
the column as a variable–length field (unless a value exceeds the
column’s maximum length and Oracle returns an error). For example,
assume you declare a column VARCHAR2 with a maximum size of 50
characters. In a single–byte character set, if only 10 characters are given
for the VARCHAR2 column value in a particular row, the column in the
row’s row piece only stores the 10 characters (10 bytes), not 50.

Oracle compares VARCHAR2 values using the non–padded
comparison semantics. See Oracle7 Server SQL Reference for more
information on comparison semantics.

The VARCHAR datatype is currently synonymous with the
VARCHAR2 datatype. However, in a future version of Oracle, the
VARCHAR datatype might store variable–length character strings
compared with different comparison semantics. Therefore, use the
VARCHAR2 datatype to store variable–length character strings.

When deciding which datatype to use for a column that will store
alphanumeric data in a table, consider the following points of
distinction:

• Comparison Semantics
Use the CHAR datatype when you require ANSI compatibility in
comparison semantics, that is, when trailing blanks are not
important in string comparisons. Use the VARCHAR2 when
trailing blanks are important in string comparisons.

• Space Usage
To store data more efficiently, use the VARCHAR2 datatype. The
CHAR datatype blank–pads and stores trailing blanks up to a
fixed column length for all column values, while the VARCHAR2
datatype does not blank–pad or store trailing blanks for column
values.

• Future Compatibility
The CHAR and VARCHAR2 datatypes are and will always be
fully supported. At this time, the VARCHAR datatype
automatically corresponds to the VARCHAR2 datatype and is
reserved for future use.

Column Lengths for
Character Datatypes and
NLS Character Sets

NUMBER Datatype

Oracle7 Server Concepts6–4

The National Language Support (NLS) feature of Oracle allows the use
of various character sets for the character datatypes. You should
consider the size of characters when you specify the column length for
character datatypes. For example, some characters require one byte,
some require two bytes, and so on. You must consider this issue when
estimating space for tables with columns that contain character data.
See Oracle7 Server Reference and Oracle7 Server Utilities for more
information about the NLS feature of Oracle.

The NUMBER datatype stores fixed and floating–point numbers.
Numbers of virtually any magnitude can be stored and are guaranteed
portable among different systems operating Oracle, up to 38 digits of
precision. The following numbers can be stored in a NUMBER column:

• positive numbers in the range 1 x 10^–130 to 9.99..9 x 10^125
(with up to 38 significant digits)

• negative numbers from –1 x 10^–130 to 9.99..99 x 10^125 (with
up to 38 significant digits)

• zero

• positive and negative infinity (generated only in import from a
Version 5 database)

For numeric columns you can specify the column as follows:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and
scale (number of digits to right of decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no
scale is specified, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or
less than 38 digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the
precision and scale; this provides extra integrity checking on input.
Table 6 – 1 shows examples of how data would be stored using
different scale factors.

Internal Numeric Format

Datatypes 6–5

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER(*,1) 7456123.9

7,456,123.89 NUMBER(9) 7456124

7,456,123.89 NUMBER(9,2) 7456123.89

7,456,123.89 NUMBER(9,1) 7456123.9

7,456,123.89 NUMBER(6) (not accepted, exceeds precision)

7,456,123.89 NUMBER(7,–2) 7456100

Table 6 – 1 How Scale Factors Affect Numeric Data Storage

If you specify a negative scale, Oracle rounds the actual data to the
specified number of places to the left of the decimal point. For example,
specifying (7,–2) means Oracle should round to the nearest hundredths,
as shown in Table 6 – 1.

For input and output of numbers, the standard Oracle default decimal
character is a period, as in the number “1234.56”. (The decimal is the
character that separates the integer and decimal parts of a number.)
You can change the default decimal character with the parameter
NLS_NUMERIC_CHARACTERS. You can also change it for the
duration of a session with the ALTER SESSION statement. To enter
numbers that do not use the current default decimal character, use the
TO_NUMBER function.

Oracle stores numeric data in variable–length format. Each value is
stored in scientific notation, with one byte used to store the exponent
and up to 20 bytes to store the mantissa. (However, there are only 38
digits of precision.) Oracle does not store leading and trailing zeros. For
example, the number 412 is stored in a format similar to 4.12 x 10^2,
with one byte used to store the exponent (2) and two bytes used to
store the three significant digits of the mantissa (4, 1, 2).

Taking this into account, the column data size for a particular numeric
data value NUMBER (p), where p is the precision of a given value (scale
has no effect), can be calculated using the following formula:

 1 byte (exponent)

 FLOOR(p/2)+1 bytes (mantissa)

+ 1 byte (only for a negative number where

the number of significant digits is

less than 38)

number of bytes of data

DATE Datatype

Using Julian Dates

Oracle7 Server Concepts6–6

Zero and positive and negative infinity (only generated on import from
Version 5 Oracle databases) are stored using unique representations;
zero and negative infinity each require one byte, while positive infinity
requires two bytes.

The DATE datatype stores point–in–time values (dates and times) in a
table. The DATE datatype stores the year (including the century), the
month, the day, the hours, the minutes, and the seconds (after
midnight). Oracle can store dates ranging from Jan 1, 4712 BC through
Dec 31, 4712 AD. Unless you specifically specify BC, AD date entries
are the default.

Oracle uses its own internal format to store dates. Date data is stored in
fixed–length fields of seven bytes each, corresponding to century, year,
month, day, hour, minute, and second.

For input and output of dates, the standard Oracle default date format
is DD–MON–YY, as below:

’13–NOV–92’

You can change this default date format for an instance with the
parameter NLS_DATE_FORMAT. You can also change it during a user
session with the ALTER SESSION statement. To enter dates that are not
in standard Oracle date format, use the TO_DATE function with a
format mask:

TO_DATE (’November 13, 1992’, ’MONTH DD, YYYY’)

Note: If you use the standard date format DD–MON–YY, YY
indicates the year in the 20th century (for example, 31–DEC–92
is December 31, 1992). If you want to indicate years in any
century other than the 20th century, use a different format
mask, as shown above.

Oracle stores time in 24–hour format — HH:MI:SS. By default, the time
in a date field is 12:00:00 A.M. (midnight) if no time portion is entered.
In a time–only entry, the date portion defaults to the first day of the
current month. To enter the time portion of a date, the TO_DATE
function must be used with a format mask indicating the time portion,
as in

INSERT INTO birthdays (bname, bday) VALUES

(’ANDY’,TO_DATE(’13–AUG–66 12:56 A.M.’,’DD–MON–YY HH:MI A.M.’));

Julian dates allow continuous dating from a common reference. (The
reference is 01–01–4712 years B.C., so current dates are somewhere in
the 2.4 million range.) A Julian date is nominally a non–integer, the
fractional part being a portion of a day. Oracle uses a simplified

Date Arithmetic

LONG Datatype

Uses of LONG Data

Restrictions on LONG
and LONG RAW Data

Datatypes 6–7

approach that results in integer values. Julian dates can be calculated
and interpreted differently; the calculation method used by Oracle
results in a seven–digit number (for dates most often used), such as
2449086 for 08–APR–93.

The format mask “J” can be used with date functions (TO_DATE or
TO_CHAR) to convert date data into Julian dates. For example, the
following query returns all dates in Julian date format:

SELECT TO_CHAR (hiredate, ’J’) FROM emp;

You must use the TO_NUMBER function if you want to use Julian
dates in calculations. You can use the TO_DATE function to enter Julian
dates:

INSERT INTO emp (hiredate) VALUES (TO_DATE(2448921, ’J’));

Oracle date arithmetic takes into account the anomalies of the
calendars used throughout history. For example, the switch from the
Julian to the Gregorian calendar, 15–10–1582, eliminated the previous
10 days (05–10–1582 through 14–10–1582). The year 0 does not exist.

You can enter missing dates into the database, but they are ignored in
date arithmetic and treated as the next “real” date. For example, the
next day after 04–10–1582 is 15–10–1582, and the day following
05–10–1582 is also 15–10–1582.

Note: This discussion of date arithmetic may not apply to all
countries’ date standards (such as those in Asia).

Columns defined as LONG can store variable–length character data
containing up to two gigabytes of information. LONG data is text data
that is to be appropriately converted when moving among different
systems. Also see the next section for information about the LONG
RAW datatype.

LONG datatype columns are used in the data dictionary to store the
text of view definitions. You can use LONG columns in SELECT lists,
SET clauses of UPDATE statements, and VALUES clauses of INSERT
statements.

Although LONG (and LONG RAW; see below) columns have many
uses, there are some restrictions on their use:

• Only one LONG column is allowed per table.

• LONG columns cannot be indexed.

• LONG columns cannot appear in integrity constraints.

RAW and LONG RAW
Datatypes

Oracle7 Server Concepts6–8

• LONG columns cannot be used in WHERE, GROUP BY, ORDER
BY, CONNECT BY clauses, or with the DISTINCT operator in
SELECT statements.

• LONG columns cannot be referenced by SQL functions (such as
SUBSTR or INSTR).

• LONG columns cannot be used in the SELECT list of a subquery
or queries combined by set operators (UNION, UNION ALL,
INTERSECT, or MINUS).

• LONG columns cannot be used in expressions.

• LONG columns cannot be referenced when creating a table with a
query (CREATE TABLE . . . AS SELECT . . .) or when inserting into
a table (or view) with a query (INSERT INTO . . . SELECT . . .).

• A variable or argument of a PL/SQL program unit cannot be
declared using the LONG datatype.

• Variables in database triggers cannot be declared using the
LONG or LONG RAW datatypes.

• References to :NEW and :OLD in database triggers cannot be
used with LONG or LONG RAW columns.

The RAW and LONG RAW datatypes are used for data that is not to be
interpreted (not converted when moving data between different
systems) by Oracle. These datatypes are intended for binary data or
byte strings. For example, LONG RAW can be used to store graphics,
sound, documents, or arrays of binary data; the interpretation is
dependent on the use.

RAW is a variable–length datatype like the VARCHAR2 character
datatype, except that SQL*Net (which connects user sessions to the
instance) and the Import and Export utilities do not perform character
conversion when transmitting RAW or LONG RAW data. In contrast,
SQL*Net and Import/Export automatically convert CHAR,
VARCHAR2, and LONG data between the database character set to the
user session character set (set by the NLS_LANGUAGE parameter of
the ALTER SESSION command), if the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and
from CHAR data, the binary data is represented in hexadecimal form
with one hexadecimal character representing every four bits of RAW
data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as ’CB’.

LONG RAW data cannot be indexed, but RAW data can be indexed.

ROWIDs and the
ROWID Datatype

Datatypes 6–9

Every row in a non–clustered table of an Oracle database is assigned a
unique ROWID that corresponds to the physical address of a row’s row
piece (the initial row piece if the row is chained among multiple row
pieces). In the case of clustered tables, rows in different tables that are
in the same data block can have the same ROWID.

Each table in an Oracle database internally has a pseudocolumn named
ROWID. This pseudocolumn is not evident when listing the structure
of a table by executing a SELECT * FROM . . . statement, or a
DESCRIBE . . . statement using SQL*Plus. However, each row’s address
can be retrieved with a SQL query using the reserved word ROWID as
a column name:

SELECT ROWID, ename FROM emp;

ROWIDs use a binary representation of the physical address for each
row selected. When queried using SQL*Plus or Server Manager, the
binary representation is converted to a VARCHAR2/hexadecimal
representation. The above query might return the following row
information:

ROWID ENAME

–––––––––––––––––– ––––––––––

00000DD5.0000.0001 SMITH

00000DD5.0001.0001 ALLEN

00000DD5.0002.0001 WARD

As shown above, a ROWID’s VARCHAR2/hexadecimal representation
is in a three–piece format: block.row.file.

• The data block that contains the row (block DD5 in the
example). Block numbers are relative to their datafile, not
tablespace. Therefore, two rows with identical block numbers
could reside in two different datafiles of the same tablespace.

• The row in the block that contains the row (rows 0, 1, 2 in the
example). Row numbers of a given block always start with 0.

• The datafile that contains the row (file 1 in the example). The
first datafile of every database is always 1, and file numbers are
unique within a database.

A row’s assigned ROWID remains unchanged unless the row is
exported and imported (using the IMPORT and EXPORT utilities).
When you delete a row from a table (and then commit the
encompassing transaction), the deleted row’s associated ROWID can be
assigned to a row inserted in a subsequent transaction.

How ROWIDs Are Used

Examples of Using
ROWIDs

Oracle7 Server Concepts6–10

You cannot set the value of the pseudocolumn ROWID in INSERT or
UPDATE statements. Oracle uses the ROWIDs in the pseudocolumn
ROWID internally for various operations as described in the following
section. Though you can reference ROWIDs in the pseudocolumn
ROWID like other table columns (used in SELECT lists and WHERE
clauses), ROWIDs are not stored in the database, nor are they database
data.

ROWIDs and Non–Oracle Databases Oracle database applications can
be executed against non–Oracle database servers using SQL*Connect or
the Oracle Open Gateway. In such cases, the binary format of ROWIDs
varies according to the characteristics of the non–Oracle system.
Furthermore, no standard translation to VARCHAR2/hexadecimal
format is available. Programs can still use the ROWID datatype;
however, they must use a non–standard translation to hexadecimal
format of length up to 256 bytes. Refer to the relevant manual for OCIs
or Precompilers for further details on handling ROWIDs with
non–Oracle systems.

Oracle uses ROWIDs internally for the construction of indexes. Each
key in an index is associated with a ROWID that points to the
associated row’s address for fast access.

End–users and application developers can also use ROWIDs for several
important uses:

• ROWIDs are the fastest means of accessing particular rows.

• ROWIDs can be used to see how a table is organized.

• ROWIDs are unique identifiers for rows in a given table.

Before you use ROWIDs in DML statements, they should be verified
and guaranteed not to change; the intended rows should be locked so
they cannot be deleted. Under some circumstances, requesting data
with an invalid ROWID could cause a statement to fail.

You can also create tables with columns defined using the ROWID
datatype. For example, you can define an exception table with a
column of datatype ROWID to store the ROWIDs of rows in the
database that violate integrity constraints. Columns defined using the
ROWID datatype behave like other table columns; values can be
updated, and so on. Each value in a column defined as datatype
ROWID requires six bytes to store pertinent column data.

Using some group functions with ROWID, you can see how data is
internally stored in an Oracle database.

The MLSLABEL
Datatype

Datatypes 6–11

Use the function SUBSTR to break the data in ROWID into its three
components (file, block, and row). For example:

SELECT ROWID, SUBSTR(ROWID,15,4) ”FILE”,

SUBSTR(ROWID,1,8) ”BLOCK”,

SUBSTR(ROWID,10,4) ”ROW”

FROM products;

 ROWID FILE BLOCK ROW

–––––––––––––––––– –––– –––––––– ––––

00000DD5.0000.0001 0001 00000DD5 0000

00000DD5.0001.0001 0001 00000DD5 0001

00000DD5.0002.0001 0001 00000DD5 0002

ROWIDs can be useful for revealing information about the physical
storage of a table’s data. For example, if you are interested in the
physical location of a table’s rows (such as for table striping), the
following query tells how many datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,15,4))) ”FILES” FROM tablename ;

FILES

––––––––

2

For more information on how to use ROWIDs, refer to the Oracle7
Server SQL Reference, the PL/SQL User’s Guide and Reference, Oracle7
Server Tuning, and other books that document Oracle tools and utilities.

Trusted Oracle provides one additional datatype: the MLSLABEL
datatype. You can declare columns of the MLSLABEL datatype in
standard Oracle, as well as in Trusted Oracle, for compatibility with
Trusted Oracle applications.

The MLSLABEL datatype is used to store the binary format of an
operating system label. The maximum width of a column declared as
MLSLABEL is 255 bytes.

MLSLABEL data is stored as a variable–length tag (two to five bytes, in
which the first byte indicates length) that maps to a binary label in the
data dictionary. The reason that MLSLABEL data is stored as a
representative tag instead of the binary label itself is that binary
operating system labels can be very long. Given that a label is stored
with every row in the database (in the ROWLABEL column), storing
many large labels can consume a lot of space. Storing a representative
tag instead of a label is more space efficient.

Any labels that are valid on your operating system can be inserted into
an MLSLABEL column. When you insert a label into an MLSLABEL

The ALL_LABELS Data
Dictionary View

The ROWLABEL Column

Summary of Oracle
Datatype Information

Oracle7 Server Concepts6–12

column, Trusted Oracle implicitly converts the data into the binary
format of the label.

The following sections further describe this datatype and the
ROWLABEL pseudocolumn. If you are using Trusted Oracle, also see
the Trusted Oracle7 Server Administrator’s Guide for more information.

The ALL_LABELS data dictionary view lists all of the labels ever
stored in the database, including the values of DBHIGH and DBLOW.
Any label ever stored in an MLSLABEL column (including the
ROWLABEL column) is automatically added to this view.

Note that this view does not necessarily contain all labels that are valid
in the database, since any valid operating system label, in any valid
format, is a valid label within Trusted Oracle. Also note that this view
may contain labels that are invalid within the database (if those labels
were once used in the database, but are no longer valid).

Oracle automatically appends the ROWLABEL column to each Trusted
Oracle table at table creation. This column contains a label of the
MLSLABEL datatype for every row in the table.

In OS MAC mode, given that a table can contain rows at one label only,
the values in this column are always uniform within a table (and within
a single database).

In DBMS MAC mode, the values in this column can range within a
single table from DBHIGH to DBLOW (within any constraints defined
for that table).

For quick reference, Table 6 – 2 summarizes the important information
about each Oracle datatype.

Datatypes 6–13

Data Type Description Column Length (bytes)

CHAR (size) Fixed–length character
data of length size.

Fixed for every row in the table (with trailing
blanks); maximum size is 255 bytes per row,
default size is one byte per row. Consider the
character set that is used before setting size.
(Are you using a one–byte or multi–byte
character set?)

VARCHAR2 (size) Variable–length character
data. A maximum size
must be specified.

Variable for each row, up to 2000 bytes per
row. Consider the character set that is used
before setting size. (Are you using a one–
byte or multi–byte character set?)

NUMBER (p, s) Variable–length numeric
data. Maximum precision p
and/or scale s is 38.

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

DATE Fixed–length date and
time data, ranging from
January 1, 4712 B.C. to
December 31, 4712 A. D.
Default format: DD–MON–
YY.

Fixed at seven bytes for each row in the
table.

LONG Variable–length character
data.

Variable for each row in the table, up to
2^31 – 1 bytes, or two gigabytes, per row.

RAW (size) Variable–length raw binary
data. A maximum size
must be specified.

Variable for each row in the table, up to 255
bytes per row.

LONG RAW Variable–length raw binary
data.

Variable for each row in the table, up to
2^31 – 1 bytes, or two gigabytes, per row.

ROWID Binary data representing
row addresses.

Fixed at six bytes for each row in the table.

MLSLABEL Variable–length binary
data representing operat-
ing system labels.

Variable for each row in the table, ranging
from two to five bytes per row.

Table 6 – 2 Summary of Oracle Datatype Information

Oracle7 Server Concepts6–14

ANSI, DB2, and SQL/DS Datatypes

In addition to Oracle datatypes, columns of tables in an Oracle
database can be defined using ANSI, DB2, and SQL/DS datatypes.
However, Oracle internally converts such datatypes to Oracle
datatypes.

ANSI SQL Datatype Oracle Datatype

CHARACTER (n), CHAR(n) CHAR(n)

NUMERIC (p, s), DECIMAL (p, s) DEC (p, a) NUMBER (p, s)

INTEGER, INT, SMALLINT NUMBER (38)

FLOAT (p), REAL, DOUBLE PRECISION NUMBER

CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR(n)

Table 6 – 3 ANSI Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR(n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p, s) NUMBER (p, s)

INTEGER, SMALLINT NUMBER (38)

FLOAT (p) NUMBER

DATE DATE

Table 6 – 4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

The IBM products SQL/DS and DB2 datatypes TIME, TIMESTAMP,
GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC have no
corresponding Oracle datatype, and cannot be used. The TIME and
TIMESTAMP datatypes are subcomponents of the Oracle datatype
DATE.

The ANSI datatypes NUMERIC, DECIMAL, and DEC can specify only
fixed–point numbers. For these datatypes, s defaults to 0.

Rule 1: Assignments

Datatypes 6–15

Data Conversion

In some cases, Oracle supplies data of one datatype where it expects
data of a different datatype. This is allowed when Oracle can
automatically convert the data to the expected datatype using one of
the following functions:

• TO_NUMBER()

• TO_CHAR()

• TO_DATE()

• TO_LABEL()

• CHARTOROWID()

• ROWIDTOCHAR()

• HEXTOCHAR()

• CHARTOHEX()

Implicit datatype conversions work according to the rules explained in
the following two sections.

Note: If you are using Trusted Oracle, see the Trusted Oracle7
Server Administrator’s Guide for additional information
involving data conversions and the MLSLABEL and RAW
MLSLABEL datatypes.

For assignments, Oracle can automatically convert the following:

• VARCHAR2 or CHAR to NUMBER

• NUMBER to VARCHAR2

• VARCHAR2 or CHAR to DATE

• DATE to VARCHAR2

• VARCHAR2 or CHAR to ROWID

• ROWID to VARCHAR2

• VARCHAR2 or CHAR to LABEL

• LABEL to VARCHAR2

• VARCHAR2 or CHAR to HEX

• HEX to VARCHAR2

The assignment succeeds if Oracle can convert the datatype of the
value used in the assignment to that of the assignment’s target.

Rule 2: Expression
Evaluation

Oracle7 Server Concepts6–16

Note: For the examples in the following list, assume a package
with a public variable and a table declared as in the following
statements:

var1 CHAR(5);

CREATE TABLE table1 (col1 NUMBER);

• variable := expression

The datatype of expression must be either be the same as or
convertible to the datatype of variable. For example, Oracle
automatically converts the data provided in the following
assignment within the body of a stored procedure:

VAR1 := 0

• INSERT INTO table VALUES (expression1, expression2, ...)

The datatypes of expression1, expression2, and so on, must either
be the same as or convertible to the datatypes of the
corresponding columns in table. For example, Oracle
automatically converts the data provided in the following
INSERT statement for TABLE1 (see table definition above):

INSERT INTO table1 VALUES (’19’);

• UPDATE table SET column = expression

The datatype of expression must either be the same as or
convertible to the datatype of column. For example, Oracle
automatically converts the data provided in the following
UPDATE statement issued against TABLE1:

UPDATE table1 SET col1 = ’30’;

• SELECT column INTO variable FROM table

The datatype of column must either be the same as or convertible
to the datatype of variable. For example, Oracle automatically
converts data selected from the table before assigning it to the
variable in the following statement:

SELECT col1 INTO var1 FROM table1 WHERE col1 = 30;

For expression evaluation, Oracle can automatically convert the
following:

• VARCHAR2 or CHAR to NUMBER

• VARCHAR2 or CHAR to DATE

Datatypes 6–17

Some common types of expressions follow:

• Simple expressions, such as the following:

comm + ’500’

• Boolean expressions, such as the following:

bonus > sal / ’10’

• Function and procedure calls, such as the following:

MOD (counter, ’2’)

• WHERE clause conditions, such as the following:

WHERE hiredate = ’01–JAN–91’

In general, Oracle uses the rule for expression evaluation when a
datatype conversion is needed in places not covered by the rule for
assignment conversions.

In assignments of the form

variable := expression

Oracle first evaluates expression using the conversions covered by Rule
2; expression can be simple or complex. If it succeeds, expression results
in a single value and datatype. Then, Oracle tries to assign this value to
the assignment’s target using Rule 1.

CHAR to NUMBER conversions only succeed if the character string
represents a valid number. CHAR to DATE conversions only succeed if
the character string has the default format ’DD–MON–YY’.

Oracle7 Server Concepts6–18

C H A P T E R

7

T

Data Integrity 7–1

Data Integrity

Does one’s integrity ever lie in what he is not able to do?

Flannery O’Connor: Wise Blood

his chapter explains how to enforce the business rules associated
with your database and prevent the entry of invalid information into
tables using integrity constraints. The chapter includes:

• Definition of Data Integrity

• An Introduction to Integrity Constraints

• Types of Integrity Constraints

• The Mechanisms of Constraint Checking

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for more information about integrity constraints
in that environment.

Types of Data Integrity

Nulls

Unique Column Values

Oracle7 Server Concepts7–2

Definition of Data Integrity

It is important that data adhere to a predefined set of rules, as
determined by the database administrator or application developer. As
an example of data integrity, consider the tables EMP and DEPT and
the business rules for the information in each of the tables, as
illustrated in Figure 7 – 1.

Table DEPT

EMPNO ENAME SAL COMM DEPTNO

Table EMP

DEPNO DNAME LOC

Each row must have a value
for the ENAME column

Each value in the DNAME
column must be unique

Each value in the
DEPTNO column
must match a value in
the DEPTNO column
of the DEPT table

Each row must have a value
for the EMPO column, and
the value must be unique

Each value in the SAL column
must be less than 10,000

. . . Other Columns . . .

20
30

RESEARCH
SALES

DALLAS
CHICAGO

6666
7329
7499
7521

MULDER
SMITH
ALLEN
WARD

5500.00
9000.00
7500.00
5000.00

100.00
200.00
400.00

20
20
30
30

7566 JONES 2975.00 30

Figure 7 – 1 Examples of Data Integrity

Note that certain columns of each table have specific rules that
constrain the data contained within them.

The following types of rules are applied to tables and enable you to
enforce different types of data integrity.

A rule defined on a single column that allows or disallows inserts or
updates of rows containing a null for the column.

A rule defined on a column (or set of columns) that allows only the
insert or update of a row containing a unique value for the column (or
set of columns).

Primary Key Values

Referential Integrity

Complex Integrity
Checking

How Oracle Enforces
Data Integrity

Integrity Constraints

Data Integrity 7–3

A rule defined on a column (or set of columns) so that each row in the
table can be uniquely identified by the values in the column (or set of
columns).

A rule defined on a column (or set of columns) in one table that allows
the insert or update of a row only if the value for the column or set of
columns (the dependent value) matches a value in a column of a
related table (the referenced value).

Referential integrity also includes the rules that dictate what types of
data manipulation are allowed on referenced values and how these
actions affect dependent values. The rules associated with referential
integrity include:

A referential integrity rule that disallows the
update or deletion of referenced data.

When referenced data is updated or deleted, all
associated dependent data is set to NULL.

When referenced data is updated or deleted, all
associated dependent data is set to a default value.

When referenced data is updated, all associated
dependent data is correspondingly updated; when
a referenced row is deleted, all associated
dependent rows are deleted.

A user–defined rule for a column (or set of columns) that allows or
disallows inserts, updates, or deletes of a row based on the value it
contains for the column (or set of columns).

Oracle allows you to define and enforce each type of the data integrity
rules defined in the previous section. Most of these rules are easily
defined using integrity constraints.

An integrity constraint is a declarative method of defining a rule for a
column of a table. Oracle supports the following integrity constraints:

• NOT NULL integrity constraints for the rules associated with
nulls in a column

• UNIQUE key integrity constraints for the rule associated with
unique column values

• PRIMARY KEY integrity constraints for the rule associated with
primary identification values

Restrict

Set to Null

Set to Default

Cascade

Database Triggers

Oracle7 Server Concepts7–4

• FOREIGN KEY integrity constraints for the rules associated with
referential integrity. Oracle currently supports the use of
FOREIGN KEY integrity constraints to define the referential
integrity actions, including

– update and delete RESTRICT

– delete CASCADE

• CHECK integrity constraints for complex integrity rules

Other referential integrity actions not included on this list can be
defined using database triggers (see the following section).

Note: You cannot enforce referential integrity using declarative
integrity constraints if child and parent tables are on different
nodes of a distributed database. However, you can enforce
referential integrity in a distributed database using database
triggers (see next section).

Oracle also allows you to enforce integrity rules with a non–declarative
approach using database triggers (stored database procedures
automatically invoked on insert, update, or delete operations). While
database triggers allow you to define and enforce any type of integrity
rule, it is strongly recommended that you use database triggers only in
the following situations:

• to enforce referential integrity when a required referential
integrity rule cannot be enforced using the integrity constraints
listed above: update CASCADE, update and delete SET NULL,
update and delete SET DEFAULT

• to enforce referential integrity when child and parent tables are
on different nodes of a distributed database

• to enforce complex business rules not definable using integrity
constraints

For more information and examples of database triggers used to
enforce data integrity, see Chapter 15, “Database Triggers”.

Advantages of
Integrity Constraints

Declarative Ease

Data Integrity 7–5

An Introduction to Integrity Constraints

Oracle uses integrity constraints to prevent invalid data entry into the
base tables of the database. You can define integrity constraints to
enforce the business rules that are associated with the information in a
database. If any of the results of a DML statement execution violate an
integrity constraint, Oracle rolls back the statement and returns an
error.

Note: Operations on views (and synonyms for tables) are
subject to the integrity constraints defined on the underlying
base tables.

For example, assume that you define an integrity constraint for the SAL
column of the EMP table. This integrity constraint enforces the rule that
no row in this table can contain a numeric value greater than 10,000 in
this column. If an INSERT or UPDATE statement attempts to violate
this integrity constraint, Oracle rolls back the statement and returns an
informative error.

The integrity constraints implemented in Oracle fully comply with the
standards set forth by ANSI X3.135–1989 and ISO 9075–1989.

Integrity constraints are not the only way to enforce data integrity rules
on the data of your database. You can also

• enforce business rules in the code of a database application

• use stored procedures to completely control access to data

• enforce business rules using triggered stored database
procedures (see Chapter 15, “Database Triggers”)

The following section describes some of the advantages that integrity
constraints have over these other alternatives.

Because you define integrity constraints using SQL commands, when
you define or alter a table, no programming is required. Therefore, they
are easy to write, eliminate programming errors, and Oracle controls
their functionality. For these reasons, declarative integrity constraints
are preferable to application code and database triggers. The
declarative approach is also better than using stored procedures
because, unlike the stored procedure solution to data integrity by
controlled data access, integrity constraints do not eliminate the
flexibility of ad hoc data access.

Centralized Rules

Maximum Application
Development
Productivity

Immediate User Feedback

Superior Performance

Flexibility for Data Loads
and Identification of
Integrity Violations

The Performance Cost
of Integrity Constraints

Oracle7 Server Concepts7–6

Integrity constraints are defined for tables (not an application) and
stored in the data dictionary. Therefore, the data entered by any
application must adhere to the same integrity constraints associated
with a table. By moving business rules from application code to
centralized integrity constraints, the tables of a database are guaranteed
to contain valid data, no matter which database application
manipulates the information. Stored procedures cannot provide the
same advantage of centralized rules stored with a table, and although
database triggers can provide this benefit, the complexity of
implementation is far greater than the declarative approach used for
integrity constraints.

If a business rule enforced by an integrity constraint changes, the
administrator need only change that integrity constraint and all
applications automatically adhere to the modified constraint.
Alternatively, if a business rule is enforced by the code of each database
application, developers must modify all application source code and
recompile, debug, and test the modified applications.

Because Oracle stores specific information about each integrity
constraint in the data dictionary, you can design database applications
to use this information to provide immediate user feedback about
integrity constraint violations, even before Oracle executes and checks
the SQL statement. For example, a SQL*Forms application can use
integrity constraint definitions stored in the data dictionary to check for
violations as values are entered into the fields of a form, even before
the application issues a statement.

Because the semantics of integrity constraint declarations are clearly
defined, performance optimizations are implemented for each specific
declarative rule. The Oracle query optimizer can use declarations to
learn more about data to improve overall query performance. (Also,
taking integrity rules out of application code and database triggers
guarantees that checks are only done when necessary.)

Integrity constraints can be temporarily disabled so that large amounts
of data can be loaded without the overhead of constraint checking.
When the data load is complete, you can easily enable the integrity
constraints, and you can automatically report any new rows that
violate integrity constraints to a separate exceptions table.

The advantages of enforcing data integrity rules do not come without
some loss in performance. In general, the “cost” of including an
integrity constraint is, at most, the same as executing a SQL statement
that evaluates the constraint.

NOT NULL Integrity
Constraints

Data Integrity 7–7

Types of Integrity Constraints

The integrity constraints that you can use to impose restrictions on the
input of column values can be of the following types:

• NOT NULL constraints

• UNIQUE key constraints

• PRIMARY KEY constraints

• FOREIGN KEY (referential) constraints

• CHECK constraints

The following sections explain each type of integrity constraint in
detail. The information in each section includes the following:

• the rule enforced by the constraint

• an example of the constraint

• recommendations for appropriate use of the constraint

• other important information about the constraint

By default, all columns in a table allow nulls (the absence of a value). A
NOT NULL constraint requires that no nulls be allowed in a column of
a table. For example, you can define a NOT NULL constraint to require
that a value be input in the ENAME column for every row of the EMP
table.

Figure 7 – 2 illustrates a NOT NULL integrity constraint.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

NOT NULL Constraint

Absence of NOT
(no row may contain a null
value for this column)

NULL Constraint
(any row can contain a
null for this column)

Table EMP

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP_SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Figure 7 – 2 NOT NULL Integrity Constraints

UNIQUE Key Integrity
Constraints

Unique Keys

Oracle7 Server Concepts7–8

A UNIQUE key integrity constraint requires that no two rows of a table
have duplicate values in a specified column or set of columns.

For example, consider the DEPT table in Figure 7 – 3. A UNIQUE key
constraint is defined on the DNAME column to disallow rows with
duplicate department names.

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a value
in the constraint’s column)

This row violates the UNIQUE key constraint,
because “SALES” is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW YORK
BOSTON

50

60

SALES NEW YORK

BOSTON

Figure 7 – 3 A UNIQUE Key Constraint

The column (or set of columns) included in the definition of the
UNIQUE key constraint is called the unique key. The term “unique key”
is often incorrectly used as a synonym for the terms “UNIQUE key
constraint” or “UNIQUE index”; however, note that the term “key”
refers only to the list of columns used in the definition of the integrity
constraint.

If the UNIQUE key constraint is comprised of more than one column,
that group of columns is said to be a composite unique key. For
example, in Figure 7 – 4, the CUSTOMER table has a UNIQUE key
constraint defined on the composite unique key: the AREA and
PHONE columns.

UNIQUE Key Constraints
and Indexes

Combining UNIQUE Key
and NOT NULL Integrity
Constraints

Data Integrity 7–9

INSERT
INTO

CUSTNO CUSTNAME AREA PHONE

Table CUSTOMER

. . . Other Columns . . .

Composite UNIQUE Key Constraint
(no row may duplicate a set
of values in the key)

This row violates the UNIQUE key constraint,
because “415/506–7000” is already present
in another row; therefore, it is not allowed in
the table.

This row is allowed because a null value is
entered for the AREA column; however, if a
NOT NULL constraint is also defined on the
AREA column, then this row is not allowed.

230
245
257

OFFICE SUPPLIES
ORACLE CORP
INTERNATIONAL SYSTEMS

303
415
303

506–7000
505–7000
341–8100

268

270

AEA CONSTRUCTION

WW MANUFACTURING

415 506–7000

506–7000

Figure 7 – 4 A Composite UNIQUE Key Constraint

This UNIQUE key constraint allows you to enter an area code and
phone number any number of times, but the combination of a given
area code and given phone number cannot be duplicated in the table.
This eliminates unintentional duplication of a phone number.

Oracle enforces unique integrity constraints with indexes. In
Figure 7 – 4, Oracle enforces the UNIQUE key constraint by implicitly
creating a unique index on the composite unique key. Because Oracle
enforces UNIQUE key constraints using indexes, composite UNIQUE
key constraints are limited to the same limitations imposed on
composite indexes: up to 16 columns can constitute a composite
unique key, and the total size (in bytes) of a key value cannot exceed
approximately half the associated database’s block size.

Notice in the examples of the previous section that UNIQUE key
constraints allow the input of nulls unless you also define NOT NULL
constraints for the same columns. In fact, any number of rows can
include nulls for columns without NOT NULL constraints because
nulls are not considered equal. A null in a column (or in all columns of
a composite UNIQUE key) always satisfies a UNIQUE key constraint.

PRIMARY KEY
Integrity Constraints

Primary Keys

Oracle7 Server Concepts7–10

It is common to define unique keys on columns with NOT NULL
integrity constraints. This combination forces the user to input values
in the unique key; this combination of data integrity rules eliminates
the possibility that any new row’s data will ever risk conflicting with
an existing row’s data.

Note: Because of the search mechanism for UNIQUE
constraints on more than one column, you cannot have
identical values in the non–null columns of a partially null
composite UNIQUE key constraint.

Each table in the database can have at most one PRIMARY KEY
constraint. The values in the group of one or more columns subject to
this constraint constitute the unique identifier of the row. In effect, each
row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint
guarantees that both of the following are true:

• No two rows of a table have duplicate values in the specified
column or set of columns.

• The primary key columns do not allow nulls (that is, a value
must exist for the primary key columns in each row).

The column (or set of columns) included in the definition of a table’s
PRIMARY KEY integrity constraint is called the primary key. Although
it is not required, every table should have a primary key so that

• each row in the table can be uniquely identified

• no duplicate rows exist in the table

Figure 7 – 5 illustrates a PRIMARY KEY constraint in the DEPT table
and examples of rows that the constraint prevents from entering the
table.

PRIMARY KEY
Constraints and Indexes

Referential Integrity
and FOREIGN KEY
(Referential) Integrity
Constraints

Data Integrity 7–11

INSERT
INTO

20 MARKETING

FINANCE

DALLAS

NEW YORK

Table DEPT
DEPNO DNAME LOC

Primary Key
(no row may duplicate a value in the
key and no null values are allowed)

This row is not allowed because it contains
a null value for the primary key.

This row is not allowed because “20” duplicates
an exising value in the primary key.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

Figure 7 – 5 A Primary Key Constraint

Oracle enforces all PRIMARY KEY constraints using indexes. In the
previous example, the primary key constraint created for the DEPTNO
column is enforced by

• the implicit creation of a unique index on that column

• the implicit creation of a NOT NULL constraint for that column

Because Oracle enforces primary key constraints using indexes,
composite primary key constraints are limited to 16 columns, which is
the same limitation imposed on composite indexes. The name of the
index is the same as the name of the constraint. Also, you can specify
the storage options for the index by including the ENABLE clause in
the CREATE TABLE or ALTER TABLE statement used to create the
constraint.

Because tables of a relational database can be related by common
columns, the rules that govern the relationship of the columns must be
maintained. Referential integrity rules guarantee that these
relationships are preserved.

There are several terms associated with referential integrity constraints:

The column or set of columns included in the
definition of the referential integrity constraint that
reference a referenced key (see the following).

Foreign Key

Oracle7 Server Concepts7–12

The unique key or primary key of the same or
different table that is referenced by a foreign key.

A dependent or child table is the table that
includes the foreign key. Therefore, it is the table
that is dependent on the values present in the
referenced unique or primary key.

A referenced or parent table is the table that is
referenced by the child table’s foreign key. It is this
table’s referenced key that determines whether
specific inserts or updates are allowed in the child
table.

A referential integrity constraint requires that for each row of a table,
the value in the foreign key matches a value in a parent key.

Figure 7 – 6 illustrates the above terms.

Figure 7 – 6 shows a foreign key defined on the DEPTNO column of the
EMP table. It guarantees that every value in this column must match a
value in the primary key of the DEPT table (the DEPTNO column).
Therefore, no erroneous department numbers can exist in the DEPTNO
column of the EMP table.

Foreign keys can be comprised of multiple columns. However, a
composite foreign key must reference a composite primary or unique
key with the same number of columns and datatypes. Because
composite primary and unique keys are limited to 16 columns, a
composite foreign key is also limited to 16 columns.

Referenced Key

Dependent or
Child Table

Referenced or
Parent Table

Self–Referential Integrity
Constraints

Data Integrity 7–13

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

40

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent table must
match a value in unique key or
primary key of referenced table)

This row violates the
referential constraint
because “40” is not
present in the
referenced table’s
primary key; therefore,
the row is not allowed
in the table.

This row is allowed in
the table because a
null value is entered in
the DEPTNO column;
however, if a not null
constraint is also
defined for this column,
this row is not allowed.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
300.
500.

100.00
200.00
400.00

20
30
30
20

Figure 7 – 6 Referential Integrity Constraints

Another type of referential integrity constraint, shown in Figure 7 – 7, is
called a self–referential integrity constraint. This type of foreign key
references a parent key of the same table. In the example below, you
define the referential integrity constraint so that every value in the
MGR column of the EMP table corresponds to a value that currently
exists in the EMPNO column of the same table (that is, every manager
must also be an employee). This integrity constraint eliminates the
possibility of erroneous employee numbers in the MGR column.

Nulls and Foreign Keys

Oracle7 Server Concepts7–14

INSERT
INTO

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Dependent or
Child Table

Referenced or
Parent Table

This row violates the
referential constraint,
because “7331” is
not present in the
referenced table’s
primary key; therefore,
it is not allowed
in the table.

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7329
7499
7521

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Primary Key
of referenced table

foreign key
(values in dependent table must match a value in
unique key or primary key of referenced table)

7571 FORD MANAGER 7331 23–FEB–90 5,000.00 200.00 30

Figure 7 – 7 Single Table Referential Constraints

The relational model permits foreign keys to be a value of the
referenced primary or unique key, or null. There are several possible
interpretations of this basic rule of the relational model when
composite (multicolumn) foreign keys are involved.

The ANSI/ISO SQL92 (entry–level) standard permits a composite
foreign key to contain any value in its non–null columns if any other
column is null, even if those non–null values are not found in the
referenced key. By using other constraints (for example, NOT NULL
and CHECK constraints), you can alter the treatment of partially null
foreign keys from this default treatment.

A composite foreign key can be all null, all non–null, or partially null.
The following terms define three alternative matching rules for
composite foreign keys:

Partially null foreign keys are not permitted. Either
all components of the foreign key must be null, or
the combination of values contained in the foreign
key must appear as the primary or unique key
value of a single row of the referenced table.

Partially null composite foreign keys are permitted.
Either all components of the foreign key must be
null, or the combination of non–null values

match full

match partial

Actions Defined by
Referential Integrity
Constraints

Data Integrity 7–15

contained in the foreign key must appear in the
corresponding portion of the primary or unique
key value of a single row in the referenced table.

Partially null composite foreign keys are permitted.
If any column of a composite foreign key is null,
then the non–null portions of the key do not have
to match any corresponding portion of a parent
key.

Referential integrity constraints also specify particular actions that are
performed on the dependent rows in a child table if a referenced parent
key value is modified. The referential actions supported by the
FOREIGN KEY integrity constraints of Oracle include UPDATE and
DELETE RESTRICT, and DELETE CASCADE.

Note: Other referential actions not supported by FOREIGN
KEY integrity constraints of Oracle can be enforced using
database triggers. See Chapter 15, “Database Triggers,” for
more information regarding database triggers.

Update and Delete Restrict The restrict action specifies that referenced
key values cannot be updated or deleted if the resulting data would
violate a referential integrity constraint. For example, if a primary key
value is referenced by a value in the foreign key, the referenced primary
key value cannot be deleted because of the dependent data.

Delete Cascade The delete cascade action specifies that when rows
containing referenced key values are deleted, all rows in child tables
with dependent foreign key values are also deleted. Therefore, the
delete cascades. For example, if a row in a parent table is deleted, and
this row’s primary key value is referenced by one or more foreign key
values in a child table, the rows in the child table that reference the
primary key value are also deleted from the child table.

DML Restrictions with Respect to Referential Actions Table 7 – 1
outlines the DML statements allowed by the different referential
actions on the primary/unique key values in the parent table, and the
foreign key values in the child table.

match none

CHECK Integrity
Constraints

The Check Condition

Multiple CHECK
Constraints

Oracle7 Server Concepts7–16

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if parent key value is
unique.

OK only if the foreign key value
exists in the parent key or is par-
tially or all null.

UPDATE Restrict Allowed if the statement does not
leave any rows in the child table
without a referenced parent key
value.

Allowed if the new foreign key
value still references a referenced
key value.

DELETE Restrict Allowed if no rows in the child
table reference the parent key
value.

Always OK.

DELETE Cascade Always OK. Always OK.

Table 7 – 1 DML Statements Allowed by Update and Delete Restrict

A CHECK integrity constraint on a column or set of columns requires
that a specified condition be true or unknown for every row of the
table. If a DML statement is issued so that the condition of the CHECK
constraint evaluates to false, the statement is rolled back.

CHECK constraints allow you to enforce very specific or sophisticated
integrity rules with the specification of a check condition. The condition
of a CHECK constraint has some limitations, including that the
condition must be a Boolean expression evaluated using the values in
the row being inserted or updated, and cannot contain subqueries,
sequences, the SYSDATE, UID, USER, or USERENV SQL functions, or
the pseudocolumns LEVEL or ROWNUM.

In evaluating CHECK constraints that contain string literals or SQL
functions with NLS parameters as arguments (such as TO_CHAR,
TO_DATE, and TO_NUMBER), Oracle uses the database’s NLS
settings by default. You can override the defaults by specifying NLS
parameters explicitly in such functions within the CHECK constraint
definition. (For more information on NLS features, see Oracle7 Server
Reference.)

A single column can have multiple CHECK constraints that reference
the column in its definition. There is no limit to the number of CHECK
constraints that you can define on a column.

Data Integrity 7–17

The Mechanisms of Constraint Checking

To know what types of actions are permitted when constraints are
present, it is useful to understand when Oracle actually performs the
checking of constraints. To illustrate this, an example or two is helpful.
Assume the following:

• The EMP table has been defined as illustrated in a previous
example (see Figure 7 – 7 on page 7–14.).

• The self–referential constraint makes the entries in the MGR
column dependent on the values of the EMPNO column. For
simplicity, the rest of this discussion only addresses the EMPNO
and MGR columns of the EMP table.

Consider the insertion of the first row into the EMP table. No rows
currently exist, so how can a row be entered if the value in the MGR
column cannot reference any existing value in the EMPNO column?
The three possibilities include the following:

• A null can be entered for the MGR column of the first row,
assuming that the MGR column does not have a NOT NULL
constraint defined on it.

• The same value can be entered in both the EMPNO and MGR
columns.

• A multiple row INSERT statement, such as an INSERT statement
with nested SELECT statement, can insert rows that reference
one another. For example, the first row might have EMPNO as
200 and MGR as 300, while the second row might have EMPNO
as 300 and MGR as 200.

Each case reveals something about how and when Oracle performs
constraint checking.

The first case is easy to understand; a null is given for the foreign key
value. Because nulls are allowed in foreign keys, this row is inserted
successfully into the table.

The second case is more interesting. This case reveals when Oracle
effectively performs its constraint checking: after the statement has
been completely executed. To allow a row to be entered with the same
values in the parent key and the foreign key, Oracle must first execute
the statement (that is, insert the new row) and then check to see if any
row in the table has an EMPNO that corresponds to the new row’s
MGR.

Oracle7 Server Concepts7–18

The third case reveals even more about the constraint checking
mechanism. This scenario shows that constraint checking is effectively
deferred until the complete execution of the statement; all rows are
inserted first, then all rows are checked for constraint violations.

As another example of this third case, consider the same self–referential
integrity constraint and the following scenario:

• The company has been sold. Because of this sale, all employee
numbers must be updated to be the current value plus 5000 to
coordinate with the new company’s employee numbers. Because
manager numbers are really employee numbers, these values
must also increase by 5000.

The table currently exists as illustrated in Figure 7 – 8.

EMPNO MGR

210
211
212

210
211

Figure 7 – 8 The EMP Table Before Updates
UPDATE emp

SET empno = empno + 5000,

 mgr = mgr + 5000;

Even though a constraint is defined to verify that each MGR value
matches an EMPNO value, this statement is legal because Oracle
effectively performs its constraint checking after the statement
completes. Figure 7 – 9 shows that Oracle performs the actions of the
entire SQL statement before any constraints are checked.

Update to
first row

Update to
second row

Update to
third row

Constraints
checked

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
5211

5210
211

5210
5211
212

Figure 7 – 9 Constraint Checking

The examples in this section illustrated the constraint checking
mechanism during INSERT and UPDATE statements. The same
mechanism is used for all types of DML statements, including
UPDATE, INSERT, and DELETE statements.

Default Column Values
and Integrity
Constraint Checking

Data Integrity 7–19

The examples also used self–referential integrity constraints to illustrate
the checking mechanism. However, the same mechanism is used for all
types of constraints, including NOT NULL, UNIQUE key, PRIMARY
KEY, all types of FOREIGN KEY, and CHECK constraints.

Default values are included as part of an INSERT statement before the
statement is parsed. Therefore, default column values are subject to all
integrity constraint checking.

Oracle7 Server Concepts7–20

C H A P T E R

8

T

The Data Dictionary 8–1

The Data Dictionary

LEXICOGRAPHER — A writer of dictionaries, a harmless drudge.

Samuel Johnson: Dictionary

his chapter describes the central set of read–only reference tables
and views of each Oracle database, known collectively as the data
dictionary. The chapter includes:

• An Introduction to the Data Dictionary

• The Structure of the Data Dictionary

• SYS, the Owner of the Data Dictionary

• How the Data Dictionary Is Used

• The Dynamic Performance Tables

Not only is the data dictionary central to every Oracle database, it is an
important tool for all users, from end users to application designers
and database administrators. Even beginning users can benefit from
understanding and using the data dictionary. However, no user should
ever alter (update, delete, or insert) any rows or objects in the data
dictionary; such activity can compromise data integrity.

Oracle7 Server Concepts8–2

An Introduction to the Data Dictionary

One of the most important parts of an Oracle database is its data
dictionary. The data dictionary is a read–only set of tables that provides
information about its associated database. For example, a data
dictionary can provide the following information:

• the names of Oracle users

• privileges and roles each user has been granted

• names of schema objects (tables, views, snapshots, indexes,
clusters, synonyms, sequences, procedures, functions, packages,
triggers, and so on)

• information about integrity constraints

• default values for columns

• how much space has been allocated for, and is currently used by,
the objects in a database

• auditing information, such as who has accessed or updated
various objects

• in Trusted Oracle, the labels of all objects and users (See the
Trusted Oracle7 Server Administrator’s Guide

• other general database information

The data dictionary is structured in tables and views, just like other
database data. To access the data dictionary, you use SQL. Because the
data dictionary is read–only, users can issue only queries (SELECT
statements) against the tables and views of the data dictionary.

The Data Dictionary 8–3

The Structure of the Data Dictionary

A database’s data dictionary is comprised of

The foundation of the data dictionary is comprised
of a set of base or underlying tables that store
information about the associated database. Only
Oracle should write and read these tables; users
rarely access them directly because they are
normalized, and most of the data is stored in a
cryptic format.

The data dictionary contains user accessible views
that summarize and conveniently display the
information in the base tables of the dictionary. The
views decode the information in the base tables
into useful information, such as user or table
names, and use joins and WHERE clauses to
simplify the information. Most users are given
access to the views rather than the base tables.

SYS, the Owner of the Data Dictionary

The Oracle user SYS owns all base tables and user accessible views of
the data dictionary. Therefore, no Oracle user should ever alter any
object contained in the SYS schema and the security administrator
should keep strict control of this central account.

Note: Altering or manipulating the data in underlying data
dictionary tables can permanently and detrimentally affect the
operation of a database.

How the Data Dictionary Is Used

The data dictionary has two primary uses:

• Oracle accesses the data dictionary every time that a DDL
statement is issued.

• Any Oracle user can use the data dictionary as a read–only
reference for information about the database.

base tables

user accessible
views

How Oracle and Other
Oracle Products Use
the Data Dictionary

Caching of the Data
Dictionary for Fast Access

Other Programs and the
Data Dictionary

Adding New Data
Dictionary Items

Deleting Data Dictionary
Items

Oracle7 Server Concepts8–4

Data in the base tables of the data dictionary is necessary for Oracle to
function. Therefore, only Oracle should write or change data
dictionary information.

During database operation, Oracle reads the data dictionary to
ascertain that objects exist and that users have proper access to them.
Oracle also updates the data dictionary continuously to reflect changes
in database structures, auditing, grants, and data.

For example, if user KATHY creates a table named PARTS, new rows
are added to reflect the new table, columns, segment, extents, and the
privileges that KATHY has on the table. This new information is then
visible the next time the dictionary views are queried.

Because Oracle constantly accesses the data dictionary during database
operation to validate user access and to verify the state of objects,
much of the data dictionary information is cached in the SGA. All
information is stored in memory using the LRU (least recently used)
algorithm. Information typically kept in the caches is that required for
parsing. The COMMENTS columns describing the tables and columns
are not cached unless they are frequently accessed.

Other Oracle products can create additional data dictionary tables or
views of their own and reference existing views. Application
developers who write programs that refer to the data dictionary should
refer to the public synonyms rather than the underlying tables: the
synonyms are less likely to change between software releases.

You can add new tables or views to the data dictionary. If you add new
data dictionary objects, the owner of the new objects should be the user
SYSTEM or a third Oracle user. Never create new objects belonging to
user SYS, except by running script provided by Oracle Corporation for
creating data dictionary objects.

Because all changes to the data dictionary are performed by Oracle in
response to DDL statements, no data in any data dictionary tables
should be deleted or altered by any user.

The single exception to this rule is the table SYS.AUD$. When auditing
is enabled, this table can grow without bound. Although you should
not drop the AUDIT_TRAIL table, the security administrator can delete
data from it because the rows are for information only and are not
necessary for Oracle to run.

Public Synonyms for Data
Dictionary Views

How Oracle Users Can
Use the Data
Dictionary

Views with the Prefix
USER

The Data Dictionary 8–5

Public synonyms are created on many data dictionary views so they
can be conveniently accessed by users. The security administrator can
create additional public synonyms for objects used systemwide.
However, other users should avoid naming their own objects with the
same names as those used for public synonyms.

The views of the data dictionary serve as a reference for all database
users. Access to the data dictionary views is via the SQL language.
Certain views are accessible to all Oracle users, while others are
intended for administrators only.

The data dictionary is always available when the database is open. It
resides in the SYSTEM tablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set
consists of three views containing similar information and
distinguished from each other by their prefixes:

Prefix Scope

USER user’s view (what is in the user’s schema)

ALL expanded user’s view (what the user can access)

DBA database administrator’s view (what all users can access)

Table 8 – 1 Data Dictionary View Prefixes

The set of columns is identical across views with these exceptions:

• Views with the prefix USER usually exclude the column
OWNER. This column is implied in the USER views to be the
user issuing the query.

• Some DBA views have additional columns containing
information useful to the administrator.

The views most likely to be of interest to typical database users are
those with the prefix USER. These views

• refer to the user’s own private environment in the database,
including information about objects created by the user, grants
made by the user, and so on

• display only rows pertinent to the user

• have identical columns to the other views, except that the
column OWNER is implied (the current user)

• return a subset of the information in the ALL_ views

• can have abbreviated PUBLIC synonyms for convenience

Views with the Prefix
ALL

Views with the Prefix
DBA

DUAL

Oracle7 Server Concepts8–6

For example, the following query returns all the objects contained in
your schema:

SELECT object_name, object_type FROM user_objects;

Views with the prefix ALL refer to the user’s overall perspective of the
database. These views return information about objects to which the
user has access via public or explicit grants of privileges and roles, in
addition to objects that the user owns. For example, the following
query returns information about all the objects to which you have
access:

SELECT owner, object_name, object_type FROM all_objects;

Views with the prefix DBA show a global view of the entire database.
Therefore, they are meant to be queried only by database
administrators. Any user granted the system privilege SELECT ANY
TABLE can query the DBA–prefixed views of the data dictionary.

Synonyms are not created for these views, as the DBA views should
only be queried by administrators. Therefore, to query the DBA views,
administrators must prefix the view name with its owner, SYS, as in

SELECT owner, object_name, object_type FROM sys.dba_objects;

Administrators can run the script file DBA_SYNONYMS.SQL to create
private synonyms for the DBA views in their accounts if they have the
SELECT ANY TABLE system privilege. Executing this script creates
synonyms for the current user only.

The table named DUAL is a small table that Oracle and user–written
programs can reference to guarantee a known result. This table has one
column and one row.

The Data Dictionary 8–7

The Dynamic Performance Tables

Throughout its operation, Oracle maintains a set of “virtual” tables that
record current database activity. These tables are called dynamic
performance tables.

Because dynamic performance tables are not true tables, they should
not be accessed by most users. However, database administrators can
query and create views on the tables and grant access to those views to
other users.

SYS owns the dynamic performance tables and their names all begin
with V_$. Views are created on these tables, and then synonyms are
created for the views. The synonym names begin with V$.

Oracle7 Server Concepts8–8

P A R T

 IV System Architecture

C H A P T E R

9

T

Memory Structures and Processes 9–1

Memory Structures and
Processes

Yea, from the table of my memory
I’ll wipe away all trivial fond records.

Shakespeare: Hamlet

his chapter discusses the memory structures and processes in an
Oracle database system. It includes:

• An Oracle Instance

• Process Structure

• Oracle Memory Structures

• Variations in Oracle Configuration

• Examples of How Oracle Works

• The Program Interface

Oracle7 Server Concepts9–2

An Oracle Instance

Regardless of the type of computer executing Oracle and the particular
memory and process options being used, every running Oracle
database is associated with an Oracle instance. Every time a database is
started on a database server, Oracle allocates a memory area called the
System Global Area (SGA) and starts one or more Oracle processes.
The combination of the SGA and the Oracle processes is called an
Oracle database instance. The memory and processes of an instance
work to manage the database’s data efficiently and serve the one or
multiple users of the associated database. Figure 9 – 1 shows an Oracle
instance.

Oracle Processes

System Global Area (SGA)

Redo Log
Buffer

Context Areas

Database Buffer
Cache

Figure 9 – 1 An Oracle Instance

Oracle starts an instance, then mounts a database to the instance.
Multiple instances can execute concurrently on the same machine, each
accessing its own physical database. In clustered and massively parallel
systems, the Oracle Parallel Server allows a single database to mount
multiple instances. When you use Trusted Oracle in OS MAC mode, a
single instance can mount multiple databases.

The remaining sections of this chapter explain the memory and process
structures and configurations associated with an Oracle instance. See
Oracle7 Parallel Server Concepts & Administration for more information
about the Oracle Parallel Server. See the Trusted Oracle7 Server
Administrator’s Guide for more information about Trusted Oracle.

Single–Process Oracle
Instance

Memory Structures and Processes 9–3

Process Structure

A process is a “thread of control” or a mechanism in an operating
system that can execute a series of steps. Some operating systems use
the terms job or task. A process normally has its own private memory
area in which it runs.

The process structure of Oracle is important because it defines how
multiple activities can occur and how they are accomplished. For
example, two goals of a process structure might be

• to simulate a private environment for multiple processes to work
simultaneously, as though each process has its own private
environment

• to allow multiple processes to share computer resources, which
each process needs, but no process needs for long periods of
time

The Oracle’s process architecture is designed to maximize performance.

Single–process Oracle (also called single–user Oracle) is a database
system in which all Oracle code is executed by one process. Different
processes are not used to separate execution of the parts of Oracle and
the client application program. Instead, all code of Oracle and the
single user’s database application is executed by a single process.

Figure 9 – 2 shows a single–process Oracle instance. The single process
executes all code associated with the database application and Oracle.

Database Application

System Global Area

ORACLE Server

Single Process

Figure 9 – 2 A Single–Process Oracle Instance

Multiple–Process
Oracle Instance

Oracle7 Server Concepts9–4

Only one user can access an Oracle instance in a single–process
environment; multiple users cannot access the database concurrently.
For example, Oracle running under the MS–DOS operating system on a
PC can only be accessed by a single user because MS–DOS is not
capable of running multiple processes.

Multiple–process Oracle (also called multi–user Oracle) uses several
processes to execute different parts of Oracle, and a separate process
for each connected user. Each process in a multiple–process Oracle
instance performs a specific job. By dividing the work of Oracle and
database applications into several processes, multiple users and
applications can simultaneously connect to a single database instance
while the system maintains excellent performance. Most database
systems are multi–user, because one of the primary benefits of a
database is managing data needed by multiple users at the same time.

Figure 9 – 3 illustrates a multiple–process Oracle instance. Each
connected user has a separate user process and several background
processes are used to execute Oracle. This figure might represent
multiple concurrent users running an application on the same machine
as Oracle; this particular configuration is usually on a mainframe or
minicomputer.

ARCHLGWRDBWRSMONPMONRECO
ArchiverLog WriterDatabaseSystemProcessRecoverer

UserUserUserUser

Oracle Processes
(background processes)

User processes

System Global Area
(SGA)

(RECO) Monitor
(PMON)

Monitor
(SMON)

Writer
(DBWR) (LGWR) (ARCH)

Figure 9 – 3 A Multiple–Process Oracle Instance

In a multiple–process system, processes can be categorized into two
groups: user processes and Oracle processes. The following sections
explain these classes of processes.

User Processes

Oracle Processes

OSDoc

Memory Structures and Processes 9–5

When a user runs an application program, such as a Pro*C program, or
an Oracle tool, such as Server Manager, Oracle creates a user process to
run the user’s application.

In multiple–process systems, two types of processes control Oracle:
server processes and background processes.

Oracle creates server processes to handle the requests of user processes
connected to the instance. Often, when the application and Oracle
operate on the same machine rather than over a network, a user
process and its corresponding server process are combined into a single
process to reduce system overhead. However, when the application
and Oracle operate on different machines, a user process communicates
with Oracle via a separate server process. See “Variations in Oracle
Configuration” on page 9–29 for more information.

Server processes (or the server portion of combined user/server
processes) created on behalf of each user’s application may perform
one or more of the following:

• parse and execute SQL statements issued via the application

• read necessary data blocks from disk (datafiles) into the shared
database buffers of the SGA, if the blocks are not already present
in the SGA

• return results in such a way that the application can process the
information

To maximize performance and accommodate many users, a
multi–process Oracle system uses some additional Oracle processes
called background processes.

Additional Information: On many operating systems,
background processes are created automatically when an
instance is started. On other operating systems, the server
processes are created as a part of the Oracle installation. See
your Oracle operating system–specific documentation for
details on how these processes are created.

Oracle7 Server Concepts9–6

An Oracle instance may have many background processes; not all are
always present. The background processes in an Oracle instance
include the following:

• Database Writer (DBWR)

• Log Writer (LGWR)

• Checkpoint (CKPT)

• System Monitor (SMON)

• Process Monitor (PMON)

• Archiver (ARCH)

• Recoverer (RECO)

• Lock (LCKn)

• Snapshot Refresh (SNPn)

• Dispatcher (Dnnn)

• Server (Snnn)

Figure 9 – 4 illustrates each background process’s interaction with the
different parts of an Oracle database, and the following sections
describe each process. The Parallel Server is not illustrated; see Oracle7
Parallel Server Concepts & Administration.

Memory Structures and Processes 9–7

RECO PMON SMON

System Global Area

LGWR

ARCHCKPT Offline
Storage
Device

LCK

Control
Files

Redo Log
Files

Database
Files

DBWR

Shared
Server

Process

Dedicated
Server

Process

User
Process

D000

User

User Processes

Process

Redo Log
Buffer

Database
Buffer Cache

n

Legend:

LCK
RECO
PMON
SMON
CKPT
ARCH
DBWR
LGWR

n Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

Figure 9 – 4 The Background Processes of a Multiple–Process Oracle Instance

Database Writer (DBWR) Database Writer process (DBWR) writes
buffers to datafiles. DBWR is an Oracle background process responsible
for buffer cache management. For more information about the database
buffer cache, see “The Database Buffer Cache” on page 9–17.

When a buffer in the buffer cache is modified, it is marked “dirty”. The
primary job of the DBWR process is to keep the buffer cache “clean” by
writing dirty buffers to disk. As buffers are filled and dirtied by user
processes, the number of free buffers diminishes. If the number of free

For More Information

Oracle7 Server Concepts9–8

buffers drops too low, user processes that must read blocks from disk
into the cache are not able to find free buffers. DBWR manages the
buffer cache so that user processes can always find free buffers.

An LRU (least recently used) algorithm keeps the most recently used
data blocks in memory and thus minimizes I/O. The database writer
process (DBWR) keeps blocks that are used often, for example, blocks
that are part of frequently accessed small tables or indexes, in the cache
so that they do not need to be read in again from disk. To make room in
the buffer cache for other blocks, DBWR removes blocks that are
accessed infrequently (for example, blocks that are part of very large
tables or leaf blocks from very large indexes) from the system global
area (SGA). For information about leaf blocks, see ”The Internal
Structure of Indexes” on page 5–21.

The LRU scheme causes more frequently accessed blocks to stay in the
buffer cache so that when a buffer is written to disk, it is unlikely to
contain data that may be useful soon. However, if the DBWR process
becomes too active, it may write blocks to disk that are about to be
needed again.

The buffer cache has multiple LRU latches. Latches are automatic
internal locks that protect shared data structures. The initialization
parameter DB_BLOCK_LRU_LATCHES controls how many latches are
configured and by default is set to the number of CPUs on your
system. This is usually a good value to reduce latch contention for the
DBWR processes, thus improving performance.

See ”Locking Mechanisms” in Chapter 10 of Oracle7 Server Tuning.

The DBWR process writes dirty buffers to disk under the following
conditions:

• When a server process moves a buffer to the dirty list and
discovers that the dirty list has reached a threshold length, the
server process signals DBWR to write.

• When a server process searches a threshold limit of buffers in the
LRU list without finding a free buffer, it stops searching and
signals DBWR to write (because not enough free buffers are
available and DBWR must make room for more).

• When a time–out occurs (every three seconds), DBWR signals
itself.

• When a checkpoint occurs, the Log Writer process (LGWR)
signals DBWR.

OSDoc

Memory Structures and Processes 9–9

In the first two cases, DBWR writes the blocks on the dirty list to disk
with a single multiblock write. The number of blocks written in a
multiblock write varies by operating system.

A time–out occurs if DBWR is inactive for three seconds. In this case,
DBWR searches a specified number of buffers on the LRU list and
writes any dirty buffers that it finds to disk. Whenever a time–out
occurs, DBWR searches a new set of buffers. If the database is idle,
DBWR eventually writes the entire buffer cache to disk.

When a checkpoint occurs, the Log Writer process (LGWR) specifies a
list of modified buffers that must be written to disk. DBWR writes the
specified buffers to disk. For more information about checkpoints, see
“Checkpoints” on page 22–9.

Additional Information: On some platforms, an instance can
have multiple DBWRs. In such a case, if one DBWR blocks
during a write to one disk, the others can continue writing to
other disks. The parameter DB_WRITERS controls the number
of DBWR processes. See your Oracle operating system–specific
documentation for information about DBWR on your platform.

For more information about DBWR and how to monitor and tune the
performance of DBWR, see the Oracle7 Server Administrator’s Guide and
Oracle7 Server Tuning.

Log Writer (LGWR) The Log Writer process (LGWR) writes the redo log
buffer to a redo log file on disk. LGWR is an Oracle background
process responsible for redo log buffer management. LGWR writes all
redo entries that have been copied into the buffer since the last time it
wrote. LGWR writes one contiguous portion of the buffer to disk.
LGWR writes

• a commit record when a user process commits a transaction

• redo buffers every three seconds

• redo buffers when the redo log buffer is one–third full

• redo buffers when the DBWR process writes modified buffers to
disk

Note: LGWR writes synchronously to the active mirrored
group of online redo log files. If one of the files in the group is
damaged or unavailable, LGWR can continue to write to other
files in the group (an error is also logged in the LGWR trace file
and in the system ALERT file). If all files in a group are
damaged, or the group is unavailable because it has not been
archived, LGWR cannot continue to function. See “The Online
Redo Log” on page 22–6 for more information about mirrored

Oracle7 Server Concepts9–10

online redo logs and how LGWR functions in this
configuration.

The redo log buffer (see “The Redo Log Buffer” on page 9–19) is a
circular buffer; when LGWR writes redo entries from the redo log
buffer to a redo log file, server processes can then copy new entries
over the entries in the redo log buffer that have been written to disk.
LGWR normally writes fast enough to ensure that space is always
available in the buffer for new entries, even when access to the redo log
is heavy.

Note: Sometimes, if more buffer space is needed, LGWR
writes redo log entries before a transaction is committed. These
entries become permanent only if the transaction is later
committed.

Oracle uses a “fast commit” mechanism; when a user issues a
COMMIT statement, LGWR puts a commit record immediately in the
redo log buffer, but the corresponding data buffer changes are deferred
until it is more efficient to write them to the datafiles. The atomic write
of the redo entry containing the commit record for a transaction is the
single event that determines the transaction has committed (then
Oracle returns a success code to the committing transaction).

When a user commits a transaction, the transaction is assigned a system
change number (SCN), which Oracle records along with the transaction’s
redo entries in the redo log. SCNs are recorded in the redo log so that
recovery operations can be synchronized in Parallel Server
configurations and distributed databases. See Oracle7 Parallel Server
Concepts & Administration and the Oracle7 Server Administrator’s Guide
for more information about SCNs and how they are used.

In times of high activity, LGWR may write to the online redo log file
using group commits. For example, assume that a user commits a
transaction — LGWR must write the transaction’s redo entries to disk.
As this happens, other users issue a COMMIT statement. However,
LGWR cannot write to the online redo log file to commit these
transactions until it has completed its previous write operation. After
the first transaction’s entries are written to the online redo log file, the
entire list of redo entries of waiting transactions (not yet committed)
can be written to disk in one operation, requiring less I/O than would
transaction entries handled individually. Therefore, Oracle minimizes
disk I/O and maximizes performance of LGWR. If requests to commit
continue at a high rate, then every write (by LGWR) from the redo log
buffer may contain multiple commit records, averaging less than one
write per COMMIT.

Memory Structures and Processes 9–11

If the CKPT background process is not present, LGWR is also
responsible for recording checkpoints as they occur in every datafile’s
header. See “Checkpoint (CKPT)” below for more information about
this background process.

Checkpoint (CKPT) When a checkpoint occurs, Oracle must update the
headers of all datafiles to indicate the checkpoint. In normal situations,
this job is performed by LGWR. However, if checkpoints significantly
degrade system performance (usually, when there are many datafiles),
you can enable the Checkpoint process (CKPT) to separate the work of
performing a checkpoint from other work performed by LGWR, the
Log Writer process (LGWR).

For most applications, the CKPT process is not necessary. If your
database has many datafiles and the performance of the LGWR process
is reduced significantly during checkpoints, you may want to enable
the CKPT process.

The CKPT process does not write blocks to disk; DBWR always
performs that work. The statistic DBWR checkpoints displayed by the
System_Statistics monitor in Server Manager indicates the number of
checkpoint messages completed, regardless of whether the CKPT
process is enabled or not. See the Oracle7 Server Administrator’s Guide
for information about the effects of changing the checkpoint interval.

The initialization parameter CHECKPOINT_PROCESS enables and
disables the CKPT process; its default is FALSE.

Note: See Oracle7 Parallel Server Concepts & Administration for
additional information about CKPT in an Oracle Parallel Sever.

System Monitor (SMON) The System Monitor process (SMON) performs
instance recovery at instance start up. SMON is also responsible for
cleaning up temporary segments that are no longer in use; it also
coalesces contiguous free extents to make larger blocks of free space
available. In a Parallel Server environment, SMON performs instance
recovery for a failed CPU or instance; see Oracle7 Parallel Server
Concepts & Administration for more information about SMON in an
Oracle Parallel Server.

SMON “wakes up” regularly to check whether it is needed. Other
processes can call SMON if they detect a need for SMON to wake up.

Process Monitor (PMON) The Process Monitor (PMON) performs
process recovery when a user process fails. PMON is responsible for
cleaning up the cache and freeing resources that the process was using.
For example, it resets the status of the active transaction table, releases
locks, and removes the process ID from the list of active processes.

OSDoc

Oracle7 Server Concepts9–12

PMON also periodically checks the status of dispatcher and server
processes, and restarts any that have died (but not any that Oracle has
killed intentionally).

Like SMON, PMON “wakes up” regularly to check whether it is
needed, and can be called if another process detects the need for it.

Recoverer (RECO) The Recoverer process (RECO) is a process used with
the distributed option that automatically resolves failures involving
distributed transactions. The RECO background process of a node
automatically connects to other databases involved in an in–doubt
distributed transaction. When the RECO process re–establishes a
connection between involved database servers, it automatically
resolves all in–doubt transactions.

The RECO process automatically removes rows corresponding to any
resolved in–doubt transactions from each database’s pending
transaction table.

If the RECO background process attempts to establish communication
with a remote server, and the remote server is not available or the
network connection has not been re–established, RECO automatically
tries to connect again after a timed interval. However, RECO waits an
increasing amount of time (growing exponentially) before it attempts
another connection.

For more information about distributed transaction recovery, see
Oracle7 Server Distributed Systems, Volume I.

The RECO background process of an instance is only present if the
system permits distributed transactions and if the
DISTRIBUTED_TRANSACTIONS parameter is greater than zero. If
this parameter is zero, RECO is not created during instance startup.

Archiver (ARCH) The Archiver process (ARCH) copies online redo log
files to a designated storage device once they become full. ARCH is
present only when the redo log is used in ARCHIVELOG mode and
automatic archiving is enabled. For information on archiving the online
redo log, see Chapter 22, “Recovery Structures”.

Additional Information: Details of using ARCH are operating
system specific; for more information, see Oracle operating
system–specific documentation.

Lock (LCKn) With the Parallel Server option, up to ten Lock processes
(LCK0, . . ., LCK9) provide inter–instance locking. However, a single
LCK process (LCK0) is sufficient for most Parallel Server systems. See
Oracle7 Parallel Server Concepts & Administration for more information
about this background process.

Memory Structures and Processes 9–13

Snapshot Refresh (SNPn) With the distributed option, up to ten
Snapshot Refresh processes (SNP0, ..., SNP9) can automatically refresh
table snapshots. These processes wake up periodically and refresh any
snapshots that are scheduled to be automatically refreshed. If more
than one Snapshot Refresh process is used, the processes share the task
of refreshing snapshots.

Dispatcher Processes (Dnnn) The Dispatcher processes allow user
processes to share a limited number of server processes. Without a
dispatcher, each user process requires one dedicated server process.
However, with the multi–threaded server, fewer shared server
processes are required for the same number of users. Therefore, in a
system with many users, the multi–threaded server can support a
greater number of users, particularly in client–server environments
where the client application and server operate on different machines.

You can create multiple dispatcher processes for a single database
instance; at least one dispatcher must be created for each network
protocol used with Oracle. The database administrator should start an
optimal number of dispatcher processes depending on the operating
system limitation on the number of connections per process, and can
add and remove dispatcher processes while the instance runs.

Note: The multi–threaded server requires SQL*Net Version 2
or later. Each user process that connects to a dispatcher must
do so through SQL*Net, even if both processes are running on
the same machine.

In a multi–threaded server configuration, a network listener process
waits for connection requests from client applications, and routes each
to a dispatcher process. If it cannot connect a client application to a
dispatcher, the listener process starts a dedicated server process, and
connects the client application to the dedicated server. This listener
process is not part of an Oracle instance; rather, it is part of the
networking processes that work with Oracle. See your SQL*Net
documentation for more information about the network listener.

When an instance starts, the listener opens and establishes a
communication pathway through which users connect to Oracle. Then,
each dispatcher gives the listener an address at which the dispatcher
listens for connection requests. When a user process makes a
connection request, the listener process examines the request and
determines if the user can use a dispatcher. If so, the listener process
returns the address of the dispatcher process with the lightest load and
the user process directly connects to the dispatcher.

Trace Files, the ALERT
File, and Background
Processes

Oracle7 Server Concepts9–14

Some user processes cannot communicate with the dispatcher (such as
users connected using pre–Version 2 SQL*Net) and the network listener
process cannot connect such users to a dispatcher. In this case, the
listener creates a dedicated server and establishes an appropriate
connection.

Each server and background process can write to an associated trace
file. When a process detects an internal error, it dumps information
about the error to its trace file. If an internal error occurs and
information is written to a trace file, the administrator should contact
Oracle support. See Oracle7 Server Messages.

All filenames of trace files associated with a background process
contain the name of the process that generated the trace file. The one
exception to this is trace files generated by Snapshot Refresh processes.

Trace file information can also provide information for tuning
applications or an instance. Background processes always write to a
trace file when appropriate. However, trace files are written on behalf
of server processes (in addition to being written to when there is an
internal error) only if the initialization parameter SQL_TRACE is set to
TRUE. Regardless of the current value for this parameter, each session
can enable or disable trace logging on behalf of the associated server
process by using the SQL command ALTER SESSION with the
SQL_TRACE parameter. For example, the following statement enables
writing to a trace file for the session:

ALTER SESSION SET SQL_TRACE = TRUE;

Each database also has an ALERT file. The ALERT file of a database is a
chronological log of messages and errors, including

• all internal errors (ORA–600), block corruption errors
(ORA–1578), and deadlock errors (ORA–60) that occur

• administrative operations, such as CREATE/ALTER/DROP
DATABASE/TABLESPACE/ROLLBACK SEGMENT SQL
statements and STARTUP, SHUTDOWN, ARCHIVE LOG, and
RECOVER Server Manager statements

• several messages and errors relating to the functions of shared
server and dispatcher processes

• errors during the automatic refresh of a snapshot

Oracle uses the ALERT file to keep a log of these special operations as
an alternative to displaying such information on an operator’s console
(although many systems display information on the console). If an
operation is successful, a message is written in the ALERT file as
“completed” along with a timestamp.

Virtual Memory

Memory Structures and Processes 9–15

Oracle Memory Structures

Oracle uses memory to store the following information:

• program code being executed

• information about a connected session, even if it is not currently
active

• data needed during program execution (for example, the current
state of a query from which rows are being fetched)

• information that is shared and communicated among Oracle
processes (for example, locking information)

• cached information that is also permanently stored on peripheral
memory (for example, a data block)

The basic memory structures associated with Oracle include:

• software code areas

• the system global area (SGA)

– the database buffer cache

– the redo log buffer

– the shared pool

• program global areas (PGA)

– stack areas

– data areas

• sort areas

The following topics are included in this section:

• Virtual Memory

• Software Code Areas

• System Global Area (SGA)

• Program Global Area (PGA)

• Sort Areas

On many operating systems, Oracle takes advantage of virtual memory.
Virtual memory is an operating system feature that offers more
apparent memory than is provided by real memory alone and more
flexibility in using main memory.

Software Code Areas

Size of Software Areas

Read–Only, Shared and
Non–Shared

OSDoc

System Global Area
(SGA)

Oracle7 Server Concepts9–16

Virtual memory simulates memory using a combination of real (main)
memory and secondary storage (usually disk space). The operating
system accesses virtual memory by making secondary storage look like
main memory to application programs.

Note: Usually, it is best to keep the entire SGA in real memory.

Software code areas are portions of memory used to store code that is
being or may be executed. The code for Oracle is stored in a software
area, which is typically at a location different from users’ programs — a
more exclusive or protected location.

Software areas are usually static in size, only changing when software
is updated or reinstalled. The size required varies by operating system.

Software areas are read–only and may be installed shared or
non–shared. When possible, Oracle code is shared so that all Oracle
users can access it without having multiple copies in memory. This
results in a saving of real main memory, and improves overall
performance.

User programs can be shared or non–shared. Some Oracle tools and
utilities, such as SQL*Forms and SQL*Plus, can be installed shared, but
some cannot. Multiple instances of Oracle can use the same Oracle code
area with different databases if running on the same computer.

Additional Information: Installing software shared is not an
option for all operating systems; for example, it is not on PCs
operating MS DOS. See your Oracle operating system–specific
documentation for more information.

A System Global Area (SGA) is a group of shared memory structures
that contain data and control information for one Oracle database
instance. If multiple users are concurrently connected to the same
instance, the data in the instance’s SGA is “shared” among the users.
Consequently, the SGA is often referred to as either the “System Global
Area” or the “Shared Global Area”.

As described in “An Oracle Instance” on page 9–2, an SGA and Oracle
processes constitute an Oracle instance. Oracle automatically allocates
memory for an SGA when you start an instance and the memory is
reclaimed when you shut down the instance. Each instance has its own
SGA.

The SGA is a shared memory area; all users connected to a
multiple–process database instance may use information contained
within the instance’s SGA. The SGA is also writable; several processes
write to the SGA during execution of Oracle.

The Database Buffer
Cache

Memory Structures and Processes 9–17

The SGA contains the following subdivisions:

• the database buffer cache

• the redo log buffer

• the shared pool

• request and response queues (if using the multi–threaded server)

• the data dictionary cache

• other miscellaneous information

The database buffer cache is a portion of the SGA that holds copies of
the data blocks read from datafiles. All user processes concurrently
connected to the instance share access to the database buffer cache.

With Release 7.3, the buffer cache and the shared SQL cache are
logically segmented into multiple sets. This organization into multiple
sets reduces contention on multiprocessor systems.

Organization of the Buffer Cache The buffers in the cache are organized
in two lists: the dirty list and the least–recently–used (LRU) list. The
dirty list holds dirty buffers. A dirty buffer is a buffer that has been
modified but has not yet been written to disk. The least–recently–used
(LRU) list holds free buffers, pinned buffers, and dirty buffers that have
not yet been moved to the dirty list. Free buffers are buffers that have
not been modified and are available for use. Pinned buffers are buffers
that are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer
to the most–recently–used (MRU) end of the LRU list. As more buffers
are continually moved to the MRU end of the LRU list, dirty buffers
“age” towards the LRU end of the LRU list.

When a user process needs to access a block that is not already in the
buffer cache, the process must read the block from a datafile on disk
into a buffer in the cache. Before reading a block into the cache, the
process must first find a free buffer. The process searches the LRU list,
starting at the least–recently–used end of the list. The process searches
either until it finds a free buffer or until it has searched the threshold
limit of buffers.

As a user process searches the LRU list, it may find dirty buffers. If the
user process finds a dirty buffer, it moves the buffer to the dirty list and
continues to search. When a user process finds a free buffer, it reads the
block into the buffer and moves it to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without
finding a free buffer, the process stops searching the LRU list and

Oracle7 Server Concepts9–18

signals the DBWR process to write some of the dirty buffers to disk.
See “Database Writer (DBWR)” on page 9–7 for more information
about the DBWR background process.

Size of the Buffer Cache The initialization parameter
DB_BLOCK_BUFFERS specifies the number of buffers in the database
buffer cache. Each buffer in the cache is the size of one Oracle data
block (specified by the initialization parameter DB_BLOCK_SIZE);
therefore, each database buffer in the cache can hold a single data block
read from a datafile.

The first time an Oracle user process accesses a piece of data, the
process must copy the data from disk to the cache before accessing it.
This is called a cache miss. When a process accesses a piece of data that
is already in the cache, the process can read the data directly from
memory. This is called a cache hit. Accessing data through a cache hit is
faster than data access through a cache miss.

Since the cache has a limited size, all the data on disk cannot fit in the
cache. When the cache is full, subsequent cache misses cause Oracle to
write data already in the cache to disk to make room for the new data.
Subsequent access to the data written to disk results in a cache miss.

The size of the cache affects the likelihood that a request for data will
result in a cache hit. If the cache is large, it is more likely to contain the
data that is requested. Increasing the size of a cache increases the
percentage of data requests that result in cache hits.

The LRU Algorithm and Full Table Scans In one particular case, the
user process puts the newly read block’s buffer on the LRU end of the
list. When the process is performing a full table scan, the blocks for the
table are read and put in buffers on the LRU end of the list. This is
because a fully scanned table will most likely be needed only briefly, so
the blocks should be moved out quickly to leave more frequently used
blocks in the cache.

You can prevent the default behavior of blocks involved in table scans
on a table–by–table basis. To specify that blocks of the table are to be
placed on the MRU end of the list during a full table scan, use the
CACHE clause when creating or altering a table or cluster. You may
want to specify this behavior for small lookup tables or large static
historical tables to avoid I/O on subsequent accesses of the table.

The Redo Log Buffer

Memory Structures and Processes 9–19

The redo log buffer is a circular buffer in the SGA that holds information
about changes made to the database. This information is stored in redo
entries. Redo entries contain the information necessary to reconstruct,
or redo, changes made to the database by INSERT, UPDATE, DELETE,
CREATE, ALTER, or DROP operations. Redo entries are used for
database recovery, if necessary.

Redo entries are copied by Oracle server processes from the user’s
memory space to the redo log buffer in the SGA. The redo entries take
up continuous, sequential space in the buffer. The background process
LGWR writes the redo log buffer to the active online redo log file group
on disk. See “Log Writer (LGWR)” on page 9–9 for more information
about how the redo log buffer is written to disk.

Size of the Redo Log Buffer The initialization parameter LOG_BUFFER
determines the size (in bytes) of redo log buffer. In general, larger
values reduce log file I/O, particularly if transactions are long or
numerous. The default setting is four times the maximum data block
size for the host operating system.

The Shared Pool

Oracle7 Server Concepts9–20

The shared pool is an area in the SGA that contains three major areas:
library cache, dictionary cache, and control structures. The following
figure shows the contents of the shared pool.

Shared Pool

Control Structures
for example:

Locks

Shared SQL Area

PL/SQL Procedures

and Packages

Library Cache

Control Structures
for example:

Character Set
Conversion Memory

Network Security
Attributes

and so on . . .

Dictionary Cache

Library
Cache handles
and so on . . .

Figure 9 – 5 Contents of the Shared Pool

The total size of the shared pool is determined by the initialization
parameter SHARED_POOL_SIZE. Increasing the value of this
parameter increases the amount of memory reserved for the shared
pool, and therefore the space reserved for shared SQL areas.

Library Cache

The library cache includes shared SQL areas, private SQL areas,
PL/SQL procedures and packages, and control structures such as locks
and library cache handles.

Shared SQL Areas and Private SQL Areas Oracle represents each SQL
statement it executes with a shared SQL area and a private SQL area.
Oracle recognizes when two users are executing the same SQL
statement and reuses the same shared part for those users. However,

Memory Structures and Processes 9–21

each user must have a separate copy of the statement’s private
SQL area.

A shared SQL area is a memory area that contains the parse tree and
execution plan for a single SQL statement. Oracle allocates memory
from the shared pool when a SQL statements is parsed and the size of
this memory depends on the complexity of the statement. A shared
SQL area is always in the shared pool and is shared for identical SQL
statements. For more information about the criteria used to determine
identical SQL statements, see “Shared SQL” on page 11–6.

A private SQL area is a memory area that contains data such as bind
information and runtime buffers. Each session that issues a SQL
statement has a private SQL area. Each user that submits an identical
SQL statement has his/her own private SQL area that uses a single
shared SQL area; many private SQL areas can be associated with the
same shared SQL area.

A private SQL area has a persistent area and a runtime area:

The persistent area contains bind information that
persists across executions, code for datatype
conversion (in case the defined datatype is not the
same as the datatype of the selected column), and
other state information (like recursive or remote
cursor numbers or the state of a parallel query).The
size of the persistent area depends on the number
of binds and columns specified in the statement.
For example, the persistent area is larger if many
columns are specified in a query.

The runtime area contains information used while
the SQL statement is being executed. The size of
the runtime area depends on the type and
complexity of the SQL statement being executed
and on the sizes of the rows that are processed by
the statement. In general, the runtime area is
somewhat smaller for INSERT, UPDATE, and
DELETE statements than it is for SELECT
statements.

The runtime area is created as the first step of an
execute request. For INSERT, UPDATE, and
DELETE statements, the runtime area is freed after
the statement has been executed. For queries, the
runtime area is freed only after all rows are fetched
or the query is canceled.

persistent area

runtime area

Oracle7 Server Concepts9–22

A private SQL area continues to exist until the corresponding cursor is
closed. Since Oracle frees the runtime area after the statement
completes, generally only the persistent area remains waiting.
Application developers should close all open cursors that will not be
used again to minimize the amount of memory required for users of
the application.

For selects processing large amounts of data where sorts are needed,
application developers should cancel the query if the client is satisfied
with a partial result of a fetch. For example, in an Oracle Office
application, a user can select from a list of over sixty templates for
creating a mail message. Oracle Office displays the first ten template
names and the user chooses one of these templates. The application
can continue to try to display more template names, but because the
user has chosen a template, the application should cancel the
processing of the rest of the query.

The location of a private SQL area varies depending on the type of
connection established for a session. If a session is connected via a
dedicated server, private SQL areas are located in the user’s PGA.
However, if a session is connected via the multi–threaded server, the
persistent areas and, for SELECT statements, the runtime areas, are
kept in the SGA.

How the User Process Manages Private SQL Areas The management of
private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on
which application tool you are using, although the number of private
SQL areas that a user process can allocate is always limited by the
initialization parameter OPEN_CURSORS. The default value of this
parameter is 50.

How Oracle Manages Shared SQL Areas Since shared SQL areas must
be available to multiple users, the library cache is contained in the
shared pool within the SGA. The size of the library cache, along with
the size of the data dictionary cache, is limited by the size of the shared
pool. Memory allocation for shared pool is determined by the
initialization parameter SHARED_POOL_SIZE. The default value for
this parameter is 3.5 megabytes.

If a user process tries to allocate a shared SQL area after the entire
shared pool has been allocated, Oracle can deallocate items from the
pool using a modified least–recently–used algorithm until there is
enough free space for the new item. If a shared SQL area is deallocated,
the associated SQL statement must be reparsed and reassigned to
another shared SQL area when it is next executed.

Memory Structures and Processes 9–23

PL/SQL Program Units and the Shared Pool Oracle processes PL/SQL
program units (procedures, functions, packages, anonymous blocks,
and database triggers) similar to processing individual SQL statements.
Oracle allocates a shared area to hold the parsed, compiled form of a
program unit. Oracle allocates a private area to hold values specific to
the session that executes the program unit, including local, global, and
package variables (also known as package instantiation) and buffers for
executing SQL. If more than one user executes the same program unit,
then a single, shared area is used by all users, while each user
maintains a separate copy of his/her private SQL area, holding values
specific to his/her session.

Individual SQL statements contained within a PL/SQL program unit
are processed as described in the previous sections. Despite their
origins within a PL/SQL program unit, these SQL statements use a
shared area to hold their parsed representations and a private area for
each session that executes the statement.

Dictionary Cache

 The data dictionary is a collection of database tables and views
containing reference information about the database, its structures, and
its users. Among the data stored in the data dictionary are the
following:

• names of all tables and views in the database

• names and datatypes of columns in database tables

• privileges of all Oracle users

This information is useful as reference material for database
administrators, application designers, and end users alike. Oracle itself
accesses the data dictionary frequently during the parsing of SQL
statements. This access is essential to the continuing operation of
Oracle. See Chapter 8, “The Data Dictionary,” for more information on
the data dictionary.

Since the data dictionary is accessed so often by Oracle, two special
locations in memory are designated to hold dictionary data. One area is
called the data dictionary cache, also know as the row cache. The other
area in memory to hold dictionary data is in the library cache. The data
dictionary caches are shared by all Oracle user processes.

Allocation and Reuse of Memory in the Shared Pool

In general, any item (shared SQL area or dictionary row) in the shared
pool remains present until it is flushed according to a modified LRU
algorithm. The memory for items not being regularly used is freed if
space is required for new items that must be allocated some space in

Oracle7 Server Concepts9–24

the shared pool. By using a modified LRU algorithm, shared pool items
that are shared by many sessions can remain in memory as long as they
are useful, even if the process that originally created the item is
terminated. As a result, the overhead and processing of SQL statements
associated with a multi–user Oracle system is kept to a minimum.

When a SQL statement is submitted to Oracle for execution, there are
some special steps to consider. On behalf of every SQL statement,
Oracle automatically performs the following memory allocation steps:

1. Oracle checks the shared pool to see if a shared SQL area already
exists for an identical statement. If there is already a shared SQL
area for the statement, it is used for the execution of the subsequent
new instances of the statement. Therefore, instead of having
multiple shared SQL areas for identical SQL statements, only one
shared SQL area exists for multiple identical DML statements,
greatly saving memory, particularly when many users execute the
same application.

Alternatively, if there is not a shared SQL area for a statement, a
new shared SQL area is allocated in the shared pool. In either case,
the user’s private SQL area is associated with the shared SQL area
that contains the statement.

Note: A shared SQL area can be flushed from the shared pool,
even if the shared SQL area corresponds to an open cursor that
has not been used for some time. If the open cursor is
subsequently used to execute its statement, Oracle reparses the
statement and a new shared SQL area is allocated in the shared
pool.

2. Oracle allocates a private SQL area on behalf of the session. The
exact location of the private SQL area depends on the connection
established for a session (see ”Shared SQL Areas and Private SQL
Areas” earlier in this chapter).

Some unique circumstances can also cause a shared SQL area to be
flushed from the shared pool. When the ANALYZE command is used
to update or delete the statistics of a table, cluster, or index, all shared
SQL areas that contain statements that reference the analyzed object are
flushed from the shared pool. The next time a flushed statement is
executed, the statement is parsed in a new shared SQL area to reflect
the new statistics for the object. Shared SQL areas are also dependent
on the objects referenced in the corresponding SQL statement. If a
referenced object is modified, the shared SQL area is invalidated
(marked invalid) and must be reparsed the next time the statement is
executed. See Chapter 16, “Dependencies Among Schema Objects”, for

Other SGA Information

Size of the SGA

Memory Structures and Processes 9–25

more information about the invalidation of SQL statements and
dependency issues.

If you change a database’s global database name, all information is
flushed from the shared pool. If desired, the administrator can
manually flush all information in the shared pool to assess the
performance (with respect to the shared pool, not the data buffer cache)
that can be expected after instance startup without shutting down the
current instance.

Cursors The application developer of an Oracle Precompiler program
or OCI program can explicitly open cursors, or handles to specific
private SQL areas, and use them as a named resource throughout the
execution of the program. Each user session can open any number of
cursors up to the limit set by the initialization parameter
OPEN_CURSORS. However, applications should close unneeded
cursors to conserve system memory. If a cursor cannot be opened due
to a limit on the number of cursors, the database administrator can
alter the OPEN_CURSORS initialization parameters. For more
information about cursors, see “Cursors” on page 11–6.

Some statements (primarily DDL statements) require Oracle to
implicitly issue recursive SQL statements, which also require recursive
cursors. For example, a CREATE TABLE statement causes many
updates to various data dictionary tables to record the new table and
columns. Recursive calls are made for those recursive cursors; one
cursor may execute several recursive calls. These recursive cursors also
utilize shared SQL areas.

Information also stored in the SGA includes the following:

• information communicated between processes, such as locking
information

• when an instance is running the multi–threaded server, some
contents of the program global areas, and the request and
response queues are in the SGA (See “Program Global Area
(PGA)” on page 9–26, and “Dispatcher Request and Response
Queues” on page 9–37.)

The amount of memory dedicated to all shared areas in the SGA can
have performance impact; see the Oracle7 Server Administrator’s Guide
for more information.

The size of the SGA is determined at instance start up. For optimal
performance in most systems, the entire SGA should fit in real memory.
If the entire SGA does not fit in real memory and virtual memory is
used to store parts of the SGA, overall database system performance

Program Global Area
(PGA)

Contents of a PGA

Oracle7 Server Concepts9–26

can decrease dramatically because portions of the SGA are paged
(written to and read from disk) by the operating system.

The primary determinants of the size of the SGA are the parameters
found in a database’s parameter file. The parameters that most affect
SGA size are the following:

The size, in bytes, of a single data block and
database buffer.

The number of database buffers, each the size of
DB_BLOCK_SIZE, allocated for the SGA. (The total
amount of space allocated for the database buffer
cache in the SGA is DB_BLOCK_SIZE times
DB_BLOCK_BUFFERS.)

The number of bytes allocated for the redo log
buffer.

The size in bytes of the area devoted to shared SQL
and PL/SQL statements.

The memory allocated for an instance’s SGA is displayed on instance
startup when using Server Manager. You can also see the current
instance’s SGA size using the Server Manager command SHOW and
the SGA option. See the Server Manager’s User’s Guide for more
information about the Server Manager command SHOW, and the
Oracle7 Server Administrator’s Guide for discussions of the above
initialization parameters and how they affect the SGA. See your
installation or user’s guide for information specific to your operating
system.

Part of the SGA contains general information about the state of the
database and the instance, which the background processes need to
access; this is called the fixed SGA. No user data is stored here.

The Program Global Area (PGA) is a memory region that contains data
and control information for a single process (server or background).
Consequently, the PGA is referred to as the “Program Global Area” or
the “Process Global Area.”

A PGA is allocated by Oracle when a user process connects to an
Oracle database and a session is created, though this varies by
operating system and configuration. See “Connections, Sessions, and
User Processes” on page 9–30 for more information about sessions. The
contents of a PGA vary, depending on whether the associated instance
is running the multi–threaded server. Figure 9 – 6 summarizes these
differences.

DB_BLOCK_SIZE

DB_BLOCK_
BUFFERS

LOG_BUFFER

SHARED_POOL_
SIZE

Non–Shared and Writable

Memory Structures and Processes 9–27

Stack
Space

PGA

Stack
Space

Shared SQL Areas

SGA

Session
Information

Shared SQL Areas

SGA

PGA

Oracle without the
Multi–threaded Server

Oracle with the
Multi–threaded Server

Session
Information

Figure 9 – 6 The Contents of a PGA with and without the Multi–Threaded
Server

Stack Space A PGA always contains a stack space, which is memory
allocated to hold a session’s variables, arrays, and other information.

Session Information A PGA in an instance running without the
multi–threaded server requires additional memory for the user’s
session, such as private SQL areas and other information. If the
instance is running the multi–threaded server, this extra memory is not
in the PGA, but is instead allocated in the SGA.

Shared SQL Areas Shared SQL areas are always in shared memory
areas of the SGA (not the PGA), with or without the multi–threaded
server.

The PGA is non–shared memory area to which a process can write. One
PGA is allocated for each server process; the PGA is exclusive to a
server process and is read and written only by Oracle code acting on
behalf of that process.

Size of a PGA

Sort Areas

Oracle7 Server Concepts9–28

A PGA’s size is operating system specific, and not dynamic. When the
client and server are on different machines, the PGA is allocated on the
database server at connect time; if sufficient memory is not available to
connect, an error occurs. This error is an Oracle error in an operating
system error number range. Once connected, a user can never run out
of PGA space; there is either enough or not enough memory to connect
in the first place.

The following initialization parameters affect the sizes of PGAs:

• OPEN_LINKS

• DB_FILES

• LOG_FILES

The size of the stack space in each PGA created on behalf of Oracle
background processes (such as DBWR and LGWR) is affected by some
additional parameters. See your Oracle operating system–specific
documentation for more information.

Sorting requires space in memory. Portions of memory in which Oracle
sorts data are called sort areas. A sort area exists in the memory of an
Oracle user process that requests a sort. A sort area can grow to
accommodate the amount of data to be sorted but is limited by the
value of the initialization parameter SORT_AREA_SIZE. The value of
this parameter is expressed in bytes. The default value varies
depending on your operating system.

During a sort, Oracle may perform some tasks that do not involve
referencing data in the sort area. In such cases, Oracle may decrease the
size of the sort area by writing some of the data to a temporary
segment on disk and then deallocating the portion of the sort area that
contained that data. Such deallocation may occur, for example, if
Oracle returns control to the application. The size to which the sort area
is reduced is determined by the initialization parameter
SORT_AREA_RETAINED_SIZE. The value of this parameter is
expressed in bytes. The minimum value is the equivalent of one
database block, the maximum and default value is the value of the
SORT_AREA_SIZE initialization parameter. Memory released during a
sort is freed for use by the same Oracle process, but it is not released to
the operating system.

If the amount of data to be sorted does not fit into a sort area, then the
data is divided into smaller pieces that do fit. Each piece is then sorted
individually. The individual sorted pieces are called “runs”. After
sorting all the runs, Oracle merges them to produce the final result.

Sort Direct Writes

For More Information

Memory Structures and Processes 9–29

Sort Direct Writes provides an automatic tuning method for deriving
the size and number of direct write buffers based upon the sort area
size. The memory for the buffers is taken from the sort area, so only
one tuning parameter is necessary. In addition, an optimizer cost model
is provided.

If memory and temporary space are abundant on your system and you
perform many large sorts to disk, the setting of the initialization
parameter SORT_DIRECT_WRITES can increase sort performance.

For Release 7.3 and greater, the default value of
SORT_DIRECT_WRITES is AUTO. If the initialization parameter is
unspecified or set to AUTO, the database automatically allocates direct
write buffers if the SORT_AREA_SIZE is ten times the minimum direct
write buffer configuration. In this case, the sort allocates the direct
write buffers out of a portion of the total sort area, ignoring the settings
of SORT_WRITE_BUFFER_SIZE and SORT_WRITE_BUFFERS.

If you set SORT_DIRECT_WRITES to FALSE, the sorts that write to
disk will write through the buffer cache. If you set the parameter to
TRUE, each sort allocates additional buffers in memory for direct
writes. You can set the initialization parameters
SORT_WRITE_BUFFERS and SOFT_WRITE_BUFFER_SIZE to control
the number and size of these buffers. The sort writes an entire buffer
for each I/O operation. The Oracle process performing the sort writes
the sort data directly to the disk, bypassing the buffer cache.

See Oracle7 Server Administrator’s Guide.

Variations in Oracle Configuration

All connected Oracle users must execute two modules of code to access
an Oracle database instance:

A database user executes a database application
(such as a precompiler program) or an Oracle tool
(such as an Oracle Forms application), which issues
SQL statements to an Oracle database.

Each user has some Oracle server code executing
on his/her behalf, which interprets and processes
the application’s SQL statements.

In a multiple–process instance, the code for connected users can be
configured in one of three variations:

application or
Oracle tool

Oracle server
code

OSSDoc

Connections, Sessions,
and User Processes

Oracle7 Server Concepts9–30

• For each user, both the database application and the Oracle
server code are combined in a single user process.

• For each user, the database application is run by a different
process (a user process) than the one that executes the Oracle
server code (a dedicated server process). This configuration is
called the dedicated server architecture.

• The database application is a different process (a user process)
than the one that executes the Oracle server code. Furthermore,
each server process that executes Oracle server code (a shared
server process) can serve multiple user processes. This
configuration is called the multi–threaded server architecture.

Additional Information: Some operating systems offer a choice
of configurations; see your Oracle operating system–specific
documentation for more details on your options. The following
sections describe each variation in more detail.

Before describing the variations in Oracle configurations, it is useful to
introduce the terms “connection” and “session”, which are related to
the term “user process” (see “User Processes” on page 9–5), but are
very different in meaning.

A connection is a communication pathway between a user process and
an Oracle instance. A communication pathway is established using
available inter–process communication mechanisms (on a computer
that executes both the user process and Oracle) or network software
(when different computers execute the database application and
Oracle, and communicate via a network).

A session is a specific connection of a user to an Oracle instance via a
user process; for example, when a user starts SQL*Plus, the user must
provide a valid username and password and then a session is
established for the user. A session lasts from the time the user connects
until the time the user disconnects (or exits the database application).

Multiple sessions can be created and concurrently exist for a single
Oracle user; for example, a user with the username/password of
SCOTT/TIGER can connect to the same Oracle instance several times
using the same username.

When the multi–threaded server is not used, a server process is created
on behalf of each user session; however, when the multi–threaded
server is used, a single server process can be shared among many user
sessions; each of the following sections describes the relationship of
sessions and processes with respect to the configuration variations.

Oracle Using
Combined User/Server
Processes

Memory Structures and Processes 9–31

Figure 9 – 7 illustrates one configuration of Oracle. Notice that in this
configuration, the database application and the Oracle server code all
run in the same process, termed a user process.

System Global Area

User
Process

Application
Code

Oracle
Server Code

User
Process

Application
Code

Oracle
Server Code

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Figure 9 – 7 Oracle Using Combined User/Server Processes

This configuration of Oracle (sometimes called single–task Oracle) is
only feasible in operating systems that can maintain a separation
between the database application and the Oracle code in a single
process (such as on the VAX VMS operating system). This separation is
required for data integrity and privacy. Some operating systems, such
as UNIX, cannot provide this separation and thus must have separate
processes run application code from server code to prevent damage to
Oracle by the application.

Note: The program interface is responsible for the separation
and protection of the Oracle server code and is responsible for
passing data between the database application and the Oracle
user program. See “The Program Interface” on page 9–41 for
more information about this structure.

Only one Oracle connection is allowed at any time by a process using
the above configuration. However, in a user–written program it is
possible to maintain this type of connection while concurrently
connecting to Oracle using a network (SQL*Net) interface.

Oracle Using
Dedicated Server
Processes

Oracle7 Server Concepts9–32

Figure 9 – 8 illustrates Oracle running on two computers using the
dedicated server architecture.

Notice that in this type of system, a user process executes the database
application on one machine and a server process executes the
associated Oracle server on another machine. These two processes are
separate, distinct processes. The separate server process created on
behalf of each user process is called a dedicated server process (or shadow
process) because this server process acts only on behalf of the
associated user process.

In this configuration (sometimes called two–task Oracle), every user
process connected to Oracle has a corresponding dedicated server
process. Therefore, there is a one–to–one ratio between the number of
user processes and server processes in this configuration. Even when
the user is not actively making a database request, the dedicated server
process remains (though it is inactive and may be paged out on some
operating systems).

The dedicated server architecture of Oracle allows client applications
being executed on client workstations to communicate with another
computer running Oracle across a network. This is illustrated in
Figure 9 – 8. However, this configuration of Oracle is also used if the
same computer executes both the client application and the Oracle
server code, but the host operating system cannot maintain the
separation of the two programs if they were to be run in a single
process. A common example of such an operating system is UNIX.

OSDoc

Memory Structures and Processes 9–33

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code

Figure 9 – 8 Oracle Using Dedicated Server Processes

The program interface allows the communication between the two
programs. In the dedicated server configuration, communications
between the user and server processes is accomplished using different
mechanisms:

• If the system is configured so that the user process and the
dedicated server process are run by the same computer, the
program interface uses the host operating system’s inter–process
communication mechanism to perform its job.

• If the user process and the dedicated server process are executed
by different computers, the program interface also encompasses
the communication mechanisms, such as the network software
and SQL*Net, between the programs.

Additional Information: These communications links are
operating system and installation dependent; see your Oracle
operating system–specific documentation and the SQL*Net
documentation for more information.

The Multi–Threaded
Server

Contrasting Dedicated
Server Processes and
Shared Server Processes

An Overview of the
Multi–Threaded Server
Architecture

Oracle7 Server Concepts9–34

See “The Program Interface” on page 9–41 for additional information
about the program interface.

The multi–threaded server configuration allows many user processes to
share very few server processes. Without the multi–threaded server
configuration, each user process requires its own dedicated server
process; a new server process is created for each client requesting a
connection. A dedicated server process remains associated to the user
process for the remainder of the connection. With the multi–threaded
server configuration, many user processes connect to a dispatcher
process. The dispatcher routes client requests to the next available
shared server process. The advantage of the multi–threaded server
configuration is that system overhead is reduced, so the number of
users that can be supported is increased.

Consider an order entry system with dedicated server processes. A
customer places an order as a clerk enters the order into the database.
For most of the transaction, the clerk is on the telephone talking to the
customer and the server process dedicated to the clerk’s user process
remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders.

The multi–threaded server configuration eliminates the need for a
dedicated server process for each connection. A small number of
shared server processes can perform the same amount of processing as
many dedicated server processes. Also, the amount of memory
required for each user is relatively small. Because less memory and
process management are required, more users can be supported.

The following types of processes are needed in a system using the
multi–threaded server architecture:

• a network listener process that connects user processes to
dispatchers and dedicated servers (this process is part of
SQL*Net, not Oracle).

• one or more dispatcher processes

• one or more shared server processes

The network listener process waits for incoming connection requests
and determines if each user process can use a shared server process. If
so, the listener gives the user process the address of a dispatcher
process. If the user process requests a dedicated server, the listener
process creates a dedicated server process and connects the user
process to it. (At least one dispatcher process must be configured and
started per network protocol that the database clients will use.)

Memory Structures and Processes 9–35

Note: To use shared servers, a user process must connect
through SQL*Net, even if the user process is on the same
machine as the Oracle instance.

A request from a user is a single program interface call that is part of
the user’s SQL statement. When a user makes a call, its dispatcher
places the request on the request queue in the SGA, where it is picked
up by the next available shared server process. The shared server
processes make all the necessary calls to the database to complete each
user process’s request. When the server completes the request, the
server returns the results to the response queue of the dispatcher that
the user is connected to the SGA. The dispatcher then returns the
completed request to the user process.

In the order entry system example, each clerk’s user process connects
to a dispatcher; each request made by a clerk is sent to a dispatcher,
which places the request in the request queue. The next available
shared server process picks up the request, services it, and puts the
response in the response queue. When a clerk’s request is completed,
the clerk remains connected to the dispatcher, but the shared server
process that processed the request is released and available for other
requests. While one clerk is talking to a customer, not making a request
to the database, another clerk can use the same shared server process.

Figure 9 – 9 illustrates how user processes communicate with the
dispatcher across the two–task interface and how the dispatcher
communicates users’ requests to shared server processes.

Oracle7 Server Concepts9–36

System Global Area

Application
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
Code

Application
Code

User
Process

Database Server

Client Workstation

Application
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

Code

Dispatcher Processes

Request
Queue

Oracle
Server CodeOracle

Server Code

Shared
Server

Processes
Oracle

Server CodeOracle
Server Code

Response
QueuesResponse

QueuesResponse
Queues

Response
QueuesResponse

QueuesResponse
Queues

1

2

3
4

5

6

7

Figure 9 – 9 The Oracle Multi–Threaded Server Configuration and Shared
Server Processes

Shared Server Processes

Dispatcher Request and
Response Queues

Artificial Deadlocks

Memory Structures and Processes 9–37

Shared server processes and dedicated server processes provide the
same functionality, except shared server processes are not associated
with a specific user process. Instead, a shared server process serves any
client request in the multi–threaded server configuration.

The PGA of a shared server process does not contain user–related data;
such information needs to be accessible to all shared server processes.
The PGA of a shared server process contains only stack space and
process–specific variables. “Program Global Area (PGA)” on page 9–26
provides more information about the content of a PGA in different
types of instance configurations.

All session–related information is contained in the SGA. Each shared
server process needs to be able to access all sessions’ data spaces so
that any server can handle requests from any session. Space is allocated
in the SGA for each session’s data space. You can limit the amount of
space that a session can allocate by setting the resource limit
PRIVATE_SGA to the desired amount of space in the user’s profile. See
Chapter 17, “Database Access,” for more information about resource
limits and profiles.

Oracle dynamically adjusts the number of shared server processes
based on the length of the request queue. The number of shared server
processes that can be created ranges between the initialization
parameters MTS_SERVERS and MTS_MAX_SERVERS.

The request queue is in the SGA and is common to all dispatcher
processes of an instance. The shared server processes check the
common request queue for new requests, picking up new requests on a
first–in–first–out basis. One shared server process picks up one request
in the queue and makes all necessary calls to the database to complete
that request. The shared server process then places the response on the
calling dispatcher’s response queue. Each dispatcher has its own
response queue in the SGA and each dispatcher is responsible for
sending completed requests back to the appropriate user process.

With a limited number of shared server processes, the possibility of an
“artificial” deadlock can arise. An artificial deadlock can occur in the
following situation:

1. One user acquires an exclusive lock on a resource by issuing a
SELECT statement with the FOR UPDATE clause or LOCK TABLE
statement.

2. The shared server process used to process the locking request is
released once the statement completes.

Restricted Operations of
the Multi–Threaded
Server

OSDoc

Oracle7 Server Concepts9–38

3. Other users attempt to access the locked resource. Each shared
server process is bound to the user process it is serving until the
necessary locked resource becomes available. Eventually, all shared
servers may be bound to users waiting for locked resources.

4. The original user attempts to submit a new request (such as a
COMMIT or ROLLBACK statement) to release the previously
acquired lock, but cannot because all shared server processes are
currently being used.

When Oracle detects an artificial deadlock, new shared server
processes are automatically created as needed until the original user
submits a request that releases the locked resources causing the
artificial deadlocks. If the maximum number of shared server processes
(as specified by the MTS_MAX_SERVERS parameter) have been
started, the database administrator must manually resolve the
deadlock by disconnecting a user. This releases a shared server process,
resolving the artificial deadlock.

If artificial deadlocks occur too frequently on your system, you should
increase the value of MTS_MAX_SERVERS.

Certain administrative activities cannot be performed while connected
to a dispatcher process, including shutting down or starting an instance
and media recovery. An error message is issued if you attempt to
perform these activities while connected to a dispatcher process.

These activities are typically performed when connected as
INTERNAL. When you want to connect as INTERNAL in system
configured with multi–threaded servers, you must state in your
connect string that you want to use a dedicated server process instead
of a dispatcher process (SRVR=DEDICATED).

Additional Information: See your Oracle operating
system–specific documentation or SQL*Net documentation for
the proper connect string syntax.

An Example of Oracle
Using Dedicated
Server Processes

Memory Structures and Processes 9–39

Examples of How Oracle Works

Now that the memory structures, processes, and varying
configurations of an Oracle database system have been discussed, it is
helpful to see how all the parts work together. The following sections
demonstrate and contrast the two–task and multi–threaded server
Oracle configurations.

The following example is a simple illustration of the dedicated server
architecture of Oracle:

1. A database server machine is currently running Oracle using
multiple background processes.

2. A client workstation runs a database application (in a user process)
such as SQL*Plus. The client application attempts to establish a
connection to the server using a SQL*Net driver.

3. The database server is currently running the proper SQL*Net
driver. The Listener process on the database server detects the
connection request from the client database application and creates
a dedicated server process on the database server on behalf of the
user process.

4. The user executes a single SQL statement. For example, the user
inserts a row into a table.

5. The dedicated server process receives the statement. At this point,
two paths can be followed to continue processing the SQL
statement:

• If the shared pool contains a shared SQL area for an identical
SQL statement, the server process can use the existing shared
SQL area to execute the client’s SQL statement.

• If the shared pool does not contain a shared SQL area for an
identical SQL statement, a new shared SQL area is allocated for
the statement in the shared pool.

In either case, a private SQL area is created in the session’s PGA
and the dedicated server process checks the user’s access privileges
to the requested data.

6. The server process retrieves data blocks from the actual datafile, if
necessary, or uses data blocks already stored in the buffer cache in
the SGA of the instance.

An Example of Oracle
Using the
Multi–Threaded Server

Oracle7 Server Concepts9–40

7. The server process executes the SQL statement stored in the shared
SQL area. Data is first changed in the SGA. It is permanently
written to disk when the DBWR process determines it is most
efficient to do so. The LGWR process records the transaction in the
online redo log file only on a subsequent commit request from the
user.

8. If the request is successful, the server sends a message across the
network to the user. If it is not successful, an appropriate error
message is transmitted.

9. Throughout this entire procedure, the other background processes
are running and watching for any conditions that require
intervention. In addition, Oracle is managing other transactions
and preventing contention between different transactions that
request the same data.

These steps show only the most basic level of operations that Oracle
performs.

The following example is a simple illustration of the multi–threaded
server architecture of Oracle:

1. A database server is currently running Oracle using the
multi–threaded server configuration.

2. A client workstation runs a database application (in a user process)
such as SQL*Forms. The client application attempts to establish a
connection to the database server using the proper SQL*Net driver.

3. The database server machine is currently running the proper
SQL*Net driver. The Listener process on the database server
detects the connection request of the user process and determines
how the user process should be connected. If the user is using
SQL*Net Version 2, the Listener informs the user process to
reconnect using the address of an available dispatcher process.

Note: If the user is using SQL*Net Version 1 or 1.1, the
SQL*Net listener process creates a dedicated server process on
behalf of the user process and the remainder of the example
operates as described in the preceding example. (Users using
earlier versions of SQL*Net cannot use a shared server
process.)

4. The user issues a single SQL statement. For example, the user
updates a row into a table.

5. The dispatcher process places the user process’s request on the
request queue, which is in the SGA and shared by all dispatcher
processes.

Program Interface
Structure

Memory Structures and Processes 9–41

6. An available shared server process checks the common dispatcher
request queue and picks up the next SQL statement on the queue. It
then processes the SQL statement as described in Steps 5, 6, and 7
of the previous example. Note in Step 5 that parts of the session’s
private SQL area are created in the SGA.

7. Once the shared server process finishes processing the SQL
statement, the process places the result on the response queue of
the dispatcher process that sent the request.

8. The dispatcher process checks its response queue and sends
completed requests back to the user process that made the request.

The Program Interface

The program interface is the software layer between a database
application and Oracle. The program interface does the following:

• provides a security barrier, preventing destructive access to the
SGA by client user processes

• acts as a communication mechanism, formatting information
requests, passing data, and trapping and returning errors

• converts and translates data, particularly between different types
of computers or to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of
an application (a client), such as fetching rows from data blocks. It
consists of several parts, provided by both Oracle software and
operating system–specific software.

The program interface consists of the following pieces:

• Oracle call interface (OCI) or the Oracle runtime library
(SQLLIB)

• the client or user side of the program interface (also called the
UPI)

• various SQL*Net drivers (protocol–specific communications
software)

• operating system communications software

• the server or Oracle side of the program interface (also called the
OPI)

The Program Interface
Drivers

Operating System
Communications
Software

OSDoc

Oracle7 Server Concepts9–42

Both the user and Oracle sides of the program interface execute Oracle
software, as do the drivers.

SQL*Net is the portion of the program interface that allows the client
application program and the Oracle Server to reside on separate
computers in your communication network.

Drivers are pieces of software that transport data, usually across a
network. They perform operations like connect, disconnect, signal
errors, and test for errors. Drivers are specific to a communications
protocol. There is always a default driver.

You may install multiple drivers (such as the asynchronous or DECnet
drivers), and select one as the default driver, but allow an individual
user to use other drivers by specifying the desired driver at the time of
connection. Different processes can use different drivers. A single
process can have concurrent connections to a single database or to
multiple databases (either local or remote) using different SQL*Net
drivers.

The installation and configuration guide and SQL*Net documentation
for your system contains details about choosing and installing drivers
and adding new drivers after installation. The SQL*Net documentation
describes selecting a driver at runtime while accessing Oracle.

The lowest level software connecting the user side to the Oracle side of
the program interface is the communications software, which is
provided by the host operating system. DECnet, TCP/IP, LU6.2, and
ASYNC are examples.

Additional Information: The communication software may be
supplied by Oracle Corporation but is usually purchased
separately from the hardware vendor or a third party software
supplier. See your Oracle operating system–specific
documentation for more information about the communication
software of your system.

C H A P T E R

10

T

Data Concurrency 10–1

Data Concurrency

A foolish consistency is the hobgoblin of little minds, adored by little
statesmen and philosophers and divines.

Ralph Waldo Emerson

his chapter explains how Oracle maintains consistent data in a
multi–user database environment. The chapter includes:

• Data Concurrency in a Multi–user Environment

• How Oracle Controls Data Concurrency

• How Oracle Locks Data

General Concurrency
Issues

Oracle7 Server Concepts10–2

Data Concurrency in a Multi–user Environment

In a single–user database, the user can modify data in the database
without concern for other users modifying the same data at the same
time. However, in a multi–user database, the statements within
multiple simultaneous transactions can update the same data.
Transactions executing at the same time need to produce meaningful
and consistent results. Therefore, control of data concurrency and data
consistency is vital in a multi–user database. These concepts are
defined here:

Many users can access data at the same time.

Users should see a consistent view of the data,
including visible changes made by the user’s own
transactions and transactions of other users.

To describe consistent transaction behavior when transactions execute
at the same time, database researchers have defined a transaction
isolation model called serializability. The serializable mode of
transaction behavior tries to ensure that transactions execute in such a
way that they appear to be executed one at a time, or serially, rather
than concurrently.

While this degree of isolation between transactions is generally
desirable, running many applications in this mode can seriously
compromise the application throughput. Complete isolation of
concurrently running transactions could mean that one transaction
could not do an insert into a table that was being queried by another. In
short, real world considerations usually make it necessary to choose a
compromise between perfect transaction isolation and performance.

Oracle offers two isolation levels, providing application developers
with operational modes that preserve consistency and provide high
performance.

The ANSI/ISO SQL standard (SQL92) defines several levels of
transaction isolation with differing degrees of impact on transaction
processing throughput. These isolation levels are defined in terms of
phenomena that must be prevented between concurrently executing
transactions.

data concurrency

data consistency

Preventable Phenomena

Isolation Levels

Locking Mechanisms

Data Concurrency 10–3

The SQL standard defines three phenomena and four levels of isolation
that provide protection against the phenomena. The three preventable
phenomena are defined as:

A transaction reads data that has been written by a
transaction that has not been committed yet.

A transaction re–reads data it has previously read
and finds that another committed transaction has
modified or deleted the data.

A transaction re–executes a query returning a set of
rows that satisfy a search condition and finds that
another committed transaction has inserted
additional rows that satisfy the condition.

The SQL standard defines four levels of isolation in terms of the
phenomena a transaction running at a particular isolation level is
permitted to experience.

Isolation Level Dirty Read Non–Repeatable
Read

Phantom Read

Read
uncommitted

Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

Oracle offers the read committed and serializable isolation levels. Read
committed is the default and was the only automatic isolation level
provided before Release 7.3.

In general, multi–user databases use some form of data locking to solve
the problems associated with data concurrency, integrity, and
consistency. Locks are mechanisms used to prevent destructive
interaction between users accessing the same resource.

Resources include two general types of objects:

• user objects, such as tables and rows (structures and data)

• system objects not visible to users, such as shared data structures
in the memory and data dictionary rows

dirty reads

non–repeatable
(fuzzy) reads

phantom read

Restrictiveness of Locks

Deadlocks

Oracle7 Server Concepts10–4

In general, you can use two levels of locking in a multi–user database:

An exclusive lock prevents the associated resource
from being shared and are obtained to modify
data. The first transaction to exclusively lock a
resource is the only transaction that can alter the
resource until the exclusive lock is released.

A share lock allows the associated resource to be
shared, depending on the operations involved.
Multiple users reading data can share the data,
holding share locks to prevent concurrent access by
a writer (who holds an exclusive lock). Several
transactions can acquire share locks on the same
resource.

A deadlock is a situation that can occur in multi–user systems that
prevents some transactions from continuing work. A deadlock can
occur when two or more users are waiting for data locked by each
other. Figure 10 – 1 illustrates two transactions in a deadlock.

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000;

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000;

ORA–00060:
 deadlock detected while
 waiting for resource

UPDATE emp

 WHERE empno = 2000;

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342

A

B

C

Transaction 1 (T1) Time Transaction 2 (T2)

Figure 10 – 1 Two Transactions in a Deadlock

In Figure 10 – 1, no problem exists at time point A, as each transaction
has a row lock on the row it attempts to update. Each transaction
proceeds (without being terminated). However, each tries to update the
row currently held by the other transaction. Therefore, a deadlock
results at time point B, because neither transaction can obtain the
resource it needs to proceed or terminate. It is a deadlock because no
matter how long each transaction waits, the conflicting locks are held.

exclusive locks

share locks

Lock Escalation

Multiversion
Concurrency Control

Data Concurrency 10–5

Lock escalation occurs when numerous locks are held at one level and
the database automatically changes the locks to different locks at a
higher level. For example, if a single user locks many rows in a table,
the database might automatically escalate the user’s row locks to a
single table lock. With this plan, the number of locks has been reduced,
but the restrictiveness of what is being locked has increased.

Lock escalation greatly increases the likelihood of deadlocks. For example,
imagine the situation where the system is trying to escalate locks on behalf
of transaction T1 but cannot because of the locks held by transaction T2. A
deadlock is created if transaction T2 also requires lock escalation before it
can proceed, since the escalator is devoted to T1.

Note: Oracle never escalates locks.

How Oracle Controls Data Concurrency

Oracle maintains data concurrency, integrity, and consistency by using
a multiversion consistency model and various types of locks and
transactions.

Oracle automatically provides read consistency to a query so that all
the data that the query sees comes from a single point in time. Oracle
can also provide read consistency to all of the queries in a transaction.

Oracle uses the information maintained in its rollback segments to
provide these consistent views. The rollback segments contain the old
values of data that have been changed by uncommitted or recently
committed transactions.

Figure 10 – 2 shows how Oracle can provide statement–level read
consistency using data in rollback segments.

The “Snapshot Too Old”
Message

Oracle7 Server Concepts10–6

SELECT . . .
(SCN 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks

Scan Path

Rollback Segment

Figure 10 – 2 Transactions and Read Consistency

As a query enters the execution stage, the current system change
number (SCN) is determined; in Figure 10 – 2, this system change
number is 10023. As data blocks are read on behalf of the query, only
blocks written with the observed system change number are used.
Blocks with changed data (more recent SCNs) are reconstructed using
data in the rollback segments, and the reconstructed data is returned
for the query. Therefore, each query returns all committed data with
respect to the SCN recorded at the time that query execution began.
Changes of other transactions that occur during a query’s execution are
not observed, guaranteeing that consistent data is returned for each
query.

In rare situations, Oracle cannot return a consistent set of results (often
called a snapshot) for a long–running query. This occurs because not
enough information remains in the rollback segments to reconstruct the
older data. Usually, this error is produced when a lot of update activity
causes the rollback segment to wrap around and overwrite changes
needed to reconstruct data that the long–running query requires. In this
event, error 1555 will result:

ORA–1555: snapshot too old (rollback segment too small)

Statement Level Read
Consistency

Transaction Level Read
Consistency

Data Concurrency 10–7

You can avoid this error by creating more or larger rollback segments.
Alternatively, long–running queries can be issued when there are few
concurrent transactions, or you can obtain a shared lock on the table
you are querying, thus prohibiting any other exclusive locks during the
transaction.

Oracle always enforces statement–level read consistency. This guarantees
that the data returned by a single query is consistent with respect to the
time that the query began. Therefore, a query never sees dirty data nor
any of the changes made by transactions that commit during query
execution. As query execution proceeds, only data committed before
the query began is visible to the query. The query does not see changes
committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data
consistency, with no action on the user’s part. The SQL statements
SELECT, INSERT with a query, UPDATE, and DELETE all query data,
either explicitly or implicitly, and all return consistent data. Each of
these statements uses a query to determine which data it will affect
(SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and may have nested queries
or a join operation. An INSERT statement can use nested queries.
UPDATE and DELETE statements can use WHERE clauses or
subqueries to affect only some rows in a table rather than all rows.

While queries used in INSERT, UPDATE, and DELETE statements are
guaranteed a consistent set of results, they do not see the changes made
by the DML statement itself. In other words, the data the query in these
operations sees reflects the state of the data before the operation began
to make changes.

Oracle also allows the option of enforcing transaction–level read
consistency. When a transaction executes in serializable mode (see
below), all data accesses reflect the state of the database as of the time
the transaction began. This means that the data seen by all queries
within the same transaction is consistent with respect to a single point
in time, except that queries made by a serializable transaction do see
changes made by the transaction itself. Therefore, transaction–level
read consistency produces repeatable reads and does not expose a
query to phantoms.

Oracle Isolation Levels

Setting the Isolation
Level

Oracle7 Server Concepts10–8

Oracle provides three transaction isolation modes:

This is the default transaction isolation level. Each
query executed by a transaction sees only data that
was committed before the query (not the
transaction) began. An Oracle query will never
read dirty (uncommitted) data.

Because Oracle does not prevent other transactions
from modifying the data read by a query, that data
may be changed by other transactions between two
executions of the query. Thus, a transaction that
executes a given query twice may experience both
non–repeatable read and phantoms.

Serializable transactions see only those changes
that were committed at the time the transaction
began, plus those changes made by the transaction
itself through INSERT, UPDATE, and DELETE
statements. Serializable transactions do not see
non–repeatable reads or phantoms.

Read only transactions see only those changes that
were committed at the time the transaction began
and do not allow INSERT, UPDATE, and DELETE
statements.

Application designers, application developers, and DBAs should set an
isolation level for transactions appropriate for the specific application
and workload. As an application designer, application developer, or
DBA, you can choose different isolation levels for different
transactions.

You can set the isolation level of a transaction by using one of these
commands at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ ONLY;

To save the networking and processing cost of beginning each
transaction with a SET TRANSACTION command, you can use the
ALTER SESSION command to set the transaction isolation level for all
subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED;

You can also change the default transaction isolation level for the
system by using the ALTER SYSTEM command. For detailed

read committed

serializable
transactions

read only

Read Committed Isolation

Serializable Isolation

Data Concurrency 10–9

information on any of these SQL commands, see chapter 4 of Oracle7
Server SQL Reference.

The default isolation level for Oracle is read committed. This degree of
isolation is appropriate for most applications. With read committed
isolation levels, Oracle causes each query to execute with respect to its
own snapshot time, thereby permitting non–repeatable reads and
phantoms for two executions of a query, but providing higher potential
throughput.

Read committed isolation is the appropriate level of isolation for
environments where few transactions are likely to conflict.

Serializable mode is suitable for environments with large databases and
short transactions that update only a few rows. It is appropriate for
environments where both of the following are true:

• there is a relatively low chance that two concurrent transactions
will modify the same rows

• relatively long–running transactions are primarily read–only

Serializable mode prevents interactions between transactions that
would preclude them from executing one at a time. In other words,
concurrent transactions executing in serializable mode are only
permitted to make database changes the could have made if the
transactions had been scheduled to execute one after another. This
mode ensures transactions move the database from one consistent state
to another consistent state. It prevents potentially harmful interactions
between concurrently executing transactions, but causes a reduction in
throughput that is often unacceptable.

A serializable transaction executes against the database as it existed at
the beginning of the transaction. A serializable transaction cannot
modify rows changed by other transactions that are ”too recent,” that
is, that commit after the serializable transaction began.

Oracle generates an error when a serializable transaction tries to
update or delete data modified by a transaction that commits after the
serializable transaction began:

ORA–08177: Cannot serialize access for this transaction

Additional
Considerations for
Serializable Isolation

Oracle7 Server Concepts10–10

Here is an example:

LOOP and retry
THEN ROLLBACK;

SET TRANSACTION ISOLATION

SELECT...

SELECT...

UPDATE...

Repeated query sees the same
data, even if it was changed by
another concurrent user

LEVEL SERIALIZABLE

Fails if attempting to update a
row changed and committed by
another transaction since this
transaction began

”Can’t Serialize Access”IF

Figure 10 – 3 Serializable Transaction Failure

When a serializable transaction fails with the “Can’t serialize access”
error, the application can take any of several actions:

• commit the work executed to that point

• execute additional (but different) statements (perhaps after
rolling back to a savepoint established earlier in the transaction)

• roll back the entire transaction

Oracle stores control information in each data block to manage access
by concurrent transactions. Therefore, if you set the transaction
isolation level to serializable, you must use the ALTER TABLE or
CREATE TABLE command to set INITRANS to at least 3.

The following sections provide additional background and information
useful to application developers and database administrators planning
to use serializable transactions.

Both read committed and serializable transactions use row–level locking,
and both will wait if they try to change a row updated by an
uncommitted concurrent transaction. The second transaction that tries to
update a given row waits for the other transaction to commit or rollback
and release its lock. If that other transaction rolls back, the waiting
transaction (regardless of its isolation mode) can proceed to change the
previously locked row, as if the other transaction had not existed.

However, read committed and serializable transactions behave
differently if the other (blocking) transaction commits. When the other
transaction commits and releases its locks, a read committed

Serializable Transactions
and Row Locking

Update Intensive
Environments and
Serializable Transactions

Referential Integrity and
Serializable Transactions

Oracle Parallel Server and
Distributed Transactions

Data Concurrency 10–11

transaction will proceed with its intended update. A serializable
transaction, however, will fail with the error “Can’t serialize access”,
since the other transaction has committed a change that was made
since the serializable transaction began.

Oracle permits a serializable transaction to modify a data row only if it
can determine that prior changes to the row were made by transactions
that had committed when the serializable transaction began. To make
this determination efficiently, Oracle uses control information stored
within the block that indicates which rows in the block contain
committed and uncommitted changes. In a sense, the block contains a
recent history of transactions that affected each row in the block. The
amount of history that is retained is controlled by the INITRANS
parameter of CREATE TABLE and ALTER TABLE.

Under some circumstances, Oracle may have insufficient history
information to determine whether a row has been updated by a “too
recent” transaction. This can occur when many transactions
concurrently modify the same data block, or do so in a very short
period.

Higher values of INITRANS should be used for tables that will
experience many transactions updating the same blocks. This
parameter will cause Oracle to allocate sufficient storage in each block
to record the history of recent transactions that accessed the block.

Because Oracle does not use read locks, even in serializable
transactions, data read by one transaction can be overwritten by
another. Transactions that perform database consistency checks at the
application level should not assume that the data they read will not
change during the execution of the transaction (even though such
changes are not visible to the transaction). Database inconsistencies can
result unless such application–level consistency checks are coded with
this in mind, even when using serializable transactions.

For more information about referential integrity and serializable
transactions, see Oracle7 Server Application Developer’s Guide.

Both read committed and serializable transaction isolation levels can be
used with the Oracle Parallel Server (a cluster of several Oracle
instances running against a single database across a number of nodes).

Oracle supports distributed serializable transactions, where a given
transaction updates data in multiple physical databases (protected by
two–phase commit to ensure all nodes or none commit). In a
distributed database environment, all servers (whether Oracle or

Comparing Read
Committed and
Serializable Isolation

Oracle7 Server Concepts10–12

non–Oracle) that participate in a serializable transaction are required to
support that transaction isolation mode.

If a serializable transaction tries to update data in a database managed
by a server that does not support serializable transactions, the
transaction receives an error indicating this. In this way, the transaction
can rollback and retry only when the remote server does support
serializable transactions. In contrast, read committed transactions can
perform distributed transactions with servers that do not support
serializable transactions.

Oracle gives the application developer a choice of two transaction
isolation levels with different characteristics. Both the read committed
and serializable isolation levels provide a high degree of consistency
and concurrency. Both levels provide the contention–reducing benefits
of Oracle’s “read consistency” multiversion concurrency control model
and exclusive row–level locking implementation and are designed for
real–world application deployment. The rest of this section compares
the two isolation modes and provides information helpful in choosing
between them.

A useful way to describe the read committed and serializable isolation
levels in Oracle is to consider the following: a collection of database
tables (or any set of data), a particular sequence of reads of rows in
those tables, and the set of transactions committed at any particular
time. An operation (a query or a transaction) is “transaction set
consistent” if all its reads return data written by the same set of
committed transactions. In an operation that is not transaction set
consistent, some reads reflect the changes of one set of transactions,
and other reads reflect changes made by other transactions. An
operation that is not transaction set consistent in effect sees the
database in a state that reflects no single set of committed transactions.

Oracle provides transactions executing in read committed mode with
transaction set consistency on a per–statement basis. Serializable mode
provides transaction set consistency on a per–transaction basis.

Differences Between Read
Committed and
Serializable Transactions

Choosing an Isolation
Level

Data Concurrency 10–13

The table below summarizes key differences between read committed
and serializable transactions in Oracle.

Read committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Non–repeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row–level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different row–writers block writers No No

Same–row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to ”cannot serialize access” No Yes

Error after blocking transaction aborts No No

Error after blocking transaction commits No Yes

Application designers and developers should choose an isolation level
based on application performance and consistency needs as well as
application coding requirements.

For environments with many concurrent users rapidly submitting
transactions, designers must assess transaction performance
requirements in terms of the expected transaction arrival rate and
response time demands. You should choose an isolation level that
provides the required degree of consistency while satisfying
performance expectations. Frequently, for high performance
environments, the choice of isolation levels involves making a tradeoff
between consistency and concurrency (transaction throughput).

Both Oracle isolation modes provide high levels of consistency and
concurrency (and performance) through the combination of row–level
locking and Oracle’s multiversion concurrency control system. Because
readers and writers don’t block one another in Oracle, while queries
still see consistent data, both read committed and serializable isolation
provide a high level of concurrency for high performance, without the
need for reading uncommitted (“dirty”) data.

Choosing Read
Committed Isolation

Choosing Serializable
Isolation

Oracle7 Server Concepts10–14

Read committed isolation can provide considerably more concurrency
with a somewhat increased risk of inconsistent results (due to
phantoms and non–repeatable reads) for some transactions. The
serializable isolation level provides somewhat more consistency by
protecting against phantoms and non–repeatable reads and may be
important where a read/write transaction executes a query more than
once. However, serializable mode requires applications to check for the
“Cannot serialize access” error and can significantly reduce throughput
in an environment with many concurrent transactions accessing the
same data for update. Application logic that checks database
consistency must take into account the fact reads don’t block writes in
either mode.

For many applications, read committed is the most appropriate
isolation level. This is the isolation level used by applications running
on Oracle releases previous to release 7.3.

Often, high performance environments with high transaction arrival
rates require more throughput and faster response times than can be
achieved with serializable isolation. On the other hand, an environment
that supports few users with a very low transaction arrival rate faces
exceedingly low risk of incorrect results due to phantoms and
non–repeatable reads. Both of these environments are suitable for read
committed isolation.

Oracle read committed isolation provides transaction set consistency
for every query (that is, every query sees data in a consistent state).
Therefore, read committed isolation will suffice for many applications
that might require a higher degree of isolation if run on other database
management systems that do not use multiversion concurrency control.

Read committed isolation mode does not require application logic to
trap the “Cannot serialize access” error and loop back to restart a
transaction. In most applications, few transactions have a functional
need to re–issue the same query twice, so for many applications
protection against phantoms and non–repeatable reads is not
important. Therefore many developers choose read committed to avoid
the need to write such error checking and retry code in each
transaction.

Oracle’s serializable isolation mode is suitable for environments where
there is relatively low chance that two concurrent transactions will
modify the same rows and the relatively long–running transactions are
primarily read only. It is most suitable for environments with large
databases and short transactions that update only a few rows.

Data Concurrency 10–15

Unlike other implementations of serializable mode, which lock blocks
for read as well as write, Oracle provides the benefit of non–blocking
queries and the fine granularity of row–level locking. Oracle’s
row–level locking and non–blocking sequence generators also reduce
write/write contention. For applications that experience mostly
read/write contention, Oracle serializable mode can provide
significantly more throughput than other systems. Therefore, some
applications might be suitable for serializable mode on Oracle but not
on other systems.

Because all queries in an Oracle serializable transaction see the
database as of a single point in time, this mode is suitable where
multiple consistent queries must be issued in a read–write transaction.
A report–writing application that generates summary data and stores it
in the database might use serializable mode because it provides the
consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE and DELETE.

Coding serializable transactions requires extra work by the application
developer (to check for the “Cannot serialize access” error and to
rollback and retry the transaction). Similar extra coding is needed in
other database management systems to manage deadlocks. For
adherence to corporate standards or for applications that are run on
multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for
serializability failures and retry can be used with Oracle read
committed mode (which does not generate serializability errors).

Serializable mode is probably not the best choice in an environment
with relatively long transactions that must update the same rows
accessed by a high volume of short update transactions. Because a
longer running transaction is unlikely to be the first to modify a given
row, it will repeatedly need to rollback, wasting work. Note that a
conventional read–locking ”pessimistic” implementation of serializable
mode would not be suitable for this environment either, because
long–running transactions (even read transactions) would block the
progress of short update transactions and vice versa.

Application developers should take into account the cost of rolling
back and retrying transactions when using serializable mode. As with
read–locking systems where deadlocks frequently occur, use of
serializable mode requires rolling back the work done by aborted
transactions and retrying them. In a high contention environment, this
activity can use significant resources.

In most environments, a transaction that restarts after receiving the
“Cannot serialize access” error may be unlikely to encounter a second

Oracle7 Server Concepts10–16

conflict with another transaction. For this reason it can help to execute
those statements most likely to contend with other transactions as early
as possible in a serializable transaction. However, there is no guarantee
that the transaction will successfully complete, so the application
should be coded to limit the number of retries.

Although Oracle serializable mode is compatible with SQL92 and offers
many benefits as compared with read–locking implementations, it does
not provide semantics identical to such systems. Application designers
must take into account the fact that reads in Oracle do not block writes
as they do in other systems. Transactions that check for database
consistency at the application level may require coding techniques such
as the use of SELECT FOR UPDATE. This issue should be considered
when applications using serializable mode are ported to Oracle from
other environments.

How Oracle Locks Data

The only data locks Oracle acquires automatically are row–level locks.
There is no limit to the number of row locks held by a statement or
transaction, and Oracle does not escalate locks from the row level to a
coarser granularity. Row locking provides the finest grain locking
possible and so provides the best possible concurrency and throughput.

The combination of multiversion concurrency control and row–level
locking means that users only contend for data when accessing the
same rows, specifically:

• Readers of data do not wait for writers of the same data rows.

• Writers of data do not wait for readers of the same data rows
(unless SELECT... FOR UPDATE is used, which specifically
requests a lock for the reader).

• Writers only wait for other writers if they attempt to update the
same rows at the same time.

Note: Readers of data may have to wait for writers of the same
data blocks in some very special cases of pending distributed
transactions.

In all cases, Oracle automatically obtains necessary locks when
executing SQL statements, so users need not be concerned with such
details. Oracle automatically uses the lowest applicable level of
restrictiveness to provide the highest degree of data concurrency yet
also provide fail–safe data integrity. Oracle also allows the user to lock
data manually.

Transactions and Data
Concurrency

Duration of Locks

Data Lock Conversion
and Escalation

Deadlock Detection

Data Concurrency 10–17

For a complete description of the internal locks used by Oracle, see
“Types of Locks” on page 10–18.

Oracle can provide data concurrency and integrity between
transactions using its locking mechanisms. Because the locking
mechanisms of Oracle are tied closely to transaction control,
application designers need only define transactions properly, and
Oracle will automatically manage locking.

All locks acquired by statements within a transaction are held for the
duration of the transaction, preventing destructive interference
(including dirty reads, lost updates, and destructive DDL operations)
from concurrent transactions. The changes made by the SQL statements
of one transaction only become visible to other transactions that start
after the first transaction is committed.

Oracle releases all locks acquired by the statements within a transaction
when you either commit or roll back the transaction. Oracle also
releases locks acquired after a savepoint when rolling back to the
savepoint. However, only transactions not waiting on the previously
locked resources can acquire locks on the now available resources.
Waiting transactions will continue to wait until after the original
transaction commits or rolls back completely.

A transaction holds exclusive row locks for all rows inserted, updated,
or deleted within the transaction. Because row locks are acquired at the
highest degree of restrictiveness, no lock conversion is required or
performed.

Oracle automatically converts a table lock of lower restrictiveness to
one of higher restrictiveness as appropriate. For example, assume that a
transaction uses a SELECT statement with the FOR UPDATE clause to
lock rows of a table. As a result, it acquires the exclusive row locks and
a row share table lock for the table. If the transaction later updates one
or more of the locked rows, the row share table lock is automatically
converted to a row exclusive table lock. For more information about
table locks, see “Table Locks”on page 10–20.

Oracle does not escalate any locks at any time from one level of
granularity (for example, rows) to another (for example, table),
reducing the chance of deadlocks.

Oracle automatically detects deadlock situations and resolves them
automatically by rolling back one of the statements involved in the
deadlock, thereby releasing one set of the conflicting row locks. A
corresponding message also is returned to the transaction that
undergoes statement–level rollback. The statement rolled back is the

Avoiding Deadlocks

Types of Locks

Oracle7 Server Concepts10–18

one belonging to the transaction that detects the deadlock. Usually, the
signalled transaction should be rolled back explicitly, but it can retry
the rolled–back statement after waiting.

Note: In distributed transactions, local deadlocks are detected
by analyzing a “waits for” graph, and global deadlocks are
detected by a time–out. Once detected, non–distributed and
distributed deadlocks are handled by the database and
application in the same way.

Deadlocks most often occur when transactions explicitly override the
default locking of Oracle. Because Oracle itself does no lock escalation
and does not use read locks for queries, but does use row–level locking
(rather than page–level locking), deadlocks occur infrequently in
Oracle. See “Explicit (Manual) Data Locking” for more information
about manually acquiring locks and for an example of a deadlock
situation.

Multi–table deadlocks can usually be avoided if transactions accessing
the same tables lock those tables in the same order as each other, either
through implicit or explicit locks. For example, all application
developers might follow the rule that when both a master and detail
table are updated, the master table is locked first and then the detail
table. If such rules are properly designed and then followed in all
applications, deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one
transaction, you should consider acquiring the most exclusive (least
compatible) lock first.

Oracle automatically uses different types of locks to control concurrent
access to data and to prevent destructive interaction between users.
Oracle automatically locks a resource on behalf of a transaction to
prevent other transactions from doing something also requiring
exclusive access to the same resource. The lock is released
automatically when certain events occur, and the transaction no longer
requires the resource.

Note: While reading this section, keep in mind that Oracle
locking is fully automatic and requires no user action. Implicit
locking occurs for all SQL statements so that database users
never need to explicitly lock any resource. Oracle’s default
locking mechanisms lock data at the lowest level of
restrictiveness to guarantee data integrity while allowing the
highest degree of data concurrency.

Later sections also describe situations where you might wish to acquire
locks manually or to alter the default locking behavior of Oracle and

Data Locks

Data Concurrency 10–19

explain how you can do so; see “Explicit (Manual) Data Locking” on
page 10–29.

Throughout its operation, Oracle automatically acquires different types
of locks at different levels of restrictiveness depending on the resource
being locked and the operation being performed. Oracle locks fall into
one of the following general categories:

Data locks protect data. For example, table locks
lock entire tables, row locks lock selected rows.

Dictionary locks protect the structure of objects.
For example, dictionary locks protect the
definitions of tables and views.

Internal locks and latches protect internal database
structures such as datafiles. Internal locks and
latches are entirely automatic.

Distributed locks ensure that the data and other
resources distributed among the various instances
of an Oracle Parallel Server remain consistent.
Distributed locks are held by instances rather than
transactions. They communicate the current status
of a resource among the instances of an Oracle
Parallel Server.

Parallel cache management locks are distributed
locks that cover one or more data blocks (table or
index blocks) in the buffer cache. PCM locks do not
lock any rows on behalf of transactions.

The following sections discuss data locks, dictionary locks, and internal
locks, respectively. For more information about distributed and PCM
locks, see Oracle7 Parallel Server Concepts & Administration.

The purpose of a data lock (DML lock) is to guarantee the integrity of
data being accessed concurrently by multiple users. Data locks prevent
destructive interference of simultaneous conflicting DML and/or DDL
operations. For example, Oracle data locks guarantee that a specific
row in a table can be updated by only one transaction at a time and that
a table cannot be dropped if an uncommitted transaction contains an
insert into the table.

DML operations can acquire data locks at two different levels: for
specific rows and for entire tables. The following sections explain row
and table locks.

data locks (DML
locks)

dictionary locks
(DDL locks)

internal locks and
latches

distributed locks

parallel cache
management
(PCM) locks

Row Locks (TX)

Table Locks (TM)

Oracle7 Server Concepts10–20

Note: The acronym in parentheses after each type of lock or lock mode
in the following sections is the abbreviation used in the Locks Monitor
of Enterprise Manager. Enterprise Manager might display TM for any
table lock, rather than indicate the mode of table lock (such as RS or
SRX).

A transaction acquires an exclusive data lock for each individual row
modified by one of the following statements: INSERT, UPDATE,
DELETE, and SELECT with the FOR UPDATE clause.

A modified row is always locked exclusively so that other users cannot
modify the row until the transaction holding the lock is committed or
rolled back. Row locks are always acquired automatically by Oracle as
a result of the statements listed above.

Rows Locks and Table Locks If a transaction obtains a row lock for a
row, the transaction also acquires a table lock for the corresponding
table. A table lock also must be obtained to prevent conflicting DDL
operations that would override data changes in a current transaction.
The following section explains table locks, and “DDL Locks (Dictionary
Locks)” on page 10–26 explains the locks necessary for DDL
operations.

A transaction acquires a table lock when a table is modified in the
following DML statements: INSERT, UPDATE, DELETE, SELECT with
the FOR UPDATE clause, and LOCK TABLE. These DML operations
require table locks for two purposes: to reserve DML access to the table
on behalf of a transaction and to prevent DDL operations that would
conflict with the transaction. Any table lock prevents the acquisition of
an exclusive DDL lock on the same table and thereby prevents DDL
operations that require such locks. For example, a table cannot be
altered or dropped if an uncommitted transaction holds a table lock for
it. (For more information about exclusive DDL locks, see “Exclusive
DDL Locks” on page 10–26.)

A table lock can be held in any of several modes: row share (RS), row
exclusive (RX), share lock (S), share row exclusive (SRX), and exclusive
(X). The restrictiveness of a table lock’s mode determines the modes in
which other table locks on the same table can be obtained and held.

Data Concurrency 10–21

Table 10 – 1 shows the modes of table locks that statements acquire and
operations that those locks permit and prohibit.

SQL Statement
Mode of
Table
Lock

 Lock Modes Permitted?
SQL Statement Table

Lock RS RX S SRX X

SELECT...FROM table ... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table
 FOR UPDATE OF ...

RS Y* Y* Y* Y* N

LOCK TABLE table IN
 ROW SHARE MODE

RS Y Y Y Y N

LOCK TABLE table IN
 SHARE MODE

RX Y Y N N N

LOCK TABLE table IN
 SHARE MODE

S Y N Y N N

LOCK TABLE table IN
 SHARE ROW EXCLUSIVE
MODE

SRX Y N N N N

LOCK TABLE table IN
 EXCLUSIVE MODE

X N N N N N

Table 10 – 1 Summary of Table Locks

RS: row share SRX: share row exclusive
RX: row exclusive X: exclusive
 S: share
 * if no conflicting row locks are held by another transaction;
 otherwise, waits occur

The following sections explain each mode of table lock, from least
restrictive to most restrictive. Each section describes the mode of table
lock, the actions that cause the transaction to acquire a table lock in that
mode, and which actions are permitted and prohibited in other
transactions by a lock in that mode. For more information about
manual locking, see “Explicit (Manual) Data Locking” on page 10–29.

Row Share Table Locks (RS) A row share table lock (also sometimes
internally called a sub–share table lock, SS) indicates that the transaction
holding the lock on the table has locked rows in the table and intends
to update them. A row share table lock is automatically acquired for a
table when one of the following SQL statements is executed:

SELECT . . . FROM table . . . FOR UPDATE OF . . . ;

LOCK TABLE table IN ROW SHARE MODE;

Oracle7 Server Concepts10–22

A row share table lock is the least restrictive mode of table lock,
offering the highest degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction
allows other transactions to query, insert, update, delete, or lock rows
concurrently in the same table. Therefore, other transactions can obtain
simultaneous row share, row exclusive, share, and share row exclusive
table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction
prevents other transactions from exclusive write access to the same
table using only the following statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also
internally called a sub–exclusive table lock, SX) generally indicates that
the transaction holding the lock has made one or more updates to rows
in the table. A row exclusive table lock is acquired automatically for a
table modified by the following types of statements:

INSERT INTO table . . . ;

UPDATE table . . . ;

DELETE FROM table . . . ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share
table lock.

Permitted Operations: A row exclusive table lock held by a transaction
allows other transactions to query, insert, update, delete, or lock rows
concurrently in the same table. Therefore, row exclusive table locks
allow multiple transactions to obtain simultaneous row exclusive and
row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction
prevents other transactions from manually locking the table for
exclusive reading or writing. Therefore, other transactions cannot
concurrently lock the table using the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for
the table specified in the following statement:

LOCK TABLE table IN SHARE MODE;

Data Concurrency 10–23

Permitted Operations: A share table lock held by a transaction allows
other transactions only to query the table, to lock specific rows with
SELECT . . . FOR UPDATE, or to execute LOCK TABLE . . . IN SHARE
MODE statements successfully; no updates are allowed by other
transactions. Multiple transactions can hold share table locks for the
same table concurrently. In this case, no transaction can update the
table (even if a transaction holds row locks as the result of a SELECT
statement with the FOR UPDATE clause). Therefore, a transaction that
has a share table lock can only update the table if no other transactions
also have a share table lock on the same table.

Prohibited Operations: A share table lock held by a transaction prevents
other transactions from modifying the same table and from executing
the following statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table
lock (also sometimes called a share–sub–exclusive table lock, SSX) is more
restrictive than a share table lock. A share row exclusive table lock is
acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share
row exclusive table lock on a given table. A share row exclusive table
lock held by a transaction allows other transactions to query or lock
specific rows using SELECT with the FOR UPDATE clause, but not to
update the table.

Prohibited Operations: A share row exclusive table lock held by a
transaction prevents other transactions from obtaining row exclusive
table locks and modifying the same table. A share row exclusive table
lock also prohibits other transactions from obtaining share, share row
exclusive, and exclusive table locks, which prevents other transactions
from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X) An exclusive table lock is the most restrictive
mode of table lock, allowing the transaction that holds the lock
exclusive write access to the table. An exclusive table lock is acquired
for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Data Locks Automatically
Acquired for DML
Statements

Oracle7 Server Concepts10–24

Permitted Operations: Only one transaction can obtain an exclusive table
lock for a table. An exclusive table lock permits other transactions only
to query the table.

Prohibited Operations: An exclusive table lock held by a transaction
prohibits other transactions from performing any type of DML
statement or placing any type of lock on the table.

The previous sections explained the different types of data locks, the
modes in which they can be held, when they can be obtained, when
they are obtained, and what they prohibit. The following sections
summarize how data is automatically locked on behalf of different
DML operations. Table 10 – 2 summarizes the information in the
following sections.

DML Statement Row
Locks?

Mode of Table
Lock

SELECT ...FROM table

INSERT INTO table ... � � RX

UPDATE table ... � � RX

DELETE FROM table ... � � RX

SELECT ... FROM table ...
 FOR UPDATE OF ...

� � RS

LOCK TABLE table IN ...

 ROW SHARE MODE RS

 ROW EXCLUSIVE MODE RX

 SHARE MODE S

 SHARE EXCLUSIVE MODE SRX

 EXCLUSIVE MODE X

RS: row share SRX: share row exclusive
RX: row exclusive X: exclusive
S: share

Table 10 – 2 Locks Obtained By DML Statements

Default Locking for Queries Queries are included in the following kinds
of statements:

SELECT

INSERT . . . SELECT . . . ;

UPDATE . . . ;

DELETE . . . ;

They do not include the following statements:

SELECT . . . FOR UPDATE OF . . . ;

Data Concurrency 10–25

Note that INSERT, UPDATE, and DELETE statements can have implicit
queries as part of the statement.

Queries are the SQL statements least likely to interfere with other SQL
statements because they only read data. The following characteristics
are true of all queries that do not use the FOR UPDATE clause:

• A query acquires no data locks. Therefore, other transactions can
query and update a table being queried, including the specific
rows being queried. Because queries lacking FOR UPDATE
clauses do not acquire any data locks to block other operations,
such queries are often referred to in Oracle as non–blocking
queries.

• A query does not have to wait for any data locks to be released;
it can always proceed. (Queries may have to wait for data locks
in some very specific cases of pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR
UPDATE Statements The locking characteristics of INSERT, UPDATE,
DELETE, and SELECT ... FOR UPDATE statements are as follows:

• The transaction that contains a DML statement acquires
exclusive row locks on the rows modified by the statement.
Therefore, other transactions cannot update or delete the locked
rows until the locking transaction either commits or rolls back.

• The transaction that contains a DML statement does not need to
acquire row locks on any rows selected by a subquery or an
implicit query, such as a query in a WHERE clause. A subquery
or implicit query in a DML statement is guaranteed to be
consistent as of the start of the query and does not see the effects
of the DML statement it is part of.

• A query in a transaction can see the changes made by previous
DML statements in the same transaction, but cannot see the
changes of other transactions begun after its own transaction.

• In addition to the necessary exclusive row locks, a transaction
that contains a DML statement acquires at least a row exclusive
table lock on the table the contains the affected rows. If the
containing transaction already holds a share, share row
exclusive, or exclusive table lock for that table, the row exclusive
table lock is not acquired. If the containing transaction already
holds a row share table lock, Oracle automatically converts this
lock to a row exclusive table lock.

DDL Locks (Dictionary
Locks)

Exclusive DDL Locks

Share DDL Locks

Oracle7 Server Concepts10–26

A DDL lock protects the definition of a schema object (for example, a
table) while that object is acted upon or referred to by an ongoing DDL
operation (recall that a DDL statement implicitly commits its
transaction). For example, assume that a user creates a procedure. On
behalf of the user’s single statement transaction, Oracle automatically
acquires DDL locks for all objects referenced in the procedure
definition. The DDL locks prevent objects referenced in the procedure
from being altered or dropped before the procedure compilation is
complete.

A dictionary lock is acquired automatically by Oracle on behalf of any
DDL transaction requiring it. Users cannot explicitly request DDL
locks. Only individual schema objects that are modified or referenced
are locked during DDL operations; the whole data dictionary is never
locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL
locks, and breakable parse locks.

Certain DDL operations require exclusive DDL locks for a resource to
prevent destructive interference with other DDL operations that might
modify or reference the same object. For example, a DROP TABLE
operation is not allowed to drop a table while an ALTER TABLE
operation is adding a column to it, and vice versa.

In addition to DDL locks, DDL operations also acquire DML locks
(data locks) on the object to be modified.

Most DDL operations acquire exclusive DDL locks on the object to be
modified (except for those listed in the next section, “Share DDL
Locks”).

During the acquisition of an exclusive DDL lock, if another DDL lock is
already held on the object by another operation, the acquisition waits
until the older DDL lock is released and then proceeds.

Certain DDL operations require share DDL locks for a resource to
prevent destructive interference with conflicting DDL operations, but
allow data concurrency for similar DDL operations. For example, when
a CREATE PROCEDURE statement is executed, the containing
transaction acquires share DDL locks for all referenced tables. Other
transactions can concurrently create procedures that reference the same
tables and therefore acquire concurrent share DDL locks on the same
tables, but no transaction can acquire an exclusive DDL lock on any
referenced table. No transaction can alter or drop a referenced table. As
a result, a transaction that holds a share DDL lock is guaranteed that
the definition of the referenced object will remain constant for the
duration of the transaction.

Breakable Parse Locks

Duration of DDL Locks

DDL Locks and Clusters

Internal Locks and
Latches

Latches

Data Concurrency 10–27

A share DDL lock is acquired on an object for DDL statements on the
object that include the following commands: AUDIT, NOAUDIT,
COMMENT, CREATE [OR REPLACE] VIEW/
PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/
TRIGGER, CREATE SYNONYM, and CREATE TABLE (when the
CLUSTER parameter is not included).

A SQL statement (or PL/SQL program unit) in the shared pool holds a
parse lock for each object it references. Parse locks are acquired so that
the associated shared SQL area can be invalidated if a referenced object
is altered or dropped. See Chapter 16, “Dependencies Among Schema
Objects”, for more information about dependency management. A
parse lock does not disallow any DDL operation and can be broken to
allow conflicting DDL operations, hence the name “breakable parse
lock”.

A parse lock is acquired during the parse phase of SQL statement
execution and held as long as the shared SQL area remains in the
shared pool.

The duration of a DDL lock varies depending on its type. Exclusive
and share DDL locks last for the duration of DDL statement execution
and automatic commit. A parse lock persists as long as the associated
SQL statement remains in the shared pool.

A DDL operation on a cluster acquires exclusive DDL locks on the
cluster and on all tables and snapshots in the cluster. A DDL operation
on a table or snapshot in a cluster acquires a share lock on the cluster,
in addition to a share or exclusive DDL lock on the table or snapshot.
The share DDL lock on the cluster prevents another operation from
dropping the cluster while the first operation proceeds.

Internal locks and latches protect internal database and memory
structures. These structures are inaccessible to users, since users have
no need for control over their occurrence or duration. The following
information will help you interpret the Server Manager LOCKS and
LATCHES monitors.

Latches are simple, low–level serialization mechanisms to protect
shared data structures in the system global area (SGA). For example,
latches protect the list of users currently accessing the database and
protect the data structures describing the blocks in the buffer cache. A
server or background process acquires a latch for a very short time
while manipulating or looking at one of these structures. The
implementation of latches is operating system dependent, particularly
in regard to whether and how long a process will wait for a latch.

Oracle7 Server Concepts10–28

Internal locks are higher–level, more complex mechanisms than latches
and serve a variety of purposes. Details on the three categories of
internal locks follow.

Dictionary Cache Locks These locks are of very short duration and are
held on entries in dictionary caches while the entries are being
modified or used. They guarantee that statements being parsed do not
see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are
released when the parse is complete. Exclusive locks are released when
the DDL operation is complete.

File and Log Management Locks These locks protect different files. For
example, one lock protects the control file so that only one process at a
time can change it. Another lock coordinates the use and archiving of
the redo log files. Datafiles are locked to ensure that multiple instances
mount a database in shared mode or that one instance mounts it in
exclusive mode. Because file and log locks indicate the status of files,
these locks are necessarily held for a long time.

File and log locks are of particular importance if you are using the
Oracle Parallel Server. For more information. see Oracle7 Parallel Server
Concepts & Administration.

Tablespace and Rollback Segment Locks These locks protect tablespaces
and rollback segments. For example, all instances accessing a database
must agree on whether a tablespace is online or offline. Rollback
segments are locked so that only one instance can write to a segment.

Explicit (Manual) Data
Locking

Examples of Concurrency
under Explicit Locking

Data Concurrency 10–29

In all cases, Oracle automatically performs locking to ensure data
concurrency, data integrity, and statement–level read consistency.
However, you can override the Oracle default locking mechanisms.
Overriding the default locking is useful in situations such as these:

• Applications require transaction–level read consistency or
“repeatable reads”. In other words, queries in them must
produce consistent data for the duration of the transaction, not
reflecting changes by other transactions. You can achieve
transaction–level read consistency by using explicit locking,
read–only transactions, serializable transactions, or by
overriding default locking.

• Applications require that a transaction have exclusive access to a
resource so that the transaction does not have to wait for other
transactions to complete.

Oracle’s automatic locking can be overridden at three levels:

Transactions including the following SQL
statements override Oracle’s default locking: the
LOCK TABLE command (which locks either a table
or, when used with views, the underlying base
tables) and the SELECT.. FOR UPDATE command.
Locks acquired by these statements are released
after the transaction commits or rolls back. For
information about each command, see the Oracle7
Server SQL Reference .

A session can set the required transaction isolation
level with the ALTER SESSION command.

An instance can be started with non–default
locking by adjusting the initialization parameter
ISOLATION_LEVEL.

Note: If Oracle’s default locking is overridden at any level, the
database administrator or application developer should be sure
that the overriding locking procedures operate correctly. They
must satisfy the following criteria: data integrity is guaranteed,
data concurrency is acceptable, and deadlocks are not possible
or are appropriately handled.

The following illustration shows how Oracle maintains data
concurrency, integrity, and consistency when LOCK TABLE and
SELECT with the FOR UPDATE clause statements are used:

transaction level

session level

system level

Oracle7 Server Concepts10–30

Note: For brevity, the message text for ORA–00054 is not
included, but reads “resource busy and acquire with NOWAIT
specified.” User–entered text is in bold.

Transaction 1 Time
Point

Transaction 2

LOCK TABLE scott.dept

1
LOCK TABLE sco tt . dept

 IN ROW SHARE MODE ;

Statement processed

2 DROP TABLE scott.dept;

DROP TABLE scott.dept

 *

ORA–00054

(exclusive DDL lock not

possible because of T1’s

table lock)

3 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE NOWAIT;

ORA–00054

4 SELECT LOC

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

– – – – – – –

DALLAS

1 row selected

UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T2 has locked

same rows)

5

6 ROLLBACK;

(releases row locks)

1 row processed.

ROLLBACK;
7

LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE;

Statement processed.

8

9 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE NOWAIT;

ORA–00054

Data Concurrency 10–31

Transaction 1 Transaction 2Time
Point

10 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA–00054

11 LOCK TABLE scott.dept
 IN SHARE ROW EXCLUSIVE
 MODE NOWAIT;

ORA–00054

12 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

1 row processed.

13 ROLLBACK;

SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

– – – – – –

DALLAS 1 row selected.,

14

15 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 has locked

same rows)

ROLLBACK; 16

17 1 row processed.

(conflicting locks were re-

leased)

ROLLBACK;

LOCK TABLE scott.dept

 IN ROW SHARE MODE

Statement processed

18

19 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE NOWAIT;

ORA–00054

Oracle7 Server Concepts10–32

Transaction 1 Transaction 2Time
Point

20 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA–00054

21 LOCK TABLE scott.dept

 IN SHARE MODE;

Statement processed.

22 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

– – – – – –

DALLAS

1 row selected.

23 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

– – – – – –

DALLAS

1 row selected.

24 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 holds

conflicting table lock)

ROLLBACK; 25

26 1 row processed.

(conflicting table lock

released)

ROLLBACK;

LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE;

Statement processed.

27

Data Concurrency 10–33

Transaction 1 Transaction 2Time
Point

28 LOCK TABLE scott.dept

 IN EXCLUSIVE MODE

 NOWAIT;

ORA–00054

29 LOCK TABLE scott.dept

 IN SHARE ROW EXCLUSIVE

 MODE NOWAIT;

ORA–00054

30 LOCK TABLE scott.dept
 IN SHARE MODE NOWAIT;

ORA–00054

31 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE

 NOWAIT;

ORA–00054

32 LOCK TABLE scott.dept

 IN SHARE MODE NOWAIT;

ORA–00054

33 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

– – – – – –

DALLAS

1 row selected.

34 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

LOC

– – – – – –

DALLAS

1 row selected.

35 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T1 holds con-

flicting table lock)

Oracle7 Server Concepts10–34

Transaction 1 Transaction 2Time
Point

UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 20;

(waits because T2 has locked

same rows)

36

(deadlock)

Cancel operation

ROLLBACK;
37

38 1 row processed

LOCK TABLE scott.dept

 IN EXCLUSIVE MODE;

39

40 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE ;

ORA–00054

41 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE

 NOWAIT;

ORA–00054

42 LOCK TABLE scott.dept

 IN SHARE MODE;

ORA–00054

43 LOCK TABLE scott.dept

 IN ROW EXCLUSIVE MODE

 NOWAIT;

ORA–00054

44 LOCK TABLE scott.dept

 IN ROW SHARE MODE

 NOWAIT;

ORA–00054

45 SELECT loc

 FROM scott.dept

 WHERE deptno = 20;

LOC

– – – – – –

DALLAS

1 row selected.

Data Concurrency 10–35

Transaction 1 Transaction 2Time
Point

46 SELECT loc

 FROM scott.dept

 WHERE deptno = 20

 FOR UPDATE OF loc;

(waits because T1 has

conflicting table lock)

UPDATE scott.dept

 SET deptno = 30

 WHERE deptno = 20;

1 row processed.

47

COMMIT; 48

49 0 rows selected.

(T1 released conflicting

lock)

SET TRANSACTION READ ONLY; 50

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

– – – – – –

BOSTON

51

52 UPDATE scott.dept

 SET loc = ’NEW YORK’

 WHERE deptno = 10;

1 row processed.

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

– – – – – –

(T1 does not see uncommitted

data)

53

54 COMMIT;

Oracle Lock
Management Services

Oracle7 Server Concepts10–36

Transaction 1 Transaction 2Time
Point

SELECT loc
 FROM scott.dept
 WHERE deptno = 10;

LOC
– – – – – –
(same results seen even af-
ter T2 commits)

55

COMMIT; 56

SELECT loc

 FROM scott.dept

 WHERE deptno = 10;

LOC

– – – – – –

NEW YORK

(committed data is seen)

57

With Oracle Lock Management services, an application developer can
include statements in PL/SQL blocks that

• request a lock of a specific type

• give the lock a unique name recognizable in another procedure
in the same or in another instance

• change the lock type

• release the lock

Because a reserved user lock is the same as an Oracle lock, it has all the
Oracle lock functionality including deadlock detection. User locks
never conflict with Oracle locks, because they are identified with the
prefix “UL”.

The Oracle Lock Management services are available through
procedures in the DBMS_LOCK package. For more information about
Oracle Lock Management services, see the Oracle7 Server Application
Developer’s Guide.

P A R T

 V Data Access

C H A P T E R

11

T

SQL and PL/SQL 11–1

SQL and PL/SQL

High thoughts must have high language.

Aristophanes: Frogs

his chapter provides an overview of SQL, the Structured Query
Language, and PL/SQL, Oracle’s procedural extension to SQL. The
chapter includes:

• Structured Query Language (SQL)

• PL/SQL

For complete information on PL/SQL, see the PL/SQL User’s Guide and
Reference.

SQL Statements

Oracle7 Server Concepts11–2

Structured Query Language (SQL)

SQL is a very simple, yet powerful, database access language. SQL is a
non–procedural language; users describe in SQL what they want done,
and the SQL language compiler automatically generates a procedure to
navigate the database and perform the desired task.

IBM Research developed and defined SQL, and ANSI/ISO has refined
SQL as the standard language for relational database management
systems. The SQL implemented by Oracle Corporation for Oracle is
100% compliant at the Entry Level with the ANSI/ISO 1992 standard
SQL data language.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL
language, and Oracle tools and applications provide additional
commands. The Oracle tools SQL*Plus and Server Manager allow you
to execute any ANSI/ISO standard SQL statement against an Oracle
database, as well as additional commands or functions that are
available for those tools.

Although some Oracle tools and applications simplify or mask the use
of SQL, all database operations are performed using SQL. Any other
data access method would circumvent the security built into Oracle
and potentially compromise data security and integrity.

See the Oracle7 Server SQL Reference for more information about SQL
commands and other parts of SQL (for example, functions) and the
Oracle Server Manager User’s Guide for more information about Server
Manager commands, including their distinction from SQL commands.

This section includes the following topics:

• SQL statement

• Identifying Non–Standard SQL

• Recursive SQL

• Cursors

• Shared SQL

• Parsing

All operations performed on the information in an Oracle database are
executed using SQL statements. A SQL statement is a specific instance
of a valid SQL command. A statement partially consists of SQL reserved
words, which have special meaning in SQL and cannot be used for any
other purpose. For example, SELECT and UPDATE are reserved words
and cannot be used as table names.

Data Manipulation
Statements (DML)

SQL and PL/SQL 11–3

The statement must be the equivalent of a SQL “sentence,” as in

SELECT ename, deptno FROM emp;

Only a SQL statement can be executed, whereas a “sentence fragment”
such as the following generates an error indicating that more text is
required before a SQL statement can execute:

SELECT ename

A SQL statement can be thought of as a very simple, but powerful,
computer program or instruction.

Oracle SQL statements are divided into the following categories:

• Data Manipulation Language statements (DML)

• Data Definition Language statements (DDL)

• Transaction Control statements

• Session Control statements

• System Control statements

• Embedded SQL statements

Each category of SQL statement is briefly described below.

Note: Oracle also supports the use of SQL statements in
PL/SQL program units; see Chapter 14, “Procedures and
Packages,” and Chapter 15, “Database Triggers,” for more
information about this feature.

DML statements query or manipulate data in existing schema objects.
They allow you to do the following:

• Remove rows from tables or views (DELETE).

• See the execution plan for a SQL statement (EXPLAIN PLAN).

• Add new rows of data into a table or view (INSERT).

• Lock a table or view, temporarily limiting other users’ access to it
(LOCK TABLE).

• Retrieve data from one or more tables and views (SELECT).

• Change column values in existing rows of a table or view
(UPDATE).

Transaction Control
Statements

Data Definition
Statements (DDL)

Oracle7 Server Concepts11–4

DML statements are the most frequently used SQL statements. Some
examples of DML statements follow:

SELECT ename, mgr, comm + sal FROM emp;

INSERT INTO emp VALUES

(1234, ’DAVIS’, ’SALESMAN’, 7698, ’14–FEB–1988’, 1600, 500, 30);

DELETE FROM emp WHERE ename IN (’WARD’,’JONES’);

Transaction control statements manage the changes made by DML
statements and group DML statements into transactions. They allow
you to do the following:

• Make a transaction’s changes permanent (COMMIT).

• Undo the changes in a transaction, either since the transaction
started or since a savepoint (ROLLBACK).

• Set a point to which you can roll back (SAVEPOINT).

• Establish properties for a transaction (SET TRANSACTION).

DDL statements define, alter the structure of, and drop schema objects.
DDL statements allow you to do the following:

• Create, alter, and drop schema objects and other database
structures, including the database itself and database users
(CREATE, ALTER, DROP).

• Change the names of schema objects (RENAME).

• Delete all the data in schema objects without removing the
objects’ structure (TRUNCATE).

• Gather statistics about schema objects, validate object structure,
and list chained rows within objects (ANALYZE).

• Grant and revoke privileges and roles (GRANT, REVOKE).

• Turn auditing options on and off (AUDIT, NOAUDIT).

• Add a comment to the data dictionary (COMMENT).

DDL statements implicitly commit the preceding and start a new
transaction. Some examples of DDL statements follow:

CREATE TABLE plants

(COMMON_NAME VARCHAR2 (15), LATIN_NAME VARCHAR2 (40));

DROP TABLE plants;

GRANT SELECT ON emp TO scott;

REVOKE DELETE ON emp FROM scott;

For specific information on DDL statements that correspond to
database and data access, see Chapter 17, “Database Access”,
Chapter 18, “Privileges and Roles”, and Chapter 19, “Auditing”.

Session Control
Statements

System Control
Statements

Embedded SQL
Statements

Identifying
Non–Standard SQL

SQL and PL/SQL 11–5

Session control commands manage the properties of a particular user’s
session. For example, they allow you to do the following:

• Alter the current session by performing a specialized function,
such as enabling and disabling the SQL trace facility (ALTER
SESSION).

• Enable and disable roles (groups of privileges) for the current
session (SET ROLE).

System control commands change the properties of the Oracle Server
instance. The only system control command is ALTER SYSTEM. It
allows you to change such settings as the minimum number of shared
servers, to kill a session, and to perform other tasks.

Embedded SQL statements incorporate DDL, DML, and transaction
control statements within a procedural language program. They are
used with the Oracle Precompilers. Embedded SQL statements allow
you to do the following:

• Define, allocate, and release cursors (DECLARE CURSOR,
OPEN, CLOSE).

• Declare a database name and connect to Oracle (DECLARE
DATABASE, CONNECT).

• Assign variable names, initialize descriptors, and specify how
error and warning conditions are handled (DECLARE
STATEMENT, DESCRIBE, WHENEVER).

• Parse and execute SQL statements, and retrieve data from the
database (PREPARE, EXECUTE, EXECUTE IMMEDIATE,
FETCH).

Oracle provides features beyond the standard SQL “Database
Language with Integrity Enhancement”. The Federal Information
Processing Standard for SQL (FIPS 127–2) requires a method for
identifying SQL statements that use vendor–supplied extensions. You
can identify or “flag” Oracle extensions in interactive SQL, the Oracle
Precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other
implementations of SQL, use the FIPS flagger. For information on how
to use the FIPS flagger, see the Oracle7 Server SQL Reference, the
Programmer’s Guide to the Oracle Precompilers, or the SQL*Module User’s
Guide and Reference.

Recursive SQL

Cursors

Shared SQL

What Is Parsing?

Oracle7 Server Concepts11–6

When a DDL statement is issued, Oracle implicitly issues recursive SQL
statements that modify data dictionary information. Users need not be
concerned with the recursive SQL internally performed by Oracle.

A cursor is a handle or name for an area in memory in which a parsed
statement and other information for processing the statement are kept;
such an area is also called a private SQL area. Although most Oracle
users rely on the automatic cursor handling of the Oracle utilities, the
programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource
available to a program and can be used specifically for the parsing of
SQL statements embedded within the application.

Oracle automatically notices when applications send identical SQL
statements to the database. If two identical statements are issued, the
SQL area used to process the first instance of the statement is shared, or
used for processing subsequent instances of that same statement.

Therefore, instead of having multiple shared SQL areas for identical
SQL statements, only one shared SQL area exists for a unique
statement. Since shared SQL areas are shared memory areas, any
Oracle process can use a shared SQL area. The sharing of SQL areas
reduces memory usage on the database server, thereby increasing
system throughput.

In evaluating whether statements are identical, Oracle considers SQL
statements issued directly by users and applications as well as
recursive SQL statements issued internally by a DDL statement.

For more information on shared SQL, see the Oracle7 Server Application
Developer’s Guide.

Parsing is one step in the processing of a SQL statement. When an
application issues a SQL statement, the application makes a parse call
to Oracle. During the parse call, Oracle performs these tasks:

• checks the statement for syntactic and semantic validity

• determines whether the process issuing the statement has
privileges to execute it

• allocates a private SQL area for the statement

SQL and PL/SQL 11–7

Oracle also determines whether there is an existing shared SQL area
containing the parsed representation of the statement in the library
cache. If so, the user process uses this parsed representation and
executes the statement immediately. If not, Oracle parses the statement,
performing these tasks:

• Oracle generates the parsed representation of the statement.

• The user process allocates a shared SQL area for the statement in
the library cache and stores its parsed representation there.

Note the difference between an application making a parse call for a
SQL statement and Oracle actually parsing the statement:

• A parse call by the application associates a SQL statement with a
private SQL area. Once a statement has been associated with a
private SQL area, it can be executed repeatedly without your
application making a parse call.

• A parse operation by Oracle allocates a shared SQL area for a
SQL statement. Once a shared SQL area has been allocated for a
statement, it can be executed repeatedly without being reparsed.

Since both parse calls and parsing can be expensive relative to
execution, it is desirable to perform them as seldom as possible.

This discussion applies also to the parsing of PL/SQL blocks and the
allocation of PL/SQL areas. (See the description of PL/SQL in the next
section.) Stored procedures, functions, and packages and triggers are
assigned PL/SQL areas. Oracle also assigns each SQL statement within
a PL/SQL block a shared and a private SQL area.

PL/SQL

PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL
allows you to mix SQL statements with procedural constructs. PL/SQL
provides the capability to define and execute PL/SQL program units
such as procedures, functions, and packages. PL/SQL program units
generally are categorized as anonymous blocks and stored procedures.

An anonymous block is a PL/SQL block that appears within your
application and it is not named or stored in the database. In many
applications, PL/SQL blocks can appear wherever SQL statements can
appear.

A stored procedure is a PL/SQL block that Oracle stores in the database
and can be called by name from an application. When you create a
stored procedure, Oracle parses the procedure and stores its parsed

How PL/SQL Executes

Oracle7 Server Concepts11–8

representation in the database. Oracle also allows you to create and
store functions, which are similar to procedures, and packages, which
are groups of procedures and functions. For information on stored
procedures, functions, packages, and database triggers, see Chapter 14,
“Procedures and Packages”, and Chapter 15, “Database Triggers”.

The PL/SQL engine is a special component of many Oracle products,
including the Oracle Server, that processes PL/SQL. Figure 11 – 1
illustrates the PL/SQL engine contained in Oracle Server.

SQL Statement
Executor

Procedural Statement
ExecutorProgram code

Program code

Prodedure call

Program code

Program code

Database
Application

Oracle Server

SGA PL/SQL Engine

SQL

Procedure

Database

Begin
 Procedural
 Procedural
 SQL
 Prodedural
SQL
END;

Figure 11 – 1 The PL/SQL Engine and the Oracle Server

The procedure (or package) is stored in a database. When an
application calls a procedure stored in the database, Oracle loads the
compiled procedure (or package) into the shared pool in the System
Global Area (SGA), and the PL/SQL and SQL statement executors
work together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

• Oracle Server

• Oracle Forms (Version 3 and later)

Language Constructs
for PL/SQL

SQL and PL/SQL 11–9

• SQL*Menu (Version 5 and later)

• Oracle Reports (Version 2 and later)

• Oracle Graphics (Version 2 and later)

You can call a stored procedure from another PL/SQL block, which can
be either an anonymous block or another stored procedure. For
example, you can call a stored procedure from Oracle Forms (Version 3
or later).

Also, you can pass anonymous blocks to Oracle from applications
developed with these tools:

• Oracle Precompilers (including user exits)

• Oracle Call Interfaces (OCIs)

• SQL*Plus

• Server Manager

PL/SQL blocks can include the following PL/SQL language constructs:

• variables and constants

• cursors

• exceptions

The following sections give a general description of each construct; see
the PL/SQL User’s Guide and Reference for more information.

Variables and Constants Variables and constants can be declared within
a procedure, function, or package. A variable or constant can be used in
a SQL or PL/SQL statement to capture or provide a value when one is
needed.

Note: Some interactive tools, such as Server Manager, allow
you to define variables in your current session. Variables so
declared can be used similarly to variables declared within
procedures or packages.

Cursors Cursors can be declared explicitly within a procedure, function,
or package to facilitate record–oriented processing of Oracle data.
Cursors also can be declared implicitly (to support other data
manipulation actions) by the PL/SQL engine.

Exceptions PL/SQL allows you to explicitly handle internal and
user–defined error conditions, called exceptions, that arise during
processing of PL/SQL code. Internal exceptions are caused by illegal
operations, such as divide–by–zero, or Oracle errors returned to the
PL/SQL code. User–defined exceptions are explicitly defined and

Dynamic SQL in PL/SQL

Oracle7 Server Concepts11–10

signaled within the PL/SQL block to control processing of errors
specific to the application (for example, debiting an account and
leaving a negative balance).

When an exception is raised (signaled), the normal execution of the
PL/SQL code stops, and a routine called an exception handler is
invoked. Specific exception handlers can be written to handle any
internal or user–defined exception.

While many Oracle products have PL/SQL components, this chapter
specifically covers the procedures and packages that can be stored in an
Oracle database and processed using the PL/SQL engine of Oracle
Server. The PL/SQL capabilities of each Oracle tool are described in the
appropriate tool user guide.

Oracle also allows you to create and call stored procedures. If your
application calls a stored procedure, the parsed representation of the
procedure is retrieved from the database and processed by the PL/SQL
engine in Oracle. You can call stored procedures from applications
developed using these tools:

• Oracle Precompilers (including user exits)

• Oracle Call Interfaces (OCIs)

• SQL*Module

• SQL*Plus

• Server Manager

You can also call a stored procedure from another PL/SQL block, either
an anonymous block or another stored procedure. For information on
how to call stored procedures from each type of application, see the
manual for the specific application tool, such as the Programmer’s Guide
to the Oracle Precompilers.

You can write stored procedures and anonymous PL/SQL blocks using
dynamic SQL. Dynamic SQL statements are not embedded in your
source program; rather, they are stored in character strings that are
input to, or built by, the program at runtime.

This permits you to create procedures that are more general purpose.
For example, using dynamic SQL allows you to create a procedure that
operates on a table whose name is not known until runtime.

SQL and PL/SQL 11–11

Additionally, you can parse any data manipulation language (DML) or
data definition language (DDL) statement using the DBMS_SQL
package. This helps solve the problem of not being able to parse data
definition language statements directly using PL/SQL. For example,
you might now choose to issue a DROP TABLE statement from within
a stored procedure by using the PARSE procedure supplied with the
DBMS_SQL package.

Oracle7 Server Concepts11–12

C H A P T E R

12

T

Transaction Management 12–1

Transaction
Management

The pigs did not actually work, but directed and supervised the others.

George Orwell: Animal Farm

his chapter defines a transaction and describes how you can
manage your work using transactions. It includes:

• Introduction to Transactions

• Oracle and Transaction Management

• Discrete Transaction Management

Oracle7 Server Concepts12–2

Introduction to Transactions

A transaction is a logical unit of work that contains one or more SQL
statements. A transaction is an atomic unit; the effects of all the SQL
statements in a transaction can be either all committed (applied to the
database) or all rolled back (undone from the database).

A transaction begins with the first executable SQL statement. A
transaction ends when it is committed or rolled back, either explicitly
(with a COMMIT or ROLLBACK statement) or implicitly (when a DDL
statement is issued).

To illustrate the concept of a transaction, consider a banking database.
When a bank customer transfers money from a savings account to a
checking account, the transaction might consist of three separate
operations: decrement the savings account, increment the checking
account, and record the transaction in the transaction journal.

Oracle must allow for two situations. If all three SQL statements can be
performed to maintain the accounts in proper balance, the effects of the
transaction can be applied to the database. However, if something
(such as insufficient funds, invalid account number, or a hardware
failure) prevents one or two of the statements in the transaction from
completing, the entire transaction must be rolled back so that the
balance of all accounts is correct.

Figure 12 – 1 illustrates the banking transaction example.

Statement Execution
and Transaction
Control

Transaction Management 12–3

UPDATE savings_accounts
SET balance = balance – 500
WHERE account = 3209;

UPDATE checking_accounts
SET balance = balance + 500
WHERE account = 3208;

INSERT INTO journal VALUES
(journal_seq.NEXTVAL, ’1B’
3209, 3208, 500);

COMMIT WORK;

Transaction Begins

Transaction Ends

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction

Figure 12 – 1 A Banking Transaction

A SQL statement that “executes successfully” is different from a
“committed” transaction.

Executing successfully means that a single statement was parsed and
found to be a valid SQL construction, and that the entire statement
executed without error as an atomic unit (for example, all rows of a
multi–row update are changed). However, until the transaction that
contains the statement is committed, the transaction can be rolled back,
and all of the changes of the statement can be undone. A statement,
rather than a transaction, executes successfully.

Committing means that a user has said either explicitly or implicitly
“make the changes in this transaction permanent”. The changes made
by the SQL statement(s) of your transaction only become permanent
and visible to other users after your transaction has been committed.
Only other users’ transactions that started after yours will see the
committed changes.

Statement–Level
Rollback

Oracle7 Server Concepts12–4

If at any time during execution a SQL statement causes an error, all
effects of the statement are rolled back. The effect of the rollback is as if
that statement were never executed.

Errors that cause statement rollbacks are errors discovered during the
execution stage of SQL statement processing (such as attempting to
insert a duplicate value in a primary key or an invalid number into a
numeric column), not the parsing stage (such as syntax errors in a SQL
statement). Single SQL statements can also be rolled back to resolve
deadlocks (competition for the same data); see “Deadlock Detection” on
page 10–17.

Therefore, a SQL statement that fails causes the loss only of any work it
would have performed itself; it does not cause the loss of any work that
preceded it in the current transaction. If the statement is a DDL statement,
the implicit commit that immediately preceded it is not undone. This is
a statement–level rollback.

Note: Users cannot directly refer to implicit savepoints in
rollback statements.

Oracle and Transaction Management

A transaction in Oracle begins when the first executable SQL statement
is encountered. An executable SQL statement is a SQL statement that
generates calls to an instance, including DML and DDL statements.

When a transaction begins, Oracle assigns the transaction to an
available rollback segment to record the rollback entries for the new
transaction. See “Transactions and Rollback Segments” on page 3–18
for more information about this topic.

A transaction ends when any of the following occurs:

• You issue a COMMIT or ROLLBACK (without a SAVEPOINT
clause) statement.

• You execute a DDL statement (such as CREATE, DROP,
RENAME, ALTER). If the current transaction contains any DML
statements, Oracle first commits the transaction, and then
executes and commits the DDL statement as a new, single
statement transaction.

• A user disconnects from Oracle. (The current transaction is
committed.)

• A user process terminates abnormally. (The current transaction is
rolled back.)

Committing
Transactions

Transaction Management 12–5

After one transaction ends, the next executable SQL statement
automatically starts the following transaction.

Note: Applications should always explicitly commit or roll
back transactions before program termination.

Committing a transaction means making permanent the changes
performed by the SQL statements within the transaction.

Before a transaction that has modified data is committed, the following
will have occurred:

• Oracle has generated rollback segment records in rollback
segment buffers of the SGA. The rollback information contains
the old data values changed by the SQL statements of the
transaction.

• Oracle has generated redo log entries in the redo log buffers of
the SGA. These changes may go to disk before a transaction is
committed.

• The changes have been made to the database buffers of the SGA.
These changes may go to disk before a transaction actually is
committed.

After a transaction is committed, the following occurs:

• The internal transaction table for the associated rollback segment
records that the transaction has committed, and the
corresponding unique system change number (SCN) of the
transaction is assigned and recorded in the table.

• LGWR writes the redo log entries in the redo log buffers of the
SGA to the online redo log file. LGWR also writes the
transaction’s SCN to the online redo log file. This is the atomic
event that constitutes the commit of the transaction.

• Oracle releases locks held on rows and tables (see “Locking
Mechanisms” on page 10–3 for a discussion of locks).

• Oracle marks the transaction “complete”.

Note: The data changes for a committed transaction, stored in
the database buffers of the SGA, are not necessarily written
immediately to the datafiles by the DBWR background process.
This action takes place when it is most efficient to do so. As
mentioned above, this may happen before the transaction
commits or, alternatively, it may happen some time after the
transaction commits. See “Oracle Processes” on page 9–5 for
more information about the LGWR and DBWR.

Rolling Back
Transactions

Savepoints

Oracle7 Server Concepts12–6

Rolling back means undoing any changes to data that have been
performed by SQL statements within an uncommitted transaction.

Oracle allows you to roll back an entire uncommitted transaction.
Alternatively, you can roll back the trailing portion of an uncommitted
transaction to a marker called a savepoint; see the following section,
“Savepoints”, for a complete explanation of savepoints.

In rolling back an entire transaction, without referencing any
savepoints, the following occurs:

• Oracle undoes all changes made by all the SQL statements in the
transaction by using the corresponding rollback segments.

• Oracle releases all the transaction’s locks of data (see “Locking
Mechanisms” on page 10–3 for a discussion of locks).

• The transaction ends.

In rolling back a transaction to a savepoint, the following occurs:

• Oracle rolls back only the statements executed after the
savepoint.

• The specified savepoint is preserved, but all savepoints that were
established after the specified one are lost.

• Oracle releases all table and row locks acquired since that
savepoint, but retains all data locks acquired previous to the
savepoint (see “Locking Mechanisms” on page 10–3 for a
discussion of locks).

• The transaction remains active and can be continued.

Intermediate markers or savepoints can be declared within the context
of a transaction. You use savepoints to divide a long transaction into
smaller parts.

Using savepoints, you can arbitrarily mark your work at any point
within a long transaction. This allows you the option of later rolling
back work performed before the current point in the transaction (the
end of the transaction) but after a declared savepoint within the
transaction. For example, you can use savepoints throughout a long
complex series of updates so that if you make an error, you do not need
to resubmit every statement.

Savepoints are also useful in application programs in a similar way. If a
procedure contains several functions, you can create a savepoint before
each function begins. Then, if a function fails, it is easy to return the
data to its state before the function began and then to re–execute the
function with revised parameters or perform a recovery action.

Transaction Management 12–7

After a rollback to a savepoint, Oracle releases the data locks obtained
by rolled back statements. Other transactions that were waiting for the
previously locked resources can proceed. Other transactions that want
to update previously locked rows can do so.

Discrete Transaction Management

Application developers can improve the performance of short,
non–distributed transactions by using the procedure
BEGIN_DISCRETE_TRANSACTION. This procedure streamlines
transaction processing so short transactions can execute more rapidly.

During a discrete transaction, all changes made to any data are
deferred until the transaction commits. Of course, other concurrent
transactions are unable to see the uncommitted changes of a transaction
whether the transaction is discreet or not.

Oracle generates redo information, but stores it in a separate location in
memory. When the transaction issues a commit request, Oracle writes
the redo information to the redo log file (along with other group
commits), and applies the changes to the database block directly to the
block. Oracle returns control to the application once the commit
completes. This eliminates the need to generate undo information, since
the block actually is not modified until the transaction is committed,
and the redo information is stored in the redo log buffers.

For more information on discrete transactions, see Oracle7 Server
Tuning.

Oracle7 Server Concepts12–8

C H A P T E R

13

T

The Optimizer 13–1

The Optimizer

I do the very best I know how—the very best I can;
and I mean to keep doing so until the end.

Abraham Lincoln

his chapter discusses how the Oracle optimizer chooses how to
execute SQL statements. It includes:

• What Is Optimization?

• How Oracle Optimizes SQL Statements

For more information on the Oracle optimizer, see Chapter 5 of Oracle7
Server Tuning.

Execution Plans

Example

Oracle7 Server Concepts13–2

What Is Optimization?

Optimization is the process of choosing the most efficient way to
execute a SQL statement. This is an important step in the processing of
any Data Manipulation Language statement (SELECT, INSERT,
UPDATE, or DELETE). There may be many different ways for Oracle
to execute such a statement, varying, for example, which tables or
indexes are accessed in which order. The procedure used to execute a
statement can greatly affect how quickly the statement executes. A part
of Oracle called the optimizer chooses the way that it believes to be the
most efficient.

The optimizer considers a number of factors to make what is usually
the best choice among its alternatives. However, an application
designer usually knows more about a particular application’s data than
the optimizer could know. Despite the best efforts of the optimizer, in
some situations a developer can choose a more effective way to execute
a SQL statement than the optimizer can.

Note: The optimizer may not make the same decisions from
one version of Oracle to the next. In future versions of Oracle,
the optimizer may make different decisions based on better,
more sophisticated information available to it.

To execute a Data Manipulation Language statement, Oracle may have
to perform many steps. Each of these steps either physically retrieves
rows of data from the database or prepares them in some way for the
user issuing the statement. The combination of the steps Oracle uses to
execute a statement is called an execution plan.

This example shows an execution plan for this SQL statement:

SELECT ename, job, sal, dname

FROM emp, dept

 WHERE emp.deptno = dept.deptno

AND NOT EXISTS

(SELECT *

FROM salgrade

 WHERE emp.sal BETWEEN losal AND hisal);

This statement selects the name, job, salary, and department name for
all employees whose salaries do not fall into any recommended salary
range.

Figure 13 – 1 shows a graphical representation of the execution plan.

Steps of Execution Plan

The Optimizer 13–3

TABLE ACCESS
(BY ROWID)

dept

4
TABLE ACCESS

(FULL)
emp

3

INDEX
(UNIQUE SCAN)

pk_deptno

5

TABLE ACCESS
(FULL)

salgrade

6

NESTED LOOPS

2

FILTER

1

Figure 13 – 1 An Execution Plan

Each step of the execution plan returns a set of rows that either are
used by the next step or, in the last step, returned to the user or
application issuing the SQL statement. A set of rows returned by a step
is called a row source. Figure 13 – 1 is a hierarchical diagram showing
the flow of rows from one step to another. The numbering of the steps
reflects the order in which they are shown when you view the
execution plan, as described in the section “The EXPLAIN PLAN
Command”, on 13–5. This generally is not the order in which the steps
are executed.

Each step of the execution plan either retrieves rows from the database
or accepts rows from one or more row sources as input:

Order of Performing
Execution Plan Steps

Oracle7 Server Concepts13–4

• Steps indicated by the shaded boxes physically retrieve data
from an object in the database. Such steps are called access paths:

– Steps 3 and 6 read all the rows of the EMP and SALGRADE
tables, respectively.

– Step 5 looks up each DEPTNO value returned by step 3 in
the PK_DEPTNO index. There it finds the ROWIDS of the
associated rows in the DEPT table.

– Step 4 retrieves from the DEPT table the rows whose
ROWIDs were returned by Step 5.

• Steps indicated by the clear boxes operate on row sources:

– Step 2 performs a nested loops operation, accepting row
sources from Steps 3 and 4, joining each row from Step 3
source to its corresponding row in Step 4, and returning the
resulting rows to Step 1.

– Step 1 performs a filter operation. It accepts row sources
from Steps 2 and 6, eliminates rows from Step 2 that have a
corresponding row in Step 6, and returns the remaining
rows from step 2 to the user or application issuing the
statement.

Access paths are discussed in the section “Choosing Access Paths” on
page 13–11. Methods by which Oracle joins row sources are discussed
in Oracle7 Server Tuning.

The steps of the execution plan are not performed in the order in which
they are numbered. Oracle first performs the steps that appear as leaf
nodes in the tree–structured graphical representation in Figure 13 – 1.
The rows returned by each step become the row sources of its parent
step. Then Oracle performs the parent steps.

To execute the statement for Figure 13 – 1, for example, Oracle
performs the steps in this order:

• First, Oracle performs Step 3, and returns the resulting rows, one
by one, to Step 2.

• For each row returned by Step 3, Oracle performs these steps:

– Oracle performs Step 5 and returns the resulting ROWID to
Step 4.

– Oracle performs Step 4 and returns the resulting row to
Step 2.

The EXPLAIN PLAN
Command

The Optimizer 13–5

– Oracle performs Step 2, accepting a single row from Step 3
and a single row from Step 4, and returning a single row to
Step 1.

– Oracle performs Step 6 and returns the resulting row, if any,
to Step 1.

– Oracle performs Step 1. If a row is returned from Step 6,
Oracle returns the row from Step 2 to the user issuing the
SQL statement.

Note that Oracle performs Steps 5, 4, 2, 6, and 1 once for each row
returned by Step 3. Many parent steps require only a single row from
their child steps before they can be executed. For such a parent step,
Oracle performs the parent step (and possibly the rest of the execution
plan) as soon as a single row has been returned from the child step. If
the parent of that parent step also can be activated by the return of a
single row, then it is executed as well. Thus the execution can cascade
up the tree possibly to encompass the rest of the execution plan. Oracle
performs the parent step and all cascaded steps once for each row in
turn retrieved by the child step. The parent steps that are triggered for
each row returned by a child step include table accesses, index
accesses, nested loops joins, and filters.

Some parent steps require all rows from their child steps before they
can be performed. For such a parent step, Oracle cannot perform the
parent step until all rows have been returned from the child step. Such
parent steps include sorts, sort–merge joins, group functions, and
aggregates.

You can examine the execution plan chosen by the optimizer for a SQL
statement by using the EXPLAIN PLAN command. This command
causes the optimizer to choose the execution plan and then inserts data
describing the plan into a database table. The following is such a
description for the statement examined in the previous section:

ID OPERATION OPTIONS OBJECT_NAME

––

0 SELECT STATEMENT

1 FILTER

2 NESTED LOOPS

3 TABLE ACCESS FULL EMP

4 TABLE ACCESS BY ROWID DEPT

5 INDEX UNIQUE SCAN PK_DEPTNO

6 TABLE ACCESS FULL SALGRADE

Oracle’s Approaches to
Optimization

The Rule–Based
Approach

The Cost–Based
Approach

Oracle7 Server Concepts13–6

You can obtain such a listing by using the EXPLAIN PLAN command
and then querying the output table. For information on how to use this
command and produce and interpret its output, see Appendix A
“Performance Diagnostic Tools” of Oracle7 Server Tuning.

Each box in Figure 13 – 1 and each row in the output table corresponds
to a single step in the execution plan. For each row in the listing, the
value in the ID column is the value shown in the corresponding box in
Figure 13 – 1.

To choose an execution plan for a SQL statement, the optimizer uses
one of these approaches:

Using the rule–based approach, the optimizer chooses
an execution plan based on the access paths
available and the ranks of these access paths in
Table 13 – 1 on page 13–13.

Using the cost–based approach, the optimizer
considers available access paths and factors in
information based on statistics in the data
dictionary for the objects (tables, clusters, or
indexes) accessed by the statement to determine
which execution plan is most efficient. The
cost–based approach also considers hints, or
optimization suggestions in the statement placed in
a comment.

The rule–based approach chooses execution plans based on
heuristically ranked operations. If there is more than one way to
execute a SQL statement, the rule–based approach always uses the
operation with the lower rank. Usually, operations of lower rank
execute faster than those associated with constructs of higher rank.

Conceptually, the cost–based approach consists of these steps:

1. The optimizer generates a set of potential execution plans for the
statement based on its available access paths and hints.

2. The optimizer estimates the cost of each execution plan based on
the data distribution and storage characteristics statistics for the
tables, clusters, and indexes in the data dictionary.

rule–based

cost–based

The Optimizer 13–7

The cost is an estimated value proportional to the expected elapsed
time needed to execute the statement using the execution plan. The
optimizer calculates the cost based on the estimated computer
resources including but not limited to I/O, CPU time, and memory
required to execute the statement using the plan. Execution plans
with greater costs take more time to execute than those with
smaller costs.

3. The optimizer compares the costs of the execution plans and
chooses the one with the smallest cost.

Goal of the Cost–Based Approach By default, the goal of the cost–based
approach is the best throughput, or minimal elapsed time necessary to
process all rows accessed by the statement.

Oracle can also optimize a statement with the goal of best response time,
or minimal elapsed time necessary to process the first row accessed by
a SQL statement. For information on how the optimizer chooses an
optimization approach and goal, see Oracle7 Server Tuning.

Statistics Used for the Cost–Based Approach The cost–based approach
uses statistics to estimate the cost of each execution plan. These
statistics quantify the data distribution and storage characteristics of
tables, columns, and indexes. These statistics are generated using the
ANALYZE command. Using these statistics, the optimizer estimates
how much I/O, CPU time, and memory are required to execute a SQL
statement using a particular execution plan.

The statistics are visible through these data dictionary views:

• USER_TABLES, ALL_TABLES, and DBA_TABLES

• USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and
DBA_TAB_COLUMNS

• USER_INDEXES, ALL_INDEXES, and DBA_INDEXES

• USER_CLUSTERS and DBA_CLUSTERS

For information on these statistics, see the Oracle7 Server Reference.

Histograms

Example

When to Use Histograms

Oracle7 Server Concepts13–8

Oracle’s cost based optimizer (CBO) uses data value histograms to get
accurate estimates of the distribution of column data. Histograms
provide improved selectivity estimates in the presence of data skew,
resulting in optimal execution plans with non–uniform data
distributions. You generate histograms by using the ANALYZE
command.

One of the fundamental capabilities of any cost–based optimizer is
determining the selectivity of predicates that appear in queries. In
releases earlier than 7.3, Oracle’s cost–based optimizer supported
accurate selectivity estimates, assuming that the attribute domains (a
table’s columns) were uniformly distributed. However, most attribute
domains are not uniformly distributed.

Histograms enable the cost–based optimizer to describe the
distributions of non–uniform domains by using height balanced
histograms on specified attributes. Selectivity estimates are used to
decide when to use an index and to choose the order that tables are
joined.

Consider a column C with values between 1 and 100 and a histogram
with 10 buckets. If the data in C is uniformly distributed, this
histogram would look like this, where the numbers are the endpoint
values.

1 10 20 30 40 50 60 70 80 90 100

The number of rows in each bucket is one tenth the total number of
rows in the table.

If the data is not uniformly distributed, the histogram might look like
this:

1 5 5 5 5 10 10 20 35 60 100

In this case, most of the rows have the value 5 for the column. In the
uniform example, 4/10 of the rows had values between 60 and 100, in
the non–uniform example, only 1/10 of the rows have values between
60 and 100.

For many users, it is appropriate to use the FOR ALL INDEXED
COLUMNS option for creating histograms because indexed columns
are typically the columns most often used in WHERE clauses.

For More Information

The Optimizer 13–9

You can view histograms by using the following views:

• USER_HISTOGRAMS

• ALL_HISTOGRAMS

• DBA_HISTOGRAMS

• TAB_COLUMNS

Histograms are useful only when they reflect the current data
distribution of a given column. If the data distribution is not static, the
histogram should be updated frequently. The data need not be static as
long as the distribution remains constant.

Histograms can affect performance and should be used only when they
substantially improve query plans. Histograms are not useful for
columns with the following characteristics:

• All predicates on the column use bind variables.

• The column data is uniformly distributed.

• The column is not used in WHERE clauses of queries.

• The column is unique and is used only with equality predicates.

See Oracle7 Server Tuning.

How Oracle Optimizes SQL Statements

This section explains how Oracle optimizes SQL statements. For any
SQL statement processed by Oracle, the optimizer does the following:

The optimizer first evaluates expressions and
conditions containing constants as fully as possible.

For a complex statement involving, for example,
correlated subqueries, the optimizer may
transform the original statement into an equivalent
join statement.

For a SQL statement that accesses a view, the
optimizer often merges the query in the statement
with that in the view and then optimizes the result.

evaluation of
expressions and
conditions

statement
transformation

view merging

Types of SQL
Statements

Oracle7 Server Concepts13–10

The optimizer chooses either a rule–based or
cost–based approach to optimization.

For each table accessed by the statement, the
optimizer chooses one or more of the available
access paths to obtain the table’s data.

For a join statement that joins more than two
tables, the optimizer chooses which pair of tables is
joined first, and then which table is joined to the
result, on so on.

For any join statement, the optimizer chooses an
operation to use to perform the join.

Oracle optimizes these different types of SQL statements:

A simple statement is an INSERT, UPDATE,
DELETE, or SELECT statement that only involves
a single table.

A query is another name for a SELECT statement.

A join is a query that selects data from more than
one table. A join is characterized by multiple tables
in the FROM clause. Oracle pairs the rows from
these tables using the condition specified in the
WHERE clause and returns the resulting rows. This
condition is called the join condition and usually
compares columns of all the joined tables.

An equijoin is characterized by a join condition
containing an equality operator.

A nonequijoin is characterized by a join condition
containing something other than an equality
operator.

An outer join is characterized by a join condition
that uses the outer join operator (+) with one or
more of the columns of one of the tables. Oracle
returns all rows that meet the join condition. Oracle
also returns all rows from the table without the
outer join operator for which there are no matching
rows in the table with the outer join operator.

choice of
optimization
approaches

choice of access
paths

choice of join
orders

choice of join
operations

simple statements

simple queries

joins

equijoins

nonequijoins

outer joins

Choosing Access Paths

The Optimizer 13–11

A join with no join condition results in a cartesian
product, or a cross product. A cartesian product is
the set of all possible combinations of rows drawn
one from each table. In other words, for a join of
two tables, each row in one table is matched in turn
with every row in the other. A cartesian product
for more than two tables is the result of pairing
each row of one table with every row of the
cartesian product of the remaining tables. All other
kinds of joins are subsets of cartesian products
effectively created by deriving the cartesian
product and then excluding rows that fail the join
condition.

A complex statement is an INSERT, UPDATE,
DELETE, or SELECT statement that contains a
form of the SELECT statement called a subquery.
This is a query within another statement that
produces a set of values for further processing
within the statement. The outer portion of the
complex statement that contains a subquery is
called the parent statement.

A compound query is a query that uses set operators
(UNION, UNION ALL, INTERSECT, or MINUS)
to combine two or more simple or complex
statements. Each simple or complex statement in a
compound query is called a component query.

You can also write simple, join, complex, and
compound statements that access views as well as
tables.

A distributed statement is one that accesses data on a
remote database.

One of the most important choices the optimizer makes when
formulating an execution plan is how to retrieve the data from the
database. For any row in any table accessed by a SQL statement, there
may be many access paths by which that row can be located and
retrieved. The optimizer chooses one of them.

This section discusses these topics:

• the basic methods by which Oracle can access data

• each access path and when it is available to the optimizer

• how the optimizer chooses among available access paths

cartesian products

complex
statements

compound
queries

statements
accessing views

distributed
statements

Access Methods

Oracle7 Server Concepts13–12

This section describes basic methods by which Oracle can access data.

Full Table Scans A full table scan retrieves rows from a table. To
perform a full table scan, Oracle reads all rows in the table, examining
each row to determine whether it satisfies the statement’s WHERE
clause. Oracle reads every data block allocated to the table sequentially,
so a full table scan can be performed very efficiently using multiblock
reads. Oracle reads each data block only once.

Table Access by ROWID A table access by ROWID also retrieves rows
from a table. The ROWID of a row specifies the datafile and data block
containing the row and the location of the row in that block. Locating a
row by its ROWID is the fastest way for Oracle to find a single row.

To access a table by ROWID, Oracle first obtains the ROWIDs of the
selected rows, either from the statement’s WHERE clause or through an
index scan of one of more of the table’s indexes. Oracle then locates
each selected row in the table based on its ROWID.

Cluster Scans From a table stored in an indexed cluster, a cluster scan
retrieves rows that have the same cluster key value. In an indexed
cluster, all rows with the same cluster key value are stored in the same
data blocks. To perform a cluster scan, Oracle first obtains the ROWID
of one of the selected rows by scanning the cluster index. Oracle then
locates the rows based on this ROWID.

Hash Scans Oracle can use a hash scan to locate rows in a hash cluster
based on a hash value. In a hash cluster, all rows with the same hash
value are stored in the same data blocks. To perform a hash scan,
Oracle first obtains the hash value by applying a hash function to a
cluster key value specified by the statement. Oracle then scans the data
blocks containing rows with that hash value.

Index Scans An index scan retrieves data from an index based on the
value of one or more columns of the index. To perform an index scan,
Oracle searches the index for the indexed column values accessed by
the statement. If the statement accesses only columns of the index,
Oracle reads the indexed column values directly from the index, rather
than from the table.

In addition to each indexed value, an index also contains the ROWIDs
of rows in the table having that value. If the statement accesses other
columns in addition to the indexed columns, Oracle then finds the rows
in the table with a table access by ROWID or a cluster scan.

Access Paths

The Optimizer 13–13

An index scan can be one of these types:

A unique scan of an index returns only a single
ROWID. Oracle can only perform a unique scan in
cases in which only a single ROWID, rather than
many ROWIDs, is required. For example, Oracle
performs a unique scan if there is a UNIQUE or a
PRIMARY KEY constraint that guarantees that the
statement accesses only a single row.

A range scan of an index can return one or more
ROWIDs depending on how many rows are
accessed by the statement.

Table 13 – 1 lists the access paths. The rank of each path is used by the
rule–based approach to choose a path when more than one path is
available.

Rank Access Path

1 Single row by ROWID

2 Single row by cluster join

3 Single row by hash cluster key with unique or primary key

4 Single row by unique or primary key

5 Cluster join

6 Hash cluster key

7 Indexed cluster key

8 Composite key

9 Single–column indexes

10 Bounded range search on indexed columns

11 Unbounded range search on indexed columns

12 Sort–merge join

13 MAX or MIN of indexed column

14 ORDER BY on indexed columns

15 Full table scan

Table 13 – 1 Access Paths

Unique

Range

Choosing Among Access
Paths

Example

Oracle7 Server Concepts13–14

The optimizer can only choose to use a particular access path for a table
if the statement contains a WHERE clause condition or other construct
that makes that access path available. Each of the following sections
describes an access path and discusses

• when it is available

• the method Oracle uses to access data with it

• the output generated for it by the EXPLAIN PLAN command

This section describes how the optimizer chooses among available
access paths:

• when using the rule–based approach

• when using the cost–based approach

Choosing Among Access Paths with the Rule–Based Approach With the
rule–based approach, the optimizer chooses whether to use an access
path based on these factors:

• the available access paths for the statement

• the ranks of these access paths in Table 13 – 1

To choose an access path, the optimizer first examines the conditions in
the statement’s WHERE clause to determine which access paths are
available. The optimizer then chooses the most highly ranked available
access path. Note that the full table scan is the lowest ranked access
path on the list. This means that the rule–based approach always
chooses an access path that uses an index if one is available, even if a
full table scan might execute faster.

The order of the conditions in the WHERE clause does not normally
affect the optimizer’s choice among access paths.

Consider this SQL statement that selects the employee numbers of all
employees in the EMP table with an ENAME value of ’CHUNG’ and
with a SAL value greater than 2000:

SELECT empno

FROM emp

WHERE ename = ’CHUNG’

 AND sal > 2000;

The Optimizer 13–15

Consider also that the EMP table has these integrity constraints and
indexes:

• There is a PRIMARY KEY constraint on the EMPNO column that
is enforced by the index PK_EMPNO.

• There is an index named ENAME_IND on the ENAME column.

• There is an index named SAL_IND on the SAL column.

Based on the conditions in the WHERE clause of the SQL statement,
the integrity constraints, and the indexes, these access paths are
available:

• A single–column index access path using the ENAME_IND
index is made available by the condition ENAME = ’CHUNG’.
This access path has rank 9.

• An unbounded range scan using the SAL_IND index is made
available by the condition SAL> 2000. This access path has
rank 11.

• A full table scan is automatically available for all SQL
statements. This access path has rank 15.

Note that the PK_EMPNO index does not make the single row by
primary key access path available because the indexed column does not
appear in a condition in the WHERE clause.

Using the rule–based approach, the optimizer chooses the access path
that uses the ENAME_IND index to execute this statement. The
optimizer chooses this path because it is the most highly ranked path
available.

Choosing Among Access Paths with the Cost–Based Approach With the
cost–based approach, the optimizer chooses an access path based on
these factors:

• the available access paths for the statement

• the estimated cost of executing the statement using each access
path or combination of paths

To choose an access path, the optimizer first determines which access
paths are available by examining the conditions in the statement’s
WHERE clause. The optimizer then generates a set of possible
execution plans using available access paths and estimates the cost of
each plan using the statistics for the index, columns, and tables
accessible to the statement. The optimizer then chooses the execution
plan with the lowest estimated cost.

Example

Oracle7 Server Concepts13–16

The optimizer’s choice among available access paths can be overridden
with hints. For information on hints, see Oracle7 Server Tuning.

To choose among available access paths, the optimizer considers these
factors:

• Selectivity: The selectivity is the percentage of rows in the table
that the query selects. Queries that select a small percentage of a
table’s rows have good selectivity, while a query that selects a
large percentage of the rows has poor selectivity.

The optimizer is more likely to choose an index scan over a full
table scan for a query with good selectivity than for one with
poor selectivity. Index scans are usually more efficient than full
table scans for queries that access only a small percentage of a
table’s rows, while full table scans are usually faster for queries
that access a large percentage.

To determine the selectivity of a query, the optimizer considers
these sources of information:

– the operators used in the WHERE clause

– unique and primary key columns used in the WHERE
clause

– statistics for the table

The following examples in this section illustrate the way the
optimizer uses selectivity.

• DB_FILE_MULTIBLOCK_READ_COUNT: Full table scans use
multiblock reads, so the cost of a full table scan depends on the
number of multiblock reads required to read the entire table,
which depends on the number of blocks read by a single
multiblock read, which is specified by the initialization
parameter DB_FILE_MULTIBLOCK_READ_COUNT. For this
reason, the optimizer may be more likely to choose a full table
scan when the value of this parameter is high.

Consider this query that uses an equality condition in its WHERE
clause to select all employees name Jackson:

SELECT *

FROM emp

WHERE ename = ’JACKSON’;

If the ENAME column is a unique or primary key, the optimizer
determines that there is only one employee named Jackson, and the
query returns only one row. In this case, the query is very selective, and

Example

Example

Optimizing
Distributed Statements

The Optimizer 13–17

the optimizer is most likely to access the table using a unique scan on
the index that enforces the unique or primary key (access path 4).

Consider again the query in the previous example. If the ENAME
column is not a unique or primary key, the optimizer can use these
statistics to estimate the query’s selectivity:

This statistic is the number of values for each
column in the table.

This statistic is the number of rows in each table.

By dividing the number of rows in the EMP table by the number of
distinct values in the ENAME column, the optimizer estimates what
percentage of employees have the same name. By assuming that the
ENAME values are uniformly distributed, the optimizer uses this
percentage as the estimated selectivity of the query.

Consider this query that selects all employees with employee ID
numbers less than 7500:

SELECT *

FROM emp

WHERE empno < 7500;

To estimate the selectivity of the query, the optimizer uses the
boundary value of 7500 in the WHERE clause condition and the values
of the HIGH_VALUE and LOW_VALUE statistics for the EMPNO
column if available. These statistics can be found in the
USER_TAB_COLUMNS view. The optimizer assumes that EMPNO
values are evenly distributed in the range between the lowest value
and highest value. The optimizer then determines what percentage of
this range is less than the value 7500 and uses this value as the
estimated selectivity of the query.

The optimizer chooses execution plans for SQL statements that access
data on remote databases in much the same way it chooses executions
for statements that access only local data:

• If all the tables accessed by a SQL statement are collocated on the
same remote database, Oracle sends the SQL statement to that
remote database. The remote Oracle instance executes the
statement and sends only the results back to the local database.

• If a SQL statement accesses tables that are located on different
databases, Oracle decomposes the statement into individual
fragments, each of which access tables on a single database.

USER_TAB_
COLUMNS.NUM
_DISTINCT

USER_TABLES.
NUM_ROWS

Oracle7 Server Concepts13–18

Oracle then sends each fragment to the database it accesses. The
remote Oracle instance for each of these databases executes its
fragment and returns the results to the local database.

When choosing the execution plan for a distributed statement, the
optimizer considers the available indexes on remote databases just as it
does indexes on the local database. If the statement uses the cost–based
approach, the optimizer also considers statistics on remote databases.
Furthermore, the optimizer considers the location of data when
estimating the cost of accessing it. For example, a full scan of a remote
table has a greater estimated cost than a full scan of an identical local
table.

P A R T

 VI Programmatic
Constructs

C H A P T E R

14

T

Procedures and Packages 14–1

Procedures and
Packages

We’re dealing here with science, but it is science which has not yet been
fully codified by scientific minds. What we have are the memoirs of
poets and occult adventurers...

Anne Rice: The Tale of the Body Thief

his chapter discusses the procedural capabilities of Oracle. It
includes:

• An Introduction to Stored Procedures and Packages

• Procedures and Functions

• Packages

• How Oracle Stores Procedures and Packages

• How Oracle Executes Procedures and Packages

The information in this chapter applies only to those systems using
Oracle with the procedural option. For information about the
dependencies of procedures, functions, and packages, and how Oracle
manages these dependencies, see Chapter 16, “Dependencies Among
Schema Objects”.

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide.

Stored Procedures and
Functions

Oracle7 Server Concepts14–2

An Introduction to Stored Procedures and Packages

Oracle allows you to access and manipulate database information using
procedural schema objects called PL/SQL program units. Procedures,
functions, and packages are all examples of PL/SQL program units.

A procedure or function is a schema object that logically groups a set of
SQL and other PL/SQL programming language statements together to
perform a specific task. Procedures and functions are created in a
user’s schema and stored in a database for continued use. You can
execute a procedure or function interactively using an Oracle tool, such
as SQL*Plus, or call it explicitly in the code of a database application,
such as an Oracle Forms or Precompiler application, or in the code of
another procedure or trigger. Figure 14 – 1 illustrates a simple
procedure stored in the database, being called by several different
database applications.

Database
Applications

Database

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

HIRE_EMP(...)

BEGIN
.
.
END;

Figure 14 – 1 A Stored Procedure

The stored procedure in Figure 14 – 1, which inserts an employee
record into the EMP table, is shown in Figure 14 – 2.

Packages

Procedures and Packages 14–3

Procedure HIRE_EMP (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER,
 comm NUMBER, deptno NUMBER

BEGIN
.
.
INSERT INTO emp VALUES
 (emp_sequence.NEXTVAL, name, job, mgr
 hiredate, sal, comm, deptno);
.
.
END;

Figure 14 – 2 The HIRE_EMP Procedure

All of the database applications in Figure 14 – 1 call the HIRE_EMP
procedure. Alternatively, a privileged user might use Server Manager
to execute the HIRE_EMP procedure using the following statement:

EXECUTE hire_emp (’TSMITH’, ’CLERK’, 1037, SYSDATE, \

500, NULL, 20);

This statement places a new employee record for TSMITH in the EMP
table.

A package is a group of related procedures and functions, together
with the cursors and variables they use, stored together in the database
for continued use as a unit. Similar to standalone procedures and
functions, packaged procedures and functions can be called explicitly
by applications or users. Figure 14 – 3 illustrates a package that
encapsulates a number of procedures used to manage an employee
database.

Oracle7 Server Concepts14–4

Database
Applications

Database

EMP_MGMT

FIRE_EMP(...)

BEGIN
.
.
END;

HIRE_EMP(...)

BEGIN
.
.
END;

SAL_RAISE(...)

BEGIN
.
.
END;

Program code
.
EMP_MGMT.FIRE_EMP(...);

Program code
.
EMP_MGMT.HIR_EMP(...);
.
Program code

Program code
.
EMP_MGMT.HIRE_EMP(...);

Program code
.
EMP_MGMT.SAL_RAISE(...);
.
Program code

Figure 14 – 3 A Stored Package

Database applications explicitly call packaged procedures as necessary.
After being granted the privileges for the EMP_MGMT package, a user
can explicitly execute any of the procedures contained in it. For
example, the following statement might be issued using Server
Manager to execute the HIRE_EMP package procedure:

PL/SQL

Procedures and Packages 14–5

EXECUTE emp_mgmt.hire_emp (’TSMITH’, ’CLERK’, 1037, \

SYSDATE, 500, NULL, 20);

Packages offer several development and performance advantages over
standalone stored procedures. These advantages are described in the
section “Packages” on page 14–9.

PL/SQL is Oracle’s procedural language extension to SQL. It extends
SQL with flow control and other statements that make it possible to
write complex programs in it. The PL/SQL engine is the tool you use to
define, compile, and execute PL/SQL program units. This engine is a
special component of many Oracle products, including Oracle Server.

While many Oracle products have PL/SQL components, this chapter
specifically covers the procedures and packages that can be stored in an
Oracle database and processed using the Oracle Server PL/SQL engine.
The PL/SQL capabilities of each Oracle tool are described in the
appropriate tool’s documentation.

For more information about PL/SQL, see the section “PL/SQL” on
page 11–7.

Procedures and Functions

Oracle can process procedures and functions as well as individual SQL
statements. A procedure or function is a schema object that consists of a
set of SQL statements and other PL/SQL constructs, grouped together,
stored in the database, and executed as a unit to solve a specific
problem or perform a set of related tasks. Procedures and functions
permit the caller to provide parameters that can be input only, output
only, or input and output values. Procedures and functions allow you
to combine the ease and flexibility of SQL with the procedural
functionality of a structured programming language.

For example, the following statement creates the CREDIT_ACCOUNT
procedure, which credits money to a bank account:

How Procedures Are
Used

Oracle7 Server Concepts14–6

CREATE PROCEDURE credit_account

(acct NUMBER, credit NUMBER) AS

/* This procedure accepts two arguments: an account

 number and an amount of money to credit to the specified

 account. If the specified account does not exist, a

 new account is created. */

old_balance NUMBER;

new_balance NUMBER;

 BEGIN

SELECT balance INTO old_balance FROM accounts

 WHERE acct_id = acct

 FOR UPDATE OF balance;

new_balance := old_balance + credit;

UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;

COMMIT;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 INSERT INTO accounts (acct_id, balance)

VALUES(acct, credit);

 WHEN OTHERS THEN

ROLLBACK;

END credit_account;

Notice that both SQL and PL/SQL statements are included in the
CREDIT_ACCOUNT procedure.

Procedures and functions are nearly identical. The only differences are
that functions always return a single value to the caller, while
procedures do not. For simplicity, the term “procedure” is used in the
remainder of this chapter to mean “procedures and functions,” unless
otherwise noted.

You should design and use all stored procedures so that they have the
following properties:

• Define procedures to complete a single, focused task. Do not
define long procedures with several distinct subtasks, or
subtasks common to many procedures might be duplicated
unnecessarily in the code of several procedures.

• Do not define procedures that duplicate the functionality already
provided by other features of Oracle. For example, do not define
procedures to enforce simple data integrity rules that you could
easily enforce using declarative integrity constraints.

Applications for
Procedures

Security

Performance

Memory Allocation

Productivity

Procedures and Packages 14–7

Procedures provide advantages in the following areas:

• security

• performance

• memory allocation

• productivity

• integrity

Stored procedures can help enforce data security. You can restrict the
database operations that users can perform by allowing them to access
data only through procedures and functions.

For example, you can grant users access to a procedure that updates a
table, but not grant them access to the table itself. When a user invokes
the procedure, the procedure executes with the privileges of the
procedure’s owner. Users that have only the privilege to execute the
procedure and not the privileges to query, update, or delete from the
underlying tables, can invoke the procedure, but they cannot
manipulate table data in any other way.

Stored procedures can improve database performance. Use of
procedures dramatically reduces the amount of information that must
be sent over a network compared to issuing individual SQL statements
or sending the text of an entire PL/SQL block to Oracle, because the
information is sent only once and thereafter invoked when it is used.
Furthermore, because a procedure’s compiled form is readily available
in the database, no compilation is required at execution time.
Additionally, if the procedure is already present in the shared pool of
the SGA, retrieval from disk is not required, and execution can begin
immediately.

Because stored procedures take advantage of the shared memory
capabilities of Oracle, only a single copy of the procedure needs to be
loaded into memory for execution by multiple users. Sharing the same
code among many users results in a substantial reduction in Oracle
memory requirements for applications.

Stored procedures increase development productivity. By designing
applications around a common set of procedures, you can avoid
redundant coding and increase your productivity.

For example, procedures can be written to insert, update, or delete
rows from the EMP table. These procedures can then be called by any
application without rewriting the SQL statements necessary to
accomplish these tasks. If the methods of data management change,
only the procedures need to be modified, not all of the applications that
use the procedures.

Integrity

Anonymous PL/SQL
Blocks vs. Stored
Procedures

Standalone Procedures
vs. Package Procedures

Dependency Tracking
for Stored Procedures

Oracle7 Server Concepts14–8

Stored procedures improve the integrity and consistency of your
applications. By developing all of your applications around a common
group of procedures, you can reduce the likelihood of committing
coding errors.

For example, you can test a procedure or function to guarantee that it
returns an accurate result and, once it is verified, reuse it in any
number of applications without testing it again. If the data structures
referenced by the procedure are altered in any way, only the procedure
needs to be recompiled; applications that call the procedure do not
necessarily require any modifications.

You create an anonymous PL/SQL block by sending an unnamed
PL/SQL block to Oracle Server from an Oracle tool or an application.
Oracle compiles the PL/SQL block and places the compiled version in
the shared pool of the SGA, but does not store the source code or
compiled version in the database for subsequent reuse.

Shared SQL allows a compiled anonymous PL/SQL block already in
the shared pool to be reused and shared until it is flushed out of the
shared pool.

Alternatively, a stored procedure is created and stored in the database
as an object. Once created and compiled, it is a named object that can
be executed without recompiling. Additionally, dependency
information is stored in the data dictionary to guarantee the validity of
each stored procedure.

In summary, by moving PL/SQL blocks out of a database application
and into stored database procedures, you avoid unnecessary procedure
recompilations by Oracle at runtime, improving the overall
performance of the application and Oracle.

Stored procedures not defined within the context of a package are
called standalone procedures. Procedures defined within a package are
considered a part of the package. See “Packages” on page 14–9 for
information on the advantages of packages.

A stored procedure is dependent on the objects referenced in its body.
Oracle automatically tracks and manages such dependencies. For
example, if you alter the definition of a table referenced by a procedure,
the procedure must be recompiled to validate that it will continue to
work as designed. Usually, Oracle automatically administers such
dependency management. See Chapter 16, “Dependencies Among
Schema Objects”, for more information about dependency tracking.

Procedures and Packages 14–9

Packages

Packages provide a method of encapsulating related procedures,
functions, and associated cursors and variables together as a unit in the
database.

For example, the following two statements create the specification and
body for a package that contains several procedures and functions that
process banking transactions.

CREATE PACKAGE bank_transactions AS

 minimum_balance CONSTANT NUMBER := 100.00;

 PROCEDURE apply_transactions;

 PROCEDURE enter_transaction (acct NUMBER,

kind CHAR,

amount NUMBER);

END bank_transactions;

CREATE PACKAGE BODY bank_transactions AS

/* Package to input bank transactions */

 new_status CHAR(20); /* Global variable to record status

of transaction being applied. Used

for update in APPLY_TRANSACTIONS. */

 PROCEDURE do_journal_entry (acct NUMBER,

kind CHAR) IS

/* Records a journal entry for each bank transaction applied

 by the APPLY_TRANSACTIONS procedure. */

 BEGIN

INSERT INTO journal

 VALUES (acct, kind, sysdate);

IF kind = ’D’ THEN

 new_status := ’Debit applied’;

ELSIF kind = ’C’ THEN

 new_status := ’Credit applied’;

ELSE

 new_status := ’New account’;

END IF;

 END do_journal_entry;

(continued next page)

Oracle7 Server Concepts14–10

 PROCEDURE credit_account (acct NUMBER, credit NUMBER) IS

/* Credits a bank account the specified amount. If the account

 does not exist, the procedure creates a new account first. */

old_balance NUMBER;

new_balance NUMBER;

 BEGIN

SELECT balance INTO old_balance FROM accounts

 WHERE acct_id = acct

 FOR UPDATE OF balance; /* Locks account for credit update */

new_balance := old_balance + credit;

UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;

do_journal_entry(acct, ’C’);

 EXCEPTION

WHEN NO_DATA_FOUND THEN /* Create new account if not found */

 INSERT INTO accounts (acct_id, balance)

 VALUES(acct, credit);

 do_journal_entry(acct, ’N’);

WHEN OTHERS THEN /* Return other errors to application */

 new_status := ’Error: ’ || SQLERRM(SQLCODE);

 END credit_account;

 PROCEDURE debit_account (acct NUMBER, debit NUMBER) IS

/* Debits an existing account if result is greater than the

 allowed minimum balance. */

old_balance NUMBER;

new_balance NUMBER;

insufficient_funds EXCEPTION;

 BEGIN

SELECT balance INTO old_balance FROM accounts

 WHERE acct_id = acct

 FOR UPDATE OF balance;

new_balance := old_balance – debit;

IF new_balance >= minimum_balance THEN

 UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;

do_journal_entry(acct, ’D’);

ELSE

 RAISE insufficient_funds;

END IF;

(continued next page)

Procedures and Packages 14–11

 EXCEPTION

WHEN NO_DATA_FOUND THEN

 new_status := ’Nonexistent account’;

WHEN insufficient_funds THEN

 new_status := ’Insufficient funds’;

WHEN OTHERS THEN /* Returns other errors to application */

 new_status := ’Error: ’ || SQLERRM(SQLCODE);

 END debit_account;

 PROCEDURE apply_transactions IS

/* Applies pending transactions in the table TRANSACTIONS to the

 ACCOUNTS table. Used at regular intervals to update bank

 accounts without interfering with input of new transactions. */

/* Cursor fetches and locks all rows from the TRANSACTIONS

 table with a status of ’Pending’. Locks released after all

 pending transactions have been applied. */

CURSOR trans_cursor IS

 SELECT acct_id, kind, amount FROM transactions

 WHERE status = ’Pending’

 ORDER BY time_tag

 FOR UPDATE OF status;

 BEGIN

FOR trans IN trans_cursor LOOP /* implicit open and fetch */

 IF trans.kind = ’D’ THEN

 debit_account(trans.acct_id, trans.amount);

 ELSIF trans.kind = ’C’ THEN

 credit_account(trans.acct_id, trans.amount);

 ELSE

 new_status := ’Rejected’;

 END IF;

 /* Update TRANSACTIONS table to return result of applying

 this transaction. */

 UPDATE transactions SET status = new_status

 WHERE CURRENT OF trans_cursor;

END LOOP;

COMMIT; /* Release row locks in TRANSACTIONS table. */

 END apply_transactions;

(continued next page)

Applications for
Packages

Encapsulation

Public and Private Data
and Procedures

Oracle7 Server Concepts14–12

 PROCEDURE enter_transaction (acct NUMBER,

kind CHAR,

amount NUMBER) IS

/* Enters a bank transaction into the TRANSACTIONS table. A new

 transaction is always input into this ’queue’ before being

 applied to the specified account by the APPLY_TRANSACTIONS

 procedure. Therefore, many transactions can be simultaneously

 input without interference. */

 BEGIN

INSERT INTO transactions

 VALUES (acct, kind, amount, ’Pending’, sysdate);

COMMIT;

 END enter_transaction;

END bank_transactions;

While packages allow the database administrator or application
developer to organize similar routines, they also offer increased
functionality and database performance.

Packages are used to define related procedures, variables, and cursors
and are often implemented to provide advantages in the following
areas:

• encapsulation of related procedures and variables

• declaration of public and private procedures, variables,
constants, and cursors

• separation of the package specification and package body

• better performance

Stored packages allow you to encapsulate, or group, related stored
procedures, variables, datatypes, etc. in a single named, stored unit in
the database. This provides for better organization during the
development process.

Encapsulation of procedural constructs in a package also makes
privilege management easier. Granting the privilege to use a package
makes all constructs of the package accessible to the grantee.

The methods of package definition allow you to specify which
variables, cursors, and procedures are

Directly accessible to the user of a package.

Hidden from the user of a package.

public

private

Separate Package
Specification and Package
Body

Performance
Improvement

Procedures and Packages 14–13

For example, a package might contain ten procedures. However, the
package can be defined so that only three procedures are public and
therefore available for execution by a user of the package; the
remainder of the procedures are private and can only be accessed by
the procedures within the package.

Do not confuse public and private package variables with grants to
PUBLIC, which are described in Chapter 17, “Database Access”.

You create a package in two parts: the specification and the body. A
package’s specification declares all public constructs of the package and
the body defines all constructs (public and private) of the package. This
separation of the two parts provides the following advantages:

• By defining the package specification separately from the
package body, the developer has more flexibility in the
development cycle. You can create specifications and reference
public procedures without actually creating the package body.

• You can alter procedure bodies contained within the package
body separately from their publicly declared specifications in the
package specification. As long as the procedure specification
does not change, objects that reference the altered procedures of
the package are never marked invalid; that is, they are never
marked as needing recompilation. For more information about
dependencies, see Chapter 16, “Dependencies Among Schema
Objects”.

Using packages rather than stand–alone stored procedures results in
the following improvements:

• The entire package is loaded into memory when a procedure
within the package is called for the first time. This load is
completed in one operation, as opposed to the separate loads
required for standalone procedures. Therefore, when calls to
related packaged procedures occur, no disk I/O is necessary to
execute the compiled code already in memory.

• A package body can be replaced and recompiled without
affecting the specification. As a result, objects that reference a
package’s constructs (always via the specification) never need to
be recompiled unless the package specification is also replaced.
By using packages, unnecessary recompilations can be
minimized, resulting in less impact on overall database
performance.

Dependency Tracking
for Packages

Compiling Procedures
and Packages

Storing the Compiled
Code in Memory

Storing Procedures or
Packages in Database

Oracle7 Server Concepts14–14

A package is dependent on the objects referenced by the procedures
and functions defined in its body. Oracle automatically tracks and
manages such dependencies. See Chapter 16, “Dependencies Among
Schema Objects”, for more information about dependency tracking.

How Oracle Stores Procedures and Packages

When you create a procedure or package, Oracle automatically
performs these steps:

1. Compiles the procedure or package.

2. Stores the compiled code in memory.

3. Stores the procedure or package in the database.

The PL/SQL compiler compiles the source code. The PL/SQL compiler
is part of the PL/SQL engine contained in Oracle. If an error occurs
during compilation, a message is returned. Information on identifying
compilation errors is contained in the Oracle7 Server Application
Developer’s Guide.

Oracle caches the compiled procedure or package in the shared pool of
the SGA. This allows the code to be executed quickly and shared
among many users. The compiled version of the procedure or package
remains in the shared pool according to the modified
least–recently–used algorithm used by the shared pool, even if the
original caller of the procedure terminates his/her session. See “The
Shared Pool” on page 9–20 for specific information about the shared
pool buffer.

At creation and compile time, Oracle automatically stores the following
information about a procedure or package in the database:

Oracle uses this name to identify the procedure or
package. You specify this name in the CREATE
PROCEDURE, CREATE FUNCTION, CREATE
PACKAGE, or CREATE PACKAGE BODY
statement.

The PL/SQL compiler parses the source code and
produces a parsed representation of the source
code, called a parse tree.

object name

source code and
parse tree

Verifying User Access

Procedures and Packages 14–15

The PL/SQL compiler generates the pseudocode, or
P code, based on the parsed code. The PL/SQL
engine executes this when the procedure or
package is invoked.

Oracle might generate errors during the
compilation of a procedure or package.

To avoid unnecessary recompilation of a procedure or package, both
the parse tree and the P code of an object are stored in the database.
This allows the PL/SQL engine to read the compiled version of a
procedure or package into the shared pool buffer of the SGA when it is
invoked and not currently in the SGA. The parse tree is used when the
code calling the procedure is compiled.

All parts of database procedures are stored in the data dictionary
(which is in the SYSTEM tablespace) of the corresponding database.
The database administrator should plan the size of the SYSTEM
tablespace, keeping in mind that all stored procedures require space in
this tablespace.

How Oracle Executes Procedures and Packages

When you invoke a standalone or packaged procedure, Oracle
performs these steps to execute it:

1. Verifies user access.

2. Verifies procedure validity.

3. Executes the procedure.

Oracle verifies that the calling user owns or has the EXECUTE privilege
on the procedure or encapsulating package. The user who executes a
procedure does not require access to any procedures or objects
referenced within the procedure; only the creator of a procedure or
package requires privileges to access referenced schema objects.

pseudocode
(P code)

error messages

Verifying Procedure
Validity

Executing a Procedure

Oracle7 Server Concepts14–16

Oracle checks the data dictionary to see if the status of the procedure or
package is valid or invalid. A procedure or package is invalid when one
of the following has occurred since the procedure or package was last
compiled:

• One or more of the objects referenced within the procedure or
package (such as tables, views, and other procedures) have been
altered or dropped (for example, if a user added a column to a
table).

• A system privilege that the package or procedure requires has
been revoked from PUBLIC or from the owner of the procedure
or package.

• A required object privilege for one or more of the objects
referenced by a procedure or package has been revoked from
PUBLIC or from the owner of the procedure or package.

A procedure is valid if it has not been invalidated by any of the above
operations.

If a valid standalone or packaged procedure is called, the compiled
code is executed.

If an invalid standalone or packaged procedure is called, it is
automatically recompiled before being executed.

For a complete discussion of valid and invalid procedures and
packages, recompiling procedures, and a thorough discussion of
dependency issues, see Chapter 16, “Dependencies Among Schema
Objects”.

The PL/SQL engine executes the procedure or package using different
steps, depending on the situation:

• If the procedure is valid and currently in memory, the PL/SQL
engine simply executes the P code.

• If the procedure is valid and currently not in memory, the
PL/SQL engine loads the compiled P code from disk to memory
and executes it. For packages, all constructs of the package (all
procedures, variables, and so on, compiled as one executable
piece of code) are loaded as a unit.

The PL/SQL engine processes a procedure statement by statement,
handling all procedural statements by itself and passing SQL
statements to the SQL statement executor, as illustrated in
Figure 11 – 1 on page 11–8.

C H A P T E R

15

T

Database Triggers 15–1

Database Triggers

You may fire when you are ready, Gridley.

George Dewey: at the battle of Manila Bay

his chapter discusses database triggers; that is, procedures that are
stored in the database and implicitly executed (“fired”) when a table is
modified. This chapter includes:

• An Introduction to Triggers

• Parts of a Trigger

• Triggers Execution

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide.

Oracle7 Server Concepts15–2

An Introduction to Triggers

Oracle allows you to define procedures that are implicitly executed
when an INSERT, UPDATE, or DELETE statement is issued against the
associated table. These procedures are called database triggers.

Triggers are similar to stored procedures, discussed in Chapter 14,
“Procedures and Packages”. A trigger can include SQL and PL/SQL
statements to execute as a unit and can invoke stored procedures.
However, procedures and triggers differ in the way that they are
invoked. While a procedure is explicitly executed by a user, application,
or trigger, one or more triggers are implicitly fired (executed) by Oracle
when a triggering INSERT, UPDATE, or DELETE statement is issued,
no matter which user is connected or which application is being used.

For example, Figure 15 – 1 shows a database application with some
SQL statements that implicitly fire several triggers stored in the
database.

Applications

Database

Table t

UPDATE t SET . . . ;

INSERT INTO t . . . ;

DELETE FROM t . . . ;

Update Trigger

BEGIN
. . .

Insert Trigger

BEGIN
. . .

Delete Trigger

BEGIN
. . .

Figure 15 – 1 Triggers

Notice that triggers are stored in the database separately from their
associated tables.

Triggers can be defined only on tables, not on views. However, triggers
on the base table(s) of a view are fired if an INSERT, UPDATE, or
DELETE statement is issued against a view.

How Triggers Are Used

A Cautionary Note
about Trigger Use

Database Triggers 15–3

In many cases, triggers supplement the standard capabilities of Oracle
to provide a highly customized database management system. For
example, a trigger can permit DML operations against a table only if
they are issued during regular business hours. The standard security
features of Oracle, roles and privileges, govern which users can submit
DML statements against the table. In addition, the trigger further
restricts DML operations to occur only at certain times during
weekdays. This is just one way that you can use triggers to customize
information management in an Oracle database.

In addition, triggers are commonly used to

• automatically generate derived column values

• prevent invalid transactions

• enforce complex security authorizations

• enforce referential integrity across nodes in a distributed
database

• enforce complex business rules

• provide transparent event logging

• provide sophisticated auditing

• maintain synchronous table replicates

• gather statistics on table access

Examples of many of these different trigger uses are included in the
Oracle7 Server Application Developer’s Guide.

When a trigger is fired, a SQL statement within its trigger action
potentially can fire other triggers, as illustrated in Figure 15 – 2. When a
statement in a trigger body causes another trigger to be fired, the
triggers are said to be cascading.

Database Triggers vs.
Oracle Forms Triggers

Oracle7 Server Concepts15–4

etc.

Fires the
INSERT_T2
Trigger

Fires the
UPDATE_T1
Trigger

SQL Statement

UPDATE t1 SET ...;

UPDATE_T2 Trigger

BEFORE UPDATE ON t2
FOR EACH ROW
BEGIN
 .
 .
 INSERT INTO ... VALUES (...);
 .
 .
END;

UPDATE_T1 Trigger

BEFORE UPDATE ON t1
FOR EACH ROW
BEGIN
 .
 .
 INSERT INTO t2 VALUES (...);
 .
 .
END;

Figure 15 – 2 Cascading Triggers

While triggers are useful for customizing a database, you should only
use triggers when necessary. The excessive use of triggers can result in
complex interdependences, which may be difficult to maintain in a
large application.

Oracle Forms can also define, store, and execute triggers. However, do
not confuse Oracle Forms triggers with the database triggers discussed
in this chapter.

Database triggers are defined on a table, stored in the associated
database, and executed as a result of an INSERT, UPDATE, or DELETE
statement being issued against a table, no matter which user or
application issues the statement.

Triggers vs. Declarative
Integrity Constraints

Database Triggers 15–5

Oracle Forms triggers are part of an Oracle Forms application and are
fired only when a specific trigger point is executed within a specific
Oracle Forms application. SQL statements within an Oracle Forms
application, as with any database application, can implicitly cause the
firing of any associated database trigger. For more information about
Oracle Forms and Oracle Forms triggers, see the Oracle Forms User’s
Guide.

Triggers and declarative integrity constraints can both be used to
constrain data input. However, triggers and integrity constraints have
significant differences.

A declarative integrity constraint is a statement about the database that
is never false while the constraint is enabled. A constraint applies to
existing data in the table and any statement that manipulates the table.

Triggers constrain what transactions can do. A trigger does not apply
to data loaded before the definition of the trigger. Therefore, it does not
guarantee all data in a table conforms to its rules.

A trigger enforces transitional constraints; that is, a trigger only
enforces a constraint at the time that the data changes. Therefore, a
constraint such as ”make sure that the delivery date is at least seven
days from today” should be enforced by a trigger, not a declarative
integrity constraint.

In evaluating triggers that contain SQL functions that have NLS
parameters as arguments (for example, TO_CHAR, TO_DATE, and
TO_NUMBER), the default values for these parameters are taken from
the NLS parameters currently in effect for the session. You can override
the default values by specifying NLS parameters explicitly in such
functions when you create a trigger.

For more information about declarative integrity constraints, see
Chapter 7, “Data Integrity”.

Parts of a Trigger

A trigger has three basic parts:

• a triggering event or statement

• a trigger restriction

• a trigger action

Triggering Event or
Statement

Oracle7 Server Concepts15–6

Figure 15 – 3 represents each of these parts of a trigger and is not meant
to show exact syntax. Each part of a trigger is explained in greater
detail in the following sections.

REORDER Trigger

Triggering Statement

Trigger Restriction

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE
 NUMBER X;
BEGIN
 SELECT COUNT(*) INTO X
 FROM pending_orders
 WHERE part_no=:new.part_no;

IF x = 0
THEN
 INSET INTO pending_orders
 VALUES (newlpart_no, new.reorder_quantity, sysdate);
 END IF;
END;

/* a dummy variable for counting */

/* query to find out if part has already been */
/* reordered–if yes, x=1, if no, x=0 */

/* part has not been reordered yet, so reorder */

/* part has already been reordered */

Triggered Action

Figure 15 – 3 The REORDER Trigger

A triggering event or statement is the SQL statement that causes a
trigger to be fired. A triggering event can be an INSERT, UPDATE, or
DELETE statement on a table.

For example, in Figure 15 – 3, the triggering statement is

. . . UPDATE OF parts_on_hand ON inventory . . .

which means that when the PARTS_ON_HAND column of a row in the
INVENTORY table is updated, fire the trigger. Note that when the
triggering event is an UPDATE statement, you can include a column
list to identify which columns must be updated to fire the trigger.
Because INSERT and DELETE statements affect entire rows of
information, a column list cannot be specified for these options.

A triggering event can specify multiple DML statements, as in

. . . INSERT OR UPDATE OR DELETE OF inventory . . .

Trigger Restriction

Trigger Action

Types of Triggers

Database Triggers 15–7

which means that when an INSERT, UPDATE, or DELETE statement is
issued against the INVENTORY table, fire the trigger. When multiple
types of DML statements can fire a trigger, conditional predicates can
be used to detect the type of triggering statement. Therefore, a single
trigger can be created that executes different code based on the type of
statement that fired the trigger.

A trigger restriction specifies a Boolean (logical) expression that must
be TRUE for the trigger to fire. The trigger action is not executed if the
trigger restriction evaluates to FALSE or UNKNOWN.

A trigger restriction is an option available for triggers that are fired for
each row. Its function is to control the execution of a trigger
conditionally. You specify a trigger restriction using a WHEN clause.
For example, the REORDER trigger in Figure 15 – 3 has a trigger
restriction. The trigger is fired by an UPDATE statement affecting the
PARTS_ON_HAND column of the INVENTORY table, but the trigger
action only fires if the following expression is TRUE:

new.parts_on_hand < new.reorder_point

A trigger action is the procedure (PL/SQL block) that contains the SQL
statements and PL/SQL code to be executed when a triggering
statement is issued and the trigger restriction evaluates to TRUE.

Similar to stored procedures, a trigger action can contain SQL and
PL/SQL statements, define PL/SQL language constructs (variables,
constants, cursors, exceptions, and so on), and call stored procedures.
Additionally, for row trigger, the statements in a trigger action have
access to column values (new and old) of the current row being
processed by the trigger. Two correlation names provide access to the
old and new values for each column.

When you define a trigger, you can specify the number of times the
trigger action is to be executed: once for every row affected by the
triggering statement (such as might be fired by an UPDATE statement
that updates many rows), or once for the triggering statement, no
matter how many rows it affects.

Row Triggers A row trigger is fired each time the table is affected by the
triggering statement. For example, if an UPDATE statement updates
multiple rows of a table, a row trigger is fired once for each row
affected by the UPDATE statement. If a triggering statement affects no
rows, a row trigger is not executed at all.

BEFORE vs. AFTER
Triggers

Oracle7 Server Concepts15–8

Row triggers are useful if the code in the trigger action depends on
data provided by the triggering statement or rows that are affected. For
example, Figure 15 – 3 illustrates a row trigger that uses the values of
each row affected by the triggering statement.

Statement Triggers A statement trigger is fired once on behalf of the
triggering statement, regardless of the number of rows in the table that
the triggering statement affects (even if no rows are affected). For
example, if a DELETE statement deletes several rows from a table, a
statement–level DELETE trigger is fired only once, regardless of how
many rows are deleted from the table.

Statement triggers are useful if the code in the trigger action does not
depend on the data provided by the triggering statement or the rows
affected. For example, if a trigger makes a complex security check on
the current time or user, or if a trigger generates a single audit record
based on the type of triggering statement, a statement trigger is used.

When defining a trigger, you can specify the trigger timing. That is, you
can specify whether the trigger action is to be executed before or after
the triggering statement. BEFORE and AFTER apply to both statement
and row triggers.

BEFORE Triggers BEFORE triggers execute the trigger action before
the triggering statement. This type of trigger is commonly used in the
following situations:

• BEFORE triggers are used when the trigger action should
determine whether the triggering statement should be allowed to
complete. By using a BEFORE trigger for this purpose, you can
eliminate unnecessary processing of the triggering statement and
its eventual rollback in cases where an exception is raised in the
trigger action.

• BEFORE triggers are used to derive specific column values
before completing a triggering INSERT or UPDATE statement.

AFTER Triggers AFTER triggers execute the trigger action after the
triggering statement is executed. AFTER triggers are used in the
following situations:

• AFTER triggers are used when you want the triggering
statement to complete before executing the trigger action.

• If a BEFORE trigger is already present, an AFTER trigger can
perform different actions on the same triggering statement.

Combinations

Database Triggers 15–9

Using the options listed in the previous two sections, you can create
four types of triggers:

• BEFORE statement trigger
Before executing the triggering statement, the trigger action is
executed.

• BEFORE row trigger
Before modifying each row affected by the triggering statement
and before checking appropriate integrity constraints, the trigger
action is executed provided that the trigger restriction was not
violated.

• AFTER statement trigger
After executing the triggering statement and applying any
deferred integrity constraints, the trigger action is executed.

• AFTER row trigger
After modifying each row affected by the triggering statement
and possibly applying appropriate integrity constraints, the
trigger action is executed for the current row provided the
trigger restriction was not violated. Unlike BEFORE row
triggers, AFTER row triggers lock rows.

You can have multiple triggers of the same type for the same statement
for any given table. For example you may have two BEFORE
STATEMENT triggers for UPDATE statements on the EMP table.
Multiple triggers of the same type permit modular installation of
applications that have triggers on the same tables. Also, Oracle
snapshot logs use AFTER ROW triggers, so you can design your own
AFTER ROW trigger in addition to the Oracle–defined AFTER ROW
trigger.

You can create as many triggers of the preceding different types as you
need for each type of DML statement (INSERT, UPDATE, or DELETE).
For example, suppose you have a table, SAL, and you want to know
when the table is being accessed and the types of queries being issued.
Figure 15 – 4 contains a sample package and trigger that tracks this
information by hour and type of action (for example, UPDATE,
DELETE, or INSERT) on table SAL. A global session variable,
STAT.ROWCNT, is initialized to zero by a BEFORE statement trigger,
then it is increased each time the row trigger is executed, and finally
the statistical information is saved in the table STAT_TAB by the
AFTER statement trigger.

Oracle7 Server Concepts15–10

DROP TABLE stat_tab;

CREATE TABLE stat_tab(utype CHAR(8),

rowcnt INTEGER, uhour INTEGER);

CREATE OR REPLACE PACKAGE stat IS

 rowcnt INTEGER;

END;

/

CREATE TRIGGER bt BEFORE UPDATE OR DELETE OR INSERT ON sal

BEGIN

 stat.rowcnt := 0;

END;

/

CREATE TRIGGER rt BEFORE UPDATE OR DELETE OR INSERT ON sal

FOR EACH ROW BEGIN

 stat.rowcnt := stat.rowcnt + 1;

END;

/

CREATE TRIGGER at AFTER UPDATE OR DELETE OR INSERT ON sal

DECLARE

 typ CHAR(8);

 hour NUMBER;

BEGIN

 IF updating

 THEN typ := ’update’; END IF;

 IF deleting THEN typ := ’delete’; END IF;

 IF inserting THEN typ := ’insert’; END IF;

 hour := TRUNC((SYSDATE – TRUNC(SYSDATE)) * 24);

 UPDATE stat_tab

 SET rowcnt = rowcnt + stat.rowcnt

 WHERE utype = typ

 AND uhour = hour;

 IF SQL%ROWCOUNT = 0 THEN

 INSERT INTO stat_tab VALUES (typ, stat.rowcnt, hour);

 END IF;

EXCEPTION

 WHEN dup_val_on_index THEN

 UPDATE stat_tab

 SET rowcnt = rowcnt + stat.rowcnt

 WHERE utype = typ

 AND uhour = hour;

END;

/

Figure 15 – 4 Sample Package and Trigger for SAL Table

The Execution Model
for Triggers and
Integrity Constraint
Checking

Database Triggers 15–11

Trigger Execution

A trigger can be in either of two distinct modes:

An enabled trigger executes its trigger action if a
triggering statement is issued and the trigger
restriction (if any) evaluates to TRUE.

A disabled trigger does not execute its trigger
action, even if a triggering statement is issued and
the trigger restriction (if any) would evaluate to
TRUE.

For enabled triggers, Oracle automatically

• executes triggers of each type in a planned firing sequence when
more than one trigger is fired by a single SQL statement

• performs integrity constraint checking at a set point in time with
respect to the different types of triggers and guarantees that
triggers cannot compromise integrity constraints

• provides read–consistent views for queries and constraints

• manages the dependencies among triggers and objects
referenced in the code of the trigger action

• uses two–phase commit if a trigger updates remote tables in a
distributed database

• if more than one trigger of the same type for a given statement
exists, Oracle fires each of those triggers in an unspecified order

A single SQL statement can potentially fire up to four types of triggers:
BEFORE row triggers, BEFORE statement triggers, AFTER row
triggers, and AFTER statement triggers. A triggering statement or a
statement within a trigger can cause one or more integrity constraints
to be checked. Also, triggers can contain statements that cause other
triggers to fire (cascading triggers).

enabled

disabled

Oracle7 Server Concepts15–12

Oracle uses the following execution model to maintain the proper firing
sequence of multiple triggers and constraint checking:

1. Execute all BEFORE statement triggers that apply to the

statement.

2. Loop for each row affected by the SQL statement.

a. Execute all BEFORE row triggers that apply to the

 statement.

b. Lock and change row, and perform integrity constraint

 checking (The lock is not released until the

 transaction is committed.)

c. Execute all AFTER row triggers that apply to the

 statement.

3. Complete deferred integrity constraint checking.

4. Execute all AFTER statement triggers that apply to the

statement.

The definition of the execution model is recursive. For example, a given
SQL statement can cause a BEFORE row trigger to be fired and an
integrity constraint to be checked. That BEFORE row trigger, in turn,
might perform an update that causes an integrity constraint to be
checked and an AFTER statement trigger to be fired. The AFTER
statement trigger causes an integrity constraint to be checked. In this
case, the execution model executes the steps recursively, as follows:

1. Original SQL statement issued.

2. BEFORE row triggers fired.

3. AFTER statement triggers fired by UPDATE in

BEFORE row trigger.

4. Statements of AFTER statement triggers

executed.

5. Integrity constraint on tables changed by

AFTER statement triggers checked.

6. Statements of BEFORE row triggers executed.

7. Integrity constraint on tables changed by

BEFORE row triggers checked.

8. SQL statement executed.

9. Integrity constraint from SQL statement checked.

An important property of the execution model is that all actions and
checks done as a result of a SQL statement must succeed. If an
exception is raised within a trigger, and the exception is not explicitly
handled, all actions performed as a result of the original SQL
statement, including the actions performed by fired triggers, are rolled
back. Thus, integrity constraints cannot be compromised by triggers.
The execution model takes into account integrity constraints and
disallows triggers that violate declarative integrity constraints.

Data Access for
Triggers

Example

Database Triggers 15–13

For example, in the previously outlined scenario, suppose that Steps 1
through 8 succeed; however, in Step 9 the integrity constraint is
violated. As a result of this violation, all changes made by the SQL
statement (in Step 8), the fired BEFORE row trigger (in Step 6), and the
fired AFTER statement trigger (in Step 4) are rolled back.

Note: Be aware that triggers of different types are fired in a
specific order. However, triggers of the same type for the same
statement are not guaranteed to fire in any specific order. For
example, all BEFORE ROW triggers for a single UPDATE
statement may not always fire in the same order. Design your
applications not to rely on the firing order of multiple triggers
of the same type.

When a trigger is fired, the tables referenced in the trigger action might
be currently undergoing changes by SQL statements contained in other
users’ transactions. In all cases, the SQL statements executed within
triggers follow the common rules used for standalone SQL statements.
In particular, if an uncommitted transaction has modified values that a
trigger being fired either needs to read (query) or write (update), the
SQL statements in the body of the trigger being fired use the following
guidelines:

• Queries see the current read–consistent snapshot of referenced
tables and any data changed within the same transaction.

• Updates wait for existing data locks before proceeding.

The following examples illustrate these points.

Assume that the SALARY_CHECK trigger (body) includes the
following SELECT statement:

SELECT minsal, maxsal INTO minsal, maxsal

FROM salgrade

WHERE job_classification = :new.job_classification;

For this example, assume that transaction T1 includes an update to the
MAXSAL column of the SALGRADE table. At this point, the
SALARY_CHECK trigger is fired by a statement in transaction T2. The
SELECT statement within the fired trigger (originating from T2) does
not see the update by the uncommitted transaction T1, and the query in
the trigger returns the old MAXSAL value as of the read–consistent
point for transaction T2.

Example

Storage for Triggers

For More Information

Oracle7 Server Concepts15–14

Assume the following definition of the TOTAL_SALARY trigger, a
trigger to maintain a derived column that stores the total salary of all
members in a department:

CREATE TRIGGER total_salary

AFTER DELETE OR INSERT OR UPDATE OF deptno, sal ON emp

 FOR EACH ROW BEGIN

 /* assume that DEPTNO and SAL are non–null fields */

 IF DELETING OR (UPDATING AND :old.deptno != :new.deptno)

 THEN UPDATE dept

SET total_sal = total_sal – :old.sal

WHERE deptno = :old.deptno;

 END IF;

 IF INSERTING OR (UPDATING AND :old.deptno != :new.deptno)

 THEN UPDATE dept

 SET total_sal = total_sal + :new.sal

 WHERE deptno = :new.deptno;

 END IF;

 IF (UPDATING AND :old.deptno = :new.deptno AND

 :old.sal != :new.sal)

 THEN UPDATE dept

 SET total_sal = total_sal – :old.sal + :new.sal

 WHERE deptno = :new.deptno;

 END IF;

 END;

For this example, suppose that one user’s uncommitted transaction
includes an update to the TOTAL_SAL column of a row in the DEPT
table. At this point, the TOTAL_SALARY trigger is fired by a second
user’s SQL statement. Because the uncommitted transaction of the first
user contains an update to a pertinent value in the TOTAL_SAL
column (in other words, a row lock is being held), the updates
performed by the TOTAL_SALARY trigger are not executed until the
transaction holding the row lock is committed or rolled back.
Therefore, the second user waits until the commit or rollback point of
the first user’s transaction.

For release 7.3, Oracle stores triggers in their compiled form, just like
stored procedures. When a CREATE TRIGGER statement commits, the
compiled PL/SQL code, called P code (for pseudocode), is stored in the
database and the source code of a trigger is flushed from the shared
pool.

See “How Oracle Stores Procedures and Packages” on page 14–14.

Execution of Triggers

For More Information

Dependency
Maintenance for
Triggers

For More Information

Database Triggers 15–15

Oracle internally executes a trigger using the same steps used for
procedure execution. The subtle and only difference is that a user
automatically has the right to fire a trigger if he/she has the privilege to
execute the triggering statement. Other than this, triggers are validated
and executed the same way as stored procedures.

See “How Oracle Executes Procedures and Packages” on page 14–15.

Oracle automatically manages the dependencies of a trigger on the
schema objects referenced in its trigger action. The dependency issues
for triggers are the same as dependency issues for stored procedures. In
releases earlier than 7.3, triggers were kept in memory. In release 7.3,
triggers are treated like stored procedures; they are inserted in the data
dictionary. Like procedures, triggers are dependent on referenced
objects. Oracle automatically manages dependencies among objects.

See Chapter 16, “Dependencies Among Schema Objects”.

Oracle7 Server Concepts15–16

C H A P T E R

16

T

Dependencies Among Schema Objects 16–1

Dependencies Among
Schema Objects

Whoever you are — I have always depended on the kindness of strangers.

Tennessee Williams: A Streetcar Named Desire

he definitions of certain objects, such as views and procedures,
reference other objects, such as tables. Therefore, some objects are
dependent on the objects referenced in their definitions. This chapter
discusses the dependencies among objects and how Oracle
automatically tracks and manages such dependencies. It includes:

• An Introduction to Dependency Issues

• Advanced Dependency Management Topics

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for more information on schema object
dependencies in that environment.

Oracle7 Server Concepts16–2

An Introduction to Dependency Issues

Some types of schema objects can reference other objects as part of their
definition. For example, a view is defined by a query that references
tables or other views; a procedure’s body can include SQL statements
that reference other objects of a database. An object that references
another object as part of its definition is called a dependent object, while
the object being referenced is a referenced object. Figure 16 – 1 illustrates
the different types of dependent and referenced objects.

Dependent Objects

View
Procedure
Function

Package Specification
Package Body

Database Trigger

Referenced Objects

Table
View

Sequence
Synonym
Procedure
Function

Package Specification

Figure 16 – 1 Types of Possible Dependent and Referenced Schema Objects

If you alter the definition of a referenced object, dependent objects may,
or may not, continue to function without error, depending on the type
of alteration. For example, if you drop a table, no view based on the
dropped table can be used.

Oracle automatically records dependencies among objects to alleviate
the complex job of dependency management from the database
administrator and users. For example, if you alter a table on which
several stored procedures depend, Oracle automatically recompiles the
dependent procedures the next time the procedures are referenced
(executed or compiled against).

To manage dependencies among objects, all schema objects in a
database have a status:

The object must be compiled before it can be used.
In the case of procedures, functions, and packages,
this means compiling the object. In the case of
views, this means that the view must be reparsed,
using the current definition in the data dictionary.
Only dependent objects can be invalid; tables,
sequences, and synonyms are always valid.

INVALID

Dependencies Among Schema Objects 16–3

If a view, procedure, function, or package is
invalid, Oracle may have attempted to compile it,
but there were some errors relating to the object.
For example, when compiling a view, one of its
base tables might not exist, or the correct privileges
for the base table might not be present. When
compiling a package, there might be a PL/SQL or
SQL syntax error, or the correct privileges for a
referenced object might not be present. Objects
with such problems remain invalid.

The object has been compiled and can be
immediately used when referenced.

Oracle automatically tracks specific changes in the database and
records the appropriate status for related objects in the data dictionary.

Status recording is a recursive process; any change in the status of a
referenced object not only changes the status for directly dependent
objects, but also for indirectly dependent objects. For example, consider
a stored procedure that directly references a view. In effect, the stored
procedure indirectly references the base table(s) of that view. Therefore,
if you alter a base table, the view is invalidated, which then invalidates
the stored procedure. Figure 16 – 2 illustrates this.

Table EMP

Table DEPT

View EMP_DEPT

Function
ADD_EMP

Dependent
Object

Referenced
by ADD_EMP

Referenced
by EMP_DEPT

ALTER TABLE emp ...;

INVALID

INVALID

(Dependent
Object)

Figure 16 – 2 Indirect Dependencies

VALID

Compiling Views and
PL/SQL Program Units

Views and Base Tables

Oracle7 Server Concepts16–4

When an object is referenced (directly in a SQL statement or indirectly
via a reference to a dependent object), Oracle checks the status of the
object explicitly specified in the SQL statement and any referenced
objects, as necessary. Depending on the status of the objects that are
directly and indirectly referenced in a SQL statement, different events
can occur.

• If every referenced object is valid, the SQL statement executes
immediately without any additional work.

• If any referenced view or procedure (including functions and
packages) is invalid, Oracle automatically attempts to compile
the object. If all referenced objects that are invalid can be
successfully compiled, the objects are compiled, and the SQL
statement executes successfully. If an invalid object cannot be
successfully compiled, the object remains invalid, an error is
returned, and the transaction containing the SQL statement is
rolled back.

Note: Oracle attempts to recompile an invalid object
dynamically only if it has not been replaced since it was detected
as invalid. This optimization eliminates unnecessary
recompilations.

A view or PL/SQL program unit can be compiled and made valid if
the following conditions are true:

• The definition of the view or program unit is correct; all SQL and
PL/SQL statements must be proper constructs.

• All referenced objects are present and of the expected structure.
For example, if the defining query of a view includes a column,
the column must be present in the base table.

• The owner of the view or program unit has the necessary
privileges for the referenced objects. For example, if a SQL
statement in a procedure inserts a row into a table, the owner of the
procedure must have the INSERT privilege for the referenced table.

A view depends on the base tables (or views) referenced in its defining
query. If the defining query of a view is not explicit about which
columns are referenced, for example, SELECT * FROM table, the
defining query is expanded when stored in the data dictionary to
include all columns in the referenced base table at that time. If a base
table (or view) of a view is altered, renamed, or dropped, the view is
invalidated, but its definition remains in the data dictionary along with
the privileges, synonyms, other objects, and other views that reference
the invalid view.

Program Units and
Referenced Objects

Dependencies Among Schema Objects 16–5

Attempting to use an invalid view automatically causes Oracle to
recompile the view dynamically. After replacing the view, the view
might be valid or invalid, depending on the following:

• All base tables referenced by the defining query of a view must
exist. Therefore, if a base table of a view is renamed or dropped,
the view is invalidated and cannot be used. References to invalid
views cause the referencing statement to fail. The view can be
compiled only if the base table is renamed to its original name or
the base table is re–created.

• If a base table is altered or re–created with the same columns, but
the datatype of one or more columns in the base table is
changed, any dependent view can be recompiled successfully.

• If a base table of a view is altered or re–created with at least the
same set of columns, the view can be validated. The view cannot
be validated if the base table is re–created with new columns and
the view references columns no longer contained in the
re–created table. The latter point is especially relevant in the case
of views defined with a “SELECT * FROM . . .” query, because
the defining query is expanded at view creation time and
permanently stored in the data dictionary.

Oracle automatically invalidates a program unit when the definition of
a referenced object is altered. For example, assume that a standalone
procedure includes several statements that reference a table, a view,
another standalone procedure, and a public package procedure. In that
case, the following conditions hold:

• If the referenced table is altered, the dependent procedure is
invalidated.

• If the base table of the referenced view is altered, the view and
the dependent procedure are invalidated.

• If the referenced standalone procedure is replaced, the
dependent procedure is invalidated.

• If the body of the referenced package is replaced, the dependent
procedure is not affected. However, if the specification of the
referenced package is replaced, the dependent procedure is
invalidated.

This last case reveals a mechanism for minimizing dependencies
among procedures and referenced objects.

Security Authorizations

Dependency
Management and
Non–Existent Schema
Objects

Oracle7 Server Concepts16–6

Oracle notices when a DML object or system privilege is granted to or
revoked from a user or PUBLIC and automatically invalidates all the
owner’s dependent objects. Oracle invalidates the dependent objects to
verify that an owner of a dependent object continues to have the
necessary privileges for all referenced objects. Internally, Oracle notes
that such objects do not have to be “recompiled”; only security
authorizations need to be validated, not the structure of any objects.
This optimization eliminates unnecessary recompilations and prevents
the need to change a dependent object’s timestamp.

Advanced Dependency Management Topics

The previous section described conceptually the dependency
management mechanisms of Oracle. The following sections offer
additional information about Oracle’s automatic dependency
management features. For information on forcing the recompilation of
an invalid view or program unit, see the Oracle7 Server Application
Developer’s Guide. If you are using Trusted Oracle, also see the Trusted
Oracle7 Server Administrator’s Guide.

When a dependent object is created, Oracle attempts to resolve all
references by first searching in the current schema. If a referenced
object is not found in the current schema, Oracle attempts to resolve
the reference by searching for a private synonym in the same schema. If
a private synonym is not found, Oracle moves on, looking for a public
synonym. If a public synonym is not found, Oracle searches for a
schema name that matches the first portion of the object name. If a
matching schema name is found, Oracle attempts to find the object in
that schema. If no schema is found, an error is returned.

Because of how Oracle resolves references, it is possible for an object to
depend on the non–existence of other objects. This occurs when the
dependent object uses a reference that would be interpreted differently
were another object present. For example, assume the following:

• At the current point in time, the COMPANY schema contains a
table named EMP.

• A PUBLIC synonym named EMP is created for COMPANY.EMP
and the SELECT privilege for COMPANY.EMP is granted to
PUBLIC.

• The JWARD schema does not contain a table or private synonym
named EMP.

Shared SQL
Dependency
Management

Dependencies Among Schema Objects 16–7

• The user JWARD creates a view in his schema with the following
statement:

CREATE VIEW dept_salaries AS

 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp

 GROUP BY deptno

 ORDER BY deptno;

When JWARD creates the DEPT_SALARIES view, the reference to EMP
is resolved by first looking for JWARD.EMP as a table, view, or private
synonym, none of which is found, and then as a public synonym
named EMP, which is found. As a result, Oracle notes that
JWARD.DEPT_SALARIES depends on the non–existence of
JWARD.EMP and on the existence of PUBLIC.EMP.

Now assume that JWARD decides to create a new view named EMP in
his schema using the following statement:

CREATE VIEW emp AS

SELECT empno, ename, mgr, deptno

FROM company.emp;

Note: Notice that JWARD.EMP does not have the same
structure as COMPANY.EMP.

As it attempts to resolve references in object definitions, Oracle
internally makes note of dependencies that the new dependent object
has on “non–existent” objects — objects that, if they existed, would
change the interpretation of the object’s definition. Such dependencies
must be noted in case a non–existent object is later created. If a
non–existent object is created, all dependent objects must be
invalidated so that dependent objects can be recompiled and verified.

Therefore, in the example above, as JWARD.EMP is created,
JWARD.DEPT_SALARIES is invalidated because it depends on
JWARD.EMP. Then when JWARD.DEPT_SALARIES is used, Oracle
attempts to recompile the view. As Oracle resolves the reference to
EMP, it finds JWARD.EMP (PUBLIC.EMP is no longer the referenced
object). Because JWARD.EMP does not have a SAL column, Oracle
finds errors when replacing the view, leaving it invalid.

In summary, dependencies on non–existent objects checked during
object resolution must be managed in case the non–existent object is
later created.

In addition to managing the dependencies among schema objects,
Oracle also manages the dependencies of each shared SQL area in the
shared pool. If a table, view, synonym, or sequence is created, altered,
or dropped, or a procedure or package specification is recompiled, all

Package Invalidations
and Session State

Local and Remote
Dependency
Management

Managing Local
Dependencies

Oracle7 Server Concepts16–8

dependent shared SQL areas are invalidated. At a subsequent
execution of the cursor that corresponds to an invalidated shared SQL
area, Oracle reparses the SQL statement to regenerate the shared SQL
area.

Each session that references a package construct has its own instance of
the corresponding package, including a persistent state of any public
and private variables, cursors, and constants. All of a session’s package
instantiations (including state) can be lost if any of the session’s
instantiated packages (specification or body) are subsequently
invalidated and recompiled.

Tracking dependencies and completing necessary recompilations are
important tasks automatically performed by Oracle. In the simplest
case, dependencies must be managed among the objects in a single
database (local dependency management). For example, a statement in
a procedure can reference a table in the same database. In more
complex systems, Oracle must manage the dependencies in distributed
environments across a network (remote dependency management). For
example, an Oracle Forms trigger can depend on a schema object in the
database. In a distributed database, a local view’s defining query can
reference a remote table.

Oracle manages all local dependency checking using the database’s
internal “depends–on” table, which keeps track of each object’s
dependent objects. When a referenced object is modified, Oracle uses
the depends–on table to identify dependent objects, which are then
invalidated. For example, assume that there is a stored procedure
UPDATE_SAL that references the table JWARD.EMP. If the definition
of the table is altered in any way, the status of every object that
references JWARD.EMP is changed to INVALID, including the stored
procedure UPDATE_SAL. This implies that the procedure cannot be
executed until the procedure has been recompiled and is valid.
Similarly, when a DML privilege is revoked from a user, every
dependent object in the user’s schema is invalidated. However, an
object that is invalid because authorization was revoked can be
revalidated by “reauthorization”, which incurs less overhead than a full
recompilation.

Managing Remote
Dependencies

Dependencies Among Schema Objects 16–9

Application–to–database and distributed database dependencies must
also be considered. For example, an Oracle Forms application can
contain a trigger that references a table, or a local stored procedure can
call a remote procedure in a distributed database system. The database
system must account for dependencies among such objects. Oracle
manages remote dependencies using different mechanisms, depending
on the objects involved.

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures (including functions,
packages, and triggers) in a distributed database system are managed
using timestamp checking. For example, when a procedure is compiled,
such as during creation or subsequent replacement, its timestamp (the
time it is created, altered, or replaced) is recorded in the data
dictionary. Additionally, the compiled version of the procedure
includes information (such as schema, package name, procedure name,
and timestamp) for each remote procedure it references.

When a dependent procedure is used, Oracle compares the remote
timestamps recorded at compile time with the current timestamps of
the remotely referenced procedures. Depending on the result of this
comparison, two situations can occur:

• The local and remote procedures execute without compilation if
the timestamps match.

• The local procedure is invalidated if any timestamps of remotely
referenced procedures do not match, and an error is returned to
the calling environment. Furthermore, all other local procedures
that depend on the remote procedure with the new timestamp
are also invalidated. For example, assume several local
procedures call a remote procedure, and the remote procedure is
recompiled. When one of the local procedures is executed and
notices the different timestamp of the remote procedure, every
local procedure that depends on the remote procedure is
invalidated.

Actual timestamp comparison occurs when a statement in the body of
a local procedure executes a remote procedure; only at this moment are
the timestamps compared via the distributed database’s
communications link. Therefore, all statements in a local procedure,
previous to an invalid procedure call, might execute successfully, while
statements subsequent to an invalid procedure call do not execute at all
(compilation is required). However, any DML statements executed
before the invalid procedure call are rolled back.

Oracle7 Server Concepts16–10

Dependencies Among Other Remote Schema Objects Dependencies
among remote schema objects other than local procedure–to–remote
procedure dependencies are not managed by Oracle.

For example, assume that a local view is created and defined by a
query that references a remote table. Also assume that a local
procedure includes a SQL statement that references the same remote
table. Later, the definition of the table is altered.

As a result, the local view and procedure are never invalidated, even if
the view or procedure is used after the table is altered, and even if the
view or procedure now returns errors when used (in this case, the view
or procedure must be altered manually so errors are not returned).
Lack of dependency management is preferable in such cases to avoid
unnecessary recompilations of dependent objects.

Dependencies of Applications Code in database applications can
reference objects in the connected database; for example, OCI,
Precompiler, and SQL*Module applications can submit anonymous
PL/SQL blocks, and triggers in Oracle Forms applications can reference
a schema object.

Such applications are dependent on the schema objects they reference.
Dependency management techniques vary, depending on the
development environment. Refer to the appropriate manuals for your
application development tools and your operating system for more
information about managing the remote dependencies within database
applications.

P A R T

 VII Database Security

C H A P T E R

17

D

Database Access 17–1

Database Access

Allow me to congratulate you, sir. You have the most totally closed mind
that I’ve ever encountered!

Jon Pertwee (as the Doctor): Frontier in Space

atabase security involves allowing or disallowing users from
performing actions on the database and the objects within it. Oracle
provides comprehensive discretionary access control. Discretionary access
control regulates all user access to named objects through privileges. A
privilege is permission to access a named object in a prescribed
manner; for example, permission to query a table. Because privileges
are granted to users at the discretion of other users, this is called
discretionary security.

This chapter explains how access to Oracle is controlled. It includes:

• Schemas, Database Users, and Security Domains

• User Authentication

• User Tablespace Settings and Quotas

• The User Group PUBLIC

• User Resource Limits and Profiles

• Licensing

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for information on database access in that
environment.

Oracle7 Server Concepts17–2

Schemas, Database Users, and Security Domains

Schemas and users help database administrators manage database
security. A schema is a named collection of schema objects, such as
tables, views, clusters, procedures, and packages. A user (sometimes
called a username) is a name defined in the database that can connect to
and access objects in database schemas.

To access a database, a user must run a database application (such as
an Oracle Forms form, SQL*Plus, or a Precompiler program) and
connect using a username defined in the database.

When a database user is created, a corresponding schema of the same
name is created for the user. By default, once a user connects to a
database, the user has access to all objects contained in the
corresponding schema. A user is associated only with the schema of the
same name; therefore, the terms user and schema are similar.

The access rights of a user are controlled by the different settings of the
user’s security domain. When creating a new database user or altering
an existing one, the security administrator must make several decisions
concerning a user’s security domain. These include

• whether user authentication information is maintained by the
database, the operating system, or a network authentication
service

• settings for the user’s default and temporary tablespaces

• a list, if any, of tablespaces accessible to the user and the
associated quotas for each listed tablespace

• the user’s resource limit profile; that is, limits that dictate the
amount of system resources available to the user

• the privileges and roles that provide the user with appropriate
access to objects needed to perform database operations

This chapter describes the security domain options listed above, except
for privileges and roles, which are discussed in Chapter 18, “Privileges
and Roles”.

Note: The information in this chapter applies to all
user–defined database users. It does not apply to the special
database users SYS and SYSTEM. Settings for these users’
security domains should never be altered. For more
information about these special database users, see the Oracle7
Server Administrator’s Guide.

Authenticating Users
Using the Operating
System

OSDoc

Database Access 17–3

User Authentication

To prevent unauthorized use of a database username, Oracle provides
user validation via three different methods for normal database users:

• authentication by the operating system

• authentication by a network authentication service

• authentication by the associated Oracle database

For simplicity, one method is usually used to authenticate all users of a
database. However, Oracle allows use of all methods within the same
database instance.

Oracle also encrypts passwords during transmission to ensure the
security of client/server authentication.

Because database administrators perform special database operations,
Oracle requires special authentication procedures for database
administrators.

If your operating system permits, Oracle can use information
maintained by the operating system to authenticate users. The benefits
of operating system authentication are the following:

• Users can connect to Oracle more conveniently (without
specifying a username or password). For example, a user can
invoke SQL*Plus and skip the username and password prompts
by entering

SQLPLUS /

• Control over user authorization is centralized in the operating
system; Oracle need not store or manage user passwords.
However, Oracle still maintains usernames in the database.

• Username entries in the database and operating system audit
trails correspond.

If the operating system is used to authenticate database users, there are
some special considerations with respect to distributed database
environments and database links; see Chapter 21, “Distributed
Databases”, for information on this topic.

Additional Information: For more information about
authenticating via your operating system, see your Oracle
operating system–specific documentation.

Authenticating Users
Using Network
Authentication

Authenticating Users
Using the Oracle
Database

Password Encryption
while Connecting

Database
Administrator
Authentication

Oracle7 Server Concepts17–4

If network authentication services, such as DCE, Kerberos, or SESAME,
are available to you, Oracle can accept authentication from the network
service. To use a network authentication service with Oracle, you must
also have the Oracle Secure Network Services product.

If you use a network authentication service, there are some special
considerations for network roles and database links. See Oracle7 Server
Distributed Systems, Volume I for more information about network
authentication.

Oracle can authenticate users attempting to connect to a database by
using information stored in that database. You must use this method
when the operating system cannot be used for database user validation.

When Oracle uses database authentication, you create each user with
an associated password. A user provides the correct password when
establishing a connection to prevent unauthorized use of the database.
Oracle stores a user’s password in the data dictionary. However, all
passwords are stored in an encrypted format to maintain security for
the user. A user can change his/her password at any time.

To better protect the confidentiality of your passwords, Oracle allows
you to encrypt passwords during client/server and server/server
connections. If you enable this functionality on the client and server
machines, Oracle will encrypt passwords using a modified DES (Data
Encryption Standards) algorithm before sending them across the
network.

For more information about encrypting passwords in client/server
systems, see Oracle7 Server Distributed Systems, Volume I.

Database administrators must often perform special operations such as
shutting down or starting up a database. Because these operations
should not be performed by normal database users, the database
administrator usernames need a more secure authentication scheme.
Oracle provides a few methods for authenticating database
administrators.

Depending on whether you wish to administer your database locally
on the same machine on which the database resides or if you wish to
administer many different database machines from a single remote
client, you can choose between operating system authentication or
password files to authenticate database administrators. Figure 17 – 1
illustrates the choices you have for database administrator
authentication schemes.

OSDoc

Database Access 17–5

Use a password file

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Do you
have a secure
connection?

Do you
want to use OS
authentication?

Figure 17 – 1 Database Administrator Authentication Methods

On most operating systems, OS authentication for database
administrators involves placing the OS username of the database
administrator in a special group (on UNIX systems, this is the dba
group) or giving that OS username a special process right.

Additional Information: For information about OS
authentication of database administrators, see your Oracle
operating system–specific documentation.

Password files are files used by the database to keep track of database
usernames who have been granted the SYSDBA and SYSOPER
privileges. These privileges allow database administrators to perform
the following actions:

SYSOPER Permits you to perform STARTUP,
SHUTDOWN, ALTER DATABASE
OPEN/MOUNT, ALTER DATABASE
BACKUP, ARCHIVE LOG, and RECOVER,
and includes the RESTRICTED SESSION
privilege.

SYSDBA Contains all system privileges with
ADMIN OPTION, and the SYSOPER
system privilege; permits CREATE
DATABASE and time–based recovery.

For information about password files, see the Oracle7 Server
Administrator’s Guide.

Default Tablespace

Temporary Tablespace

Tablespace Access and
Quotas

Oracle7 Server Concepts17–6

User Tablespace Settings and Quotas

As part of every user’s security domain, the database administrator
can set several options regarding tablespace usage:

• the user’s default tablespace

• the user’s temporary tablespace

• space usage quotas on tablespaces of the database for the user

When a user creates a schema object and specifies no tablespace to
contain the object, the object is placed in the user’s default tablespace.
This enables Oracle to control space usage in situations where an
object’s tablespace is not specified. You set a user’s default tablespace
when the user is created; you can change it after the user has been
created.

When a user executes a SQL statement that requires the creation of a
temporary segment, Oracle allocates that segment in the user’s
temporary tablespace.

Each user can be assigned a tablespace quota for any tablespace of the
database. Two things are accomplished by assigning a user a tablespace
quota:

• The user can use the specified tablespace to create objects,
provided that the user has the appropriate privileges.

• The amount of space that can be allocated for storage of a user’s
objects within the specified tablespace can be limited.

By default, each user has no quota on any tablespace in the database.
Therefore, if the user has the privilege to create some type of schema
object, he must also have been either assigned a tablespace quota in
which to create the object or been given the privilege to create that
object in the schema of another user who was assigned a sufficient
tablespace quota.

Revoking Tablespace
Access

Database Access 17–7

You can assign two types of tablespace quotas to a user: a quota for a
specific amount of disk space in the tablespace, specified in bytes, Kb,
or Mb, or a quota for an unlimited amount of disk space in the
tablespace. You should assign specific quotas to prevent a user’s objects
from consuming too much space in a tablespace.

Tablespace quotas are not considered during temporary segment
creation:

• Temporary segments do not consume any quota that a user
might possess.

• Temporary segments can be created in a tablespace for which a
user does not have a quota.

You can assign a tablespace quota to a user when you create that user,
and you can change that quota or add a different quota later.

Revoke a user’s tablespace access by altering the user’s current quota
to zero. With a quota of zero, the user’s objects in the revoked
tablespace remain, yet the objects cannot be allocated any new space.

The User Group PUBLIC

Each database contains a user group called PUBLIC. The PUBLIC user
group provides public access to specific schema objects (tables, views,
and so on) and provides all users with specific system privileges. Every
user automatically belongs to the PUBLIC user group.

As members of PUBLIC, users may see (select from) all data dictionary
tables prefixed with USER and ALL. Additionally, a user can grant a
privilege or a role to PUBLIC. All users can use the privileges granted
to PUBLIC.

You can grant (or revoke) any system privilege, object privilege, or role
to PUBLIC. See Chapter 18, “Privileges and Roles,” for more
information on privileges and roles. However, to maintain tight
security over access rights, grant only privileges and roles of interest to
all users to PUBLIC.

Granting and revoking certain system and object privileges to and from
PUBLIC can cause every view, procedure, function, package, and
trigger in the database to be recompiled.

Oracle7 Server Concepts17–8

Restrictions for PUBLIC include the following:

• You cannot assign tablespace quotas to PUBLIC, although you
can assign the UNLIMITED TABLESPACE system privilege to
PUBLIC.

• You can create only database links and synonyms as PUBLIC
objects, using CREATE PUBLIC DATABASE LINK/SYNONYM.
No other object can be owned by PUBLIC. For example, the
following statement is not legal:

CREATE TABLE public.emp . . . ;

Note: Rollback segments can be created with the keyword
PUBLIC, but these are not owned by public. All rollback
segments are owned by SYS. See Chapter 3, “Data Blocks,
Extents, and Segments”; for more information about rollback
segments.

User Resource Limits and Profiles

As part of a user’s security domain, you can set limits on the amount of
various system resources available to the user. By explicitly setting
resource limits for each user, the security administrator can prevent the
uncontrolled consumption of valuable system resources such as CPU
time.

The resource limit feature of Oracle is very useful in large, multiuser
systems. In such environments, system resources are very expensive;
therefore, the excessive consumption of these resources by one or more
users can detrimentally affect the other users of the database. In single
user or small scale multiuser database systems, the system resource
feature is not as useful because users are less likely to consume system
resources with detrimental impact.

You manage resource limits with user profiles. A profile is a named set
of resource limits that you can assign to a user. Each Oracle database
can have an unlimited number of profiles. Additionally, Oracle
provides the security administrator the option to universally enable or
disable the enforcement of profile resource limits.

If you use resource limits, a slight degradation in performance occurs
when users create sessions. This is because Oracle loads all resource
limit data for the user when a user connects to a database.

Types of System
Resources and Limits

CPU Time

Database Access 17–9

Oracle can limit the use of several types of system resources. In general,
you can control each of these resources at the session level, the call
level, or both:

Each time a user connects to a database, a session is
created. Each session consumes CPU time and
memory on the computer that executes Oracle.
Several resource limits for Oracle can be set at the
session level.

If a user exceeds a session–level resource limit,
Oracle terminates the current statement (rolled
back), and returns a message indicating the session
limit has been reached. At this point, all previous
statements in the current transaction are intact, and
the only operations the user can perform are
COMMIT, ROLLBACK, or disconnect (in this case,
the current transaction is committed); all other
operations produce an error. Even after the
transaction is committed or rolled back, the user
can effectively accomplish no more work during
the current session.

Each time a SQL statement is executed, several
steps are taken to process the statement. During
this processing, several calls are made to the
database as part of the different execution phases.
To prevent any one call from excessively using the
system, Oracle allows several resource limits to be
set at the call level.

If a user exceeds a call–level resource limit, Oracle
halts the processing of the statement, rolls back the
statement, and returns an error. However, all
previous statements of the current transaction
remain intact, and the user’s session remains
connected.

When SQL statements and other types of calls are made to Oracle, a
certain amount of CPU time is necessary to process the call. Average
calls require a small amount of CPU time. However, a SQL statement
involving a large amount of data or a runaway query can potentially
consume a large amount of CPU time, reducing CPU time available for
other processing.

Session Level

Call Level

Logical Reads

Other Resources

Oracle7 Server Concepts17–10

To prevent uncontrolled use of CPU time, you can limit the CPU time
per call and the total amount of CPU time used for Oracle calls in the
duration of a session. The limits are set and measured in CPU
one–hundredth seconds (0.01 seconds) used by a call or a session.

Input/output is one of the most expensive operations in a database
system. I/O intensive statements can monopolize memory and disk
usage and cause other database operations to compete for these
resources.

To prevent single sources of excessive I/O, Oracle can limit the logical
data block reads per call and per session. Logical data block reads
include data block reads from both memory and disk. The limits are set
and measured in number of block reads performed by a call or a
session.

Oracle also provides for the limitation of several other resources at the
session level:

• You can limit the number of concurrent sessions per user. Each
user can create only up to a predefined number of concurrent
sessions.

• You can limit the idle time for a session. If the time between
Oracle calls for a session reaches the idle time limit, the current
transaction is rolled back, the session is aborted, and the
resources of the session are returned to the system. The next call
receives an error that indicates the user is no longer connected to
the instance. This limit is set as a number of elapsed minutes.

Note: Shortly after a session is aborted because it has exceeded
an idle time limit, PMON cleans up after the aborted session.
Until PMON completes this process, the killed session is still
counted as one of the sessions for the sessions/user resource
limit.

• You can limit the elapsed connect time per session. If a session’s
duration exceeds the elapsed time limit, the current transaction
is rolled back, the session is dropped, and the resources of the
session are returned to the system. This limit is set as a number
of elapsed minutes.

Note: Oracle does not constantly monitor the elapsed idle time
or elapsed connection time. Doing so would reduce system
performance. Instead, it checks every few minutes. Therefore, a
session can exceed this limit slightly (for example, by five
minutes) before Oracle enforces the limit and aborts the
session.

Profiles

When to Use Profiles

Determining Values for
Resource Limits of a
Profile

Database Access 17–11

• You can limit the amount of private SGA space (used for private
SQL areas) for a session. This limit is only important in systems
that use the multi–threaded server configuration; otherwise,
private SQL areas are located in the PGA. This limit is set as a
number of bytes of memory in an instance’s SGA. The characters
“K” or “M” can be used to specify Kilobytes or Megabytes.

Instructions on enabling and disabling resource limits are included in
the Oracle7 Server Administrator’s Guide.

A profile is a named set of specified resource limits that can be
assigned to valid usernames of an Oracle database. Profiles provide for
easy management of resource limits.

You only need to create and manage user profiles if resource limits are
a requirement of your database security policy. To use profiles, first
categorize the related types of users in a database. Just as roles are used
to manage the privileges of related users, profiles are used to manage
the resource limits of related users. Determine how many profiles are
needed to encompass all types of users in a database and then
determine appropriate resource limits for each profile.

Before creating profiles and setting the resource limits associated with
them, you should determine appropriate values for each resource limit.
Base these values on the type of operations a typical user performs. For
example, if one class of user does not normally perform a high number
of logical data block reads, then the LOGICAL_READS_PER_SESSION
and LOGICAL_READS_PER_CALL limits should be set conservatively.

Usually, the best way to determine the appropriate resource limit
values for a given user profile is to gather historical information about
each type of resource usage. For example, the database or security
administrator can gather information about the limits
CONNECT_TIME, LOGICAL_READS_PER_SESSION, and
LOGICAL_READS_PER_CALL using the audit feature of Oracle. By
using the AUDIT SESSION option, the audit trail gathers helpful
information that you can used to determine appropriate values for the
previously mentioned limits. You can gather statistics for other limits
using the Monitor feature of Server Manager, specifically the Statistics
monitor. The Monitor feature of Server Manager is described in the
Oracle Server Manager User’s Guide.

Concurrent Usage
Licensing

Oracle7 Server Concepts17–12

Licensing

Usually, Oracle is licensed for use by a maximum number of named
users, or by a maximum number of concurrently connected users. The
database administrator is responsible for making sure that the site
complies with its license agreement. Oracle’s licensing facility helps
database administrators track and limit the number of sessions
concurrently connected to an instance, or to limit the number of users
created in a database, and thereby ensure that the site complies with
the Oracle license agreement.

The database administrator controls the licensing facilities and can
enable the facility and set the limits. He/she can also monitor the
system’s use. If the database administrator discovers that more than
the licensed number of sessions need to connect, or more than the
licensed number of users need to be created, he/she can upgrade the
Oracle license to raise the appropriate limit. (To upgrade an Oracle
license, you must contact your Oracle representative.)

Note: In some cases, Oracle is not licensed for either a set number of
sessions or a set group of users. For example, when Oracle is
embedded in an Oracle application (such as Oracle Office), run on
some older operating systems, or purchased for use in some countries,
it is licensed differently. In such cases only, the Oracle licensing
mechanisms do not apply and should remain disabled.

The following sections explain the two major types of licensing
available for Oracle.

In concurrent usage licensing, the license specifies a number of concurrent
users, which are sessions that can be connected concurrently to the
database on the specified computer at any time. This number includes
all batch processes and on–line users. Also, if a single user has multiple
concurrent sessions, each session counts separately in the total number
of sessions. If multiplexing software (such as a TP monitor) is used to
reduce the number of sessions directly connected to the database, the
number of concurrent users is the number of distinct inputs to the
multiplexing front–end.

Database Access 17–13

The concurrent usage licensing mechanism allows a database
administrator to do the following:

• An administrator can set a limit on the number of concurrent
sessions that can connect to an instance by setting the
LICENSE_MAX_SESSIONS parameter. Once this limit is
reached, only users who have the RESTRICTED SESSION
system privilege can connect to the instance; this allows database
administrators to kill unneeded sessions, allowing other sessions
to connect.

• An administrator can set a warning limit on the number of
concurrent sessions that can connect to an instance by setting the
LICENSE_SESSIONS_WARNING parameter. Once the warning
limit is reached, Oracle allows additional sessions to connect (up
to the maximum limit described above), but sends a warning
message to any user with RESTRICTED SESSION privilege who
connects and records a warning message in the database’s
ALERT file.

The database administrator can set these limits in the database’s
parameter file so that they take effect when the instance starts. The
administrator alternatively can change them while the instance is
running by using the ALTER SYSTEM command. This is useful for
databases that cannot be taken offline.

In addition, the session licensing mechanism allows a database
administrator to check the current number of connected sessions and
the maximum number of concurrent sessions since the instance started.
The V$LICENSE view shows the current settings for the license limits,
the current number of sessions, and the highest number of concurrent
sessions since the instance started (the session “high water mark”). The
administrator can use this information to evaluate the system’s
licensing needs and plan for system upgrades.

For instances running with the Parallel Server, each instance can have
its own concurrent usage limit and warning limit. The sum of the
instances’ limits must not exceed the site’s concurrent usage license.
See the Oracle7 Server Administrator’s Guide for more information.

The concurrent usage limits apply to all user sessions, including
sessions created for incoming database links. They do not apply to
sessions created by Oracle or recursive sessions. Sessions that connect
through external multiplexing software are not counted separately by
the Oracle licensing mechanism, although each contributes individually
to the Oracle license total The database administrator is responsible for
taking these sessions into account.

Named User Licensing

Oracle7 Server Concepts17–14

In named user licensing, the license specifies a number of named users,
where a named user is an individual who is authorized to use Oracle on
the specified computer. No limit is set on the number of sessions each
user can have concurrently, or on the number of concurrent sessions for
the database.

Named user licensing allows a database administrator to set a limit on
the number of users that are defined in a database, including users
connected via database links. Once this limit is reached, no one can
create a new user. This mechanism assumes that each person accessing
the database has a unique user name in the database and that no people
share a user name.

The database administrator can set this limit in the database’s
parameter file so that it takes effect when the instance starts. The
administrator can also change it while the instance is running by using
the ALTER SYSTEM command. This is useful for databases that cannot
be taken offline.

If multiple instances connect to the same database with the Parallel
Server, all instances connected to the same database should have the
same named user limit. See Oracle7 Parallel Server Concepts &
Administration for more information.

C H A P T E R

18

T

Privileges and Roles 18–1

Privileges and Roles

My right and my privilege to stand here before you has been won —
won in my lifetime — by the blood and the sweat of the innocent.

Jesse Jackson: Speech at the Democratic National Convention, 1988

his chapter explains how an administrator can control users’ ability
to execute system operations and to access schema objects by using
privileges and roles. The chapter includes:

• Privileges

• Roles

If you are configured with Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide.

System Privileges

Oracle7 Server Concepts18–2

Privileges

A privilege is a right to execute a particular type of SQL statement or to
access another user’s object. Some examples of privileges include

• the right to connect to the database (create a session)

• the right to create a table

• the right to select rows from another user’s table

• the right to execute another user’s stored procedure

Complete listings of all system and object privileges, as well as
instructions for privilege management, are included in the Oracle7
Server Administrator’s Guide.

You grant privileges to users so these users can accomplish tasks
required for their job. You should grant a privilege only to a user who
absolutely requires the privilege to accomplish necessary work.
Excessive granting of unnecessary privileges can lead to compromised
security. A user can receive a privilege in two different ways:

• You can grant privileges to users explicitly. For example, you can
explicitly grant the privilege to insert records into the EMP table
to the user SCOTT.

• You can also grant privileges to a role (a named group of
privileges), and then grant the role to one or more users. For
example, you can grant the privileges to select, insert, update,
and delete records from the EMP table to the role named
CLERK, which in turn you can grant to the users SCOTT and
BRIAN.

Because roles allow for easier and better management of privileges, you
should normally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

• system privileges

• object privileges

A system privilege is the right to perform a particular action, or to
perform a particular action on a particular type of object. For example,
the privileges to create tablespaces and to delete the rows of any table
in a database are system privileges. There are over 60 distinct system
privileges.

Granting and Revoking
System Privileges

Who Can Grant or
Revoke System
Privileges?

Object Privileges

Privileges and Roles 18–3

You can grant or revoke system privileges to users and roles. If system
privileges are granted to roles, the advantages of roles can be used to
manage system privileges (for example, roles permit privileges to be
made selectively available).

System privileges are granted to or revoked from users and roles using
either of the following:

• the Users or the Roles folders of Server Manager

• the SQL commands GRANT and REVOKE

Note: Usually, you should grant system privileges only to
administrative personnel and application developers because
end users normally do not require the associated capabilities.

Only users granted a specific system privilege with the ADMIN
OPTION or users with the GRANT ANY PRIVILEGE system privilege
(typically database or security administrators) can grant or revoke
system privileges to other users.

An object privilege is a privilege or right to perform a particular action
on a specific table, view, sequence, procedure, function, or package. For
example, the privilege to delete rows from the table DEPT is an object
privilege. Depending on the type of object, there are different types of
object privileges.

Some schema objects (such as clusters, indexes, triggers, and database
links) do not have associated object privileges; their use is controlled
with system privileges. For example, to alter a cluster, a user must own
the cluster or have the ALTER ANY CLUSTER system privilege.

Object privileges granted for a table, view, sequence, procedure,
function, or package apply whether referencing the base object by name
or using a synonym. For example, assume there is a table JWARD.EMP
with a synonym named JWARD.EMPLOYEE. JWARD issues the
following statement:

GRANT SELECT ON emp TO swilliams;

The user SWILLIAMS can query JWARD.EMP by referencing the table
by name or using the synonym JWARD.EMPLOYEE:

SELECT * FROM jward.emp;

SELECT * FROM jward.employee;

Granting and Revoking
Object Privileges

Who Can Grant Object
Privileges?

Table Security Topics

Oracle7 Server Concepts18–4

If you grant object privileges on a table, view, sequence, procedure,
function, or package to a synonym for the object, the effect is the same
as if no synonym were used For example, if JWARD wanted to grant
the SELECT privilege for the EMP table to SWILLIAMS, JWARD could
issue either of the following statements:

GRANT SELECT ON emp TO swilliams;

GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, all grants for the underlying object remain in
effect, even if the privileges were granted by specifying the dropped
synonym.

Object privileges can be granted to and revoked from users and roles. If
you grant object privileges to roles, you can make the privileges
selectively available. Object privileges can be granted to, or revoked
from, users and roles using the SQL commands GRANT and REVOKE,
respectively.

A user automatically has all object privileges for the objects contained
in the schema that corresponds to the user’s name — in other words,
the schema the user owns. A user can grant any object privilege on any
object he or she owns to any other user or role. If the grant includes the
GRANT OPTION (of the GRANT command), the grantee can further
grant the object privilege to other users; otherwise, the grantee can only
use the privilege but not grant it to other users.

The object privileges for tables allow table security at two levels:

Data Manipulation Language Operations The DELETE, INSERT,
SELECT, and UPDATE privileges allow the DELETE, INSERT, SELECT,
and UPDATE DML operations, respectively, on a table or view (DML
operations are those to view or change a table’s contents). You should
grant these privileges only to users and roles that need to view or
manipulate a table’s data. For more information on these operations,
see the Oracle7 Server SQL Reference.

You can restrict the INSERT and UPDATE privileges for a table to
specific columns of the table. With selective INSERT, a privileged user
can insert a row, but only with values for the selected columns; all
other columns receive NULL or the column’s default value. With
selective UPDATE, a user can update only specific column values of a
row. Selective INSERT and UPDATE privileges are used to restrict a
user’s access to sensitive data.

View Security Topics

Privileges and Roles 18–5

For example, if you do not want data entry users to alter the SAL
column of the employee table, selective INSERT and/or UPDATE
privileges can be granted that exclude the SAL column. Alternatively, a
view could satisfy this need for additional security.

Data Definition Language Operations The ALTER, INDEX, and
REFERENCES privileges allow DDL operations to be performed on a
table. Because these privileges allow other users to alter or create
dependencies on a table, you should grant the privileges
conservatively. In addition to these privileges, a user attempting to
perform a DDL operation on a table may need other system and/or
object privileges (for example, to create a trigger on a table, the user
requires both the ALTER TABLE object privilege for the table and the
CREATE TRIGGER system privilege).

As with the INSERT and UPDATE privileges, the REFERENCES
privilege can be granted on specific columns of a table. The
REFERENCES privilege enables the grantee to use the table on which
the grant is made as a parent key to any foreign keys that the grantee
wishes to create in his/her own tables. This action is controlled with a
special privilege because the presence of foreign keys restricts the data
manipulation and table alterations that can be done to the parent key. A
column–specific REFERENCES privilege restricts the grantee to using
the named columns, which, of course, must include at least one
primary or unique key of the parent table. See Chapter 7, “Data
Integrity,” for more information about primary keys, unique keys, and
integrity constraints.

The object privileges for views allow various DML operations. Of
course, a DML statement performed on a view actually affects the base
tables from which the view is derived. DML object privileges for tables
can be applied similarly to views.

Privileges Required To Create Views To create a view, you must meet
the following requirements:

• You must have been granted the CREATE VIEW (to create a
view in your schema) or CREATE ANY VIEW (to create a view
in another user’s schema) system privilege, either explicitly or
via a role.

• You must have been explicitly granted the SELECT, INSERT,
UPDATE, and/or DELETE object privileges on all base objects
underlying the view or the SELECT ANY TABLE, INSERT ANY
TABLE, UPDATE ANY TABLE, and/or DELETE ANY TABLE
system privileges. You may not have obtained these privileges
through roles.

Oracle7 Server Concepts18–6

• Additionally, if you intend to grant access to your view to other
users, you must have received the object privilege(s) to the base
objects with the GRANT OPTION or to the system privileges
with the ADMIN OPTION. If you have not, and grant access to
your view, grantees cannot access your view.

Increasing Table Security Using Views To use a view, you only require
the appropriate privilege for the view itself. You do not require any
privileges on the base object(s) underlying the view.

Views are useful for adding two more levels of security for tables:

• A view can provide access to selected columns of the base
table(s) that define the view. For example, you can define a view
on the EMP table to show only the EMPNO, ENAME, and MGR
columns:

CREATE VIEW emp_mgr AS

 SELECT ename, empno, mgr FROM emp;

• A view can provide value–based security for the information in a
table. A WHERE clause in the definition of a view displays only
selected rows of the associated base tables. Consider the
following two examples:

CREATE VIEW lowsal AS

 SELECT * FROM emp

 WHERE sal < 10000;

The LOWSAL view allows access to all rows of the base table
EMP that have a salary value less than 10000. Value–based
security is defined on the salary value in a row. Notice that all
columns of the EMP table are accessible by the definition of the
LOWSAL view.

CREATE VIEW own_salary AS

 SELECT ename, sal

 FROM emp

 WHERE ename = USER;

The OWN_SALARY view uses the USER pseudocolumn. The
values in the USER pseudocolumn are always the current user.
In the OWN_SALARY view, only the rows with an ENAME that
matches the user using the view are accessible. Value–based
security is defined on the user accessing the view. This view
combines both column–level security and value–based security.

Procedure Security Topics

Privileges and Roles 18–7

The one object privilege for procedures (including standalone
procedures and functions, and packages) is EXECUTE. You should
grant this privilege only to users who need to execute a procedure.

You can use procedures to add a level of database security. A user
requires only the privilege to execute a procedure and no privileges on
the underlying objects that a procedure’s code accesses. By writing a
procedure and granting only the EXECUTE privilege to a user (and not
the privileges on the objects referenced by the procedure), the user can
be forced to access the referenced objects only through the procedure
(that is, the user cannot submit ad hoc SQL statements to the database).

Privileges Needed to Create or Alter a Procedure To create a procedure,
a user must have the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. To alter a procedure, that is, to
manually recompile a procedure, a user must own the procedure or
have the ALTER ANY PROCEDURE system privilege.

Additionally, the user who owns the procedure must have the required
privileges for the objects referenced in the body of a procedure. To
create a procedure, you must have been explicitly granted the
necessary privileges (system and/or object) on all objects referenced by
the stored procedure; you cannot have obtained the required privileges
through roles. This includes the EXECUTE privilege for any procedures
that are called inside the stored procedure being created. Triggers also
require that privileges to referenced objects be granted explicitly to the
trigger owner. Anonymous PL/SQL blocks can use any privilege,
whether the privilege is granted explicitly or via a role.

Procedure Execution and Security Domains A user with the EXECUTE
privilege for a specific procedure can execute the procedure. A user
with the EXECUTE ANY PROCEDURE system privilege can execute
any procedure in the database. A user can be granted the privileges to
execute procedures via roles.

When you execute a procedure, it operates under the security domain
of the user who owns the procedure, regardless of who is executing it.
Therefore, a user does not need privileges on the referenced objects to
execute a procedure. Because the owner of a procedure must have the
necessary object privileges for referenced objects, fewer privileges have
to be granted to users of the procedure and tighter control of database
access can be obtained.

The current privileges of the owner of a stored procedure are always
checked before the procedure is executed. If a necessary privilege on a
referenced object is revoked from the owner of a procedure, the
procedure cannot be executed by the owner or any other user.

Example 1

Oracle7 Server Concepts18–8

Note: Trigger execution follows these same patterns. The user
executes a SQL statement, which he/she is privileged to
execute. As a result of the SQL statement, a trigger is fired. The
statements within the triggered action temporarily execute
under the security domain of the user that owns the trigger.

Packages and Package Objects A user with the EXECUTE privilege for
a package can execute any (public) procedure or function in the
package, and access or modify the value of any (public) package
variable. Specific EXECUTE privileges cannot be granted for a
package’s constructs. Because of this, you may find it useful to consider
two alternatives for establishing security when developing procedures,
functions, and packages for a database application. These alternatives
are described in the following examples.

This example shows four procedures created in the bodies of two
packages.

CREATE PACKAGE BODY hire_fire AS

PROCEDURE hire(...) IS

BEGIN

INSERT INTO emp . . .

END hire;

PROCEDURE fire(...) IS

BEGIN

DELETE FROM emp . . .

END fire;

END hire_fire;

CREATE PACKAGE BODY raise_bonus AS

PROCEDURE give_raise(...) IS

BEGIN

UPDATE EMP SET sal = . . .

END give_raise;

PROCEDURE give_bonus(...) IS

BEGIN

UPDATE EMP SET bonus = . . .

END give_bonus;

END raise_bonus;

Access to execute the procedures is given by granting the EXECUTE
privilege for the encompassing package, as in the following statements:

GRANT EXECUTE ON hire_fire TO big_bosses;

GRANT EXECUTE ON raise_bonus TO little_bosses;

This method of security for package objects is not discriminatory for
any specific object in a package. The EXECUTE privilege granted for
the package provides access to all package objects.

Example 2

Privileges and Roles 18–9

This example shows four procedure definitions within the body of a
single package. Two additional standalone procedures and a package
are created specifically to provide access to the procedures defined in
the main package.

CREATE PACKAGE BODY employee_changes AS

PROCEDURE change_salary(...) IS BEGIN ... END;

PROCEDURE change_bonus(...) IS BEGIN ... END;

PROCEDURE insert_employee(...) IS BEGIN ... END;

PROCEDURE delete_employee(...) IS BEGIN ... END;

END employee_change;

CREATE PROCEDURE hire

BEGIN

insert_employee(...)

END hire;

CREATE PROCEDURE fire

BEGIN

delete_employee(...)

END fire;

PACKAGE raise_bonus IS

PROCEDURE give_raise(...) AS

BEGIN

change_salary(...)

END give_raise;

PROCEDURE give_bonus(...)

BEGIN

change_bonus(...)

END give_bonus;

Using this method, the procedures that actually do the work (the
procedures in the EMPLOYEE_CHANGES package) are defined in a
single package and can share declared global variables, cursors, on so
on. By declaring the top–level procedures HIRE and FIRE, and the
additional package RAISE_BONUS, you can indirectly grant selective
EXECUTE privileges on the procedures in the main package.

GRANT EXECUTE ON hire, fire TO big_bosses;

GRANT EXECUTE ON raise_bonus TO little_bosses;

Common Uses for
Roles

Oracle7 Server Concepts18–10

Roles

Oracle provides for easy and controlled privilege management through
roles. Roles are named groups of related privileges that you grant to
users or other roles. Roles are designed to ease the administration of
end–user system and object privileges. However, roles are not meant to
be used for application developers, because the privileges to access
objects within stored programmatic constructs need to be granted
directly. See the section “Data Definition Language Statements and
Roles” on page 18–13 for more information about restrictions for
procedures.

These properties of roles allow for easier privilege management within
a database:

• Reduced privilege administration Rather than explicitly granting the
same set of privileges to several users, you can grant the
privileges for a group of related users to a role, and then only the
role needs to be granted to each member of the group.

• Dynamic privilege management If the privileges of a group must
change, only the privileges of the role need to be modified. The
security domains of all users granted the group’s role
automatically reflect the changes made to the role.

• Selective availability of privileges You can selectively enable or
disable the roles granted to a user. This allows specific control of
a user’s privileges in any given situation.

• Application awareness Because the data dictionary records which
roles exist, you can design database applications to query the
dictionary and automatically enable (and disable) selective roles
when a user attempts to execute the application via a given
username.

• Application–specific security You can protect role use with a
password. Applications can be created specifically to enable a
role when supplied the correct password. Users cannot enable
the role if they do not know the password. Instructions for
enabling roles from an application are included in the Oracle7
Server Application Developer’s Guide.

In general, you create a role to serve one of two purposes: to manage
the privileges for a database application or to manage the privileges for
a user group. Figure 18 – 1 and the sections that follow describe the two
uses of roles.

Application Roles

User Roles

The Mechanisms of
Roles

Privileges and Roles 18–11

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users

Figure 18 – 1 Common Uses for Roles

You grant an application role all privileges necessary to run a given
database application. Then, you grant an application role to other roles
or to specific users. An application can have several different roles,
with each role assigned a different set of privileges that allow for more
or less data access while using the application.

You create a user role for a group of database users with common
privilege requirements. You manage user privileges by granting
application roles and privileges to the user role and then granting the
user role to appropriate users.

The functionality of database roles includes the following:

• A role can be granted system or object privileges.

• A role can be granted to other roles. However, a role cannot be
granted to itself and cannot be granted circularly (for example,
role A cannot be granted to role B if role B has previously been
granted to role A).

• Any role can be granted to any database user.

• Each role granted to a user is, at a given time, either enabled or
disabled. A user’s security domain includes the privileges of all
roles currently enabled for the user. A user’s security domain
does not include the privileges of any roles currently disabled for
the user. Oracle allows database applications and users to enable
and disable roles to provide selective availability of privileges.

Granting and
Revoking Roles

Who Can Grant or
Revoke Roles?
Who Can Grant or
Revoke Roles?
Who Can Grant or
Revoke Roles?

Naming Roles

Security Domains of a
Role and a User
Granted Roles

Oracle7 Server Concepts18–12

• An indirectly granted role (a role granted to a role) can be
explicitly enabled or disabled for a user. However, by enabling a
role that contains other roles, you implicitly enable all indirectly
granted roles of the directly granted role.

You grant or revoke roles from users or other roles using the following
options:

• the Add Role to User dialog box and Remove Privileges from
Role dialog box of Server Manager

• the SQL commands GRANT and REVOKE

Privileges are granted to and revoked from roles using the same
options. Roles can also be granted to and revoked from users using the
operating system that executes Oracle.

More detailed instructions on role management are included in the
Oracle7 Server Administrator’s Guide.

Any user with the GRANT ANY ROLE system privilege can grant or
revoke any role to or from other users or roles of the database. You
should grant this system privilege conservatively because it is very
powerful. Additionally, any user granted a role with the ADMIN
OPTION can grant or revoke that role to or from other users or roles of
the database. This option allows administrative powers for roles on a
selective basis.

Within a database, each role name must be unique, and no username
and role name can be the same. Unlike schema objects, roles are not
“contained” in any schema. Therefore, a user who creates a role can be
dropped with no effect on the role.

Each role and user has its own unique security domain. A role’s
security domain includes the privileges granted to the role plus those
privileges granted to any roles that are granted to the role. A user’s
security domain includes privileges on all objects in the corresponding
schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. A user’s security domain
also includes the privileges and roles granted to the user group
PUBLIC. A role can be simultaneously enabled for one user and
disabled for another.

Data Definition
Language Statements
and Roles

Example

Privileges and Roles 18–13

Depending on the statement, a user requires one or more privileges to
successfully execute a DDL statement. For example, to create a table,
the user must have the CREATE TABLE or CREATE ANY TABLE
system privilege. To create a view of another user’s table, the creator
requires the CREATE VIEW or CREATE ANY VIEW system privilege
and either the SELECT privilege for the table or the SELECT ANY
TABLE system privilege.

Oracle avoids the dependencies on privileges received via roles by
restricting the use of specific privileges in certain DDL statements. The
following rules outline these privilege restrictions concerning DDL
statements:

• All system privileges and object privileges that permit a user to
perform a DDL operation are usable when received via a role.

Examples System Privileges: the CREATE TABLE, CREATE
VIEW and CREATE PROCEDURE privileges. Object Privileges:
the ALTER and INDEX privileges for a table.

Exception The REFERENCES object privilege for a table cannot be
used for definition of a table’s foreign key if the privilege is
received via a role.

• All system privileges and object privileges that allow a user to
perform a DML operation that is required to issue a DDL
statement are not usable when received via a role.

Example If a user receives the SELECT ANY TABLE system
privilege or the SELECT object privilege for a table via a role,
he/she can use neither privilege to create a view on another
user’s table.

The following example further clarifies the permitted and restricted
uses of privileges received via roles:

Assume that a user

• is granted a role that has the CREATE VIEW system privilege

• is granted a role that has the SELECT object privilege for the
EMP table

• is not directly granted the SELECT privilege for the EMP table

• is directly granted the SELECT object privilege for the DEPT
table

Predefined Roles

The Operating System
and Roles

OSDoc

Roles in a Distributed
Environment

Oracle7 Server Concepts18–14

Given these directly and indirectly granted privileges:

• The user can issue SELECT statements on either the EMP or
DEPT tables.

• Although the user has both the CREATE VIEW and SELECT
privilege for the EMP table (both via a role), the user cannot
create a usable view on the EMP table, because the SELECT
object privilege for the EMP table was granted via a role. Any
views created will produce errors when accessed.

• The user can create a view on the DEPT table, because the user
has the CREATE VIEW privilege (via a role) and the SELECT
privilege for the DEPT table (directly).

The roles CONNECT, RESOURCE, DBA, EXP_FULL_DATABASE, and
IMP_FULL_DATABASE are defined automatically for Oracle
databases. These roles are provided for backward compatibility to
earlier versions of Oracle and can be modified in the same manner as
any other role in an Oracle database.

In some environments, you can administer database security using the
operating system. The operating system can be used to manage the
grants (and revokes) of database roles and/or manage their password
authentication.

Additional Information: This capability might not be available
on all operating systems. See your operating system–specific
Oracle documentation for details on managing roles through
the operating system.

When you use roles in a distributed database environment, you must
make sure that all needed roles are set as the default roles for a
distributed session. You cannot enable roles when connecting to a
remote database from within a local database session. For example, you
cannot execute a remote procedure which attempts to enable a role at
the remote site. To use roles in a distributed environment, you must
make the required roles the default role for the remote session. For
more information about distributed database environments, see Oracle7
Server Distributed Systems, Volume I.

C H A P T E R

19

T

Auditing 19–1

Auditing

You can observe a lot by watching.

Yogi Berra

his chapter discusses the auditing feature of Oracle. It includes:

• Introduction to Auditing

• Statement Auditing

• Privilege Auditing

• Object Auditing

• Focusing Statement, Privilege, and Object Auditing

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for additional information.

Auditing Features

Types of Auditing

Oracle7 Server Concepts19–2

Introduction to Auditing

Auditing is the monitoring and recording of selected user database
actions. Auditing is normally used to

• investigate suspicious activity. For example, if an unauthorized
user is deleting data from tables, the security administrator
might decide to audit all connections to the database and all
successful and unsuccessful deletions of rows from all tables in
the database.

• monitor and gather data about specific database activities. For
example, the database administrator can gather statistics about
which tables are being updated, how many logical I/Os are
performed, or how many concurrent users connect at peak times.

These sections outline the features of the Oracle auditing mechanism.

Oracle supports three general types of auditing:

The selective auditing of SQL statements with
respect to only the type of statement, not the
specific objects on which it operates. Statement
auditing options are typically broad, auditing the
use of several types of related actions per option;
for example, AUDIT TABLE, which tracks several
DDL statements regardless of the table on which
they are issued. You can set statement auditing to
audit selected users or every user in the database.

The selective auditing of the use of powerful
system privileges to perform corresponding
actions, such as AUDIT CREATE TABLE. Privilege
auditing is more focused than statement auditing,
auditing only the use of the target privilege. You
can set privilege auditing to audit a selected user
or every user in the database.

The selective auditing of specific statements on a
particular schema object, such as AUDIT SELECT
ON EMP. Object auditing is very focused, auditing
only a specific statement on a specific object. Object
auditing always applies to all users of the database.

You can set audit options to determine the type of audit information
that is collected.

statement
auditing

privilege auditing

object auditing

Focus of Auditing

Audit Records and the
Audit Trail

Auditing 19–3

Oracle allows audit options to be focused or broad in the following
areas:

• audit successful statement executions, unsuccessful statement
executions, or both

• audit statement executions once per user session or once every
time the statement is executed

• audit activities of all users or of a specific user

Audit records include such information as the operation that was
audited, the user performing the operation, and the date/time of the
operation. Audit records can be stored in either a data dictionary table,
called the audit trail, or an operating system audit trail.

The database audit trail is a single table named AUD$ in the SYS
schema of each Oracle database’s data dictionary. Several predefined
views are provided to help you use this information. Instructions for
creating and using these views are included in the Oracle7 Server
Administrator’s Guide.

Depending on the events audited and the auditing options set, the
audit trail records can contain different types of information. The
following information is always included in each audit trail record,
provided that the information is meaningful to the particular audit
action:

• the user name

• the session identifier

• the terminal identifier

• the name of the object accessed

• the operation performed or attempted

• the completion code of the operation

• the date and time stamp

• the system privileges used (including MAC privileges for
Trusted Oracle)

• the label of the user session (for Trusted Oracle only)

• the label of the object accessed (for Trusted Oracle only)

Auditing Mechanisms

When Are Audit Records
Generated?

Oracle7 Server Concepts19–4

Audit trail records written to the OS audit trail contain some encodings
that are not human readable. These can be decoded as follows:

This describes the operation performed or
attempted. The AUDIT_ACTIONS data dictionary
table contains a list of these codes and their
descriptions.

This describes any system privileges used to
perform the operation. The
SYSTEM_PRIVILEGE_MAP table lists all of these
codes and their descriptions.

This describes the result of the attempted
operation. Successful operations return a value of
zero, while unsuccessful operations return the
Oracle error code describing why the operation
was unsuccessful. These codes are listed in Oracle7
Server Messages.

These sections explain the mechanisms used by the Oracle auditing
features.

Oracle allows the recording of audit information to be enabled or
disabled. This functionality allows audit options to be set by any
authorized database user at any time, but reserves control of recording
audit information for the security administrator. Instructions on
enabling and disabling auditing are included in the Oracle7 Server
Administrator’s Guide.

Assuming auditing is enabled in the database, an audit record is
generated during the execute phase of statement execution.

Note: If you are not familiar with the different phases of SQL
statement processing and shared SQL, see Chapter 11, “SQL
and PL/SQL”, for background information concerning the
following discussion.

SQL statements inside PL/SQL program units are individually audited,
as necessary, when the program unit is executed.

The generation and insertion of an audit trail record is independent of a
user’s transaction; therefore, if a user’s transaction is rolled back, the
audit trail record remains committed.

Note: Audit records are never generated by sessions
established by the user SYS or connections as INTERNAL.
Connections by these users bypass certain internal features of

Action Code

Privileges Used

Completion Code

Events Always Audited
to the Operating
System Audit Trail

OSDoc

When Do Audit Options
Take Effect?

Auditing in a Distributed
Database

Auditing 19–5

Oracle to allow specific administrative operations to occur (for
example, database startup, shutdown, recovery, and so on).

Regardless of whether database auditing is enabled, the Oracle Server
will always audit certain database–related actions into the operating
system audit trail. These events include the following:

An audit record is generated that details the OS
user starting the instance, his terminal identifier,
the date and time stamp, and whether database
auditing was enabled or disabled. This is audited
into the OS audit trail because the database audit
trail is not available until after startup has
successfully completed. Recording the state of
database auditing at startup further prevents an
administrator from restarting a database with
database auditing disabled so that they are able to
perform unaudited actions.

An audit record is generated that details the OS
user shutting down the instance, her terminal
identifier, the date and time stamp.

An audit record is generated that details the OS
user connecting to Oracle as INTERNAL. This
provides accountability of users connected as
INTERNAL.

On operating systems that do not make an audit trail accessible to
Oracle, these audit trail records are placed in an Oracle audit trail file in
the same directory as background process trace files.

Additional Information: See your operating system–specific
Oracle documentation for more information about the
operating system audit trail.

Statement and privilege audit options in effect at the time a database
user connects to the database remain in effect for the duration of the
session. A session does not see the effects of statement audit options
being set or changed. A database user only adheres to modified
statement or privilege audit options when the current session is ended
and a new session is created. On the other hand, changes in object audit
options become effective for current sessions immediately.

Auditing is site autonomous; an instance audits only the statements
issued by directly connected users. A local Oracle node cannot audit
actions that take place in a remote database. Because remote
connections are established via the user account of a database link, the

Instance startup

Instance
shutdown

Connections to
the
database as
INTERNAL

Auditing to the OS
Audit Trail

OSDoc

Oracle7 Server Concepts19–6

remote Oracle node audits the statements issued via the database link’s
connection. See Chapter 21, “Distributed Databases”, for more
information about distributed databases and database links.

Both Oracle7 and Trusted Oracle7 allow audit trail records to be
directed to an operating system audit trail on platforms where the OS
makes such an audit trail available to Oracle. On some other operating
systems, these audit records are written to a file outside the database,
with a format similar to other Oracle trace files.

Additional Information: See your platform–specific Oracle
documentation to see if this feature has been implemented on
your operating system.

Trusted Oracle and Oracle allow certain actions that are always audited
to continue even when the operating system audit trail, or the
operating system file containing audit records, is unable to record the
audit record. The normal cause of this is that the operating system
audit trail, or the file system, is full and unable to accept new records.

When configured with OS auditing, system administrators should
ensure that the audit trail or the file system does not fill completely.
Most operating systems provide extensive measures to provide
administrators with sufficient information and warning to ensure this
does not occur. Furthermore, configuring auditing to use the database
audit trail removes this vulnerability, as the Oracle Server prevents
audited events from occurring if the audit trail is unable to accept the
audit record for the statement.

Statement Auditing

Statement auditing is the selective auditing of related groups of
statements that fall into two categories:

• DDL statements, regarding a particular type of database
structure or object, but not a specifically named structure or
object (for example, AUDIT TABLE audits all CREATE and
DROP TABLE statements)

• DML statements, regarding a particular type of database
structure or object, but not a specifically named structure or
object (for example, AUDIT SELECT TABLE audits all SELECT
. . . FROM TABLE/VIEW/SNAPSHOT statements, regardless of
the table, view, or snapshot)

Auditing 19–7

Statement auditing can be broad and audit the activities of all database
users, or focused and audit only the activities of a select list of database
users.

Privilege Auditing

Privilege auditing is the selective auditing of the statements allowed
using a system privilege. For example, auditing of the SELECT ANY
TABLE system privilege audits users’ statements that are executed
using the SELECT ANY TABLE system privilege.

You can audit the use of any system privilege. In all cases of privilege
auditing, owner privileges and object privileges are checked before the
use of system privileges. If these other privileges suffice to permit the
action, the action is not audited. If similar statement and privilege audit
options are both set, only a single audit record is generated. For
example, if the statement option TABLE and the system privilege
CREATE TABLE are both audited, only a single audit record is
generated each time a table is created.

Privilege auditing is more focused than statement auditing because
each option audits only specific types of statements, not a related list of
statements. For example, the statement auditing option TABLE audits
CREATE TABLE, ALTER TABLE, and DROP TABLE statements, while
the privilege auditing option CREATE TABLE audits only CREATE
TABLE statements, since only the CREATE TABLE statement requires
the CREATE TABLE privilege.

Privilege auditing can be broad, and audit the activities of all database
users, or focused, and audit only the activities of a select list of
database users.

Object Auditing

Object auditing is the selective auditing of specific DML statements
(including queries), and GRANT and REVOKE statements for specific
schema objects. Object auditing audits the operations permitted by
object privileges, such as SELECT or DELETE statements on a given
table, as well as the GRANT and REVOKE statements that control
those privileges.

You can audit statements that reference tables, views, sequences,
standalone stored procedures and functions, and packages (procedures

Object Audit Options
for Views and
Procedures

Oracle7 Server Concepts19–8

in packages cannot be audited individually). Notice that statements
that reference clusters, database links, indexes, or synonyms are not
audited directly.

You can, however, audit access to these objects indirectly by auditing
the operations that affect the base table. Object audit options are always
set for all users of the database; these options cannot be set for a
specific list of users. Oracle provides a mechanism for setting default
object audit options for all auditable schema objects.

Because views and procedures (including stored functions, packages,
and triggers) reference underlying objects in their definition, auditing
with respect to views and procedures has several unique
characteristics. Several audit records can potentially be generated as
the result of using a view or a procedure. Not only is the use of the
view or procedure subject to enabled audit options, but the SQL
statements issued as a result of using the view or procedure are subject
to the enabled audit options of the base objects (including default audit
options).

As an illustration of this situation, consider the following series of SQL
statements:

AUDIT SELECT ON emp;

CREATE VIEW emp_dept AS

SELECT empno, ename, dname

FROM emp, dept

WHERE emp.deptno = dept.deptno;

AUDIT SELECT ON emp_dept;

SELECT * FROM emp_dept;

As a result of the query on EMP_DEPT, two audit records are
generated: one for the query on the EMP_DEPT view and one for the
query on the base table EMP (indirectly via the EMP_DEPT view). The
query on the base table DEPT does not generate an audit record
because the SELECT audit option for this table is not enabled. All audit
records pertain to the user that queried the EMP_DEPT view.

The audit options for a view or procedure are determined when the
view or procedure is first used and placed in the shared pool. These
audit options remain set until the view or procedure is flushed from,
and subsequently replaced in, the shared pool. Auditing an object
invalidates that object in the cache and causes it to be reloaded. Any
changes to the audit options of base objects are not observed by views
and procedures in the shared pool. Continuing with the above example,

Auditing Successful
and Unsuccessful
Statement Executions

Auditing BY SESSION
versus BY ACCESS

Auditing 19–9

if auditing of SELECT statements is turned off for the EMP table, use of
the EMP_DEPT view would no longer generate an audit record for the
EMP table.

Focusing Statement, Privilege, and Object Auditing

Oracle allows statement, privilege, and object auditing to be focused in
two areas:

• successful and unsuccessful executions of the audited SQL
statement

• BY SESSION and BY ACCESS auditing

In addition, you can enable statement and privilege auditing for
specific users or for all users in the database.

For statement, privilege, and object auditing, Oracle allows the
selective auditing of successful executions of statements, unsuccessful
attempts to execute statements, or both. Therefore, you can monitor
actions even if the audited statements do not complete successfully.

You can audit an unsuccessful statement execution only if a valid SQL
statement is issued but fails because of lack of proper authorization or
because it references a non–existent object. Statements that failed to
execute because they simply were not valid cannot be audited. For
example, an enabled privilege auditing option set to audit unsuccessful
statement executions audits statements that use the target system
privilege but have failed for other reasons (for example, CREATE
TABLE is set, but a CREATE TABLE statement fails due to lack of
quota for the specified tablespace).

Using either form of the AUDIT command, you can include

• the WHENEVER SUCCESSFUL option, to audit only successful
executions of the audited statement

• the WHENEVER NOT SUCCESSFUL option, to audit only
unsuccessful executions of the audited statement

• neither of the previous options, to audit both successful and
unsuccessful executions of the audited statement

Most auditing options can be set to indicate how audit records should
be generated if the audited statement is issued multiple times in a
single user session. These sections describe the distinction between the
BY SESSION and BY ACCESS options of the AUDIT command.

BY SESSION

Oracle7 Server Concepts19–10

BY SESSION inserts only one audit record in the audit trail, per user
and object, per session that includes an audited action. This applies
regardless of whether the audit is of an object, a statement, or a
privilege.

To demonstrate how the BY SESSION option allows the generation of
audit records, consider the following two examples.

Example 1 Assume the following:

• The SELECT TABLE statement auditing option is set BY
SESSION.

• JWARD connects to the database and issues five SELECT
statements against the table named DEPT and then disconnects
from the database.

• SWILLIAMS connects to the database and issues three SELECT
statements against the table EMP and then disconnects from the
database.

In this case, the audit trail will contain two audit records for the eight
SELECT statements (one for each session that issued a SELECT
statement).

Example 2 Alternatively, assume the following:

• The SELECT TABLE statement auditing option is set BY
SESSION.

• JWARD connects to the database and issues five SELECT
statements against the table named DEPT, three SELECT
statements against the table EMP, and then disconnects from the
database.

In this case, the audit trail will contain two records (one for each object
against which the user issued a SELECT statement in a session).

Although you can use the BY SESSION option when directing audit
records to the operating system audit trail, this generates and stores an
audit record each time an access is made. Therefore, in this auditing
configuration, BY SESSION is equivalent to BY ACCESS.

Note: A session is the time between when a user connects to
and disconnects from an Oracle database.

BY ACCESS

Defaults and Excluded
Operations

Auditing By User

Auditing 19–11

Setting audit BY ACCESS inserts one audit record into the audit trail
for each execution of an auditable within a cursor. Events that cause
cursors to be reused include the following:

• an application, such as Oracle Forms, holding a cursor open for
reuse

• subsequent execution of a cursor using new bind variables

• statements executed within PL/SQL loops where the PL/SQL
engine optimizes the statements to reuse a single cursor

Note that auditing is NOT affected by whether a cursor is shared; each
user creates her or his own audit trail records on first execution of the
cursor.

Example Assume the following:

• The SELECT TABLE statement auditing option is set BY
ACCESS.

• JWARD connects to the database and issues five SELECT
statements against the table named DEPT and then disconnects
from the database.

• SWILLIAMS connects to the database and issues three SELECT
statements against the table DEPT and then disconnects from the
database.

The audit trail contains eight records for the eight SELECT statements.

The AUDIT command allows you to specify either BY SESSION or BY
ACCESS. However, several audit options can only be set BY ACCESS,
including

• all statement audit options that audit DDL statements

• all privilege audit options that audit DDL statements

For all other audit options, BY SESSION is used by default.

Statement and privilege audit options can either be broad, auditing
statements issued by any user, or focused, auditing statements issued
by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Oracle7 Server Concepts19–12

P A R T

 VIII Distributed Processing
and Distributed
Databases

C H A P T E R

20

T

Client/Server Architecture 20–1

Client/Server
Architecture

We must try to trust one another. Stay and cooperate.

Jomo Kenyatta

his chapter defines distributed processing and how the Oracle
Server and database applications work in a distributed processing
environment. This material applies to almost every type of Oracle
database system environment. This chapter includes:

• The Oracle Client/Server Architecture

• SQL*Net

Distributed Processing

Oracle7 Server Concepts20–2

The Oracle Client/Server Architecture

In the Oracle client/server architecture, the database application and
the database are separated into two parts: a front–end or client portion,
and a back–end or server portion. The client executes the database
application that accesses database information and interacts with a user
through the keyboard, screen, and pointing device such as a mouse.
The server executes the Oracle software and handles the functions
required for concurrent, shared data access to an Oracle database.

Although the client application and Oracle can be executed on the same
computer, it may be more efficient and effective when the client
portion(s) and server portion are executed by different computers
connected via a network. The following sections discuss possible
variants in the Oracle client/server architecture.

Note: In a distributed database, one server (Oracle) may need
to access a database on another server. In this case, the server
requesting the information is a client. See Chapter 21,
“Distributed Databases”, for more information about clients
and servers in distributed databases.

Distributed processing is the use of more than one processor to divide the
processing for an individual task. The following are examples of
distributed processing in Oracle database systems:

• The client and server are located on different computers; these
computers are connected via a network (see Figure 20 – 1,
Part A).

• A single computer has more than one processor, and different
processors separate the execution of the client application from
Oracle (see Figure 20 – 1, Part B).

Client/Server Architecture 20–3

NetworkA

B

client
client

Database Server

Database Server

Client Client

Figure 20 – 1 The Client/Server Architecture and Distributed Processing

Benefits of the Oracle client/server architecture in a distributed
processing environment include the following:

• Client applications are not responsible for performing any data
processing. Client applications can concentrate on requesting
input from users, requesting desired data from the server, and
then analyzing and presenting this data using the display
capabilities of the client workstation or the terminal (for
example, using graphics or spreadsheets).

Oracle7 Server Concepts20–4

• Client applications can be designed with no dependence on the
physical location of the data. If the data is moved or distributed
to other database servers, the application continues to function
with little or no modification.

• Oracle exploits the multitasking and shared–memory facilities of
its underlying operating system. As a result, it delivers the
highest possible degree of concurrency, data integrity, and
performance to its client applications.

• Client workstations or terminals can be optimized for the
presentation of data (for example, by providing graphics and
mouse support) and the server can be optimized for the
processing and storage of data (for example, by having large
amounts of memory and disk space).

• If necessary, Oracle can be scaled. As your system grows, you can
add multiple servers to distribute the database processing load
throughout the network (horizontally scaled). Alternatively, you
can replace Oracle on a less powerful computer, such as a
microcomputer, with Oracle running on a minicomputer or
mainframe, to take advantage of a larger system’s performance
(vertically scaled). In either case, all data and applications are
maintained with little or no modification, since Oracle is portable
between systems.

• In networked environments, shared data is stored on the servers,
rather than on all computers in the system. This makes it easier
and more efficient to manage concurrent access.

• In networked environments, inexpensive, low–end client
workstations can be used to access the remote data of the server
effectively.

• In networked environments, client applications submit database
requests to the server using SQL statements. Once received, the
SQL statement is processed by the server, and the results are
returned to the client application. Network traffic is kept to a
minimum because only the requests and the results are shipped
over the network.

How SQL*Net Works

Client/Server Architecture 20–5

SQL*Net

SQL*Net is the Oracle network interface that allows Oracle tools
running on network workstations and servers to access, modify, share,
and store data on other servers. SQL*Net is considered part of the
program interface in network communications. See Chapter 9,
“Memory Structures and Processes”,.for more information about the
program interface.

SQL*Net uses the communication protocols or application
programmatic interfaces (APIs) supported by a wide range of networks
to provide a distributed database and distributed processing for
Oracle. A communications protocol is a set of standards, implemented
in software, that govern the transmission of data across a network. An
API is a set of subroutines that provide, in the case of networks, a
means to establish remote process–to–process communication via a
communication protocol.

Communication protocols define the way that data is transmitted and
received on a network. In a networked environment, an Oracle server
communicates with client workstations and other Oracle servers using
SQL*Net. SQL*Net supports communications on all major network
protocols, ranging from those supported by PC LANs to those used by
the largest mainframe computer systems.

Without the use of SQL*Net, an application developer must manually
code all communications in an application that operates in a networked
distributed processing environment. If the network hardware, topology,
or protocol changes, the application has to be modified accordingly.

However, by using SQL*Net, the application developer does not have
to be concerned with supporting network communications in a
database application. If the underlying protocol changes, the database
administrator makes some minor changes, while the application
requires no modifications and will continue to function.

SQL*Net drivers provide an interface between Oracle processes
running on the database server and the user processes of Oracle tools
running on other computers of the network.

The SQL*Net drivers take SQL statements from the interface of the
Oracle tools and package them for transmission to Oracle via one of the
supported industry–standard higher level protocols or programmatic
interfaces. The drivers also take replies from Oracle and package them
for transmission to the tools via the same higher level communications
mechanism. This is all done independently of the network operating
system.

OSDoc

Oracle7 Server Concepts20–6

Additional Information: Depending on the operating system
that executes Oracle, the SQL*Net software of the database
server may include the driver software and start an additional
Oracle background process; see your Oracle operating
system–specific documentation for details.

For additional information on SQL*Net, refer to Understanding SQL*Net
or the appropriate SQL*Net documentation.

C H A P T E R

21

T

Distributed Databases 21–1

Distributed Databases

Good sense is of all things in the world the most equally distributed,
for everybody thinks he is so well supplied with it,
that even the most difficult to please in all other matters
never desire more of it than they already possess.

Rene Descartes: Le Discours de la Methode

his chapter describes what a distributed database is, the benefits of
distributed database systems, and the Oracle distributed database
architecture. The chapter includes:

• An Introduction to Distributed Databases

• Replicating Data

Note: The information in this chapter applies only for those
systems using Oracle with the distributed or advanced
replication options. See Oracle7 Server Distributed Systems,
Volume I and Oracle7 Server Distributed Systems, Volume II for
more information about distributed database systems and
replicated environments.

If you are using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for information about distributed databases in
that environment.

Clients, Servers, and
Nodes

Direct and Indirect
Connections

Oracle7 Server Concepts21–2

An Introduction to Distributed Databases

A distributed database appears to a user as a single database but is, in
fact, a set of databases stored on multiple computers. The data on
several computers can be simultaneously accessed and modified using
a network. Each database server in the distributed database is
controlled by its local DBMS, and each cooperates to maintain the
consistency of the global database. Figure 21 – 1 illustrates a
representative distributed database system.

The following sections outline some of the general terminology and
concepts used to discuss distributed database systems.

A database server is the software managing a database, and a client is an
application that requests information from a server. Each computer in a
system is a node. A node in a distributed database system can be a
client, a server, or both. For example, in Figure 21 – 1, the computer
that manages the HQ database is acting as a database server when a
statement is issued against its own data (for example, the second
statement in each transaction issues a query against the local DEPT
table), and is acting as a client when it issues a statement against
remote data (for example, the first statement in each transaction is
issued against the remote table EMP in the SALES database).

Oracle supports heterogeneous client/server environments where
clients and servers use different character sets. The character set used
by a client is defined by the value of the NLS_LANG parameter for the
client session. The character set used by a server is its database
character set. Data conversion is done automatically between these
character sets if they are different. For more information about National
Language Support features, refer to Oracle7 Server Reference.

A client can connect directly or indirectly to a database server. In
Figure 21 – 1, when the client application issues the first and third
statements for each transaction, the client is connected directly to the
intermediate HQ database and indirectly to the SALES database that
contains the remote data.

Site Autonomy

Distributed Databases 21–3

TRANSACTION

Network

Application

Database ServerDatabase Server

SalesHQ

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

DatabaseDatabase

Figure 21 – 1 An Example of a Distributed DBMS Architecture

Site autonomy means that each server participating in a distributed
database is administered independently (for security and backup
operations) from the other databases, as though each database was a
non–distributed database. Although all the databases can work
together, they are distinct, separate repositories of data and are
administered individually. Some of the benefits of site autonomy are as
follows:

Schema Objects and
Naming in a
Distributed Database

Oracle7 Server Concepts21–4

• Nodes of the system can mirror the logical organization of
companies or cooperating organizations that need to maintain an
“arms length” relationship.

• Local data is controlled by the local database administrator.
Therefore, each database administrator’s domain of
responsibility is smaller and more manageable.

• Independent failures are less likely to disrupt other nodes of the
distributed database. The global database is partially available as
long as one database and the network are available; no single
database failure need halt all global operations or be a
performance bottleneck.

• Failure recovery is usually performed on an individual node
basis.

• A data dictionary exists for each local database.

• Nodes can upgrade software independently.

A schema object (for example, a table) is accessible from all nodes that
form a distributed database. Therefore, just as a non–distributed local
DBMS architecture must provide an unambiguous naming scheme to
distinctly reference objects within the local database, a distributed
DBMS must use a naming scheme that ensures that objects throughout
the distributed database can be uniquely identified and referenced.

To resolve references to objects (a process called name resolution) within
a single database, the DBMS usually forms object names using a
hierarchical approach. For example, within a single database, a DBMS
guarantees that each schema has a unique name, and that within a
schema, each object has a unique name. Because uniqueness is enforced
at each level of the hierarchical structure, an object’s local name is
guaranteed to be unique within the database and references to the
object’s local name can be easily resolved.

Distributed database management systems simply extend the
hierarchical naming model by enforcing unique database names within
a network. As a result, an object’s global object name is guaranteed to be
unique within the distributed database, and references to the object’s
global object name can be resolved among the nodes of the system.

For example, Figure 21 – 2 illustrates a representative hierarchical
arrangement of databases throughout a network and how a global
database name is formed.

Database Links

Distributed Databases 21–5

Other Non–Commercial
Companies Organizations

COM ORG

Educational Institutions

EDU

FINANCEHQ SALES MFTG

SALESHQ SALESSALES SALES SALES

HUMAN_RESOURCES.EMP

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

HUMAN_RESOURCES.EMP

Figure 21 – 2 Network Directories and Global Database Names

To facilitate connections between the individual databases of a
distributed database, Oracle uses database links. A database link defines
a “path” to a remote database.

Database links are essentially transparent to users of a distributed
database, because the name of a database link is the same as the global
name of the database to which the link points. For example, the
following statement creates a database link in the local database. The
database link named SALES.DIVISION3.ACME.COM describes a path
to a remote database of the same name.

CREATE PUBLIC DATABASE LINK sales.division3.acme.com ... ;

At this point, any application or user connected to the local database
can access data in the SALES database by using global object names
when referencing objects in the SALES database; the SALES database
link is implicitly used to facilitate the connection to the SALES
database. For example, consider the following remote query that
references the remote table SCOTT.EMP in the SALES database:

Statements and
Transactions in a
Distributed Database

Remote and Distributed
Statements

Remote and Distributed
Transactions

Two–Phase Commit
Mechanism

Oracle7 Server Concepts21–6

SELECT * FROM scott.emp@sales.division3.acme.com;

The following sections introduce the terminology used when
discussing statements and transactions in a distributed database
environment.

A remote query is a query that selects information from one or more
remote tables, all of which reside at the same remote node.

A remote update is an update that modifies data in one or more tables,
all of which are located at the same remote node.

Note: A remote update may include a subquery that retrieves
data from one or more remote nodes, but because the update is
performed at only a single remote node, the statement is
classified as a remote update.

A distributed query retrieves information from two or more nodes.

A distributed update modifies data on two or more nodes. A distributed
update is possible using a program unit, such as a procedure or trigger,
that includes two or more remote updates that access data on different
nodes. Statements in the program unit are sent to the remote nodes,
and the execution of the program succeeds or fails as a unit.

A remote transaction is a transaction that contains one or more remote
statements, all of which reference the same remote node. A distributed
transaction is any transaction that includes one or more statements that,
individually or as a group, update data on two or more distinct nodes
of a distributed database. If all statements of a transaction reference
only a single remote node, the transaction is remote, not distributed.

A DBMS must guarantee that all statements in a transaction,
distributed or non–distributed, are either committed or rolled back as a
unit, so that if the transaction is designed properly, the data in the
logical database can be kept consistent. The effects of a transaction
should be either visible or invisible to all other transactions at all nodes;
this should be true for transactions that include any type of operation,
including queries, updates, or remote procedure calls.

The general mechanisms of transaction control in a non–distributed
database are discussed in Chapter 12, “Transaction Management”. In a
distributed database, Oracle must coordinate transaction control over a
network and maintain data consistency, even if a network or system
failure occurs.

A two–phase commit mechanism guarantees that all database servers
participating in a distributed transaction either all commit or all roll

Transparency in a
Distributed Database
System

Distributed Databases 21–7

back the statements in the transaction. A two–phase commit
mechanism also protects implicit DML operations performed by
integrity constraints, remote procedure calls, and triggers. Two–phase
commit is described in Chapter 1, “Introduction to the Oracle Server”.

The functionality of a distributed database system must be provided in
such a manner that the complexities of the distributed database are
transparent to both the database users and the database administrators.

For example, a distributed database system should provide methods to
hide the physical location of objects throughout the system from
applications and users. Location transparency exists if a user can refer to
the same table the same way, regardless of the node to which the user
connects. Location transparency is beneficial for the following reasons:

• Access to remote data is simplified, because the database users
do not need to know the location of objects.

• Objects can be moved with no impact on end–users or database
applications.

A distributed database system should also provide query, update, and
transaction transparency. For example, standard SQL commands, such
as SELECT, INSERT, UPDATE, and DELETE, should allow users to
access remote data without the requirement for any programming.
Transaction transparency occurs when the DBMS provides the
functionality described below using standard SQL COMMIT,
SAVEPOINT, and ROLLBACK commands, without requiring complex
programming or other special operations to provide distributed
transaction control.

• The statements in a single transaction can reference any number
of local or remote tables.

• The DBMS guarantees that all nodes involved in a distributed
transaction take the same action: they either all commit or all roll
back the transaction.

• If a network or system failure occurs during the commit of a
distributed transaction, the transaction is automatically and
transparently resolved globally; that is, when the network or
system is restored, the nodes either all commit or all roll back the
transaction.

SQL*Net and Network
Independence

Heterogeneous
Distributed Database
Systems

The Mechanics of a
Heterogeneous
Distributed Database

Oracle7 Server Concepts21–8

A distributed DBMS architecture should also provide facilities to
transparently replicate data among the nodes of the system.
Maintaining copies of a table across the databases in a distributed
database is often desired so that

• Tables that have high query and low update activity can be
accessed faster by local user sessions because no network
communication is necessary.

• If a database that contains a critical table experiences a
prolonged failure, replicates of the table in other databases can
still be accessed.

A DBMS that manages a distributed database should make table
replication transparent to users working with the replicated tables.

Finally, the functional transparencies explained above are not sufficient
alone. The distributed database must also perform with acceptable
speed.

When data is required from remote databases, a local database server
communicates with the remote database using the network, network
communications software, and Oracle’s SQL*Net. Just as SQL*Net
connects clients and servers that operate on different computers of a
network, it also connects database servers across networks to facilitate
distributed transactions. For more information about SQL*Net and its
features, see “SQL*Net” on page 20–5.

The Oracle distributed database architecture allows the mix of different
versions of Oracle along with database products from other companies
to create a heterogeneous distributed database system.

In a distributed database, any application directly connected to an
Oracle database can issue a SQL statement that accesses remote data in
the following ways:

• Data in another Oracle database is available, no matter what
version. All Oracle databases are connected by a network and
use SQL*Net to maintain communication.

• Data in a non–Oracle database (such as an IBM DB2 database) is
available, assuming that the non–Oracle database is supported
by Oracle’s gateway architecture, SQL*Connect. You can connect
the Oracle and non–Oracle databases with a network and use
SQL*Net to maintain communication. See the appropriate
SQL*Connect documentation for more information about this
product.

Distributed Databases 21–9

Figure 21 – 3 illustrates a heterogeneous distributed database system
encompassing different versions of Oracle and non–Oracle databases.

Network

Non–Oracle RDBMS & SQL*Connect
(such as, IBM DB2)

Oracle7 Server
Oracle RDBMS

Version 6

SQL*NetSQL*Net

SQL*Net

Figure 21 – 3 Heterogeneous Distributed Database Systems

When connections from an Oracle node to a remote node (Oracle or
non–Oracle) initially are established, the connecting Oracle node
records the capabilities of each remote system and the associated
gateways. SQL statement execution proceeds, as described in the
section “Statements and Transactions in a Distributed Database” on
page 21–6.

However, in heterogeneous distributed systems, SQL statements issued
from an Oracle database to a non–Oracle remote database server are
limited by the capabilities of the remote database server and associated
gateway. For example, if a remote or distributed query includes an
Oracle extended SQL function (for example, an outer join), the function
may have to be performed by the local Oracle database. Extended SQL
functions in remote updates (for example, an outer join in a subquery)
are not supported by all gateways; see your specific SQL*Connect
documentation for more information on the capabilities of your system.

Oracle7 Server Concepts21–10

Replicating Data

You can create replicas of data at the various sites of a distributed
database to make access to data faster for local clients. Data can be
replicated using snapshots or replicated master tables. Replicated
master tables require the replication option. For more information
about replicating data see Oracle7 Server Distributed Systems, Volume II.

P A R T

 IX Database Backup and
Recovery

C H A P T E R

22

T

Recovery Structures 22–1

Recovery Structures

These unhappy times call for the building of plans...

Franklin Delano Roosevelt

his chapter introduces the structures of Oracle that are used during
database recovery. It includes:

• An Introduction to Database Recovery and Recovery Structures

• The Online Redo Log

• The Archived Redo Log

• Control Files

• Survivability

The procedures necessary to create and maintain these structures are
discussed in the Oracle7 Server Administrator’s Guide.

Errors and Failures

User Error

Statement Failure

Oracle7 Server Concepts22–2

An Introduction to Database Recovery and Recovery Structures

A major responsibility of the database administrator is to prepare for
the possibility of hardware, software, network, process, or system
failure. If such a failure affects the operation of a database system, you
must usually recover the databases and return to normal operations as
quickly as possible. Recovery should protect the databases and
associated users from unnecessary problems and avoid or reduce the
possibility of having to duplicate work manually.

Recovery processes vary depending on the type of failure that
occurred, the structures affected, and the type of recovery that you
perform. If no files are lost or damaged, recovery may amount to no
more than restarting an instance. If data has been lost, recovery
requires additional steps, as described in Chapter 24, “Database
Recovery”.

Several problems can halt the normal operation of an Oracle database
or affect database I/O to disk. The following sections describe the most
common types. For some of these problems, recovery is automatic and
requires little or no action on the part of the database user or database
administrator.

A database administrator can do little to prevent user errors (for
example, accidentally dropping a table). Usually, user error can be
reduced by increased training on database and application principles.
Furthermore, by planning an effective recovery scheme ahead of time,
the administrator can ease the work necessary to recover from many
types of user errors.

Statement failure occurs when there is a logical failure in the handling
of a statement in an Oracle program. For example, assume all extents of
a table (in other words, the number of extents specified in the
MAXEXTENTS parameter of the CREATE TABLE statement) are
allocated, and are completely filled with data; the table is absolutely
full. A valid INSERT statement cannot insert a row because there is no
space available. Therefore, if issued, the statement fails.

If a statement failure occurs, the Oracle software or operating system
returns an error code or message. A statement failure usually requires
no action or recovery steps; Oracle automatically corrects for statement
failure by rolling back the effects (if any) of the statement and returning
control to the application. The user can simply re–execute the statement
after correcting the problem conveyed by the error message.

Process Failure

Network Failure

Database Instance Failure

Recovery Structures 22–3

A process failure is a failure in a user, server, or background process of
a database instance (for example, an abnormal disconnect or process
termination). When a process failure occurs, the failed subordinate
process cannot continue work, although the other processes of the
database instance can.

The Oracle background process PMON detects aborted Oracle
processes. If the aborted process is a user or server process, PMON
resolves the failure by rolling back the current transaction of the
aborted process and releasing any resources that this process was
using. Recovery of the failed user or server process is automatic. If the
aborted process is a background process, the instance cannot continue
to function correctly (usually). Therefore, you must shut down and
restart the instance.

When your system uses networks (for example, local area networks,
phone lines, and so on) to connect client workstations to database
servers, or to connect several database servers to form a distributed
database system, network failures (such as aborted phone connections
or network communication software failures) can interrupt the normal
operation of a database system. For example:

• A network failure might interrupt normal execution of a client
application and cause a process failure to occur. In this case, the
Oracle background process PMON detects and resolves the
aborted server process for the disconnected user process, as
described in the previous section.

• A network failure might interrupt the two–phase commit of a
distributed transaction. Once the network problem is corrected,
the Oracle background process RECO of each involved database
server automatically resolves any distributed transactions not
yet resolved at all nodes of the distributed database system.
Distributed database systems are discussed in Chapter 21,
“Distributed Databases”.

Database instance failure occurs when a problem arises that prevents
an Oracle database instance (SGA and background processes) from
continuing to work. An instance failure can result from a hardware
problem, such as a power outage, or a software problem, such as an
operating system crash.

Recovery from instance failure is relatively automatic. For example, in
configurations that do not use the Oracle Parallel Server, the next
instance startup automatically performs instance recovery. When using
the Oracle Parallel Server, other instances perform instance recovery.

Media (Disk) Failure

Oracle7 Server Concepts22–4

For additional information about instance recovery, see Chapter 24,
“Database Recovery”.

An error can arise when trying to write or read a file that is required to
operate an Oracle database. This occurrence is called media failure
because there is a physical problem reading or writing physical files
needed for normal database operation.

A common example of a media failure is a disk head crash, which
causes the loss of all files on a disk drive. All files associated with a
database are vulnerable to a disk crash, including datafiles, redo log
files, and control files. The appropriate recovery from a media failure
depends on the files affected; see Chapter 24, “Database Recovery”, for
a discussion of media recovery.

How Media Failures Affect Database Operation Media failures can affect
one or all types of files necessary for the operation of an Oracle
database, including datafiles, online redo log files, and control files.

Database operation after a media failure of online redo log files or
control files depends on whether the online redo log or control file is
multiplexed, as recommended. A multiplexed online redo log or control
file simply means that a second copy of the file is maintained. If a
media failure damages a single disk, and you have a multiplexed online
redo log, the database can usually continue to operate without
significant interruption. Damage to a non–multiplexed online redo log
causes database operation to halt and may cause permanent loss of
data. Damage to any control file, whether it is multiplexed or
non–multiplexed, halts database operation once Oracle attempts to
read or write the damaged control file.

Media failures that affect datafiles can be divided into two categories:
read errors and write errors. In a read error, Oracle discovers it cannot
read a datafile and an operating system error is returned to the
application, along with an Oracle error indicating that the file cannot be
found, cannot be opened, or cannot be read. Oracle continues to run,
but the error is returned each time an unsuccessful read occurs. At the
next checkpoint, a write error will occur when Oracle attempts to write
the file header as part of the standard checkpoint process.

If Oracle discovers that it cannot write to a datafile and Oracle archives
filled online redo log files, Oracle returns an error in the DBWR trace
file, and Oracle takes the datafile offline automatically. Only the datafile
that cannot be written to is taken offline; the tablespace containing that
file remains online.

If the datafile that cannot be written to is in the SYSTEM tablespace, the
file is not taken offline. Instead, an error is returned and Oracle shuts

Structures Used for
Database Recovery

Database Backups

The Redo Log

Recovery Structures 22–5

down the database. The reason for this exception is that all files in the
SYSTEM tablespace must be online in order for Oracle to operate
properly. For the same reason, the datafiles of a tablespace containing
active rollback segments must remain online.

If Oracle discovers that it cannot write to a datafile, and Oracle is not
archiving filled online redo log files, DBWR fails and the current
instance fails. If the problem is temporary (for example, the disk
controller was powered off), instance recovery usually can be
performed using the online redo log files, in which case the instance
can be restarted. However, if a datafile is permanently damaged and
archiving is not used, the entire database must be restored using the
most recent backup.

Several structures of an Oracle database safeguard data against
possible failures. The following sections briefly introduce each of these
structures and its role in database recovery.

A database backup consists of operating system backups of the
physical files that constitute an Oracle database. To begin database
recovery from a media failure, Oracle uses file backups to restore
damaged datafiles or control files.

Oracle offers several options in performing database backups; see
Chapter 23, “Database Backup”, for more information.

The redo log, present for every Oracle database, records all changes
made in an Oracle database. The redo log of a database consists of at
least two redo log files that are separate from the datafiles (which
actually store a database’s data). As part of database recovery from an
instance or media failure, Oracle applies the appropriate changes in the
database’s redo log to the datafiles, which updates database data to the
instant that the failure occurred.

A database’s redo log can be comprised of two parts: the online redo
log and the archived redo log, discussed in the following sections.

The Online Redo Log Every Oracle database has an associated online
redo log. The online redo log works with the Oracle background
process LGWR to immediately record all changes made through the
associated instance. The online redo log consists of two or more
pre–allocated files that are reused in a circular fashion to record
ongoing database changes; see “The Online Redo Log” on page 22–6
for more information.

Rollback Segments

Control Files

Online Redo Log File
Contents

Oracle7 Server Concepts22–6

The Archived (Offline) Redo Log Optionally, you can configure an
Oracle database to archive files of the online redo log once they fill. The
online redo log files that are archived are uniquely identified and make
up the archived redo log. By archiving filled online redo log files, older
redo log information is preserved for more extensive database recovery
operations, while the pre–allocated online redo log files continue to be
reused to store the most current database changes; see “The Archived
Redo Log” page 22–16 for more information.

Rollback segments are used for a number of functions in the operation
of an Oracle database. In general, the rollback segments of a database
store the old values of data changed by ongoing transactions (that is,
uncommitted transactions). Among other things, the information in a
rollback segment is used during database recovery to “undo” any
“uncommitted” changes applied from the redo log to the datafiles.
Therefore, if database recovery is necessary, the data is in a consistent
state after the rollback segments are used to remove all uncommitted
data from the datafiles; see “Rollback Segments” on page 3–16 for more
information.

In general, the control file(s) of a database store the status of the
physical structure of the database. Certain status information in the
control file (for example, the current online redo log file, the names of
the datafiles, and so on) guides Oracle during instance or media
recovery; see “Control Files” on page 22–21 for more information.

The Online Redo Log

Every instance of an Oracle database has an associated online redo log
to protect the database in case the database experiences an instance
failure. An online redo log consists of two or more pre–allocated files
that store all changes made to the database as they occur.

Online redo log files are filled with redo entries. Redo entries record data
that can be used to reconstruct all changes made to the database,
including the rollback segments stored in the database buffers of the
SGA. Therefore, the online redo log also protects rollback data.

Note: Redo entries store low–level representations of database
changes that cannot be mapped to user actions. Therefore, the
contents of an online redo log file should never be edited or
altered, and cannot be used for any application purposes such
as auditing.

How Online Redo Log
Files Are Written

Recovery Structures 22–7

Redo entries are buffered in a “circular” fashion in the redo log buffer
of the SGA and are written to one of the online redo log files by the
Oracle background process Log Writer (LGWR). Whenever a
transaction is committed, LGWR writes the transaction’s redo entries
from the redo log buffer of the SGA to an online redo log file, and a
system change number (SCN) is assigned to identify the redo entries for
each committed transaction.

However, redo entries can be written to an online redo log file before
the corresponding transaction is committed. If the redo log buffer fills,
or another transaction commits, LGWR flushes redo log entries in the
redo log buffer to an online redo log file, of which some redo entries
may not be committed. See “The Redo Log Buffer” on page 9–19 for
more information.

The online redo log of a database consists of two or more online redo
log files. Oracle requires two files to guarantee that one is always
available for writing while the other is being archived, if desired.

LGWR writes to online redo log files in a circular fashion; when the
current online redo log file is filled, LGWR begins writing to the next
available online redo log file. When the last available online redo log
file is filled, LGWR returns to the first online redo log file and writes to
it, starting the cycle again. Figure 22 – 1 illustrates the circular writing
of the online redo log file. The numbers next to each line indicate the
sequence in which LGWR writes to each online redo log file.

Filled online redo log files are “available” to LGWR for reuse
depending on whether archiving is enabled:

• If archiving is disabled, a filled online redo log file is available
once the checkpoint involving the online redo log file has
completed.

• If archiving is enabled, a filled online redo log file is available to
LGWR once the checkpoint involving the online redo log file has
completed and once the file has been archived.

Active (Current) and
Inactive Online Redo Log
Files

Oracle7 Server Concepts22–8

LGWR

Online Redo
Log File

#1

Online Redo
Log File

#3

Online Redo
Log File

#2

1, 4, 7, ...

3, 6, 9, ...2, 5, 8, ...

Figure 22 – 1 Circular Use of Online Redo Log Files by LGWR

At any given time, Oracle uses only one of the online redo log files to
store redo entries written from the redo log buffer. The online redo log
file actively being written by LGWR is called the current online redo log
file.

Online redo log files that are required for instance recovery are called
active online redo log files. Online redo log files that are not required for
instance recovery are called inactive.

If archiving is enabled, an active online log file cannot be reused or
overwritten until its contents are archived. If archiving is disabled,
when the last online redo log file fills, writing continues by overwriting
the first available active file. For more information about archiving
options for the redo log, see “Database Archiving Modes” on
page 22–18.

Log Switches and Log
Sequence Numbers

Checkpoints

Recovery Structures 22–9

The point at which Oracle ends writing to one online redo log file and
begins writing to another is called a log switch. A log switch always
occurs when the current online redo log file is completely filled and
writing must continue to the next online redo log file. The database
administrator can also force log switches if the current redo log file is
closed for some operation (for example, archiving).

Oracle assigns each online redo log file a new log sequence number every
time that a log switch occurs and LGWR begins writing to it. If online
redo log files are archived, the archived redo log file retains its log
sequence number. The online redo log file that is cycled back for use is
given the next available log sequence number.

Each redo log file (including online and archived) is uniquely identified
by its log sequence number. During instance or media recovery, Oracle
properly applies redo log files in ascending order by using the log
sequence number of necessary archived and online redo log files.

An event called a checkpoint occurs when an Oracle background
process, DBWR, writes all the modified database buffers in the SGA,
including committed and uncommitted data, to the data files.
Checkpoints are implemented for the following reasons:

• Checkpoints ensure that data segment blocks in memory that
change frequently are written to datafiles regularly. Because of
the least–recently–used algorithm of DBWR, a data segment
block that changes frequently might never qualify as the least
recently used block and thus might never be written to disk if
checkpoints did not occur.

• Because all database changes up to the checkpoint have been
recorded in the datafiles, redo log entries before the checkpoint
no longer need to be applied to the datafiles if instance recovery
is required. Therefore, checkpoints are useful because they can
expedite instance recovery.

Though some overhead is associated with a checkpoint, Oracle does
not halt activity nor are current transactions affected. Because DBWR
continuously writes database buffers to disk, a checkpoint does not
necessarily require many data blocks to be written all at once. Rather,
the completion of a checkpoint simply guarantees that all data blocks
modified since the previous checkpoint are actually written to disk.

Oracle7 Server Concepts22–10

Checkpoints occur whether or not filled online redo log files are
archived. If archiving is disabled, a checkpoint affecting an online redo
log file must complete before the online redo log file can be reused by
LGWR. If archiving is enabled, a checkpoint must complete and the
filled online redo log file must be archived before it can be reused by
LGWR.

Checkpoints can occur for all datafiles of the database (called database
checkpoints) or can occur for only specific datafiles. The following list
explains when checkpoints occur and what type happens in each
situation:

• A database checkpoint automatically occurs at every log switch.
If a previous database checkpoint is currently in progress, a
checkpoint forced by a log switch overrides the current
checkpoint.

• An initialization parameter, LOG_CHECKPOINT_INTERVAL,
can be set to force a database checkpoint when a predetermined
number of redo log blocks have been written to disk relative to
the last database checkpoint. You can set another parameter,
LOG_CHECKPOINT_TIMEOUT, to force a database checkpoint
a specific number of seconds after the previous database
checkpoint started. These options are useful when extremely
large redo log files are used and additional checkpoints are
desired between log switches. Database checkpoints signaled to
start by these initialization parameters are not performed until
the previous checkpoint has completed.

• When the beginning of an online tablespace backup is indicated,
a checkpoint is forced only on the datafiles that constitute the
tablespace being backed up. A checkpoint at this time overrides
any previous checkpoint still in progress. Also, since this type of
checkpoint only affects the datafiles being backed up, it does not
reduce the amount of redo that would be needed for instance
recovery.

• If the administrator takes a tablespace offline with normal or
temporary priority, a checkpoint is forced only on the online
datafiles of the associated tablespace.

• If the database administrator shuts down an instance (NORMAL
or IMMEDIATE), Oracle forces a database checkpoint to
complete before the instance is shut down. A database
checkpoint forced by instance shutdown overrides any
previously running checkpoint.

Recovery Structures 22–11

• The database administrator can force a database checkpoint to
happen on demand. A checkpoint forced on demand overrides
any previously running checkpoint.

Note: Checkpoints also occur at other times if the Oracle
Parallel Server is used; see Oracle7 Parallel Server Concepts &
Administration for more information.

The Mechanics of a Checkpoint When a checkpoint occurs, the
checkpoint background process (CKPT) remembers the location of the
next entry to be written in an online redo log file and signals the
database writer background process (DBWR) to write the modified
database buffers in the SGA to the datafiles on disk. CKPT then
updates the headers of all control files and datafiles to reflect the latest
checkpoint.

When a checkpoint is not happening, DBWR only writes the
least–recently–used database buffers to disk to free buffers as needed
for new data. However, as a checkpoint proceeds, DBWR writes data to
the data files on behalf of both the checkpoint and ongoing database
operations. DBWR writes a number of modified data buffers on behalf
of the checkpoint, then writes the least recently used buffers, as needed,
and then writes more dirty buffers for the checkpoint, and so on, until
the checkpoint completes.

Depending on what signals a checkpoint to happen, the checkpoint can
be either “normal” or “fast”. With a normal checkpoint, DBWR writes a
small number of data buffers each time it performs a write on behalf of
a checkpoint. With a fast checkpoint, DBWR writes a large number of
data buffers each time it performs a write on behalf of a checkpoint.

Therefore, by comparison, a normal checkpoint requires more I/Os to
complete than a fast checkpoint. Because a fast checkpoint requires
fewer I/Os, the checkpoint completes very quickly. However, a fast
checkpoint can also detract from overall database performance if
DBWR has a lot of other database work to complete. Events that trigger
normal checkpoints include log switches and checkpoint intervals set
by initialization parameters; events that trigger fast checkpoints include
online tablespace backups, instance shutdowns, and database
administrator–forced checkpoints.

Until a checkpoint completes, all online redo log files written since the
last checkpoint are needed in case a database failure interrupts the
checkpoint and instance recovery is necessary. Additionally, if LGWR
cannot access an online redo log file for writing because a checkpoint

Multiplexed Online Redo
Log Files

Oracle7 Server Concepts22–12

has not completed, database operation suspends temporarily until the
checkpoint completes and an online redo log file becomes available. In
this case, the normal checkpoint becomes a fast checkpoint, so it
completes as soon as possible.

For example, if only two online redo log files are used, and LGWR
requires another log switch, the first online redo log file is unavailable
to LGWR until the checkpoint for the previous log switch completes.

Note: The information that is recorded in the datafiles and
control files as part of a checkpoint varies if the Oracle Parallel
Server configuration is used; see Oracle7 Parallel Server Concepts
& Administration.

You can set the initialization parameter LOG_CHECKPOINTS_TO_ALERT
to determine if checkpoints are occurring at the desired frequency. The
default value of NO for this parameter does not log checkpoints. When you
set the parameter to YES, information about each checkpoint is recorded in
the ALERT file.

Oracle provides the capability to multiplex an instance’s online redo log
files to safeguard against damage to its online redo log files. With
multiplexed online redo log files, LGWR concurrently writes the same
redo log information to multiple identical online redo log files, thereby
eliminating a single point of online redo log failure. Figure 22 – 2
illustrates duplexed (two sets of) online redo log files.

Disk B

ÈÈÈ
ÈÈÈA_LOG1

ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ

ÇÇÇ
ÇÇÇ

A_LOG2

ÈÈÈÈ
ÈÈÈÈB_LOG1

ÇÇÇÇ
ÇÇÇÇ

B_LOG2

Disk A

LGRW

1, 3, 5, ...

2, 4, 6, ...

ÈÈ
ÈÈ
ÇÇ
ÇÇ

Group 1

Group 2

Figure 22 – 2 Multiplexed Online Redo Log Files

Recovery Structures 22–13

The corresponding online redo log files are called groups. Each online
redo log file in a group is called a member. Notice that all members of a
group are concurrently active (concurrently written to by LGWR), as
indicated by the identical log sequence numbers assigned by LGWR. If
a multiplexed online redo log is used, each member in a group must be
the exact same size.

The Mechanics of a Multiplexed Online Redo Log LGWR always
addresses all members of a group, whether the group contains one or
many members. For example, LGWR always tries to write to all
members of a given group concurrently, then to switch and
concurrently write to all members of the next group, and so on. LGWR
never writes concurrently to one member of a given group and one
member of another group.

LGWR reacts differently when certain online redo log members are
unavailable, depending on the reason for the file(s) being unavailable:

• If LGWR can successfully write to at least one member in a
group (either at a log switch or as writing to the group is
proceeding), writing to the accessible members of the group
proceeds as normal; LGWR simply writes to the available
members of a group and ignores the unavailable members.

• If LGWR cannot access the next group at a log switch because
the group needs to be archived, database operation is
temporarily halted until the group becomes available (in other
words, until the group is archived).

• If all members of the next group are inaccessible to LGWR at a
log switch because of one or more disk failures, an error is
returned and the database instance is immediately shut down. In
this case, the database may need media recovery from the loss of
an online redo log file; see Chapter 24, “Database Recovery”, for
more information about such recovery. However, if the database
checkpoint has moved beyond the lost log (this is not the current
log in this example), media recovery is not necessary. Simply
drop the inaccessible log group. If the log was not archived,
archiving might need to be disabled before the log can be
dropped.

• If all members of a group suddenly become inaccessible to
LGWR as they are being written, an error is returned and the
database instance is immediately shut down. In this case, the
database might need media recovery from the loss of an online
redo log file; see Chapter 24, “Database Recovery”, for more
information about such recovery. If the media containing the log

Oracle7 Server Concepts22–14

is not actually lost — for example, if the drive for the log was
inadvertently turned off — media recovery might not be needed.
In this example, all that is necessary is to turn the drive back on
and do instance recovery.

Whenever LGWR cannot write to a member of a group, Oracle marks
that member as stale and writes an error message to the LGWR trace
file and to the database’s ALERT file to indicate the problem with the
inaccessible file(s).

To always safeguard against a single point of online redo log failure, a
multiplexed online redo log should be completely symmetrical: all
groups of the online redo log should have the same number of
members. However, Oracle does not require that a multiplexed online
redo log be symmetrical. For example, one group can have only one
member, while other groups can have two members. Oracle allows this
behavior to provide for situations that temporarily affect some online
redo log members but leave others unaffected (for example, a disk
failure). The only requirement for an instance’s online redo log,
multiplexed or non–multiplexed, is that it be comprised of at least two
groups. Figure 22 – 3 shows a legal and illegal multiplexed online redo
log configuration.

Recovery Structures 22–15

Disk B

Group 3

Disk A

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈA_LOG1

ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ

ÇÇÇÇ
ÇÇÇÇ

A_LOG2

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈB_LOG1

ÈÈÈ
ÈÈÈÇÇÇ
ÇÇÇ
ÇÇÇ

Group 1

Group 2

ÍÍÍ
ÍÍÍ

Group 3

ÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ

ÍÍÍÍ
ÍÍÍÍ

A_LOG3

Group 1

Group 2

Disk B

Group 3

Disk A

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈA_LOG1

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈB_LOG1

Group 1

Group 2

ILLEGAL

LEGAL

Figure 22 – 3 Legal and Illegal Multiplexed Online Redo Log Configuration

“Threads” of Online Redo
Log and the Oracle
Parallel Server

The Mechanics of
Archiving

Oracle7 Server Concepts22–16

Each database instance has its own online redo log groups. These
online redo log groups, multiplexed or not, are called an instance’s
“thread” of online redo. In typical configurations, only one database
instance accesses an Oracle database, thus only one thread is present.
However, when running the Oracle Parallel Server, two or more
instances concurrently access a single database; each instance in this
type of configuration has its own thread.

This manual describes how to configure and manage the online redo
log when the Oracle Parallel Server is not used. The thread number can
be assumed to be 1 in all discussions and examples of commands. For
complete information about configuring the online redo log with the
Oracle Parallel Server, see Oracle7 Parallel Server Concepts &
Administration.

The Archived Redo Log

Oracle allows the optional archiving of filled groups of online redo log
files, which creates archived (offline) redo logs. The archiving of filled
groups has two key advantages relating to database backup and
recovery options:

• A database backup, together with online and archived redo log
files, guarantees that all committed transactions can be recovered
in the event of an operating system or disk failure.

• Online backups, taken while the database is open and in normal
system use, can be used if an archived log is kept permanently.

The choice of whether or not to enable the archiving of filled groups of
online redo log files depends on the backup and recovery scheme for
an Oracle database. If you cannot afford to lose any data in your
database in the event of a disk failure, an archived log must be present.
However, the archiving of filled online redo log files can require the
database administrator to perform extra administrative operations.

Depending on how you configure archiving, the mechanics of archiving
redo log groups are performed by either the optional Oracle
background process ARCH (when automatic archiving is used) or the
user process that issues a statement to archive a group manually. For
more information, see “Automatic Archiving and the ARCH (Archiver)
Background Process” on page 22–19 and “Manual Archiving” on page
22–20.

Archived Redo Log
File Contents

Recovery Structures 22–17

Note: For simplicity, the remainder of this section assumes that
archiving is enabled and the ARCH background process is
responsible for archiving filled online redo log groups.

ARCH can archive a group once the group becomes inactive and the
log switch to the next group has completed. The ARCH process can
access any members of the group, as needed, to complete the archiving
of the group. For example, if ARCH attempts to open a member of a
group and it is not accessible (for example, due to a disk failure),
ARCH automatically tries to use another member of the group, and so
on, until it finds a member of the group that is available for archiving.
If ARCH is archiving a member of a group, and the information in the
member is detected as invalid or a disk failure occurs as archiving
proceeds, ARCH automatically switches to another member of the
group to continue archiving the group where it was interrupted.

A group of online redo log files does not become available to LGWR for
reuse until ARCH has archived the group. This restriction is important
because it guarantees that LGWR cannot accidentally write over a
group that has not been archived, which would prevent the use of all
subsequent archived redo log files during a database recovery.

When archiving is used, an archiving destination is specified. This
destination is usually a storage device separate from the disk drives
that hold the datafiles, online redo log files, and control files of the
database. Typically, the archiving destination is another disk drive of
the database server This way, archiving does not contend with other
files required by the instance and completes quickly so the group can
become available to LGWR. Ideally, archived redo log files (and
corresponding database backups) should be moved permanently to
inexpensive offline storage media, such as tape, that can be stored in a
safe place, separate from the database server.

At log switch time, when no more information will be written to a redo
log, a record is created in the database’s control file. Each record
contains the thread number, log sequence number, low SCN for the
group, and next SCN after the archived log file; this information is used
during database recovery in Parallel Server configurations to automate
the application of redo log files. See Oracle7 Parallel Server Concepts &
Administration for additional information.

An archived redo log file is a simple copy of the identical filled
members that constitute an online redo log group. Therefore, an
archived redo log file includes the redo entries present in the identical
members of a group at the time the group was archived. The archived
redo log file also preserves the group’s log sequence number.

Database Archiving
Modes

NOARCHIVELOG Mode
(Media Recovery
Disabled)

ARCHIVELOG Mode
(Media Recovery
Enabled)

Oracle7 Server Concepts22–18

If archiving is enabled, LGWR is not allowed to reuse an online redo
log group until it has been archived. Therefore, it is guaranteed that the
archived redo log contains a copy of every group (uniquely identified
by log sequence numbers) created since archiving was enabled.

A database can operate in two distinct modes: NOARCHIVELOG
mode (media recovery disabled) or ARCHIVELOG mode (media
recovery enabled).

If a database is used in NOARCHIVELOG mode, the archiving of the
online redo log is disabled. Information in the database’s control file
indicates that filled groups are not required to be archived. Therefore,
once a filled group becomes inactive and the checkpoint at the log
switch completes, the group is available for reuse by LGWR.

NOARCHIVELOG mode protects a database only from instance
failure, not from disk (media) failure. Only the most recent changes
made to the database, stored in the groups of the online redo log, are
available for instance recovery.

If an Oracle database is operated in ARCHIVELOG mode, the
archiving of the online redo log is enabled. Information in a database
control file indicates that a group of filled online redo log files cannot
be reused by LGWR until the group is archived. A filled group is
immediately available to the process performing the archiving once a
log switch occurs (when a group becomes inactive); the process
performing the archiving does not have to wait for the checkpoint of a
log switch to complete before it can access the inactive group for
archiving. Figure 22 – 4 illustrates how the database’s online redo log
files are used in ARCHIVELOG mode and how the archived redo log is
generated by the process archiving the filled groups (for example,
ARCH in this illustration).

Recovery Structures 22–19

LGWR

ARCH ARCH ARCH

LGWR LGWR

0001

0001

0002

0001

0002

0003

Log 0001 Log 0002 Log 0003 Log 0001

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Figure 22 – 4 Online Redo Log File Use in ARCHIVELOG Mode

ARCHIVELOG mode permits complete recovery from disk failure as
well as instance failure, because all changes made to the database are
permanently saved in an archived redo log.

Automatic Archiving and the ARCH (Archiver) Background Process An
instance can be configured to have an additional background process,
Archiver (ARCH), automatically archive groups of online redo log files
once they become inactive. Therefore, automatic archiving frees the
database administrator from having to keep track of, and archive, filled
groups manually. For this convenience alone, automatic archiving is the
choice of most database systems that have an archived redo log.

If you request automatic archiving at instance startup by setting the
LOG_ARCHIVE_START initialization parameter, Oracle starts ARCH
during instance startup. Otherwise, ARCH is not started during
instance startup.

Oracle7 Server Concepts22–20

However, the database administrator can interactively start or stop
automatic archiving at any time. If automatic archiving was not
specified to start at instance startup, and the administrator
subsequently starts automatic archiving, the ARCH background
process is created. ARCH then remains for the duration of the instance,
even if automatic archiving is temporarily turned off and turned on
again.

ARCH always archives groups in order, beginning with the lowest
sequence number. ARCH automatically archives filled groups as they
become inactive. A record of every automatic archival is written in the
ARCH trace file by the ARCH process. Each entry shows the time the
archive started and stopped.

If ARCH encounters an error when attempting to archive a group (for
example, due to an invalid or filled destination), ARCH continues
trying to archive the group. An error is also written in the ARCH trace
file and the ALERT file. If the problem is not resolved, eventually all
online redo log groups become full, yet not archived, and the system
halts because no group is available to LGWR. Therefore, if problems are
detected, you should either resolve the problem so that ARCH can
continue archiving (such as by changing the archive destination) or
manually archive groups until the problem is resolved.

Manual Archiving If a database is operating in ARCHIVELOG mode,
the database administrator can manually archive the filled groups of
inactive online redo log files, as necessary, whether or not automatic
archiving is enabled or disabled. If automatic archiving is disabled, the
database administrator is responsible for archiving all filled groups.

For most systems, automatic archiving is chosen because the
administrator does not have to watch for a group to become inactive
and available for archiving. Furthermore, if automatic archiving is
disabled and manual archiving is not performed fast enough, database
operation can be suspended temporarily whenever LGWR is forced to
wait for an inactive group to become available for reuse. The manual
archiving option is provided so that the database administrator can

• archive a group when automatic archiving has been stopped
because of a problem (for example, the offline storage device
specified as archived redo log destination has experienced a
failure or become full)

• archive a group in a non–standard fashion (for example, one
group to one offline storage device, the next group to a different
offline storage device, and so on)

Control File Contents

Recovery Structures 22–21

• re–archive a group if the original archived version is lost or
damaged

When a group is archived manually, the user process issuing the
statement to archive a group actually performs the process of archiving
the group. Even if the ARCH background process is present for the
associated instance, it is the user process that archives the group of
online redo log files.

Control Files

The control file of a database is a small binary file necessary for the
database to start and operate successfully. A control file is updated
continuously by Oracle during database use, so it must be available for
writing whenever the database is open. If for some reason the control
file is not accessible, the database will not function properly.

Each control file is associated with only one Oracle database.

A control file contains information about the associated database that is
required for the database to be accessed by an instance, both at startup
and during normal operation. A control file’s information can be
modified only by Oracle; no database administrator or end–user can
edit a database’s control file.

Among other things, a control file contains information such as

• the database name

• the timestamp of database creation

• the names and locations of associated databases and online redo
log files

• the current log sequence number

• checkpoint information

The database name and timestamp originate at database creation. The
database’s name is taken from either the name specified by the
initialization parameter DB_NAME or the name used in the CREATE
DATABASE statement.

Multiplexed Control
Files

Oracle7 Server Concepts22–22

Each time that a datafile or an online redo log file is added to, renamed
in, or dropped from the database, the control file is updated to reflect
this physical structure change. These changes are recorded so that

• Oracle can identify the datafiles and online redo log files to open
during database startup.

• Oracle can identify files that are required or available in case
database recovery is necessary.

Therefore, if you make a change to your database’s physical structure,
you should immediately make a backup of your control file. See
“Control File Backups” on page 23–8 for information about backing up
a database’s control file.

Control files also record information about checkpoints. When a
checkpoint starts, the control file records information to remember the
next entry that must be entered into the online redo log. This
information is used during database recovery to tell Oracle that all redo
entries recorded before this point in the online redo log group are not
necessary for database recovery; they were already written to the
datafiles. See “Checkpoints” on page 22–9.

As with online redo log files, Oracle allows multiple, identical control
files to be open concurrently and written for the same database. By
storing multiple control files for a single database on different disks,
you can safeguard against a single point of failure with respect to
control files. If a single disk that contained a control file crashes, the
current instance fails when Oracle attempts to access the damaged
control file. However, other copies of the current control file are
available on different disks, so an instance can be restarted easily
without the need for database recovery.

The permanent loss of all copies of a database’s control file is a serious
problem to safeguard against. If all control files of a database are
permanently lost during operation (several disks fail), the instance is
aborted and media recovery is required. Even so, media recovery is not
straightforward if an older backup of a control file must be used
because a current copy is not available. Therefore, it is strongly
recommended that multiplexed control files be used with each
database, with each copy stored on a different physical disk.

Planning for Disaster
Recovery

Standby Database

Recovery Structures 22–23

Survivability

In the event of a power failure, hardware failure, or any other
system–interrupting disaster, Oracle7 release 7.3 offers the standby
database feature. The standby database is intended for sites where
survivability and disaster recovery are of paramount importance.

For information about creating and maintaining a standby database,
see the Oracle7 Server Administrator’s Guide.

The only way to ensure rapid recovery from a system failure or other
disaster is to plan carefully. You must have a set plan with detailed
procedures. Whether you are implementing a standby database or you
have a single system, you must have a plan for what to do in the event
of a catastrophic failure.

See Chapter 24, “Database Recovery”, for information about recovering
a database.

Release 7.3 provides a reliable and supported mechanism for
implementing a standby database system to facilitate quick disaster
recovery. The scheme uses a secondary system on duplicate hardware,
maintained in a constant state of media recovery through the
application of log files archived at the primary site. In the event of a
primary system failure, the standby can be activated with minimal
recovery, providing immediate system availability. There are new
commands and internal verifications for operations involved in the
creation and maintenance of the standby system, improving the
reliability of the disaster recovery scheme.

A standby database involves two databases: a primary database and a
standby database. The primary database is the production database that
is in use. The standby database is a copy of the production database,
ideally located on a separate machine. The standby database runs in
recovery mode until there is a failure at the primary site. At the time of
a failure, the standby database performs recovery operations and
comes online as the primary database.

A standby database uses the archived log information from the
primary database, so it is ready to perform recovery and go online at
any time. When the primary database archives its redo logs, the logs
must be transferred to the remote site and applied to the standby
database. The standby database is therefore always behind the primary
database in time and transaction history.

The physical hardware on which the standby database resides should
be used only as a disaster recovery system; no other applications

Oracle7 Server Concepts22–24

should run on it. Because the standby database is designed for disaster
recovery, it ideally resides in a separate physical location than the
primary. The standby database exists not only to guard against power
failures and hardware failures, but also to protect your data in the
event of a physical disaster such as a fire or an earthquake.

C H A P T E R

23

T

Database Backup 23–1

Database Backup

He listens well who takes notes.

Dante Alighieri: The Divine Comedy

his chapter explains the options available and the procedures
necessary to backup the data in an Oracle database. It includes:

• An Introduction to Database Backups

• Read–Only Tablespaces and Backup

Full Backups

Full Online Backups vs.
Full Offline Backups

Backups and Archiving
Mode

Oracle7 Server Concepts23–2

An Introduction to Database Backups

No matter what backup and recovery scheme you devise for an Oracle
database, operating system backups of the database’s datafiles and
control files are absolutely necessary as part of the strategy to
safeguard against potential media failures that can damage these files.
The following sections provide a conceptual overview of the different
types of backups that can be made and their usefulness in different
recovery schemes. The Oracle7 Server Administrator’s Guide provides
guidelines for performing database backups.

This section includes the following topics:

• Full Backups

• Partial Backups

• The Export and Import Utilities

A full backup is an operating system backup of all datafiles and the
control file that constitute an Oracle database. A full backup should
also include the parameter file(s) associated with the database. You can
take a full database backup when the database is shut down or while
the database is open. You should not normally take a full backup after
an instance failure or other unusual circumstances.

Following a clean shutdown, all of the files that constitute a database
are closed and consistent with respect to the current point in time.
Thus, a full backup taken after a shutdown can be used to recover to
the point in time of the last full backup. A full backup taken while the
database is open is not consistent to a given point in time and must be
recovered (with the online and archived redo log files) before the
database can become available.

See the section “Online Datafile Backups” on page 23–4 for more
information on backing up datafiles while the database is open.

The datafiles obtained from a full backup are useful in any type of
media recovery scheme:

• If a database is operating in NOARCHIVELOG mode and a disk
failure damages some or all of the files that constitute the
database, the most recent full backup can be used to restore (not
recover) the database.

Because an archived redo log is not available to bring the
database up to the current point in time, all database work
performed since the full database backup must be repeated.

Partial Backups

Datafile Backups

Database Backup 23–3

Under special circumstances, a disk failure in NOARCHIVELOG
mode can be fully recovered, but you should not rely on this.

• If a database is operating in ARCHIVELOG mode and a disk
failure damages some or all of the files that constitute the
database, the datafiles collected by the most recent full backup
can be used as part of database recovery.

After restoring the necessary datafiles from the full backup,
database recovery can continue by applying archived and
current online redo log files to bring the restored datafiles up to
the current point in time.

In summary, if a database is operated in NOARCHIVELOG mode, a
full backup is the only method to partially protect the database against
a disk failure; if a database is operating in ARCHIVELOG mode, the
files assembled by a full backup can be used to restore damaged files as
part of database recovery from a disk failure.

A partial backup is any operating system backup short of a full backup,
taken while the database is open or shut down. The following are all
examples of partial database backups:

• a backup of all datafiles for an individual tablespace

• a backup of a single datafile

• a backup of a control file

Partial backups are only useful for a database operating in
ARCHIVELOG mode. Because an archived redo log is present, the
datafiles restored from a partial backup can be made consistent with
the rest of the database during recovery procedures.

A partial backup includes only some of the datafiles of a database.
Individual or collections of specific datafiles can be backed up
independently of the other datafiles, online redo log files, and control
files of a database. You can back up a datafile while it is offline or
online.

Choosing whether to take online or offline datafile backups depends
only on the availability requirements of the data — online datafile
backups are the only choice if the data being backed up must always be
available. The following sections describe each type of datafile backup.

Oracle7 Server Concepts23–4

Offline Datafile Backups Any datafile of a database can be backed up
when the datafile is offline. The following situations provide examples
of offline datafile backups:

• A database is shut down. As a result, all datafiles of the database
are normally closed or “offline”. If any datafiles of a shutdown
database are backed up, these are considered offline datafile
backups.

• A database is open, and a tablespace is offline. As a result,
normally all datafiles of the tablespace are offline. If any datafiles
of an offline tablespace are backed up, these are considered
offline datafile backups.

Note: In most situations, the above are examples of when
offline datafile backups can be taken. However, in certain
circumstances, a database may be shutdown or a tablespace
can be offline, but the associated datafiles are actually online
with respect to the operating system. For example, a database
may be mounted and closed for database recovery, but the
associated datafiles are open and undergoing changes during
the recovery operation. Avoid backing up datafiles in such
situations.

When a database instance is shut down in normal priority (in other
words, not aborted) or when a tablespace is taken offline in normal
priority (in other words, not temporary or immediate), an offline
datafile backup is a copy of “consistent” data. All of the data within an
offline datafile backup is consistent with respect to a single point in
time — the time of the backup.

Online Datafile Backups If a database is operating in ARCHIVELOG
mode, you can back up any datafile in it while the database is open,
while the associated tablespace is online, and while the specific
datafiles are online and currently in normal use. This type of datafile
backup is considered an online datafile backup.

An online datafile backup is a copy of fuzzy or inconsistent data. A
datafile that is online or being recovered is said to be “fuzzy” because
the blocks are not necessarily written in the order they are changed.
Therefore, all of the data within the online datafile backup is not
guaranteed to be consistent with respect to a specific point in time.
However, a fuzzy datafile backup is easily made consistent during
database recovery procedures.

When the backup of an online tablespace (or individual datafile) starts,
Oracle stops recording the occurrence of checkpoints in the headers of
the online datafiles being backed up. This means that when a datafile is
restored, it has “knowledge” of the most recent datafile checkpoint that

Database Backup 23–5

occurred before the online tablespace backup, not any that occurred
during it. As a result, Oracle asks for the appropriate set of redo log
files to apply should recovery be needed. Once an online backup is
completed, Oracle advances the file header to the current database
checkpoint.

Consistent and Fuzzy Backup Data The data in datafile backups can
exist in one of two states: consistent or fuzzy.

Consistent backup data is obtained when an offline datafile is backed
up. This datafile must not be offline as the result of an I/O error or
have been taken offline with the immediate option. The data in a single
file is said to be “consistent” with itself because all blocks of data
within it correspond to a specific point in time. You still must perform
recovery actions if using a consistent backup to recover a database, as
the backup is consistent only with itself, not with the current point in
time.

To restore datafile(s) to a particular point in time, you can use a full or
partial backup taken while the database is shut down or the tablespace
is offline. Because the data is already consistent, no action is required to
make the data in the restored datafiles correct.

If a database is not shut down cleanly (for example, an instance failure
occurred, or a SHUTDOWN ABORT statement was issued), the offline
datafiles can be fuzzy.

You can also use a complete or partial database backup, taken while the
database is open and the tablespace is online, to restore datafiles to a
particular point in time. However, the data in the restored datafiles is
fuzzy. Therefore, the appropriate redo log files (online and archived)
must be reapplied to these restored datafiles to make the data
consistent.

Consider the following simplified example to understand how fuzzy
backup data is generated, and then used during database recovery.

Example

Oracle7 Server Concepts23–6

A backup is being made of a datafile of an online tablespace. The
datafile corresponds to four data blocks. For simplicity, a representative
piece of data in each block is represented by a letter.

Refer to Figure 23 – 1. During this online datafile backup, the following
actions take place with respect to time.

1. At the first instant in time, Block #1 of the datafile is written to the
backup file.

2. At the second instant in time, Block #2 of the datafile is written to
the backup file. At the same time, a modified version of data block
#1 was written from the SGA to the datafile.

3. At the third instant in time, Block #3 of the datafile is written to the
backup file.

4. At the fourth instant in time, a modified version of database Block
#4 is written from the SGA to the datafile. This modified block is
written to the backup file.

At least two redo entries were also generated because of the
modifications to Blocks #1 and #4, as represented in Figure 23 – 2.

Database Backup 23–7

TIME

Block #1

A

Block #2

B

Block #3

C

Block #1

A

Backup

Block #1

E

Block #2

B

Block #3

C

Block #1

A

Block #2

B

Backup

Block #1

E

Block #2

B

Block #3

C

Block #1

A

Block #2

B

Block #3

C

Backup

Block #1

E

Block #2

B

Block #3

C

Block #4

F

Block #1

A

Block #2

B

Block #3

C

Block #4

F

Backup

Block #4

D
Block #4

D
Block #4

D

Data Data Data Data
File File File File

File File File File

Figure 23 – 1 An Example of an Online Database File Backup

Block #1

A E

Block #4

D F

Redo Log Entries

Figure 23 – 2 Redo Entires Generated During an Online Database File Backup

If the backup file restores the datafile, the restored datafile is
inconsistent, as is. However, when recovery is performed the

Control File Backups

The Export and Import
Utilities

Oracle7 Server Concepts23–8

corresponding redo log entries are checked. This causes the following
actions, which make the data consistent:

1. Block #1 is updated from A to E.

2. Block #4 is verified to contain the correct information (F).

Another form of a partial backup is a control file backup. Because a
control file keeps track of the associated database’s physical file
structure, a backup of a database’s control file should be made every
time a structural change is made to the database.

Multiplexed control files safeguard against the loss of a single control
file. However, if a disk failure damages the datafiles and incomplete
recovery is desired, or a point–in–time recovery is desired, a backup of
the control file that corresponds to the intended database structure
should be used, not necessarily the current control file. Therefore, the
use of multiplexed control files is not a substitute for control file
backups taken every time the structure of a database is altered.

Export and Import are utilities used to move Oracle data in and out of
Oracle databases. Export is a utility that writes data from an Oracle
database to operating system files in an Oracle database format. Export
files store information about schema objects created for a database.
Import is a utility that reads Export files and restores the corresponding
information into an existing database. Although Export and Import are
designed for moving Oracle data, they can be used also as a
supplemental method of protecting data in an Oracle database. Use of
these utilities is described in Oracle7 Server Utilities.

Read–Only Tablespaces and Backup

You can create backups of a read–only tablespace while the database is
open. Immediately after making a tablespace read–only, you should
back up the tablespace. As long as the tablespace remains read–only,
there is no need to perform any further backups of it.

Unlike backups of writeable tablespaces, you do not need to mark the
beginning and end of the online backup of a read–only tablespace.
Using the ALTER TABLESPACE BEGIN and END BACKUP
commands with a read–only tablespace causes an error.

After you change a read–only tablespace to a read–write tablespace,
you need to resume your normal backups of the tablespace, just as you
do when you bring an offline read–write tablespace back online.

Database Backup 23–9

Bringing the datafiles of a read–only tablespace online does not make
these files writeable, nor does it cause the file header to be updated.
Thus it is not necessary to perform a backup of these files, as is
necessary when you bring a writeable datafile back online.

Oracle7 Server Concepts23–10

C H A P T E R

24

T

Database Recovery 24–1

Database Recovery

Turn back, O man,
Forswear thy foolish ways.
Old now is Earth and none may count her days.
Da da da da da.

Steven Schwartz: Godspell

his chapter discusses the database recovery from instance and
media failures. It includes:

• Recovery Procedures

• Recovery Features

• An Introduction to Database Recovery

• Performing Recovery in Parallel

• Recovery from Instance Failure

• Recovery from Media Failure

Oracle7 Server Concepts24–2

Recovery Procedures

In every database system, the possibility of a system failure is always
present. Should system failure occur, you must recover the database as
quickly, and with as little detrimental impact on users, as possible.

Recovering from any type of system failure requires the following:

1. Determining which data structures are intact and which ones
 need recovery.

2. Following the appropriate recovery steps.

3. Restarting the database so that it can resume normal operations.

4. Ensuring that no work has been lost nor incorrect data entered in
the database.

The goal is to return to normal as quickly as possible while insulating
database users from any problems and the possibility of losing or
duplicating work.

The recovery process varies depending on the type of failure and the
files of the database affected by the failure.

Recovery Features

Oracle offers several features to provide flexibility in recovery
strategies:

• recovery from system, software, or hardware failure

• automatic database instance recovery at database start up

• recovery of individual offline tablespaces or files while the rest of
a database is operational

• time–based and change–based recovery operations to recover to
a transaction–consistent state specified by the database
administrator

• increased control over recovery time in the event of system
failure

• the ability to apply redo log entries in parallel to reduce the
amount of time for recovery

• Export and Import utilities for archiving and restoring data in a
logical data format, rather than a physical file backup

Database Buffers and
DBWR

The Redo Log and
Rolling Forward

Database Recovery 24–3

An Introduction to Database Recovery

The following sections provide a brief summary of how Oracle writes
information to the datafiles. This discussion introduces the recovery
structures and processes necessary to recover a database from any type
of failure.

For instructions on performing database recovery, see the Oracle7 Server
Administrator’s Guide.

Database buffers in the SGA are written to disk only when necessary,
using the least–recently–used algorithm. Because of the way that
DBWR uses this algorithm to write database buffers to datafiles,
datafiles might contain some data blocks modified by uncommitted
transactions and some data blocks missing changes from committed
transactions.

Two potential problems can result if an instance failure occurs:

• Data blocks modified by a transaction might not be written to
the datafiles at commit time and might only appear in the redo
log. Therefore, the redo log contains changes that must be
reapplied to the database during recovery.

• Since the redo log might have also contained data that was not
committed, the uncommitted transaction changes applied by the
redo log (as well as any uncommitted changes applied by earlier
redo logs) must be erased from the database.

To solve this dilemma, two separate steps are generally used by Oracle
for a successful recovery of a system failure: rolling forward with the
redo log and rolling back with the rollback segments.

The redo log is a set of operating system files that record all changes
made to any database buffer, including data, index, and rollback
segments, whether the changes are committed or uncommitted. The redo log
protects changes made to database buffers in memory that have not
been written to the datafiles.

The first step of recovery from an instance or disk failure is to roll
forward, or reapply all of the changes recorded in the redo log to the
datafiles. Because rollback data is also recorded in the redo log, rolling
forward also regenerates the corresponding rollback segments.

Rolling forward proceeds through as many redo log files as necessary
to bring the database forward in time. Rolling forward usually includes
online redo log files and may include archived redo log files.

Rollback Segments and
Rolling Back

Oracle7 Server Concepts24–4

After roll forward, the data blocks contain all committed changes as
well as any uncommitted changes that were recorded in the redo log.

Rollback segments record database actions that should be undone
during certain database operations. In database recovery, rollback
segments undo the effects of uncommitted transactions previously
applied by the rolling forward phase.

After the roll forward, any changes that were not committed must be
undone. After redo log files have reapplied all changes made to the
database, then the corresponding rollback segments are used. Rollback
segments are used to identify and undo transactions that were never
committed, yet were recorded in the redo log and applied to the
database during roll forward. This process is called rolling back.

Figure 24 – 1 illustrates rolling forward and rolling back, the two steps
necessary to recover from any type of system failure.

Redo Log

Database Database Database

Database with
committed and
uncommitted
transactions

Redo Logs
applied

Rollback Segments
applied

Backup of
Database
that needs
recovery

Database with
just committed
transactions

Redo Log

Committed

Uncommitted

Figure 24 – 1 Basic Recovery Steps: Rolling Forward and Rolling Back

Starting with release 7.3, Oracle can roll back multiple transactions
simultaneously as needed. All transactions system–wide that were
active at the time of failure are marked as DEAD. Instead of waiting for
SMON to roll back dead transactions, new transactions can recover
blocking transactions themselves to get the row locks they need. This
feature is called fast transaction rollback.

What Situations
Benefit from Parallel
Recovery

OSDoc

Recovery Processes

Database Recovery 24–5

Performing Recovery in Parallel

Recovery reapplies the changes generated by several concurrent
processes, and therefore instance or media recovery can take longer
than the time it took to initially generate the changes to a database.
With serial recovery, a single process applies the changes in the redo
log files sequentially. Using parallel recovery, several processes can
simultaneously apply changes from the redo log files.

One form of parallel recovery can be performed by spawning several
Server Manager sessions and issuing the RECOVER DATAFILE
command on a different set of datafiles in each session. However, this
method causes each Server Manager session to read the entire redo log
file.

Instance and media recovery can be parallelized automatically by
specifying an initialization parameter or command–line options to the
RECOVER command. The Oracle Server can use one process to
sequentially read the log files and dispatch redo information to several
recovery processes to apply the changes from the log files to the
datafiles. The recovery processes are started automatically by Oracle,
so there is no need to use more than one session to perform recovery.

In general, parallel recovery is most effective at reducing recovery time
when several datafiles on several different disks are being recovered
concurrently. Crash recovery (recovery after instance failure) and
media recovery of many datafiles on many different disk drives are
good candidates for parallel recovery.

Additional Information: The performance improvement from
parallel recovery is also dependent upon whether the operating
system supports asynchronous I/O. If asynchronous I/O is not
supported, parallel recovery can dramatically reduce recovery
time. If asynchronous I/O is supported, the recovery time may
only be slightly reduced by using parallel recovery. Consult
your operating system documentation to determine whether
asynchronous I/O is supported on your system.

In a typical parallel recovery situation, one process is responsible for
reading and dispatching redo entries from the redo log files. This is the
dedicated server process that begins the recovery session, typically a
Server Manager session or an application designed to use the ALTER
DATABASE RECOVER ... command. The server process reading the
redo log files enlists two or more recovery processes to apply the
changes from the redo entries to the datafiles. Figure 24 – 2 illustrates a
typical parallel recovery session.

Oracle7 Server Concepts24–6

Dedicated
Server

Process

Recovery
Process

Recovery
Process

Redo File

ÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ

Redo File
21

Datafile

ÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ

Datafile
43

Datafile

ÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ

Datafile
21

Figure 24 – 2 Typical Parallel Recovery Session

In most situations, one recovery session and one or two recovery
processes per disk drive containing datafiles needing recovery is
sufficient. Recovery is a disk–intensive activity as opposed to a
CPU–intensive activity, and therefore the number of recovery processes
needed is dependent entirely upon how many disk drives are involved
in recovery. In general, a minimum of eight recovery processes is
needed before parallel recovery can show improvement over a serial
recovery.

Read–Only
Tablespaces and
Instance Recovery

Database Recovery 24–7

Recovery from Instance Failure

When an instance is aborted, either unexpectedly (for example, an
unexpected power outage or a background process failure) or
expectedly (for example, when you issue a SHUTDOWN ABORT or
STARTUP FORCE statement), instance failure occurs, and instance
recovery is required. Instance recovery restores a database to its
transaction–consistent state just before instance failure.

If you experience instance failure during online backup, media
recovery might be required. In all other cases, Oracle automatically
performs instance recovery for a database when the database is
restarted (mounted and opened to a new instance). If necessary, the
transition from a mounted state to an open state automatically triggers
instance recovery, which consists of the following steps:

1. Rolling forward to recover data that has not been recorded in the
datafiles, yet has been recorded in the online redo log, including
the contents of rollback segments.

2. Opening the database. Instead of waiting for all transactions to be
rolled back before making the database available, Oracle enables
the database to be opened as soon as cache recovery is complete.
Any data that is not locked by unrecovered transactions is
immediately available. This feature is called fast warmstart.

3. Marking all transactions system–wide that were active at the time
of failure as DEAD and marking the rollback segments containing
these transactions as PARTIALLY AVAILABLE.

4. Recovering dead transactions as part of SMON recovery.

5. Resolving any pending distributed transactions undergoing a
two–phase commit at the time of the instance failure.

No recovery is ever needed on read–only datafiles after instance
recovery. Recovery during startup verifies that an online read–only file
does not need any media recovery. That is, the file was not restored
from a backup taken before it was made read–only. If you restore a
read–only tablespace from a backup taken before the tablespace was
made read–only, you cannot access the tablespace until you complete
media recovery.

Read–Only
Tablespaces and Media
Recovery

Oracle7 Server Concepts24–8

Recovery from Media Failure

Media failure is a failure that occurs when a file, portion of a file, or a
disk either cannot be read from or cannot be written to because it is
damaged or missing. For example, this can happen if one or more
datafiles are erased accidentally or lost due to a disk head crash.

Recovery from a media failure can take two forms, depending on the
archiving mode in which the database is operated:

• If a database is operated so that its online redo log is only reused
and not archived, recovery from a media failure is a simple
restoration of the most current full backup. All work performed
after the full backup was taken must be redone manually, if
desired, after the backup is used to restore the damaged
database.

• If a database is operated so that its online redo log is archived,
recovery from a media failure can be an actual recovery
procedure, to reconstruct the damaged database to a specified
transaction–consistent state before the media failure.

Recovery from a media failure, no matter what form, always recovers
the entire database to a transaction–consistent state before the media
failure. It is not logical or possible to recover a part of a database (such
as a tablespace) to one point in time, and recover (or leave untouched)
another part of a database to a different point in time; otherwise, the
database would not be in a transaction–consistent state with respect to
itself.

The following sections describe the different types of media recovery
available if a database is operated in ARCHIVELOG mode: complete
media recovery and incomplete media recovery.

Normal media recovery does not check the read–only status of a
datafile. When you perform media recovery of a tablespace that was
once read–only, you have three possible options, depending upon when
the tablespace was made read–only and when you performed the most
recent backup. These scenarios are illustrated in Figure 24 – 3.

Database Recovery 24–9

backup recovery

read–only

read–only

writeable

Case 1

Case 2

Case 3 writeable

read–only

Figure 24 – 3 Type of Media Recovery

The tablespace being recovered is read–only, and
was read–only when the last backup occurred. In
this case, you can simply restore the tablespace
from the backup. There is no need to apply any
redo information.

The tablespace being recovered is writeable, but
was read–only when the last backup occurred. In
this case, you would need to restore the tablespace
from the backup and apply the redo information
from the point of time when the tablespace was
made writeable.

The tablespace being recovered is read–only, but
was writeable when the last backup occurred.
Because you should always backup a tablespace
after making it read–only, you should not
experience this situation. However, if this does
occur, you must restore the tablespace from the
backup and recover up to the time that the
tablespace was made read–only.

Unlike writeable datafiles, read–only datafiles are not taken offline
automatically if a media failure occurs. If you experience a media
failure that affects only a portion of your datafiles, you should take
these datafiles offline and follow the instructions in the Oracle7 Server
Administrator’s Guide for performing recovery of offline tablespaces in
an open database.

Case 1

Case 2

Case 3

Complete Media
Recovery

Closed Database
Recovery

Open Database–Offline
Tablespace Recovery

Open Database–Offline
Tablespace–Individual
Datafile Recovery

Oracle7 Server Concepts24–10

Complete media recovery recovers all lost changes; no work is lost.
Complete media recovery is possible only if all necessary redo logs
(online and archived) are available.

Different types of complete media recovery are available, depending on
the files that are damaged and the availability of the database that is
required during recovery operations.

Complete media recovery of all or individual damaged datafiles can
proceed while a database is mounted but closed and completely
unavailable for normal use. Closed database recovery is used in the
following situations:

• The database does not have to be open (in other words, the
undamaged portions of the database do not have to be available
for use).

• Files damaged by the disk failure include one or more datafiles
that constitute the SYSTEM tablespace or a tablespace containing
active rollback segments.

Complete media recovery can proceed while a database is open.
Undamaged tablespaces of the database are online and available for
use, while a damaged tablespace is offline, and all datafiles that
constitute the damaged tablespace are recovered as a unit. Offline
tablespace recovery is used in the following situations:

• Undamaged tablespaces of the database must be available for
normal use.

• Files damaged by the disk failure do not include any datafiles
that constitute the SYSTEM tablespace or a tablespace containing
active rollback segments.

Complete media recovery can proceed while a database is open.
Undamaged tablespaces of the database are online and available for
use, while a damaged tablespace is offline and specific damaged
datafiles associated with the damaged tablespace are recovered.
Individual datafile recovery is used in the following situations:

• Undamaged tablespaces of the database must be available for
normal use.

• Files damaged by the disk failure do not include any datafiles
that constitute the SYSTEM tablespace or a tablespace containing
active rollback segments.

Complete Media
Recovery Using a Backup
of the Control File

The Mechanisms of
Complete Media
Recovery

Database Recovery 24–11

Complete media recovery can proceed without loss of data, even if all
copies of the control file are damaged by a disk failure. Media recovery
of datafile backups can be done even if the control file is a backup. The
control file is not recovered by media recovery; rather the RESETLOGS
at database open recovers the control file.

The mechanisms that Oracle uses to perform any type of complete
media recovery are best described using an example. The following is
an example of complete media recovery of damaged datafiles while the
database is open and a damaged tablespace is offline. Assume the
following:

• the database has three datafiles:

– USERS1 and USERS2 are datafiles that constitute the USERS
tablespace, stored on Disk X of the database server

– SYSTEM is the datafile that constitutes the SYSTEM
tablespace, stored on Disk Y of the database server

• Disk X of the database server has crashed

• the online redo log file being written to at the time of the disk
failure has a log sequence number of 31

• the database is in ARCHIVELOG mode

Recovery of the two datafiles that constitute the USERS tablespace is
necessary because Disk X has been damaged, and the system has
automatically taken the tablespace offline. In this case, the datafile of
the SYSTEM tablespace is not damaged. Therefore, the database can be
open with the SYSTEM tablespace online and available for use while
recovery is completed on the offline tablespace needing recovery
(USERS).

The following sections describe the phases of complete media recovery.

Phase 1: Restoration of Backup Datafiles After Disk X has been repaired,
the most recent backup files are used to restore only the damaged
datafiles USERS1 and USERS2. After restoration, the datafiles of the
database exist as illustrated in Figure 24 – 4.

Oracle7 Server Concepts24–12

Log Sequence
#31

Log Sequence
#12

Log Sequence
#13

Log Sequence
#31

Disk X Disk Y

Control File

USERS1.ORA USERS2.ORA SYSTEM.ORA

Backup of data files–
log sequence is older

Control file stores
current log sequence

Figure 24 – 4 Phase 1 of Complete Media Recovery

Each datafile header contains the most recent log sequence number
being written at the time the datafile was being written. The restored
backup files will have earlier log sequence numbers than those of the
datafiles that were not affected (not restored) by the disk crash. The
control file contains a pointer to the last log sequence number that was
written.

Phase 2: Rolling Forward with the Redo Log As complete media
recovery proceeds, Oracle applies redo log files (archived and online)
to datafiles, as necessary, as illustrated in Figure 24 – 5. Oracle
automatically detects when a redo log file does not contain any redo
information corresponding to a restored backup datafile. Therefore,
Oracle optimizes the recovery process by not attempting to apply the
redo log file to the restored datafile.

Database Recovery 24–13

Log Sequence
#31

Log Sequence
#12

Log Sequence
#13

Log Sequence
#31

Disk X Disk Y

Control File

USERS1.ORA USERS2.ORA SYSTEM.ORA

Redo log file #12

Redo Log

Redo log files #13 – 31

Redo Log

Applied only to the
damaged data files

Redo LogRedo LogRedo LogRedo LogRedo LogRedo LogRedo LogRedo LogRedo Log

Figure 24 – 5 Phase 2 of Complete Media Recovery

In this case, the redo log file with the log sequence number of 12 is
applied exclusively to USERS1, and the redo log files with log sequence
numbers ranging from 13 to 31 are applied to both USERS1 and
USERS2. No redo log files are applied to the datafiles that do not
require recovery.

There is a flag in the header of the current redo log that indicates if it is
the last available redo log file to apply to the restored datafiles.

Phase 3: Rolling Back Using Rollback Segments Once the necessary redo
log files have been applied to the damaged datafiles, all uncommitted
data that exists as a result of the roll forward in Phase 2 must be
removed. This is completed by applying the deferred rollback segment
as the tablespace is brought online, as illustrated in Figure 24 – 6.

Incomplete Media
Recovery

Oracle7 Server Concepts24–14

Log Sequence
#31

Log Sequence
#31

Log Sequence
#31

Log Sequence
#31

Disk X Disk Y

Control File

USERS1.ORA USERS2.ORA SYSTEM.ORA

Rollback
Segments

Applied to recovered
datafiles

Figure 24 – 6 Phase 3 of Complete Media Recovery

After Phase 3 is complete, notice how the log sequence number
contained in the datafile headers of the previously damaged and
restored datafiles, USERS1 and USERS2, has been updated during
Phase 2 of the recovery process. The USERS tablespace can now be
brought online. Deferred rollback segments are applied to the files of
the offline tablespace as it is brought back online. Once the rollback is
complete, the datafiles USERS1 and USERS2 exist as they did at the
instant before the disk failure. Once this is complete, all data in the
tablespace is now consistent and available for use.

In specific situations (for example, the loss of all active online redo log
files, or a user error, such as the accidental dropping of an important
table), complete media recovery may not be possible or may not be
desired. In such situations, incomplete media recovery is performed to
reconstruct the damaged database to a transaction consistent state
before the media failure or user error.

In most cases, unless desired, incomplete media recovery is not
necessary if the online redo log has been mirrored to protect against
having a single point of failure.

There are different types of incomplete media recovery that might be
used, depending on the situation that requires incomplete media
recovery: cancel–based, time–based, and change–based incomplete
recovery.

Cancel–Based Recovery

Time–Based and
Change–Based Recovery

Database Recovery 24–15

In certain situations, incomplete media recovery must be controlled so
that the administrator can cancel the operation at a specific point.
Specifically, cancel–based recovery is used when one or more redo log
groups (online or archived) have been damaged by a media failure and
are not available for required recovery procedures (for example, the
online redo log is not mirrored, and the single active online redo log file
has been damaged by a disk failure). If one or more redo log groups are
not available, the missing redo log groups cannot be applied during
recovery procedures. Therefore, media recovery must be controlled so
the recovery operation is terminated after the most recent, undamaged
redo log group has been applied to the datafiles.

Incomplete media recovery is desirable if the database administrator
would like to recover to a specific point in the past. This might be
useful in the following situations:

• A user accidentally dropped a table and noticed the approximate
time that the error was committed. The database administrator
can immediately shut down the database and recover it to a
point in time just before the user error.

• Part of an online redo log file (of a non–mirrored online redo log)
might become corrupt due to a system failure. Therefore, the
active online redo log file is suddenly unavailable, the database
instance is aborted, and media recovery is now required. The
redo entries in the most recently used online redo log file are
valid up to the place that the corrupt data was written; later
entries are invalid. Only the undamaged part of the current
online redo log file can be applied. In this case, the database
administrator can use time–based recovery to stop the recovery
procedure once the valid portion of the most recent online redo
log file has been applied to the datafiles.

In both of these cases, the endpoint of incomplete media recovery can
be specified by a point in time or a specific system change number
(SCN). An SCN is recorded in the redo log, along with the redo entries,
each time that a transaction is committed. If a time is given, the
database is recovered to the transaction consistent state just before the
specified time. If an SCN is given, the database is recovered to the
transaction committed just before the specified SCN.

The Mechanisms of
Incomplete Database
Recovery

Oracle7 Server Concepts24–16

Incomplete database recovery proceeds in the same way as complete
media recovery, with a few exceptions:

• All datafiles must be restored using backup files completed
before the intended point of recovery (the files could even come
from different partial backups taken at different times). This way,
the entire database is taken to a point in time before the recovery
point and rolled forward to the intended point of recovery.

• For best results, the control file used during incomplete media
recovery should reflect the physical structure of the database for
the intended time of recovery. If you open the database using the
RESETLOGS option, or if you open the database after issuing a
CREATE CONTROLFILE statement, Oracle cross–checks the
control file with the current data dictionary. If any datafiles have
been added to, or dropped from, the data dictionary, Oracle
updates the control file accordingly. Any other differences are
reported with error messages.

• Recovery might terminate before all the available redo logs are
applied. The recovery operation can be canceled manually, or it
will be terminated automatically when the stop point is reached.

• If the database’s log is reset as part of incomplete media
recovery, all tablespaces containing datafiles that were offline
(during the incomplete recovery) must be dropped, unless the
tablespace was taken offline normally. Therefore, if you do not
want to lose data corresponding to such tablespaces, restore the
control file and bring the offline datafiles online before
incomplete recovery.

• If an incomplete media recovery is actually a complete recovery
(for example, all available redo logs were applied because a
future time or SCN was specified), the database may be opened
without resetting the log sequence. However, after an incomplete
media recovery is finished (or complete recovery using a backup
control file), the current log sequence number for the database
(as noted in all datafiles and control files) must be reset to 1. This
operation invalidates the redo entries present in all online redo
log files and archived redo log files. After the log sequence is
reset, the database’s log (both online and archived) exists as if it
were just created, and the online redo log files do not contain any
redo entries yet. Figure 24 – 7 illustrates this concept.

Database Recovery 24–17

TIME

Redo Log
#234

Redo Log
#235

Redo Log
#236

Redo Log
#237

Redo Log
#238

Redo Log
#1

Redo Log
#2

Redo Log
#3

Incomplete Media Recovery

ALTER DATABASE
 OPEN RESETLOGS;

Figure 24 – 7 Effects of Resetting the Log Sequence Number after Incomplete
Media Recovery

A P P E N D I X

A

T

Operating System–Specific Information A–1

Operating
System–Specific
Information

his manual occasionally refers to other Oracle manuals that contain
detailed information for using Oracle on a specific operating system.
These Oracle manuals are often called installation and configuration
guides, although the exact name may vary on different operating
systems. Throughout this manual, references to these manuals are
marked with the icon shown in the left margin.

This appendix lists all the references in this manual to operating
system–specific Oracle manuals, and lists the operating system (OS)
dependent initialization parameters. If you are using Oracle on
multiple operating systems, this appendix can help you ensure that
your applications are portable across these operating systems.

Operating system–specific topics are listed alphabetically, with page
numbers of sections that discuss these topics.

• Auditing

• operating system audit trail, 19–6

• auditing with the OS audit trail, 19–6

Oracle7 Server ConceptsA–2

• Authentication through the operating system

• of users through operating system, 17–3

• of database administrators, 2–2, 17–5

• Background Processes

• creating, 9–5

• multiple DBWR processes, 9–9

• using ARCH, 9–12

• Client/server communication, 9–33

• Communication Software, 9–42

• Configuring Oracle, 9–30

• Datafiles

• size of file header, 4–10

• Dedicated Server, requesting, 9–38

• Indexes, overhead of index blocks, 5–21

• INTERNAL, prerequisites for connecting as, 2–2

• Parallel recovery, 24–5

• Roles, operating system management of, 18–14

• Rollback segments, number of transactions per, 3–19

• Software code areas, shared, 9–16

• SQL*Net

• choosing and installing drivers, 9–42

• including drivers, 20–6

Index–1

Index

A
access control

discretionary. See discretionary access control
mandatory. See mandatory access control
password encryption, 17–4
privileges, 18–2
See also privileges, roles

access paths
defined, 13–4
list of, 13–14
optimization, 13–12

ADMIN OPTION, 18–3
See also privileges; roles

AFTER triggers
defined, 15–8
when fired, 15–11
See also triggers

ALERT files, 9–14
ALL_ views, 8–6
ALL_LABELS view, 6–12
ALL_UPDATABLE_COLUMNS view, 5–12
ALTER command, 10–8
ALTER TABLE ... DEALLOCATE UNUSED,

3–14
ANALYZE command

creating histograms, 13–8
shared pool and, 9–24

anonymous PL/SQL blocks
about, 11–10
vs. stored procedures, 14–8

ANSI SQL standard
datatypes of, 6–14
Oracle certification, 1–3

ANSI/ISO SQL standard
data concurrency, 10–2
isolation levels, 10–13

applications
application triggers vs. database triggers. See

triggers
calling packages, 14–4
calling procedures, 14–2
can find constraint violations, 7–6
data dictionary references, 8–4
database access through, 9–29
database links and, 21–5
dependencies of, 16–9

���� ����� ������������
discrete transactions, 12–7
enhancing security with, 1–37, 7–5
network communication and, 20–5
object dependencies and, 16–10
procedures and, 14–8
program interface and, 9–41
roles and, 18–11
sharing code, 9–16
transaction termination and, 12–5

ARCH. See archiver process
architecture

client/server, 1–45
of Oracle. See Oracle, architecture

archived redo log. See redo log files, archived

Oracle7 Server ConceptsIndex–2

ARCHIVELOG mode
archiver process (ARCH) and, 9–12
defined, 22–18
overview, 1–43
partial backups and, 23–3
partial database backups, 1–44
when full backups needed in, 23–3

archiver process (ARCH)
archiving online redo log files, 22–17
automatic archiving, 22–19
defined, 1–22
described, 9–12

archiving, defined, 1–43
AUDIT command, locks, 10–27
audit trail. See auditing, audit trail
auditing

audit options, 19–3
audit records, 19–3
audit trail, 19–3
audit trail records, 19–3
by access, 19–11
�����	��
���� �����

by session, 19–10
��������	�� ������ �����

data dictionary used for, 8–4
DDL statements, 19–6
described, 1–38 to 1–40
distributed databases and, 19–5
DML statements, 19–6
examples of, 19–8
matching database and OS usernames, 17–3
object, 19–2, 19–7
operating system audit trails, 19–5
OS audit trail, 19–6
overview of, 19–2 to 19–5
privilege use, 19–2, 19–7
range of focus, 19–3, 19–9
security and, 19–6
statement, 19–2, 19–6
successful executions, 19–9
transaction independence, 19–4
types of, 19–2
unsuccessful executions, 19–9
user, 19–11
when options take effect, 19–5

authentication
described. See passwords
network, 17–4
operating system, 17–3
Oracle, 17–4

B
B*–tree indexes, 5–21
back–ends, 20–2
background processes

creation of, 2–3
defined, 1–21
described, 9–5
diagrammed, 9–6
trace files for, 9–14
See also individual process names; processes

backups
consistent, 23–5
control files, 23–8
datafiles, 23–3
for read–only tablespaces, 23–8 to 23–10
full, 1–43 to 1–45, 23–2
fuzzy, 23–4
inconsistent, 23–4
online, diagrammed, 23–7
overview of, 1–40, 23–2 to 23–6
partial, 1–44, 23–3
types of, 1–43
using Export to supplement, 23–8

base tables, 1–9
BEFORE triggers

defined, 15–8
when fired, 15–11
See also triggers

blocking transactions, 10–13
blocks

anonymous, 11–7
See also data blocks; PL/SQL blocks

branch blocks. See indexes
buffer cache, writing of, 9–7
buffers, database. See database buffers

Index–3

business rules
enforcing in application code, 7–5
enforcing using stored procedures, 7–5
enforcing with constraints, 1–29, 7–1

���� ���� � ������	����
	��	��	��� ���� ���� ��� ���

enforcing with triggers, 1–30
���� ���� � �������

C
caches

buffer cache, 9–17
cache hit, 9–18
cache miss, 9–18
data dictionary, 8–4

���� ���� � �	�	� �������	��
���	����� ���� ����

database buffer, 1–19
���� ���� � �	�	
	��
�����

dictionary, 9–23
library, memory allocation for, 9–22
statistics on, 9–11
writing of buffers, 9–7

call interface. See Oracle call interface (OCI)
cannot serialize access, 10–13
cartesian products, 13–11
CASCADE actions, DELETE statements and,

7–15
chaining of rows, 3–10, 5–4

See also rows; data blocks
CHAR datatype

blank–padded comparison semantics, 6–3
defined, 6–2
when to use, 6–3

character sets, for various languages. See NLS
Check constraints

defined, 7–16
subqueries prohibited in, 7–16

check constraints, in partition views, 5–14
checkpoint process (CKPT)

defined, 9–11 to 9–13
during checkpoints, 22–11
enabling and disabling, 9–11
if not present, 9–11

checkpoints
after a time interval, 22–10
at log switches, 22–10
checkpoint process, 9–11
control files and, 22–22
database, 22–10
datafile, 22–10
DBWR process, 9–11
during online backups, 23–4
events during, 22–11
fast, 22–11
forcing, 22–11
log writer process performing, 9–11
normal, 22–11
online redo log files and, 22–10
overview of, 22–9 to 22–13
Parallel Server and, 22–11
performance effect of, 22–9
process performing (CKPT), 1–21
shutting down an instance and, 22–10
signal DBWR process, 9–8
statistics on, 9–11
taking a tablespace offline and, 22–10
types of, 22–10
when checkpoints occur, 22–10

child tables, 7–12
CKPT. See checkpoints, process performing
client/server architectures, 9–41

diagrammed, 20–3
direct and indirect connections, 21–2
distributed databases and, 21–2
distributed processing in, 20–3
overview of, 1–45, 20–2 to 20–5

clients
client/server architecture, 20–2
defined, 1–45

cluster keys. See clusters, keys

Oracle7 Server ConceptsIndex–4

clusters
choosing data to cluster, 5–25
defined, 1–12
dictionary locks and, 10–27
hash, 5–27 to 5–34
����������� ��� ������ ����� 	���
���������� ������������ 	���
����������� ����� ������� 	���
����� ������� 	���� ��� 	���
������ ���� �����
�������� ���� 	���

how stored, 3–16
index, 5–27
����������� ����� ������ 	���

indexes and, 5–18
joins and, 5–25
keys, 5–25, 5–26
������� ��������� ��� ������� 	�

overview of, 5–23 to 5–27
performance considerations of, 5–25
ROWIDs and, 5–6
scans of, 13–13
setting parameters of, 5–26 to 5–28
storage format of, 5–26
storage parameters of, 5–4

columns
correlation names, triggers use of, 15–7
default values for, 5–7
defined, 1–9
described, 5–3
integrity constraints and, 5–3, 5–7
maximum in concatenated indexes, 5–20
maximum in view or table, 5–9
order of, 5–6
prohibiting nulls in, 7–7
USER pseudo–column, 18–6

COMMIT command, two–phase commit and,
21–6

committing transactions
defined, 12–2
fast commit, 9–10
group commits, 9–10
implementation, 9–10
overview, 1–26
writing the redo log buffer and, 22–7

communication protocols. See Network com-
munication

compatibility, 1–4
compiled triggers, 15–14
composite indexes, 5–19

See also indexes, composite
compression, of free space in data blocks, 3–9
concatenated indexes, 5–19

See also indexes, composite
concurrency

defined, 1–30
described, 10–2
enforced with locks, 1–32
limits on
���� ��������� �
���
���� ������ �
���

manual locks and, 10–29
networks and, 20–4
restrictions on, 1–38
transactions and, 10–17

configuration, of a database. See parameter
files

CONNECT INTERNAL, 2–2
CONNECT role, 18–14
connectibility, 1–4, 21–8
connections

defined, 9–30
listener process and, 9–13
restricting, 2–3
sessions contrasted with, 9–30
with administrator privileges, 2–2

consistency of data. See data, consistency of
consistent backups, 23–5

See also backups
constants, in stored procedures, 11–9

Index–5

constraints
alternatives to, 7–5
applications can find violations, 7–6
Check, 7–16
composite UNIQUE keys, 7–10
default values and, 7–19
defined, 5–3
disabling temporarily, 7–6
effect on performance, 7–6
enforced with indexes, 5–20
FOREIGN KEY, 1–30, 7–11
mechanisms of enforcement, 7–17
NOT NULL, 7–7
overview, 1–29
PRIMARY KEY, 1–29, 7–10 to 7–11
prohibited in views, 5–9
referential
������� ��� ��������
���� ���
��

������������������
���

triggers cannot violate, 15–11
triggers contrasted with, 15–5
types listed, 1–29, 7–1
UNIQUE key, 1–30, 7–8
what happens when violated, 7–5
when evaluated, 5–7, 7–17
when triggers mandated instead, 7–4

contention
deadlocks, 10–4
for rollback segments. See rollback segments,

contention for
lock escalation does not occur, 10–5

control files
archived redo log information in, 22–17
backing up, 23–8
changes recorded, 22–22
checkpoints and, 22–22
contents, 22–21
defined, 1–16
during incomplete recovery, 24–16
how specified, 2–6
log sequence numbers and, 22–9, 24–12
media recovery and, 22–17
multiplexed, 1–43, 22–22
overview, 22–21 to 22–24
physical database structure, 1–5
recovery and, 1–43
used in mounting, 2–4
using backups of in recovery, 24–11

correlation names, triggers use of, 15–7
cost–based optimization, 13–6
CPU time limit, 17–9
CREATE PACKAGE command, locks, 10–27
CREATE PROCEDURE command, locks,

10–27
CREATE SYNONYM command, locks, 10–27
CREATE TABLE command

locks, 10–27
parallel query option, 3–11

CREATE TRIGGER command, locks, 10–27
CREATE VIEW command, locks, 10–27
cross joins, 13–11
cursors

defined, 11–6
maximum number of, 9–25
object dependencies and, 16–7
opening, 9–25
overview of, 1–19
private SQL areas and, 9–22, 11–6
recursive, 9–25
recursive SQL and, 9–25
stored procedures and, 11–9

D
data

access, procedures, 14–7
access to, 1–24
�������� ���� �
��
�������"� �������� �
��

concurrent access to, 10–2
consistency of
��������� ���

����������� ����
�!������ ��� ����� ��� ����� ������ ��� ����	
������� ����
����� ��������� ������ ��� ����	
��������� ������ ���

���������� �� ���� ���

������"���� ������������ ����	

distributed manipulation of, 1–46
���� ����� �������� ������������� �����

�����
how stored in tables, 5–3

Oracle7 Server ConceptsIndex–6

data (continued)
integrity of, 1–30, 5–3, 7–2 to 7–4

���� ����� �����������
������ ������������� ���

����������� ��� ������������ ��������� ��	

��� ���
���������� !���� ���������� ���
� �� ��!�� ����
����� ����������"�� ����
������������� ���

���� ���� � ������������ ��������"
�!�������� �������� ���

�"����� ���� ��� ���

locks on, 10–19 to 10–25
replicating, 1–47, 21–10
storage of in clusters, 5–4

data access. See data, access to
data blocks, 1–13

allocating for extents, 3–13
cached in memory, 9–8
clustered, 5–26
coalescing free, 3–13
controlling free space in, 3–5
format, 3–3 to 3–8
free lists and, 3–9
hash keys and, 5–32 to 5–34
header’s row directory, 5–6
how rows stored in, 5–4
overview, 3–2 to 3–11
read–only transactions and, 10–29
shared in clusters, 5–23
shown in ROWIDs, 6–9
space available for inserted rows, 3–9
stored in the buffer cache, 9–17
writing to disk, 9–8

Data Definition Language (DDL)
auditing, 19–6
defined, 1–24
described, 11–4
locks, 10–26

data dictionary
access to, 8–3
adding objects to, 8–4
ALL prefixed views, 8–6
audit trail (SYS.AUD$), 8–4
cache, 9–23
��������� ���� ���

data dictionary (continued)
content of, 9–23
DBA prefixed views, 8–6
defined, 1–16
dependencies tracked by, 16–3
DUAL table, 8–6
dynamic performance tables, 8–7
locks, 10–26
overview of, 8–2 to 8–4
owner of, 8–3
prefixes to views of, 8–5
public synonyms for, 8–5
row cache and, 9–23
structure of, 8–3
updates of, 8–4
USER prefixed views, 8–5
uses of, 8–3
views used in optimization, 13–7

data locks
conversion, 10–17
duration of, 10–17
escalation, 10–17

Data Manipulation Language (DML)
auditing, 19–6
defined, 1–25
described, 11–3
locks acquired by, 10–24
privileges controlling, 18–4
triggers’ use of, 15–13

Data manipulation statements (DML), allowed
in distributed transactions, 21–6

data models, 1–7
data segments, 3–16, 5–3

See also segments
database administrators (DBA’s)

authentication, 17–4 to 17–7
connecting with administrator privileges,

2–2
data dictionary views of, 8–6
password files, 17–5
responsibilities for backup, 22–2

Index–7

database buffers
after committing transactions, 12–5
buffer cache, 9–7, 9–17
checkpoints and, 22–9
clean, 9–7
committing transactions, 9–10
defined, 1–19
dirty, 9–7, 9–17
free, 9–17
pinned, 9–17
size of cache, 9–18
writing of, 9–7

database links
defined, 1–12
overview of, 21–5 to 21–10
See also databases, distributed

database management systems (DBMS’s), prin-
ciples, 1–7 to 1–9

database management systems (DBMSs)
Oracle Server, 1–4
See also databases

database triggers. See triggers
database writer process (DBWR)

checkpoints and, 22–9
checkpoints signal, 9–8
defined, 9–7
least recently used algorithm (LRU), 9–8
multiple, 9–9
overview of, 1–21
time–outs, 9–9
when active, 9–8
writing to disk at checkpoints, 9–11

databases
access control, password encryption, 17–4
accessing non–Oracle, 21–8
backing up, 1–43 to 1–45, 23–2 to 23–6
closing, 2–5

��%(* $�� *��� $)*�$���� ���
configuring, 2–6 to 2–8
contain schemas, 17–2
defined, 1–7
dismounting, 2–6
distributed

���� ���� � �)*(�+*��� ��*���)�)
"%��"�� ���	
$%��)� %��� ���	
%,�(, �-� %��� ����� *%� ����

(�#%*��� ���	
) *�� �+*%$%#.� %��� ����
)*�*�#�$*� %&* # /�* %$� %$�� �����
*-%�&��)�� �%## *�� ���	

global database names, changing, 9–25
implementation of, 4–2 to 4–4
logical structure of, 1–5
logical structures (objects) in, 1–8
modes of

����������� �����
������������� �����

mounting, 2–3 to 2–5
open and closed, 2–2
opening, 2–4 to 2–6

��'+ ($�� (%""���!�)��#�$*)� �$��� ����
physical structure, 1–5, 1–15 to 1–18, 3–2 to

3–29
physical structure of, revealing with RO-

WIDs, 6–10 to 6–12
recovery of, 1–40

���� ����� (��%,�(.
scaled, 20–4
shutting down, 2–5
size of

�$"�(� $��� ���
�%-� ��*�(# $���� ��	

standby, 22–23
starting up, 2–2

�%(����� ��	
usage of, limitations on, 17–8

datafiles
adding to tablespaces, 4–4 to 4–6

��$$%*� �� (����%$".�� ���
backing up, 23–3
backups, media recovery and, 24–11
contents of, 4–10
in online or offline tablespaces, 4–11
log sequence numbers and, 24–12
named in control files, 22–21
offline during incomplete recovery, 24–16
overview, 1–15 to 1–17
overview of, 1–8 to 1–10, 4–10 to 4–12
physical database structure, 1–5
read–only, 4–8

(��%,�(.�� ���

recovery of, 24–10
relationship to tablespaces, 4–2

Oracle7 Server ConceptsIndex–8

datafiles (continued)
shown in ROWIDs, 6–9
taking offline, 4–11

datatypes
ANSI, 6–14
CHAR, comparisons of values, 6–3
character, 6–2
choosing a character datatype, 6–3
conversions of
	�
���� ���
������� 	�
���� ������ ����� ��

����
	�
���� ��� ����	�
���� ������� ������ ����

DB2, 6–14
how they relate to tables, 5–3
list of available, 6–2
LONG, storage of, 5–6
numeric, 6–4
of columns, 1–9
SQL/DS, 6–14
VARCHAR2, comparison of values, 6–3
See also individual datatype names

DATE datatype
arithmetic with, 6–7
changing default format of, 6–6
described, 6–6
Julian dates, 6–6

DB_BLOCK_BUFFERS parameter
buffer cache and, 9–18
system global area size and, 9–26

DB_BLOCK_LRU_LATCHES parameter, 9–8
DB_BLOCK_SIZE parameter, System Global

Area size and, 9–26
DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 13–17
DB_FILES parameter, 9–28
DB_WRITERS, 9–9
DBA role, 18–14
DBA_ views, 8–6
DBA_SYNONYMS.SQL script, using, 8–6
DBA_UPDATABLE_COLUMNS view, 5–12
DBMS. See databases
DBMS_SQL package, 11–10 to 11–12
DBWR. See database writer process
DDL. See Data Definition Language

deadlocks
artificial, 9–37
avoiding, 10–18
defined, 10–4
detection of, 10–17
distributed transactions and, 10–18

deallocating extents, 3–14
dedicated servers, 9–32

defined, 1–20
examples of use, 9–39
multi–threaded servers contrasted with, 9–34

default values, 5–7
See also columns; datatypes
constraints effect on, 5–7, 7–19

delete cascade, 7–15
DELETE command

foreign key references and, 7–15
freeing space in data blocks, 3–9

delete restrict, 7–15
dependencies

between schema objects, 16–2
���� ����� �����
� ��������� ����������

local, 16–8
non–existent referenced objects and, 16–6
on non–existence of other objects, 16–6
Oracle Forms triggers and, 16–10
privileges and, 16–6
remote objects and, 16–8
shared pool and, 16–7

dependent tables, 7–12
dictionary cache locks, 10–28
different row–writers block writers, 10–13
dirty buffer, 9–17
dirty read, 10–3, 10–13
dirty write, 10–13
disaster recovery, 22–23
discrete transaction management, summary,

12–7
discretionary access control, 1–34, 17–1
disk failures. See failures, media

Index–9

disk space
controlling allocation for tables, 5–3
datafiles used to allocate, 4–10

���� ���� � ��	������

dispatcher processes (Dnnn)
defined, 1–22
described, 9–13
limiting SGA space per session, 17–11
listener process and, 9–13
network protocols and, 9–13
prevent startup and shutdown, 9–38
response queue and, 9–37
user processes connect through SQL*Net,

9–13
distributed databases

auditing and, 19–5
client/server architectures and, 20–2
database links, 21–5 to 21–10
deadlocks and, 10–18
dependent objects and, 16–8
diagrammed, 21–2
distributed queries, 21–6
distributed updates, 21–6
global object names, 21–4
heterogeneous, 21–8 to 21–11
nodes of, 21–2
overview of, 1–45 to 1–49, 21–2 to 21–9
performance and, 21–8
procedure dependencies in, 16–9
recoverer process (RECO) and, 9–12 to 9–14
referential integrity and, 7–4
remote queries and updates, 21–6
server can also be client in, 20–2
site autonomy of, 21–3
snapshot refresh process (SNPn), 9–13
SQL*Net, 21–8
statement optimization on, 13–18 to 13–20
table replication, 1–47
transparency of, 21–7
two–phase commit, 1–46
See also databases, distributed; dependencies

distributed processing environment
client/server architecture in, 20–3
described, 20–2

distributed transactions
defined. See transactions, distributed
in a heterogeneous environment, 21–9
involving non–Oracle databases, 21–8

DISTRIBUTED_TRANSACTIONS parameter,
9–12

DML. See Data Manipulation Language
Dnnn. See dispatcher processes
drivers, 9–42
DUAL table, 8–6
dynamic performance tables (V$ tables), 8–7
dynamic SQL, DBMS_SQL package, 11–10 to

11–11

E
embedded SQL statements, 1–25, 11–5
equijoins, defined, 13–11
errors

during PL/SQL compilation, 14–15
internal, tracked in trace files, 9–14

exceptions
during trigger execution, 15–12
raising, 11–10
stored procedures and, 11–9

exclusive locks
DDL locks, 10–26
defined, 10–4
row locks (TX), 10–20
RX locks, 10–22
table locks (TM), 10–20

exclusive mode, 2–4
See also Parallel Server, exclusive mode

execution plans
execution sequence of, 13–4
location of, 9–21
overview of, 13–2 to 13–5
viewing, 13–5

EXP_FULL_DATABASE role, 18–14
explicit locking, 10–29 to 10–36

See also locks
Export utility, use in backups, 23–8

Oracle7 Server ConceptsIndex–10

extents
allocating data blocks for, 3–13
allocation to rollback segments
������ �������� ��������� ����
��� �������� ��������� ���

allocation, how performed, 3–13
as collections of data blocks, 3–10
deallocation, when performed, 3–14
deallocation from rollback segments, 3–22
defined, 3–3
dropping rollback segments and, 3–23
in rollback segments, changing current, 3–19
incremental, 3–11
initial, 3–10
overview of, 3–10 to 3–14
parallel query option, 3–11

F
failures

archiving redo log files, 22–20
database buffers and, 24–3
database instance, 1–41
described, 22–2
during checkpoints, 22–11
instance, 22–3
�������� ������ ����

internal errors, tracked in trace files, 9–14
media
���������� ����
������������ ������� ����� ����� ����� �����
�������� ������ ���	� ��� �����

network, 22–3
safeguards provided, 22–5
statement and process, 1–40
types of, 1–40
user error, 1–40, 22–2

fast commit, 9–10
fast transaction rollback, 24–4
fast warmstart, 24–7
file management locks, 10–28
files

operating system, 1–5
X, 7–2

FIPS standard, 1–3
flagging of nonstandard features, 1–3

FOREIGN KEY constraints
changes in parent key values, 7–15
deleting parent table rows and, 7–15
maximum number of columns in, 7–12
nulls and, 7–14
updating parent key tables, 7–15

foreign keys
See also data, integrity of
defined, 1–30
partially null, 7–14
privilege to use parent key, 18–5

free lists, 3–9 to 3–11
free space (section of data blocks), 3–5
front–ends, 20–2
full backups, 23–2
full table scans, 13–13
functions

contrasted with procedures, 1–28
described, 14–2
hash, 5–31 to 5–32
in views, 5–11
packages can contain, 14–3
privileges for, 18–7
procedures contrasted with, 14–6

fuzzy backups, 23–4
See also backups

fuzzy reads, 10–3

G
gateways, 21–9
global object names, 1–12
GRANT ANY PRIVILEGE system privilege,

18–3
GRANT command, locks, 10–27
granting, privileges and roles. See privileges,

granting; roles, granting
group commits, 9–10

Index–11

H
handles, for SQL statements. See cursors
hash clusters

overview of, 1–12
See also clusters; clusters, hash

HASHKEYS parameter, 5–30
headers

of data blocks, 3–4
of row pieces, 5–4

���� ���� � ��� ������
� �� �

HIGH_VALUE column, of USER_TAB_COL-
UMNS view, 13–18

histograms, 13–8

I
IMP_FULL_DATABASE role, 18–14
Import utility, use in recovery, 23–8
in–doubt transactions. See transactions,

in–doubt
inconsistent, backups, 23–4
index segments, 1–14, 3–16
indexes

B*–tree structure of, 5–21 to 5–23
branch blocks, 5–22
cluster, 5–27
���������� ���� ������ ����� ��� ���	
���������� ����

composite, 5–19
concatenated, 5–19
described, 1–11
internal structure of, 5–21 to 5–23
keys and, 5–20
leaf blocks, 5–22
location of, 5–20
LONG RAW datatypes prohibit, 6–8
non–unique, 5–19
nulls and, 5–7
overview of, 5–18 to 5–23
parallel query option, 3–11
performance and, 5–18
PRIMARY KEY constraints enforced with,

7–11

indexes (continued)
ROWIDs and, 5–22
scans of, 13–13
storage format of, 5–21
unique, 5–19
UNIQUE key constraints enforced with, 7–9
when used with views, 5–11

INIT.ORA files. See parameter files
initialization parameters,

DB_BLOCK_LRU_LATCHES, 9–8
INSERT command

foreign key references and, 7–15
free lists and, 3–9

instance recovery. See recovery, instance
instances

acquire rollback segments, 3–23
associating with databases, 2–3, 2–6
configuration of, 9–29 to 9–38
defined, 1–19
described, 9–2
diagrammed, 9–7
failure in, 1–41, 22–3
memory structures of, 9–15
multi–process, configurations of, 9–29
multiple–process, 9–4
overview of, 1–5
recovery of
��������� 	���
����������� ����� ��� ���	

restricted mode, 2–3
sharing databases, 1–6

���� ����� ������� ������
shutting down, 2–5, 2–6
single–process, 9–3
starting, 2–3
virtual memory, 9–15

integrity constraints. See constraints
integrity rules

in a relational database, 1–7
See also data, integrity of; constraints

INTERNAL, 2–2
audit records not generated by, 19–4

internal errors, tracked in trace files, 9–14

Oracle7 Server ConceptsIndex–12

INVALID status, 16–2
See also name of object to which status ap-

plies
IS NULL predicate, 5–7
ISO SQL standard, 1–3

See also ANSI SQL standard
isolation levels

choosing, 10–13
comparing, 10–12
read committed, 10–9
serializable, 10–9
setting, 10–8

ITSEC security standard, 1–3

J
jobs, 9–3
join views, 5–12
joins

cartesian products, 13–11
clusters and, 5–25
cross, 13–11
defined, 13–11
encapsulated in views, 1–9, 5–10
equijoins, 13–11
nonequijoins, 13–11
outer, 13–11

K
key values, 1–30

See also keys
keys

cluster, 1–12, 5–25
���� ����� 	��������� ����

foreign, 7–11
hash, 5–30
in constraints, 1–29
indexes and, 5–20
maximum storage for values, 5–20
parent, 7–12
primary, 7–10 to 7–11
referenced, 1–30, 7–12

keys (continued)
unique
	���������� ����� ����

�����
�� ���
���� �����	�
�� ���� ��� ����

L
latches

defined, 10–19
described, 10–27
LRU, 9–8

LCKn. See lock processes (LCKn)
leaf blocks. See indexes
least recently used algorithm (LRU)

database buffers and, 9–17
latches, 9–8

LGWR. See log writer process
library caches

memory allocation for, 9–22
size of, 9–22

licensing
concurrent usage, 17–12
named user, 17–14
viewing current limits, 17–13

listener processes, 9–13
local databases, 1–46

See also see also databases, distributed
location transparency, 1–46

See also databases, distributed
lock processes (LCKn), 1–22, 9–12

See also Parallel Server
locks

after committing transactions, 12–5
automatic, 1–32, 10–16, 10–18
conversion, 10–17
data, 10–19 to 10–25

�������� ���� �����

deadlocks, 10–4, 10–17
����
���� �����

Index–13

locks (continued)
dictionary, 10–19, 10–26
��������� ����� ����

��������� ���� ����

����������� ����	
������� ����	

dictionary cache, 10–28
distributed, 10–19
DML acquired, 10–25
������������ �����

escalation, 10–17
escalation does not occur, 10–5
exclusive, 10–4
exclusive table locks (X), 10–23
file management locks, 10–28
how Oracle uses, 10–16
internal, 10–19, 10–27
latches and, 10–27
log management locks, 10–28
manual, 1–33, 10–29 to 10–36
��������� ��� ��������� ������ ��� ����	

Oracle Lock Management Services, 10–36
overview of, 1–32, 10–3 to 10–5
parallel cache management (PCM), 10–19
parse, 10–27
rollback segment, 10–28
row (TX), 10–20
row exclusive locks (RX), 10–22
row share table locks (RS), 10–21
share, 10–4
share row exclusive locks (SRX), 10–23
share table locks (S), 10–22
share–sub–exclusive locks (SSX), 10–23
sub–exclusive table locks (SX), 10–22
sub–share table locks (SS), 10–21
table, modes of, 10–20 to 10–22
table (TM), 10–20
tablespace, 10–28
types, 10–19
types of, 10–19

log management locks, 10–28

log sequence numbers, 1–42
after datafile recovery, 24–14
control files and, 22–9, 24–12
datafiles and, 24–12
during recovery, 24–12
multiplexed redo logs and, 22–13
resetting to 1, 24–16
See also redo log files

log switches
described, 22–9
log sequence numbers, 22–9
multiplexed redo log files and, 22–13

log writer process (LGWR)
archiver process (ARCH) and, 22–17
checkpoint process (CKPT) and, 9–11
defined, 1–21
group commits, 9–10
manual archiving and, 22–20
multiplexed redo log files and, 22–13
online redo logs available for use, 22–7
overview, 9–9 to 9–11
redo log buffers and, 9–19
system change numbers, 12–5
trace files and, 22–14
writing to online redo log files, 22–7

LOG_BUFFER parameter
defined, 9–19
System Global Area size and, 9–26

LOG_CHECKPOINT_INTERVAL parameter,
22–10

LOG_CHECKPOINT_TIMEOUT parameter,
22–10

LOG_FILES parameter, 9–28
logical blocks. See data blocks
logical database structure. See databases; log-

ical structure of
logical reads limit, 17–10
logical structures. See structures, logical
LONG datatype

automatically the last column, 5–6
defined, 6–7
restrictions on, 6–7
storage of, 5–6

LONG RAW datatype
defined, 6–8
indexing prohibited on, 6–8

Oracle7 Server ConceptsIndex–14

restrictions on, 6–7
similarity to LONG datatype, 6–8

LOW_VALUE column, of USER_TAB_COL-
UMNS view, 13–18

LRU. See least recently used algorithm

M
MAC. See mandatory access control
mandatory access control, 1–39
manual locking, 10–29 to 10–36
match

full, 7–14
none, 7–14
partial, 7–14
See also referential integrity

media failure, described. See failures, media
memory

content of, 9–15 to 9–17
cursors (statement handles), 1–19
library cache, allocation for, 9–22
overview of structures in, 1–17 to 1–21
procedures can reduce usage, 14–7
processes use of, 9–3
sessions, allocation for, 9–27
SGA size and, 9–25
shared SQL areas, 9–21
���������
���� ����

software code areas, 9–16 to 9–18
sort areas, 9–28
SQL statements, allocation for, 9–24
structures in, 9–15
system global area (SGA), viewing size of,

9–26
System Global Area (SGA) allocation in, 9–16
virtual, 9–15

mirroring. See multiplexing
MLSLABEL datatype, 6–11
modes

ARCHIVELOG, 22–18
exclusive. See exclusive mode
NOARCHIVELOG, 22–18
parallel. See parallel mode
single–task, 9–31
table lock, 10–20 to 10–22
two–task, 9–32

monitoring user actions. See auditing
MTS_MAXSERVERS parameter, artificial

deadlocks and, 9–38
multi–threaded server

artificial deadlocks in, 9–37
dedicated server contrasted with, 9–34
defined, 9–30
described, 9–34
dispatcher processes, 9–13
example of use, 9–40
memory allocation and, 9–27
processes needed for, 9–34
restricted operations in, 9–38
SQL*Net V2 requirement, 9–13

multi–threaded servers. See dispatcher pro-
cesses; servers, multi–threaded

multi–user environments, 9–4
See also users

multiblock writes, 9–9
multiple–process systems (multi–user sys-

tems), 9–4
See also multi–user environments

multiplexing
control files, 1–43, 22–22
recovery and, 22–4
redo log files, 1–42, 22–12

���� ����� �	��� ���
�	��� �����	�	�

multiversion consistency model, 1–31
multiversion concurrency control, 10–7

N
name resolution, in distributed databases, 21–4
named user licensing, 17–14
National Language Support (NLS)

character sets for, 6–4
Check constraints and, 7–16
clients and servers may diverge, 21–2
defined, 2–7
views and, 5–11

Index–15

networks
client/server architecture use of, 20–2
communication protocols of, 20–5
communications software for, 9–42
dispatcher processes and, 9–13

������
��� ���� �	�� ����
distributed databases’ use of, 21–2
drivers, 9–42
failures of, 22–3
independence from in distributed databases,

21–8
listener processes of, 9–13
network authentication service, 17–4
SQL*Net. See SQL*Net
two–task mode and, 9–32, 9–33
using Oracle on, 1–6, 1–48

NLS. See National Language Support
NLS_DATE_FORMAT parameter, 6–6
NOARCHIVELOG mode

defined, 22–18
full backups required for recovery in, 23–2
overview, 1–43

NOAUDIT command, locks, 10–27
nodes, of distributed databases, 1–46
non–repeatable reads, 10–3, 10–13
non–unique indexes, 5–19
nonequijoins, defined, 13–11
NOT NULL constraints

defined, 7–7
implied in PRIMARY KEY constraints, 7–11
UNIQUE keys and, 7–9

nulls
as default values, 5–7
column order and, 5–6
converting to values, 5–7
defined, 5–6
equality of in UNIQUE key constraints, 7–9
foreign keys and, 7–14 to 7–16
how stored, 5–7
indexes and, 5–7
prohibited in primary keys, 7–10
prohibiting, 7–7
UNIQUE key constraints and, 7–9
unknown in comparisons, 5–7

NUM_DISTINCT column,
USER_TAB_COLUMNS view, 13–18

NUM_ROWS column, USER_TABLES view,
13–18

NUMBER datatype, 6–4
internal format of, 6–5
rounding, 6–5

NVL function, 5–7

O
object privileges, 18–4
objects

auditing access to, overview, 1–39
dependencies of, foreign keys, 7–12
in a database schema. See schema objects

OCI. See Oracle call interface
offline backups

See also backups
consistent, 23–5
datafiles, 23–4
full, 23–2
fuzzy data and, 23–5

offline redo log files. See redo log files,
archived

online backups
See also backups
datafiles, 23–4

online redo log. See redo log files, online
OPEN_CURSORS parameter

defined, 9–25
managing private SQL areas, 9–22

OPEN_LINKS parameter, 9–28
operating systems

authentication by, 17–3
block size, 3–3
privileges required for CONNECT

INTERNAL, 2–2
roles and, 18–14

operating–system communications software,
9–42

operations, in a relational database, 1–7
OPTIMAL storage parameter, 3–22

See also parameters

Oracle7 Server ConceptsIndex–16

optimization
cost–based

����!���� ��� ����!!� ��"��� �����
�&�����!� ���� ����	
 ���"�� ��"���!�!� ����� ����

described, 13–2
rule–based

����!���� ��� ����!!� ��"��� �����
�&�����!� ���� �����

selectivity of queries and, 13–16
Oracle

adherence to industry standards, 1–3 to 1–5,
7–5, 11–2

architecture, 1–7, 1–17 to 1–25
client/server architecture of, 20–2
compatibility, 1–4
configurations of, 9–29 to 9–38

Oracle (continued)
connectibility of, accessing non–Oracle data-

bases, 21–8
connectibility, 1–4
data access, 1–24
examples of operations, 1–23, 9–39
features, 1–2, 1–4
instances, defined, 1–19
licensing of, 17–12
Oracle Server, 1–4
Parallel Server option, 1–6
portability, 1–4
processes of, 1–20, 9–5
recovery features of, 24–2
scalability of, 20–4
single–process Oracle, 9–3
SNMP support, 1–3
Trusted. See Trusted Oracle
using on networks, 1–4

���� ���� � ��"%� �!�� �����"

Oracle blocks. See data blocks
Oracle call interface (OCI), 9–41
Oracle code, 9–41
Oracle Forms

application triggers contrasted with database
triggers, 15–5

object dependencies and, 16–10
Version 3, 11–8

Oracle Parallel Server, isolation levels, 10–11

Oracle program interface (OPI), 9–41
See also program interface

Oracle Server. See databases
Orange Book security standard, 1–3
OS_AUTHENT_PREFIX parameter, operating

system authentication and, 17–4
outer joins, defined, 13–11

P
packages

as program units, 1–28
auditing, 19–7
bodies of, 14–9, 14–13
cached in the shared pool, 14–14
compilation and entry into database of,

14–14
packages (continued)

defined, 14–3 to 14–5
dependency tracking in, 14–14
encapsulate procedures, 14–12
errors in, 14–15
examples of, 14–9 to 14–13, 18–8, 18–9
execution of, 14–15
execution steps of, 14–16
for locking, 10–36
introduced, 14–2
overview of, 1–11
performance effect of, 14–13
privilege to execute, 18–7
privileges

��$����� �'� ���!" #�"�� ����
�&��#"����� ����

public and private data and procedures,
14–12

session state and, 16–8
shared SQL areas and, 9–23
specifications of, 14–9, 14–13
stand–alone procedures contrasted with,

14–8
uses of, 14–12
validation status, 14–16
verifying user access, 14–15

pages. See data blocks
parallel mode, 2–4

Index–17

parallel query option, space management, 3–11
parallel recovery, 24–5

See also recovery
Parallel Server

checkpoints and, 22–11
concurrency limits and, 17–13
databases and instances, 9–2
distributed locks, 10–19
exclusive mode, rollback segments and, 3–24
file and log management locks, 10–28
introduced, 1–6
lock processes, 9–12
modes of, 2–4
mounting a database using, 2–4
named user licensing and, 17–14
PCM locks, 10–19
shared mode, rollback segments and, 3–24
system change numbers, 9–10
system monitor process and, 9–11
threads of online redo log, 22–16
See also lock processes

parameter files
described, 2–6 to 2–8
example of, 2–7
introduced, 2–3

parameters
initialization, locking behavior, 10–18
national language support, 2–7
ROLLBACK_SEGMENTS, 3–23
SORT_AREA_SIZE, 3–28
TRANSACTIONS, 3–23
TRANSACTIONS_PER_ROLLBACK_SEG-

MENT, 3–23
See also names of individual parameters not

listed; parameter files
parent tables, 7–12
parse locks, 10–27
parse trees

construction of, 11–6
location of, 9–21
of procedures, 14–14

parsing
parse calls, 11–7
performed, 11–7

partial backups, 23–3
See also backups

partition views, 5–13

passwords
connecting without, 17–3
database user authentication and, 17–4
encryption, 17–4
password files, 17–5
used in roles, 1–37

pcode, 15–14
PCTFREE storage parameter

how it works, 3–5 to 3–7
PCTUSED and, 3–7

PCTUSED storage parameter
how it works, 3–6 to 3–9
PCTFREE and, 3–7

performance
checkpoints effect, 9–11 to 9–13, 22–9
clusters and, 5–25
constraint effects on, 7–6
distributed databases and, 21–8
group commits, 9–10
packages and, 14–13
parallel recovery and, 24–5
procedures and, 14–7
procedures effect on, 14–8
resource limits and, 17–8
SGA size and, 9–25
structures that improve, 1–11 to 1–14
viewing execution plans, 13–5

persistent areas, 9–21
PGA. See Program Global Area
phantom reads, 10–3
phantoms, 10–13
physical database structure. See databases;

physical structure of
PL/SQL

and database triggers, 1–30
anonymous blocks, 11–7, 14–8
auditing of statements within, 19–4
blocks, 11–7
engine, products with, 11–8
exception handling, 11–9
executing, 11–8
introduced, 1–10
language constructs, 11–9
overview, 11–7 to 11–11
overview of, 1–27, 14–5 to 14–8
parse locks, 10–27
PL/SQL blocks, 11–7

Oracle7 Server ConceptsIndex–18

PL/SQL (continued)
PL/SQL engine, 11–8
procedures and, 14–5
program units, shared SQL areas and, 9–23
stored procedures, 11–7
trigger actions, 15–7

PMON. See process monitor process
portability, 1–4
prefixes, data dictionary view, 8–5
PRIMARY KEY constraints

described, 7–10
indexes used to enforce, 7–11
���� ����
���

maximum number of columns in, 7–11
NOT NULL constraints implicit in, 7–11

primary keys
described, 7–10 to 7–12
integrity constraints and. See data, integrity

of
private, rollback segments. See rollback seg-

ments, private
private SQL areas

cursors and, 9–25
described, 9–20
how managed, 9–22
persistent areas, 9–21
runtime areas, 9–21

privileges
auditing the use of, overview of, 1–38
auditing use of, 19–7
granting, 1–36, 18–3
�!������ ���� ������ ����
��� ������� �����

grouping into roles, 1–36
object, 18–3
�������� ��� ���������� ����
������� � ���� ���	

overview of, 1–35, 18–2 to 18–6
procedures, 18–7
��������� ���

��������� ���

�������� �"� ����������� ����
�!������� ������ � ������� ���

�!��������� ���

revoked, object dependencies and, 16–6
roles, restrictions on, 18–13

privileges (continued)
roles and, 18–10
system, 18–2
��������� ����
������� � ���� ���	

to start up or shut down a database, 2–2
trigger, executed under owner’s, 18–8
views, 18–5
��������� ����

procedures
anonymous PL/SQL blocks contrasted with,

14–8
applications and, 14–8
applications for, 14–7
auditing, 19–7
cached in the shared pool, 14–14
compilation and entry into database of,

14–14
contrasted with functions, 1–28
cursors and, 11–9
dependency tracking in, 14–8, 16–5
described, 14–5
design and use of, 14–6
encapsulating in packages, 14–12
errors in, 14–15
examples of, 18–8, 18–9
execution of, 14–15
execution steps of, 14–16
functions contrasted with, 14–6
introduced, 14–2
INVALID status, 16–2, 16–5
memory usage and, 14–7
packages can contain, 14–3
parse trees produced for, 14–14
performance effect of, 14–7, 14–8
PL/SQL and, 11–7
prerequisites for compilation of, 16–4
privileges
�!������� ������ � ������� ���

��� �!������� ���

privileges on
������ ��� ������ ���

�!��������� ���

�!�������� �"�� ���

pseudocode (P code), 14–15
security and, 14–7
security enhanced by, 18–7

Index–19

procedures (continued)
shared SQL areas and, 9–23
stand–alone, 14–8
stored procedures, 11–7
triggers contrasted with, 15–2
VALID status, 16–3
validation status, 14–16
verifying user access, 14–15

Process Global Area (PGA)
allocation of, 9–26
See also Program Global Area (PGA)

process monitor process (PMON)
cleans up timed–out sessions, 17–10
described, 1–22, 9–11
detects failures, 1–40

processes
archiver (ARCH), 1–22, 9–12
background, 1–21, 9–5

������������
��
checkpoint (CKPT), 1–21, 9–11
checkpoints and, 9–8
database writer (DBWR), 1–21, 9–7
dedicated server, 9–37
described, 9–2
dispatcher (Dnnn), 1–22, 9–13
distributed transaction resolution and, 9–12
during recovery, 24–5
failure in, 22–3
listener, 9–13

������� ���"���� �����
���
lock (LCKn), 1–22, 9–12
log writer (LGWR), 1–21, 9–9
multi–threaded

�� �������� ���������� �����
��	
����� � ���!�� �� �����
��	

multi–threaded server requires, 9–34
multiple–process Oracle, 9–4
Oracle, 1–20, 9–5
overview of, 1–20
process monitor (PMON), 1–22, 9–11
recoverer (RECO), 1–22, 9–12

���� �����!� � ������ ������ ���	
server, 1–20, 1–45, 9–5

������ ����
���
��������
���

shadow, 9–32
shared server, 9–37
single–process Oracle, 9–3

processes (continued)
snapshot refresh (SNPn), 9–13
structure, 9–3
system monitor (SMON), 1–21, 9–11
trace files for, 9–14
user, 1–20, 9–5

������ �� �����
���
����"��#� ����� ����!��� ����
���
�������� ���"��� �����������
���

processing, distributed, 1–45 to 1–48
profiles

overview of, 1–38
when to use, 17–11

Program Global Area (PGA), 9–26
contents of, 9–26
defined, 1–20
multi–threaded servers, 9–37
non–shared and writable, 9–27
session information and, 9–27
size of, 9–28

program interface
Oracle side (OPI), 9–41
overview of, 1–22, 9–41 to 9–42
single–task mode in, 9–31
structure of, 9–41
two–task mode in, 9–33
user side (UPI), 9–41

program units
overview of, 1–10
PL/SQL and, 14–5
prerequisites for compilation of, 16–4

pseudocode (P code) for procedures, 14–15
pseudocolumns, 6–9

ROWID, 6–9
public, rollback segments. See rollback seg-

ments, public
PUBLIC user group, 17–7

difference from public variables, 14–13

Q
queries

and partition views, 5–13
compound, defined, 13–12
default locking of, 10–24 to 10–26
defined, 13–11

Oracle7 Server ConceptsIndex–20

queries (continued)
distributed, 21–6
distributed or remote, 21–6
in DML. See Data manipulation statements

(DML)
location transparency and, 21–7
merged with view queries, 5–11
non–Oracle databases and, 21–8
phases of, 10–6
read consistency of. See read consistency
selectivity of, 13–17
stored, 1–9
stored as views, 5–8

���� ����� 1%!2.
triggers’ use of, 15–13

query servers, extent allocation, 3–11
quotas

revoking tablespace access and, 17–7
setting to zero, 17–7
tablespace, 1–37, 17–6
tablespaces, temporary segments ignore,

17–7

R
RAW datatype, 6–8
RDBMS, processes of. See Oracle, processes of
read committed

isolation, 10–9
vs. serializable, 10–12

read consistency
defined, 1–31
multiversion consistency model, 1–31
rollback segments and, 3–17 to 3–19
snapshot too old message, 10–6
transaction level, 10–7 to 10–9
transactions, 1–31 to 1–33
triggers and, 15–13 to 15–15

read snapshot time, 10–13
read uncommitted, 10–3
read–only tablespaces

See also tablespaces, read–only
backing up, 23–8 to 23–10
described, 4–8 to 4–9
restrictions on, 4–9 to 4–10

read–only transactions. See transactions,
read–only

readers block writers, 10–13
reads

data block, limits on, 17–10
dirty, 10–3
repeatable, 10–7

RECO. See recoverer process
recoverer process (RECO), 1–22

and in–doubt transactions, 1–47
overview of, 9–12 to 9–14

recovery
basic steps, 1–44 to 1–46
closed database, 24–10
control files during incomplete, 24–16
database, overview of, 1–40 to 1–42
database buffers and, 24–3
diagrammed, 24–6
distributed processing in, 9–12
features of, 24–2
full backups and, 23–2
in parallel, 24–5
incomplete, 24–14
-!,0%-!(!)/.� *"�� �
���

instance, 24–7
�0/*(�/%��� ��

-!,0%-! � �"/!-� ��*-/�� ���
.4./!(� (*)%/*-� +-*�!..� ������� �) �� ����

media
����������� (* !�� �
��
���&0+� �*)/-*'� "%'!.� 0.! �� �
���
���&0+� �/�"%'!.� �) �� �
���
��)�!'���.! �� �
���
�*(+'!/!�� �
���
�*)/-*'� "%'!.� �) �� ����
 �/�"%'!�� �
���
 %.��'! �� �����
 %.+�/�$!-� +-*�!..!.� �) �� ��	�
!)��'! �� �����
!3�(+'!.� *"�� �
���� /*� �
���
%)�*(+'!/!�� �
��
�� �
���
'*#� .!,0!)�!�)0(�!-.� 0-%)#�� �
���
(!�$�)%.(.� %)1*'1! �� �
���� /*� �
���
������������� (* !�� �
��
+!)� �/���.!�""'%)!� /��'!.+��!�� �
���

Index–21

recovery
media (continued)
!(�$(��)� !��� �
��� &!� �
��
$����! �*� &����%"���%� � ��� �
��
$��!� �!�� ����%� �""������ �
���
$!��� �� ������ �
��	
&������%���� �
���

of distributed transactions, 2–5
overview of, 24–3 to 24–5
process, 9–11, 22–3
recommendations for, 24–6
requirements of, 24–2
rolling back during, 24–4
rolling forward and, 24–3
statement failure, 22–2
steps of, 24–4
structures used in, 1–42, 22–5

recursive SQL, cursors and, 9–25
redo entries, content of, 22–6 to 22–8
redo log buffers

circularity, 9–10
committing a transaction, 9–10
log writer process and, 9–19
overview, 9–19
size of, 9–19
writing, 9–9
writing of, 22–7

redo log files
”fuzzy” data in backups and, 23–5
active (current), 22–8
applied during media recovery, 24–12
archived, 1–43
��(� &���%� !��� �����
�'&!��&���� �����
�! &� &%� !��� ����
�! &$!�� ����%� � ��� ����
�$$!$%� � � �$���(� ��� �����
�!�� %)�&���%� � ��� ����
�� '���*�� �����
����� ��%� !�� �$���(� ��� �����

archiver process (ARCH) and, 9–12
available for use, 22–7
buffer management, 9–9
contents of, 22–6 to 22–8
distributed transaction information in, 22–7
files named in control file, 22–21
groups, 22–13

redo log files (continued)
inactive, 22–8
log sequence numbers of
���� ���� ��
�
'%�%�� ����

log switches, 22–9
log writer process, 9–9, 22–7
members, 22–13
mirrored
�$���(�$� "$!��%%� ������� � ��� ����
��� ���� � ����%%������ ����	
��� %!��� � ����%%������ ����	
�!�� %)�&���%� � ��� ����	

mode of, 1–43
multiplexed, 1–42, 22–12
����$������� ����	
"'$"!%�� !��� ����

offline. See redo log files, archived
online, 1–42, 22–6
��&�$� �����"!� &� ����'$��� �����
�!%%� !��� �
��

$��!(�$*� '%�� !��� ����� &!� ����
$�#'�$��� &� !�� &)!�� ���
&�$���%� !��� �����

overview of, 1–15, 1–42
parallel recovery, 24–5
physical database structure, 1–5
recovery and, 22–5 to 22–7
resetting log sequence numbers, 24–16
rollback segments and, 3–17
rolling forward and, 24–3
when temporary segments in, 3–29
written before transaction commit, 9–10
See also recovery

referenced
keys, 1–30, 7–12
objects, 16–2
tables, 7–12

REFERENCES privilege, when granted
through a role, 18–13

referential integrity
cascade rule, 7–3
distributed databases and, 7–4
examples of, 7–17 to 7–20
intermediate states and, 7–18
partially null foreign keys, 7–14
PRIMARY KEY constraints, 7–10

Oracle7 Server ConceptsIndex–22

referential integrity (continued)
restrict rule, 7–3
self–referential constraints, 7–13, 7–17
set to default rule, 7–3
set to null rule, 7–3
See also foreign keys

refresh, snapshot refresh process, 9–13
relational database management systems

(RDBMS’s)
principles, 1–7 to 1–9

���� ����� �	�	
	�� �	�	����� ������
SQL and, 11–2

relations. See tables
remote databases, 1–46

See also see also databases, distributed
remote transactions, 21–6
repeatable reads, 10–3
replicating data, 1–47, 21–10
replication option, 1–47, 21–10
reserved words, 11–2
resource limits, 17–8

call level, 17–9
connect time per session, 17–10
CPU time limit, 17–9
determining values for, 17–11
idle time per session, 17–10
logical reads limit, 17–10
overview of, 1–38
private SGA space per session, 17–11
session level, 17–9
sessions per user, 17–10

RESOURCE role, 18–14
response queues, 9–37

See also dispatcher processes (Dnnn)
restricted mode, starting instances in, 2–3
REVOKE command, locks, 10–27
roles

application, 18–11
CONNECT role, 18–14
DBA role, 18–14
DDL statements and, 18–13
dependency management in, 18–13
disabling, 18–11
enabling, 18–11
EXP_FULL_DATABASE, 18–14
functionality, 18–2, 18–11

roles (continued)
granting, 18–3, 18–12
��� ����� ������ �����
����� �	�	
�� ���� �����

IMP_FULL_DATABASE, 18–14
in applications, 1–37
management using the operating system,

18–14
naming, 18–12
overview of, 1–36
predefined, 18–14
RESOURCE role, 18–14
restrictions on privileges of, 18–13
revoking, 18–12
����� �	�	
�� ���� �����

schemas do not contain, 18–12
security domains of, 18–12
use of passwords with, 1–37
user, 18–11
uses of, 18–10 to 18–12

rollback
See also rollback segments; transactions
caused by PMON, 1–40
defined, 1–25
described, 12–6
during recovery, 1–44

rollback entries, 3–17
See also rollback segments

rollback segments
access to, 3–17
acquired during startup, 2–5
allocating new extents for, 3–21
allocation of extents for, 3–19
clashes when acquiring, 3–23
committing transactions and, 3–18
contention for, 3–19
deallocating extents from, 3–22
deferred, 3–27
defined, 1–14
dropping, 3–23
������������ ���� ����

how transactions write to, 3–19
in–doubt distributed transactions and, 3–21
invalid, 3–25
locks on, 10–28
media recovery use of, 24–13
moving to the next extent of, 3–19
number of transactions per, 3–19

Index–23

rollback segments (continued)
offline, 3–25, 3–26
offline tablespaces and, 3–27
online, 3–25, 3–26
overview of, 3–16
parallel recovery, 24–4
partly available, 3–25 to 3–28
private, 3–23
public, 3–23
read consistency and, 1–31 to 1–33, 3–17,

10–5
recovery needed for, 3–25 to 3–28
states of, 3–24 to 3–27
��������� ����

SYSTEM rollback segment, 3–24
transactions and, 3–18
use of in recovery, 1–43
when acquired, 3–23
when used, 3–17
written circularly, 3–18
See also segments; rollback

rolling back during recovery, 24–4, 24–13
See also recovery; redo log files

rolling back transactions, 12–2, 12–6
See also transactions, rolling back

rolling forward, during recovery, 1–44
rolling forward during recovery, 24–3, 24–12

See also recovery; redo log files
root blocks, 5–32 to 5–34
row cache, 9–23
row data (section of data block), 3–4
row directories, 3–4, 5–6

See also rows
row locking, and serializable transactions,

10–11
ROW LOCKING parameter, 10–29
row pieces, 5–4 to 5–7

headers, 5–5
how identified, 5–6

row sources, 13–3 to 13–5
row triggers, 15–7

when fired, 15–11
row–level locking, 10–13
ROWID datatype, 6–9

ROWIDs, 5–6
accessing, 6–9
changes in, 6–9
examples of use, 6–10
in non–Oracle databases, 6–10
internal use of, 6–10
of clustered rows, 5–6
retained during migration, 3–10
sorting indexes by, 5–22
table access by, 13–13

ROWLABEL pseudocolumn, 6–12
rows

addresses of, 5–6
chaining across blocks, 3–10, 5–4
clustered, 5–6
��
	�� ���� ���

defined, 1–9
described, 5–3
directories in, bytes per row, 5–6
format of in data blocks, 3–4 to 3–6
headers. See row pieces, headers
locking, 10–20
locks on, 10–21 to 10–23
migration between data blocks, 3–10
pieces of. See row pieces
row sources, 13–3 to 13–5
ROWIDs used to locate, 13–13
shown in ROWIDs, 6–9
size of, 5–4
storage format of, 5–4
triggers on, 15–7
when ROWID changes, 6–9

rule–based optimization, 13–6
runtime areas, 9–21

S
same–row writers block writers, 10–13
savepoints

described, 12–6
overview of, 1–27
rolling back to, 12–6
See also transactions

scaling your database, 20–4

Oracle7 Server ConceptsIndex–24

scans, 13–13
schema objects

allocated segments, 4–3
auditing, 19–7
creating, tablespace quota required, 17–6
default tablespace for, 17–6
defined, 1–5
dependencies between, 16–2
dependencies of
�!�� ��&'%��('��� ��'���&�&�� �
���
�!��)��*&�� 	���
"!� !"!��+�&'�!��� "�� "'��%� "����'&�� �
�

#������� '%����!�� "��� �����
#%"���(%�� '%����!�� "��� ����
'%����%&� �!����� �	���

dependent on lost privileges, 16–6
distributed database naming conventions

for, 21–4
global names, 21–4

schema objects (continued)
in a revoked tablespace, 17–7
information about, 8–2
INVALID status, 16–2
overview of, 1–9, 5–2
privileges on, 18–3
����� ���	

relationship to datafiles, 4–10, 5–2
trigger dependencies on, 15–15
VALID status, 16–3

schemas
associated with users, 1–33, 5–2
contents of, 5–2
contrasted with tablespaces, 5–2
defined, 17–2
objects in, 5–2

���� ����� &��� �� "����'&
See also users

SCN. See system change numbers (SCN)
security

application enforcement of, 1–37
auditing, 19–2, 19–6
auditing user actions. See auditing
data, 1–34
described, 1–33
discretionary, 17–1
discretionary access control, 1–34
domains, 1–35

security (continued)
enforcement mechanisms, 1–34
procedure and package access validation,

14–15
procedures and, 14–7
procedures enhance, 18–7
program interface enforcement of, 9–41
system, 1–33
views and, 5–10
views enhance, 18–6
See also privileges, roles

security domains
enabled roles and, 18–11
tablespace quotas, 17–6

segments
allocating, temporary, 3–28
allocating extents for, 3–10 to 3–12
data, 3–16
deallocating extents from, 3–14
defined, 3–3
header block, 3–11
index, 3–16
minimum number of extents in, 3–10
overview, 1–14
overview of, 3–15 to 3–17
rollback, 3–16
temporary, 1–14, 3–28
����!��� (#� �,� ������ ���
�%"##�!��� ���	
��!"%�� $("'�&�� ����
"#�%�'�"!&� '��'� %�$(�%��� ����
'����&#���� �"!'��!�!��� ����

used to store schema objects, 4–3
See also data segments; index segments;

rollback segments; temporary Segments
selectivity of queries, 13–17
sequences, 1–10, 5–16

auditing, 19–7
independence from tables, 5–16
length of numbers, 5–16
number generation, 5–16
VALID status, 16–3

serializable
isolation, 10–9
vs. read committed, 10–12

SERIALIZABLE parameter, 10–29
locking, 10–18

Index–25

server processes. See processes
servers

client/server architecture, 20–2
dedicated, 1–20
�������������� ���������� ������ 	���

dedicated processes, 9–32
dedicated server architectures, 9–30
defined, 1–45
multi–threaded, 1–20
��������� ���������� ������ 	���
���������� ���� 	���

multi–threaded server architectures, 9–30
processes of, 1–20
shared. See servers, multithreaded

session control statements, 1–25, 11–5
sessions

connections contrasted with, 9–30
defined, 9–30
limit on concurrent, 1–38
��� ��������� �����
�������� ��� ��
�� �����

limits per user, 17–10
package state and, 16–8
resource limits and, 17–9
time limits on, 17–10
when auditing options take effect, 19–5

SET TRANSACTION READ ONLY statement,
3–18

See also transactions
sets, LRU latches, 9–8
share locks

DDL locks, 10–26
defined, 10–4
share table locks (S), 10–22

Shared Global Area (SGA). See System Global
Area (SGA)

shared mode. See Parallel Server, shared mode
shared pool

allocation of, 9–23
ANALYZE command and, 9–24
anonymous PL/SQL blocks and, 14–8
compiled PL/SQL code in, 14–14
dependency management and, 9–24
described, 9–20
flushing, 9–25
object dependencies and, 16–7
overview of, 1–19

shared pool (continued)
procedures and, 14–7
row cache and, 9–23
size of, 9–20

shared servers
cannot CONNECT INTERNAL to, 2–2
See also servers, multi–threaded

shared SQL areas
ANALYZE command and, 9–24
dependency management and, 9–24
described, 9–20, 11–6
how managed, 9–22
memory allocation for, 9–22
overview of, 1–19
parse locks and, 10–27
procedures, packages, triggers and, 9–23
size of, 9–21

SHARED_POOL_SIZE parameter, 9–22
System Global Area size and, 9–26

shutdown, 2–6
abnormal, 2–3
checkpoints and, 22–10
deallocation of the SGA, 9–16
described, 2–2
prohibited by dispatcher processes, 9–38
steps, 2–5

SHUTDOWN ABORT, 2–6
single–process systems (single–user systems),

9–3
single–task mode, 9–31
site autonomy, 1–46, 21–3

See also databases, distributed
SMALL_TABLE_THRESHOLD parameter,

9–18
SMON. See system monitor process
snapshot refresh process (SNPn), 9–13
snapshot too old message, 10–6
snapshots, 1–47, 21–10

refreshing, 9–13
SNMP support, 1–3
SNPn. See snapshot refresh process
software code areas, 9–16 to 9–18

shared by programs and utilities, 9–16
sort areas, 9–28
sort direct writes feature, 9–29

Oracle7 Server ConceptsIndex–26

SORT_AREA_RETAINED_SIZE parameter,
9–28

SORT_AREA_SIZE parameter, 3–28, 9–28
space management

compression of free space, 3–9
extent management, 3–10 to 3–15
parallel query option, 3–11
PCTFREE, 3–5
PCTUSED, 3–6
row chaining, 3–10
segments, 3–15 to 3–28

SQL
cursors used in, 11–6
Data Definition Language (DDL), 11–4
embedded in other languages, 1–25
embedded SQL, 11–5
functions, 11–2
overview of, 1–24, 11–2 to 11–7
parsing of, 11–6
PL/SQL. See PL/SQL
PL/SQL and, 11–7, 14–5
recursive, 11–6
�������� ����
���

reserved words, 11–2
session control statements, 11–5
shared areas. See Shared SQL
shared SQL, 11–6
statement–level rollback, 12–4
statements, memory allocation for, 9–24
statements in, 11–2
system control statements, 11–5
transaction control statements, 11–4
transactions, 12–2
transactions and, 1–25
types of statements in, 1–24 to 1–26, 11–3
See also transactions

SQL areas
private, 9–20 to 9–22
������������
���
���������
���

shared, 9–20 to 9–22
SQL statements

audit records of, when generated, 19–4
auditing, 19–6, 19–9
complex, defined, 13–12
dictionary cache locks and, 10–28

SQL statements (continued)
distributed
������� �����
������������� ���� ����	� ��� �����

distributed databases and, 21–6
execution plans of, 13–2
failure in, 22–2
in trigger actions, 15–7
number of triggers fired by single, 15–11
optimization of, 13–10 to 13–12
parse locks, 10–27
privileges required for, 18–3
procedural extensions to, 14–5
referencing dependent objects, 16–4
resource limits and, 17–9
successful execution, 12–3
trigger events and, 15–6
triggers fired by, 15–3
triggers on, 15–8

SQL*Connect, 21–8
SQL*Net, 1–6

applications and, 20–5
client/server systems use of, 20–5
how it works, 20–5
multi–threaded server V2 requirement, 9–13
network independence and, 21–8
overview of, 1–48, 20–5 to 20–6
program interface and, 9–42

SQL*Plus, 11–9
SQL_TRACE parameter, 9–14
SQL92, 10–2
standards

Oracle adherence, 1–3 to 1–5
Oracle adherence with, 7–5
See also names of particular standards

standby database, 22–23
startup

allocation of the SGA, 9–16
described, 2–2
exclusive mode, 2–4
fast warmstart, 24–7
forcing, 2–3
parallel mode, 2–4
prohibited by dispatcher processes, 9–38
recovery during, 24–7

Index–27

startup (continued)
restricted mode, 2–3
steps, 2–3

statement triggers
described, 15–8
when fired, 15–11

statement–level read consistency, 10–7
statements

auditing the use of, overview, 1–38
handles. See cursors
in SQL
���������� ����
������ ��� ����� ��� ����

statistics
caches, 9–11
checkpoint, 9–11
optimizer use of, 13–6 to 13–8

storage
datafiles, 4–10

���� ���� � ��������
logical structures, 4–3, 5–2
of hash clusters, 5–28
of index clusters, 5–26
of indexes, 5–20
of nulls, 5–7
of views, 5–11
procedures and packages in the database,

14–14
restricting for users, 17–6
revoking tablespaces and, 17–7
tablespace quotas and, 17–7
triggers, 15–2, 15–14
user quotas on, 1–37

STORAGE clause, using, 3–15
storage parameters

OPTIMAL (in rollback segments), 3–22
setting, 3–15

stored functions. See functions
stored procedures

SYSTEM tablespace and, 14–15
See also procedures

structure, of databases
logical, 1–5
See also databases

Structured Query Language. See SQL

structures, 1–7
databases, physical, 1–5
in a relational database, 1–7
locking, 10–26
logical, 1–8
physical, 1–15
schema objects, 5–2

���� ����� �
����� �	��
��

subqueries
Check constraints prohibit, 7–16
in remote updates, 21–6

survivability, 22–23
synonyms

constraints indirectly affect, 7–5
described, 5–17 to 5–18
for data dictionary views, 8–5
inherit privileges from object, 18–3
overview of, 1–11
private, 5–17
public, 5–17
uses of, 5–17
VALID status, 16–3
See also dependencies

SYS username
audit records not generated by, 19–4
data dictionary tables owned by, 8–3
security domain of, 17–2

SYS.AUD$ view, purging, 8–4
SYSDBA privilege, 2–2
SYSOPER privilege, 2–2
SYSTEM, security domain of, 17–2
system change numbers (SCN)

change–based recovery, 24–15
committed transactions, 12–5
defined, 12–5
read consistency and, 10–6, 10–7
redo logs, 9–10
when determined, 10–6, 22–7

system control statements, 1–25, 11–5
System Global Area (SGA)

allocating, 2–3
contents of, 9–17, 9–25
data dictionary cache, 8–4
database buffer cache, 9–17
determining size, 2–6

Oracle7 Server ConceptsIndex–28

System Global Area (SGA) (continued)
diagram, 9–2
fixed, 9–26
limiting use of in multi–threaded server,

17–11
overview of, 1–19, 9–16 to 9–17
redo log buffer, 9–19
shared and writable, 9–16
shared pool, 9–20
size of, 9–25
when allocated, 9–16

system monitor process (SMON)
defined, 1–21
Parallel Server and, 9–11

system privileges
ADMIN OPTION, 18–3
described, 18–2
granting, users capable of, 18–3
revoking, users capable of, 18–3

SYSTEM rollback segment, 3–24
SYSTEM tablespace, 4–4

See also tablespaces
online requirement of, 4–6
procedure storage and, 14–15

T
table directories, 3–4
tables

affect dependent views, 16–4
auditing, 19–7
base, 1–9
��� ��������$� ��� ���� ���
������������ ��� !��"��� ���

child, 7–12
clustered, 5–23
contain integrity constraints, 1–29
contained in tablespaces, 5–4
controlling space allocation for, 5–3
dependent, 7–12
hash, 5–32
how data is stored in, 5–3
indexes and, 5–18
locks on, 10–20, 10–21, 10–23
maximum number of columns in, 5–9
overview of, 1–9, 5–3
parallel query option, 3–11

tables (continued)
parent, 7–12
presented in views, 5–8
privileges on, 18–4
replicating, 1–47, 21–10
replication, 1–47
snapshots, 1–47, 21–10
specifying tablespaces for, 5–4
triggers used in, 15–2
VALID status, 16–3
virtual or viewed. See views

tablespaces
backups and checkpoints, 22–10
contrasted with schemas, 5–2
default for object creation, 1–37, 17–6
described, 4–3
during incomplete recovery, 24–16
how specified for tables, 5–4
locks on, 10–28
media recovery and, 24–10
offline, 4–6 to 4–8
��� ����#� ���� ���
���� ��� �������$�� ���
������ �������� ��� ���� ���� ��

"��� ������� ��� ��������� ����

online, 4–6 to 4–8
���� ��� �������$�� ���
"��� ������� ��� ��������� ����

online or offline, 1–8
overview of, 1–8 to 1–10, 4–3 to 4–9
quotas on, 1–37, 17–6 to 17–7
�������� ��� ���������� �
�

��� ��� ���� �
�	

read–only, 4–8
��������� �������� ������ ���
������ ���������� �������$�� ���
����� ����!��$� ���� ����

relationship to datafiles, 4–2
revoking access from users, 17–7
size of, 4–6
temporary, 1–37, 4–9
��� ��� ���� ����� �
�	

used for temporary segments, 3–28
tasks, 9–3
temporary segments

allocating, 3–28
deallocating extents from, 3–15

Index–29

temporary segments (continued)
dropping, 3–15
ignore quotas, 17–7
operations that require, 3–28
tablespace containing, 3–28
when not in redo log, 3–29
See also segments, temporary

temporary tablespaces, 4–9
threads, 9–3

online redo log, 22–16
three–valued logic (true, false, unknown), pro-

duced by nulls, 5–7
time–outs, 9–9
timestamps, distributed dependency checking

and, 16–9
TO_DATE function, 6–6
trace files

described, 9–14
log writer process and, 22–14

transaction control statements, 1–25, 11–4
transaction set consistency, 10–13
transaction set consistent, 10–12
transaction tables, 3–17

reset at recovery, 9–11
transactions

assigning system change numbers, 12–5
assigning to rollback segments, 3–18
committing, 1–26, 9–10, 12–3, 12–5
��� �� ��������� ���
 ��� ��� ��������� ���������� ����
"������� ����� ���� � ������ ����� ����

concurrency and, 10–17
deadlocks and, 10–4
described, 12–2
discrete transactions, 12–7
distributed
���������� ����� �����
�����!���� � ����������#�� ���
�"�������� �������� ���

�"�������� ������� ����� ���

���� ���� � �������������� ����� ��

distribution among rollback segments of,
3–19

end of, 12–4

transactions (continued)
in–doubt
������ ��������� �������� �������� ����
�����!���� � ����������#�� ������ ��	
�����!���� ��� ���#�� ����
��������� ��������� ����� ����
 ��� �����#� �!�������� ���������� ���

manual locking of, 10–29
overview of, 1–25
read consistency of, 1–31 to 1–33, 10–7
read–only, 1–32, 10–8
���� ��������� ��� ��������� ���������� ����

redo log files written before commit, 9–10
rollback segments and, 3–18

transactions
rolling back, 1–26, 12–6
���� �������� ������������� ����
��������#�� ���

 ��� ��� ��������� ���������� ����

savepoints in, 1–27, 12–6
serializable, 10–8
space used in data blocks for, 3–5
start of, 12–4
statement level rollback and, 12–4
system change numbers, 9–10
terminating the application and, 12–5
termination of, by PMON, 1–40
transaction control statements, 11–4
triggers and, 15–13 to 15–15
writing to rollback segments, 3–19

TRANSACTIONS parameter, 3–23
TRANSACTIONS_PER_ROLLBACK_SEG-

MENT parameter, 3–23
triggers

action, 15–7
������� ���� �	��

AFTER, 15–8
as program units, 1–28
auditing, 19–8
BEFORE, 15–8
can call procedures, 14–2
cascading, 15–3
constraints apply to, 15–11
constraints contrasted with, 15–5
correlation names use of, 15–7

Oracle7 Server ConceptsIndex–30

triggers (continued)
data access and, 15–13
defined, 1–30
dependency management of, 15–15, 16–5
disabled, 15–11
enabled, 15–11
enforcing data integrity with, 7–4
events, 15–6
examples of, 15–10, 15–13
firing (executing), 15–2, 15–15
��������� �������� �����
����� ��������� �����
������� ���� �����

INVALID status, 16–2, 16–5
maintain data integrity, 1–30
object dependencies of, 15–11
vs. Oracle Forms triggers, 15–4
overview of, 15–2 to 15–5
parts of, 15–5
privileges for executing, 18–8
procedures contrasted with, 15–2
prohibited in views, 5–9
restrictions, 15–7
row, 15–7
sequence for firing multiple, 15–11
shared SQL areas and, 9–23
statement, 15–8
storage of, 15–14
types of, 15–7
UNKNOWN does not fire, 15–7
uses of, 15–3 to 15–5
when to use instead of constraints, 7–4
See also dependencies

Trusted Oracle
described, 1–39
mandatory access control, 1–39
MLS_LABEL datatype, 6–11
mounting multiple databases in, 9–2

two–phase commit
described, 21–6

���� ����� ��	��	�������� ������
���
manual override of, 1–47

two–task mode
described, 9–32
listener process and, 9–13
network communication and, 9–32
program interface in, 9–33

U
undo. See rollback
unique indexes, 5–19
UNIQUE key constraints, 7–8

composite keys and nulls, 7–10
indexes used to enforce, 7–9
maximum number of columns in, 7–9
NOT NULL constraints and, 7–10
nulls and, 7–9
size limit of, 7–9

unique keys, 1–30
See also data, integrity of

updatable join views, 5–12
UPDATE command

foreign key references and, 7–15
freeing space in data blocks, 3–9

update intensive environments, 10–11
update restrict, 7–15
updates, location transparency and, 21–7
user processes

allocate PGA’s, 9–26
connections and, 9–30
dedicated server processes and, 9–32
sessions and, 9–30
shared server processes and, 9–37

user program interface (UPI), 9–41
USER pseudo–column, 18–6
USER_ views, 8–5
USER_TAB_COLUMNS view, 13–18
USER_TABLES view, 13–18
USER_UPDATABLE_COLUMNS view, 5–12
users

access
�������� 	��� �	��	�� ������	������ �����
�������� ����

associated with schemas, 5–2
auditing, 19–11
authentication of, 17–3
coordinating concurrent actions of, 1–30
database links and, 21–5
dedicated servers and, 9–32
default tablespaces of, 17–6
licensing by number of, 17–14

Index–31

users (continued)
licensing of, 17–12
multi–user environments, 1–2, 9–4
names of, obtaining, 8–2
password encryption, 17–4
privileges of, 1–35

���� ���� � ����
�
�
processes of, 1–20, 9–5
profiles of, 1–38, 17–11
PUBLIC user group, 17–7
resource limits of, 17–8

���� ���� � �
�����
� ������ �
������ 	�����
restrictions on resource use of, 1–37 to 1–39
roles and, 18–10
���� ���
�� ��� ��
���� �����

schemas of, 1–33
security domains of, 1–35, 17–2, 18–12
single–user Oracle, 9–3
tablespace quotas of, 1–37, 17–6
tablespaces of, 1–37 to 1–39
temporary tablespaces of, 1–37, 17–6
user names, 1–35
See also schemas

V
V$LICENSE view, 17–13
V_$ and V$ objects, 8–7
VALID status, 16–3

See also name of object to which status ap-
plies

VARCHAR datatype, 6–3
VARCHAR2 datatype, 6–3

non–padded comparison semantics, 6–3
similarity to RAW datatype, 6–8
when to use, 6–3

variables, in stored procedures, 11–9
viewed tables. See views
views

ALL_UPDATABLE_COLUMNS, 5–12
altering base tables and, 16–4
auditing, 19–7, 19–8
constraints and triggers prohibited in, 5–9
constraints indirectly affect, 7–5
data dictionary use of, 8–3
DBA_UPDATABLE_COLUMNS, 5–12
definition expanded, 16–4
dependency status of, 16–4
histograms, 13–10
how stored, 5–9
indexes and, 5–11
INVALID status, 16–2
maximum number of columns in, 5–9
NLS parameters in, 5–11
object dependencies and, 5–12
overview of, 1–9 to 1–11, 5–8 to 5–16
partition views, 5–13
prerequisites for compilation of, 16–4
privileges for, 18–5
security applications of, 18–6
SQL functions in, 5–11
USER_UPDATABLE_COLUMNS, 5–12
uses of, 5–10
VALID status, 16–3
See also dependencies

virtual memory, 9–15
virtual tables. See views

W
waits for blocking transaction, 10–13
writers block readers, 10–13

Reader’s Comment Form

Oracle7� Server Concepts
Part No. A32534–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Server Technologies Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Oracle Library-Top Level
	Title
	Preface
	Audience
	What You Should Already Know
	If You’re Interested in Installation and Migration
	If You’re Interested in Database Administration
	If You’re Interested in Application Design

	How Oracle7 Server Concepts Is Organized
	Part I What is Oracle?
	Part II Basic Database Operation
	Part III Database Structures
	Part IV System Architecture
	Part V Data Access
	Part VI Programmatic Constructs
	Part VII Database Security
	Part VIII Distributed Processing and Distributed Databases
	Part IX Database Backup and Recovery
	Reference

	How to Use This Manual
	Conventions Used in This Manual
	Special Icons
	Text of the Manual
	Code Examples

	Your Comments Are Welcome

	Table of Contents
	Part I: What Is Oracle?
	1: Introduction to the Oracle Server
	Databases and Information Management
	The Oracle Server
	Structured Query Language (SQL)
	Database Structure
	An Oracle Instance

	Database Structure and Space Management
	Relational Database Management Systems
	Logical Database Structures
	Physical Database Structures
	The Data Dictionary

	Oracle Server Architecture
	Memory Structures and Processes
	Memory Structures
	Processes
	The Program Interface
	An Example of How Oracle Works

	Data Access
	SQL—The Structured Query Language
	Transactions
	PL/SQL
	Data Integrity

	Data Concurrency and Consistency
	Concurrency
	Read Consistency
	Locking

	Database Security
	Security Mechanisms
	Trusted Oracle

	Database Backup and Recovery
	Why Is Recovery Important?
	Types of Failures
	Structures Used for Recovery
	Basic Recovery Steps

	Distributed Processing and Distributed Databases
	Client/Server Architecture: Distributed Processing
	Distributed Databases
	Table Replication
	Oracle and SQL*Net

	Part II: Basic Database Operation
	2: Database and Instance Startup and Shutdown
	Introduction to Database Startup and Database Shutdown
	Connecting with Administrator Privileges

	Database and Instance Startup
	Starting an Instance
	Mounting a Database
	Opening a Database

	Database and Instance Shutdown
	Closing a Database
	Dismounting a Database
	Shutting Down an Instance

	Parameter Files
	An Example of a Parameter File
	Changing Parameter Values

	Part 3: Database Structures
	3: Data Blocks, Extents, and Segments
	The Relationships Between Data Blocks, Extents, and Segments
	Data Blocks
	Extents
	Segments

	Data Blocks
	Data Block Format
	An Introduction to PCTFREE, PCTUSED, and Row Chaining

	Extents
	When Extents Are Allocated for Segments
	How Extents Are Allocated for Segments
	When Extents Are Deallocated
	Determining Sizes and Limits of Segment Extents

	Segments
	Data Segments
	Index Segments
	Rollback Segments

	Temporary Segments
	Operations Requiring Temporary Segments
	How Temporary Segments Are Allocated

	4: Tablespaces and Datafiles
	An Introduction to Tablespaces and Datafiles
	Tablespaces
	The SYSTEM Tablespace
	Allocating More Space for a Database
	Online and Offline Tablespaces
	Read–Only Tablespaces
	Temporary Tablespaces

	Datafiles
	Datafile Contents
	Size of Datafiles
	Offline Datafiles

	5: Schema Objects
	Overview of Schema Objects
	Tables
	How Table Data Is Stored
	Nulls
	Default Values for Columns

	Views
	Storage for Views
	How Views Are Used
	The Mechanics of Views
	Dependencies and Views
	Updatable Join Views
	Partition Views

	The Sequence Generator
	Synonyms
	Indexes
	Unique and Non–Unique Indexes
	Composite Indexes
	Indexes and Keys
	How Indexes Are Stored

	Clusters
	Performance Considerations
	Format of Clustered Data Blocks
	The Cluster Key
	The Cluster Index

	Hash Clusters
	How Data Is Stored in a Hash Cluster
	Hash Key Values
	Hash Functions
	Allocation of Space for a Hash Cluster

	6: Datatypes
	Oracle Datatypes
	Character Datatypes
	NUMBER Datatype
	DATE Datatype
	LONG Datatype
	RAW and LONG RAW Datatypes
	ROWIDs and the ROWID Datatype
	The MLSLABEL Datatype
	Summary of Oracle Datatype Information

	ANSI, DB2, and SQL/DS Datatypes
	Data Conversion
	Rule 1: Assignments
	Rule 2: Expression Evaluation

	7: Data Integrity
	Definition of Data Integrity
	Types of Data Integrity
	How Oracle Enforces Data Integrity

	An Introduction to Integrity Constraints
	Advantages of Integrity Constraints
	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	PRIMARY KEY Integrity Constraints
	Referential Integrity and FOREIGN KEY (Referential) Integrity Constraints
	Actions Defined by Referential Integrity Constraints
	CHECK Integrity Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Checking

	8: The Data Dictionary
	An Introduction to the Data Dictionary
	The Structure of the Data Dictionary
	SYS, the Owner of the Data Dictionary
	How the Data Dictionary Is Used
	How Oracle and Other Oracle Products Use the Data Dictionary
	How Oracle Users Can Use the Data Dictionary

	The Dynamic Performance Tables

	Part IV: System Architecture
	9: Memory Structures and Processes
	An Oracle Instance
	Process Structure
	Single–Process Oracle Instance
	Multiple–Process Oracle Instance

	Oracle Memory Structures
	Virtual Memory
	Software Code Areas
	System Global Area (SGA)
	Program Global Area (PGA)
	Sort Areas

	Variations in Oracle Configuration
	Connections, Sessions, and User Processes
	Oracle Using Combined User/Server Processes
	Oracle Using Dedicated Server Processes
	The Multi–Threaded Server

	Examples of How Oracle Works
	An Example of Oracle Using Dedicated Server Processes
	An Example of Oracle Using the Multi–Threaded Server

	The Program Interface
	Program Interface Structure
	The Program Interface Drivers
	Operating System Communications Software

	10: Data Concurrency
	Data Concurrency in a Multi–user Environment
	General Concurrency Issues
	Locking Mechanisms

	How Oracle Controls Data Concurrency
	Multiversion Concurrency Control
	Statement Level Read Consistency
	Transaction Level Read Consistency
	Oracle Isolation Levels
	Setting the Isolation Level
	Additional Considerations for Serializable Isolation
	Comparing Read Committed and Serializable Isolation

	How Oracle Locks Data
	Transactions and Data Concurrency
	Types of Locks
	Data Locks
	DDL Locks (Dictionary Locks)
	Internal Locks and Latches
	Explicit (Manual) Data Locking
	Oracle Lock Management Services

	V: Data Access
	11: SQL and PL/SQL
	Structured Query Language (SQL)
	SQL Statements
	Identifying Non–Standard SQL
	Recursive SQL
	Cursors
	Shared SQL
	What Is Parsing?

	PL/SQL
	How PL/SQL Executes
	Language Constructs for PL/SQL

	12: Transaction Management
	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement–Level Rollback

	Oracle and Transaction Management
	Committing Transactions
	Rolling Back Transactions
	Savepoints

	Discrete Transaction Management

	13: The Optimizer
	What Is Optimization?
	Execution Plans
	Oracle’s Approaches to Optimization
	Histograms

	How Oracle Optimizes SQL Statements
	Types of SQL Statements
	Choosing Access Paths
	Optimizing Distributed Statements

	Part VI: Programmatic Constructs
	14: Procedures and Packages
	An Introduction to Stored Procedures and Packages
	Stored Procedures and Functions
	Packages
	PL/SQL

	Procedures and Functions
	How Procedures Are Used
	Applications for Procedures
	Anonymous PL/SQL Blocks vs. Stored Procedures
	Standalone Procedures vs. Package Procedures
	Dependency Tracking for Stored Procedures

	Packages
	Applications for Packages
	Dependency Tracking for Packages

	How Oracle Stores Procedures and Packages
	Compiling Procedures and Packages
	Storing the Compiled Code in Memory
	Storing Procedures or Packages in Database

	How Oracle Executes Procedures and Packages
	Verifying User Access
	Verifying Procedure Validity
	Executing a Procedure

	15: Database Triggers
	An Introduction to Triggers
	How Triggers Are Used
	A Cautionary Note about Trigger Use
	Database Triggers vs. Oracle Forms Triggers
	Triggers vs. Declarative Integrity Constraints

	Parts of a Trigger
	Triggering Event or Statement
	Trigger Restriction
	Trigger Action
	Types of Triggers

	Trigger Execution
	The Execution Model for Triggers and Integrity Constraint Checking
	Data Access for Triggers
	Storage for Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

	16: Dependencies Among Schema Objects
	An Introduction to Dependency Issues
	Compiling Views and PL/SQL Program Units

	Advanced Dependency Management Topics
	Dependency Management and Non–Existent Schema Objects
	Shared SQL Dependency Management
	Package Invalidations and Session State
	Local and Remote Dependency Management

	Part VII: Database Security
	17: Database Access
	Schemas, Database Users, and Security Domains
	User Authentication
	Authenticating Users Using the Operating System
	Authenticating Users Using Network Authentication
	Authenticating Users Using the Oracle Database
	Password Encryption while Connecting
	Database Administrator Authentication

	User Tablespace Settings and Quotas
	Default Tablespace
	Temporary Tablespace
	Tablespace Access and Quotas

	The User Group PUBLIC
	User Resource Limits and Profiles
	Types of System Resources and Limits
	Profiles

	Licensing
	Concurrent Usage Licensing
	Named User Licensing

	18: Privileges and Roles
	Privileges
	System Privileges
	Object Privileges

	Roles
	Common Uses for Roles
	The Mechanisms of Roles
	Granting and Revoking Roles
	Who Can Grant or Who Can Grant or Who Can Grant or Revoke Roles? Revoke Roles? Revoke Roles?
	Naming Roles
	Security Domains of a Role and a User Granted Roles
	Data Definition Language Statements and Roles
	Predefined Roles
	The Operating System and Roles
	Roles in a Distributed Environment

	19: Auditing
	Introduction to Auditing
	Auditing Features
	Auditing Mechanisms

	Statement Auditing
	Privilege Auditing
	Object Auditing
	Object Audit Options for Views and Procedures

	Focusing Statement, Privilege, and Object Auditing
	Auditing Successful and Unsuccessful Statement Executions
	Auditing BY SESSION versus BY ACCESS
	Auditing By User

	Part VIII: Distributed Processing and Distributed Databases
	20: Client/Server Architecture
	The Oracle Client/Server Architecture
	Distributed Processing

	SQL*Net
	How SQL*Net Works

	21: Distributed Databases
	An Introduction to Distributed Databases
	Clients, Servers, and Nodes
	Site Autonomy
	Schema Objects and Naming in a Distributed Database
	Database Links
	Statements and Transactions in a Distributed Database
	Two–Phase Commit Mechanism
	Transparency in a Distributed Database System
	SQL*Net and Network Independence
	Heterogeneous Distributed Database Systems

	Replicating Data

	Part XI: Database Backup and Recovery
	22: Recovery Structures
	An Introduction to Database Recovery and Recovery Structures
	Errors and Failures
	Structures Used for Database Recovery

	The Online Redo Log
	Online Redo Log File Contents
	How Online Redo Log Files Are Written

	The Archived Redo Log
	The Mechanics of Archiving
	Archived Redo Log File Contents
	Database Archiving Modes

	Control Files
	Control File Contents
	Multiplexed Control Files

	Survivability
	Planning for Disaster Recovery
	Standby Database

	23: Database Backup
	An Introduction to Database Backups
	Full Backups
	Partial Backups
	The Export and Import Utilities

	Read–Only Tablespaces and Backup

	24: Database Recovery
	Recovery Procedures
	Recovery Features
	An Introduction to Database Recovery
	Database Buffers and DBWR
	The Redo Log and Rolling Forward
	Rollback Segments and Rolling Back

	Performing Recovery in Parallel
	What Situations Benefit from Parallel Recovery
	Recovery Processes

	Recovery from Instance Failure
	Read–Only Tablespaces and Instance Recovery

	Recovery from Media Failure
	Read–Only Tablespaces and Media Recovery
	Complete Media Recovery
	Incomplete Media Recovery

	Ap A: Operating System–Specific Information
	Index
	Reader's Comment Form

