
falkner.fm.qxd 8/21/03 5:16 PM Page i

Essential ADO.NET, Bob Beauchemin,
0201758660

Essential COM, Don Box, 0201634465

Essential XML: Beyond Markup, Don Box, Aaron
Skonnard, and John Lam, 0201709147

Programming Windows Security, Keith Brown,
0201604426

Advanced Visual Basic 6: Hardcore Programming
Techniques, Matthew Curland, 0201707128

Java™ Rules, Douglas Dunn, 020170916

Transactional COM+: Building Scalable
Applications, Tim Ewald, 0201615940

Servlets and JavaServer Pages™: The J2EE™
Technology Web Tier, Jayson Falkner and Kevin
Jones, 0321136497

ASP Internals, Jon Flanders, 0201616181

Developing Applications with Visual Studio .NET,
Richard Grimes, 0201708523

Essential IDL: Interface Design for COM, Martin
Gudgin, 0201615959

Component Development for the Java™ Platform,
Stuart Dabbs Halloway, 0201753065

Effective Visual Basic: How to Improve Your
VB/COM+ Applications, Joe Hummel, Ted Pattison,
Justin Gehtland, Doug Turnure, and Brian A.
Randell, 0201704765

C# Primer: A Practical Approach, Stanley B.
Lippman, 0201729555

Debugging Windows Programs: Strategies, Tools,
and Techniques for Visual C++ Programmers,
Everett N. McKay and Mike Woodring,
020170238X

Real World XML Web Services: For VB and VB
.NET Developers, Yasser Shohoud, 0201774259

Essential XML Quick Reference: A Programmer's
Reference to XML, XPath, XSLT, XML Schema,
SOAP, and More, Aaron Skonnard and Martin
Gudgin, 0201740958

The DevelopMentor Series—Essential Reading for the Serious Developer

Books in the DevelopMentor Series:

• Teach from the bottom up. Before you can learn “how to” you must learn "how it works."
Understanding how and why a technology works the way it does builds the problem-solving skills
essential for developing great software.

• Back theory with code. Analogies and abstractions are great, but the real test is “does the code
work?” Sample code is provided to illustrate all the concepts covered.

• Tell the story. Software concepts do not exist in arid isolation. They weave a story, and the best stories
are created by a community of developers learning from their experiences and finding the best way to
share their knowledge with their colleagues. DevelopMentor’s technical team has developed its
knowledge on real-world development projects in order to bring you the stories you need to truly
understand software.

• Give concise, valuable information. The DevelopMentor Series writing style is geared toward serious
developers. The books are clear and concise, and make core concepts immediately accessible. At the
same time, the material is dense and rich with insight. A second reading is often a totally different—
and equally valuable—experience from the first reading.

Watch for future titles in the DevelopMentor Series and the Microsoft .NET Development Series.

Titles in the Series:

DM series page 7x9.25.qxd 6/16/03 5:15 PM Page 1

Servlets and JavaServer PagesTM

The J2EETM Technology Web Tier

Jayson Falkner
Kevin Jones

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

falkner.fm.qxd 8/21/03 5:16 PM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Falkner, Jayson.

JAVA Servlets and JavaServer pages: the J2EE technology Web tier/Jason Falkner,
Kevin James

p. cm.
ISBN 0-321-13649-7 (alk. paper)

1. Java (Computer program language) 2. Servlets. 3. JavaServer pages. I. Jones, Kevin.
II. Title.

QA76.73.J3F355 2003
005.13'3—dc21 2003052156

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior consent of the publisher. Printed in the United States of America. Published simultaneously in
Canada.

For information on obtaining permission for use of material from this work, please submit a written request
to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-13649-7
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRS—0706050403
First printing, September 2003

falkner.fm.qxd 8/21/03 5:16 PM Page iv

Thanks to Teresa, Harry, Sam, and Alex. Without you
I couldn’t do what I do.

—Kevin Jones

To James and Joleen Falkner. Your support has produced yet
another sizable piece of gibberish. Words fail to express

how thankful I am for your love.
—Jayson Falkner

falkner.fm.qxd 8/21/03 5:16 PM Page v

falkner.fm.qxd 8/21/03 5:16 PM Page vi

vii

Contents

Preface xv

1 Setting Up a Servlet and JSP Environment 1
A Quick History of Web Development 1

CGI 2
Java Servlets 4

Containers 4
Getting Java Support 6

Downloading the Java 2 Standard Edition 1.4 6
Installing J2SE 1.4 on Microsoft Windows 7
Installing J2SE 1.4 on Linux Distributions 7
Tomcat 9
Configuring Tomcat 17

Web Applications 19
/WEB-INF and web.xml 22
Java Classes and Source Files 24
Java Archive (JAR) Files 25
Web Application Resource (WAR) Files 25

Ant 26
What Does Ant Do? 26
Installing Ant 27
Using Ant 27

Summary 29

2 Java Servlets 31
What Servlets Are and Why You Would Want to
Use Them 32

Web Applications 32
Servlets and HTTP Servlets 32
Filters 33
Security 33
Internationalization 33

Servlet Life Cycle 33
Servlets for the World Wide Web 35

Requests, Responses, and Headers 36

falkner.fm.qxd 8/21/03 5:16 PM Page vii

GET and POST 39
HTTP Response Codes 40

Coding a HttpServlet 41
Deploying a Servlet 43
Web Application Deployment Descriptor Structure 46

Servlet Configuration 47
Limitations of Configuration: web.xml Additions 50
Client/Server Servlet Programming 51
HttpServletRequest and HttpServletResponse 51
HttpServletResponse 52
HttpServletRequest 64

ServletContext 92
Initial Web Application Parameters 92

Servlet Event Listeners 102
Summary 106

3 JavaServer Pages 109
JSP 2.0 Specification 110

JSP 110
JavaBeans 110
Custom Tags and JSP Fragments 110
Expression Language 110

JSP Life Cycle 111
The Difference Between Servlets and JSP 112
JSP Syntax and Semantics 116

Elements and Template Data 116
Two Types of Syntax 116
Scripting Elements 117
Directives 126
JSP Configuration 133
Standard JSP Actions 136
White Space Preservation 145
Attributes 147
Comments 147
Quoting and Escape Characters 149

Implicit Objects 150
pageContext 153
out 154
config 157
page 159

JSP in XML Syntax 159
XML Rules 162
JSP Documents 162

Summary 165

viii CONTENTS

falkner.fm.qxd 8/21/03 5:16 PM Page viii

4 Exception Handling 167
Errors and Exceptions 168

Throwing Exceptions 169
Try, Catch, Finally 172

JSP and Servlet Exceptions 174
Web Application Exception Handling 176

Micro-Managing Exceptions 176
Macro-Managing Exceptions 181
Web Application Error Pages 182

Logging 191
The Problem with System.out.println() 192
JDK 1.4 Logging Versus Log4j 193
Using the java.util.logging Package 193
Handlers 196
Loggers 199

Logging and Performance 208
A General Philosophy for Exception Handling and Logging 208

Summary 210

5 JavaBeans and the JSP Expression Language 213
JavaBeans 214
Get and Set Methods 214

Why Get and Set Methods? 215
Servlets, JSP, and JavaBeans 217

<jsp:useBean/> 217
<jsp:getProperty/> and <jsp:setProperty/> 221

Good Use of JavaBeans 225
Design Patterns and JavaBeans 226

JSP. 2.0 Expression Language 227
Disabling the EL 227
JSP EL Syntax 228
Reserved Words 230
EL Functions 230
Good Uses of the JSP EL 231

Summary 234

6 JavaServer Pages Standard Tag Library 235
JSTL 1.0 Specification 235
Why You Should Use the JSTL 237
Installing the JSTL 237
JSTL Expression Language 238

Twin Libraries 239
Core Tags 239

General-Purpose Tags 239

CONTENTS ix

falkner.fm.qxd 8/21/03 5:16 PM Page ix

Iteration 243
Conditionals 247
URL Manipulation 250

I18N-Capable Text Formatting 255
XML Manipulation 255
SQL Tags 256
Justification for Skipping the SQL Tags 256
Summary 258

7 Custom Tag Libraries 259
Why Custom Tags? 260
Tag Library Basics 261
How Are Tags Being Used? 262
New and Old Custom Tags 265
Tag Library Descriptors (TLDs) 265

What Is a Tag Library Descriptor? 266
Using a Tag Library Descriptor 267

Simple, JSP 2.0 Custom Tags 271
SimpleTag Interface 272
Attributes 275
Body Evaluation and Iteration 285
.tag Files 288
Cooperating Tags 299

Classic JSP Tag Handlers 300
Basic Tags 300
Coding a BasicTag 303
Reusing Tags 308
TryCatchFinally Interface 310
Cooperating Tags 311
Mixing New Tags with Classic Tags 313
Iteration Tags 315
Body Tags 321
Tag Scripting Variables 324
Tag Library Listeners 328
Validation 329

Summary

8 Filters 333
Introducing Filters 334

What Is a Filter? 334
The Filter Life Cycle 335
Coding a Simple Filter 336

Wrappers 352
Request Wrapping 353
Response Wrapping 357

x CONTENTS

falkner.fm.qxd 8/21/03 5:16 PM Page x

Filters That Provide JSP-Replacing Functionality 387
Summary 388

9 Managing State in a Web Application 389
HTTP and Session State 390

Using an ID to Identify Clients 391
javax.servlet.http.HttpSession 392
Cookies 395
Initializing Session Resources 406

Persistent State 411
Session Smearing 412
Sharing State Information via a Database 413

State and Thread Safety 414
Synchronizing 416
Protecting Servlet State 416
javax.servlet.SingleThreadModel 420
Protecting Session and Application State 421

Summary 422

10 Security 423
What Do We Mean by Security? 424
Declarative Security 425

Role-Based Security 426
Configuring Realms 430
The Big Picture 432
Configuring Basic or Digest Authentication 437
Custom Form-Based Authentication 438

Programmatic Security in a Servlet/JSP 440
Secure, Encrypted Communication 443

Specifying HTTPS 448
How Secure Is Security? 452
Encryption and Compression and Caching 453
Summary 455

11 Design Patterns 457
Why Use a Design Pattern? 458
Common Design Patterns 458

Model 1 459
Model 2 472
Good Model 2 Implementation 487

Jakarta Struts 490
Installing Struts 491
Struts Control Servlet 494
Actions 496

CONTENTS xi

falkner.fm.qxd 8/21/03 5:16 PM Page xi

Using Struts 507
Model 11⁄2 507

Abstracting DHTML via Custom Tags 510
Why Abstract DHTML with Custom Tags? 510
Coding DHTML Widget Custom Actions 511

Summary 512

12 Internationalization 513
Content Encoding 514

ISO-8859-1 514
Unicode 517
Working with Non-ISO-8859-1 Encoding 518

i18n Implementation Techniques 523
Language Detection 524
Multiple Pages 527
Content Abstraction 531

Number and Date Formatting 539
i18n Numbers and Dates at Runtime 540
Using DateFormat, NumberFormat, and MessageFormat 543
JSTL Number and Date Formatting Tags 549

Summary 550

13 Multi-Client Support 553
Who Should Read This Chapter 554
Separating Format from Content 555
Implementing Multi-Client Support 557

Templates 558
Transformations 563

Solving Multi-Client Problems 566
Creating a Multi-Client Interface 566
Non-Text Formats 586

Summary 588

14 Database Connectivity 591
What Is a Database? 592

SQL 594
CRUD 597

JDBC 605
javax.sql.DataSource 606
java.sql.Connection and java.sql.Statement 614
java.sql.ResultSet 617
A Simple JDBC-Based Application 624

Using JDBC Optimally 632
Connection Pooling 633
Optimized Statements 634
Database Administrators Are Expected to Know a Lot 638

xii CONTENTS

falkner.fm.qxd 8/21/03 5:16 PM Page xii

JDBC Web Application Design Patterns 638
Data Access Object Design Pattern 640

Summary 649

15 Building a Complete Web Application 651
Designing a Web Application 652

Physical Implementation 654
Distributing the Workload: Dividing Up Who Does What 656

Practical Use of Web Application Labor Division 657
Implementing Database Support: Creating a Database and Using JDBC 658

Database Physical Design 658
Interfacing Without SQL 661

Implementing Business Logic: Filters and the Model 2 Design Pattern 662
Coding Model 2 Logic Classes and Populating
Request-Scope Variables 664
Dealing with Overly Complex Logic Components 687

Implementing Presentation Logic: JSP, Multi-Client Design, and
Internationalization 687

Building a Simple Presentation Page 688
Creating the Other Presentation Pages 696
Localized Content 703

(in Japanese) 709
Finishing the Site 711

Site-Wide Error Handling 712
Adding Security 715
Link Tracking 717
Caching and Compression 721
Adding the Egg 726

Summary 733

Index 735

CONTENTS xiii

falkner.fm.qxd 8/21/03 5:16 PM Page xiii

falkner.fm.qxd 8/21/03 5:16 PM Page xiv

Preface

The goal of this preface is to briefly but accurately introduce this book and its
content. The preface is broken into four main parts: about the authors, an
overview of the book’s content, a list of the conventions used throughout the
book, and an explanation of the book’s cover. All parts are relevant to the book;
however, not all parts may be of personal interest to you. It is suggested at least
the first two sections be read because they explain who wrote this book and what
the book is about. The last two sections are not helpful unless you decide to read
any portion of the book.

About the Authors
Two authors collaborated on this book: Jayson Falkner and Kevin Jones. Both
Jayson and Kevin are well-known developers in the JavaServer Pages (JSP) and
Servlets communities, and both authors have worked extensively with the tech-
nologies. Servlets and JavaServer PagesTM: The J2EETM Technology Web Tier origi-
nally started as Jayson’s project; however, during the JavaOne 2002 conference the
two authors met. It turns out Kevin was thinking of working on a similar title,
and the two decided to collaborate.

Jayson Falkner
Jayson is a J2EE developer from the United States. He started developing with
J2EE just before JSP 1.1 and Servlets 2.2 were released and has been focusing on
the technologies since. Jayson is best known as the Webmaster of JSP Insider,
http://www.jspinsider.com, and for asking far too many questions in the
popular Servlet and JSP forums. Jayson has worked on numerous JSP titles and
is constantly present at the popular Java conferences. Jayson participated on the
JSR 152 expert group, JSP 2.0, and helped with the Tomcat 5 reference imple-
mentation.

Jayson prefers to think of himself as a tax-dodging student, who is currently
working on a Ph.D. in bioinformatics at the University of Michigan; however, he
also works professionally as a J2EE consult with Amberjack Software LLC. Open-

xv

falkner.fm.qxd 8/21/03 5:16 PM Page xv

source software and free Java development are Jayson’s specialties. You can thank
(or complain) to Jayson for dictating the use of Mozilla and Tomcat with this
book.

You can get in touch with Jayson by sending an email to jayson@jspin-
sider.com.

Kevin Jones
Kevin is a longtime Java developer and educator, and has been involved in the
training industry for the last twelve years. For the last eight years Kevin has been
involved in writing and delivering Java training and consulting on various Java
projects, and for the last four years has concentrated on J2EE and specifically Web
technologies.

Kevin spoke at JavaOne in 2000 and was invited to become a member of JSR
53, the “Java Servlet 2.3 and JavaServer Pages 1.2 Specifications” and also JSR 52
“A Standard Tag Library for JavaServer Pages”. Since then Kevin has successfully
spoken at JavaOne in 2001 and 2002 as well as participating in JSR 154 (Servlets
2.4) and, like Jayson, in JSR 152.

Kevin is responsible for the Java curriculum at DevelopMentor, where he
teaches the Essential Java Web Development class that covers much of the
material in this book, as well as many other Java classes.

You can reach Kevin at kevinj@develop.com or through his Web site at
http://kevinj.develop.com

How the Book Is Organized
In this book you will find a few, hopefully delightful, things. The book is a com-
plete guide to Servlets and JavaServer Pages and their practical use for developers
familiar with HTML and basic Java. If you are unfamiliar with the terms Servlets
and JavaServer Pages, think of this book as a complete guide to building dynamic,
Java-based Web sites. It is assumed you understand Java and HTML. Never does
the book attempt to test these two skills; however, code examples in this book do
not include explanations of fundamental Java concepts and HTML syntax.

Before introducing the book’s content, there are a few points worth men-
tioning in relation to competing technologies, especially since you are likely
standing next to several books about building Web sites using the plethora of
other “superior” technologies. At all times this book follows the open-source
mindset—that is, software you need is free and you get all the source-code. It will
cost you or your development team absolutely nothing to get and use all the
software demonstrated, both directly and indirectly. In comparison to the

xvi PREFACE

falkner.fm.qxd 8/21/03 5:16 PM Page xvi

primary competitor of Servlets and JSP, Microsoft’s .NET and Microsoft’s ASP
.NET, you will have no software costs, no licensing costs, and the freedom to
choose any operating system that supports Java, such as Linux, Windows, OSX,
and Solaris. Compared to other open-source solutions, namely PHP or Perl, this
book offers a truly robust solution to developing Web applications. You will get
everything you need, including built-in security, portability, and a Web server. A
Servlet and JSP-based Web application does not need an additional Web server,
such as IIS or Apache, installed to serve up Web pages and provide encryption for
secure connections. Additionally, Servlet and JSP-based code, even code for mul-
tiple Web sites being run on the same server, can literally be packaged up into one
big file and moved between a development environment and a production envi-
ronment, even if the two places are using different operating systems—you can
not do this with technologies such as PHP or Perl. Additionally, Servlets and JSP
are an official part of J2EE, Java’s solution to the hardest problems of application
programming. If you plan on programming the largest and most complex of Web
applications (including multi-server projects), this book still provides relevant
code—surely a bonus compared to other popular, open-source technologies that
are not meant for large Web applications.

The table of contents provides a complete list of the book’s contents, but the
titles of most chapters are meaningless to a new user of Servlets and JavaServer
Pages. Here is a complete description of the book’s content, divided by chapters,
explaining why the chapter is in this book:

• Setting Up a Servlet and JSP Environment (Chapter 1): Before
jumping straight to the technologies, you need to have two things:
knowledge of why Servlets and JSP are important and a devel-
opment environment (for Windows, Linux or OS X) for using
Servlets and JSP. These two topics are covered completely in
Chapter 1. While the content may not be something you will ever
reference again in the future, it is a required introduction for new
Servlet and JSP users.

• Java Servlets (Chapters 2) and JavaServer Pages (Chapter 3):
Chapters 2 and 3 provide detailed coverage of Servlets and
JavaServer Pages. The chapters are not the most exciting of the
book, but the material is needed as groundwork for the later
chapters.

• Exception Handling (Chapter 4): Web sites built using Servlets and
JavaServer Pages provide specialized methods of handling excep-
tions. The mechanism is required in order to appropriately show a

PREFACE xvii

falkner.fm.qxd 8/21/03 5:16 PM Page xvii

user-friendly error page when something goes wrong. Chapter 4
explains how Servlets and JSP extend the standard Java exception-
handling scheme. Since error handling is not commonly a well-
understood feature of Java, this chapter does not assume fluent use
of Java’s try-catch-finally statement.

• JavaBeans and the JSP Expression Language (Chapter 5): The
term “JavaBean” is used to mean many things in the Java world. As
applied to Servlets and JSP, JavaBeans are little more than a fancy
name for a simple Java class; however, the ambiguity of the term
combined with its popular use merits a complete discussion about
JavaBeans. Complementing this discussion is an introduction to the
JSP expression language (new in JSP 2.0). The JSP expression lan-
guage can greatly simplify the task JavaBeans were previously used
for. Chapter 5 provides a complete discussion of the new JSP EL,
and a discussion on good programming practices using both the
JSP EL and JavaBeans.

• JavaServer Pages Standard Tag Library (Chapter 6) and Custom
Tag Libraries (Chapter 7): Custom Tags is a popular feature of
JavaServer Pages that allow static text, such as HTML-like tags, to be
linked with Java classes. The functionality is at the center of several
popular JSP programming techniques, since it allows for a
developer to easily abstract code from pages designed to display
HTML. Understanding and using JSP custom tags is a skill every
JSP developer should have. Chapter 6 covers the standard set of
custom tags, and Chapter 7 is dedicated to explaining the mech-
anism of creating and using new custom tags.

• Filters (Chapter 8): A Filter is something that a developer can use
to cleanly intercept and modify requests and responses. The func-
tionality works well for caching and security reasons; however, it is
also conceptually a key part to building a good Web application.
Chapter 8 explains Filters and provides several examples of how
Filters are popularly used.

• Managing State in a Web Application (Chapter 9): The vast
majority of the World Wide Web relies on stateless protocols—that
is, communicating with one user twice is by default indistin-
guishable from communicating with two users once. However, most
every Web site relies on being able to keep track of who is receiving
information. Chapter 9 details both the problem and common solu-

xviii PREFACE

falkner.fm.qxd 8/21/03 5:16 PM Page xviii

tions. Servlets and JavaServer Pages provide a seamless solution to
keeping state with a user, but it is very important as a Web
developer that you understand how the problem is solved. Without
such knowledge you may encounter unpredictable results from even
a simple Web application.

• Security (Chapter 10): Security is an all-important topic for an
obvious reason: if information communicated via the Internet
needs to be confidential something needs to guarantee confiden-
tiality. The task of providing security is always in check by the per-
sistence of people trying to break security. Servlets and JSP provide
a relatively simple method of using up-to-date security mecha-
nisms. Chapter 10 details how security works, how Servlets and JSP
implements security, and how to configure a secure Web site.

• Design Patterns (Chapter 11), Internationalization (Chapter 12),
and Multi-Client Support (Chapter 13): Understanding how tech-
nology works does not mean one knows how to best use the tech-
nology. Complimenting the earlier chapters of the book, several
popular tricks, techniques, and all-around good programming prac-
tices are explained in the last part of the book. This information is
exactly the type of information a developer needs, assuming one
understands the technology, and exactly the type of information
omitted from books that only detail a technology. Chapter 11,
Chapter 12, and Chapter 13 all explain popular approaches to using
Servlets and JSP to solve real world problems.

• Database Connectivity (Chapter 14): A database is almost always at
the center of a Web site, for good reason; however, the topic of data-
bases merits a full book. As a developer you will benefit from
understanding the basic theories of databases and how a database
can be used with Servlets and JSP. Chapter 14 provides a crash
course to basic use of a database and a detailed discussion of using
a database with Servlets and JSP. In practice Chapter 14 is no
replacement for a good book on your favorite database, but
Chapter 14 will enable you to create and use a database from
scratch.

• Building a Complete Web Application (Chapter 15): Ending the
book is one grand look at everything covered and a discussion on
how all the previous chapters are to be used in practice. How better
to accomplish this then by building a real Web application?

PREFACE xix

falkner.fm.qxd 8/21/03 5:16 PM Page xix

Chapter 15 uses all of the previous chapters to construct a book
support site for this book, the same Web application seen online
http://www.jspbook.com. The task is not difficult because it is little
more than a rehash of the concepts covered in this book and recy-
cling snippets of code, but the chapter nicely concludes the book
and really proves you can build a good Web application based on
the content of this manuscript.

You can do much with Servlets and JSP, and this book attempts to cover it all.
If you read through the whole text you will be fluent with the technologies and
able to take full advantage of them. Every chapter does rely on previous chapters.
Concepts and buzzwords are explained fully only once in the book, in what is
thought the appropriate place, and you are expected to read completely from the
start to the end.

The Book Support Web Site
Servlets and JavaServerTM Pages: The J2EETM Technology Web Tier is not a perfect
book, nor is everything the book covers best put in text. In a best attempt effort
at ensuring the book is top quality, even after publication, a book support site is
maintained at http://www.jspbook.com. At the book support site you will find
numerous things including current updates, FAQ, news about the book, working
code examples, references, and a method to reach the authors. This book support
site is not the standard publisher-supported site (and Addison-Wesley’s site is
quite nice), but it is something created and supported completely by the authors.
You are encouraged to use the book support site as a place to aid your reading of
the book and communicate with the authors.

Conventions Used in the Book
For clarity, a few arbitrary conventions are followed by this book. As authors our
goal is to try and convey our thoughts and experiences clearly. Where possible we
attempt to follow standardized or de-facto coding methods and writing tech-
niques. In cases where we have to make up a method of conveying information it
needs to be clear that we are doing just that. Documented here are all of the arbi-
trarily official standards that are used in this book.

InTextCode Style
When dealing with technical information there are times when terms are
ambiguous. One word in English might be spelled and pronounced exactly the

xx PREFACE

falkner.fm.qxd 8/21/03 5:16 PM Page xx

same in code but refer to a completely different meaning. In cases where a literal
name or value of a technical term is used, it will always appear in the InTextCode
style. This style signifies that the word is a direct reference to a file, variable
name, Object type, or any other specific code reference.

Foo
Throughout the book there are many examples of code. These examples are all
thoroughly tested and are functional illustrations of a point at hand. For the most
part code is always intended to be helpful. However, sometimes an example relies
on having a particular situation or circumstance occur to be meaningful. In these
cases a slightly contrived bit of code might be required to illustrate what the
important example is doing. In these cases the contrived code is not meant to be
helpful beyond educational purposes. In order to distinguish clearly between
what code is slightly contrived and what code is actually helpful a convention is
used to flag purely educational code. Whenever the foo keyword appears in code,
you should be suspect of its practical use. Some examples of places where foo
appears include com.jspbook.foo package and code that is named with foo
appearing in the title. In the case of the com.jspbook.foo package the foo
keyword means code in this package is not too helpful on its own. Instead,
com.jspbook.foo classes are usually built to directly complement a helpful class
appearing in the com.jspbook package. When the foo keyword appears in the
title of code, perhaps a JSP named Foo.jsp, it signals the whole page is slightly
contrived. Be conscious of occurrences of the foo keyword and do not focus on
them but rather the point they illustrate.

Mozilla and Tomcat
For consistency two primary pieces of software, Mozilla and Tomcat, are used
throughout the book and will be indirectly visual in examples. As further
explained later, all JSP and Servlets rely on a main piece of software called a con-
tainer. The reference container for JSP is Tomcat, http://jakarta.apache.org/
tomcat. All code in this book is tested against Tomcat, and many screenshots
show common behavior of the container. Be aware that Tomcat is the specific
container in all of these cases, and different containers might have slightly dif-
ferent results. This warning does not imply that the code would not work in other
containers; code should seamlessly work on any JSP 2.0 and Servlet 2.4 container.
The mention is solely to prevent possible confusion that might arise from
examples that give different styles of the same result when executed.

PREFACE xxi

falkner.fm.qxd 8/21/03 5:16 PM Page xxi

Mozilla is the very popular open-source Web browser that is built with an
emphasis on compliance to Internet standards. The results of a JSP or Servlet are
almost always intended for rendering by a Web browser. In almost every
screenshot the Web browser is visible. This browser is Mozilla, http://www.
mozilla.org, unless specifically mentioned otherwise. Mozilla was chosen
because it is both a truly superb piece of software and because it behaves in a way
that is to be expected by other Web browsers.

The Book’s Cover
The cover of this book shows 3⁄4 of a yard-gnome. A yard-gnome1 is a ceramic
gnome that is intended to decorate a yard. Gnomes themselves are fictitious crea-
tures that have little if anything to do with yards. A question you might be asking
is “What do yard-gnomes have to do with Servlets and JSP or the J2EE Web Tier?”
The answer is absolutely nothing. The cover resulted from a style restriction we
had to use for this book and a bad joke that has obviously eluded far too many
people.

Yard-Gnomes on Holiday and Yard-Gnomes in France
Being that a yard-gnome does appear on the cover, two things are suggested of
creative readers. Traditionally yard-gnomes are hidden in the background of pic-
tures, particularly vacation pictures. Take a picture with this book hidden in the
background and email it to the book support site. Your picture will be displayed
unless it grossly violates the laws that govern common sense. Additionally, it is
fun to note that in France there is a serious problem of gangs stealing yard-
gnomes and returning them to “their natural habitat” or forested areas, particu-
larly city parks. If you can think of some way to replicate this phenomena using
the gnome on this book’s cover, please send a picture via email to the book
support site.

Special Thanks
There are a few people who helped directly with this book, and there are
countless people who helped indirectly. To everyone who helped with this book:
thanks!

xxii PREFACE

1. Garden-gnome in the United Kingdom.

falkner.fm.qxd 8/21/03 5:16 PM Page xxii

Special thanks to Ann Sellers and Shelley Kronzek, our editors at Addison-
Wesley. You are both fantastic editors, and without you this book would never
have been published. It was a pleasure working with you.

Also special thanks to Kenyon Brown, Patrick Cash-Peterson, and Tyrrell
Albaugh, our production team at Addison-Wesley. Production sometimes seems
to take forever; thanks to them, it didn’t.

Special thanks to Eduardo Pelegri-Llopart and Mark Roth for leading the JSP
2.0 specification and for formalizing the ideas of the expert group and JSP com-
munity.

Special thanks to all of the members of the JSP and Servlet expert groups for
all the hard work involved with Servlets 2.4 and JavaServer Pages 2.0.

Special thanks to all the Servlet and JSP developers who have helped the tech-
nologies grow and thrive. You are the inspiration for this book.

Special thanks to Casey Kochmer. Casey is a longtime friend of Jayson’s, co-
founder of JSP Insider, and one of the inspirations for this book. Without you,
Casey, this book would never have been published.

Special thanks to the countless reviewers of this manuscript. We always had
plenty of good advice from the reviewers. Thanks for helping make this a better
book.

Special thanks to the instructors at DevelopMentor. This group of people
constantly challenge the way I think about software and software development.
Without them I would not be the person I am. In particular, thanks to Simon
Horrell for constantly playing “devil’s advocate” and forcing me to question all
my assumptions.

PREFACE xxiii

falkner.fm.qxd 8/21/03 5:16 PM Page xxiii

falkner.fm.qxd 8/21/03 5:16 PM Page xxiv

Chapter 1

Setting Up a Servlet and JSP
Environment

Before you start developing with Servlets and JavaServer Pages, you need to
understand two very important things: Why is using the technology desirable,
and what is needed in order to use the technology? This chapter answers these
two questions, and in the process provides an introduction to the entire book. We
start with an introduction to traditional Web development. The discussion
describes why Servlets and JSP were initially created and why the technologies are
currently popular. The end of the discussion segues to the software needed in
order to run the book’s examples.

It is preferred that you follow the instructions in this chapter to ensure your
coding environment most closely matches the one all of the code examples of this
book have been tested against. If you are using an already established Servlet/JSP
environment, make sure it has support for JavaServer Pages 2.0, Servlets 2.4, and
the Java 2 Standard Edition 1.4. Examples in this book require these technologies
and some features covered are not backwards-compatible.

A Quick History of Web Development
The Servlet and JSP environment extends past the need for basic Java support. Any
computer running JSP or Servlets needs to also have a container. A container is a
piece of software responsible for loading, executing, and unloading the Servlets
and JSP. The reasons for this are largely related to the history of server-side Web
development. A quick overview of one of the earliest and most prominent server-
side dynamic content solutions, CGI, and the differences between it and Servlets

1

falkner.ch1.qxd 8/21/03 4:42 PM Page 1

2 SETTING UP A SERVLET AND JSP ENVIRONMENT

is very helpful in understanding why a JSP/Servlet container is required. The exact
life cycle events that are managed by a container are discussed in Chapter 2.

CGI
The Common Gateway Interface, or CGI, is commonly referred to as one of the
first practical technologies for creating dynamic server-side content. With CGI a
server passes a client’s request to an external program. This program executes,
creates some content, and sends a response to the client. When first developed,
this functionality was a vast improvement over static content and greatly
expanded the functionality available to a Web developer. Needless to say CGI
quickly grew in popularity and became a standard method for creating dynamic
Web pages. However, CGI is not perfect.

CGI was originally designed to be a standard method for a Web server to
communicate with external applications. An interesting point to note is that the
functionality available for generating dynamic Web pages was really a side effect
of this design goal. This largely explains why CGI has maybe the worst life cycle
possible. As designed, each request to a CGI resource creates a new process on the
server and passes information to the process via standard input and environment
variables. Figure 1-1 provides a diagram of this single-phase CGI life cycle.

While it does work, the CGI life cycle is very taxing on server resources and
greatly limits the number of concurrent CGI users a server can support. In case
you are unfamiliar with operating systems and processes, a good analogy to use
would be starting up and shutting down a Web server each time a user makes a
request. As you probably know, this is almost never the case for a real Web
server. It takes a noticeable amount of time to start and stop the entire process.
A better solution is to start the server process once, handle all requests, and then

CGI Process

CGI Process

CGI Process

Request

Request

Request

CGI Web Server

Figure 1-1 CGI Life Cycle

falkner.ch1.qxd 8/21/03 4:42 PM Page 2

A QUICK HISTORY OF WEB DEVELOPMENT 3

shut it down when there is no longer a need for a Web server. Starting and
stopping a Web server is like the single-phase life cycle of CGI, and it was a very
noticeable problem. CGI did not scale well and would often bring a Web server
to a halt.

Even with poor performance by today’s standards, CGI was a revolu-
tionary step in the evolution of server-side programming. Developers had a
cross platform method of creating dynamic content using most any of their
favorite scripting and programming languages. This popularity sparked
second-generation CGI implementations that attempted to counter the per-
formance problems of original CGI, namely FastCGI. While the single phase
life cycle still existed, CGI implementations improved efficiency by pooling
resources for requests. This eliminated the need to create and destroy
processes for every request and made CGI a much more practical solution.
Figure 1-2 shows the improved implementation of CGI. Instead of one request
per a process, a pool of processes is kept that continuously handle requests. If
one process finishes handling a request, it is kept and used to manage the next
incoming request rather than start a new process for each request.

This same pooling design can still be found in many of today’s CGI imple-
mentations. Using pooling techniques, CGI is a viable solution for creating
dynamic content with a Web server, but it is still not without problems. Most
notable is the difficulty in sharing resources such as a common logging utility or
server-side object between different requests. Solving these problems involves
using creative fixes that work with the specific CGI and are custom-made for
individual projects. For serious Web applications, a better solution, preferably
one that addresses the problems of CGI, was required.

CGI Process

CGI Process

CGI Process

Request

Request

Request

CGI Web Server

CGI Process Pool

Figure 1-2 Pooled CGI Resources

falkner.ch1.qxd 8/21/03 4:42 PM Page 3

Java Servlets
In the Java world, Servlets were designed to solve the problems of CGI and create
robust server-side environments for Web developers. Similar to CGI, Servlets
allow a request to be processed by a program and let the same program produce
a dynamic response. Servlets additionally defined an efficient life cycle that
included the possibility of using a single process for managing all requests. This
eliminated the multi-process overhead of CGI and allowed for the main process
to share resources between multiple Servlets and multiple requests. Figure 1-3
gives a diagram of a Web server with Servlet support.

The Servlet diagram is similar to that of second-generation CGI, but notice all
the Servlets run from one main process, or a parent program. This is one of the
keys to Servlet efficiency, and, as we will see later, the same efficiency is found with
JSP. With an efficient design and Java’s cross-platform support, Servlets solved the
common complaints of CGI and quickly became a popular solution to dynamic
server-side functionality. Servlets are still popular and are now also used as the
foundation for other technologies such as JSP. Currently, Servlets and JSP com-
bined make up the official “Web Tier” for the Java 2 Enterprise Edition, J2EE1.

Containers
Servlet performance can be attributed directly to a Servlet container. A Servlet
container, also called “container” or “JSP container”, is the piece of software

4 SETTING UP A SERVLET AND JSP ENVIRONMENT

Servlet

Servlet

Servlet

Request

Request

Request

Web Server

Process

Figure 1-3 Servlet Web Server Diagram

1. This book’s title, The J2EE Technology Web Tier, comes directly from the marketing jargon Sun
uses. Logically, Web Tier means the code that interacts with the World Wide Web.

falkner.ch1.qxd 8/21/03 4:42 PM Page 4

that manages the Servlet life cycle. Container software is responsible for inter-
acting with a Web server to process a request and passing it to a Servlet for a
response. The official definition of a container is described fully by both the
JSP and Servlet specifications. Unlike most proprietary technologies, the JSP
and Servlet specifications only define a standard for the functionality a con-
tainer must implement. There is not one but many different implementations
of Servlet and JSP containers from different vendors with different prices, per-
formance, and features. This leaves a Servlet and JSP developer with many
options for development software.

With containers in mind, the previous diagram of Servlets is better drawn
using a container to represent the single process that creates, manages, and
destroys threads running Servlets on a Web server. Note that this may or may not
be a separate physical process. Figure 1-4 shows a Web server using a Servlet con-
tainer.

Only Servlets are depicted in Figure 1-3, but in the next two chapters the
Servlet and JSP life cycles are covered in detail, and it will be clear that a con-
tainer manages JSP in exactly the same way as Servlets. For now it is safe to
assume that Servlets and JSP are the same technology. What Figure 1-4 does not
show is that in some cases a container also acts as the Web server rather than a
module to an existing server. In these cases the Web server and container in
Figure 1-3 are essentially the same thing.

Given you now know a little more about containers, it should be clear that a
container must be installed to run Servlets and JSP. Examples in this book require
a Servlet 2.4 and JSP 2.0-compatible container. If you do not have one, do not
worry. A walk-through is provided later in this chapter, explaining how to obtain

CONTAINERS 5

CGI Process

CGI Process

CGI Process

Request

Request

Request

Web Server

Container

Figure 1-4 Container Process

falkner.ch1.qxd 8/21/03 4:42 PM Page 5

the reference implementation JSP 2.0 and Servlet 2.4 container. If you have a pre-
viously installed container, make sure it supports the correct version of Servlets
and JSP; older containers do not support some of the features of JSP 2.0 and
Servlet 2.4 specifications. In this book specifically, all examples were created and
tested using the reference implementation container, Tomcat. Version 5 of
Tomcat is the reference implementation for both Servlets 2.4 and JSP 2.0. If you
need to install a compatible container, take the time to now download and install
Tomcat 5.

Getting Java Support
Servlets and JavaServer Pages, also meaning all containers, rely on the Java pro-
gramming language. In the case of Servlets, the code is nothing more than a Java
class that implements the appropriate interface(s). Compiling a Servlet is iden-
tical to compiling a Java class. JSP is slightly more abstract. JSP, is compiled and
used exactly like a Servlet, but the process is almost always done automatically,
without a JSP developer noticing. When authoring a JSP, a developer uses a com-
bination of markup and code to make a page that usually resembles an HTML or
XML document. This page is compiled into a class file by the Servlet container
and automatically loaded.

The official Java platform is designed, owned, and managed by Sun
Microsystems. Unlike most other programming languages, Java is not designed
for you to compile to platform-specific instructions. Instead Java is compiled
down to byte code that gets interpreted by the computer running your Java
program. This means a Java program developed and compiled on one computer
will run on any other computer with Java support; Servlets and JSP can be com-
piled and run on most any operating system. This includes most all the Windows,
Linux, and Macintosh operating systems. This book assumes you are installing a
JSP environment on one of these systems and instructions are provided for
installation on each.

Downloading the Java 2 Standard Edition 1.4
Java 2 Standard Edition 1.4 (J2SE 1.4) support is required for code examples in
this book. Sun Microsystems provides a free reference implementation of Java 1.4
online. Unless you are using Macintosh OS X, go to http://java.sun.com/
j2se/1.4/ and download the latest Java distribution for your computer.
Macintosh OS X has proprietary support for Java 2. If you are running OS X, no
additional downloads are needed.

6 SETTING UP A SERVLET AND JSP ENVIRONMENT

falkner.ch1.qxd 8/21/03 4:42 PM Page 6

GETTING JAVA SUPPORT 7

Java only needs to be installed once on your computer and only for the spe-
cific operating system you are using. It is not required that you read all of the
sections covering installation on all of the featured platforms. They exist only to
give readers a guide to their specific operating system. Complete coverage of the
Java 2 Standard Edition 1.4 is outside the scope of this book; however, later use
of the J2SDK by this book will not require comprehensive knowledge of the
tools provided by Sun. If you are looking for a detailed guide for this infor-
mation, refer to Thinking In Java, 3rd Edition2, by Bruce Eckel.

Installing J2SE 1.4 on Microsoft Windows
Microsoft Windows comes in many varieties, with early versions having a big dis-
tinction between a desktop computer and a computer designed to be a server.
Practically speaking, a desktop computer running Windows 95 or Windows 98 is
a not a good choice for installing a production environment for Servlets and JSP,
but a Windows 95 or Windows 98 computer will suffice in order to try this book’s
examples. The Java distribution for Microsoft Windows will run on all versions
of the operating system excluding Windows 3.x. In this book, the focus is on
installing Java on a Windows NT, 2000, or XP computer. However, we realize that
many readers have a desktop PC running Windows 95 or Windows 98 at home.
An attempt will be made to help you if this is the case.

After downloading the J2SE 1.4, it must be installed on your system. The
download should be an executable file that can be run by double-clicking it.
Double-click on this file and follow the installation wizard through all the steps.
It does not matter where you install the J2SE 1.4, but it is worth noting the
location, as it is needed in a later part of this chapter.

Installation of the Java 2 Standard Development Kit 1.4 is now complete. Skip
ahead to the section entitled, “Tomcat”.

Installing J2SE 1.4 on Linux Distributions
Linux comes in far more varieties than Windows and operates on many more
hardware architectures. A walk-through installation guide for all Linux distribu-
tions is not attempted, but this guide should work on the vast majority of distri-
butions. Specifically this section gives a walk-through of installing the J2SE 1.4
on Red Hat Linux 7.3. It will greatly resemble installation on any Linux distri-
bution for x86 processors, as an RPM is not used. If you downloaded the RPM or

2. A free copy of the book can be found online, http://www.mindview.net/Books/TIJ/.

falkner.ch1.qxd 8/21/03 4:42 PM Page 7

8 SETTING UP A SERVLET AND JSP ENVIRONMENT

equivalent for your distribution, feel free to install it, make note of the instal-
lation directory, and skip to the next section of this chapter.

At the introduction to this section, you should have downloaded the J2SE 1.4
Linux binary installation file. The file should be named something similar to
j2sdk-1_4_0_01-linux-i586.bin with appropriate version numbers for the
latest release. Any post-1.4 release should be adequate; this guide uses version
1.4.0_01. From the command prompt make sure the file has executable permis-
sions and execute the program. These are what the commands would be to make
the file executable and then execute it; assume the download is in the
/root/download directory and you have proper permissions.

chmod +x /root/download/j2sdk-1_4_0_01-linux-i586.bin

/root/download/j2sdk-1_4_0_01-linux-i586.bin

When the file executes, Sun’s licensing terms are displayed and you have the
option of agreeing to continue the installation. Figure 1-5 shows an example
display of the licensing terms.

If you agree to the terms, files will automatically be unpacked to a
j2sdk1.4.0 directory created by the installation program. You can move this
directory to any location you prefer, but remember the location where the J2SDK
1.4 is because it will be needed later when the environment variables are set.
Installation of the standard Java development kit is now complete.

Figure 1-5 Sun’s J2SDK 1.4 Licensing Terms

falkner.ch1.qxd 8/21/03 4:42 PM Page 8

GETTING JAVA SUPPORT 9

For Non-x86 Users: Compiling Java for Yourself
It is possible you are either an advanced user who dislikes non-optimized code or
that you do not have an x86 microprocessor. Both of these cases are largely
outside the scope of this book, but a quick pointer should get you well on your
way if that is what you seek. The “official” Java Linux code is maintained at
Blackdown Linux, http://www.blackdown.org. Visit Blackdown Linux if you
need the source code to either optimize your Java distribution or compile it for a
different architecture.

Tomcat
Tomcat, the reference implementation of Servlets and JSP, is part of the open
source Apache Jakarta project and is freely available for download from
http://jakarta.apache.org/tomcat3. Tomcat can be run on Windows, Linux,
Macintosh, Solaris, and most any of the other Unix distributions. You can use
Tomcat both commercially and non-commercially as specified by the Apache
Software Foundation License.

The next few sections provide a walk-through for installing Tomcat on
Windows, Linux distributions, and Macintosh OS X. If needed, follow the appro-
priate section to get Tomcat correctly set up for later examples.

Installing Jakarta Tomcat 5 on Windows
The Tomcat installation for Windows greatly resembles installing any other piece
of Windows software. The process involves downloading the Tomcat installation
executable file and running it to launch the Windows installation wizard. After a
few simple clicks, the wizard will have set up Tomcat to work with your Windows
distribution.

If you have not done so already, download the Windows executable file for the
Tomcat installation. You can find it at the following URL, http://jakarta.
apache.org/builds/jakarta-tomcat/release/. Simply follow the links to the
latest Tomcat 5 Windows executable file—as of this writing, the 5.0.2 beta release
of Tomcat is at http://jakarta.apache.org/builds/jakarta-tomcat/release/
v5.0.2-alpha/bin/jakarta-tomcat-5.0.2.exe. After downloading the exe-
cutable, double-click on it to start the installation wizard. A screen similar to

3. This part of the book is perhaps the most important. If for any reason you are having trouble
installing Tomcat, please consult the book support site, http://www.jspbook.com, for a complete, up-
to-date Tomcat 5 installation guide.

falkner.ch1.qxd 8/21/03 4:42 PM Page 9

10 SETTING UP A SERVLET AND JSP ENVIRONMENT

Figure 1-6 should appear notifying you that the Tomcat Installer located a J2SDK
installation.

Click OK and continue on to the screen displaying the Apache Software
Foundation license. Read through the terms and make sure you agree with
Tomcat’s licensing. If you accept the terms, the installation continues and you can
choose what components you wish to install. The default ones should be fine, as
shown in Figure 1-7.

Proceed with the installation wizard to the next screen, and you can choose a
directory to install Tomcat. Figure 1-8 shows the corresponding installation
wizard screen. Choose any directory you prefer.

After choosing an installation directory, the wizard will ask for some initial
Tomcat configuration information, including a port number and administrative
access information. The default options are fine, but later on in the chapter we
will be changing the port Tomcat uses to be port 80 instead of 8080. You may
change the port to 80 via the installation wizard now or later on in the chapter.
Figure 1-9 displays the corresponding installation wizard screen.

The final piece of configuration information Tomcat requires is the location
of your Java Virtual Machine, which should be wherever you installed it earlier in
the chapter. By default Tomcat attempts to locate the most recent JVM for you,
as shown in Figure 1-10.

Figure 1-6 Windows Installation Wizard

falkner.ch1.qxd 8/21/03 4:42 PM Page 10

GETTING JAVA SUPPORT 11

Figure 1-7 Installation Wizard Choosing Tomcat’s Components

Figure 1-8 Installation Wizard for Installing Tomcat

falkner.ch1.qxd 8/21/03 4:42 PM Page 11

12 SETTING UP A SERVLET AND JSP ENVIRONMENT

Figure 1-10 Installation Wizard Showing the Location of the Current JVM

Figure 1-9 Installation Wizard for Configuring Tomcat

falkner.ch1.qxd 8/21/03 4:42 PM Page 12

GETTING JAVA SUPPORT 13

The default JVM found by the installation wizard should be fine, but you can
change the location to be any JVM you desire (note a Java 1.4-compatible JVM is
required to execute this book’s examples). Finally, the installation wizard will
automatically install all the Tomcat files. Figure 1-11 shows the corresponding
installation wizard screen.

To complete the installation and run Tomcat, start the server by double-
clicking on the Tomcat icon or by executing the startup script startup.bat
found in the TOMCAT_HOME/bin directory. Check the service is running by
browsing to your local computer on port 8080 (or 80 if you changed Tomcat’s
port via the installation wizard), http://127.0.0.1:8080. A Tomcat welcome
page should be displayed4 as shown in Figure 1-12.

Installation of Tomcat is complete, and you are now ready to run book
examples. Tomcat comes bundled with documentation and examples of both
Servlets and JSP. Feel free to examine the bundled examples, but this book will
not cover them further. Before continuing, there are two important scripts to be
aware of.

Figure 1-11 Installation Wizard for Installing Tomcat Files

4. Port 8080 should not be previously in use, but if it is, you will not be able to see the Tomcat
welcome page. If you are sure you have correctly installed Tomcat and think a port bind is causing
problems, consult the later section in this chapter which deals with changing the port Tomcat runs on.

falkner.ch1.qxd 8/21/03 4:42 PM Page 13

14 SETTING UP A SERVLET AND JSP ENVIRONMENT

• startup.bat: The startup.bat script in the TOMCAT_HOME/bin
directory is used to start the Tomcat container and Web server.
Servlet and JSP code examples rely on Tomcat, and you must have
Tomcat turned on before testing them.

• shutdown.bat: The shutdown.bat script in the TOMCAT_HOME/bin
directory is used to terminate the Tomcat container and Web server.

It is important to be aware of these two scripts because from time to time an
example will require that Tomcat be restarted. When this is asked, it is assumed
Tomcat is currently running and implies that the shutdown.bat script and then
startup.bat be executed to reload the server. Alternatively you can also use an
automated utility like Ant, which is discussed later in this chapter, to manage
reloading, compiling, and other repetitive aspects of developing Servlets and JSP.

Windows 9X/ME “out of environment space”
Just because you are using Windows 9x, or Millennium, does not mean you will
have a problem, but be aware that a common problem does exist. If when exe-
cuting startup.bat or shutdown.bat, an “out of environment space” error

Figure 1-12 Tomcat Welcome Page after Completing the Installation

falkner.ch1.qxd 8/21/03 4:42 PM Page 14

occurs, do the following. Right-click on the startup.bat and shutdown.bat files.
Click on Properties then on the Memory tab. For the Initial environment field,
enter 4096. After you click apply, Windows will create shortcuts in the directory
which you can use to start and stop the container. Use these shortcuts to start and
stop Tomcat.

What is happening is that the batch file is not allocating enough memory to
execute its commands. The fix is to simply add more memory. The Tomcat devel-
opers are aware of this problem and are trying to incorporate fixes into
startup.bat and shutdown.bat.

Installing Jakarta Tomcat 5 on Linux and Macintosh OS X
The Tomcat project is continuously expanding the different types of installation
packages in which Tomcat releases are available. If you notice a Tomcat instal-
lation package that matches special installation software for your specific Linux
distribution, feel free to download and use the appropriate file. For this walk-
through, installation will be of the compiled Java code packaged in a tarball5.
Download the Tomcat tarball jakarta-tomcat-5.0.tar.gz" from http://
jakarta.apache.org/builds/jakarta-tomcat/release/. Installation is as easy
as decompressing the Tomcat binaries and setting two environment variables.

Decompress the tarball by using the tar and gzip compression utilities from
the command prompt. Here is what the command would look like if you had
placed the download in the /usr directory.

gunzip -c /usr/jakarta-tomcat-5.0.tar.gz | tar xvf -

The Tomcat binaries will be available in the /usr/jakarta-tomcat-5.0
directory or a similarly named directory that matches the version of Tomcat you
downloaded. For the rest of this walk-through, it is assumed this is the directory
you are also using. If not, change the directory name in examples to match the
location where you uncompressed Tomcat.

Before starting Tomcat, two environment variables need to be set: JAVA_HOME
and TOMCAT_HOME. The JAVA_HOME variable corresponds to the directory of the
J2SDK 1.4 installed earlier in this chapter. The TOMCAT_HOME variable corresponds
to the directory into which you just uncompressed Tomcat. Set and export the

GETTING JAVA SUPPORT 15

5. A tarball is a commonly used Unix term for a file compressed using gzip and tar compression. The
de facto standard for distributing Unix and Linux programs is by means of a tarball because the com-
pression is often significantly better than only ZIP.

falkner.ch1.qxd 8/21/03 4:42 PM Page 15

two environment variables. The commands would be similar to the following if
the J2SDK is installed in the /usr/java/jdk1.4 directory and Tomcat 5 is
installed in the /usr/jakarta-tomcat-5.0 directory; replace each variable
accordingly to match your specific case:

JAVA_HOME=/usr/java/jdk1.4

TOMCAT_HOME=/usr/jakarta-tomcat-5.0

export JAVA_HOME TOMCAT_HOME

Tomcat is now ready to run. Start the server by executing the startup script
startup.sh found in the /usr/jakarta-tomcat-5.0/bin directory. Check the
service is running by browsing to your local computer on port 8080,
http://127.0.0.1:8080. A Tomcat welcome page should be displayed6 as shown
in Figure 1-13.

Installation of Tomcat is complete, and you are now ready to run book
examples. Tomcat comes bundled with documentation and examples of both
Servlets and JSP. Feel free to examine the bundled examples, but this book will

16 SETTING UP A SERVLET AND JSP ENVIRONMENT

Figure 1-13 Tomcat Welcome Page Appears after Starting Tomcat

6. Port 8080 should not be previously in use, but if it is, you will not be able to see the Tomcat
welcome page. If you are sure you have correctly installed Tomcat and think a port bind is causing
problems, consult the later section in this chapter, which deals with changing the port Tomcat runs
on.

falkner.ch1.qxd 8/21/03 4:42 PM Page 16

not cover them further. Before continuing on, there are two important scripts to
be aware of.

• startup.sh: The startup.sh script in the TOMCAT_HOME/bin
directory is used to start the Tomcat container and Web server.
Servlet and JSP code examples rely on Tomcat, and you must have
Tomcat turned on before testing them.

• shutdown.sh: The shutdown.sh script in the TOMCAT_HOME/bin
directory is used to terminate the Tomcat container and Web server.

It is important to be aware of these two scripts because from time to time
an example will require that Tomcat be restarted. When this is asked, it is
assumed Tomcat is currently running and implies that the shutdown.sh script
and then startup.sh be executed to reload the server. Also be aware that the
environment variables previously set will not persist between different ter-
minal sessions and need to either be included in a startup script or set for each
session.

Alternatively, you can also automate the redundant process of compiling
book examples and reloading Tomcat by using a build utility. Use of the Jakarta
Ant build utility is strongly encouraged with this book and is covered later in this
chapter.

Configuring Tomcat
Tomcat is a robust JSP and Servlet container. It not only provides complete
support for the JSP and Servlet specifications, but it can also act as a standalone
Web server. By default, this is exactly what Tomcat does, and the default configu-
ration is all we need for this book’s examples. Full instructions on configuring
Tomcat are outside the scope of this book. There are many different Servlet and
JSP containers available, and it is not very practical to devote a large part of this
book to Tomcat-specific information. There is only one important aspect of con-
figuring Tomcat that needs to be discussed. If you would like to learn more about
using Tomcat to its full potential, some good resources are listed at the end of this
section.

Switching Tomcat to Port 80, the Default HTTP Port
For all practical purposes it does not matter what port you run Tomcat on.
Ports 8080, 80, 1234, and 9999 all work the same. However, any port besides 80,
which is being used for HTTP, comes with some slight annoyances that it
would be nice to avoid. Specifically, the default port for HTTP is port 80. Recall

GETTING JAVA SUPPORT 17

falkner.ch1.qxd 8/21/03 4:42 PM Page 17

the previously used URL for Tomcat’s welcome page, http://127.0.0.1:8080/
index.html. The localhost address, 127.0.0.1, is universal, but the 8080 is
required because Tomcat’s HTTP connector is not listening on port 80; the
default configuration for Tomcat is for it to listen on port 8080. The 8080 is
slightly annoying, especially when needing to add the 8080 to all local absolute
links in your Web application.

In order to simplify the book examples and to avoid confusion, we will now
configure Tomcat to use port 80, which is the default HTTP port. This is done by
editing Tomcat’s configuration file, /conf/server.xml. Open this file with your
favorite text editor and do a search for ‘8080’; you should find the following
entry:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->

<Connector className="org.apache.coyote.tomcat5.CoyoteConnector"

port="8080" minProcessors="5" maxProcessors="75"

enableLookups="true" redirectPort="8443"

acceptCount="10" debug="0"

connectionTimeout="20000"

useURIValidationHack="false" />

The entry is responsible for configuring Tomcat’s HTTP connector and the
port it listens on. Change the entry to use port 80 by replacing 8080 with 80:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->

<Connector className="org.apache.coyote.tomcat5.CoyoteConnector"

port="80" minProcessors="5" maxProcessors="75"

enableLookups="true" redirectPort="8443"

acceptCount="10" debug="0"

connectionTimeout="20000"

useURIValidationHack="false" />

Tomcat will then listen for HTTP requests on port 80, which is assumed
when no port is specified. Shut down and restart Tomcat so that it uses the new
port. Both http://127.0.0.1 and http://127.0.01:80 will now display the
Tomcat welcome page. Likewise, all subsequent requests, which do not specify a
port, will be directed to Tomcat. Make sure to restart Tomcat before testing out
the changes7.

18 SETTING UP A SERVLET AND JSP ENVIRONMENT

7. If another service, such as Apache or IIS, is running on port 80, Tomcat will not be able to use the
port. Either choose a different port, configure Tomcat to work with the service, terminate the con-
flicting service, or change the services default port. Additional help with configuring Tomcat to use
an existing Web server is outside the scope of this book.

falkner.ch1.qxd 8/21/03 4:42 PM Page 18

Tomcat User’s Guide
The Tomcat’s User’s Guide is the official documentation for Tomcat. This should
be the first place you look for help when configuring and using Tomcat. The
Tomcat User’s Guide can be found online at the Jakarta Tomcat Web site,
http://jakarta.apache.org/tomcat.

Tomcat User Mailing List
The Tomcat user mailing list is the best place to find community support for con-
figuring and using Tomcat. This mailing list consists of most all the Tomcat
developers and many of the current users of Tomcat. By posting a question on
this mailing list, you can try to solicit information from the current Tomcat
experts. You can subscribe to this mailing list by following the instructions on the
Jakarta Mailing List page, http://jakarta.apache.org/site/mail.html.

Be warned the Tomcat user mailing list generates a lot of traffic. A hundred
or more emails a day is not uncommon; however, it is only an issue if you do not
wish to deal with that volume of email. There are many benevolent people, which
is obvious on the Tomcat user mailing list because of the unbelievable amount of
questions they answer. An alternative to using the Tomcat user mailing list is to
consult the online archives, which can be found using the same link.

Web Applications
A “Web Application”, not the commonly used “Web application” meaning any
Web-savvy program, is the proper term for a complete Servlet and/or JSP project.
Anytime you develop a JSP or Servlet, it is part of a larger Web Application. Each
Web Application has its own unique configuration files and resources for use.

WEB APPLICATIONS 19

Book Support Site

For the most current information and updates of this chapter’s walk-through
guides, use the book support site, http://www.jspbook.com. Along with the
latest versions of the walk-through guides, this site also contains a Frequently
Asked Question (FAQ) section for questions relating to this book. Many of
these questions answer problems relating to Tomcat configuration issues for
various software environments. Additionally, the book support site is intended
to provide a place that can deal with any unexpected issues occurring after
publication.

falkner.ch1.qxd 8/21/03 4:42 PM Page 19

These files and resources are defined by the JSP specification and Servlet specifi-
cation and managed by your container. In summary they consist of:

• Configuration: Each Web Application includes a configuration file,
web.xml. This configuration file customizes the resources of a Web
Application in an efficient and structured fashion. Web Applications
keep web.xml private from outside visitors and also provide a place
for privately storing other custom configuration information.

• Static Files and JSP: A Web Application’s primary purpose is to
serve content on the World Wide Web. This content includes
dynamic resources such as Servlets and JSP, but it also includes
static resources such as HTML pages. A Web Application automati-
cally manages JSP and static resources deployed in it.

• Class Files and Packages: A Web Application also loads and
manages custom Java code. For application-specific class files such
as Servlets, a special location is designated from which a container
can load and manage compiled code. Web Applications define a
similar location for including Java Archive, JAR, files that contain
packaged resources.

By the end of the chapter, most of these configuration files and resources will
have been introduced and discussed, but an in-depth analysis of them cannot be
attempted without understanding more about JSP and Servlets. As the book pro-
gresses, all of the preceding will be fully defined and explored. But before dis-
cussing any part of a Web Application, one must be created.

Making a Web Application from scratch requires two things. First, a directory
to hold all of the files for the Web Application is needed. The directory can be
located anywhere on your local computer. For simplicity, create a directory
named jspbook under the /webapps directory of your Tomcat installation. The
webapps folder is Tomcat’s default location for storing Web Applications. To
make this a Web Application, you also need to add a web.xml configuration file.
To do this, go to the jspbook directory and create a subdirectory called WEB-INF.
Inside the /WEB-INF directory create a file called web.xml. Save Listing 1-1 as the
contents of web.xml.

Listing 1-1 web.xml Skeleton File

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

</web-app>

20 SETTING UP A SERVLET AND JSP ENVIRONMENT

falkner.ch1.qxd 8/21/03 4:42 PM Page 20

Do not worry about the details of this for now; this will all be explained later.
Next, the container needs to be informed that a new Web Application exists8.

With Tomcat this can be done in one of two ways: by adding an entry in the
server.xml file located in the /conf directory of a Tomcat installation, or by
placing an XML file containing the configuration into Tomcat’s /webapps
directory. Placing the file in the /webapps directory is the preferred option; it
makes upgrading Tomcat versions easier as changes to server.xml do not need
to be transferred. To configure a Web application, Tomcat requires a Context tag.
Create a file called jspbook.xml in TOMCAT_HOME/webapps directory with Listing
1-2 as its content.

Listing 1-2 Simple Web Application Deployment File for Tomcat

<Context path="/jspbook" docBase="jspbook" debug="0"/>

Restart Tomcat to reflect the changes made in the server.xml configuration
file and to load the new Web Application. You can now browse to the newly
created jspbook Web Application by using the following URL, http://

127.0.0.1/jspbook/. Because nothing has been placed in this Web Application,
an empty directory is displayed as shown in Figure 1-14.

The jspbook Web Application is used for examples throughout the rest of the
book. Until you know a little more about JSP and Servlets, it will be difficult to
create dynamic content using this Web Application; however, nothing stops you
from using static resources such as an HTML file. Try creating a simple HTML
page that welcomes a visitor. Copy and name the following HTML code Listing
1-3 as index.html and place it in the /webapps/jspbook directory of the Tomcat
installation.

Listing 1-3 index.html

<html>

<head>

<title>Welcome!</title>

</head>

<body>

Welcome to the example Web Application for

<i>Servlets and JSP, the J2EE Web Tier</i>.

</body>

</html>

WEB APPLICATIONS 21

8. The following step is not strictly necessary as Tomcat automatically treats directories within its
/webapps directory as a webapp. This support does not include subdirectories of webapp.

falkner.ch1.qxd 8/21/03 4:42 PM Page 21

Refresh the Web browser you used to previously view the empty Web
Application directory. It now displays a little welcome message, as shown in
Figure 1-15, instead of the empty directory listing, as shown in Figure 1-14.

Any static content placed in the Web Application will be made available for
users to see. The index.html page happens to be the default page Tomcat displays
for a Web Application, and that is why it appeared by default when the empty
directory was refreshed. Notice that the URL automatically changed to http://
127.0.0.1/jspbook/index.html9. This behavior is not standard among all JSP
containers, but the behavior can always be configured on a per Web Application
basis. Web Application configuration involves using the Web Application
Deployment Descriptor file web.xml.

/WEB-INF and web.xml
The Servlet specification defines a configuration file called a deployment
descriptor that contains meta-data for a Web Application and that is used by the
container when loading a Web Application. This file is always located in the
/WEB-INF directory of a Web Application and must be named web.xml. When a
container loads a Web Application, it checks this file. As noted, web.xml contains
application meta-data, such as default pages to show, Servlets to load, and

22 SETTING UP A SERVLET AND JSP ENVIRONMENT

9. Microsoft’s Internet Explorer is notorious for improperly handling this. If the URL does not
change, do not worry. As long as the correct page is shown, everything is fine.

Figure 1-14 Empty Directory Listing for jspbook Web Application

falkner.ch1.qxd 8/21/03 4:42 PM Page 22

WEB APPLICATIONS 23

Figure 1-15 index.html Rendered by Web Browser

security restrictions to place on files. The Servlet specification also defines that
the entire /WEB-INF directory of any Web Application must be kept hidden from
users of the application. In other words, a user cannot browse to http://
127.0.0.1/jspbook/WEB-INF. Try it—any configuration information for your
Web Application is unattainable by a client unless you specifically create some-
thing to expose it.

You already have the skeleton of a Web Application configuration file.
Further configuration information can be placed in between the starting and
ending web-app tags. Try it out by adding Listing 1-4 to define the default page
that your Web Application displays.

Listing 1-4 web.xml welcome File Configuration

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

<welcome-file-list>

<welcome-file>welcome.html</welcome-file>

</welcome-file-list>

</web-app>

Save the changes and restart your container so the Web Application reflects
them. Use a Web browser to visit http://127.0.0.1/jspbook again. This time
the index.html page is not shown by default; a directory listing is shown instead
(see Figure 1-16), which includes index.html.

falkner.ch1.qxd 8/21/03 4:42 PM Page 23

The preceding outcome is the result of the new elements added to web.xml.
The welcome-file-list element defines a list of welcome files in descending
preference. The name of each welcome file is defined as the body of the welcome-
file element. In the meta-data just added, one specific file was listed as default
page: welcome.html. If file exists, the container would show it instead of the empty
directory. If you would like to experiment, try changing the name of index.html
to weclome.html and it will appear as the default page for the Web Application.

The rest of web.xml configuration is left for discussion in later sections of the
book. Both JSP and Servlets have many configuration elements that can be added
to web.xml. This book covers most all of them in examples, but a complete ref-
erence can always be found in the Servlet 2.4 schema.

Java Classes and Source Files
Throughout the book examples will be taking advantage of existing Java APIs as
well as creating new Java classes. One of the most common mistakes new Servlet
and JSP developers make is where they place Java source code and compiled Java
classes. The intuitive approach is to place these files in the same directory as that
in which static content is placed for the Web Application. While it may seem
logical at first, this approach has two problems. The first is that any individual
browsing to your Web site will, by default, be able to access any files not in the
/WEB-INF directory. This means your code is freely available for people to
download and use or possibly abuse. The second problem is that the container

24 SETTING UP A SERVLET AND JSP ENVIRONMENT

Figure 1-16 Directory Listing

falkner.ch1.qxd 8/21/03 4:42 PM Page 24

will ignore the code when it is loading the Web Application. The second issue is
more problematic because the Web Application’s Servlets and JSP will not be able
to import and use the custom code.

The correct place to put custom code is in the /WEB-INF/classes directory
of a Web Application. Code that is placed in this directory is loaded by the con-
tainer when needed and can be imported for use by Servlets and JSP in the same
Web Application. Should the code be part of a package, create a directory
structure that matches the package names. An example of this would be if a class
were created for the com.foo.example package. The appropriate place to put the
compiled Java class is the /WEB-INF/classes/com/foo/example directory of a
Web Application. For now, create the /WEB-INF/classes directory so that it is
ready for later code examples.

Java Archive (JAR) Files
A Java Archive file is a convenient method for consolidating a set, usually a
package, of Java class files into one compressed, portable file. The Java specifica-
tions define the exact rules of a JAR file, but an easy way to think of them is
nothing more than a set of Java classes ZIP-compressed together. JAR files are a
very popular method of distributing Java code and are commonly used by Web
Applications. As defined in the Servlet specification, any JAR file placed in the
/WEB-INF/lib directory of a Web Application is made available for use by code
in the same Web Application. Later examples in this book will give some concrete
examples of using this functionality. The complete specifications for creating and
using a basic JAR are not in the scope of this book. You can find a complete guide
to creating JAR files in the J2SE documentation included with your J2SE
download. The task is not hard but is outside the scope of this text.

Web Application Resource (WAR) Files
Web Application Resource files are functionally similar to JAR files, but are used
to consolidate an entire Web Application into one compressed and portable file.
WAR files are officially defined by the Servlet specification. The compression
used for a WAR file is also ZIP; using existing JAR utilities in the Standard Java
Development Kit can easily make WAR files. WAR files are a great solution for
packaging a Web Application and they are commonly used to bundle documen-
tation with examples for JSP and Servlet-related software.

Most of the examples found in later chapters deal with expanding and
enhancing existing Web Applications. WAR files are only helpful to either start a
Web Application or to package a finished one. For this reason WAR files will not

WEB APPLICATIONS 25

falkner.ch1.qxd 8/21/03 4:42 PM Page 25

be appearing often in later chapters. WAR files are mentioned here for reasons of
completeness and because the online book support site packages all of this book’s
examples into a WAR. If you would like to skip retyping code examples from the
book, feel free to download the example WAR at http://www.jspbook.com/
jspbook.war.

If you would ever like to make a WAR file, simply ZIP compress an entire
working Web Application. For example, at any time you can create a WAR of your
progress through this book by ZIP-compressing all of the contents in the jspbook
directory. Using the ZIP utility on Linux, the following commands would be used:

zip -r jspbook.war jspbook

The zip utility would then compress the entire application into one file
named jspbook.war. In order to deploy this file with Tomcat, simply place
jspbook.war in the /webapps directory and restart Tomcat.

Note that WAR files are only as portable as you make them. Several times in
upcoming chapters notes will be made about this point. For example, if you
access a file using the file’s absolute path name, there is no guarantee a similar file
will be found on all servers with containers using your WAR. However, if a
custom file is packaged in a WAR, the file can always be accessed using the Servlet
API.

Ant
The Jakarta Ant project is popular with Java developers and for good reason. Ant is
a cross-platform build utility that is easy to use and configure. Ant uses an XML
configuration file typically called build.xml. If you are unfamiliar with build util-
ities, do not worry. This book does not rely on such knowledge. Ant is treated
purely as a complimentary tool. If you have used Ant before, you should appreciate
this, or if you have not used Ant, hopefully you will be glad we introduced the tool
to you. At any time you can opt to completely ignore Ant and simply compile .java
files by hand and reload Tomcat using the appropriate scripts. At no point will this
book tell you to use Ant to do this. Instead, an example will dictate that Tomcat, the
Web Application, or both need to be reloaded, or that code needs to be compiled.
In these cases it is implied you can use Ant if you so desire.

What Does Ant Do?
Ant performs “tasks”, any number of them, and in any order, possibly dependent
on previously accomplished tasks. There are many default tasks that Ant defines;
Ant also allows for Java developers to code custom tasks. In use, Ant takes a

26 SETTING UP A SERVLET AND JSP ENVIRONMENT

falkner.ch1.qxd 8/21/03 4:42 PM Page 26

simple build file, which defines tasks to be done, and does them. For this book we
will make a build file that turns off Tomcat, compiles code, then turns Tomcat
back on. The tasks are all simple but after trying several of the code examples in
this book, you might be glad Ant consolidates the redundant steps.

Installing Ant
Install Ant by downloading the latest distribution from http://jakarta.
apache.org/ant. This book uses Ant 1.5, but any subsequent release should work
fine. Binary distributions of Ant are available in either ZIP or tarball form.
Download the format you are most familiar with and save the compressed file in
a convenient location. Unpack the distribution and installation of Ant complete.
Because the files are Java binaries, there is no need to run an installer or compile
a platform-specific distribution.

Using Ant
Ant is designed to be simple to use. The /bin directory of the Ant distribution
contains an executable file named ant that runs Ant. You can execute Ant at any
time by running $ANT_HOME/bin/ant; replace $ANT_HOME with the appropriate
directory of the Ant distribution. By default, Ant looks to the current directory
and tries to use a file named build.xml as its build file. Listing 1-5, which is
included in the example WAR, is a build file for use with this book.

Listing 1-5 Ant Build File for Use with This Book

<?xml version="1.0" ?>

<project name="jspbook" default="build" basedir=".">

<target name="build">

<echo>Starting Build [JSP Book - http://www.jspbook.com]</echo>

<!-- Turn Tomcat Off -->

<antcall target="tomcatOff"/>

<!-- Compile Everything -->

<antcall target="compile"/>

<!-- Turn Tomcat On -->

<antcall target="tomcatOn"/>

<echo>Build Finished [JSP Book - http://www.jspbook.com]</echo>

</target>

<target name="tomcatOff">

<echo>Turning Off Tomcat [http://www.jspbook.com]</echo>

<exec executable="bash" os="Windows">

<arg value="../../bin/shutdown.bat"/>

ANT 27

falkner.ch1.qxd 8/21/03 4:42 PM Page 27

</exec>

<exec executable="bash" os="Linux">

<arg value="../../bin/shutdown.sh"/>

</exec>

</target>

<target name="tomcatOn">

<echo>Starting Tomcat [http://www.jspbook.com]</echo

<exec executable="bash" os="Windows">

<arg value="../../bin/startup.bat"/>

</exec>

<exec executable="bash" os="Linux">

<arg value="../../bin/startup.sh"/>

</exec>

</target>

<target name="compile">

<echo>Compiling Book’s Examples [http://www.jspbook.com]</echo>

<javac

srcdir="WEB-INF/classes"

extdirs="WEB-INF/lib:../../common/lib"

classpath="../../common/lib/servlet.jar"

deprecation="yes"

verbose="no">

<include name="com/jspbook/**"/>

</javac>

</target>

</project>

Save the preceding code as build.xml in the base directory of the jspbook
Web Application. You do not need to care about the entries in the build file;
however, they should be intuitive. If you are interested, you can find further doc-
umentation for the Ant tasks online at http://jakarta.apache.org/ant/
manual/index.html.

Use of the build file is simple. From shell, or command prompt in Windows,
switch to the directory of the jspbook Web Application. For instance, if Tomcat
was installed in /usr/jakarta-tomcat/10, then the desired directory would be
/usr/jakarta-tomcat/webapps/jspbook. From there, execute Ant. Assuming

28 SETTING UP A SERVLET AND JSP ENVIRONMENT

10. These are UNIX file systems. In Windows, the starting ‘/’ is replaced by the drive, such as C:\,
and subsequent ‘/’ are replaced with ‘\’. For instance, C:\jakarta-tomcat\webapps\
jspbook.

falkner.ch1.qxd 8/21/03 4:42 PM Page 28

Ant is in your classpath, you can simply type ant, or a full path can be used such
as /usr/jakarta-ant-1.5/bin/ant. Ant automatically looks for build.xml and
will execute the specified tasks. Execution should look similar to Figure 1-17.

Note the build file turns off Tomcat, compiles all the book’s code, and turns
Tomcat back on. Should an example request any of these tasks, simply run Ant
and the job is finished.

Summary
The first and most important step to developing with Servlets and JSP is setting
up the appropriate environment. This chapter focused on providing a detailed
explanation of the requirements for a Servlet and JSP environment and provided
a walk-through for installing one on a majority of the popular operating systems.
By doing this, you will be ready for the code examples of later chapters and can
better learn through hands-on experience developing Servlets and JSP.

SUMMARY 29

Figure 1-17 Ant Execution of the Book’s Build File

falkner.ch1.qxd 8/21/03 4:42 PM Page 29

A Web Application is the term given to a complete collection of static
content, JSP, Servlets, custom code, and configuration information for all of the
previously mentioned. This chapter also established a Web Application for use
with examples to come. As you go through the book, the jspbook Web
Application will be expanded and enhanced to demonstrate the many aspects of
developing with Servlets and JSP.

Chapter 2 discusses Servlets and JSP at the lowest possible level by intro-
ducing and explaining the basics of the Servlet API.

30 SETTING UP A SERVLET AND JSP ENVIRONMENT

falkner.ch1.qxd 8/21/03 4:42 PM Page 30

Chapter 2

Java Servlets

In this chapter the concept of Servlets, not the entire Servlet specification, is
explained; consider this an introduction to the Servlet specification starting
strictly with Servlets. At times the content of this chapter may seem dry, even
reminiscent of the actual specification. While an attempt is always made to liven
the material up, however, there are several relevant but boring aspects of Servlet
development that need to be presented now. Do attempt to read the whole
chapter straight through, but also remember you can always reference this
chapter when needed.

This chapter discusses the following topics:

• An explanation of what Servlets are and why you would want to use
them.

• The Servlet life cycle—that is, how a container manages a Servlet.

• Building Servlets for use on the World Wide Web, which includes a
review of the HTTP protocol.

• Configuring Servlets using web.xml.

• Coding both text-producing and non-text-producing Servlets.

• Handling HTML forms and file uploads.

• Request dispatching—Servlet to Servlet communication and
including or forwarding to other resources in the Web Application.

• Application context and communicating with the container via a
Servlet.

• Servlet event listeners.

31

falkner.ch2.qxd 8/29/03 1:00 PM Page 31

32 JAVA SERVLETS

What Servlets Are and Why You Would Want
to Use Them
Java Servlets are an efficient and powerful solution for creating dynamic content for
the Web. Over the past few years Servlets have become the fundamental building
block of mainstream server-side Java. The power behind Servlets comes from the
use of Java as a platform and from interaction with a Servlet container. The Java
platform provides a Servlet developer with a robust API, object-orientated pro-
gramming, platform neutrality, strict types, garbage collection, and all the security
features of the JVM. Complimenting this, a Servlet container provides life cycle
management, a single process to share and manage application-wide resources, and
interaction with a Web server. Together this functionality makes Servlets a desirable
technology for server-side Java developers.

Java Servlets is currently in version 2.4 and a part of the Java 2 Enterprise
Edition (J2EE). Downloads of the J2SE do not include the Servlet API, but the
official Servlet API can be found on Sun Microsystems’ Servlet product page,
http://java.sun.com/products/servlets, or bundled with the Java 2
Enterprise Edition. Servlet API development is done through the Java
Community Process, http://www.jcp.org, but the official reference implemen-
tation of the Servlet API is open source and available for public access through
the Tomcat project, http://jakarta.apache.org/tomcat.

The Servlet 2.4 API includes many features that are officially defined by the
Servlet 2.4 specification, http://java.sun.com/products/servlets, and can be
broken down as follows.

Web Applications
Servlets are always part of a larger project called a Web Application. A Web
Application is a complete collection of resources for a Web site. Nothing stops a
Web Application from consisting of zero, one, or multiple Servlets, but a Servlet
container manages Servlets on a per Web Application basis. Web Applications
and the configuration files for them are specified by the Servlet specification.

Servlets and HTTP Servlets
The primary purpose of the Servlet specification is to define a robust mechanism
for sending content to a client as defined by the Client/Server model. Servlets are
most popularly used for generating dynamic content on the Web and have native
support for HTTP.

falkner.ch2.qxd 8/29/03 1:00 PM Page 32

Filters
Filters were officially introduced in the Servlet 2.3 specification. A filter provides
an abstracted method of manipulating a client’s request and/or response before
it actually reaches the endpoint of the request. Filters greatly complement
Servlets and are commonly used for things such as authentication, content com-
pression, and logging.

Security
Servlets already use the security features provided by the Java Virtual Machine,
but the Servlet specification also defines a mechanism for controlling access to
resources in a Web Application.

Internationalization
One of the best features of a Servlet is the ability to develop content for just about
any language. A large part of this functionality comes directly from the Java
platform’s support for internationalization and localization. The Servlet API
keeps this functionality and can be easily used to create content in most of the
existing languages.

The focus of this chapter is to introduce Servlets and explain how to use
HTTP Servlets for creating dynamic content on the Web. For simplicity, this
chapter focuses on the basics of Servlets and leaves more complex but practical
examples for discussion in pertinent, later chapters. Filters, security, and true
internationalization issues are all discussed in later chapters as they pertain to
both Servlets and JSP.

Servlet Life Cycle
The key to understanding the low-level functionality of Servlets is to understand
the simple life cycle they follow. This life cycle governs the multi-threaded envi-
ronment that Servlets run in and provides an insight to some of the mechanisms
available to a developer for sharing server-side resources. Understanding the
Servlet life cycle is also the start of this book’s descent to a lower level of dis-
cussion, one the majority of this book follows. Functional code examples appear
often to illustrate an idea or point. Compiling and running these examples is
encouraged to fully understand concepts and to familiarize yourself with Servlets
for the later chapters.

The Servlet life cycle (see Figure 2-1) is the primary reason Servlets and also
JSP outperform traditional CGI. Opposed to the single-use CGI life cycle,

SERVLET LIFE CYCLE 33

falkner.ch2.qxd 8/29/03 1:00 PM Page 33

Servlets follow a three-phase life: initialization, service, and destruction, with ini-
tialization and destruction typically performed once, and service performed
many times.

Initialization is the first phase of the Servlet life cycle and represents the cre-
ation and initialization of resources the Servlet may need to service requests. All
Servlets must implement the javax.servlet.Servlet interface. This interface
defines the init() method to match the initialization phase of a Servlet life cycle.
When a container loads a Servlet, it invokes the init() method before servicing
any requests.

The service phase of the Servlet life cycle represents all interactions with
requests until the Servlet is destroyed. The Servlet interface matches the service
phase of the Servlet life cycle to the service() method. The service() method
of a Servlet is invoked once per a request and is responsible for generating the
response to that request. The Servlet specification defines the service() method
to take two parameters: a javax.servlet.ServletRequest and a javax.
servlet.ServletResponse object. These two objects represent a client’s request
for the dynamic resource and the Servlet’s response to the client. By default a
Servlet is multi-threaded, meaning that typically only one instance of a Servlet1

is loaded by a JSP container at any given time. Initialization is done once, and
each request after that is handled concurrently2 by threads executing the Servlet’s
service() method.

34 JAVA SERVLETS

Initialization
(Load Resources)

Service
(Accept Requests)

Destruction
(Unload Resources)

Request
Response

Servlet

Figure 2-1 Diagram of the Servlet Life Cycle

1. This description of Servlets is slightly misleading. There are many complications to do with
loading Servlets that will be touched upon throughout this chapter and the rest of the book.
2. Servlets require the same state synchronization required by all multi-threaded Java objects. For
simplicity, state management–related issues, including proper synchronization, are not discussed
until Chapter 9. Read Chapter 9 before assuming you know everything about Servlets.

falkner.ch2.qxd 8/29/03 1:00 PM Page 34

The destruction phase of the Servlet life cycle represents when a Servlet is
being removed from use by a container. The Servlet interface defines the
destroy() method to correspond to the destruction life cycle phase. Each time a
Servlet is about to be removed from use, a container calls the destroy() method,
allowing the Servlet to gracefully terminate and tidy up any resources it might
have created. By proper use of the initialization, service, and destruction phases
of the Servlet life cycle, a Servlet can efficiently manage application resources.
During initialization a Servlet loads everything it needs to use for servicing
requests. The resources are then readily used during the service phase and can
then be cleaned up in the destruction phase.

These three events form the Servlet life cycle, but in practice there are more
methods a Web developer needs to worry about. Content on the Web is primarily
accessed via the HyperText Transfer Protocol (HTTP). A basic Servlet knows
nothing about HTTP, but there is a special implementation of Servlet,
javax.servlet.http.HttpServlet, that is designed especially for it.

Servlets for the World Wide Web
When the term Servlet is mentioned, it is almost always implied that the Servlet
is an instance of HttpServlet3. The explanation of this is simple. The HyperText
Transfer Protocol (HTTP)4 is used for the vast majority of transactions on the
World Wide Web—every Web page you visit is transmitted using HTTP, hence
the http:// prefix. Not that HTTP is the best protocol to ever be made, but
HTTP does work and HTTP is already widely used. Servlet support for HTTP
transactions comes in the form of the javax.servlet.http.HttpServlet class.

Before showing an example of an HttpServlet, it is helpful to reiterate the
basics of the HyperText Transfer Protocol. Many developers do not fully under-
stand HTTP, which is critical in order to fully understand an HttpServlet. HTTP
is a simple, stateless protocol. The protocol relies on a client, usually a Web
browser, to make a request and a server to send a response. Connections only last
long enough for one transaction. A transaction can be one or more
request/response pairs. For example, a browser will send a request for an HTML
page followed by multiple requests for each image on that page. All of these

SERVLETS FOR THE WORLD WIDE WEB 35

3. Note that at the time of writing there is only one protocol-specific servlet and it is HTTP.
However, at least one JSR is looking to add additional protocol-specific servlets. In this particular
case, it is the SIP (Session Initiation Protocol).
4. Voracious readers are advised to read the current HTTP specification, http://www.ietf.
org/rfc/rfc2616.txt. This book is not a substitute for the complete specification. However,
this book does provide more than enough detail for the average Web developer.

falkner.ch2.qxd 8/29/03 1:00 PM Page 35

requests and responses will be done over the same connection. The connection
will then be closed at the end of the last response. The whole process is relatively
simple and occurs each time a browser requests a resource from an HTTP server5.

Requests, Responses, and Headers
The first part of an HTTP transaction is when an HTTP client creates and sends
a request to a server. An HTTP request in its simplest form is nothing more than
a line of text specifying what resource a client would like to retrieve. The line of
text is broken into three parts: the type of action, or method, that the client
would like to do; the resource the client would like to access; and the version of
the HTTP protocol that is being used. For example:

GET /index.html HTTP/1.0

The preceding is a completely valid HTTP request. The first word, GET, is a
method defined by HTTP to ask a server for a specific resource; /index.html is
the resource being requested from the server; HTTP/1.0 is the version of HTTP
that is being used. When any device using HTTP wants to get a resource from a
server, it would use something similar to the above line. Go ahead and try this by
hand against Tomcat. Open up a telnet session with your local computer on port
80. From the command prompt this is usually accomplished with:

telnet 127.0.0.1 80

Something similar to Figure 2-2 should appear.
The telnet program has just opened a connection to Tomcat’s Web server.

Tomcat understands HTTP, so type6 in the example HTTP statement. This HTTP
request can be terminated by a blank line, so hit Enter a second time to place an
additional blank line and finish the request7.

GET /jspbook/index.html HTTP/1.0

The content of index.html is returned from the Web Application mapped to
/jspbook (the application we started last chapter), as shown in Figure 2-3.

36 JAVA SERVLETS

5. HTTP 1.1 allows these “long-lived” connections automatically; in HTTP 1.0 you need to use the
Connection: Keep-Alive header.
6. Microsoft’s telnet input will not appear in the window as you type. To fix this, type
LOCAL_ECHO and hit Return. Also note that if you are using Microsoft XP, then the telnet window
is not cleared after it is connected.
7. If using Microsoft Window’s default telnet program, be aware that the connection is live—that is,
type in the full request correctly (even if it does not appear when you are typing it) and do not hit
Backspace or Delete.

falkner.ch2.qxd 8/29/03 1:00 PM Page 36

You just sent a basic HTTP request, and Tomcat returned an HTTP response.
While usually done behind the scenes, all HTTP requests resemble the preceding.
There are a few more methods to accompany GET, but before discussing those,
let’s take a closer look at what Tomcat sent back.

The first thing Tomcat returned was a line of text:

HTTP/1.1 200 OK

SERVLETS FOR THE WORLD WIDE WEB 37

Figure 2-2 Telnet to localhost:80

Figure 2-3 Manual HTTP Request and the Server’s Response

falkner.ch2.qxd 8/29/03 1:00 PM Page 37

This is an HTTP status line. Every HTTP response starts with a status line.
The status line consists of the HTTP version, a status code, and a reason phrase.
The HTTP response code 200 means everything was fine; that is why Tomcat
included the requested content with the response. If there was some sort of issue
with the request, a different response code would have been used. Another HTTP
response code you are likely familiar with is the 404 “File Not Found” code. If you
have ever followed a broken hyperlink, this is probably the code that was
returned.

Along with the HTTP response code, Tomcat also sent back a few lines of
information before the contents of index.html, as shown in Figure 2-4.

All of these lines are HTTP headers. HTTP uses headers to send meta-
information with a request or response. A header is a colon-delimited
name:value pair—that is, it contains the header’s name, delimited by a colon
followed by the header’s value. Typical response headers include content-type
descriptions, content length, a time-stamp, server information, and the date the
content was last changed. This information helps a client figure out what is
being sent, how big it is, and if the data are newer than a previously seen
response. An HTTP request will always contain a few headers8. Common
request headers consist of the user-agent details and preferred formats, lan-
guages, and content encoding to receive. These headers help tell a server what
the client is and how they would prefer to get back information. Understanding
HTTP headers is important, but for now put the concept on hold until you
learn a little more about Servlets. HTTP headers provide some very helpful
functionality, but it is better to explain them further with some HttpServlet
examples.

38 JAVA SERVLETS

HTTP Response Codes

In practice, you usually do not need to understand all of the specific HTTP
response codes. JSP, Servlets, and Web servers usually take care of these codes
automatically, but nothing stops you from sending specific HTTP response
codes. Later on we will see examples of doing this with both Servlets and JSP.
A complete list of HTTP response codes along with other HTTP information
is available in the current HTTP specification, http://www.ietf.org/rfc/
rfc2616.txt.

8. There are no mandatory headers in HTTP 1.0; in HTTP 1.1 the only mandatory header is the
Host header.

falkner.ch2.qxd 8/29/03 1:00 PM Page 38

GET and POST
The first relatively widely used version of HTTP was HTTP 0.9. This had support
for only one HTTP method, or verb; that was GET. As part of its execution, a GET
request can provide a limited amount of information in the form of a query
string9. However, the GET method is not intended to send large amounts of infor-
mation. Most Web servers restrict the length of complete URLs, including query
strings, to 255 characters. Excess information is usually ignored. For this reason
GET methods are great for sending small amounts of information that you do not
mind having visible in a URL. There is another restriction on GET; the HTTP
specification defines GET as a “safe” method which is also idempotent10. This
means that GET must only be used to execute queries in a Web application. GET
must not be used to perform updates, as this breaks the HTTP specification.

To overcome these limitations, the HTTP 1.0 specification introduced the
POST method. POST is similar to GET in that it may also have a query string, but
the POST method can use a completely different mechanism for sending infor-
mation. A POST sends an unlimited amount of information over a socket con-
nection as part of the HTTP request. The extra information does not appear as
part of a URL and is only sent once. For these reasons the POST method is usually
used for sending sensitive11 or large amounts of information, or when uploading
files. Note that POST methods do not have to be idempotent. This is very
important, as it now means applications have a way of updating data in a Web
application. If an application needs to modify data, or add new data and is

SERVLETS FOR THE WORLD WIDE WEB 39

Figure 2-4 Example HTTP Headers

9. A query string is a list started by a question mark, ?, and followed by name-value pairs in the fol-
lowing format, paramName=paramValue, and with an ampersand, &, separating pairs, for example,
/index.html?fname=bruce&lname=wayne&password=batman.
10. An idempotent operation is an operation that if run multiple times has no affect on state—that
is, it is query only not update.
11. However, realize that the data are still visible to snoopers; it just doesn’t appear in the URL.

falkner.ch2.qxd 8/29/03 1:00 PM Page 39

sending a request over HTTP, then the application must not use GET but must
instead use POST. Notice that POST requests may be idempotent; that is, there is
nothing to stop an application using POST instead of GET, and this is often done
when a retrieval requires sending large amounts of data12. However, note that GET
can never be used in place of POST if the HTTP request is nonidempotent.

In the current HTTP version, 1.1, there are in total seven HTTP methods that
exist: GET, PUT, POST, TRACE, DELETE, OPTIONS, and HEAD. In practice only two of
these methods are used—the two we have already talked about: GET and POST.

The other five methods are not very helpful to a Web developer. The HEAD
method requests only the headers of a response. PUT is used to place documents
directly to a server, and DELETE does the exact opposite. The TRACE method is
meant for debugging. It returns an exact copy of a request to a client. Lastly, the
OPTIONS method is meant to ask a server what methods and other options the
server supports for the requested resource.

As far as this book is concerned, the HTTP methods will not be explained
further. As will soon be shown, it is not important for a Servlet developer to fully
understand exactly how to construct and use all the HTTP methods manually.
HttpServlet objects take care of low-level HTTP functionality and translate
HTTP methods directly into invocations of Java methods.

HTTP Response Codes
An HTTP server takes a request from a client and generates a response.
Responses, like requests, consist of a response line, headers, and a body. The
response line contains the HTTP version of the server, a response code, and a
reason phrase. The reason phrase is some text that describes the response, and
could be anything, although a recommended set of reason phrases is given in the
specification. Response codes themselves are three-digit numbers that are divided
into groups. Each group has a meaning as shown here:

• 1xx: Informational: Request received, continuing process.

• 2xx: Success: The action was successfully received, understood, and
accepted.

• 3xx: Redirection: Further action must be taken in order to complete
the request.

40 JAVA SERVLETS

12. The other issue is that GET sends data encoded using the application/x-www-urlen-
coded MIME type. If the application needs to send data in some other format, say XML, then this
cannot be done using GET; POST must be used. For example, SOAP mandates the use of POST for
SOAP requests to cover this exact problem.

falkner.ch2.qxd 8/29/03 1:00 PM Page 40

• 4xx: User-Agent Error: The request contains bad syntax or cannot
be fulfilled.

• 5xx: Server Error: The server failed to fulfill an apparently valid
request.

• Each Status: Code has an associated string (reason phrase).

• The status code you’ll see most often is 200. This means that every-
thing has succeeded and you have a valid response. The others you
are likely to see are:

• 401: you are not authorized to make this request

• 404: cannot find the requested URI

• 405: the HTTP method you have tried to execute is not sup-
ported by this URL (e.g., you have sent a POST and the URL will
only accept GET)

• 500: Internal Server Error. You are likely to see this if the
resource to where you are browsing (such as a Servlet) throws
an exception.

If you send a request to a Servlet and get a 500 code, then the chances are your
Servlet has itself thrown an exception. To discover the root cause of this
exception, you should check the application output logs. Tomcat’s logs are stored
in /logs13 directory of the Tomcat installation.

Coding an HttpServlet
Previously, it has been shown that Servlets have a three-part life cycle: initialization,
service, and destruction. An HttpServlet object shares this life cycle but makes a
few modifications for the HTTP protocol. The HttpServlet object’s implemen-
tation of the service() method, which is called during each service request, calls
one of seven different helper methods. These seven methods correspond directly to
the seven HTTP methods and are named as follows: doGet(), doPost(), doPut(),
doHead(), doOptions(), doDelete(), and doTrace(). The appropriate helper
method is invoked to match the type of method on a given HTTP request. The
HttpServlet life cycle can be illustrated as shown in Figure 2-5.

While all seven methods are shown, remember that normally only one of
them is called on a given request. More than one might be called if a developer

CODING AN HTTPSERVLET 41

13. Note that you can configure Tomcat to log output to the console window. This is often done
during development because it is easier to read the console than open a log file. See the Tomcat doc-
umentation if you would like to do this.

falkner.ch2.qxd 8/29/03 1:00 PM Page 41

overrides the methods and has them call each other. The initialization and
destruction stages of the Servlet life cycle are the same as described before.

Coding an HttpServlet is straightforward. The javax.servlet.http.
HttpServlet class takes care of handling the redundant parts of an HTTP request
and response, and requires a developer only to override methods that need to be
customized. Manipulation of a given request and response is done through two
objects, javax.servlet.http.HttpServletRequest and javax.servlet.http.
HttpServletResponse. Both of these objects are passed as parameters when
invoking the HTTP service methods.

It is time to step through coding and using a basic Servlet. A basic “Hello
World” Servlet is appropriate for getting started (see Listing 2-1). Take the fol-
lowing code and save it as HelloWorld.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application.

Listing 2-1 HelloWorld.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

42 JAVA SERVLETS

Initialization
(Load Resources)

Service
(Accept Requests)

Destruction
(Unload Resources)

Request
Response

javax.servlet.http.HttpServlet

doGet()
doPost()
doPut()

doHead()
doDelete()
doTrace()

doOptions()

Invokes sub-method:

Figure 2-5 HttpServlet Life Cycle

falkner.ch2.qxd 8/29/03 1:00 PM Page 42

throws IOException, ServletException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Hello World!</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Hello World!</h1>");

out.println("</body>");

out.println("</html>");

}

}

You can probably see exactly what the preceding code is doing. If not, do not
worry about understanding everything just yet since we have not learned how to
deploy a Servlet for use which has to come before dissecting the code. For now under-
stand that the preceding is the complete code for an HttpServlet. Once deployed,
this example Servlet will generate a simple HTML page that says “Hello World!”.

Deploying a Servlet
By itself a Servlet is not a full Java application. Servlets rely on being part of a Web
Application that a container manages. Using a Servlet to generate dynamic
responses involves both creating the Servlet and deploying the Servlet for use in
the Web Application.

Deploying a Servlet is not difficult, but it is not as intuitive as you might think.
Unlike a static resource, a Servlet is not simply placed in the root directory of the
Web Application. A Servlet class file goes in the /WEB-INF/classes directory of the
application with all the other Java classes. For a client to access a Servlet, a unique
URL, or set of URLs, needs to be declared in the Web Application Deployment
Descriptor. The web.xml deployment description relies on new elements14:
servlet and servlet-mapping need to be introduced for use in web.xml. The
servlet element is used to define a Servlet that should be loaded by a Web
Application. The servlet-mapping element is used to map a Servlet to a given
URL or set of URLs. Multiple tags using either of these elements can appear to
define as many Servlets and Servlet mappings as needed. Both of these elements

CODING AN HTTPSERVLET 43

14. An element is the proper name for the unique word that comes immediately after the starting
less than, “<”, of an XML tag.

falkner.ch2.qxd 8/29/03 1:00 PM Page 43

also have sub-elements used to further describe them. These sub-elements are self-
descriptive, and they are introduced by use in an upcoming example.

Open up the /WEB-INF/web.xml file of the jspbook Web Application and edit
it to match Listing 2-2.

Listing 2-2 Deploying HelloWorld Servlet

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

<servlet>

<servlet-name>HelloWorld</servlet-name>

<servlet-class>com.jspbook.HelloWorld</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorld</servlet-name>

<url-pattern>/HelloWorld</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>welcome.html</welcome-file>

</welcome-file-list>

</web-app>

Highlighted is the new addition to web.xml. In the highlight, notice that both
an instance of the servlet and servlet-mapping element is used. In general this is
how every Servlet is deployed. A Servlet is first declared by a servlet element that
both names the Servlet and gives the location of the appropriate Java class. After
declaration, the Servlet can be referenced by the previously given name and
mapped to a URL path. The name and class values are assigned by a given string in
the servlet-name and servlet-class tags, respectively. The Servlet’s name is arbi-
trary, but it must be unique from any other Servlet name for that Web Application.
In the body of the servlet-mapping tag, the name and URL path for a Servlet are
given by a string value in the body of the servlet-name and url-pattern tags,
respectively. The name must match a name previously defined by a servlet
element. The URL path can be anything as defined by the Servlet specification:

• An exact pattern to match. The pattern must start with a /, but can
contain anything afterwards. This type of pattern is used for a one-
to-one mapping of a request to a specific Servlet.

• An extension match, *.extension. In this case all URLs ending with
the given extension are forwarded to the specified Servlet. This is

44 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 44

commonly used in Servlet frameworks and can force many requests
to go to the same Servlet15.

• A path mapping. Path mappings must start with a / and end with a
/*. In between anything can appear. Path mappings are usually used
for forwarding all requests that fall in a certain directory to a spe-
cific Servlet.

• Default Servlet, /. A default Servlet mapping is used to define a
Servlet for forwarding requests when no path information is given.
This is analogous to a directory listing16.

With the HelloWorld Servlet, an exact pattern match was used that forwards
any request for /HelloWorld directly to the Servlet (see Figure 2-6). Translating
any of these URL patterns to a full URL involves prefixing the pattern with the
URL to the Web Application. For the HelloWorld Servlet in the jspbook Web
Application, this would be http://127.0.0.1/jspbook/HelloWorld. Restart
Tomcat to update your changes and use this URL to browse to the HelloWorld
Servlet17. A simple HTML page should be displayed that says “Hello World!”. For
non-English readers, our apologies; internationalizing this properly would
require chapter precedence of 1, 12, then 2.

CODING AN HTTPSERVLET 45

Figure 2-6 HelloWorld Servlet

15. It is used, for example, by Tomcat to map all requests to .jsp to a Servlet that knows how to
process JavaServer Pages.
16. The default Servlet was used when you sent the first request to http://localhost/
jspbook.
17. Tomcat can be configured to automatically reload a Web Application when any part of that
application changes. See the Tomcat documentation for more details.

falkner.ch2.qxd 8/29/03 1:00 PM Page 45

Understand Servlet Deployment!
Deploying a Servlet is relatively simple but very important. Pay attention in the
preceding example because for brevity further examples do not include the
verbose deployment description. A single sentence such as “Deploy Servlet x to
the URL mapping y”. is used to mean the same thing. Only when it is excep-
tionally important to the example is the full deployment descriptor provided.

Web Application Deployment Descriptor Structure
Each and every Servlet needs to be deployed before it is available for a client to
use. The HelloWorld Servlet example introduced the Web Application
Deployment Descriptor elements that do this, but before you go on deploying
more Servlets, there is some more information to be aware of. The schema for
web.xml defines which elements can be used and in what order they must appear.
In the previous example this is the reason that both the servlet and servlet-
mapping elements appeared before the welcome-file-list element. This is also
the reason that the servlet element was required to appear before the servlet-
mapping element18.

From the preceding three elements it might seem arrangement is of alpha-
betical precedence, but this is not the case. The arrangement of elements must
match the given listing with the Web Application Deployment Descriptor schema.
This rather long title should sound familiar—it is the same XML schema that
defines what can appear in web.xml. The current complete schema can be found in
the Servlet 2.4 specification. The element ordering is defined by the root web-inf
element and is, in ascending order, as follows: icon, display-name, description,
distributable, context-param, filter, filter-mapping, listener, servlet,
servlet-mapping, session-config, mime-mapping, welcome-file-list, error-
page, jsp-config, resource-env-ref, message-destination-ref, resource-ref,
security-constraint, login-config, security-role, env-entry, ejb-ref, ejb-
local-ref., message-destination, and locale-encoding-mapping-list.

Understanding the order is not difficult, but it is a problem quite a few new
Servlet developers ask about. It is well worth mentioning it now to avoid causing
any confusion later. Keep in mind that this order also applies to multiple ele-
ments of the same name. If two Servlets are deployed, both of the servlet ele-
ments must be listed before any of the servlet-mapping elements. It does not

46 JAVA SERVLETS

18. Not all Servlet containers enforce the schema, however. Consult your container’s documentation
for more information.

falkner.ch2.qxd 8/29/03 1:00 PM Page 46

matter what order a group of the same elements are in, but it does matter that
they are properly grouped.

Servlet Configuration
Sometimes it is necessary to provide initial configuration information for
Servlets. Configuration information for a Servlet may consist of a string or a set
of string values included in the Servlet’s web.xml declaration. This functionality
allows a Servlet to have initial parameters specified outside of the compiled code
and changed without needing to recompile the Servlet. Each servlet has an object
associated with it called the ServletConfig19. This object is created by the con-
tainer and implements the javax.servlet.ServletConfig interface. It is the
ServletConfig that contains the initialization parameters. A reference to this
object can be retrieved by calling the getServletConfig() method. The
ServletConfig object provides the following methods for accessing initial para-
meters:

getInitParameter(String name)

The getInitParameter() returns a String object that contains the value of
the named initialization parameter or null if the parameter does not exist.

getInitParameterNames()

The getInitParameterNames() method returns the names of the Servlet’s
initialization parameters as an Enumeration of String objects or an empty
Enumeration if the Servlet has no initialization parameters.

Defining initial parameters for a Servlet requires using the init-param,
param-name, and param-value elements in web.xml. Each init-param element
defines one initial parameter and must contain a parameter name and value
specified by children param-name and param-value elements, respectively. A
Servlet may have as many initial parameters as needed, and initial parameter
information for a specific Servlet should be specified within the servlet element
for that particular Servlet.

Using initial parameters, the HelloWorld Servlet can be modified to be more
internationally correct. Instead of assuming the Servlet should say “Hello
World!”, it will be assumed the Servlet should say the equivalent for any given lan-
guage. To accomplish this, an initial parameter will be used to configure the

SERVLET CONFIGURATION 47

19. In fact, in the standard Servlet library a Servlet and a ServletConfig are the same object—that is,
GenericServlet implements both javax.servlet.Servlet and javax.servlet.
ServletConfig.

falkner.ch2.qxd 8/29/03 1:00 PM Page 47

proper international “Hello” message. While HelloWorld.java will still not be
perfectly compliant for all languages, it does demonstrate initial parameters.
Modify HelloWorld.java to match the code in Listing 2-3.

Listing 2-3 InternationalizedHelloWorld.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class InternationalizedHelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

String greeting;

greeting =

getServletConfig().getInitParameter("greeting");

out.println("<title>" +greeting+"</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>" +greeting+"</h1>");

out.println("</body>");

out.println("</html>");

}

}

Save the preceding code as InternationalizedHelloWorld.java in the
/WEB-INF/classes/com/jspbook directory of the jspbook Web Application.
Since this is the second code example, a full walk-through is given for deploying
the Servlet. In future examples it will be expected that you deploy Servlets on
your own to a specified URL.

Open up web.xml in the /WEB-INF folder of the jspbook Web Application and
add in a declaration and mapping to /InternationalizedHelloWorld for the
InternationalizedHelloWorld Servlet. When finished, web.xml should match
Listing 2-4.

48 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 48

SERVLET CONFIGURATION 49

Listing 2-4 Updated web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

<servlet>

<servlet-name>HelloWorld</servlet-name>

<servlet-class>com.jspbook.HelloWorld</servlet-class>

</servlet>

<servlet>

<servlet-name>InternationalizedHelloWorld</servlet-name>

<servlet-class>

com.jspbook.InternationalizedHelloWorld

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>InternationalizedHelloWorld</servlet-name>

<url-pattern>/InternationalizedHelloWorld</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>HelloWorld</servlet-name>

<url-pattern>/HelloWorld</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>welcome.html</welcome-file>

</welcome-file-list>

</web-app>

The InternationalizedHelloWorld Servlet relies on an initial parameter for
the classic “Hello World” greeting. Specify this parameter by adding in the fol-
lowing entry to web.xml.

...

<servlet>

<servlet-name>InternationalizedHelloWorld</servlet-name>

<servlet-class>

com.jspbook.InternationalizedHelloWorld

</servlet-class>

<init-param>

<param-name>greeting</param-name>

<param-value>Bonjour!</param-value>

</init-param>

</servlet>

...

falkner.ch2.qxd 8/29/03 1:00 PM Page 49

Leave the param-name element’s body as greeting, but change the value spec-
ified in the body of the param-value tag to be a greeting of your choice. A can-
didate for a welcome message en francais20 would be “Bonjour!” After saving any
changes, reload the jspbook Web Application and visit the Internationalized-
HelloWorld Servlet to see the new message. Figure 2-7 shows an example browser
rendering of InternationalizedHelloWorld Servlet’s output.

Instead of the basic “Hello World!”, the Servlet now displays the initial para-
meter’s value. This approach is nowhere near the best of solutions for interna-
tionalization issues, but it does work in some cases and is a good example to
introduce initial Servlet configuration. In general, the initial parameter mech-
anism shown previously is used to provide simple configuration information for
an entire Web Application. The HelloWorld Servlet example demonstrated initial
parameters for one Servlet, but later on in the chapter it will be shown that the
same method is used to provide initial parameters for an entire Web Application.

Limitations of Configuration: web.xml Additions
Initial parameters are a good method of providing simple one-string values that
Servlets can use to configure themselves. This approach is simple and effective,
but is a limited method of configuring a Servlet. For more complex Servlets it is
not uncommon to see a completely separate configuration file created to
accompany web.xml. When developing Servlets, keep in mind that nothing stops
you from doing this. If the parameter name and parameter values mappings are

50 JAVA SERVLETS

Figure 2-7 Browser Rendering of InternationalizedHelloWorld Servlet

20. In French.

falkner.ch2.qxd 8/29/03 1:00 PM Page 50

not adequate, do not use them! It is perfectly OK to create a custom configu-
ration file and package it in a WAR with the rest of a Web Application. A great
example of doing this is shown by the Jakarta Struts framework appearing in
Chapter 11. The Struts framework relies on a control Servlet that is configured
via a custom and usually lengthy XML file.

Client/Server Servlet Programming
A Servlet request and response is represented by the javax.servlet.Servlet
Request and javax.servlet.ServletResponse objects, or a corresponding
subclass of them. For HTTP Servlets the corresponding classes are HttpServlet
Request and HttpServletResponse. These two objects were quickly introduced
with the HelloWorld Servlet example, but the example was primarily focused on
showing how a Servlet is deployed for use. Coding and deploying are the funda-
mental parts of Servlet development. Deployment was explained first because it
is the exact same process for any given Servlet. Once explained it is a fairly safe
assumption that you can repeat the process or simply copy and edit what already
exists. Servlet code varies greatly depending on what the Servlet are designed to
do. Understanding and demonstrating some of the different uses of Servlets are
a lot easier if time and space are not devoted to rehashing the mundane act of
deployment. Servlet code is where discussion is best focused, and that is exactly
what the rest of the chapter does.

Since this is a Servlet-focused book, very little time is going to be spent on
discussing the normal techniques and tricks of coding with Java. Any good Java
book will discuss these, and they all are valid for use with Servlets. Time is best
spent focusing on the Servlet API. Understanding HTTP and the HttpServlet
class is a good start, but knowledge of the HttpServletRequest and HttpServlet
Response objects are needed before some useful Servlets can be built.

HttpServletRequest and HttpServletResponse
The Servlet API makes manipulating an HTTP request and response pair rela-
tively simple through use of the HttpServletRequest and HttpServletResponse
objects. Both of these objects encapsulate a lot of functionality. Do not worry if
it seems like this section is skimming through these two objects. Detailing all of
the methods and members would be both tedious and confusing without under-
standing the rest of the Servlet API, but API discussion has to start somewhere
and these two objects are arguably the most important. In this section discussion
will only focus on a few of the most commonly used methods of each object.

SERVLET CONFIGURATION 51

falkner.ch2.qxd 8/29/03 1:00 PM Page 51

Later chapters of the book cover the other methods in full and in the context of
which they are best used.

HttpServletResponse
The first and perhaps most important functionality to discuss is how to send
information back to a client. As its name implies, the HttpServletResponse
object is responsible for this functionality. By itself the HttpServletResponse
object only produces an empty HTTP response. Sending back custom content
requires using either the getWriter() or getOutputStream() method to obtain
an output stream for writing content. These two methods return suitable objects
for sending either text or binary content to a client, respectively. Only one of the
two methods may be used with a given HttpServletResponse object. Attempting
to call both methods causes an exception to be thrown.

With the HelloWorld Servlet example, Listing 2-1, the getWriter() method
was used to get an output stream for sending the HTML markup. In the first few
lines of HelloWorld.java, a getWriter() call obtained a java.io.PrintWriter
object suitable for sending back the text.

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Hello World!</title>");

Using an instance of a PrintWriter object consists of providing a String
object and calling either the print(), println(), or write() methods. The dif-
ference between the methods is that println appends a new line character, ‘\n’, to
each line of response text. In both the HelloServlet.java code and the gen-
erated HTML page, the println() method was used to make the lines of HTML
easy to read. As Table 2-1 shows, the HTML markup matches each println() call
used in HelloWorld.java. In practice the lines of HTML will not always match
up so nicely to the code in a Servlet, but the same idea is the reason println() is
usually preferred over solely using the print() method. When the HTML
markup does not match what is expected, it is far easier to debug by matching
calls to the println() method.

Using a PrintWriter is not meant to be complex, and it should now be clear
how to use the PrintWriter object for sending text. Above and beyond what has
previously been shown is sending custom encoded text. So far only one type of
text has been sent, the default text encoding of HTTP, ISO-8895-1, but changing
the character encoding is possible and is covered in full in Chapter 12.

52 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 52

Compared to using the getWriter() method, the getOutputStream()
method is used when more control is needed over what is sent to a client. The
returned OutputStream can be used for sending text, but is usually used for
sending non-text-related binary information such as images. The reason for this
is because the getOutputStream() method returns an instance of a javax.
servlet.ServletOutputStream object, not a PrintWriter. The ServletOutput
Stream object directly inherits from java.io.OutputStream and allows a
developer to write raw bytes. The PrintWriter objects lack this functionality
because it always assumes you are writing text.

In most practical situations it is rarely needed to send raw bytes rather than
text to a client, but this functionality is something a good Servlet developer
should be aware of21. Often the incorrect mindset is to think Servlets can only
send dynamically created text. By sending raw bytes, a Servlet can dynamically
provide any form of digital content. The primary restriction on this functionality
is being able to create the needed bytes for a desired content. For commonly used
formats, including images and audio, it is not uncommon to see a Java API built
to simplify the task. Combining this API with the Servlet API, it is then relatively
easy to send the custom format. A good example to use would be the Java API for

SERVLET CONFIGURATION 53

Table 2-1 HTML Markup from HelloWorld Servlet

Generated Markup HelloWorld.java

<html> out.println("<html>");

<head> out.println("<head>");

<title>Hello World!</title> out.println("<title>Hello

World!</title>");

</head> out.println("</head>");

<body> out.println("</head>");

<h1>Hello World!</h1> out.println("<h1>Hello

World!</h1>");

</body> out.println("</body>");

</html> out.println("</html>");

21. Note that for better efficiency you may want to use the OutputStream rather than the
PrintWriter to send text. The PrintWriter accepts Unicode strings whereas the Output
Stream accepts bytes. See Java Performance and Scalability Volume 1 by Dov Bulka for more details.

falkner.ch2.qxd 8/29/03 1:00 PM Page 53

Advanced Imaging (JAI). Using this API many of the popular image formats can
be produced from the server-side, even on servers not supporting a GUI.

Full discussion of non-text-producing Servlets is outside the scope of this
book. Producing custom images, audio, and other non-text formats via Java is
not something specific to Servlets. The only thing a Servlet needs to do is appro-
priately set a MIME type and send a client some bytes, but that is not a good
reason to completely avoid an example. For completeness, Listing 2-5 provides a
Servlet that dynamically generates an image and sends the bytes using a
ServletOutputStream.

Listing 2-5 DynamicImage.java

package com.jspbook;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.awt.*;

import java.awt.image.*;

import com.sun.image.codec.jpeg.*;

public class DynamicImage extends HttpServlet {

public void doGet(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("image/jpeg");

// Create Image

int width = 200;

int height = 30;

BufferedImage image = new BufferedImage(

width, height, BufferedImage.TYPE_INT_RGB);

// Get drawing context

Graphics2D g = (Graphics2D)image.getGraphics();

// Fill background

g.setColor(Color.gray);

g.fillRect(0, 0, width, height);

54 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 54

// Draw a string

g.setColor(Color.white);

g.setFont(new Font("Dialog", Font.PLAIN, 14));

g.drawString("http://www.jspbook.com",10,height/2+4);

// Draw a border

g.setColor(Color.black);

g.drawRect(0,0,width-1,height-1);

// Dispose context

g.dispose();

// Send back image

ServletOutputStream sos = response.getOutputStream();

JPEGImageEncoder encoder =

JPEGCodec.createJPEGEncoder(sos);

encoder.encode(image);

}

}

Save the preceding code as DynamicImage.java in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application. Compile and deploy the
DynamicImage Servlet with a mapping to the /DynamicImage URL extension of
the jspbook Web Application. After reloading the Web Application, browse to
http://127.0.0.1/jspbook/DynamicImage. A JPEG formatted image is dynam-
ically generated on each request to the Servlet. Figure 2-8 shows an example of
one of the dynamically generated images.

SERVLET CONFIGURATION 55

Figure 2-8 DynamicImage Servlet

falkner.ch2.qxd 8/29/03 1:00 PM Page 55

Before going out and creating your own image-producing Servlet, a fair
warning should be given regarding the preceding code. For simplicity the code
uses an object from the com.sun.image.codec.jpeg package that is unofficially
included in the J2SDK 1.4. Code from the com.sun package is not guaranteed to
be around in future Java releases, nor is it meant for developers to use. A proper
solution would be to use an instance of the ImageEncoder class from the Java
Advanced Imaging API, but that would have required you download and install
the JAI before running the example.

Response Headers
Along with sending content back to a client, the HttpServletResponse object is
also used to manipulate the HTTP headers of a response. HTTP response headers
are helpful for informing a client of information such as the type of content
being sent back, how much content is being sent, and what type of server is
sending the content. The HttpServletResponse object includes the following
methods for manipulating HTTP response headers:

• addHeader(java.lang.String name, java.lang.String value): The
addHeader() method adds a response header with the given name
and value. This method allows response headers to have multiple
values.

• containsHeader(java.lang.String name): The containsHeader()
method returns a boolean indicating whether the named response
header has already been set.

• setHeader(java.lang.String name, java.lang.String value): The
setHeader() method sets a response header with the given name
and value. If the header had already been set, the new value over-
writes the previous one. The containsHeader() method can be
used to test for the presence of a header before setting its value.

• setIntHeader(java.lang.String name, int value): The
setIntHeader() sets a response header with the given name and
integer value. If the header had already been set, the new value
overwrites the previous one. The containsHeader() method can be
used to test for the presence of a header before setting its value.

• setDateHeader(java.lang.String name, long date): The
setDateHeader() sets a response header with the given name and
date value. The date is specified in terms of milliseconds since the
epoch. If the header had already been set, the new value overwrites

56 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 56

the previous one. The containsHeader() method can be used to
test for the presence of a header before setting its value.

• addIntHeader(java.lang.String name, int value): The
addIntHeader() method adds a response header with the given
name and integer value. This method allows response headers to
have multiple values.

• addDateHeader(java.lang.String name, long date): The
addDateHeader() method adds a response header with the given
name and date value. The date is specified in terms of milliseconds
since the epoch22. This method doesn’t override previous response
headers and allows response headers to have multiple values.

In the introduction to HTTP that appeared earlier in this chapter, a few
HTTP response headers were seen, and in the HelloWorld Servlet the Content-
Type response header was used. In both these cases, elaboration on the headers’
semantics was conveniently skipped. This was done intentionally to simplify the
examples, but it is time to clarify what these unexplained HTTP headers mean
(see Table 2-2), along with introducing some of the other helpful headers that
can be set by an HttpServletResponse object.

In most cases the most important header to worry about as a Servlet author
is Content-Type. This header should always be set to ‘text/html’ when a Servlet
is sending back HTML. For other formats the appropriate MIME type23 should
be set.

Response Redirection
Any HTTP response code can be sent to a client by using the setStatus()
method of an HttpServletResponse object. If everything works OK, Servlet will
send back a status code 200, OK. Another helpful status code to understand is
302, “Resource Temporarily Moved”. This status code informs a client that the
resource they were looking for is not at the requested URL, but is instead at the
URL specified by the Location header in the HTTP response. The 302 response
code is helpful because just about every Web browser automatically follows the
new link without informing a user. This allows a Servlet to take a user’s request
and forward it any other resource on the Web.

Because of the common implementation of the 302 response code, there is an
excellent use for it besides the intended purpose. Most Web sites track where vis-

SERVLET CONFIGURATION 57

22. A common reference in time; January 1, 1970 GMT.
23. Multipart Internet Mail Extensions defined in RFCs 2045, 2046, 2047, 2048, and 2049

falkner.ch2.qxd 8/29/03 1:00 PM Page 57

itors come from to get an idea of what other sites are sending traffic. The tech-
nique for accomplishing involves extracting the “referer” (note the slightly inac-
curate spelling) header of an HTTP request. While this is simple, there is no
equally easy way of tracking where a site sends traffic. The problem arises because
any link on a site that leads to an external resource does send a request back to
the site it was sent from. To solve the problem, a clever trick can be used that
relies on the HTTP 302 response code. Instead of providing direct links to

58 JAVA SERVLETS

Table 2-2 HTTP 1.1 Response Header Fields

Header Field Header Value

Age A positive integer representing the estimated amount of time since the
response was generated from the server.

Location Some HTTP response codes redirect a client to a new resource. The
location of this resource is specified by the Location header as an
absolute URI.

Retry-After The Retry-After response header field can be used with a 503 (Service
Unavailable) response to indicate how long the service is expected to
be unavailable to the requesting client. The value of this field can be
either a date or an integer number of seconds (in decimals) after the
time of the response.

Server The Server field is a string representing information about the server
that generated this response.

Content-Length The Content-Length entity header field indicates the size of the
message body, in decimal number of octets (8-bit bytes), sent to the
recipient or, in the case of the HEAD method, the size of the entity
body that would have been sent had the request been a GET.

Content-Type The MIME type that corresponds to the content of the HTTP response.
This value is often used by a browser to determine if the content
should be rendered internally or launched for rendering by an external
application.

Date The Date field represents the date and time at which the message was
originated.

Pragma The Pragma field is used to include implementation-specific directives
that may apply to any recipient along the request-response chain. The
most commonly used value is “no-cache”, indicating a resource
shouldn’t be cached.

falkner.ch2.qxd 8/29/03 1:00 PM Page 58

external resources, encode all links to go to the same Servlet on your site but
include the real link as a parameter. Link tracking is then provided using the
Servlet to log the intended link while sending the client back a 302 status code
along with the real link to visit.

As you might imagine, using a Servlet to track links is very commonly done
by sites with HTTP-aware developers. The HTTP 302 response code is used so
often it has a convenience method, sendRedirect(), in the HttpServlet
Response object. The sendRedirect() method takes one parameter, a string rep-
resenting the new URL, and automatically sets the HTTP 302 status code with
appropriate headers. Using the sendRedirect() method and a java.util.
Hashtable, it is easy to create a Servlet for tracking link use. Save the code in
Listing 2-6 as LinkTracker.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application. Deploy the Servlet to the
/LinkTracker URL mapping.

Listing 2-6 LinkTracker.java

package com.jspbook;

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LinkTracker extends HttpServlet {

static private Hashtable links = new Hashtable();

String tstamp;

public LinkTracker() {

tstamp = new Date().toString();

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

String link = request.getParameter("link");

if (link != null && !link.equals("")) {

synchronized (links){

Integer count = (Integer) links.get(link);

if (count == null) {

links.put(link, new Integer(1));

}

SERVLET CONFIGURATION 59

falkner.ch2.qxd 8/29/03 1:00 PM Page 59

else {

links.put(link, new Integer(1+count.intValue()));

}

}

response.sendRedirect(link);

}

else {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

request.getSession();

out.println("<html>");

out.println("<head>");

out.println("<title>Links Tracker Servlet</title>");

out.println("</head>");

out.println("<body>");

out.println("<p>Links Tracked Since");

out.println(tstamp+":</p>");

if (links.size() != 0) {

Enumeration enum = links.keys();

while (enum.hasMoreElements()) {

String key = (String)enum.nextElement();

int count = ((Integer)links.get(key)).intValue();

out.println(key+" : "+count+" visits
");

}

}

else {

out.println("No links have been tracked!
");

}

out.println("</body>");

out.println("</html>");

}

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

doGet(request, response);

}

}

To complement the LinkTracker Servlet, some links are needed that use it.
The links can be to any resource as long as they are encoded properly. Encoding
the links is not difficult; it requires the real link be passed as the link parameter
in a query string. Listing 2-7 is a simple HTML page that includes a few properly

60 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 60

encoded links. Save the HTML as links.html in the base directory of the jspbook
Web Application.

Listing 2-7 Some Links Encoded for the LinkTracker Servlet

<html>

<head>

<title>Some Links Tracked by the LinkTracker Servlet</title>

</head>

<body>

Some good links for Servlets and JSP. Each link is directed

through the LinkTracker Servlet. Click on a few and visit

the LinkTracker Servlet.

Servlets and JSP Book Support Site

JSP Insider

Sun Microsystems

</body>

</html>

After reloading the Web Application, browse to http://127.0.0.1/jspbook/
links.html. Figure 2-9 shows what the page looks like after rendered by a
browser. Click a few times on any combination of the links.

Each link is directed through the LinkTracker Servlet, which in turn directs a
browser to visit the correct link. Before each redirection the LinkTracker Servlet

SERVLET CONFIGURATION 61

Figure 2-9 Browser Rendering of links.html

falkner.ch2.qxd 8/29/03 1:00 PM Page 61

logs the use of the link by keying the link URL to an Integer object in a
Hashtable. If you browse directly to the LinkTracker Servlet, http://

127.0.0.1/jspbook/LinkTracker, it displays information about links visited.
Figure 2-10 shows what the results look like after tracking a few links. Results are
current as of the last reloading of the LinkTracker Servlet. This example does not
log the information for long-term use, but nothing stops such a modification
from being made.

Response Redirection Translation Issues
Response redirection is a good tool to be aware of and works with any imple-
mentation of the Servlet API. However, there is a specific bug that tends to arise
when using relative response redirection. For instance:

response.sendRedirect("../foo/bar.html");

would work perfectly fine when used in some Servlets but would not in others.
The trouble comes from using the relative back, “../”, to traverse back a directory.
A JSP can correctly use this (assuming the browser translates the URL correctly),
but the JSP can use it only if the request URL combined with the redirection ends
up at the appropriate resource. For instance, if http://127.0.0.1/foo/bar.html
is a valid URL, then http://127.0.0.1/foo/../foo/bar.html should also be
valid. However, http://127.0.0.1/foo/foo/../foo/bar.html will not reach the
same resource.

This may seem like an irrelevant problem, but we will soon introduce
request dispatching that will make it clear why this is an issue. Request dis-
patching allows for requests to be forwarded on the server-side—meaning the

62 JAVA SERVLETS

Figure 2-10 Browser Rendering of Link Statistics from the LinkTracker Servlet

falkner.ch2.qxd 8/29/03 1:00 PM Page 62

requested URL does not change, but the server-side resource that handles it
can. Relative redirections are not always safe; “ . . /” can be bad. The solution is
to always use absolute redirections. Either use a complete URL such as:

response.sendRedirect("http://127.0.0.1/foo/bar.html");

Or use an absolute URL from the root, “/”, of the Web Application.

response.sendRedirect("/for/bar.html")24;

In cases where the Web application can be deployed to a non-root URL, the
HttpServletRequest getContextPath() method should be used in conjunction:

response.sendRedirect(request.getContextPath()+"/foo/bar.html");

Further information about the HttpServletRequest object and use of the
getContextPath() method is provided later in this chapter.

Auto-Refresh/Wait Pages
Another response header technique that is uncommon but helpful is to send a
wait page or a page that will auto-refresh to a new page after a given period of
time. This tactic is helpful in any case where a response might take an uncon-
trollable time to generate, or for cases where you want to ensure a brief pause in
a response. The entire mechanism revolves around setting the Refresh response
header25. The header can be set using the following:

response.setHeader("Refresh", "time; URL=url");

Where “time” is replaced with the amount of seconds, the page should wait,
and “url” is replaced with the URL that the page should eventually load. For
instance, if it was desired to load http://127.0.0.1/foo.html after 10 seconds
of waiting, the header would be set as so:

response.setHeader("Refresh", "10; URL=http://127.0.0.1/foo.html");

Auto-refreshing pages are helpful because they allow for a normal “pull”
model, waiting for a client’s request, to “push” content. A good practical use case

SERVLET CONFIGURATION 63

24. Another option is to use the JavaServer Pages Standard Tag Libraries redirect tag. The JSTL is
covered in Chapter 7.
25. The Refresh header is not part of the HTTP 1.0 or HTTP 1.1 standards. It is an extension sup-
ported by Microsoft Internet Explorer, Netscape Navigator 4.x, and Mozilla-based clients.

falkner.ch2.qxd 8/29/03 1:00 PM Page 63

would be a simple your-request-is-being-processed-page that after a few seconds
refreshes to show the results of the response. The alternative (also the most com-
monly used approach) is to wait until a request is officially finished before
sending back any content. This results in a client’s browser waiting for the
response, sometimes appearing as if the request might time-out and resulting in
the user making a time-consuming request twice26.

Another practical use case for wait page would be slowing down a request,
perhaps to better ensure pertinent information is seen by the user. For example,
a wait page that showed either an advertisement or legal information before
redirecting to the appropriately desired page.

It should be clear that there are several situations where the Refresh response
header can come in handy. While it is not a standard HTTP 1.1 header, it is some-
thing that is considered a de facto standard27.

HttpServletRequest
A client’s HTTP request is represented by an HttpServletRequest object. The
HttpServletRequest object is primarily used for getting request headers, para-
meters, and files or data sent by a client. However, the Servlet specification
enhances this object to also interact with a Web Application. Some of the most
helpful features include session management and forwarding of requests between
Servlets.

Headers
HTTP headers set by a client are used to inform a server about what software the
client is using and how the client would prefer a server send back requested infor-
mation. From a Servlet, HTTP request headers can be accessed by calling the fol-
lowing methods:

• getHeader(java.lang.String name): The getHeader() method
returns the value of the specified request header as a string. If the
request did not include a header of the specified name, this method
returns null. The header name is case insensitive. You can use this
method with any request header.

64 JAVA SERVLETS

26. Auto-refresh pages help tremendously reduce this problem, but you should also ensure the Web
application accurately maintains state. Chapter 9 thoroughly covers state management.
27. Be aware, however, that the Refresh and Redirect solutions shown here do have a downside. They
both involved extra roundtrips from the client to the server. Roundtrips are expensive in terms of
time and resources used, and a Web application should seek to minimize them.

falkner.ch2.qxd 8/29/03 1:00 PM Page 64

• getHeaders(java.lang.String name): The getHeaders() method
returns all the values of the specified request header as an
Enumeration of String objects. Some headers, such as Accept-
Language, can be sent by clients as several headers, each with a dif-
ferent value rather than sending the header as a comma-separated
list. If the request did not include any headers of the specified
name, this method returns an empty Enumeration object. The
header name is case insensitive. You can use this method with any
request header.

• getHeaderNames(): The getHeaderNames() method returns an
Enumeration of all the names of headers sent by a request. In com-
bination with the getHeader() and getHeaders() methods,
getHeaderNames() can be used to retrieve names and values of all
the headers sent with a request. Some containers do not allow access
of HTTP headers. In this case null is returned.

• getIntHeader(java.lang.String name): The getIntHeader()
method returns the value of the specified request header as an int.
If the request does not have a header of the specified name, this
method returns –1. If the header cannot be converted to an integer,
this method throws a NumberFormatException.

• getDateHeader(java.lang.String name): The getDateHeader()
method returns the value of the specified request header as a long
value that represents a Date object. The date is returned as the
number of milliseconds since the epoch. The header name is case
insensitive. If the request did not have a header of the specified
name, this method returns –1. If the header cannot be converted to
a date, the method throws an IllegalArgumentException.

HTTP request headers are very helpful for determining all sorts of infor-
mation. In the later chapters HTTP request headers are used as the primary
resource for mining data about a client. This includes figuring out what language
a client would prefer, what type of Web browser is being used, and if the client
can support compressed content for efficiency. For now it is helpful to under-
stand that these headers exist, and to get a general idea about what type of infor-
mation the headers contain. Listing 2-8 is a Servlet designed to do just that. Save
the following code as ShowHeaders.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application.

SERVLET CONFIGURATION 65

falkner.ch2.qxd 8/29/03 1:00 PM Page 65

Listing 2-8 ShowHeaders.java

package com.jspbook;

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShowHeaders extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Request's HTTP Headers</title>");

out.println("</head>");

out.println("<body>");

out.println("<p>HTTP headers sent by your client:</p>");

Enumeration enum = request.getHeaderNames();

while (enum.hasMoreElements()) {

String headerName = (String) enum.nextElement();

String headerValue = request.getHeader(headerName);

out.print(""+headerName + ": ");

out.println(headerValue + "
");

}

out.println("</body>");

out.println("</html>");

}

}

Compile the Servlet and deploy it to the /ShowHeaders path of the jspbook
Web Application. After reloading the Web application, browse to http://
127.0.0.1/jspbook/ShowHeaders to see a listing of all the HTTP headers your
browser sends (see Figure 2-11).

The preceding is a good example of the headers normally sent by a Web
browser. They are fairly self-descriptive. You can probably imagine how these
headers can be used to infer browser and internationalization information. Later

66 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 66

on we will do just that28, but for now we end our discussion of request headers
with Table 2-3, which lists some of the most relevant and helpful ones.

Form Data and Parameters
Perhaps the most commonly used methods of the HttpServletRequest object
are the ones that involve getting request parameters: getParameter() and
getParameters(). Anytime an HTML form is filled out and sent to a server, the
fields are passed as parameters. This includes any information sent via input
fields, selection lists, combo boxes, check boxes, and hidden fields, but excludes
file uploads. Any information passed as a query string is also available on the
server-side as a request parameter. The HttpServletRequest object includes the
following methods for accessing request parameters.

• getParameter(java.lang.String parameterName): The
getParameter() method takes as a parameter a parameter name
and returns a String object representing the corresponding value. A
null is returned if there is no parameter of the given name.

SERVLET CONFIGURATION 67

Figure 2-11 Browser Rendering of the ShowHeaders Servlet

28. In particular, the Referer header is perfect for tracking who sends traffic to your Web site; this is
similar to the LinkTracker Servlet and very complementary. However, implementing referer tracking
via a Servlet is cumbersome compared to using a filter. Therefore, a referer-tracking example is saved
for the later chapter about filters.

falkner.ch2.qxd 8/29/03 1:00 PM Page 67

• getParameters(java.lang.String parameterName): The
getParameters() method is similar to the getParameter() method,
but it should be used when there are multiple parameters with the
same name. Often an HTML form check box or combo box sends
multiple values for the same parameter name. The getParameter()
method is a convenient method of getting all the parameter values
for the same parameter name returned as an array of strings.

68 JAVA SERVLETS

Table 2-3 HTTP Request Headers

Name Value

Host The Host request header field specifies the Internet host and port
number of the resource being requested, as obtained from the
original URL given by the user or referring resource. Mandatory for
HTTP 1.1.

User-Agent The User-Agent request header field contains information about
the user agent (or browser) originating the request. This is for statis-
tical purposes, the tracing of protocol violations, and automated
recognition of user agents for the sake of tailoring responses to avoid
particular user-agent limitations.

Accept The Accept request header field can be used to specify certain
media types that are acceptable for the response. Accept headers
can be used to indicate that the request is specifically limited to a
small set of desired types.

Accept-Language The Accept-Language request header field is similar to Accept,
but restricts the set of natural languages that are preferred as a
response to the request.

Accept-Charset The Accept-Charset request header field can be used to indicate
what character sets are acceptable for the response. This field allows
clients capable of understanding more comprehensive or special-
purpose character sets to signal that capability to a server that is
capable of representing documents in those character sets. The
ISO-8859-1 character set can be assumed to be acceptable to all
user -agents. Referer (sic) The Referer request header field allows
the client to specify, for the server’s benefit, the address (URI) of the
resource from which the Request URI was obtained.

falkner.ch2.qxd 8/29/03 1:00 PM Page 68

• getParameterNames(): The getParameterNames() method returns
a java.util.Enumeration of all the parameter names used in a
request. In combination with the getParameter() and
getParameters() method, it can be used to get a list of names and
values of all the parameters included with a request.

Like the ShowHeaders Servlet, it is helpful to have a Servlet that reads and
displays all the parameters sent with a request. You can use such a Servlet to get
a little more familiar with parameters, and to debug HTML forms by seeing what
information is being sent. Listing 2-9 is such a Servlet.

Listing 2-9 ShowParameters.java

package com.jspbook;

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShowParameters extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Request HTTP Parameters Sent</title>");

out.println("</head>");

out.println("<body>");

out.println("<p>Parameters sent with request:</p>");

Enumeration enum = request.getParameterNames();

while (enum.hasMoreElements()) {

String pName = (String) enum.nextElement();

String[] pValues = request.getParameterValues(pName);

out.print(""+pName + ": ");

for (int i=0;i<pValues.length;i++) {

out.print(pValues[i]);

}

out.print("
");

}

SERVLET CONFIGURATION 69

falkner.ch2.qxd 8/29/03 1:00 PM Page 69

out.println("</body>");

out.println("</html>");

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

doGet(request, response);

}

}

Compile and deploy the ShowParameters Servlet in the jspbook Web
Application with a mapping to /ShowParameters path. After reloading the
jspbook Web Application, create a few simple HTML forms and use the Servlet
to see what parameters are sent. If your HTML is out of practice, do not worry.
Listing 2-10 provides a sample HTML form along with a link to a great online
HTML reference, http://www.jspinsider.com/reference/html.jsp.

Listing 2-10 exampleform.html

<html>

<head>

<title>Example HTML Form</title>

</head>

<body>

<p>To debug a HTML form set its 'action' attribute

to reference the ShowParameters Servlet.</p>

<form action="http://127.0.0.1/jspbook/ShowParameters"

method="post">

Name: <input type="text" name="name">

Password: <input type="password" name="password">

Select Box:

<select name="selectbox">

<option value="option1">Option 1</option>

<option value="option2">Option 2</option>

<option value="option3">Option 3</option>

</select>

Importance:

<input type="radio" name="importance" value="very">Very,

<input type="radio"

name="importance" value="normal">Normal,

<input type="radio" name="importance" value="not">Not

70 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 70

Comment:

<textarea name="textarea"

cols="40" rows="5"></textarea>

<input value="Submit" type="submit">

</form>

</body>

</html>

Either save the preceding HTML, or create any other HTML form and set
the action attribute to http://127.0.0.1/jspbook/ShowParameters, and
browse to the page. Save the preceding HTML as exampleform.html in the base
directory of jspbook Web Application and browse to http://127.0.0.1/
jspbook/exampleform.html. Figure 2-12 shows what the page looks like ren-
dered by a Web browser.

Fill out the form and click on the button labeled Submit to send the infor-
mation to the ShowParameters Servlet. Something resembling Figure 2-13 will
appear.

On the server-side each piece of information sent by a form is referenced by
the same name as defined in your HTML form and is linked to a value that a user
entered. The ShowParameters Servlet shows this by using getParameterNames()
for a list of all parameter names and subsequently calling getParameters() for
the matching value or set of values for each name. The core of the Servlet is a
simple loop.

SERVLET CONFIGURATION 71

Figure 2-12 Browser Rendering of exampleform.html

falkner.ch2.qxd 8/29/03 1:00 PM Page 71

72 JAVA SERVLETS

Figure 2-13 Browser Rendering of the ShowParameters Servlet

29. Be aware that it is possible to execute a Web Application directly from a WAR file, in which case
the application may not have access to the file system, so the file upload code may fail.

Enumeration enum = request.getParameterNames();

while (enum.hasMoreElements()) {

String pName = (String) enum.nextElement();

String[] pValues = request.getParameterValues(pName);

out.print(""+pName + ": ");

for (int i=0;i<pValues.length;i++) {

out.print(pValues[i]);

}

out.print("
");

}

Using parameters, information can be solicited from HTML clients for use by
a Servlet. While the ShowParameters Servlet only takes parameters and echoes
them back to a client, normally those parameter values are used with other code
to generate responses. Later on in the book this functionality will commonly be
used with Servlets and JSP for further interacting with clients, including sending
email and user authentication.

File Uploads
File uploads29 are simple for HTML developers but difficult for server-side devel-
opers. Sadly, this often results in discussion of Servlets and HTML forms that
conveniently skip the topic of file uploads, but understanding HTML form file
uploads is a needed skill for any good Servlet developer. Consider any situation

falkner.ch2.qxd 8/29/03 1:00 PM Page 72

where a client needs to upload something besides a simple string of text, perhaps
when a picture needs to be uploaded. Using the getParameter() method will not
work because it produces unpredictable results—usually mangling the file being
sent or failing to find the content of the file at all.

The reason file uploads are usually considered difficult is because of how the
Servlet API handles them. There are two primary MIME types for form infor-
mation: application/x-www-form-urlencoded and multipart/form-data. The
first MIME type, application/x-www-form-urlencoded, is the MIME type most
everyone is familiar with and results in the Servlet API automatically parsing out
name and value pairs. The information is then available by invoking
HttpServletRequest getParameter() or any of the other related methods as
previously described. The second MIME type, multipart/form-data, is the one
that is usually considered difficult. The reason why is because the Servlet API
does nothing to help you with it30. Instead the information is left as is and you
are responsible for parsing the request body via either HttpServletRequest
getInputStream() or getReader().

The complete multipart/form-data MIME type and the format of the asso-
ciated HTTP request are explained in RFC 1867, http://www.ietf.org/rfc/
rfc1867.txt. You can use this RFC to determine how to appropriately handle
information posted to a Servlet. The task is not very difficult, but, as will be
explained later, this is usually not needed because other developers have created
complementary APIs to handle file uploads.

To best understand what you are dealing with when multipart/form-data
information is sent, it is valuable to actually look at the contents of such a
request. This can be accomplished by making a file-uploading form and a Servlet
that regurgitates the information obtained from the ServletInputStream pro-
vided. Listing 2-11 provides the code for such a Servlet. This Servlet accepts a
multipart/form-data request and displays the contents of it as plain text.

Listing 2-11 ShowForm.java

package com.jspbook;

import java.util.*;

import java.io.*;

SERVLET CONFIGURATION 73

30. In practice, most implementations of the Servlet API try to be merciful on developers who
attempt to invoke getParameter() functionality on forms that post information as
multipart/form-data. However, this almost always results in parsing the name-value pairs
and missing the uploaded file.

falkner.ch2.qxd 8/29/03 1:00 PM Page 73

import javax.servlet.*;

import javax.servlet.http.*;

public class ShowForm extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/plain");

PrintWriter out = response.getWriter();

ServletInputStream sis = request.getInputStream();

for (int i = sis.read(); i != -1; i = sis.read()) {

out.print((char)i);

}

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

doPost(request, response);

}

}

Save the preceding code as ShowForm.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application. Deploy the Servlet to
/ShowForm. From now on information posted by any form can be viewed by
directing the request to http://127.0.0.1/jspbook/ShowForm. Try the Servlet
out by creating an HTML form that uploads a file (Listing 2-12).

Listing 2-12 multipartform.html

<html>

<head>

<title>Example HTML Form</title>

</head>

<body>

<p>The ShowForm Servlet will display the content

posted by an HTML form. Try it out by choosing a

file (smaller size is preferred) to reference the

ShowParameters Servlet.</p>

<form action="http://127.0.0.1/jspbook/ShowForm"

method="post" enctype="multipart/form-data">

Name: <input type="text" name="name">

74 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 74

File: <input type="file" name="file">

<input value="Submit" type="submit">

</form>

</body>

</html>

Save the preceding code as multipartform.html in the base directory of the
jspbook Web Application and browse to it. Displayed is a small HTML form with
two inputs, a name and a file to upload. Figure 2-14 provides a browser rendering
of the page.

Fill in the form with any value for the Name field and any file for the File
field. A smaller file is preferred because its contents are going to be displayed by
the ShowForm Servlet and a large file will take up a lot of space. A good candidate
for a file is multipartform.html itself. After completing the form, click on the
Submit button. The ShowForm Servlet will then show the content that was
posted. For example, using multipartform.html as the file would result in some-
thing similar to the following:

-----------------------------196751392613651805401540383426

Content-Disposition: form-data; name="name"

blah blah

-----------------------------196751392613651805401540383426

Content-Disposition: form-data; name="file";

filename="multipartform.html"

Content-Type: text/html

SERVLET CONFIGURATION 75

Figure 2-14 Browser Rendering of multipartform.html

falkner.ch2.qxd 8/29/03 1:00 PM Page 75

<html>

<head>

<title>Example HTML Form</title>

</head>

<body>

<p>The ShowForm Servlet will display the content

posted by an HTML form. Try it out by choosing a

file (smaller size is preferred) to reference the

ShowParameters Servlet.</p>

<form action="http://127.0.0.1/jspbook/ShowForm"

method="post" enctype="multipart/form-data">

Name: <input type="text" name="name">

File: <input type="file" name="file">

<input value="Submit" type="submit">

</form>

</body>

</html>

-----------------------------196751392613651805401540383426--

This would be the type of information you have to parse through when han-
dling a multipart/form-data request. If the file posted is not text, it will not be as
pretty as the preceding, but there will always be a similar format. Each multipart
has a unique token declaring its start. In the preceding the following was used:

-----------------------------196751392613651805401540383426

This declares the start of the multipart section and concluded at the ending
token, which is identical to the start but with ‘--’ appended. Between the starting
and ending tokens are sections of data (possibly nested multiparts) with headers
used to describe the content. For example, in the preceding code the first part
described a form parameter:

Content-Disposition: form-data; name="name"

blah blah

The Content-Disposition header defines the information as being part of
the form and identified by the name “name”. The value of “name” is the content
following; by default its MIME type is text/plain. The second part describes the
uploaded file:

Content-Disposition: form-data; name="file";

filename="multipartform.html"

76 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 76

Content-Type: text/html

<html>

<head>

<title>Example HTML Form</title>

</head>

<body>

...

This time the Content-Disposition header defines the name of the form
field to be “file”, which matches what was in the HTML form, and describes the
content-type as text/html, since it is not text/plain. Following the headers is
the uploaded content, the code for multipartform.html.

You should be able to easily imagine how to go about creating a custom class
that parses this information and saves the uploaded file to the correct location.
In cases where the uploaded file is not using a special encoding, the task is as easy
as parsing the file’s name from the provided headers and saving the content as is.
Listing 2-13 provides the code for doing exactly that, and accommodates a file of
any size. The Servlet acts as a file upload Servlet, which places files in the /files
directory of the jspbook Web Application and lets users browse through,
optionally downloading previously uploaded files.

Listing 2-13 FileUpload.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FileUpload extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.print("File upload success. <a href=\"/jspbook/files/");

out.print("\">Click here to browse through all uploaded ");

out.println("files.
");

SERVLET CONFIGURATION 77

falkner.ch2.qxd 8/29/03 1:00 PM Page 77

ServletInputStream sis = request.getInputStream();

StringWriter sw = new StringWriter();

int i = sis.read();

for (;i!=-1&&i!='\r';i=sis.read()) {

sw.write(i);

}

sis.read(); // ditch '\n'

String delimiter = sw.toString();

int count = 0;

while(true) {

StringWriter h = new StringWriter();

int[] temp = new int[4];

temp[0] = (byte)sis.read();

temp[1] = (byte)sis.read();

temp[2] = (byte)sis.read();

h.write(temp[0]);

h.write(temp[1]);

h.write(temp[2]);

// read header

for (temp[3]=sis.read();temp[3]!=-1;temp[3]=sis.read()) {

if (temp[0] == '\r' &&

temp[1] == '\n' &&

temp[2] == '\r' &&

temp[3] == '\n') {

break;

}

h.write(temp[3]);

temp[0] = temp[1];

temp[1] = temp[2];

temp[2] = temp[3];

}

String header = h.toString();

int startName = header.indexOf("name=\"");

int endName = header.indexOf("\"",startName+6);

if (startName == -1 || endName == -1) {

break;

}

String name = header.substring(startName+6, endName);

if (name.equals("file")) {

startName = header.indexOf("filename=\"");

endName = header.indexOf("\"",startName+10);

String filename =

78 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 78

header.substring(startName+10,endName);

ServletContext sc =

request.getSession().getServletContext();

File file = new File(sc.getRealPath("/files"));

file.mkdirs();

FileOutputStream fos =

new FileOutputStream(

sc.getRealPath("/files")+"/"+filename);

// write whole file to disk

int length = 0;

delimiter = "\r\n"+delimiter;

byte[] body = new byte[delimiter.length()];

for (int j=0;j<body.length;j++) {

body[j] = (byte)sis.read();

}

// check it wasn't a 0 length file

if (!delimiter.equals(new String(body))) {

int e = body.length-1;

i=sis.read();

for (;i!=-1;i=sis.read()) {

fos.write(body[0]);

for (int l=0;l<body.length-1;l++) {

body[l]=body[l+1];

}

body[e] = (byte)i;

if (delimiter.equals(new String(body))) {

break;

}

length++;

}

}

fos.flush();

fos.close();

}

if (sis.read() == '-' && sis.read() == '-') {

break;

}

}

out.println("</html>");

}

public void doGet(HttpServletRequest request,

SERVLET CONFIGURATION 79

falkner.ch2.qxd 8/29/03 1:00 PM Page 79

80 JAVA SERVLETS

HttpServletResponse response)

throws IOException, ServletException {

doPost(request, response);

}

}

Save the preceding code as FileUpload.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application. The code parses through each
part of the form data—that is, each parameter or file—and saves all files in the
/files directory of the jspbook Web Application.

The code is purposely left as one large Servlet because it is initially easier to
digest the information if it is all in one place; nothing stops you from reimple-
menting the preceding code in a more object-oriented fashion, perhaps modeling
an enhanced version of the getParameter() method. Two important points
should be noted about the code for the FileUpload Servlet. At all times infor-
mation is read directly from the ServletInputStream object—that is, directly
from the client and minimally buffered. This allows for very large files to be
handled equally well as files of a small size. Additionally, this parses completely
through the information in the HTTP post—that is, it determines the delimiter
and keeps parsing until the end of the request, when the delimiter with ‘--’
appended is found.

ServletInputStream sis = request.getInputStream();

StringWriter sw = new StringWriter();

int i = sis.read();

for (;i!=-1 && i!='\r'; i=sis.read()) {

sw.write(i);

}

sis.read(); // ditch '\n'

String delimiter = sw.toString();

int count = 0;

while(true) {

...

if (sis.read() == '-' && sis.read() == '-') {

break;

}

}

The while loop loops indefinitely, reading through each part of the form data.
Recall form information is posted with a delimiter such as:

-----------------------------196751392613651805401540383426\r\n

falkner.ch2.qxd 8/29/03 1:00 PM Page 80

SERVLET CONFIGURATION 81

Used to separate each section, ended with the same delimiter with ‘--’
appended:

-----------------------------196751392613651805401540383426--

The code for FileUpload.java automatically reads a section using the
delimiter, but the code conditionally continues based on what is found immedi-
ately after the delimiter. Should the character sequence ‘\r\n’ be found then the
loop continues, with the characters discarded. However, should the character
‘—’ be found, the loop is terminated because the end of the form information has
been found.

The body of the indefinite while loop is responsible for parsing out the
header and the content of the form-data part. Header information is found by
parsing, starting from the delimiter, until the appropriate character sequence,
‘\r\n\r\n’, is found.

StringWriter h = new StringWriter();

int[] temp = new int[4];

temp[0] = (byte)sis.read();

temp[1] = (byte)sis.read();

temp[2] = (byte)sis.read();

h.write(temp[0]);

h.write(temp[1]);

h.write(temp[2]);

// read header

for (temp[3]=sis.read();temp[3]!=-1;temp[3]=sis.read())

{

if (temp[0] == '\r' &&

temp[1] == '\n' &&

temp[2] == '\r' &&

temp[3] == '\n') {

break;

}

h.write(temp[3]);

temp[0] = temp[1];

temp[1] = temp[2];

temp[2] = temp[3];

}

String header = h.toString();

Recall that form-part header information is separated from content by a
blank line, ‘\r\n’—meaning the end of a line followed by a blank line; ‘\r\n\r\n’,
signifies the division between header and content information, which is why

falkner.ch2.qxd 8/29/03 1:00 PM Page 81

82 JAVA SERVLETS

‘\r\n\r\n’ is being searched for. The actual search is trivial; a temporary array,
temp, that holds four characters is used to check the last four characters parsed.
After the entire header is parsed, it is echoed in the response, and the name of the
form-part is determined.

int startName = header.indexOf("name=\"");

int endName = header.indexOf("\"",startName+6);

if (startName == -1 || endName == -1) {

break;

}

String name = header.substring(startName+6, endName);

The form-part’s name is specified, if it was provided, using the following
format, name="name", where name is the name as specified in the HTML form
using the name attribute. The preceding code does nothing more than use the
string manipulation functions of the String class to determine the value of name.

After the name of the form-part is determined, the matching content is selec-
tively handled: if the name is “file”, the contents are saved as a file; any other name
is treated as a form parameter and echoed back in the response. There is nothing
special about the name “file”; it is an arbitrary name chosen so that
FileUpload.java knows to save the content as a file. The code used to save the file
is similar to the code used to parse header information, except this time the
delimiter is the form-part delimiter, not ‘\r\n\r\n’.

if (name.equals("file")) {

startName = header.indexOf("filename=\"");

endName = header.indexOf("\"",startName+10);

String filename =

header.substring(startName+10,endName);

ServletConfig config = getServletConfig();

ServletContext sc = config.getServletContext();

FileOutputStream fos =

new FileOutputStream(sc.getRealPath("/")+filename);

// write whole file to disk

int length = delimiter.length();

byte[] body = new byte[delimiter.length()];

for (int j=0;j<body.length-1;j++) {

body[j] = (byte)sis.read();

fos.write(body[j]);

}

int e = body.length-1;

falkner.ch2.qxd 8/29/03 1:00 PM Page 82

SERVLET CONFIGURATION 83

31. The ServletContext and ServletConfig objects, both discussed later in this chapter,
are required in order to save a file relative to the Web Application. Discussion of this is skipped right
now in favor of the proper explanation provided later.

i = sis.read();

for (;i!=-1;i=sis.read()) {

body[e] = (byte)i;

if (delimiter.equals(new String(body))) {

break;

}

fos.write(body[e]);

for(int k=0;k<body.length-1;k++) {

body[k] = body[k+1];

}

length++;

}

fos.flush();

fos.close();

out.println("<p>Saved File: "+filename+"</p>");

out.println("<p>Length: "+ length+"</p>");

}

The code first determines the name of the file being uploaded by searching
for a special string, filename="name", where name is the file’s name, in the header.
Next, a file is created in the /files directory of the Web Application31 with the
same name, and the content is saved.

In order to use the FileUpload Servlet, an HTML form, similar to multi-
partform.html, needs to be created. The form may include any number of input
elements of any type and in any order, but one file input must be present and the
input must be named “file”. Listing 2-14 is a simple example. Save the following
code as fileupload.html in the root directory of the jspbook Web Application.

Listing 2-14 fileupload.html

<html>

<head>

<title>Example HTML Form</title>

</head>

<body>

<p>Select a file to upload or

browse

falkner.ch2.qxd 8/29/03 1:00 PM Page 83

currently uploaded files.</p>

<form action="http://127.0.0.1/jspbook/FileUpload"

method="post" enctype="multipart/form-data">

File: <input type="file" name="file">

<input value="Upload File" type="submit">

</form>

</body>

</html>

The HTML form posts information to /FileUpload, the deployment of the
FileUpload Servlet. Browse to http://127.0.0.1/jspbook/fileupload.html to
try out the newly created HTML form. Figure 2-15 provides a browser rendering
of the form.

Fill in the form fields. The file field should be a file you wish to have on the
server; try something such as a picture. Upon clicking on the Submit button, the
form’s information, including the file, is uploaded to the FileUpload Servlet. The
FileUpload Servlet saves the file and displays a summary page, as shown in Figure
2-16.

Verify the file has been successfully uploaded by clicking on the link provided
to browse the /files directory of the jspbook Web Application. Tomcat displays
the default directory listing that includes the file just uploaded. To download the
file or any other file in the directory, simply click on the file’s listing.

In general, the UploadFile Servlet is demonstrating how a Servlet can parse
multi-part form data and save uploaded files. The code can be adapted for other sit-
uations where files need to be uploaded, perhaps an online photo album or a more
robust file sharing service. It should be noted that no restriction exists on what may

84 JAVA SERVLETS

Figure 2-15 Browser Rendering of fileupload.html

falkner.ch2.qxd 8/29/03 1:00 PM Page 84

be done with a file uploaded by an HTML form. In the FileUpload.java example, the
file is saved in the /files directory of the Web Application, but the file could just as
easily been saved elsewhere in the Web Application or not saved at all.

Using a File Upload API
As a good developer, it is helpful to understand exactly how the Servlet API handles
file uploads; however, in most every practical case you can do away with manually
parsing and handling a file upload. File uploads are nothing new, and several imple-
mentations of file upload API exist. A good, free, open source file upload API is the
Jakarta Commons File Upload API, http://jakarta.apache.org/commons/

fileupload/. Download the latest release of the code (it is a very small JAR) and put
the JAR file in the /WEB-INF/lib directory of the jspbook Web Application.

There are several reasons a file upload API can be helpful. A great reason is it
can greatly simplify your code. Consider the FileUpload Servlet in the previous
section. Using the Jakarta Commons File Upload API, the code can be reduced to
Listing 2-15.

Listing 2-15 FileUploadCommons.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.commons.fileupload.*;

import java.util.*;

SERVLET CONFIGURATION 85

Figure 2-16 Browser Rendering of the FileUpload Servlet’s Response

falkner.ch2.qxd 8/29/03 1:00 PM Page 85

public class FileUploadCommons extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.print("File upload success. <a href=\"/jspbook/files/");

out.print("\">Click here to browse through all uploaded ");

out.println("files.
");

ServletContext sc = getServletContext();

String path = sc.getRealPath("/files");

org.apache.commons.fileupload.FileUpload fu = new

org.apache.commons.fileupload.FileUpload();

fu.setSizeMax(-1);

fu.setRepositoryPath(path);

try {

List l = fu.parseRequest(request);

Iterator i = l.iterator();

while (i.hasNext()) {

FileItem fi = (FileItem)i.next();

fi.write(path+"/"+fi.getName());

}

}

catch (Exception e) {

throw new ServletException(e);

}

out.println("</html>");

}

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

doPost(request, response);

}

}

The code more closely follows good object-oriented programming by
abstracting request parsing logic. Instead of implementing RFC 1867 by hand, as
we did in FileUpload.java, the Jakarta Commons File Upload API handles all
the work.

86 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 86

ServletContext sc = getServletContext();

String path = sc.getRealPath("/files");

FileUpload fu = new FileUpload();

fu.setSizeMax(-1);

fu.setRepositoryPath("/root/todelete");

try {

List l = fu.parseRequest(request);

Iterator i = l.iterator();

while (i.hasNext()) {

FileItem fi = (FileItem)i.next();

fi.write(path+"/"+fi.getName());

}

}

catch (Exception e) {

throw new ServletException(e);

}

We will not discuss the file upload API in depth, but it should be easy to
follow what is going on. The FileUpload object abstracts all of the code respon-
sible for parsing multipart/form-data information. The only thing we need to
care about is limiting the size of file uploads and specifying a temporary directory
for the API to work with. The parseRequest() method takes a HttpServlet
Request and returns an array of files parsed from the input—what more could
you ask for?

In addition to simplifying code, there are a few other reasons that justify
using an existing file upload API. There are several nuances of file uploads that
need to be dealt with; multiple files can be uploaded, different encodings can be
used, and excessively large files might be uploaded. In short, the less code you
have to manage the better, and a good file upload API can easily take care of han-
dling multipart/form-data information. Certainly consider using an existing
file upload API when working with Servlets and file uploads. If anything, the
Jakarta Commons File Upload API provides an excellent starting point for han-
dling file uploads or creating a custom file upload API.

Request Delegation and Request Scope
Request delegation is a powerful feature of the Servlet API. A single client’s request
can pass through many Servlets and/or to any other resource in the Web
Application. The entire process is done completely on the server-side and, unlike
response redirection, does not require any action from a client or extra infor-
mation sent between the client and server. Request delegation is available through
the javax.servlet.RequestDispatcher object. An appropriate instance of a

SERVLET CONFIGURATION 87

falkner.ch2.qxd 8/29/03 1:00 PM Page 87

RequestDispatcher object is available by calling either of the following methods
of a ServletRequest object:

• getRequestDispatcher(java.lang.String path): The
getRequestDispatcher() method returns the RequestDispatcher
object for a given path. The path value may lead to any resource in
the Web Application and must start from the base directory, “/”.

• getNamedDispatcher(java.lang.String name): The
getNamedDispatcher() method returns the RequestDispatcher
object for the named Servlet. Valid names are defined by the
servlet-name elements of web.xml.

A RequestDispatcher object provides two methods for
including different resources and for forwarding a request to a dif-
ferent resource.

• forward(javax.servlet.ServletRequest,
javax.servlet.ServletResponse): The forward() method delegates a
request and response to the resource of the RequestDispatcher
object. A call to the forward() method may be used only if no
content has been previously sent to a client. No further data can be
sent to the client after the forward has completed.

• include(javax.servlet.ServletRequest,
javax.servlet.ServletResponse): The include() method works sim-
ilarly to forward() but has some restrictions. A Servlet can
include() any number of resources that can each generate
responses, but the resource is not allowed to set headers or commit
a response.

Request delegation is often used to break up a large Servlet into smaller, more
relevant parts. A simple case would include separating out a common HTML
header that all pages on a site share. The RequestDispacher object’s include()
method then provides a convenient method of including the header with the
Servlet it was separated from and in any other Servlet needing the header. Any
future changes to the header, and all the Servlets automatically reflect the change.
For now, an example of simple Servlet server-side includes will be held in
abeyance. JavaServer Pages32 provide a much more elegant solution to this
problem, and in practice Servlet request delegation is usually used for an entirely
different purpose.

88 JAVA SERVLETS

32. JSP is based directly off Servlets and is covered in full in Chapter 3.

falkner.ch2.qxd 8/29/03 1:00 PM Page 88

In addition to simple server-side includes, request delegation is a key part of
server-side Java implementations of popular design patterns. With respect to
Servlet and JSP, design patterns are commonly agreed-upon methods for
building Web Applications that are robust in functionality and easily main-
tainable. The topic of design is given a whole chapter to itself, Chapter 11, so no
direct attempt will be given to demonstrate it now. Instead, discussion will focus
on laying the foundation for Chapter 11 by explaining the new object scope that
request delegation introduces.

With Java there are well-defined scopes for variables that you should already
be familiar with. Local variables declared inside methods are by default only
available inside the scope of that method. Instance variables, declared in a class
but outside a method or constructor, are available to all methods in the Java class.
There are many other scopes too, but the point is that these scopes are helpful to
keep track of objects and help the JVM accurately garbage-collect memory. In
Servlets, all of the previous Java variable scopes still exist, but there are some new
scopes to be aware of. Request delegation introduces the request scope.

Request scope and the other scopes mentioned in this chapter are not some-
thing officially labeled by the Servlet specification33. The Servlet specification
only defines a set of methods that allow objects to be bound to and retrieved
from various containers (that are themselves objects) in the javax.servlet
package. Since an object bound in this manner is referenced by the container it
was bound to, the bound object is not destroyed until the reference is removed.
Hence, bound objects are in the same “scope” as the container they are bound to.
The HttpServletRequest object is such a container and includes such methods.
These methods can be used to bind, access, and remove objects to and from the
request scope that is shared by all Servlets to which a request is delegated. This
concept is important to understand and can easily be shown with an example.

An easy way to think of request scope is as a method of passing any object
between two or more Servlets and being assured the object goes out of scope (i.e.,
will be garbage-collected) after the last Servlet is done with it. More powerful
examples of this are provided in later chapters, but to help clarify the point now,
here are two Servlets that pass an object. Save the code in Listing 2-16 as
Servlet2Servlet.java in the /WEB-INF/classes/com/jspbook directory of the
jspbook Web Application.

SERVLET CONFIGURATION 89

33. Request scope and other scopes are officially recognized in the JSP specification

falkner.ch2.qxd 8/29/03 1:00 PM Page 89

Listing 2-16 Servlet2Servlet.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Servlet2Servlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

String param = request.getParameter("value");

if(param != null && !param.equals("")) {

request.setAttribute("value", param);

RequestDispatcher rd =

request.getRequestDispatcher("/Servlet2Servlet2");

rd.forward(request, response);

return;

}

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet #1</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>A form from Servlet #1</h1>");

out.println("<form>");

out.println("Enter a value to send to Servlet #2.");

out.println("<input name=\"value\">
");

out.print("<input type=\"submit\" ");

out.println("value=\"Send to Servlet #2\">");

out.println("</form>");

out.println("</body>");

out.println("</html>");

}

}

90 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 90

Deploy the preceding Servlet and map it to the /Servlet2Servlet URL
extension. Next, save the code in Listing 2-17 as Servlet2Servlet2.java in the
/WEB-INF/classes/com/jspbook directory of the jspbook Web Application.

Listing 2-17 Servlet2Servlet2.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Servlet2Servlet2 extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet #2</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Servlet #2</h1>");

String value = (String)request.getAttribute("value");

if(value != null && !value.equals("")) {

out.print("Servlet #1 passed a String object via ");

out.print("request scope. The value of the String is: ");

out.println(""+value+".");

}

else {

out.println("No value passed!");

}

out.println("</body>");

out.println("</html>");

}

}

Deploy the second Servlet and map it to the /Servlet2Servlet2 URL
extension. Reload the jspbook Web Application and the example is ready for use.
Browse to http://127.0.0.1/jspbook/Servlet2Servlet. Figure 2-17 shows
what the Servlet response looks like after being rendered by a Web browser. A

SERVLET CONFIGURATION 91

falkner.ch2.qxd 8/29/03 1:00 PM Page 91

simple HTML form is displayed asking for a value to pass to the second Servlet.
Type in a value and click on the button labeled Send to Servlet #2.

Information sent from the HTML form is sent straight back to the same
Servlet that made the form, Servlet2Servlet. The Servlet verifies a value was sent;
creates a new String object; places the String in request scope; and forwards the
request to the second Servlet, Servlet2Servlet2. Figure 2-18 shows what a browser
rendering of the second Servlet’s output looks like. The content on the page
shows the request was delegated to the second Servlet, but you can verify the
request was delegated by the first Servlet by looking at the URL. This technique
is extremely useful and discussed further in the design pattern chapter.

ServletContext
The javax.servlet.ServletContext interface represents a Servlet’s view of the
Web Application it belongs to. Through the ServletContext interface, a Servlet
can access raw input streams to Web Application resources, virtual directory
translation, a common mechanism for logging information, and an application
scope for binding objects. Individual container vendors provide specific imple-
mentations of ServletContext objects, but they all provide the same function-
ality defined by the ServletContext interface.

Initial Web Application Parameters
Previously in this chapter initial parameters for use with individual Servlets were
demonstrated. The same functionality can be used on an application-wide basis
to provide initial configuration that all Servlets have access to. Each Servlet has a

92 JAVA SERVLETS

Figure 2-17 Browser Rendering of Servlet2Servlet

falkner.ch2.qxd 8/29/03 1:00 PM Page 92

SERVLETCONTEXT 93

Figure 2-18 Browser Rendering of Request Delegated to Servlet2Servlet2

ServletConfig object accessible by the getServletConfig() method of the
Servlet. A ServletConfig object includes methods for getting initial parameters
for the particular Servlet, but it also includes the getServletContext() method
for accessing the appropriate ServletContext instance. A ServletContext object
implements similar getInitParam() and getInitParamNames() methods
demonstrated for ServletConfig. The difference is that these methods do not
access initial parameters for a particular Servlet, but rather parameters specified
for the entire Web Application.

Specifying application-wide initial parameters is done in a similar method as
with individual Servlets, but requires replacement of the init-param element
with the context-param element of Web.xml, and requires the tag be placed
outside any specific servlet tag. Occurrences of context-param tags should
appear before any Servlet tags. A helpful use of application context parameters is
specifying contact information for an application’s administration. Using the
current jspbook web.xml, an entry for this would be placed as follows.
...

<web-app>

<context-param>

<param-name>admin email</param-name>

<param-value>admin@jspbook.com</param-value>

</context-param>

<servlet>

<servlet-name>helloworld</servlet-name>

<servlet-class>com.jspbook.HelloWorld</servlet-class>

...

falkner.ch2.qxd 8/29/03 1:00 PM Page 93

We have yet to see how to properly handle errors and exceptions thrown from
Servlets, but this initial parameter is ideal for error handling Servlets. For now,
create a Servlet that assumes it will be responsible for handling errors that might
arise with the Web Application. In Chapter 4 we will show how to enhance this
Servlet to properly handle thrown exceptions, but for now pretend a mock error
was thrown. Save the code in Listing 2-18 as MockError.java in the /WEB-
INF/classes/com/jspbook directory of the jspbook Web Application.

Listing 2-18 MockError.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MockError extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>An Error Has Occurred!</title>");

out.println("</head>");

out.println("<body>");

ServletContext sc =

getServletConfig().getServletContext();

String adminEmail = sc.getInitParameter("admin email");

out.println("<h1>Error Page</h1>");

out.print("Sorry! An unexpected error has occurred.");

out.print("Please send an error report to "+adminEmail+".");

out.println("</body>");

out.println("</html>");

}

}

Reload the jspbook Web Application and browse to http://127.0.0.1/
jspbook/MockError to see the page with the context parameter information

94 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 94

included. Figure 2-19 shows what the MockError Servlet looks like when ren-
dered by a Web browser.

Notice the correct context parameter value was inserted in the error message.
This same parameter might also be used in other various Servlets as part of a
header or footer information. The point to understand is that this parameter can
be used throughout the entire Web Application while still being easily changed
when needed.

Application Scope
Complementing the request scope, a ServletContext instance allows for server-
side objects to be placed in an application-wide scope34. This type of scope is
ideal for placing resources that need to be used by many different parts of a Web
Application during any given time. The functionality is identical to that as
described for the HttpRequest object and relies on binding objects to a
ServletContext instance. For brevity this functionality will not be iterated over
again, but will be left for demonstration in later examples of the book.

It is important to note that an application scope should be used sparingly.
Objects bound to a ServletContext object will not be garbage collected until the
ServletContext is removed from use, usually when the Web Application is
turned off or restarted. Placing large amounts of unused objects in application
scope does tax a server’s resources and is not good practice. Another issue (that
will be gone into in more detail later) is that the ServletContext is not truly

SERVLETCONTEXT 95

Figure 2-19 Browser Rendering of the MockError Servlet

34. There is also a session scope that will be covered in detail in Chapter 9.

falkner.ch2.qxd 8/29/03 1:00 PM Page 95

application-wide. If the Web Application is running on multiple servers (say, a
Web farm), then there will be multiple ServletContext objects; any updates to
one ServletContext on one server in the farmer will not be replicated to the
other ServletContext instances.

Virtual Directory Translation
All the resources of a Web Application are abstracted to a virtual directory. This
directory starts with a root, “/”, and continues on with a virtual path to sub-
directories and resources. A client on the World Wide Web can access resources
of a Web Application by appending a specific path onto the end of the HTTP
address for the server the Web Application runs on. The address for reaching the
jspbook Web Application on your local computer is http://127.0.0.1.
Combining this address with any virtual path to a Web Application resource pro-
vides a valid URL for accessing the resource via HTTP.

A Web Application’s virtual directory is helpful because it allows fictitious
paths to link to real resources located in the Web Application. The only downside
to the functionality is that Web Application developers cannot directly use virtual
paths to obtain the location of a physical resource. To solve this problem, the
ServletContext object provides the following method:

getRealPath(java.lang.String path)35

The getRealPath() method returns a String containing the real path for a
given virtual path. The real path represents the location of the resource on the
computer running the Web Application.

To compliment the getRealPath() method, the ServletContext object also
defines methods for obtaining a listing of resources in a Web Application or for
an InputStream or URL connection to a particular resource:

• getResourcePaths(java.lang.String path): The getResourcePaths()
method returns a java.util.Set of all the resources in the
directory specified by the path. The path must start from the root of
the Web Application, “/”.

• getResourceAsStream(java.lang.String path): The
getResourceAsStream() method returns an instance of an

96 JAVA SERVLETS

35. Again, be aware that a Servlet container is free to load Web Applications from places other than
the file system (for example, directly from WAR files or from a database); in that case this method
may return null.

falkner.ch2.qxd 8/29/03 1:00 PM Page 96

InputStream to the physical resource of a Web Application. This
method should be used when a resource needs to be read verbatim
rather than processed by a Web Application.

• getResource(java.lang.String path): The getResource() method
returns a URL to the resource that is mapped to a specified path.
This method should be used when a resource needs to be read as it
would be displayed to a client.

It is important to remember that a Web Application is designed to be
portable. Hard coding file locations in Servlet code is not good practice because
it usually causes the Servlet not to work when deployed on a different server or if
the Web Application is run directly from a compressed WAR file. The correct
method for reading a resource from a Web Application is by using either the
getResource() or getResourceAsStream() methods. These two methods ensure
the Servlet will always obtain access to the desired resource even if the Web
Application is deployed on multiple servers or as a compressed WAR.

The most common and practical use for virtual directory translation is for
accessing important flat files packaged with a Web Application. This primarily
includes configuration files but is also used for miscellaneous purposes such as
simple flat file databases. An ideal example would be one involving a complex
Servlet using a custom configuration file; however, a complex Servlet like this has
yet to appear in this book. For a demonstration, a simple Servlet will be created
that reads raw files and resources from a Web Application (Listing 2-19). While
not necessary for most real-world uses, this Servlet is ideal for learning as it effec-
tively shows the source code of an entire Web Application.

Listing 2-19 ShowSource.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ShowSource extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

SERVLETCONTEXT 97

falkner.ch2.qxd 8/29/03 1:00 PM Page 97

PrintWriter out = response.getWriter();

// Get the ServletContext

ServletConfig config = getServletConfig();

ServletContext sc = config.getServletContext();

// Check to see if a resource was requested

String resource = request.getParameter("resource");

if (resource != null && !resource.equals("")) {

// Use getResourceAsStream() to properly get the file.

InputStream is = sc.getResourceAsStream(resource);

if (is != null) {

response.setContentType("text/plain");

StringWriter sw = new StringWriter();

for (int c = is.read(); c != -1; c = is.read()) {

sw.write(c);

}

out.print(sw.toString());

}

}

// Show the HTML form.

else {

response.setContentType("text/html");

out.println("<html>");

out.println("<head>");

out.println("<title>Source-Code Servlet</title>");

out.println("</head>");

out.println("<body>");

out.println("<form>");

out.println("Choose a resource to see the source.
");

out.println("<select name=\"resource\">");

// List all the resources in this Web Application

listFiles(sc, out, "/");

out.println("</select>
");

out.print("<input type=\"submit\" ");

out.println("value=\"Show Source\">");

out.println("</body>");

out.println("</html>");

}

}

// Recursively list all resources in Web App

void listFiles(ServletContext sc, PrintWriter out,

98 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 98

String base){

Set set = sc.getResourcePaths(base);

Iterator i = set.iterator();

while (i.hasNext()) {

String s = (String)i.next();

if (s.endsWith("/")) {

listFiles(sc, out, s);

}

else {

out.print("<option value=\""+s);

out.println("\">"+s+"</option>");

}

}

}

}

Save Listing 2-15 as ShowSource.java in the /WEB-INF/classes/

com/jspbook directory of the jspbook Web Application. Compile the code and
deploy the Servlet to the /ShowSource path extension of the jspbook Web
Application, and after reloading the Web Application, browse to http://127.
0.0.1/jspbook/ShowSource. Figure 2-20 shows what a browser rendering of the
Servlet’s output looks like.

The Servlet uses the getResourcePaths() method to obtain a listing of all the
files in the Web Application. After selecting a file, the Servlet uses the get
ResourceAsStream() method to obtain an InputStream object for reading and
displaying the source code of the resource.

SERVLETCONTEXT 99

Figure 2-20 Browser Rendering of the ShowSource Servlet

falkner.ch2.qxd 8/29/03 1:00 PM Page 99

Application-Wide Logging
A nice but not commonly used feature of Servlets is Web Application-wide
logging. A ServletContext object provides a common place all Servlets in a Web
Application can use to log arbitrary information and stack traces for thrown
exceptions. The advantage of this functionality is that it consolidates the often
odd mix of custom code that gets used for logging errors and debugging infor-
mation. The following two methods are available for logging information via a
Web Application’s ServletContext:

• log(java.lang.String msg): The log() method writes the specified
string to a Servlet log file or log repository. The Servlet API only
specifies a ServletContext object implement these methods. No
specific direction is given as to where the logging information is to
be saved and or displayed. Logged information is sent to
System.out or to a log file for the container.

• log(java.lang.String message, java.lang.Throwable throwable):
This method writes both the given message and the stack trace for
the Throwable exception passed in as parameters. The message is
intended to be a short explanation of the exception.

With J2SDK 1.4 the Servlet logging feature is not as helpful as it has previ-
ously been. The main advantage of the two log() methods is that they provided
a common place to send information regarding the Web Application. Most often,
as is with Tomcat, a container also allowed for a Servlet developer to write a
custom class to handle information logged by a Web Application. This function-
ality makes it easy to customize how and where Servlet logging information goes.
The downside to using the ServletContext log() methods is that only code that
has access to a ServletContext object can easily log information. Non-Servlet
classes require a creative hack to log information in the same manner. A better
and more commonly used solution for Web Application logging is to create a
custom set of API that any class can access and use. The idea is nothing new and
can be found in popularized projects such as Log4j, http://jakarta.apache.
org/log4j or with the J2SDK 1.4 standard logging API, the java.util.logging
package. Both of these solutions should be preferred versus the Servlet API
logging mechanism when robust logging is required.

In lieu of demonstrating the two ServletContext log() methods, a brief
explanation and example of the java.util.logging package is given in Chapter 4.
A flexible and consolidated mechanism for logging information is needed in any

100 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 100

serious project. The Servlet API logging mechanism does work for simple cases, but
this book encourages the use of a more robust logging API.

Distributed Environments
In most cases a ServletContext object can be considered as a reference to the
entire Web Application. This holds true for single machine servers running one
JVM for the Web Application. However, J2EE is not designed to be restricted for
use on a single server. A full J2EE server, not just a container supporting Servlets
and JSP, allows for multiple servers to manage and share the burden of a large-
scale Web Application. These types of applications are largely outside the scope of
this book, but it should be noted that application scope and initial parameters will
not be the same in a distributed environment. Different servers and JVM instances
usually do not share direct access to each other’s information. If developing for a
group of servers, do not assume that the ServletContext object will be the same
for every request. This topic is discussed further in later chapters of the book.

Temporary Directory
One subtle but incredibly helpful feature of the Servlet specification is the
requirement of a temporary work directory that Servlets and other classes in a
Web Application can use to store information. The exact location of the tem-
porary directory is not specified, but all containers are responsible for creating a
temporary directory and setting a java.io.File object, which describes that
directory as the javax.servlet.context.tempdir ServletContext attribute.
Information stored in this directory is only required to persist while the Web
Application is running, and information stored in the temporary directory will
always be hidden from other Web Applications running on the same server.

The container-defined temporary directory is helpful for one really
important reason: Web Applications can be run directly from a WAR; there is no
guarantee that you can rely on using ServletContext getRealPath() to always
work. To solve the problem, all Web Applications have access to at least one con-
venient place where temporary information can be stored, and that place is pro-
vided using the javax.servlet.context.tempdir attribute. There are a few good
use cases where the javax.servlet.context.tempdir attribute is needed. In any
situation where a Web Application is caching content locally (not in memory),
the javax.servlet.context.tempdir attribute temporary directory is the ideal
place to store the cache. Additionally, the temporary directory provides a place to
temporarily store file uploads or any other information a Web Application is
working with.

SERVLETCONTEXT 101

falkner.ch2.qxd 8/29/03 1:00 PM Page 101

In practice, it is usually safe to assume your Web Application will be deployed
outside of a WAR, especially when you have control over the deployment;
however, in cases where a Web Application is intended for general use, the pro-
vided temporary directory should always be used to ensure maximum portability
of your code. Later on in the book some use cases that deal with the temporary
directory are provided; if you took a look at either of the previously mentioned
file-upload API, you would have noticed they both take advantage of the tem-
porary directory.

Servlet Event Listeners
The final topic to discuss in this chapter is Servlet event listeners. In many situa-
tions it is desirable to be notified of container-managed life cycle events. An easy
example to think of is knowing when the container initializes a Web Application
and when a Web Application is removed from use. Knowing this information is
helpful because you may have code that relies on it, perhaps a database that needs
to be loaded at startup and saved at shutdown. Another good example is keeping
track of the number of concurrent clients using a Web Application. This func-
tionality can be done with what you currently know of Servlets; however, it can
much more easily be done using a listener that waits for a client to start a new
session. The greater point being presented here is that a container can be used to
notify a Web Application of important events, and Servlet event listeners are the
mechanism.

All of the Servlet event listeners are defined by interfaces. There are event lis-
tener interfaces for all of the important events related to a Web Application and
Servlets. In order to be notified of events, a custom class, which implements the
correct listener interface, needs to be coded and the listener class needs to be
deployed via web.xml. All of the Servlet event listeners will be mentioned now;
however, a few of the event listeners will not make complete sense until the later
chapters of the book. In general, all of the event listeners work the same way so
this fact is fine as long as at least one good example is provided here.

The interfaces for event listeners correspond to request life cycle events,
request attribute binding, Web Application life cycle events, Web Application
attribute binding, session36 life cycle events, session attribute binding, and session
serialization, and appear, respectively, as follows:

102 JAVA SERVLETS

36. As described by this chapter, HTTP is a stateless protocol. However, it is often necessary to
maintain state for the duration of all of a particular client’s requests. A mechanism exists for this, and
the mechanism is commonly called session management. See Chapter 9 for a detailed discussion on the
topic.

falkner.ch2.qxd 8/29/03 1:00 PM Page 102

• javax.servlet.ServletRequestListener

• javax.servlet.ServletRequestAttributeListener

• javax.servlet.ServletContextListener

• javax.servlet.ServletContextAttributeListener

• javax.servlet.http.HttpSessionListener

• javax.servlet.http.HttpSessionAttributeListener

• javax.servlet.http.HttpSessionAttributeListener

Use of each listener is intuitive given an implementation of one and an
example deployment descriptor. All of the listener interfaces define events for
either the creation and destruction of an object or for notification of the binding
or unbinding of an object to a particular scope.

As an example, let us create a listener that tracks the number of concurrent
users. We could create a simple hit counter, by tracking how many requests are
created; however, the previous hit counter examples in this chapter do a fine job
providing the same functionality. Tracking the number of concurrent users is
something that we have yet to see, and allows the introduction of session scope. For
now, think of sessions as being created only once per unique client—regardless if
the same person visits the site more than once. This is different from requests,
which are created every time a client requests a resource. The listener interface we
are going to implement is HttpSessionListener. It provides notification of two
events: session creation and session destruction. In order to keep track of con-
current users, we will keep a static count variable that will increase incrementally
when a session is created and decrease when a session is destroyed.

The physical methods required by the HttpSessionListener interface are as
follows:

• void sessionCreated(HttpSessionEvent evt): The method invoked
when a session is created by the container. This method will almost
always be invoked only once per a unique client.

• void sessionDestroyed(HttpSessionEvent evt): The method
invoked when a session is destroyed by the container. This method
will be invoked when a unique client’s session times out—that is,
after they fail to revisit the Web site for a given period of time,
usually 15 minutes.

Listing 2-20 provides our listener class’s code, implementing the preceding
two methods. Save the code as ConcurrentUserTracker.java in the /WEB-INF/
classes/com/jspbook directory of the jspbook Web Application.

SERVLET EVENT LISTENERS 103

falkner.ch2.qxd 8/29/03 1:00 PM Page 103

Listing 2-20 ConcurrentUserTracker.java

package com.jspbook;

import javax.servlet.*;

import javax.servlet.http.*;

public class ConcurrentUserTracker implements HttpSessionListener {

static int users = 0;

public void sessionCreated(HttpSessionEvent e) {

users++;

}

public void sessionDestroyed(HttpSessionEvent e) {

users--;

}

public static int getConcurrentUsers() {

return users;

}

}

The listener’s methods are intuitive and the logic is simple. The class is trivial
to create because the container is managing all the hard parts: handling HTTP
requests, trying to keep a session, and keeping a timer in order to successfully
time-out unused sessions.

Deploy the listener by adding the entry in Listing 2-21 to web.xml. Add the
entry after the starting webapp element but before any Servlet deployments.

Listing 2-21 Deployment of the Concurrent User Listener

<listener>

<listener-class>

com.jspbook.ConcurrentUserTracker

</listener-class>

</listener>

Notice that the deployment does not specify what type of listener interface is
being used. This type of information is not needed because the container can
figure it out; therefore, deployment of all the different listeners is similar to the
above code. Create a listener element with a child listener-class element that
has the name of the listener class.

104 JAVA SERVLETS

falkner.ch2.qxd 8/29/03 1:00 PM Page 104

One more addition is required before the concurrent user example can be
tested. The concurrent user tracker currently doesn’t output information about
concurrent users! Let us create a Servlet that uses the static getConcurrent
Users() method to display the number of concurrent users. Save the code in
Listing 2-22 as DisplayUsers.java in the /WEB-INF/com/jspbook directory of
the jspbook Web Application.

Listing 2-22 DisplayUsers.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DisplayUsers extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

request.getSession();

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.print("Users:");

out.print(ConcurrentUserTracker.getConcurrentUsers());

out.println("</html>");

}

}

Deploy the Servlet to the /DisplayUsers URL mapping. Compile both
ConcurrentUserTracker.java and DisplayUser.java and reload the jspbook
Web Application for the changes to take effect. Test the new functionality out by
browsing to http://127.0.0.1/jspbook/DisplayUsers. An HTML page
appears describing how many users are currently using the Web Application. A
browser rendering would be provided; however, the page literally displays
nothing more than the text “Users:” followed by the number of current users.

When browsing to the Servlet, it should say one user is currently using the
Web Application. If you refresh the page, it will still say only one user is using
the Web Application. Try opening a second Web browser and you should see

SERVLET EVENT LISTENERS 105

falkner.ch2.qxd 8/29/03 1:00 PM Page 105

that the page states two people are using the Web Application37. Upon closing
your Web browser, the counter will not go down, but after not visiting the Web
Application for 15 minutes, it will. You can test this out by opening two
browsers (to create two concurrent users) and only using one of the browsers
for the next 15 minutes. Eventually, the unused browser’s session will time-out
and the Web Application will report only one concurrent user. In real-world
use, odds are that several independent people will be using a Web Application
at any given time. In this situation you don’t need to do anything but visit the
DisplayUsers Servlet to see the current amount of concurrent users.

The concurrent user tracker is a handy piece of code; however, the greater
point to realize is how Servlet event listeners can be coded and deployed for use.
Event listeners in general are intuitive to use; the hard part is figuring out when
and how they are best used, which is hard to fully explain in this chapter. In later
chapters of the book, event listeners will be used to solve various problems and
complement code. Keep an eye out for them.

Summary
In this chapter the Servlet API was introduced, and focus was placed specifically
on Servlets. Servlets are the fundamental building block of server-side Java. A
Servlet is highly scalable and easily outperforms traditional CGI by means of a
simple three-phase life cycle: initialization, service, and destruction. Commonly,
the term Servlets actually refers to HTTP Servlets used on the World Wide Web.
The HttpServlet class is designed especially for this user and greatly simplifies
server-side Java support for HTTP.

The basics of the Servlet API consist of objects that represent a client’s
request, HttpServletRequest, the server’s response, HttpServletResponse, a
session for connecting separate requests, HttpSession, and an entire Web
Application, ServletContext. Each of these objects provides a complete set of
methods for accessing and manipulating related information. These objects also
introduce two new scopes for Servlet developers to use: request and application.
Binding an object to these various scopes allows a Servlet developer to share an
object between multiple Servlets and requests for extended periods of time. What

106 JAVA SERVLETS

37. This won’t always appear to work on some browsers, namely Internet Explorer, due to browser
tricks designed to be user-friendly. If you can open two complete different browsers, such as Mozilla
and Internet Explorer, the Web Application will always report two concurrent users. If you are using
Internet Explorer, make sure you open a new copy of the browser and not simply a new browser
window.

falkner.ch2.qxd 8/29/03 1:00 PM Page 106

was only briefly mentioned is that a third, commonly used scope, session, is also
available. Session scope introduces several issues which merit a complete
chapter’s worth of information. Chapter 9 fully explains session scope and the
issues relating to it.

Overall, this chapter is a reference to creating and using Servlets. Chapter 3
continues discussion of Servlets by introducing a complementary technology:
JavaServer Pages.

SUMMARY 107

falkner.ch2.qxd 8/29/03 1:00 PM Page 107

falkner.ch2.qxd 8/29/03 1:00 PM Page 108

Chapter 3

JavaServer Pages

JavaServer Pages (JSP) and Servlets are complementary technologies for pro-
ducing dynamic Web pages via Java. While Servlets are the foundation for server-
side Java, they are not always the most efficient solution with respect to
development time. Coding, deploying, and debugging a Servlet can be a tedious
task. Fixing a simple grammar or markup mistake requires wading through
print() and println() calls, recompiling the Servlet, and reloading a Web
Application. Making a grammar or markup mistake is not hard, and the problem
is compounded in complex Servlets. JSP complements Servlets by helping solve
this problem and simplifying Servlet development.

This chapter discusses the following topics:

• An explanation of JSP and why you would want to use the tech-
nology.

• The JSP life cycle—that is, how a container manages a JSP.

• Examination of the similarities and differences between JSP and
Servlets.

• An introduction to JSP syntax and semantics.

• Configuring JSP via the Web Application Deployment Descriptor,
web.xml.

• An explanation of the JSP implicit objects and why implicit objects
are helpful.

• How to use the alternative JSP XML syntax.

As with Chapter 2, do read this chapter straight through. Chapters 2 and 3
describe the basic functionality on which all of the other chapters depend.
Chapter 2 introduced Servlets and demonstrated several practical uses of them.
This chapter complements Chapter 2 by providing a similar discussion on
JavaServer Pages.

109

falkner.ch3.qxd 8/21/03 7:06 PM Page 109

110 JAVASERVER PAGES

JSP 2.0 Specification
The first JavaServer Pages specification was released in 1999. Originally JSP was
modeled after other server-side template technologies to provide a simple
method of embedding dynamic code with static markup. When a request is
made for the content of a JSP, a container interprets the JSP, executes any
embedded code, and sends the results in a response. At the time this type of
functionality was nothing terribly new, but it was and still is a helpful
enhancement to Servlets.

JSP has been revised several times since the original release, each adding
functionality, and is currently in version 2.0. The JSP specifications are developed
alongside the Servlet specifications and can be found on Sun Microsystems’
JavaServer Pages product information page, http://java.sun.com/products/
jsp.

The functionality defined by the JSP 2.0 specifications can be broken down
as follows:

JSP
The JSP specifications define the basic syntax and semantics of a JavaServer Page.
A basic JavaServer Page consists of plain text and markup and can optionally take
advantage of embedded scripts and other functionality for creating dynamic
content.

JavaBeans
JavaBeans are not defined by the JSP specifications, but JSP does provide support
for easily using and manipulating them. Often objects used on the server-side of
a Web Application are in the form of what is commonly called a JavaBean.

Custom Tags and JSP Fragments
JSP provides a mechanism for linking what would normally be static markup to
custom Java code. This mechanism is arguably one of the strong points of JSP
and can be used in place of or to complement embedded scripts of Java code.

Expression Language
JSP includes a mechanism for defining dynamic attributes for custom tags. Any
scripting language can be used for this purpose; usually Java is implemented, but
the JSP specification defines a custom expression language designed specifically

falkner.ch3.qxd 8/21/03 7:06 PM Page 110

for the task. Often the JSP EL is a much simpler and more flexible solution, espe-
cially when combined with JSP design patterns that do not use embedded scripts.

Discussing the basics of JSP is the focus of this chapter. JavaBeans, Custom
Tags, and the JSP Expression Language are all fully discussed in later chapters
after a proper foundation of JSP is established.

JSP Life Cycle
Much like Servlets, understanding JSP requires understanding the simple life
cycle that JSP follows. JSP follows a three-phase life cycle: initialization, service,
and destruction, as shown in Figure 3-1. This life cycle should seem familiar and
is identical to the one described for Servlets in Chapter 2.

While a JSP does follow the Servlet life cycle, the methods have different
names. Initialization corresponds to the jspInit() method, service corresponds
to the _jspService() method, and destruction corresponds to the jspDestroy()
method. The three phases are all used the same as a Servlet and allow a JSP to
load resources, provide service to multiple client requests, and destroy loaded
resources when the JSP is taken out of service.

JSP is designed specifically to simplify the task of creating text producing
HttpServlet objects and does so by eliminating all the redundant parts of coding
a Servlet. Unlike with Servlets there is no distinction between a normal JSP and
one meant for use with HTTP. All JSP are designed to be used with HTTP and to
generate dynamic content for the World Wide Web. The single JSP
_jspService() method is also responsible for generating responses to all seven
of the HTTP methods. For most practical purposes a JSP developer does not

JSP LIFE CYCLE 111

jspInit()
(Load Resources)

_jspService()
(Accept Requests)

jspDestroy()
(Unload Resources)

Request
Response

JavaServer Page

Figure 3-1 JSP Life Cycle

falkner.ch3.qxd 8/21/03 7:06 PM Page 111

need to know anything about HTTP, nor anything more than basic Java to code
a dynamic JSP.

The Difference Between Servlets and JSP
A clear and important distinction to make about JSP is that coding one is nothing
like coding a Servlet. From what this chapter has explained, it might appear that
JSP is just a simple version of Servlets. In many respects JSP is in fact a simple
method of creating a text-producing Servlet; however, do not be fooled into
thinking this mindset is always true. As the chapter progresses, it will be clear that
JSP and Servlets are two very distinct technologies. Later, after custom tags are
introduced, the degree of separation between the two will seem even larger. The
use of JSP for easily making a Servlet really only applies in the simplest of cases.

To show how vastly different the code for a JSP can be from a Servlet, Listing
3-1 displays the code for the JSP equivalent of the HelloWorld Servlet (Listing 2-
1 that appeared in Chapter 2).

Listing 3-1 HelloWorld.jsp

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

They are quite different! You’ll recall the code for HelloWorld.java and
notice the two look nothing alike. The code for the JSP is actually identical to the
text generated by the HelloWorld Servlet, not the source code. Authoring an
HTML-generating JSP is as easy as just authoring the HTML. Compared to using
print() and println() methods in Servlets, the JSP approach is obviously easier.
This is why simple JSP are usually considered a quick method of creating text-
producing Servlets.

Deploying a JSP is also simpler; a Web Application automatically deploys any
JSP to a URL extension that matches the name of the JSP. Test out HelloWorld.jsp
by saving it in the base directory of the jspbook Web Application then browsing to
http://127.0.0.1/jspbook/HelloWorld.jsp. Figure 3-2 shows the output of
HelloWorld.jsp as rendered by a Web browser, identical to the HTML generated
by the HelloWorld Servlet, Figure 2-6.

112 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 112

From looking at the results of the example, it certainly does appear Hello
World.jsp is a simple form of HelloWorld.java. What is not shown, but is very
important to understand, is that HelloWorld.jsp is also actually compiled into
equivalent Servlet code. This is done in what is called the translation phase of JSP
deployment and is done automatically by a container. JSP translation both is and
is not something of critical importance for a JSP developer to be aware of. JSP
translation to Servlet source code is important because it explains exactly how a
JSP becomes Java code. While it varies slightly from container to container, all
containers must implement the same JSP life cycle events. Understanding these
life cycle methods helps a JSP developer keep code efficient and thread-safe.
However, JSP translation is not of critical importance because it is always done
automatically by a container. Understanding what a container will do during the
translation phase is good enough to code JSP. Keeping track of the generated
Servlet source code is not a task a JSP developer ever has to do.

JSP translated to Servlet code can be found by looking in the right place for
a particular container. Tomcat stores this code in the /work directory of the
Tomcat installation. Generated code is never pretty, nor does it always have the
same name. Listing 3-2 was taken from HelloWorld$jsp.java in the /work/
localhost/jspbook directory. It is the Servlet code generated for HelloWorld.
jsp that Tomcat automatically compiled and deployed.

Listing 3-2 Tomcat-Generated Servlet Code for HelloWorld.jsp

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

THE DIFFERENCE BETWEEN SERVLETS AND JSP 113

Figure 3-2 Browser Rendering of HelloWorld.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 113

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

public class HelloWorld$jsp extends HttpJspBase {

static {

}

public HelloWorld$jsp() {

}

private static boolean _jspx_inited = false;

public final void _jspx_init() throws

org.apache.jasper.runtime.JspException {

}

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

synchronized (this) {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

}

}

_jspxFactory = JspFactory.getDefaultFactory();

114 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 114

response.setContentType("text/html;charset=ISO-

8859-1");

pageContext = _jspxFactory.getPageContext(this, request,

response,

"", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin

[file="/HelloWorld.jsp";from=(0,0);to=(8,0)]

out.write("<html>\r\n<head>\r\n<title>Hello

World!</title>\r\n</head>\r\n<body>\r\n<h1>Hello

World!</h1>\r\n</body>\r\n</html>\r\n");

// end

} catch (Throwable t) {

if (out != null && out.getBufferSize() != 0)

out.clearBuffer();

if (pageContext != null)

pageContext.handlePageException(t);

} finally {

if (_jspxFactory != null)

_jspxFactory.releasePageContext(pageContext);

}

}

}

Do not bother trying to read through and understand the generated code.
The important point to understand is that a container handles a JSP as a Servlet
but does so behind the scenes. This ties directly back to the greater point that JSP
are really just Servlets. The difference between the two technologies is not in the
life cycles or how a container manages them at runtime. The difference between
Servlets and JSP is the syntax they offer for creating the same functionality. With
JSP it is almost always simpler to create text-producing Servlets, but normal
Servlets are still best suited for sending raw bytes to a client or when complete
control is needed over Java source code.

THE DIFFERENCE BETWEEN SERVLETS AND JSP 115

falkner.ch3.qxd 8/21/03 7:06 PM Page 115

JSP Syntax and Semantics
JSP is not governed by the syntax and semantics defined by the Java 2 specifica-
tions. Translated JSP source code is just Java, but when you author a JSP, you abide
instead by the rules laid out in the JSP specification. With each release of the JSP
specification, these rules grow, and they cannot be easily summed by a few sen-
tences. The majority of this chapter focuses on explaining the current syntax and
semantics of JSP. Much of the functionality found in JSP is taken directly from the
underlying Servlet API which was already covered in Chapter 2. Expect to see lots
of code examples demonstrating syntax, while repetitious semantics are only
skimmed with a reference to the full explanation previously given in Chapter 2.

Elements and Template Data
Everything in a JSP is broken down into two generic categories called elements
and template data. Elements are dynamic portions of a JSP. Template data are the
static bits of text between. Template data are easily categorized as they are all the
text arbitrarily placed on a JSP and meant to be directly sent to a client. Elements
are easily categorized as custom actions, tags, and the content allowed to be in
between as defined by the JSP specifications.

The concept of elements and template data is important to understand as it
dictates when, where, and what text will do when placed in a JSP. This chapter has
yet to introduce any elements, but it has shown a use of template text. The
HelloWorld.jsp example was entirely template text. The corresponding Servlet
generated from HelloWorld.jsp treated this text as static content and sent it as
the content of a response. While HelloWorld.jsp only had one big chunk of tem-
plate text, more complex JSP follow the same rule. Any chunk of template text is
taken and sent directly to a client as it appears on the JSP. Elements on the other
hand are not sent directly to a client. An element is interpreted by a JSP container
and defines special actions that should be taken when generating a response.

Template text does not change, and this little section defines it in total.
Elements are what make JSP dynamic, and elements are further explained
throughout the rest of the chapter. Elements can be broken down into three dif-
ferent categories: scripting elements, directives, and actions. The following self-
named sections explain these elements.

Two Types of Syntax
JSP containers are required to support two different formats of JSP syntax:
normal and XML-compatible. The normal JSP syntax is a syntax designed to be

116 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 116

JSP SYNTAX AND SEMANTICS 117

1. eXtensible Markup Language, http://www.w3.org/XML

easy to author. The XML-compatible JSP syntax takes the normal JSP syntax and
modifies it to be XML-compliant1. Both syntaxes provide the same functionality,
but the XML-compatible syntax is intended to be more easily used by devel-
opment tools. In the examples of this book the normal JSP syntax is preferred as
it is easily read, understood, and will be familiar if you have used older versions
of JSP.

Just because the XML syntax will not be appearing much in this book’s
examples does not mean it is the lesser of the two syntaxes. The JSP XML syntax
introduced in the JSP 1.2 specification, from a developer’s perspective, is cer-
tainly a hassle to use compared to the regular syntax. This is largely due to the
complexity and strict enforcement of syntax the JSP 1.2 XML syntax had. JSP 2.0
remedies the problem by providing a much more flexible XML syntax. Later on
in the chapter this new, more flexible XML syntax is further explained.

Scripting Elements
The simplest method of making a JSP dynamic is by directly embedding bits of
Java code between blocks of template text by use of scripting elements. In theory
JSP does not limit scripting elements to only those containing Java code, but the
specification only talks about Java as the scripting language, and every container
by default has to support Java. Examples in this book use Java as a scripting lan-
guage. There are three different types of scripting elements available for use in
JSP: scriptlets, expressions, and declarations.

Scriptlets
Scriptlets provide a method for directly inserting bits of Java code between
chunks of template text. A scriptlet is defined with a start ,<%, an end, %>, with
code between. Using Java, the script is identical to normal Java code but without
needing a class declaration or any methods. Scriptlets are great for providing low-
level functionality such as iteration, loops, and conditional statements, but they
also provide a method for embedding complex chunks of code within a JSP.

For many reasons complex scriptlets should be avoided. This is mainly due to
the fact that the more scriptlets are used the harder it is to understand and
maintain a JSP. In this chapter most of the scriptlet examples are purposely kept
simple. This aids in directly demonstrating the core functionality of JSP, but it is
also done so that examples do not appear to encourage heavy use of scriptlets. As

falkner.ch3.qxd 8/21/03 7:06 PM Page 117

an introduction, Listing 3-3 provides a simple JSP that loops to produce multiple
lines of text. Looping is accomplished the same as in Java but by placing the
equivalent Java code inside scriptlet elements.

Listing 3-3 Loop.jsp

<html>

<head>

<title>Loop Example</title>

</head>

<body>

<% for (int i=0; i<5;i++) { %>

Repeated 5 Times.

<% } %>

</body>

</html>

Save Loop.jsp in the base directory of the jspbook Web Application and
browse to http://127.0.0.1/jspbook/Loop.jsp. The page shows up with the
statement, “Repeated 5 Times.”, repeated five times. Figure 3-3 shows what a
browser rendering of the output looks like.

It is important to note that the contents of the scriptlet did not get sent to a
client. Only the results of the scriptlet did. This is important because it shows that
scriptlets are interpreted by a container and that code inside a scriptlet is not by
default shared with visitors of the JSP.

A JSP may contain as many scriptlets as are needed, but caution should be
taken not to overuse scriptlets. Scriptlets make a JSP very hard to maintain and
are not easily documented; for example, tools like javadoc do not work with JSP.

118 JAVASERVER PAGES

Figure 3-3 Browser Rendering of Loop.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 118

Expressions
Expressions provide an easy method of sending out dynamic strings to a client.
An expression must have a start, <%=, end, %>, and an expression between. An
expression element differs in syntax from a scriptlet by an equal sign that must
appear immediately after the start. Expressions always send a string of text to a
client, but the object produced as a result of an expression does not have to
always end up as an instance of a String object. Any object left as the result of an
expression automatically has its toString() method called to determine the
value of the expression. If the result of the expression is a primitive, the prim-
itive’s value represented as a string is used.

Combined with scriptlets, expressions are useful for many different purposes.
A good example is using a scriptlet that is combined with an expression to
provide a method of iterating over a collection of values. The scriptlet provides a
loop, while expressions and static content are used to send information in a
response. Iteration.jsp (Listing 3-4) provides an example of this along with a
demonstration of passing a non-String object as the result of an expression.

Listing 3-4 Iteration.jsp

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

<%

String[] strings = new String[4];

strings[0] = "Alpha";

strings[1] = "in";

strings[2] = "between";

strings[3] = "Omega";

for (int i=0; i<strings.length;i++) { %>

String[<%= i %>] = <%= strings[i] %>

<% } %>

</body>

</html>

Save Iteration.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/Iteration.jsp. The page displays a
list of an iteration through all of the values of the array. Figure 3-4 shows a
browser rendering of the output sent by Iteration.jsp.

JSP SYNTAX AND SEMANTICS 119

falkner.ch3.qxd 8/21/03 7:06 PM Page 119

Declarations
Declarations are the third and final scripting element available for use in JSP. A
declaration is used like a scriptlet to embed code in a JSP, but code embedded by
a declaration appears outside of the _jspService() method. For this reason code
embedded in a declaration can be used to declare new methods and global class
variables, but caution should be taken because code in a declaration is not
thread-safe, unless made so by the writer of that code.

Listing 3-5 is a JSP designed to keep a page counter of how many times it has
been visited. The JSP accomplishes this by declaring a class-wide variable in a
declaration, using a scriptlet to increment the variable on page visits, and an
expression to show the variable’s value.

Listing 3-5 PageCounter.jsp

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

<html>

<head>

<title>PageCounter.jsp</title>

</head>

<body>

<% addCount(); %>

This page has been visited <%= pageCount %> times.

</body>

</html>

120 JAVASERVER PAGES

Figure 3-4 Iteration.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 120

Save PageCounter.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/PageCounter.jsp. Refresh the
browser a few times to watch the JSP count how many times it has been visited.
Figure 3-5 shows a browser rendering of the output after visiting the JSP 6 times.

Using scriptlets, expressions, and declarations most anything can be created
using JSP. An analogy to Servlets would be: scriplets are code placed inside a
service method, expressions are print() method calls, and declarations are code
placed globally for a class to use. After the brief explanation above it should be
fairly straightforward to start coding using sciptlets, expressions, and declara-
tions, but it is still helpful to understand what the three different scripting ele-
ments translate to in a Java code.

Listing 3-6 is the code Tomcat generated from PageCounter.jsp. It contains
the translation of all three of the scripting elements. The lines of importance are
highlighted with an asterisk.

Listing 3-6 PageCounter$jsp.java

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

public class PageCounter$jsp extends HttpJspBase {

// begin [file="/PageCounter.jsp";from=(0,3);to=(4,0)]

JSP SYNTAX AND SEMANTICS 121

Figure 3-5 Browser Rendering of PageCounter.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 121

122 JAVASERVER PAGES

int pageCount = 0;

void addCount() {

pageCount++;

}

// end

static {

}

public PageCounter$jsp() {

}

private static boolean _jspx_inited = false;

public final void _jspx_init() throws

org.apache.jasper.runtime.JspException {

}

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

synchronized (this) {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

}

}

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=ISO-

8859-1");

falkner.ch3.qxd 8/21/03 7:06 PM Page 122

JSP SYNTAX AND SEMANTICS 123

pageContext = _jspxFactory.getPageContext(this, request,

response,

"", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin

[file="/PageCounter.jsp";from=(4,2);to=(10,0)]

out.write("\r\n<html>\r\n<head>\r\n<title>PageCounter.jsp</title>\r\

n</head>\r\n<body>\r\n");

// end

// begin

[file="/PageCounter.jsp";from=(10,2);to=(10,15)]

addCount();

// end

// HTML // begin

[file="/PageCounter.jsp";from=(10,17);to=(11,27)]

out.write("\r\nThis page has been visited ");

// end

// begin

[file="/PageCounter.jsp";from=(11,30);to=(11,41)]

out.print(pageCount);

// end

// HTML // begin

[file="/PageCounter.jsp";from=(11,43);to=(14,0)]

out.write(" times.\r\n</body>\r\n</html>\r\n");

// end

} catch (Throwable t) {

if (out != null && out.getBufferSize() != 0)

out.clearBuffer();

if (pageContext != null)

pageContext.handlePageException(t);

} finally {

if (_jspxFactory != null)

falkner.ch3.qxd 8/21/03 7:06 PM Page 123

124 JAVASERVER PAGES

2. Except in the case of debugging, where it is often useful to see the JSP and the generated Servlet
side-by-side.

_jspxFactory.releasePageContext(pageContext);

}

}

}

Thankfully this is the last bit of generated code that appears in this book.
Reading through translated JSP is rarely required nor is it usually helpful2, but it
is certainly needed to understand what a container does when a JSP is translated
to a Servlet. Taking the highlighted lines from PageCounter$jsp.java, each can
be linked back to scripting elements from PageCounter.jsp.

In PageCounter.jsp a declaration is used to define a class-wide variable for
counting the number of page visits and a method for incrementing it.

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

Translated into PageCounter$jsp.java, the code of the declaration appears
outside of the _jspService() method and is class-wide. This allows for the
addCount() method to be coded as a real method of the Servlet and the
pageCount variable to be accessible by all calls to the _jspService() method. The
methods are not thread-safe, but for this particular example, it does not matter
if the pageCount variable changes halfway through generating a response.

public class PageCounter$jsp extends HttpJspBase {

// begin [file="/PageCounter.jsp";from=(0,3);to=(4,0)]

int pageCount = 0;

void addCount() {

pageCount++;

}

// end

In PageCounter.jsp a scriptlet and expression are used to increase and send
the value of the pageCount variable to client.

<% addCount(); %>

This page has been visited <%= pageCount %> times.

falkner.ch3.qxd 8/21/03 7:06 PM Page 124

JSP SYNTAX AND SEMANTICS 125

3. “Thread safety” is not a Servlet-specific or JSP-specific issue. Whenever Java code is using multiple
threads, state concurrency issues arise. Thread safety is a common term when describing these issues
as it is important to ensure code is thread-safe—that is, able to work properly if multiple threads are
running it. Chapter 9 provides a complete discussion on thread-safety and state management as the
topics apply to Servlets and JSP.

Translated in PageCounter$jsp.java, the scriptlet is used verbatim, but the
expression is turned into a call to the print() method of a PrintWriter object
obtained from the corresponding HttpServletResponse. Both scripting ele-
ments are located in the _jspService() method, are thread-safe, and local to a
specific client request.

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws java.io.IOException, ServletException {

...

// begin

[file="/PageCounter.jsp";from=(10,2);to=(10,15)]

addCount();

// end

// HTML // begin

[file="/PageCounter.jsp";from=(10,17);to=(11,27)]

out.write("\r\nThis page has been visited ");

// end

// begin

[file="/PageCounter.jsp";from=(11,30);to=(11,41)]

out.print(pageCount);

// end

...

}

The point of the preceding code is to illustrate exactly where scriptlets,
expressions, and declarations appear in Java source code generated from a JSP. It
is important to understand that both scriptlets and expressions appear inside the
_jspService() method and are by default thread-safe to a particular request.
Declarations are not thread-safe. Code inside a declaration appears outside the
_jspService() method and is accessible by a requests being processed by the JSP.
Declarations, unlike scriptlets, can also declare functions for use by scriptlets.

Good Coding Practice with Scripting Elements
Before going out and recklessly coding JSP with scripting elements, there are a
few important points to be made. Most prominent is the issue of thread safety3.

falkner.ch3.qxd 8/21/03 7:06 PM Page 125

Expressions can be considered harmless. Unless purposely used to cause a con-
flict, an expression is always going to be thread-safe. Declarations and scriptlets
are more problematic. Using a scriptlet is analogous to declaring and using vari-
ables locally in the appropriate service method of a Servlet. Variables declared by
a scriptlet are initialized, used, and destroyed once per a call to the _jsp
Service() method. By default this makes scriptlets thread-safe, but they do not
ensure the objects they access are thread-safe. If a scriptlet accesses an object in a
scope outside of the _jspService() method, then a synchronized block should
be used to ensure thread safety. Declarations are not thread-safe! A declaration
appears outside the _jspService() method. Far too often declarations are com-
pletely misunderstood as an enhanced form of a scriptlet. They are not!

A common debate is whether scriptlets and declarations are needed at all
with JSP. The power of JSP comes from easily creating text-producing Servlets. A
JSP is maintainable if it is primarily markup, which is easily edited by page
authors. Many developers take the stance that scripting elements destroy this
feature of JSP and should be completely replaced by custom actions and the JSP
expression language (new as of JSP 2.0, and covered in a later chapter). This view-
point is valid, is endorsed by the authors ,and is further covered in later chapters,
but custom actions are relatively heavyweight components compared to a simple
embedded script. Scriptlets, declarations, and particularly expressions certainly
have a place with JSP, but they should not be overused. If a page is littered with
countless scripting elements, they are likely to do more harm than good. Always
be conscious of how scripting elements are being used and if the code might be
better encapsulated in other objects that can be used by a few scripting elements.

Directives
Directives are messages to a JSP container. They do not send output to a client,
but are used to define page attributes, which custom tag libraries use and which
other pages include. All directives use the following syntax.

<%@ directive {attribute="value"}* %>

Directives may optionally have extra whitespace after the <%@ and before the
%>. There are three different JSP directives for use on a page4: page, taglib, and
include.

126 JAVASERVER PAGES

4. There are other directives that can only be used in tag files: tag, attribute, and variable.

falkner.ch3.qxd 8/21/03 7:06 PM Page 126

<%@ page %>
The page directive provides page-specific information to a JSP container. This
information includes settings such as the type of content the JSP is to produce,
the default scripting language of the page, and code libraries to import for use.
Multiple page directives may be used on a single JSP or pages included via JSP as
long as no specific attribute, except import, occurs more than once. Attributes for
the page directive are as follows.

language The language attribute defines the scripting language to be used by
scriptlets, expressions, and declarations occurring in the JSP. The only defined
and required scripting language value for this attribute is java. Different con-
tainers may provide additional language support; however, it is uncommon to see
a JSP use a language other than Java for scripting elements.

In this book it is always assumed that the language appearing in scripting ele-
ments is Java (as that is currently the only defined language). Translation of a
scripting element using Java code fragments into real Java code is easily done by
any developer with previous Java experience. Understanding how and why a
scriptlet example works is assumed to be intuitive because it is identical to under-
standing the Java equivalent.

extends The extends attribute value is a fully qualified Java programming lan-
guage class name that names the superclass of the class to which this JSP is trans-
formed. The extends attribute is analogous to the extends keyword used when
authoring a Java class. This attribute should be used sparingly as it prevents a
container from using a pre-built optimized class.

import The import attribute describes the types that are available for use in
scripting elements. The value is the same as in an import declaration in the Java
programming language, with multiple packages listed with either a fully qualified
Java programming language-type names or a package name followed by .*,
denoting all the public types declared in that package.

The default import list is java.lang.*, javax.servlet.*, javax.servlet.
jsp.*, and javax.servlet.http.*. These packages can be assumed to be
available by default with every JSP. The import attribute is currently only defined
for use when the value of the language directive is java.

session The session attribute indicates that the page requires participation in
an HTTP session. If true, then the implicit scripting variable session references
the current/new session for the page. If false, then the page does not participate
in a session and the session implicit scripting variable is unavailable, and any

JSP SYNTAX AND SEMANTICS 127

falkner.ch3.qxd 8/21/03 7:06 PM Page 127

reference to it within the body of the JSP page is illegal and results in a fatal trans-
lation error. The default value of the session attribute is true.

buffer The buffer attribute specifies the buffering model for the initial out
implicit scripting variable to handle content output from the page. If the
attribute’s value is none, then there is no buffering and output is written directly
through to the appropriate ServletResponse PrintWriter. Valid values for the
attribute are sizes specified in kilobytes, with the kb suffix being mandatory. If a
buffer size is specified, then output is buffered with a buffer size of at least the
specified, value. Depending upon the value of the autoFlush attribute, the con-
tents of this buffer are either automatically flushed or an exception is thrown
when overflow would occur. The default value of the buffer attribute is 8kb.

autoFlush The autoFlush attribute specifies whether buffered output should
be flushed automatically when the buffer is filled, or whether an exception
should be raised to indicate buffer overflow. A value of true indicates automatic
buffer flushing and a value of false throws an exception. The default value of
the autoFlush attribute is true. It is illegal to set the autoFlush attribute to
false when the value of the buffer attribute is none.

isThreadSafe The isThreadSafe attribute indicates the level of thread safety
implemented in the page. If the value is false, then the JSP container shall dis-
patch multiple outstanding client requests, one at a time, in the order they were
received, to the page implementation for processing by having the generated
Servlet implement SingleThreadModel. If the attribute’s value is true, then the
JSP container may choose to dispatch multiple client requests to the page simul-
taneously. The default value of the isThreadSafe attribute is true.

isErrorPage The isErrorPage attribute indicates if the current JSP page is
intended to be an error page for other JSP. If true, then the implicit scripting
variable exception is defined, and its value is a reference to the offending
Throwable object. If the isErrorPage attribute value is false, then the
exception implicit variable is unavailable, and any reference to it within the body
of the JSP page is illegal and will result in a fatal translation error. The default
value of the isErrorPage attribute is false.

errorPage The errorPage attribute defines a relative URL to a resource in the
Web Application to which any Java programming language Throwable object
thrown but not caught by the page implementation is forwarded for error pro-
cessing. The Throwable object is transferred to the error page by binding the object
reference to request scope with the name javax.servlet.jsp.jspException.

128 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 128

If the value of the autoFlush attribute is true, and if the contents of the
initial JspWriter have been flushed to the ServletResponse output stream, then
any subsequent attempt to dispatch an uncaught exception from the offending
page to an errorPage may fail.

contentType The contentType attribute defines the character encoding for the
JSP page, and for the response of the JSP page and the MIME type for the
response of the JSP page. The default value of the contentType attribute is
text/html with ISO-8859-1 character encoding for regular JSP syntax and UTF-
8 encoding for JSP in XML syntax.

pageEncoding The pageEncoding attribute defines the character encoding for
the JSP. The default value of the pageEncoding attribute is ISO-8859-1 for regular
JSP and UTF-8 for JSP in XML syntax.

isScriptingEnabled The isScriptingEnabled attribute determines if
scripting elements are allowed for use. The default value (true) enables scriptlets,
expressions, and declarations. If the attribute’s value is set to false, a translation-
time error will be raised if the JSP uses any scriptlets, expressions (non-EL), or
declarations. This attribute is helpful for creating ‘scriptless’ JSP and can also be
set using the web.xml scripting-enabled element.

isELEnabled The isELEnabled attribute determines if JSP EL expressions used
in the JSP are to be evaluated. The default value of the attribute is true, meaning
that expressions, ${...}, are evaluated as dictated by the JSP specification. If the
attribute is set to false, then expressions are not evaluated but rather treated as
static text.

The page directive is by default set to accommodate the most common use of
JSP: to make dynamic HTML pages. When creating a simple JSP, it is rarely
needed to specify any of the page directive attributes except in cases where extra
code libraries are needed for scripting elements or when producing XML
content, which is happening more and more.

<%@ include %> and <jsp:include />
The include directive is used to include text and/or code at translation time of a
JSP. The include directive always follows the same syntax, <%@ include

file="relativeURL" %>, where the value of relativeURL is replaced with the file
to be inserted. Files included must be part of a Web Application. Since include
directives take place at translation time, they are the equivalent of directly

JSP SYNTAX AND SEMANTICS 129

falkner.ch3.qxd 8/21/03 7:06 PM Page 129

including the source code in the JSP before compilation and do not result in per-
formance loss at runtime.

Server-side includes are a commonly used feature of JSP. Includes allow the
same repetitious bit of code to be broken out of multiple pages and have one
instance of it included with them all. A good example to use is including a
common header and footer with multiple pages of content. Usually this tech-
nique is used to keep a site’s navigation and copyright information correct and
maintainable for all individual pages on the site. As an example take the following
two files, header.jsp and footer.jsp.

The header.jsp file (Listing 3-7) includes information that is to appear at the
top of a page. It includes site navigation and other miscellaneous information.
This header also tracks how many people have visited the site since the last time
the Web Application was reloaded by reusing code from PageCounter.jsp.

Listing 3-7 header.jsp

<%! int pageCount = 0;

void addCount() {

pageCount++;

}

%>

<% addCount(); %>

<html>

<head>

<title>Header/Footer Example</title>

</head>

<body>

<center>

<h2>Servlets and JSP the J2EE Web Tier</h2>

Book Support Site -

Sites Source code

This site has been visited <%= pageCount %> times.

</center>

The footer.jsp file (Listing 3-8) includes information that is to appear at
the very bottom of a page. It includes copyright information, disclaimers, and
any other miscellaneous information.

Listing 3-8 footer.jsp

<center>

130 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 130

Copyright © 2003

</center>

</body>

</html>

By themselves header.jsp and footer.jsp do not do much, but when com-
bined with some content, a full page can be generated. For this example the
content does not matter. Arbitrarily make up a JSP, but be sure to include
header.jsp at the top of the page and footer.jsp at the bottom. Listing 3-9 pro-
vides an example of such a page.

Listing 3-9 content.jsp

<%@ include file="header.jsp" %>

Only the content of a page is unique. The same header and footer

are reused from header.jsp and footer.jsp by means of the include

directive

<%@ include file="footer.jsp" %>

Save all three files, header.jsp, footer.jsp, and content.jsp, in the base
directory of the jspbook Web Application and browse to http://127.
0.0.1/jspbook/content.jsp. All three files are mashed together at translation
time to produce a Servlet that includes the contents of header.jsp, content.jsp,
and footer.jsp in the appropriate order. Figure 3-6 shows a browser rendering
of the output.

JSP SYNTAX AND SEMANTICS 131

Figure 3-6 Browser Rendering of content.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 131

So what is the advantage of this approach over combining header.jsp,
content.jsp, and footer.jsp all in one file in the first place? As the files are set
up now, many more content pages can be created that reuse the header and
footer. The header and footer can also be changed at any given time, and the
changes are easily reflected across all of the JSP.

For non-translation-time includes JSP also defines the include action. Like
the include directive, this action is used to include resources with the output of a
JSP, but the include action takes place at runtime. While not as efficient, the
include action automatically ensures that the most recent output of the included
file is used. See the <jsp:include /> section of this chapter for more information
about the include action.

<%@ taglib %>
Custom actions were previously mentioned in this chapter, but are not fully
covered until Chapter 7. Custom actions, also called custom tag libraries, allow a
JSP developer to link bits of markup to customized Java code. The taglib
directive informs a container what bits of markup on the page should be con-

132 JAVASERVER PAGES

Translation-Time Includes

Translation time occurs when a JSP is being translated into a Servlet. The
resulting Servlet does not know or care about what files were used to generate
it. As a result the Servlet is unable to tell when a change has occurred in
included files. The JSP specifications do not specify a mechanism for solving
this problem, but JSP container vendors are free to implement solutions to the
problem.

In cases where an entire site relies on translation-time includes for efficiency,
a simple solution does exist for having changes in translation-time includes
reflected on the entire site. A container relies on having the translated code of
a JSP to compile and deploy a corresponding Servlet. When lacking the code,
a container must re-translate a JSP and compile and deploy the corresponding
Servlet. By forcing a container to re-translate all JSP, it can be ensured that
translation-time includes are properly reflected by JSP that use them.

With Tomcat, JSP translated to Servlet source code can be found in the
TOMCAT_HOME/work directory. Simply delete the contents of this directory to
have Tomcat re-translate all JSP.

falkner.ch3.qxd 8/21/03 7:06 PM Page 132

sidered custom code and what code the markup links to. The taglib directive
always follows the same syntax, <%@ taglib uri="uri" prefix="prefixOfTag"

%>, where the uri attribute value resolves to a location the container understands
and the prefix attribute informs a container what bits of markup are custom
actions.

Further explanation and examples of using the taglib directive can be found
in Chapter 7.

JSP Configuration
Directives are in the simplest sense configuration information for a JSP. The only
problem with using directives for configuration is that they must be specified on
a per-JSP basis. If you have 20 pages, then you will have to edit at least 20 direc-
tives. To simplify the task of doing mass JSP configuration, the jsp-config

element is available for use in web.xml. There are two sub-elements of jsp-

config: taglib and jsp-property-group. The taglib element can be used to con-
figure a custom JSP tag library for use with a JSP. The jsp-property-group
element allows for configuration that is similar to the directives but can be
applied to a group of JSP.

For completeness the taglib element will be covered here and referenced in
the later pertinent chapter about custom JSP tag libraries. Use of the taglib
element is straightforward; first specify a taglib-uri child element, which defines
the prefix custom tags are to use; next specify a taglib-location element, which
defines the location of the custom tag library. For example:

...

<jsp-config>

<taglib>

<taglib-uri>foo</taglib-uri>

<taglib-location>WEB-INF/foo.tld</taglib-location>

</taglib>

</jsp-config>

...

For more on tag libraries see Chapter 7.
The jsp-property-group element is currently of much more relevance

because it is an alternative for much of the functionality offered by the JSP direc-
tives. Basic use of the jsp-property-group element is always the same; first use
a child url-pattern element to define the JSP to apply the properties to:

<jsp-config>

<jsp-property-group>

JSP SYNTAX AND SEMANTICS 133

falkner.ch3.qxd 8/21/03 7:06 PM Page 133

<url-pattern>*.jsp</url-pattern>

...

</jsp-property-group>

</jsp-config>

In the preceding code the configuration will be applied to all files ending in
.jsp which would likely be all of the JSP in the Web Application. In general the
url-pattern element can have any of the values that are valid for use when
deploying Servlets or JSP via web.xml. By itself the url-pattern element does
nothing but match a set of properties to a specific set of JSP. The properties them-
selves must next be specified using more child elements of jsp-property-group.
The jsp-property-group element has the following children elements, which are
all fairly self-descriptive.

el-enabled The el-enabled element configures if the JSP EL is available for
use on the specified JSP. A value of true enables EL use. A value of false disables
it. The functionality is analogous to the page directive’s isELEnabled attribute.

scripting-enabled The scripting-enabled element is analogous to the page
directive’s isScriptingEnabled attribute. A value of false will cause a JSP to
raise a translation error if any scriptlets, expressions (non-EL), or directives are
used. A value of true will enable scripting elements for use.

page-encoding The page-encoding element is analogous to the page
directive’s pageEncoding attribute. An error will be raised if an encoding is set
using the page-encoding attribute and a different encoding is specified using the
pageEncoding attribute of a JSP’s page directive.

include-prelude The include-prelude element can be used to include the
contents of another resource in the Web Application before the contents gen-
erated by a JSP. Effectively the include-prelude element provides a method of
automatically including a header for all JSP that the jsp-property-group is con-
figured for.

include-coda The include-coda element can be used to include the contents
of another resource in the Web Application after the contents generated by a JSP.
Effectively the include-coda element provides a method that automatically
includes a footer for all JSP that the jsp-property-group is configured for.

is-xml The is-xml element can be used to denote if the JSP are XML docu-
ments. JSP authored in XML syntax need not always be explicitly declared as
XML; however, declaring so is helpful for both validating the document and
taking advantage of JSP-XML features such as UTF-8 encoding.

134 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 134

Overall, the jsp-property-group element should be very intuitive to use.
The only new functionality that has been introduced is due to the include-
prelude, include-coda, and is-xml elements. Both include-prelude and
include-coda are also very straightforward to use. In use, the two elements
replace the need for header and footer includes using the JSP include directive or
custom action. The is-xml element is new, but do not worry if it is unclear as to
what the element is doing. Later on in this chapter JSP in XML syntax is
addressed properly.

Application-Wide Headers and Footers
It is very common to build a Web Application that includes the same header and
footer on every page. In these cases there are many methods that you can use to
go about achieving the functionality, but arguably the easiest is to use the
include-prelude and include-coda elements. Compared to manually including
the header and footer on each page, as in Listing 3-9, little is gained, but it is
slightly helpful to use the include-prelude and include-coda elements for two
reasons. First, inclusion of the header and footer pages are consolidated to one
single point, web.xml. The names or locations of the header and footer resources
can easily be changed for any given reason. When using the include directive or
action, this will not be the case. A change will be a slight bit more of a hassle, but
it can still be done. The second benefit to using the include-prelude and
include-coda elements is that pages of a Web Application only have to focus on
content, nothing else. Granted, remembering to include a header and footer is
not a difficult task, but it is a task all the same.

Using the include-prelude and include-coda elements for application-
wide headers and footers is easy, and always done in a similar fashion as illus-
trated in Listing 3-10.

Listing 3-10 Application-Wide Header and Footer Files

<jsp-config>

<jsp-property-group>

<url-pattern>*.jsp</url-pattern>

<include-prelude>/header.jsp</include-prelude>

<include-coda>/footer.jsp</include-coda>

</jsp-property-group>

</jsp-config>

As shown, the jsp-property-group is configured to apply to all JSP files;
however, the configuration could be extended to include other resources if

JSP SYNTAX AND SEMANTICS 135

falkner.ch3.qxd 8/21/03 7:06 PM Page 135

needed. The important point to see is that the configuration is being applied to
everything of importance. Next, the include-prelude element and include-
coda element are used to include a header and footer, respectively. The locations
given are /header.jsp and /footer.jsp, but any other resource can be used.

Standard JSP Actions
Actions provide a convenient method of linking dynamic code to simple mark-
up that appears in a JSP. The functionality is identical to the scripting elements
but has the advantage of completely abstracting any code that would normally
have to be intermixed with a JSP. Actions that are designed to be simple to use
and work well help keep a JSP efficient and maintainable.

There are two types of actions available for use with JSP: standard and
custom. All actions follow the same syntax, <prefix:element {attribute=

"value"}* />, where the complete action is an XML-compatible tag and includes
a given prefix, element, and a set of attributes and values that customize the
action. Standard actions are completely specified by the JSP specification and are,
by default, available for use with any JSP container. Custom actions are a mech-
anism defined by the JSP specification to enhance JSP by allowing JSP developers
to create their own actions. The functionality of custom actions is not defined by
the JSP specifications, and custom actions must be installed with a Web
Application before being used.

Standard actions are summarized in this section. The standard actions
include functionality that is commonly used with JSP and allow for: easily using
Java Applets, including files at runtime; manipulating JavaBeans; and forwarding
requests between Web Application resources.

<jsp:include/>
JSP complements the include directive by providing a standard action for
including resources during runtime. The syntax of the include action is similar to
an include directive and is as follows: <jsp:include page="page" />, where the
page attribute value is the relative location in the Web Application of the page to
include.

The include action can be used in a JSP the same as the include directive.
Reusing the header.jsp and footer.jsp files from the include directive example
in Listing 3-11 is a JSP that includes a header and footer at runtime.

136 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 136

JSP SYNTAX AND SEMANTICS 137

Figure 3-7 Browser Rendering of runtimeInclude.jsp

Listing 3-11 runtimeInclude.jsp

<jsp:include page="header.jsp" />

Only the content of a page is unique. The same header and footer are

reused from header.jsp and footer.jsp by means of the include

directive.

<jsp:include page="footer.jsp" />

Save the code as runtimeInclude.jsp in the base directory of the jspbook
Web Application and browse to http://127.0.0.1/jspbook/runtimeInclude.
jsp. The same page is shown as with content.jsp. Figure 3-7 shows a browser
rendering of runtimeInclude.jsp.

The end result looks the same, but it is important to distinguish the dif-
ference between the include directive and the include action. An include that
occurs at runtime is always current with the resource it is including. An include
done at translation time is only current with the resource as it was at the time of
translation. A simple example (Listing 3-12) illustrates the point. Edit
footer.jsp to include a small change, a disclaimer.

Listing 3-12 Edited footer.jsp

<center>

Copyright © 2003

<small>Disclaimer: all information on this page is covered by

this disclaimer.</small>

falkner.ch3.qxd 8/21/03 7:06 PM Page 137

</center>

</body>

</html>

Now look at both content.jsp and runtimeInclude.jsp again to see the
change. Figure 3-8 shows a browser rendering of runtimeInclude.jsp (http://
127.0.0.1/jspbook/runtimeInclude.jsp). The page reflects the updates to
footer.jsp automatically. This holds true for any update done to a resource that
is included via the include action. However, content.jsp (http://127.0.0.1/
jspbook/content.jsp) does not appear to reflect the change. It still looks iden-
tical to the pages that appeared in both Figure 3-6 and Figure 3-7 previously.

Runtime versus translation-time includes is the reason for the inconsistency.
The content.jsp file was translated into a Servlet that included the exact con-
tents of both header.jsp and footer.jsp before the edit was made to
footer.jsp. To have the changes reflected, content.jsp must be re-translated to
use the new footer.jsp. The runtimeInclude.jsp Servlet does not need to be
re-translated because it relies on an include footer.jsp at runtime. The analogy
to the Servlet API is that runtimeInclude.jsp uses RequestDispatcher
include() method calls to access both header.jsp and footer.jsp, but
content.jsp does not. The code for content.jsp was generated by directly
including the code for header.jsp and footer.jsp before compiling the Servlet.

The difference between the include directive and include action is important
to understand because it affects performance and consistency. A JSP that uses

138 JAVASERVER PAGES

Figure 3-8 Updated Rendering of runtimeInclude.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 138

include directives has the same performance as if an include was never used, but
the drawback is that this JSP will not automatically reflect updates to the
included file. A JSP that uses include actions will always reflect the current
content of an included page, but it suffers a slight performance loss for doing so.

<jsp:plugin/>, <jsp:fallback/>, <jsp:params/>, and <jsp:param/>
JSP has very strong Java ties. JSP was originally designed as a technology Java
developers would easily be able to use. For this reason it is common to see JSP
being used in conjunction with the many other Java technologies that currently
exist. One of the prominent uses of Java is still Java Applets. A Java Applet is a Java
application, run with many restrictions, that executes in a client’s Web browser
through a Java-supporting plug-in. Java Applets are not heavily tied with the JSP
and Servlet specifications and will not be covered in this book.

The JSP specifications define custom actions for easily generating the proper
custom code needed to embed a Java Applet in an HTML page. The Applet-
related actions are: plugin, fallback, and params. The plugin action represents
one Applet that should be embedded in an HTML page. The plugin action
allows for the following attributes:

type The type attribute identifies the type of the component: a Bean or an
Applet. A bean is a component built to match the original intentions of the
JavaBean specifications. An Applet is the commonly seen client-side Java func-
tionality browsers implement via the Java plug-in.

code The code attribute specifies either the name of the class file that contains
the Applet’s compiled subclass or the path to get the class, including the class file
itself. It is interpreted with respect to the codebase attribute.

codebase The codebase attribute specifies the base URI for the Applet. If this
attribute is not specified, then it defaults the same base URI as for the current JSP.
Values for this attribute may only refer to subdirectories of the directory con-
taining the current document.

align The align attribute determines the location of the Applet relative to
where it is being displayed. Valid values are bottom, middle, and top.

archive The archive attribute specifies a comma-separated list of URIs for
JAR files containing classes and other resources that are to be loaded before the
Applet is initialized. The classes are loaded using an instance of an AppletClass
Loader with the given codebase. Relative URIs for archives are interpreted with

JSP SYNTAX AND SEMANTICS 139

falkner.ch3.qxd 8/21/03 7:06 PM Page 139

respect to the Applet’s codebase. Preloading resources can significantly improve
the performance of Applets.

height The height attribute defines the height in either pixels or percent that
the window displaying the Applet should use. This value can be set at runtime via
an expression if needed.

hspace The hspace attribute determines the amount of whitespace to be
inserted horizontally around the Applet.

jreversion The jreversion attribute identifies the spec version number of the
JRE the component requires in order to operate; the default is 1.2.

name The name attribute specifies a name for the Applet instance, which makes
it possible for Applets on the same page to find and communicate with each
other.

vspace The vspace attribute determines the amount of whitespace to be
inserted vertically around the Applet.

width The width attribute defines the width in either pixels or percent that the
window displaying the Applet should use. This value can be set at runtime via an
expression if needed.

The fallback action is used to provide notification to a client should the
client’s browser not be able to use the Java plug-in. The fallback action allows
for an arbitrary text message to be included as its body, and must be a sub-tag to
the plugin action. Text included in the fallback action is presented to a client
should their browser fail to support the Java plug-in.

The params action is used to set parameters for the code being embedded by
the plugin action. The params action requires one-to-many sub param actions. A
param action has two attributes, name and value, that define a name and value,
respectively, for a parameter. When using a params action with a plugin action,
the param action must be a sub-tag of the plugin action.

Combining the plugin, fallback, params, and param actions, a fully cus-
tomized Java Applet can easily be embedded in an HTML page. Using all the
actions together is best shown through an example. Listing 3-13 embeds an
Applet, FooApplet.class, in an HTML page that is generated by a JSP.

Listing 3-13 AppletExample.jsp

<html>

<head>

<title>Applet Example</title>

140 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 140

</head>

<body>

<jsp:plugin

type="applet"

code="FooApplet.class"

height="100"

width="100"

jreversion="1.2">

<jsp:fallback>

Applet support not found, can't run example.</jsp:fallback>

</jsp:plugin>

</body>

</html>

It is important to remember where everything takes place when using Applets
and JSP. JSP executes on the server-side; Applets execute on the client-side. The
result of AppletExample.jsp is going to be a plain HTML document with a ref-
erence to FooApplet.class. The actual code for FooApplet.class is downloaded
by a Web browser by issuing a second request to the Web server from which the
HTML came. A JSP does not send the Applet code inside the HTML page it gen-
erates, nor does the Applet code get executed on the Web server it came from. To
further demonstrate this point, Listing 3-14 provides the code for FooApplet.
java.

Listing 3-14 FooApplet.java

import javax.swing.*;

import java.awt.*;

public class FooApplet extends JApplet {

public void init() {

JLabel label = new JLabel("I'm an Applet.");

label.setHorizontalAlignment(JLabel.CENTER);

getContentPane().add(label, BorderLayout.CENTER);

}

}

Compile the preceding code and place both FooApplet.class and Applet
Example.jsp in the base directory of the jspbook Web Application. (Do not place
FooApplet.class in the /WEB-INF/classes/com/jspbook folder. To use the
Applet, a client must be able to download it. Placing the code in the /WEB-INF
directory prevents any client from doing so.) After placing the two files, browse
to http://127.0.0.1/jspbook/AppletExample.jsp. If your browser supports

JSP SYNTAX AND SEMANTICS 141

falkner.ch3.qxd 8/21/03 7:06 PM Page 141

142 JAVASERVER PAGES

Figure 3-9 Browser Running FooApplet.class

the Java plug-in version 1.2, it will load the example Applet. Figure 3-9 shows
what the Applet looks like when run by a Web browser.

Should your browser not support the Java plug-in, the fallback message is
displayed. Depending on the specific browser, it may also try to automatically
download and install the Java plug-in.

The plugin action is designed to be easy to use, but it brings up several
important points. The key point of this section is that the plugin action makes it
easy to embed an existing Java Applet in an HTML document generated by a JSP.
The plugin can optionally also include the fallback, params, and param actions
as subtags to customize the Applet. Additional points brought up from this func-
tionality were where Applets execute versus JSP and where to place Applet code
in a Web Application. The two points are worth further explanation and are dis-
cussed in the remainder of this section.

To best clarify what the plugin action does, it is helpful to show the HTML
source code generated by the action. The source code generated by Applet
Example.jsp is listed in Listing 3-15 with the lines generated by the plugin
action highlighted.

Listing 3-15 Output of AppletExample.jsp

<html>

<head>

<title>Applet Example</title>

</head>

<body>

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

width="100" height="100"

falkner.ch3.qxd 8/21/03 7:06 PM Page 142

JSP SYNTAX AND SEMANTICS 143

5. http://www.w3.org/TR/html4/

codebase="http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-

win.cab#Version=1,2,2,0">

<param name="java_code" value="FooApplet.class">

<param name="type" value="application/x-java-applet">

<COMMENT>

<embed type="application/x-java-applet;" width="100" height="100"

pluginspage="http://java.sun.com/products/plugin/"

java_code="FooApplet.class" >

<noembed>

</COMMENT>

Applet support not found, can't run example.

</noembed></embed>

</object>

</body>

</html>

The code is a little cryptic but is certainly not the binary of FooApplet.class.
What is highlighted is just a perfectly valid use of the HTML object element as
defined by the HTML 4.0 specification5. The HTML object element is a more
generic form of the now deprecated applet element that was designed to allow
Applets to be referenced from HTML. The object element defines all the necessary
information a browser needs to download the FooApplet.class file along with
loading the appropriate browser plug-in to execute it. After reading the object
element, the browser generates a completely new HTTP request for the Foo
Applet.class. The URL is a combination of information specified by the object
tag, but ends up being http://127.0.0.1/jspbook/FooApplet.class.

The URL a Web browser uses to download an Applet is the reason that Applet
code should not be placed under the /WEB-INF/classes directory. Code in these
directories is meant solely for use on the server-side and is not accessible by
outside clients. By placing the Applet’s code in the base directory alongside
AppletExample.jsp, a Web browser is free to download and use it.

<jsp:forward/>
JSP provide an equivalent to the RequestDispather.forward() method by use of
the forward action. The forward action forwards a request to a new resource and
clears any content that might have previously been sent to the output buffer by

falkner.ch3.qxd 8/21/03 7:06 PM Page 143

the current JSP. Should the current JSP not be buffered, or the contents of the
buffer already be sent to a client, an IllegalStateException is thrown. The
forward action uses the following syntax: <jsp:forward url="relativeURL"/>,
where the value of relativeURL is the relative location in the current Web
Application of the resource to forward the request to. Optionally the forward
action may have param actions used as subelements to define request parameters.
Where applicable, the param action values override existing request parameters.

<jsp:forward/> and <jsp:include/> parameters
Both the JSP forward and includes actions can optionally include parameters.
The mechanism for doing this is the JSP param action. The param action may only
appear in the body of either the forward or include actions and is used to define
parameters. The syntax of the param action is as follows:

<jsp:param name="parameter's name" value="parameter's value"/>

The parameter is a key/value pair with the name attribute specifying the name
and value attribute specifying the value. The values are made available to the for-
warded or included resource via the HttpServletRequest getParameter()

method, for instance, if the forward action was authored as the following:

<jsp:forward page="examplePage.jsp">

<jsp:param name="foo1" value="bar"/>

<jsp:param name="foo2" value="<%= foo %>"/>

</jsp:forward>

The fictitious page examplePage.jsp would have two additional request
parameters set for it: foo1 and foo2. The value of foo1 would be ‘bar’ and the
value of foo2 would be the string representation of whatever the foo variable
was. In the case where a parameter specified by the param action conflicts with an
existing parameter, the existing parameter is replaced.

JavaBean Actions
As with Applets, JavaBeans are commonly used Java objects, and JSP provides
default support for easily using them. The <jsp:useBean />, <jsp:getProperty
/>, and <jsp:setProperty /> actions all relate to JavaBeans, but will not be fully
covered in this chapter. Unlike Applets, JavaBeans are much more commonly
used with Servlet and JSP projects. Later chapters rely on JavaBean knowledge,
and JavaBeans are explained in depth in this book. Chapter 5 introduces,

144 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 144

explains, and shows examples of JavaBeans and the custom JSP actions for using
them.

Tag File Actions
A set of JSP standard actions exist for use with custom tags. These actions are
<jsp:attribute/>, <jsp:body/>, <jsp:doBody/>, and <jsp:invoke/>. Chapter
7 covers these actions in depth.

Whitespace Preservation
Servlets provide direct control over calls to the PrintWriter object responsible
for sending text in a response. JSP do not. JSP abstracts calls to the PrintWriter
object and allows for template text to be authored as it should be presented to a
client. Whitespace, while usually not important, is preserved as it appears in a JSP.
This preservation can be seen by looking at the HTML source code generated by
a JSP in any of this chapter’s examples.

Whitespace preservation is also the reason some seemingly unaccountable
formatting is included with JSP output. Take, for example, the following JSP
(Listing 3-16) that is a slight modification of HelloWorld.jsp.

Listing 3-16 HelloDate.jsp

<%@ page import="java.util.Date"%>

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

The current date/time is: <%= new Date() %>.

</body>

</html>

Save HelloDate.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/HelloDate.jsp. The page looks very
similar to HelloWorld.jsp but now includes a date. In order to import the
java.util.Date class, the page directive is used. Figure 3-10 shows a browser
rendering of the results.

The code is a perfectly valid HTML document and looks fine when rendered
as HTML. However, you’ll notice that the formatting that surrounds the page
directive was retained. There is an unneeded new line where the page directive

JSP SYNTAX AND SEMANTICS 145

falkner.ch3.qxd 8/21/03 7:06 PM Page 145

was used. This can be verified by looking at the HTML source code that was gen-
erated as highlighted in Listing 3-17.

Listing 3-17 HelloDate.jsp HTML Source Code Sent to a Browser

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello World!</h1>

The current date/time is: Sun Apr 07 19:33:11 EDT 2002.

</body>

</html>

It is important to understand that formatting is retained by the JSP. In most
cases, especially HTML, extra whitespace formatting does not matter. However,
there are situations where whitespace and other extra formatting are of signifi-
cance, particularly if using XML. In these cases there is an easy fix. Do not use
extra formatting around JSP elements. Besides making things a little prettier,
there is no need for it. For example, HelloDate.jsp can remove the unneeded
whitespace if written as shown in Listing 3-18.

Listing 3-18 HelloDate.jsp Removing Unneeded Whitespace

<%@ page import="java.util.Date"%><html>

<head>

<title>Hello World!</title>

</head>

146 JAVASERVER PAGES

Figure 3-10 Browser Rendering of HelloDate.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 146

<body>

<h1>Hello World!</h1>

The current date/time is: <%= new Date() %>.

</body>

</html>

Attributes
There are two methods for specifying attributes in JSP elements: runtime values
and translation time or static values. A static value is a hard-coded value that is
typed into a JSP before translation time. There have been countless examples of
static values; take for instance the include action <jsp:include page="header.
jsp"/>. In this example the page attribute has a static value of header.jsp. Every
time the JSP is visited, the include action tries to include this file. However, not
all attribute values are required to be static. Some attributes can have a runtime
value. A runtime value means an expression can be used to dynamically create the
value of the attribute. In the preceding example of the include action, the fol-
lowing might appear:

<jsp:include page="<%= request.getParameter('file')%>"/>

In this case the value is dynamic and determined at runtime. This would be
useful if there was a need to customize which page was included each time the
JSP was visited.

Most basic uses of JSP do not rely on runtime values for attributes. Runtime
values are much more helpful when used with JSP custom actions and will be
further covered in Chapter 7 with custom tags and in Chapter 6 with the JTSL.

Comments
JSP allows for a developer to include server-side comments that are completely
ignored when generating a response to send to a client. The functionality is very
similar to HTML comments; however, the JSP comments are only available for
viewing on the server-side. A JSP comment must have a start, <%--, an end, --%>,
and comment information between. These comments are useful for providing
server-side information or for “commenting out” sections of JSP code. Listing 3-
19 shows an example of two comments: one to provide some information and
another to comment out a bit of code.

Listing 3-19 JSPComment.jsp

<%@ page import="java.util.Date" %>

<html>

JSP SYNTAX AND SEMANTICS 147

falkner.ch3.qxd 8/21/03 7:06 PM Page 147

148 JAVASERVER PAGES

<title>Server-side JSP Comments</title>

<body>

<%-- A simple example of a JSP comment --%>

<%--

Code commented out on <%= new Date() %>.

--%>

</body>

</html>

Save JSPComment.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/JSPCcomment.jsp. A blank page is
displayed because all the code on the JSP is commented out. Upon further exam-
ination of the source code that was generated by the JSP, it can be shown that
none of the commented information was sent in the content of the response
(Listing 3-20).

Listing 3-20 Output of JSPComment.jsp

<html>

<title>Server-side JSP Comments</title>

<body>

</body>

</html>

In addition to server-side JSP comments, more types of comments are
available for use. With scriptlets and declarations, both of the Java comments are
available for use. A line of embedded code can be commented out using //, or a
chunk of code may be commented out by use of a block comment with a starting
/* and end*/.

HTML/XML comments <!-- --> do not prevent text from being sent by a
JSP. HTML/XML comments usually do not get rendered by a Web browser, but
the information is passed on to the client-side. By changing JSPComment.jsp to
use HTML/XML comments, the JSP output clearly illustrates the difference
(Listing 3-21).

Listing 3-21 XMLComment.jsp

<%@ page import="java.util.Date" %>

<html>

<title>Server-side JSP Comments</title>

<body>

falkner.ch3.qxd 8/21/03 7:06 PM Page 148

<!-- A simple example of a JSP comment -->

<!--

Code commented out on <%= new Date() %>.

-->

</body>

</html>

Save XMLComment.jsp in the base directory of the jspbook Web Application
and browse to http://127.0.0.1/jspbook/XMLComment.jsp. A Web browser still
displays a blank page, but only because the HTML/XML comments are ignored
on the client-side. Listing 3-22 shows the output of xmlcomment.jsp.

Listing 3-22 Output of xmlcomment.jsp

<html>

<title>Server-side JSP Comments</title>

<body>

<!-- A simple example of a JSP comment -->

<!--

Code commented out on Sun Mar 10 20:23:01 EST 2002.

-->

</body>

</html>

Unlike with JSPComment.jsp, XMLComment.jsp does send the comments to
the client to deal with. Additionally JSP elements included inside the
XML/HTML comments are still evaluated on the server-side. This example
shows that when a chunk of code is to be commented out, it should be done with
a JSP comment. However, should a comment be sent to a client, then the HTML-
style comment can be used.

Quoting and Escape Characters
When authoring a JSP, it might be desirable to send text to a client that is equal
in part or whole to a JSP element. This results in a conflict with the code’s
intended purpose and how the container will interpret code. To represent the
literal value of JSP elements, in part or whole, escape characters must be used. JSP
uses the following escape characters:

• A single-quote literal, ', is escaped as \'. This is only required
should the literal be needed inside a single-quote delimited
attribute value.

JSP SYNTAX AND SEMANTICS 149

falkner.ch3.qxd 8/21/03 7:06 PM Page 149

• A double-quote literal, ", is escaped as \". This is only required
should the literal be needed inside a single-quote delimited
attribute value.

• A back-slash literal, \, is escaped as \\.

• A %> is escaped as %\>.

• A <% is escaped as <\%.

The entities ' and " are available to represent single and double
quotes, respectively.

The preceding examples should be fairly straightforward, but the following
brief example is given for completeness. The code in Listing 3-23 shows how JSP
identifies escape values that the JSP container normally interprets as elements.

Listing 3-23 EscapeCharacters.jsp

<% String copy="2000-2003"; %>

<html>

<title>Server-side JSP Comments</title>

<body>

Scriptlets: <\% <i>script</i> %>

Expressions: <\%= <i>script</i> %>

Declarations: <\%! <i>script</i> %>

<center>

<small>Copyright ©

<%= copy + " Single-Quote/Double-Quote Ltd, \'/\"" %>

</small>

</center>

</body>

</html>

Save EscapeCharacters.jsp in the base directory of the jspbook Web
Application and browse to http://127.0.0.1/jspbook/EscapeCharacters.jsp.
A small page appears with a brief explanation of some of the JSP elements. Figure
3-11 shows a browser rendering of the output from the JSP. The literal values are
properly shown to a client instead of being misinterpreted by the JSP container.

Implicit Objects
JSP uses scripting elements as an easy method of embedding code within tem-
plate text, but we have yet to show how to directly manipulate a request, response,
session, or any of the other objects used with Servlets in Chapter 2. These objects
all still exist with JSP and are available as implicit objects. The JSP implicit objects

150 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 150

are automatically declared by a JSP container and are always available for use by
scripting elements. The following is a list of the JSP implicit objects that are rec-
ognizable from Chapter 2.

config The config implicit object is an instance of a javax.servlet.
ServletConfig object. Same as with Servlets, JSP can take advantage of initial
parameters provided in a Web Application Deployment Descriptor.

request The request implicit object is an instance of a javax.servlet.http.
HttpServletRequest object. The request implicit object represents a client’s
request and is a reference to the HttpServletRequest object passed into a
HttpServlet’s appropriate service method.

response The response implicit object is an instance of a javax.servlet.
http.HttpServletRequest object. The response implicit object represents a
response to a client’s response and is a reference to the HttpServlet
Response object passed into a HttpServlet’s appropriate service method.

session The session implicit object is an instance of a javax.servlet.http.
HttpSession object. By default JSP creates a keep session context with all clients.
The session implicit object is a convenience object for use in scripting elements
and is the equivalent of calling the HttpServletRequest getSession() object.

application The application implicit object is an instance of a javax.
servlet.ServletContext object. The application implicit object represents a
Servlet’s view of a Web Application and is equivalent to calling the Servlet
Config getServletContext() method.

IMPLICIT OBJECTS 151

Figure 3-11 Browser Rendering of EscapeCharacters.jsp

falkner.ch3.qxd 8/21/03 7:06 PM Page 151

Using any of the JSP implicit objects is as easy as assuming they already exist
within a scripting element. With the objects listed previously, all of the Servlet
examples in previous chapters can be replicated in JSP. Take, for example, the
ShowHeaders Servlet (Listing 2-8 in Chapter 2). The ShowHeaders Servlet dis-
played a small HTML page listing all the HTTP request headers sent by a client.
The Servlet relied on the HttpServletRequest getHeaderNames() and get
Header() methods. After translating this Servlet into a JSP, the code appears as
Listing 3-24.

Listing 3-24 ShowHeaders.jsp

<%@ page import="java.util.*"%>

<html>

<head>

<title>Request's HTTP Headers</title>

</head>

<body>

<p>HTTP headers sent by your client:</p>

<%

Enumeration enum = request.getHeaderNames();

while (enum.hasMoreElements()) {

String headerName = (String) enum.nextElement();

String headerValue = request.getHeader(headerName);

%>

<%= headerName %>: <%= headerValue %>

<% } %>

</body>

</html>

Save the preceding code as ShowHeaders.jsp in the base directory of the
jspbook Web Application and browse to http://127.0.0.1/jspbook/Show
Headers.jsp. The results are identical to the previous Servlet at http://127.0.
0.1/jspbook/ShowHeaders. Figure 3-12 shows what the output of ShowHeaders.
jsp looks like when rendered by a Web browser.

Repeating Servlet code examples and translating them into JSP isn’t the goal
of this chapter. The preceding example is intended to clearly show how to use the
implicit objects and how they can be used to achieve all the functionality of a
Servlet. The scriptlets in the preceding JSP show this by using the request
implicit object as if it had previously been declared by the JSP.

152 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 152

IMPLICIT OBJECTS 153

Figure 3-12 Browser Rendering of ShowHeaders.jsp

<%

Enumeration enum = request.getHeaderNames();

while (enum.hasMoreElements()) {

String headerName = (String) enum.nextElement();

String headerValue = request.getHeader(headerName);

%>

It is important to note that in no place was an object named request declared
for use by the JSP. It was just used. The JSP container automatically and appro-
priately declares the implicit objects when translating the JSP into a Servlet.

JSP defines a few more implicit objects to accompany the aforementioned.
The ones not listed do not directly map to Servlet equivalents. The additional
implicit objects are pageContext, page, out, and exception, which are all
explained in the following sections.

pageContext
The pageContext implicit scripting variable is an instance of a javax.servlet.
jsp.PageContext object. A PageContext object represents the context of a single
JavaServer Page including all the other implicit objects, methods for forwarding
to and including Web Application resources, and a scope for binding objects to
the page. The PageContext object is not always helpful when used by itself
because the other implicit objects are already available for use. A PageContext

falkner.ch3.qxd 8/21/03 7:06 PM Page 153

object is primarily used as a single object that can easily be passed to other objects
such as custom actions. This is useful since the page context holds references to
the other implicit objects.

Request Delegation
The pageContext implicit object provides the equivalent of the include and
forward directives for providing JSP request delegation. Scriptlets can use the fol-
lowing PageContext methods to provide JSP request delegation:

forward(java.lang.String relativeUrlPath)

The forward() method is used to redirect, or ‘forward’, the current
ServletRequest and ServletResponse to another resource in the Web
Application. The relativeUrlPath value is the relative path to a resource in the Web
Application:

include(java.lang.String relativeUrlPath)

The include() method causes the resource specified to be processed as part
of the current ServletRequest and ServletResponse being processed.

The forward() and include() methods can be used to include or forward a
ServletRequest and ServletResponse to any resource in a Web Application.
The resource can be a Servlet, JSP, or a static resource. The functionality is iden-
tical to that previously mentioned for Servlet request delegation.

Page Scope
In addition to the request, session, and application scopes, JSP introduces the page
scope. The PageContext object provides the getAttribute(), setAttribute(),
and removeAttribute() methods for binding objects to the current page. Objects
bound in page scope only exist for the duration of the current page. Page scope
objects are not shared across multiple JSP, and page scope is intended only for
passing objects between custom actions and scripting elements. When using JSP
to JSP communication, the request scope is still the appropriate scope to use.

out
The out implicit object is an instance of a javax.servlet.jsp.JspWriter object
and is used to send content in a response. The JspWriter object emulates some
of the functionality found in the java.io.PrintWriter and java.io.Buffered
Writer objects to provide a convenient method of writing text in a buffered

154 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 154

fashion. The out implicit object can be configured on a per JSP basis by the page
directive.

Buffering
The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in a way that depends on whether the page is or is not buffered.
If the page is not buffered, output written to this JspWriter object will be written
through to the PrintWriter directly. But if the page is buffered, the PrintWriter
object will not be created until the buffer is flushed, meaning operations like
setContentType() are legal until the buffer gets flushed. Since this flexibility
simplifies programming substantially, buffering is the default for JSP pages.

By using buffering, the issue is raised about what happens when the buffer is
exceeded. Two possibilities exist:

Flush the Buffer One straightforward option is to simply flush the buffer once
it is full. Content that would normally overflow the buffer now would not
because the buffer writes extra content to a client. The drawback to this approach
is that HTTP headers cannot be changed once content has been sent to a client.
Headers always appear at the beginning of a HTTP response so they must be
finalized before any content is flushed by the buffer.

Throw an Exception Flushing the buffer is not a good approach when strict
control needs to be kept over when content is sent to a client. In cases like this,
exceeding the buffer is a fatal error. Doing so causes an exception to be thrown.

Both approaches are valid, and thus both are supported by JSP. The
behavior of a page is controlled by the autoFlush attribute, which defaults to
true. In general, JSP that need to be sure correct and complete data has been
sent to their client may want to set autoFlush to false. On the other hand, JSP
that do not need strict control can leave the autoFlush attribute as true, which
is commonly the case when sending HTML to a browser. The two types of
buffer uses are best suited for different needs and should be considered on a per
use basis.

JspWriter and Response Committed Exceptions
A far too common and misunderstood error when using JSP is the
IllegalStateException exception with “response already committed” given as
the exception’s message. This error arises after a JspWriter has sent some infor-
mation to a client and a JSP tries to do something assuming no content has been

IMPLICIT OBJECTS 155

falkner.ch3.qxd 8/21/03 7:06 PM Page 155

sent. Avoiding this exception is easily done but requires that when a developer
programs, he or she is conscious of how the JspWriter object works. The fol-
lowing are the two primary culprits of the aforementioned exception.

Manipulating Headers With JSP, manipulation of the HTTP response
headers is only allowed before the actual content of the response is sent. When
phrased like this, it should seem quite intuitive, but far too often a JSP developer
will ask why an IllegalStateException is thrown when they are changing
header information. An easy fix for this problem is to either increase the buffer
size by increasing the value of the page directive buffer attribute or simply
moving problematic code to the top of the JSP. Moving header-changing code
before content-generating code usually ensures there are no buffer conflicts when
editing HTTP header information.

Forwarding When forwarding between JSP, complete control of the Servlet
Request and ServletResponse objects is given to the forwarded JSP. This allows
for the forwarded page to have complete control over generating the appropriate
response. Unlike Servlets, JSP automatically calls the HttpServletRequest
getWriter() method to get a suitable object for writing information to a client.
Forwarding between two JSP ensures calling this method twice, which in a
normal Servlet would throw an exception. However, JSP bends this rule slightly
by taking advantage of the JspWriter buffer. Should a JSP forward a request to
another JSP after content has been sent to the buffer but before the response has
been committed to a client, then everything is fine. The buffered data is simply
discarded and the new JSP can freely create a response to a client. Should a JSP
commit a response to a client and then forward the request to a different JSP, an
exception occurs.

Committing a response and then forwarding a request always throws an
IllegalStateException. The problem can be solved by either including all
information in one JSP, not committing the response, or including the desired
JSP rather than forwarding to it. An inclusion reuses the JspWriter object of the
page doing the include.

Understand and avoid the above two problems. The cryptic error commonly
plagues new JSP developers. Solving the problem is easy if the JspWriter object
and associated buffer are properly understood.

config
The normal JSP deployment scheme automatically done by a container works,
but nothing stops a JSP developer from declaring and mapping a JSP via the Web

156 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 156

IMPLICIT OBJECTS 157

Application Deployment Descriptor, web.xml. A JSP can be manually deployed in
the same fashion as a Servlet by creating a Servlet declaration in web.xml and
replacing the servlet-class element with the jsp-page element. After being
declared, the JSP can be mapped to a single or set of URLs same as a Servlet.

As an example, if it was necessary to remove the ShowHeaders Servlet and
map ShowHeaders.jsp to the/ShowHeaders path in addition to the automatically
defined /ShowHeaders.jsp path, the task could be accomplished with the fol-
lowing entries in web.xml.

<servlet>

<servlet-name>ShowHeaders</servlet-name>

<jsp-file>/ShowHeaders.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>ShowHeaders</servlet-name>

<url-pattern>/ShowHeaders</url-pattern>

</servlet-mapping>

The only change was replacing the previous line, <servlet-class>com.
jspbook.ShowHeaders</servlet-class>, with the jsp-file element and the
location of the JSP.

Initial Configuration Parameters
Through use of the jsp-file element, a JSP can be mapped using a custom entry
in web.xml. All of the child elements of the servlet element are still valid, and
initial parameters can be defined. In Chapter 2 the InternationalizedHello-
World Servlet, Listing 2-3, was used to demonstrate the functionality of initial
parameters. Listing 3-25 is a quick rehash of the example, but in JSP form.

Listing 3-25 InternationalizedHelloWorld.jsp

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1><%=config.getInitParameter("greeting")%></h1>

</body>

</html>

The code is nothing spectacular. What is important to notice is the JSP relies
on an initial parameter named “greeting”. Without the initial parameter, the JSP

falkner.ch3.qxd 8/21/03 7:06 PM Page 157

would not function correctly, but a container will automatically deploy the page
anyhow. Save the code as InternationalizedHelloWorld.jsp in the base
directory of the jspbook Web Application and browse to http://127.0.0.1/
jspbook/InternationalizedHelloWorld.jsp. A page appears that says “null”.
Figure 3-13 shows a browser rendering of the output. By default a JSP has no
initial parameters, and a JSP container doesn’t validate that initial parameters are
properly defined before deploying a JSP. The result is a HelloWorld example that
says nothing.

To fix the JSP, an entry in web.xml needs to be made so the “greeting” initial
parameter can be defined. Add the following elements to web.xml.

<servlet>

<servlet-name>InternationalizedHelloWorldJSP</servlet-name>

<jsp-file>/InternationalizedHelloWorld.jsp</jsp-file>

<init-param>

<param-name>greeting</param-name>

<param-value>Bonjour!</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>InternationalizedHelloWorldJSP</servlet-name>

<url-pattern>/InternationalizedHelloWorld.jsp</url-pattern>

</servlet-mapping>

The servlet element defines a Servlet deployment for the Servlet generated
from InternationalizedHelloWorld.jsp, and the servlet-mapping element
maps the URL pattern /InternationalizedHelloWorld.jsp to the JSP. Inside
the servlet element, the needed “greeting” initial parameter is given to make the
JSP display a “Hello World” message. Reload the jspbook Web Application and

158 JAVASERVER PAGES

Figure 3-13 InternationalizedHelloWorld.jsp without Initial Parameters

falkner.ch3.qxd 8/21/03 7:06 PM Page 158

browse back to http://127.0.0.1/jspbook/InternationalizedHelloWorld.
jsp. This time the JSP displays the appropriate hello message. Figure 3-14 shows
a browser rendering of the output.

page
The page implicit object represents the current class implementation of the page
being evaluated. If the scripting language of the page is java, which by default it
is, the page object is equivalent to the this keyword of a Java class.

JSP in XML Syntax
JSP comes in two different varieties of syntax. The original, or classic, JSP uses a
free-form syntax. With JSP 1.2, another XML-compliant form of JSP syntax, JSP
Documents, was introduced. Both syntaxes provide the same functionality and
take advantage of all the features of JSP. The reason the second syntax was intro-
duced was to keep JSP current with the widespread adoption of XML. XML-
compliant JSP can be created and manipulated using any existing XML tool.
Classic JSP requires a specialized parser built to specifically understand the
unique syntax of JSP.

Since the introduction of XML-compliant JSP, there have been no significant
moves in the JSP community toward supporting the new syntax. The majority of
JSP developers, books, and tools still largely use the classic JSP. Reasons for this
are partly due to the fact that JSP documents are new, but are largely related to
the fact that JSP XML syntax is not easy to use. In some senses the first release of
the JSP XML syntax was very half-baked in an odd way. It is too strict. The syntax

JSP IN XML SYNTAX 159

Figure 3-14 InternationalizedHelloWorld.jsp with Parameters

falkner.ch3.qxd 8/21/03 7:06 PM Page 159

does not lack compliance to XML rules, nor does it lack functionality. It is just
too restrictive and cryptic for the average JSP developer to use.

The best way to illustrate the original flaw in JSP XML syntax is by showing
a small example. This page is a simple version of what can be expected to be seen
in most JSP. Listing 3-26 is the version of the page in the classic JSP syntax.

Listing 3-26 ClassicJSP.jsp

<html>

<head>

<title>A Simple Page in Classic JSP</title>

</head>

<body>

<h1>A Title</h1>

<% String text = "bold text";

String link = "http://www.jspbook.com";

if (true) { %>

Here is bold text: <%= text %>

<% } %>

A link to a <a href="<%= link %>">website.

</body>

</html>

Everything above should be recognizable. It is a page that uses a few scriptlets
and expressions. Listing 3-27 shows the same code in a JSP Document.

Listing 3-27 JSPDocument.jsp

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

<html>

<head>

<title>A Simple Page in XML Compatible JSP</title>

</head>

<body>

<h1>A Title</h1>

<jsp:scriptlet>

String text = "bold text";

String link = "http://www.jspbook.com";

if (true) {

</jsp:scriptlet>

Here is bold text:

<jsp:expression>text</jsp:expression><![CDATA[
]]>

<jsp:scriptlet>}</jsp:scriptlet>

<![CDATA[A link to a

160 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 160

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

</body>

</html>

</jsp:root>

The first point to notice is that the page gets bigger. This is always a minor
drawback to using any form of XML. A little bit of space inefficiency is paid for
compliance to XML document structuring rules. The space itself is not of
concern in this case, but what should be a concern is that the JSP can no longer
use free-form text. The JSP scripting elements must be expanded into full tags,
and noncompliant HTML must be surrounded by a special XML syntax,
<![CDATA[]]>. This is tedious to author and makes a page hard to maintain
without a special XML reading and writing tool.

JSP Documents are not all bad. The idea behind them is a good one. XML,
when used as intended, can be a very helpful thing. Custom XML documents can
be incredibly easy to understand and are easily manipulated by countless XML
tools that currently exist. The only drawback is that HTML is not XML. JSP is
largely promoted as a tool that makes dynamic HTML generation easy. This is
not a restriction of JSP, but it is arguably the most common use of the technology.
The question to answer is, “To what extent is XML compatibility needed in your
code?” If JSP need to be manipulated easily by other code, then XML is a good
choice. The other question to ask is, “Are you only using JSP to simplify creating
dynamic HTML?” If so, then it is a better choice to use the original JSP syntax.

In previous versions of JSP, the majority of users were geared toward using
JSP for creating dynamic HTML. This is largely due to the fact that HTML has
been the dominant technology on the Web, and this explains very much why JSP
was originally created to simplify the task of creating it. However, HTML is no
longer the most popular technology to use. XML, while not perfect, adequately
fills the deficiencies of many technologies, including HTML, and has gained huge
momentum, which is shown by industry-wide use. Currently, one of the best
approaches to managing content is to either store it or communicate it via XML.
Using XML for these purposes allows information to easily be shared and main-
tained in a meaningful manner. Because of this great flexibility, the trend has
been to move away from more limited technologies, such as HTML, and toward
XML. JSP reflects these changes as it too has changed to better incorporate XML
for use in the J2EE Web Tier.

Understanding JSP documents is important. XML use will only continue to
grow in the future, and it is important to understand what flexibility JSP has for
interacting with it. Understanding how to author JSP documents is also easy as

JSP IN XML SYNTAX 161

falkner.ch3.qxd 8/21/03 7:06 PM Page 161

162 JAVASERVER PAGES

long as you understand a few simple conversion rules between classic JSP and JSP
in XML syntax.

XML Rules
XML rules is quite the pun. XML does rule as a technology for authoring and
sharing information on the Internet, but XML does have some important rules
one must follow when using it. JSP Documents automatically inherit these rules.
It does little good to directly explain JSP in XML syntax if regular XML syntax is
not understood. However, this book is not about XML. It is about JSP and
Servlets. A full tutorial on XML is not given in this book. Only the basics are
explained to help get through the majority of the JSP in XML syntax use cases. If
you are planning on extensively using XML with JSP and do not yet know much
about XML, this book is not a substitute for an XML guide. To accompany this
text, either read through the XML specifications, http://www.w3.org/ XML, or
pick up a good book on XML.

JSP Documents
Aside from understanding the XML rules needed to author JSP in XML syntax,
there are only a few simple conversions between regular JSP and JSP Documents.
Not all pieces of regular JSP syntax are in an XML-incompatible form. JSP
actions and custom actions are already in XML-compatible syntax. They are used
identically in a JSP Document as used in regular JSP. The rest of JSP, namely
scripting elements and directives, need to be converted to an XML form.

JSP Document Declaration
The JSP Document must be completely encapsulated by a root XML element,
root. This element needs to also have the JSP namespace, jsp, pre-appended
along with a declaration for the namespace. In general, a JSP Document always
resembles Listing 3-28.

Listing 3-28 Declaration of a JSP Document

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

// JSP Document contents

</jsp:root>

The content encapsulated by the JSP Document is the content of the JSP.

falkner.ch3.qxd 8/21/03 7:06 PM Page 162

JSP IN XML SYNTAX 163

Scripting Elements
All scripting elements must be converted for use in a JSP Document. The
scripting element syntax classic JSP uses directly conflicts with XML syntax.
Instead of using <% %>, <%= %>, and <%! %>, for scriptlets, expressions, and decla-
rations, use <jsp:scriptlet></jsp:scriptlet>, <jsp:expression></jsp:

expression>, and <jsp:declaration></jsp:declaration>, respectively.
This conversion in most cases is quite simple. Refer back to the first classic

JSP versus JSP Document example, Listing 3-25 and Listing 3-26. Here is a
section of the code from the classic JSP example that uses scriptlets and expres-
sions.

<% String text = "bold text";

String link = "http://www.jspbook.com";

if (true) { %>

Here is bold text: <%= text %>

<% } %>

A link to a <a href="<%= link %>">website.

Highlighted are the scriptlets and expressions. The conversion to JSP in XML
syntax is the following:

<jsp:scriptlet>

String text = "bold text";

String link = "http://www.jspbook.com";

if (true) {

</jsp:scriptlet>

Here is bold text:

<jsp:expression>text</jsp:expression><![CDATA[
]]>

<jsp:scriptlet>}</jsp:scriptlet>

<![CDATA[A link to a

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

The straight change from classic scripting elements to JSP Document

equivalents should be easily seen. Any text search and replace tool

can easily accomplish the job. The more difficult part is checking

to make sure the conversion results in a valid XML document. In the

preceding case, it didn’t. The example specifically included one of

the most common errors that occurs when using JSP Documents. In a

classic JSP, it is perfectly valid to use an expression or

scriptlet right in the middle of template text: A link to a <a

href="<%= link %>">website.

falkner.ch3.qxd 8/21/03 7:06 PM Page 163

164 JAVASERVER PAGES

In the trivial conversion to a JSP Document, this initially becomes the fol-
lowing:

A link to a <a href="

<jsp:expression>link</jsp:expression>

">website.

However, the above code is not XML because the document is no longer well
formed. The template text was being treated as XML. Embedding an expression
tag for an attribute value is not allowed. To solve this problem, the conversion has
to also include a specific encapsulation of the template text with XML CDATA sec-
tions or represent the problematic content with entities.

<![CDATA[A link to a

<jsp:expression>link</jsp:expression>

<![CDATA[">website.]]>

CDATA sections were used in the preceding snippet. It is a choice of personal
preference choosing to use CDATA sections or entities when handling offending
code. The point is, that converting straight between <% %> and <jsp:scriptlet>
</ jsp:scriptlet> is trivial. What matters most is making sure a well-formed
XML document is created. If not, replace offending code with entities or CDATA
sections.

Directives
Recall that JSP directives always follow the format <%@directive {attribute=

"value"}* %> ,where directive is the directive’s name and attributes is a set of
attributes with specified values. Like the scripting elements, this syntax does not
comply with XML and needs to be converted. Unlike scripting elements the con-
version is always trivial. JSP Documents use directives same as classic JSP but
with the following syntax: <jsp:directive.directive {attribute="value"}

*/>. The conversion is just a straight swap and includes the same directive and
attribute values.

For clarity, Listing 3-29 shows a brief example of a JSP in classic syntax,
which uses a page and include directive.

Listing 3-29 JSPDocumentDirectives.jsp

<%@page errorPage="ErrorPage.jsp"%>

<%@include file="header.jsp"%>

falkner.ch3.qxd 8/21/03 7:06 PM Page 164

SUMMARY 165

<h1>A Title</h1>

<p>Some text.</p>

<%@include file="footer.jsp"%>

Converting the preceding code to XML syntax is as easy as doing a direct
replacement of the directives. In general, this will always be the case with direc-
tives (Listing 3-30).

Listing 3-30 JSPDirectives.jsp

<?xml version="1.0"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:directive.page errorPage="ErrorPage.jsp"/>

<jsp:directive.include file="header.jsp"/>

<h1>A Title</h1>

<p>Some text.</p>

<jsp:directive.include file="footer.jsp"/>

</jsp:root>

Encapsulating Template Text
One of the unaccountably ridiculous requirements of the original JSP in XML
syntax is to require JSP Documents to surround template text with <jsp:text>
elements. There are no XML requirements mandating this. This requirement was
intended to be a feature for aiding JSP parsers but greatly complicates authoring
template text in JSP Documents.

Summary
This chapter is an introduction to JavaServer Pages (JSP). JSP is a complementary
technology to Servlets that provides an incredibly efficient way of developing a
text-producing Servlet. Unlike Servlets, JSP is not authored in a Java 2-compliant
syntax, but JSP is translated to and managed by a container same as a Servlet.
After authoring a JSP, there is no need to manually deploy the JSP to a URL
extension via web.xml. A container automatically deploys a JSP, but a web.xml
entry can still be used to provide initial parameters or arbitrary URL extensions
for a JSP.

A JSP is divided into two main parts: template text and dynamic elements.
Template text consists of everything that would normally appear in print() or
println() calls of a Servlet. Dynamic elements are special bits of syntax defined
by the JSP specifications. A dynamic element is not treated directly as text but is
instead evaluated by a container to perform some custom functionality.

falkner.ch3.qxd 8/21/03 7:06 PM Page 165

JSP elements are broken down into three main categories: scripting ele-
ments, directives, and actions. Scripting elements are a method of directly
embedding code between template text. Directives are a method of giving a JSP
container configuration information at translation time. Actions are used to link
XML-compatible tags to custom code that is not included in the JSP. The JSP
specifications define a few default actions, but there also exists a method for
binding custom code to custom actions. Custom actions are one of the more
powerful features of JSP and are left for full coverage in Chapter 7.

There are two different syntax styles available for authoring JSP. The first is
the classic JSP syntax and has been available since the original release of JSP. This
classic syntax is what the majority of this book uses and is what is commonly
considered the easiest syntax to author JSP. The alternative JSP syntax is available
for situations where it is helpful to have a JSP be authored as an XML-compliant
document. Both syntax styles provide the same functionality. Converting
between the two types of JSP syntax is usually a trivial task.

166 JAVASERVER PAGES

falkner.ch3.qxd 8/21/03 7:06 PM Page 166

167

Chapter 4

Exception Handling

Exceptions are an integral part of the Java programming language. When a
program violates the rules of Java, the Java Virtual Machine halts execution of the
program and generates an exception. Managing exceptions is something every
Java program must do. Servlets and JSP are no different. Until now, the topic of
programming errors has largely been ignored in favor of introducing JSP and
Servlets. While necessary for the start of this book, errors are inevitable and need
to be understood so they can be dealt with appropriately. It is the goal of this
chapter to clearly explain what exceptions are and how to deal with them in
Servlets and JSP.

This chapter discusses the following topics:

• A general review of Java’s support for exceptions and how Java
exception handling works.

• How to handle Servlet and JSP exceptions using Java’s built-in
exception handling mechanism.

• How to handle exceptions using the Servlet-specific Web
Application Deployment Descriptor called web.xml.

• An introduction to the java.util.logging package for appropri-
ately handling information that needs to be recorded, including a
focus on logging exception information.

• A general philosophy for a Web Application’s exception handling
and logging.

The preceding points imply this chapter assumes little to nothing about pre-
vious knowledge of Java exception handling. This implication is true; the chapter
is designed to be suited for both Java developers and “Java” developers who never
bothered to truly learn exception handling, who are surprisingly abundant. The
chapter is designed to be read straight through, but if you already have a firm

falkner.ch4.qxd 8/21/03 5:16 PM Page 167

168 EXCEPTION HANDLING

grasp on Java exception handling, you may skip the first section and start in on
the discussion of Servlet and JSP exception handling.

Errors and Exceptions
All Java errors are subclasses of the java.lang.Throwable class. When an error
occurs within a running program, an appropriate instance of this class is created
and said to be thrown. The same code can then catch the exception and handle it
or let the JVM handle the problem, which usually results in terminating the
current program. In some cases Java enforces code to try and handle exceptions,
and in others the exceptions are left to freely pass to a JVM.

There are three main subclasses of the Throwable class that divide all errors
into three main categories. As shown in Figure 4-1, errors in Java are grouped as
either instances of the Error, Exception, or RuntimeException class.

Of the three primary Throwable subclasses, the most well-known branch is
instances of Exception. The Exception object represents a problem that a
program must be able to catch. If code neglects to properly catch all instances of
Exception objects, a Java compiler will refuse to compile the delinquent code.
Complementing Exception classes, instances of the RuntimeException class rep-
resent a runtime error that does not need to be caught by code. However, just
because the error does not need to be caught does not mean it is not a serious
problem. Instances of RuntimeException objects are used when an error should
not be handled by local code and would only clutter things up if declared as an
Exception. While helpful, RuntimeExceptions are inherently dangerous since
they do not require code to account for them. RuntimeException objects are not
as commonly used as Exception objects because of this risk. The third branch of

Throwable

Error Exception

RuntimeException

Figure 4-1 Throwable Subclass Tree

falkner.ch4.qxd 8/21/03 5:16 PM Page 168

ERRORS AND EXCEPTIONS 169

Throwable objects is subclasses of Error. An instance of the Error class represents
something abnormally wrong that applications should not try to catch. If an
instance of an Error object is thrown, it is almost always catastrophic to the exe-
cuting program.

When programming a Web Application, it is common to use code that throws
Exception objects, and in many cases, it is also helpful to design code for throwing
and catching RuntimeException objects. Both Exception and RuntimeException
objects are further covered by this chapter. Instances of the Error class are
assumed to never occur and are considered outside the scope of this book.

Throwing Exceptions
Exceptions are thrown by use of the throw keyword followed by the Throwable
object to be thrown. An exception may be thrown at any time, but the intended
purpose of the throw keyword is to allow an exception to be thrown when a
problem is detected at runtime. There are many good uses for throwing excep-
tions. One of the most common uses of exceptions is to verify correct parameters
are passed into a function call. An exception can be thrown with a good expla-
nation of what went wrong instead of using a convoluted system of return values.
Listing 4-1 resembles code that accomplishes this.

Listing 4-1 Use of the throw Keyword

public void fooMethod(String value1, String value2) {

if (value1 == null)

throw new Exception("Value 1 can't be null!");

if (value2 == null)

throw new Exception("Value 2 can't be null!");

// method's code...

}

Accompanying the throw keyword is the throws clause. The throws clause
extends the signature of a method to reflect the fact that an exception might be
thrown. Each method that uses the throw keyword and does not catch the
exception must use the throws clause to declare Exception objects that are
uncaught. To apply the throws clause to the preceding code, you would need to
change the code to resemble Listing 4-2.

Listing 4-2 Proper Use of the throw Keyword

public void fooMethod(String value1, String value2)

throws Exception {

if (value1 == null)

falkner.ch4.qxd 8/21/03 5:16 PM Page 169

throw new Exception("Value 1 can't be null!");

if (value2 == null)

throw new Exception("Value 2 can't be null!");

// method's code...

}

Subclassing Exception
It is always good to code with exceptions in mind. The Java exception handling
mechanism is incredibly helpful for keeping code running smoothly and
debugging a problem when something goes wrong. While valid, the previously
given examples of exception throwing are skewed for the purposes of illustrating
how the functionality works. In real use exceptions are almost never thrown as a
direct instance of the Exception class. Exceptions are best thrown as a specific
subclass of Exception that better relates to the nature of the exception.

A custom exception can easily be made by subclassing Exception. In general,
code for a custom error is usually nothing more than a class that extends
Exception with a call to the Exception constructor in its own, as shown in
Listing 4-3.

Listing 4-3 CustomException.java

package com.jspbook.foo;

public class CustomException extends Exception {

public CustomException(String message) {

super(message);

}

}

The CustomException code is to appear in an upcoming example, so it is
placed in the com.jspbook.foo package. Save and compile CustomException.
java in the /WEB-INF/classes/com/jspbook/foo directory of the jspbook Web
Application.

Consolidation of Throwable Classes
In most cases it is impractical to throw every single type of exception that occurs.
Cluttering up a method declaration only to include countless types of Throwable
classes is not good practice in Java programming. A better solution is to consol-
idate types of Throwable classes by wrapping them with custom-categorized
Throwable classes. If two or more types of exceptions really mean the same thing

170 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:16 PM Page 170

and are meant to be handled identically by catching code, then there is reason to
consolidate them.

A good method of consolidating Throwable classes with a Web Application is
to break exceptions into two categories, user-related exceptions and critical appli-
cation exceptions. These two exceptions represent the general type of problems
that might occur during runtime: either a user makes a mistake or the application
fails to work as expected. In the case of a user mistake it is helpful to catch the
problem and inform the user what they did wrong. In the case of an application
mistake there is little a user can do. Instead an application mistake should display
a polite error page to a user while simultaneously notifying the administrators.

The user and application types of exceptions are encouraged for use and fol-
lowed throughout this book. For future examples save the following two classes.
Listing 4-4 displays the custom Throwable class representing a user exception.
The exception should immediately raise an alarm and so is made a “checked”
exception by subclassing Exception.

Listing 4-4 UserException.java

package com.jspbook;

public class UserException extends Exception {

// A constructor to set the description of the exception

public UserException(String description) {

super(description);

}

}

The second class represents unforeseen application exceptions, as displayed
in Listing 4-5. Any exception of this type is completely unexpected and represents
a potentially serious problem with the Web Application. This exception is not
made “checked”, but assumed to be caught by one consolidated mechanism that
appropriately logs the problem and notifies administrators. By extending the
RuntimeException class, the code is not cluttered needlessly handling the
problem since it should never occur.

Listing 4-5 AdminException.java

package com.jspbook;

public class AdminException extends RuntimeException {

// A constructor to set the description of the exception

ERRORS AND EXCEPTIONS 171

falkner.ch4.qxd 8/21/03 5:16 PM Page 171

public AdminException(String description) {

super(description);

}

}

Save and compile both of the preceding classes in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application. Appropriately handling
the preceding two exceptions is something that is developed throughout this
chapter. There are many good methods, some with advantages compared to
others, but before introducing anything complex, let’s start the discussion at the
basic level.

Try, Catch, Finally
Throwing exceptions is good, but catching them is just as important. Throwing
an exception straight to the JVM is never good practice because it can result in
stopping your application. When possible it is best to keep exception handling
local. The Java specification uses the try statement with a catch clause to respec-
tively attempt to execute possible exception throwing code and to handle any
exceptions that might be thrown. The general format is to surround exception
throwing code with a try statement and follow with one or more catch clauses
to handle the different types of Throwable objects that might arise.

Before giving an example of the try-catch functionality, some code is needed
that throws exceptions. Because this code is purely educational, it will accompany
CustomException.java in the foo package. Save and compile Listing 4-6 in the
/WEB-INF/classes/com/jspbook/foo directory of the jspbook Web Application.

Listing 4-6 ExceptionThrower.java

package com.jspbook.foo;

public class ExceptionThrower {

public static void throwException(String message) throws

Exception{

throw new Exception(message);

}

public static void throwCustomException(String message)

throws CustomException{

throw new CustomException(message);

}

}

172 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:16 PM Page 172

The ExceptionThrower.java only exists to throw Exception and Custom
Exception objects. Its purpose is to provide a mock setup in which differing
exceptions are thrown so the try-catch statement can be demonstrated. The JSP
in Listing 4-7 uses the ExceptionThrower class to randomly throw an instance of
either a CustomException or Exception object. A try statement surrounds the
code with catch clauses to handle both types of exceptions.

Listing 4-7 ExceptionThrower.jsp

<%@ page import="com.jspbook.foo.*" %>

<html>

<head>

<title>ExceptionThrower</title>

</head>

<body>

<%

try {

double rand = Math.random();

if (rand <.5) {

ExceptionThrower.throwException("foo");

}

ExceptionThrower.throwCustomException("foo");

}

catch (CustomException e) {

out.println("Caught a CustomException: " + e.getMessage());

}

catch (Exception e) {

out.println("Caught a Exception: " + e.getMessage());

}

%>

</body>

</html>

Save ExceptionThrower.jsp in the base directory of the jspbook Web
Application and browse to http://127.0.0.1/jspbook/ExceptionThrower.jsp.
Each visit to the page causes either an Exception or CustomException to be
thrown. Instead of seeing an error page (as shown later in Figure 4-3), the JSP
catches the error and displays a little information about it. Figure 4-2 shows a
browser rendering of the output.

In many situations code is going to be throwing various types of exceptions.
Some exceptions might be caused from a user error, while others could be a
critical bug in an application. Being able to catch, distinguish, and appropriately
handle these exceptions is a necessity in keeping a Web Application running

ERRORS AND EXCEPTIONS 173

falkner.ch4.qxd 8/21/03 5:16 PM Page 173

smoothly. The try-catch mechanism appears quite often throughout this book,
and it is important to be familiar with it.

Finally
When an exception is thrown, the offending code is stopped and control is passed
to the code responsible for catching the exception. Stopping executing code in
this manner is not always safe. Resources initially declared by the offending code
are ignored, and there is no guarantee that they are properly cleaned up. With
local variables and object references, the garbage collector still works, but in cases
where non-local objects are in use, then a fall-back mechanism is needed to
ensure the resource is properly terminated.

The finally clause complements the try-catch statement to provide this
form of functionality. Whenever a block of code needs to be executed, regardless
if an exception is thrown or not, then it should be included in a finally clause.
Blocks of code appearing in a finally clause are always executed even if an exe-
cuting of code in the try block is halted due to an exception.

JSP and Servlet Exceptions
With JSP and Servlets it is imperative to always catch exceptions. Should an
exception be thrown from either a JSP or Servlet, it is passed to the container.
What a container does with an exception differs, depending on the container
vendor and the container’s configuration, but by default a container usually tries
to help by sending an error message followed by a stack trace to the client.
Leaving a visitor with this type of page is not recommended if the client is valued.

174 EXCEPTION HANDLING

Figure 4-2 Browser Rendering of ExceptionThrower.jsp

falkner.ch4.qxd 8/21/03 5:16 PM Page 174

Tomcat provides a good example of what type of page a user of a Web
Application should never be allowed to see. If an exception happens to be thrown
from either a JSP or Servlet, Tomcat automatically generates a simple error page.
In case you don’t know what this error page looks like, it can easily be found by
throwing an unaccounted-for exception intentionally, as displayed in Listing 4-8.

Listing 4-8 ThrowException.jsp

<%

if (true)

throw new Exception("An Exception foo!");

%>

Save ThrowException.jsp in the base directory of the jspbook Web
Application and browse to http://127.0.0.1/jspbook/ThrowException.jsp.
ThrowException.jsp throws an exception and lets Tomcat figure out what to do
with it. Figure 4-3 shows a browser rendering of the Tomcat-generated
debugging message.

JSP AND SERVLET EXCEPTIONS 175

Figure 4-3 Browser Rendering of ThrowException.jsp

falkner.ch4.qxd 8/21/03 5:16 PM Page 175

Figure 4-3 is hideous! There are easy ways to make sure a Web Application
never lets a client see a generated exception page. In addition to using try-catch-
finally statements, JSP and Servlets define specific methods for effectively man-
aging exceptions. There is no excuse not to use them, and they ensure a visitor is
never left with a cryptic error page.

Web Application Exception Handling
Exceptions thrown from a Servlet or JSP can be handled on an individual basis or
on an application-wide basis. There are advantages to each of these approaches,
and both deserve a full explanation. Handling exceptions on an individual basis
slightly differs between Servlets and JSP, but primarily involves directly using try-
catch-finally statements. The macro approach to Web Application error handling
is through using web.xml to direct exceptions to custom-defined error pages.

Micro-Managing Exceptions
As with the previous examples in this chapter exceptions can easily be micro-
managed through use of try-catch-finally statements. Both JSP and Servlets allow
for directly embedding try-catch-finally statements. The functionality should be
used liberally.

Error Handling JSP
In addition to the try-catch-finally statement, JavaServer Pages can use the page
directive to specify a page that uncaught exceptions are passed to. The page
directive’s errorPage attribute can be assigned a relative URL value representing
a JSP or Servlet especially designed to be an error page. A JSP designed to be an
error page can set the page directive isErrorPage attribute to true; this makes
the exception implicit scripting variable automatically available to represent a
passed exception.

JSP error pages are a good way to ensure that raw exception messages with
stack traces never reach a user. A JSP designed to be an error page can be styled
to match the rest of a Web Application and show a polite message explaining a
problem has occurred. Listing 4-9 displays the code for a simple custom JSP error
page.

Listing 4-9 ErrorPage.jsp

<%@ page isErrorPage="true" %>

<html>

<head>

176 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:16 PM Page 176

<title>An Error Has Occurred!</title>

</head>

<body>

<h3>An Error Has Occurred</h3>

Sorry, but this site is unavailable to render the service you

requested. A bug in the system has caused an error to occur.

Please send a description of the problem to

<%= application.getInitParameter("admin email") %>.

</body>

</html>

Save ErrorPage.jsp in the base directory of the jspbook Web Application.
Because an error page is never intended for direct viewing, save the code in
Listing 4-10 so that ErrorPage.jsp can be demonstrated.

Listing 4-10 ThrowExceptionToErrorPage.jsp

<%@ page errorPage="ErrorPage.jsp" %>

<%

if (true)

throw new Exception("An Exception!");

%>

The preceding code does a good job of representing a problematic JSP that
uses ErrorPage.jsp as its error page. Save ThrowExceptionToErrorPage.jsp in
the base directory of the jspbook Web Application and browse to http://127.
0.0.1/jspbook/ThrowExceptionToErrorPage.jsp. Instead of displaying Figure
4-3 that you saw previously as a result of ThrowException.jsp, a friendly page is
displayed. A brief explanation is given and a contact is provided for complaints.
Figure 4-4 shows a browser rendering of the output from ErrorPage.jsp.

ErrorPage.jsp is only a simple example of a JSP error page. It is the equiv-
alent of forwarding a request to a different resource after an exception is caught.
More complex JSP error pages can be built that take advantage of the exception
implicit object. When an exception is thrown by a page using the errorPage
attribute of the page directive, the exception’s information is not lost. An instance
of the Throwable object is saved in request scope under the name javax.
servlet.jsp.jspException. A Servlet or JSP being used as an error page can
access this object in an attempt to find out what caused the problem. JSP provides
a convenient mechanism for this purpose. The page directive isErrorPage
attribute specifies if a JSP should automatically try to initialize the exception
implicit scripting variable as a reference to the request scope attribute named

WEB APPLICATION EXCEPTION HANDLING 177

falkner.ch4.qxd 8/21/03 5:16 PM Page 177

javax.servlet.jsp.jspException. By setting the isErrorPage attribute to
true, a JSP automatically has access to a passed exception.

A more helpful version of a JSP error page can be created by modifying
ErrorPage.jsp. Relying on users to accurately describe what caused a problem is
not a good idea. A better solution is to provide them with an error code
description for inclusion with their feedback. The code in Listing 4-11 modifies
ErrorPage.jsp to provide this functionality.

Listing 4-11 EnhancedErrorPage.jsp

<%@ page isErrorPage="true" %>

<html>

<head>

<title>An Error Has Occurred!</title>

</head>

<body>

<h3>An Error Has Occurred</h3>

Sorry, but this site is unavailable to render the service you

requested. A bug in the system has caused an error to occur.

Please send a description of the problem to

<%= application.getInitParameter("admin email") %> with,

"<%=exception.getMessage()%>", listed as the cause of the error.

</body>

</html>

EnhancedErrorPage.jsp provides a user with both a contact email and an
exception message that appear optionally along with feedback. By modifying
ThrowExceptionToErrorPage.jsp, an error message can be passed for Enhanced
ErrorPage.jsp to use, as shown in Listing 4-12.

178 EXCEPTION HANDLING

Figure 4-4 Browser Rendering of ErrorPage.jsp

falkner.ch4.qxd 8/21/03 5:16 PM Page 178

Listing 4-12 ThrowExceptionToEnhancedErrorPage.jsp

<%@ page errorPage="EnhancedErrorPage.jsp" %>

<%

if (true)

throw new Exception("Generated by contrived code.");

%>

Save both EnhancedErrorPage.jsp and ThrowExceptionToEnhancedError
Page.jsp in the base directory of the jspbook Web Application and browse to
http://127.0.0.1/jspbook/ThrowExceptionToEnhancedErrorPage.jsp. This
time, in addition to the polite error page an exception message is provided for the
user to send as feedback. The exception message is the same one used in the con-
structor of the exception. Figure 4-5 shows a browser rendering of the output.

Error Handling Servlets
JSP is generally the easiest method of providing custom HTML error pages, but
Servlets work equally as well. In Servlets there is no equivalent of the page
directive’s convenient isErrorPage attribute. To achieve the same functionality, a
Servlet acting as an error page has to explicitly retrieve the Throwable object from
request scope. This is not a difficult task, and it can be done by any Servlet.

The Servlet equivalent of ErrorPage.jsp has already been demonstrated in
Listing 2-17 in Chapter 2. To modify this example to be a real error page that
mimics EnhancedErrorPage.jsp is actually a trivial task. The code equivalent of
isErrorPage="true" is a few lines of code that access request scope for the
needed attribute. Listing 4-13 creates an EnhancedErrorPage Servlet designed to
act as an error page for JSP.

WEB APPLICATION EXCEPTION HANDLING 179

Figure 4-5 Browser Rendering of EnhancedErrorPage.jsp

falkner.ch4.qxd 8/21/03 5:16 PM Page 179

Listing 4-13 EnhancedErrorPage.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class EnhancedErrorPage extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

// Load contact email from application initial parameters

ServletContext sc = getServletConfig().getServletContext();

String adminEmail = sc.getInitParameter("admin email");

// Get the exception passed by JSP

Exception e =

(Exception)request.getAttribute("javax.servlet.jsp.jspException");

out.println("<html>");

out.println("<head>");

out.println("<title>An Error Has Occurred!</title>");

out.println("</head>");

out.println("<body>");

out.println("<h3>An Error Has Occurred</h3>");

out.println("Sorry, but this site is unavailable to render");

out.println(" the service you requested. A bug in the");

out.println("system has caused an error to occur. Please ");

out.println("send a description of the problem to ");

out.println(adminEmail +" with, \"" + e.getMessage() + "\", ");

out.println(" listed as the cause of the error.");

out.println("</body>");

out.println("</html>");

}

}

180 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:16 PM Page 180

Save EnhancedErrorPage.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application. Deploy the Servlet to the /Enhanced
ErrorPage URL extension and reload the Web Application. The EnhancedErrror
Page Servlet now acts as an error page same as EnhancedErrorPage.jsp. The JSP
in Listing 4-14 throws an Exception to test out the Servlet.

Listing 4-14 EnhancedErrorPageTest.jsp

<%@ page errorPage="EnhancedErrorPage" %>

<%

if (true)

throw new Exception("An Exception!");

%>

Save EnhancedErrorPageTest.jsp in the base directory of the jspbook Web
Application and browse to http://127.0.0.1/jspbook/EnhancedErrorPage
Test.jsp. The same results appear in Figure 4-5 that you saw previously, but with
the Servlet mapped to /EnhancedErrorPage handling the results.

Macro-Managing Exceptions
Handling exceptions on an individual basis is not the only way to deal with errors.
Through use of some exception handling techniques and web.xml, there are
methods of allowing exceptions to be caught and dealt with on an application-
wide basis. This macro style of exception handling consolidates Web Application
error handling and complements individual exception handling techniques by
catching unaccounted for problems.

There are a few good methods for handling exceptions on an application-
wide basis. The most commonly used method is to modify a Web Application’s
default exception handling behavior via web.xml. The process involves letting JSP
and Servlets throw exceptions and having the Web Application direct exceptions
to predefined custom error pages. This mechanism is simple to implement and
does a good job of handling most exceptions. More complicated methods of pro-
viding application-wide exception handling involve strategically designing the
application for the purpose. Often a primary class, usually a Servlet, is used to
handle all requests while dually ensuring proper error handling.

In this chapter only the Web Application configuration is discussed as a
method of application-wide error handling. Other methods involving a pre-
determined application design are kept for discussion with JSP and Servlet
design patterns, Chapter 11.

WEB APPLICATION EXCEPTION HANDLING 181

falkner.ch4.qxd 8/21/03 5:17 PM Page 181

Web Application Error Pages
Error pages can be defined on a per Web Application basis by a Web Application
Deployment Descriptor, web.xml. The error-page element is used to define
error handling based on either the type of exception thrown or the HTTP status
code set for a response. The error-page element must contain sub-elements that
specify both a relative URL to an error page and either the HTTP response code
or Throwable type to associate with it.

Exception-Based Error Pages
Based on the type of the Throwable object thrown, a Web Application can direct
an exception to a specified error page. This functionality is configured in web.xml
by using the error-page element with the exception-class and location sub-
elements. The value specified in the exception-class element’s body needs to be
a fully qualified Java class, and the location element specifies a relative URL for
the appropriate error page in the Web Application. The entry in web.xml always
resembles Listing 4-15.

Listing 4-15 web.xml error-page Element

<error-page>

<exception-type>Throwable</exception-type>

<location>Relative URL</location>

</error-page>

There are three generic types of Throwable objects thrown by Servlets and
JSP: IOException, ServletException, and JspException. When a Servlet is pro-
cessing a call to the service() method, it has the option of throwing either an
instance of an IOException or ServletException. Any JSP processing a request
has the option of throwing an instance of a JspException object. Catching all
three of these exceptions ensures that all checked exceptions thrown by a Servlet
or JSP result in a custom error page. This sort of error catch is quite useful and
can easily be done by adding a single entry to web.xml. Since IOException,
ServletException, and JspException all share the same superclass, Exception,
catching occurrences of the Exception class covers all three, as shown in Listing
4-16.

Listing 4-16 web.xml Error Page for All Checked Exceptions

<error-page>

<exception-type>java.lang.Exception</exception-type>

<location>/ErrorPage.jsp</location>

</error-page>

182 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 182

Add the preceding entry into web.xml after the ending welcome-file-list
tag but before the closing webapp tag. Reload the jspbook Web Application to
reflect the changes. With the new error-page entry, all exceptions are directed to
ErrorPage.jsp. Try browsing back to the ThrowException.jsp, http://127.
0.0.1/jspbook/ThrowException.jsp. Instead of seeing the undesired stack
trace, as shown in Figure 4-3 previously, the content of ErrorPage.jsp is dis-
played. Figure 4-6 shows a browser rendering of the results.

Every Web Application should contain at least one generic error page as just
demonstrated. Ensuring a user never has to see a cryptic stack-trace page is a top
priority of a good Web site. More graceful solutions exist, but a simple, friendly
error page should always be implemented as a starting point.

A Web Application Deployment Descriptor can be used to catch more than
one type of Throwable object. In many cases different Servlets and JSP will throw
different types of exceptions. In these cases it sometimes makes sense to have two
or more different error pages that handle the different types of exceptions.
Multiple error-page entries can be used to solve this problem. However, indi-
vidual entries must have a unique value for the exception-type element. In cases
where both a super- and subclass exist, for instance Exception and Servlet
Exception, the superclass’s error page takes priority.

HTTP Status Code–Based Error Pages
The same error page mechanism available for catching thrown exceptions can be
applied to responses with undesired HTTP headers. This functionality is con-
figured via web.xml by using the error-page element with the error-code and
location sub-elements. The value in the body of the error-code element needs
to be a valid HTTP response code and represents the specific code that results in
a response being redirected to the error page. The location element provides the
relative URL of the appropriate error handling resource located in the Web
Application. The entry in web.xml always resembles Listing 4-17.

Listing 4-17 web.xml error-page Element

<error-page>

<error-code>HTTP Code</error-code>

<location>Relative URL</location>

</error-page>

It is always a good idea to provide a custom error page for all the HTTP error
response codes. As an example, here is the error-page element being used to
provide a custom page for the commonly seen code 404, “File Not Found”, HTTP

WEB APPLICATION EXCEPTION HANDLING 183

falkner.ch4.qxd 8/21/03 5:17 PM Page 183

status code. By default Tomcat sends a server-generated page to describe a 404,
“File Not Found”, error. This page is a little prettier than the generated debugging
page shown for exceptions, but it is nothing special. Figure 4-7 shows an example
of a 404 page that has been generated by Tomcat. This page can be replicated by
trying to browse to any resource that does not exist in the Web Application.

The page is simple and informative but usually does not complement a site’s
style. Additionally, most server-generated pages display some information about
the server sending the page. In cases where it is imperative to keep a secure site,
this has to be removed along with any HTTP headers containing the same infor-
mation.

A web.xml entry for the error code solves the need for a custom page, as illus-
trated in Listing 4-18.

Listing 4-18 web.xml Error Page Entry for HTTP 404 Response Code

<error-page>

<error-code>404</error-code>

<location>/FileNotFound.jsp</location>

</error-page>

The preceding entry for web.xml defines an error page, /FileNotFound.jsp,
to handle all requests to the Web Application that result in an HTTP 404
exception code. Add the example code into web.xml and reload the Web
Application. However, before testing out the error page, save the code in Listing
4-19 as FileNotFound.jsp in the base directory of the jspbook Web Application.

184 EXCEPTION HANDLING

Figure 4-6 Browser Rendering of the web.xml Error Page

falkner.ch4.qxd 8/21/03 5:17 PM Page 184

Listing 4-19 FileNotFound.jsp

<html>

<head>

<title>Bad URL</title>

</head>

<body>

<h3>Bad URL</h3>

The resource you are trying to reach,

<%=request.getRequestURL()%>, does not exist on this server.

</body>

</html>

Test out the new 404 error page by browsing to any resource in the jspbook
Web Application that does not exist. A good choice would be fictitious.jsp.
Browsing to http://127.0.0.1/jspbook/fictitious.jsp normally would result
in a Tomcat-generated error page. Now the custom page, FileNotFound.jsp, is
displayed. Figure 4-8 shows a browser rendering of the results.

Using web.xml, an error page can be specified for any of the HTTP error
response codes. Each response code must have an individual error-page element
with appropriate subelements in web.xml.

WEB APPLICATION EXCEPTION HANDLING 185

Figure 4-7 A Tomcat-Generated 404 Page

falkner.ch4.qxd 8/21/03 5:17 PM Page 185

Customizing Web Application Exception Pages
Web Application error pages are passed extra information in a similar method as
JSP error pages. When web.xml is used to handle an error, in addition to for-
warding a request to the specified error page, a few objects are bound in request
scope that describe the error. These objects are usually of little help to a user, but
they can provide valuable information to developers. The Servlet specification
defines the following attributes to be set by a Web Application in request scope
when an error page is used:

• javax.servlet.error.status_code: The attribute bound in request
scope with the name javax.servlet.error.status_code is an
instance of a java.lang.Integer that represents the HTTP error
status code. This attribute is only set when the error page is used as
a result of an HTTP error status code.

• javax.servlet.error.exception_type: The attribute bound in request
with the name is an instance of a java.lang.Class representing the
type of the Throwable class bound to request scope with the name
javax.servlet.error.exception.

• javax.servlet.error.message: The attribute bound in request with
the name javax.servlet.error.message is a String object with a
description of the error.

• javax.servlet.error.exception: The attribute bound in request scope
with the name javax.servlet.error.exception is an instance of
the java.lang.Throwable object thrown as the exception.

• javax.servlet.error.request_uri: The attribute bound in request
scope with the name javax.servlet.error.request_uri is a

186 EXCEPTION HANDLING

Figure 4-8 Browser Rendering of FileNotFound.jsp

falkner.ch4.qxd 8/21/03 5:17 PM Page 186

WEB APPLICATION EXCEPTION HANDLING 187

1. Installation of the JavaMail API is not difficult. It involves adding the JAR files from the JavaBean
Activation Framework and the JavaMail API to the /WEB-INF/lib directory of a Web Application.
However, configuring an email server can be quirky and is not a tangent we wish to cover in this book.

String object representing the path to the Web Application
resource that resulted in the error.

• javax.servlet.error.servlet_name: The attribute bound in request
scope with the name javax.servlet.error.servlet name is a String
object representing the name of the Servlet that caused the error.

A JSP or Servlet error page can take advantage of these attributes by using the
getAttribute() method of the HttpServletRequest object forwarded to the
error page. In the previous JSP error page example, Listing 4-11, a custom error
page, was presented to a user informing them the appropriate error message to
include with feedback. Taking the example one step further, a custom error page
can be created that includes all of the available attributes sent to an error page. It
usually does little good to directly present this information to a user. Instead,
automatically including debugging with an email message is a better option for
getting the feedback sent.

Sending email is not a trivial task. There are many existing API that implement
popular email protocols, and it is usually easiest to use one of these API. The
official J2EE API for manipulating email is the JavaMail API, http://java.
sun.com/products/javamail/index.html. Unfortunately, it is outside the scope
of this book to provide a tutorial on the JavaMail API; however, it is a good point
to understand that you can send email from a JSP or Servlet. The JSP in Listing 4-
20 works much like the EnhancedErrorPage.jsp but uses the JavaMail API to
send an email to the application’s administration whenever an exception arises.
Please note that this example will not work unless you have installed the JavaMail
API1 and edited the email server configuration information.

Listing 4-20 EmailErrorPage.jsp

<%@ page

isErrorPage="true"

import="

java.util.*,

javax.mail.*,

javax.mail.internet.*" %>kj

<%

Properties props = new Properties();

props.put("mail.smtp.server","your smtp server");

falkner.ch4.qxd 8/21/03 5:17 PM Page 187

Session msession = Session.getInstance(props,null);

// email address from Chapter 2

String email = application.getInitParameter("admin email");

MimeMessage message= new MimeMessage(msession);

message.setSubject("[Application Error]");

message.setFrom(new InternetAddress(email));

message.addRecipient(Message.RecipientType.TO, new

InternetAddress(email));

String debug = "";

Integer status_code

=(Integer)request.getAttribute("javax.servlet.error.status_code");

if (status_code != null) {

debug += "status_code: "+status_code.toString() + "\n";

}

Class exception_type=

(Class)request.getAttribute("javax.servlet.error.exception_type");

if (exception_type != null) {

debug += "exception_type: "+exception_type.getName() + "\n";

}

String m=

(String)request.getAttribute("javax.servlet.error.message");

if (m != null) {

debug += "message: "+m + "\n";

}

Throwable e =

(Throwable)

request.getAttribute("javax.servlet.error.exception");

if (e != null) {

debug += "exception: "+ e.toString() + "\n";

}

String request_uri =

(String)request.getAttribute("javax.servlet.error.request_uri");

if (request_uri != null) {

debug += "request_uri: "+request_uri + "\n";

}

String servlet_name=

(String)request.getAttribute("javax.servlet.error.servlet_name");

if (servlet_name != null) {

188 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 188

debug += "servlet_name: "+servlet_name;

}

//set message, send email

message.setText(debug);

Transport.send(message);

%>

<html>

<head>

<title>EmailErrorPage</title>

</head>

<body>

<h3>An Error Has Occurred</h3>

Sorry, but this site is unavailable to render the service you

requested. A bug in the system has caused an error to occur.

Please send a description of the problem to

<a href="mailto:<%=email%>"><%=email%>.

</body>

</html>

Save the preceding code as EmailErrorPage.jsp in the base directory of the
jspbook Web Application. Note, if you want the example to actually send an
email, you must edit the highlighted section of code to be a valid IP address of an
SMTP email server. Additionally, the administrative email address set in Web.xml
must be a valid address for use with that server. Edit web.xml to use the new error
page instead of ErrorPage.jsp. The entry in web.xml should now resemble
Listing 4-21.

Listing 4-21 EmailErrorPage.jsp web.xml Entry

<error-page>

<exception-type>java.lang.Exception</exception-type>

<location>/EmailErrorPage.jsp</location>

</error-page>

After reloading the Web Application, the error page is ready for use. The next
time an error is generated, an email is automatically sent to the site’s adminis-
trators. The JavaMail code handles sending the email, while the information in
the email is mined from the scoped exception information:

Integer status_code

=(Integer)request.getAttribute("javax.servlet.error.status_code");

if (status_code != null) {

WEB APPLICATION EXCEPTION HANDLING 189

falkner.ch4.qxd 8/21/03 5:17 PM Page 189

debug += "status_code: "+status_code.toString() + "\n";

}

Class exception_type=

(Class)request.getAttribute("javax.servlet.error.exception_type");

if (exception_type != null) {

debug += "exception_type: "+exception_type.getName() + "\n";

}

String m=

(String)request.getAttribute("javax.servlet.error.message");

if (m != null) {

debug += "message: "+m + "\n";

}

...

The end result is that a user sees an error page, similar to all the other error
pages shown in this chapter, and an email is sent to the site’s administrators. Even
if the user decides not to send feedback about the problem, the site still does.
Figure 4-9 shows a browser rendering for the error page.

However, the preceding error page is not what is important. The
important point in this example is that an email is automatically sent to the
site’s administrators via the JavaMail API. For example, assuming the page was
used on www.jspinsider.com and administrative email was set to be jayson@
jspinsider.com, Figure 4-10 shows the email that is sent.

A truly robust error page would not rely on a user to have to send any form
of feedback. Leaving the option open is a good idea, but it is best to leave it open
only for arbitrary user feedback. Keeping information about errors and other
potentially sensitive data on the server-side should be preferred over routing it

190 EXCEPTION HANDLING

Figure 4-9 Browser Rendering of EmailErrorPage.jsp

falkner.ch4.qxd 8/21/03 5:17 PM Page 190

through a client. In these cases it is best to use a form of server-side logging, such
as Listing 4-20, to keep the important information recorded without ever routing
it through a user. The ServletContext log() methods are also a candidate for
doing this; however, as explained later in this chapter, a full logging API makes a
better choice.

Exception Handling Priorities
Another important aspect of exception handling is to understand the priority in
which exception pages are shown to a user. Try-catch statements are direct. The
appropriate catch clause always has priority over any secondary exception mech-
anism such as the JSP errorPage attribute or web.xml error-page definitions.
However, an ambiguity is present as to which takes priority, JSP error pages or
Web Application-defined error pages. In this case the more local error page wins.
A JSP error page defined by the page directive’s errorPage attribute is always
shown before an error page defined by web.xml.

Logging
Logging is the act of keeping a record of important information in some serialized
form. Some simple examples of logs include a text file with lines of error mes-
sages or information printed to System.err or System.out. Sometimes logged
information is designed to be kept for long periods of time. Other times logged

LOGGING 191

Figure 4-10 Email Generated by Code 4-20, Rendered by MozillaMail

falkner.ch4.qxd 8/21/03 5:17 PM Page 191

information is meant for short-term use to quickly debug a running application.
How long to persist, where information is sent, and what information is sent are
all important issues to logging. Planning ahead and utilizing a robust logging
mechanism helps solve these issues and keeps a project, especially a Web
Application, running smoothly.

The Servlet API by default provides a limited and ambiguous method of
logging information. The ServletContext object provides two log() methods
that log information in a method left implemented by individual container
vendors. For application-wide logging, this device is inadequate. With the two log
methods, either a String or String with a Throwable object’s stack trace can be
logged. No attempt is given at distinguishing between different types of infor-
mation to log, and all logging relies on access to a ServletContext object.

For the purpose of building a practical Web Application, a full-blown logging
API is introduced and demonstrated in this section. The logging API is not
specifically defined by Servlets or JSP; however, it is a valuable tool for any project
including a Web Application.

The Problem with System.out.println()
The far too common mindset is to build a Java application and get by with a rudi-
mentary set of debugging calls. Most commonly, this set of calls consists of using
the PrintStream objects System.out or System.err to send temporary infor-
mation to a terminal. This method of application debugging is simple and works
for small projects, but it quickly falls apart in most any real-world situation.

System.out.println() debugging, which is analogous to System.err.
println() debugging, is instant gratification. If code does not work, most every
Java developer knows inserting a few simple System.out.println() method
calls makes something appear somewhere obvious. Given enough System.out.
println() calls, it is easy to find a code flaw and get a program in working shape.
For this purpose, System.out.println() works perfectly fine; however, a
problem occurs when an application needs to constantly log information and
will need to log information for the foreseeable future. This information might
be trivial statements, such as “made it here”, or important information such as
runtime listings of system workloads. Far too many times, calls to System.
out.println() are used in these cases when they really should not.

The issue to think about is, What will the debugging code do in the future?
Inserting System.out.println() calls only works until the calls are no longer
needed. Going back and commenting the calls out for performance is not terribly
helpful, especially when a bug arises. What happens when more than one

192 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 192

developer starts working on the project? If two different developers use com-
pletely arbitrary calls to System.out.println(), or equivalents, then each is
likely to hinder the other. Without a common logging mechanism it is hard to
collaborate. Another very important issue is, What happens when the logging
information needs to be piped to a different location? Instead of to a terminal
screen, what about a log file, email, or a common repository? Manually fixing
countless System.out.println() calls is a complete waste of time, especially if
the fix is going to need even more changes later on.

A good and commonly agreed-upon solution to saving debugging infor-
mation is by means of a simple, yet robust logging API. A dedicated API can
abstract the logging process, provide a common interface for multiple devel-
opers, enable and disable levels of logged information for performance, and allow
easy changes to be made to the logging code in the future. When done properly,
the whole logging package can also be as easily implemented same as a few simple
System.out.println() statements.

JDK 1.4 Logging Versus Log4j
The idea of logging and a dedicated logging API is not a new one. Robust
methods of logging have been around for quite awhile and some mature API
exist. The most notable of the logging API would have to be Log4j, the logging
API for Java. Log4j is currently supported by the Apache community, http://
jakarta.apache.org/log4j, and is at version 1.2. Log4j has some fantastic
developers working behind it and is a true and tested logging API. In addition to
Log4j, the standard Java development kit version 1.4 introduced a new logging
API, the java.util.logging package. This J2SDK addition is positioned as the
standard Java logging API and provides very similar functionality to Log4j.

In writing this book the choice had to be made between which of these logging
API to use and push as a preferred choice. After some careful consideration and
thorough use of both APIs the choice was made to use the java.util.
logging package. The truth of the matter is that both packages do a more than
sufficient job as a logging API. Log4j does have a slight advantage in terms of pre-
vious testing and widespread community use, but the java.util.logging
package is already included in the default Java 1.4 download and will be around in
future distributions.

Using the java.util.logging Package
The java.util.logging package is included with every Java SDK 1.4 distri-
bution. No extra installation is required to use the API with this book’s examples.

LOGGING 193

falkner.ch4.qxd 8/21/03 5:17 PM Page 193

If the code does not work, you probably did not follow the installation steps in
Chapter 1. Make sure you are using the Java 2 Standard Development Kit 1.4
release or a later version.

The java.util.logging package can be generalized into two parts, Logger
and Handler objects. A logger object is responsible for logging information to
one or more Handler objects. Handler objects are responsible for customizing
where and how information is logged. Using the java.util.logging package is
as simple as creating a instance of a Logger object, registering one or more
Handler objects, and logging information as needed.

For common logging, such as to terminals or files, the java.util.logging
package includes everything that is needed to implement a simple logging
system. In more complex cases the same functionality is used; however, custom
subclasses of Logger and Handler objects might be required. Overall, the process
of logging is always the same. As a quick introduction to the simplicity of the API,
it is helpful to see a concrete code example. Listing 4-22 provides an example of
implementing a Logger object that sends information to System.err.

Listing 4-22 Logger.jsp

<%@ page import="java.util.logging.*"%>

<%

Logger logger = Logger.getLogger("example");

logger.addHandler(new ConsoleHandler());

String info = request.getParameter("info");

if (info != null && !info.equals("")) {

logger.info(info);

}

%>

<html>

<head>

<title>A Simple Logger</title>

</head>

<body>

<form>

Information to log:<input name="info">

<input type="submit">

</form>

</body>

</html>

194 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 194

Save Logger.jsp in the base directory of the jspbook Web Application and
browse to http://127.0.0.1/jspbook/Logger.jsp. A small form is displayed
with one input box. Anything typed in the box is logged upon submission of the
form. Figure 4-11 shows a browser rendering of the HTML form.

Information posted by the form is logged by the server to System.err. This
can be verified by checking the location of System.err. By default, Tomcat saves
all information sent to System.err in the catalina.out file located in the /logs
directory of installation. Open up this file to see the logged information. For
example, if “log test” was submitted via the HTML form, then the following line
would be appended to catalina.out.

Mar 18, 2002 8:30:11 PM org.apache.jsp.Logger$jsp _jspService

INFO: log test

For the time being, disregard the extra information included with the entry.
The point of this example is to illustrate a quick and easy use of the
java.util.logging package. Achieving a simple default-formatted log entry
requires a few lines of code. Logger.jsp demonstrates this with the following two
lines.

Logger logger = Logger.getLogger("example");

logger.addHandler(new ConsoleHandler());

After the Logger object was created and a Handler added, the system was
ready to log information. There are many ways to log information, but in the
example, the convenient info() method was used.

logger.info(info);

LOGGING 195

Figure 4-11 Browser Rendering of Logger.jsp

falkner.ch4.qxd 8/21/03 5:17 PM Page 195

Subsequent calls to log information could also be included as desired;
however, in this example, none were needed. The main purpose of the example
was to introduce the general use of Logger and Handler objects. The java.util.
logging package is easy to use and can be implemented with just a few lines of
code. Discussion now expands to using the individual parts of the java.util.
logging package for custom logging.

Handlers
Handlers are responsible for handling information that needs to be logged.
Should the information go to a terminal screen, flat file, or any other resource, it
is the responsibility of a Handler to make sure it gets there. Information pub-
lished to a Handler is represented by a java.util.logging.LogRecord object. A
LogRecord object includes information to log, where the information came from,
how important the information is, and a time-stamp. How to appropriately style
and present this information is the responsibility of a java.util.logging.
Formatter object. Each Handler object has a Formatter object associated with it
to appropriately style published LogRecords.

A few Handler objects are included with the java.util.logging package:

• StreamHandler: A StreamHandler object represents a Handler
designed to export logged information to a java.io.OutputStream.
The StreamHandler object includes a constructor that takes an
OutputStream and Formatter object as parameters and uses them
to format and stream logged information.

• MemoryHandler: The MemoryHandler object provides a cheap way
to keep a set of LogRecord objects in memory. After established
amounts of LogRecords are buffered, they are all published to an
Handler object for appropriate handling. The MemoryHandler object
is best used when it is expensive to constantly publish individual
records, perhaps if a connection needs to be opened and closed
during the logging of each record. Consolidating a set of logs
during one connection can be much more efficient.

The MemoryHandler object provides a constructor that takes as
arguments a Handler, int value for a buffer size, and a push level.
The Handler object is the Handler buffered LogRecord objects are
published to, the int represents how many LogRecord objects to
buffer, and the push level allows for important messages to cause
the buffer to automatically flush.

196 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 196

• SocketHandler: A SocketHandler is a convenient method for
logging information using a network socket. By default the
SocketHandler formats logged information in an XML-compatible
format. The SocketHandler object provides a constructor that takes
as an argument a String representing a host URL and an int repre-
senting the port to use. The Handler automatically opens a
java.net.Socket to the given URL on the specified port for logging
information.

• FileHandler: A FileHandler object is a convenient Handler for
logging information to a local file. The easiest use of the
FileHandler object is to call the constructor providing a String
that represents the file to use for logging information. More
complex uses also exist for using the FileHandler object to auto-
matically rotate logs between multiple files after a certain space
limit has been reached.

The existing handlers in the J2SDK represent some of the most commonly
used resources for saving logged information. Building an appropriate Handler
object for most cases is nothing more than using one that already exists. Using all
the aforementioned convenience Handler objects is not fully demonstrated by
this book. The code is intuitive to use and is mentioned only to give an idea of
what comes bundled with the java.util.logging package.

Formatting
The style in which a Handler object exports information is completely config-
urable. Every Handler object relies on a Formatter object to convert a LogRecord
into an appropriate String of information to log. The Formatter object being
used to style a specific Handler instance can be obtained or set using the
getFormatter() or setFormatter() methods.

To code a custom Formatter object, extend the Formatter class and override
the relevant methods. There are four possible methods of interest:

• format(LogRecord record): The format() method is invoked by a
Logger class when publishing information to be logged. Passed as a
parameter is the LogRecord object describing the information to
log. The format() method returns a String representing the final
format of the information to log.

• formatMessage(LogRecord): The formatMessage() method is a
convenience method that can be invoked by the format() method

LOGGING 197

falkner.ch4.qxd 8/21/03 5:17 PM Page 197

to localize a message using a resource bundle. Resource bundles are
further explained in Chapter 12.

• getHeader(Handler handler): The getHeader() method returns a
header that should be used to surround a set of formatted log
records. This method returns an empty String by default. In cases
where a header must be included, such as the start of a parent XML
element, this method can be overridden to produce the correct
String.

• getTail(Handler handler): The getTail() method works much like
the getHeader() method but is used to return a tail to be placed at
the end of a set of log records. This method returns an empty
String by default. In cases where a tail must be included, this
method can be overridden to produce the correct text.

There are two Formatting objects included with the java.util.logging
package: SimpleFormatter and XMLFormatter. The SimpleFormatter object
takes an instance of a LogRecord and converts it into a human-readable string.
The string is usually one or two lines long and resembles the entries seen with the
Logger.jsp example, Listing 4-22. The XMLFormatter object takes a LogRecord
and formats it into an XML format.

For most purposes the SimpleFormatter object does an adequate job of
logging information. Text returned by the SimpleFormatter object’s format()
method includes a time-stamp, the class sending the information to log, and the
information to log. However, for the jspbook Web Application, a simple custom
Formatter object will be created for both example purposes and use throughout
the book. Save the code in Listing 4-23 as CustomLogger.java in the /WEB-
INF/classes/com/jspbook directory of the jspbook Web Application.

Listing 4-23 CustomFormatter.java

package com.jspbook;

import java.io.*;

import java.util.*;

import java.util.logging.*;

public class CustomFormatter extends Formatter {

public String format(LogRecord log) {

Date date = new Date(log.getMillis());

String level = log.getLevel().getName();

198 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 198

String string = "[" + level + " " +date.toString() + "]\n";

string += log.getMessage() + "\n\n";

Throwable thrown = log.getThrown();

if (thrown != null) {

string += thrown.toString();

}

return string;

}

}

The preceding custom formatter is designed to work similar to the
SimpleFormatter object but makes the styled result a little easier to read. The
String returned by invoking the format() method includes a bracketed time-
stamp followed by the logged message and an optional exception stack-trace. The
general format is the following:

[time-stamp]

message

stack-trace

The brackets are used to easily distinguish separate log entries while the
message and stack-trace provide information about what went wrong with the
Web Application. Before actually using the CustomFormatter class, a custom
Logger class needs to also be created for use with the jspbook Web Application.

Loggers
A Logger object is used to log messages for a specific system of application com-
ponents. Loggers are designed to be flexible and include features such as local-
specific logging and logging information according to levels of importance.
Logger objects are managed by a LogManager object that is responsible for
keeping and configuring a collection of loggers.

Not all of the features of Logger and LogManager classes are covered in this
book. The flexibility of these classes is extensive and not commonly needed. What
is covered in this section is the basic use of the Logger class with JSP and Servlets.
This includes customizing a logger for use in a Web Application and taking
advantage of the various levels of logged information. International use of the
Logger class for local-specific logs is covered in Chapter 12. Topics outside this
scope are left for publications that focus more deeply on the java.util.logging
package.

LOGGING 199

falkner.ch4.qxd 8/21/03 5:17 PM Page 199

Levels of Logged Information
All information logged through an instance of a Logger object is associated with
a specific level. Levels are used to efficiently manage different types of logged
information. A level may be arbitrarily assigned but is intended to give some
information about the nature of the information to log. Handler and Logger
objects can selectively log only certain levels of information, making it practical
to channel different types of information to desired locations.

The level scheme the java.util.logging package uses is defined by the
java.util.logging.Level object. The levels are listed, in descending order of
importance, as follows:

• SEVERE: The SEVERE level is the highest level of importance. A
SEVERE level represents a severe, or critical, message that is to be
logged. Often the SEVERE Level is associated with a thrown
exception.

• WARNING: The WARNING level is the second highest level of impor-
tance. A WARNING level association represents a message to be logged
that includes a warning. Warnings are important to signal a future
possibility of a severe problem but are not severe problems them-
selves.

• INFO: The INFO level represents an informative message to be
logged. The message is less important than a warning or severe level
message and is most helpful when debugging an application. The
INFO level is commonly associated with the casual use of
System.out.println() statements.

• CONFIG: The CONFIG level represents configuration information
being echoed back by an application. Messages at the CONFIG level
are less important than informative messages and are meant for
helping debug an application.

• FINE: The FINE level represents a message that falls in none of the
previous categories but is more important than a FINER or FINEST
level message.

• FINER: The FINER level represents a message less important than a
FINE message but more important than a FINEST message.

• FINEST: The FINEST level represents a message that is less
important than all the other messages.

• OFF: A level of OFF has the effect of turning off logging on either a
Handler or Logger object. This level can be used when no logging is

200 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 200

desired and absolute performance is the goal. A Logger or Handler
object set to the OFF level immediately returns when information
logging is attempted.

• ALL: The ALL level setting logs all levels of messages.

Complementing these levels, the Logger object defines the following methods:

• getLevel(): The getLevel() method returns a level object repre-
senting the current level the Logger is set to log messages. Messages
of higher or equal priority to the level are logged.

• setLevel(Level level): The setLevel() method sets the current level
a Logger object should log messages at. Messages below the level are
discarded. When the OFF level is specified, all messages are ignored.

• log(Level level, String message): The log() method logs a given
message at a given level. Should the message be below the current
Logger object’s level setting, it is discarded. For all of the allowed
levels, self-named convenience methods also exist: severe(),
warning(), info(), config(), fine(), finer(), and finest(). All of
the convenience methods take as a parameter a String representing
the message to log. Levels are implied.

• log(Level level, String message, Throwable throwable): The log()
method logs a given message at a given level. The LogRecord object
published by this method also includes the Throwable object spec-
ified as the throwable parameter.

Using the preceding methods a Logger object can effectively log information
based on arbitrary levels. The common use of these levels is to safely log critical
information at all times while keeping warning and debugging information
around only when developers need it. The performance difference between
logging all information versus only the important information can be noticeable
and it often makes sense to distinguish between the two.

LOGGING 201

Fine, Finer, Finest, and All

One of the most criticized features of the java.util.logging package is the
inclusion of the fine, finer, finest and all levels. These levels are commonly
regarded as redundant versions of the info level. If a situation requires use of
fine, finer, and finest logging, there is nothing wrong with these methods, but
do not feel obliged to use them.

falkner.ch4.qxd 8/21/03 5:17 PM Page 201

Custom Web Application Logging
A nice feature of the java.util.logging package is that it can be used to log
information by any class. Compared to the ServletContext log() methods, this
functionality is quite nice, but it does not mean it is beneficial to completely
abstract logging away from Servlets and JSP. A logging mechanism designed to
work with a Web Application should take full advantage of that Web Application.
Remember the reasons leading to the introduction of the java.util.logging
package. Normal logging schemes are usually inadequate; using System.out.
println() method calls becomes inefficient as a project grows and is not easily
maintained in the future. Using ServletContext object’s log() methods is very
limiting and ambiguous. A robust logging API such as the java.util.logging
package solves these problems. However, the java.util.logging package is not
designed to be the final solution to an application’s logging needs. The
framework is extensible and much can be gained from using the package to most
effectively suit individual needs.

In the case of a Web Application the java.util.logging package can be com-
bined with the functionality of JSP and Servlets. From this combination a site can
have a robust logging mechanism that easily ports and is configurable by the same
methods as the rest of the Web Application. A great use of combining these two APIs
is a custom logging ServletContextListener that can initialize with the Web
Application and a JSP that can configure the logging mechanism as well as provide
a Web interface for administrative use. Listing 4-24 is the ServletContextListener
class.

Listing 4-24 SiteLogger.java

package com.jspbook;

import java.io.*;

import java.util.logging.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SiteLogger implements ServletContextListener {

// Site Logger

private static Logger logger;

public static Logger getLogger() throws IOException {

return logger;

}

202 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 202

public void contextInitialized(ServletContextEvent e) {

ServletContext sc = e.getServletContext();

// Get an instance of a Logger

logger = Logger.getLogger("global");

logger.setLevel(Level.INFO);

try {

FileHandler fh = null;

String root = sc.getRealPath("/");

fh = new FileHandler(root+"WEB-INF/log.txt");

fh.setFormatter(new CustomFormatter());

logger.addHandler(fh);

} catch (IOException ee) {

System.err.println("Can't load logger: " +ee.getMessage());

}

sc.setAttribute("com.jspbook.SiteLogger", logger);

}

public void contextDestroyed(ServletContextEvent e) {

ServletContext sc = e.getServletContext();

sc.removeAttribute("com.jspbook.SiteLogger");

logger = null;

}

}

Save SiteLogger.java in the /WEB-INF/classes/com/jspbook directory of
the jspbook Web Application. Deploy the listener by adding an entry in web.xml,

as shown in Listing 4-25.

Listing 4-25 SiteLogger web.xml Listener Deployment

...

<listener>

<listener-class>com.jspbook.SiteLogger</listener-class>

</listener>

...

Compile SiteLogger.java and reload the Web Application. The SiteLogger
class now functions as a general-purpose logging class. Any other class in the Web
Application may invoke the static getLogger() method to obtain an instance of
the Web Application’s new logging mechanism.

LOGGING 203

falkner.ch4.qxd 8/21/03 5:17 PM Page 203

For the listener to be of much help it must be used by other code in the Web
application. First, let us create an administrative JSP for modifying the logger
during runtime, as shown in Listing 4-26. The page will provide a method of
setting the logger’s current level and viewing the current log.

Listing 4-26 SiteLoggerAdmin.jsp

<%@ page import="java.util.logging.*, java.io.*"%>

<%

// get logger

Logger logger = com.jspbook.SiteLogger.getLogger();

// get request parameters

String level = request.getParameter("level");

if (level != null && !level.equals("")) {

logger.setLevel(Level.parse(level));

}

// set current level

request.setAttribute("l", logger.getLevel());

// set current log

StringWriter sw = new StringWriter();

request.setAttribute("log", sw);

// parse in current log

InputStream is =

application.getResourceAsStream("/WEB-INF/log.txt");

if (is != null) {

for (int i = is.read();i!=-1;i=is.read()) {

sw.write((char)i);

}

} else {

sw.write("Can't load log file!");

}

%>

<html>

<head>

<title>Site Logging Configuration</title>

</head>

<body>

<h3>Set the site's logging level:</h3>

Current level: ${l}

<form>

204 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 204

<select name="level">

<option value="SEVERE">Severe</option>

<option value="WARNING">Warning</option>

<option value="INFO">Info</option>

<option value="CONFIG">Config</option>

</select>

<input type="submit" value="Update Level">

</form>

<h3>Current Log:</h3>

<pre>${log}</pre>

</body>

</html>

Save the preceding code as SiteLoggerAdmin.jsp in the root directory of the
jspbook Web Application. The code provides an HTML form for changing the
current level of the logger (only between severe, warning, info, and config), and
the page displays the current log. You can test the page by browsing to
http://127.0.0.1/jspbook/SiteLoggerAdmin.jsp; however, there is currently
little to see. Nothing currently logs information via the SiteLogger class.

Save the following JSP as SiteLogger.jsp in the root directory of the jspbook
Web Application. The code provides example code for how the SiteLogger class
can be used to log information. An HTML form passes information to be logged
and the level of the information. The JSP then takes this information, obtains a
reference to the Logger class, and logs the information using the appropriate
level.

Listing 4-27 SiteLogger.jsp

<%@ page import="java.util.logging.*"%>

<%

// get logger

Logger logger = com.jspbook.SiteLogger.getLogger();

// get required request parameters

String info = request.getParameter("info");

String level = request.getParameter("level");

// log information appropriately

if (info != null && !info.equals("") &&

level != null && !level.equals("")) {

logger.log(Level.parse(level), info);

}

LOGGING 205

falkner.ch4.qxd 8/21/03 5:17 PM Page 205

206 EXCEPTION HANDLING

%>

<html>

<head>

<title>A Simple Logger</title>

</head>

<body>

<form>

<table>

<tr>

<td>Level:</td>

<td>

<select name="level">

<option value="SEVERE">Severe</option>

<option value="WARNING">Warning</option>

<option value="INFO">Information</option>

<option value="CONFIG">Configuration</option>

</select>

</td>

</tr>

<tr>

<td>Information to log:</td>

<td><input name="info">
</td>

</tr>

</table>

<input type="submit">

</form>

View/Configure Log

</body>

</html>

The HTML form is of little interest, it simply queries a string to log and a
level. Of interest is the general code for using the SiteLogger class’s getLogger()
method and logging information.

<%

// get logger

Logger logger = com.jspbook.SiteLogger.getLogger();

// get required request parameters

String info = request.getParameter("info");

String level = request.getParameter("level");

// log information appropriately

if (info != null && !info.equals("") &&

falkner.ch4.qxd 8/21/03 5:17 PM Page 206

LOGGING 207

Figure 4-12 Browser Rendering of SiteLogger.jsp

level != null && !level.equals("")) {

logger.log(Level.parse(level), info);

}

%>

Highlighted are the relevant lines, and the code is unsurprisingly straight-
forward. First, the getLogger() method is invoked to obtain an instance of the
previously initialized Logger class. Next the Logger class is used same as any other
java.util.logging.Logger class.

Test out the new functionality by browsing to http://127.0.0.1/jspbook/
SiteLogger.jsp. An HTML form appears, allowing you to log information at
arbitrary levels. Figure 4-12 provides a browser rendering of the form.

Try submitting several different messages using various levels. Next, view the
information by browsing to http://127.0.0.1/jspbook/SiteLoggerAdmin.jsp.
If you like, use SiteLoggerAdmin.jsp to set the level of the application-wide
Logger class and notice how messages logged below this level are ignored. By
default the SiteLogger class is set at info level.

All-around, the use of the SiteLogger class should be intuitive—even trivial—
and that is exactly the point. Instead of relying on the default Servlet logging
mechanism, a more robust solution can easily be implemented using a simple
ServletContextListener class. At Web Application initialization, your favorite
logging API, in this case java.util.logging, can be initialized for use. During
runtime, a static method provides easy access to the logging functionality for all of
your other classes. Using a true logging API to handle Web Application logging is
not difficult, and it is something you should use in most every Web Application.

falkner.ch4.qxd 8/21/03 5:17 PM Page 207

Logging and Performance
With all this chapter’s discussion of error handling and logging, the question is
surely to be asked, “How does this affect a Web Application’s performance?”
Performance questions are never easily answered and are always tied to the spe-
cific use at hand. In this section there is no attempt at providing statistics or an
allegedly credible benchmark. Instead, a brief discussion is provided about use of
the java.util.logging package and how it affects performance of a Web
Application.

Logging should be classified the same as error handling. Both of these tech-
niques are critical to making a project work and continue to work. The only
notable downside to logging is that it will always perform a little slower at
runtime than the same code without logging calls. This is not an issue if the
logged information must be kept, but it could become a problem if the logging
information is not critical and should be ignored. The java.util.logging
package solves this problem by allowing levels of logged information. Use levels
to ensure that only important information is kept around during runtime in a
production system. Logger and Handler objects return immediately if infor-
mation sent to them is not above the level currently being logged. This behavior
optimizes the inefficiency of using a logging API and in most practical cases
makes the performance loss due to logging insignificant. The time it takes to
immediately return from a hundred ignored log calls is easily dwarfed by the time
it takes to send the ones and zeros of a Web page over a wire.

A General Philosophy for Exception Handling and Logging
Throughout the chapter several techniques have been introduced for handling
exceptions and logging relevant information. Now it is time to introduce a
general philosophy to use when handling a Web Application’s exceptions and
logging information. By no means is this a master philosophy; no formal proof
of its effectiveness is present, but the philosophy will properly address all of the
issues regarding Web Application error handling and logging. Having all this
information in one place is helpful, especially when collaborating with other
developers, because having a common, effective standard reduces the amount of
development time you need to spend reinventing the same functionality.

The following list identifies the major issues that you must address when
you’re dealing with exceptions and logging. Each issue includes a solution, and
the solution is based directly on material covered previously in this chapter:

208 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 208

• Handle All Exceptions: At all times handle all exceptions. Do not
ever encourage coding practices that ignore exception handling—
never put all-encompassing try-catch blocks around code and have
the catch block do nothing. Always handle, throw, or re-throw an
exception until it reaches the proper, predesignated place to be
handled.

• Consolidate Thrown Exceptions: Reduce exceptions down to what
is cared about and only what is cared about. For Web Applications
it is suggested that the UserException and AdminException classes,
as described previously, are used; in a Web Application you should
care about two types of exceptions: something a user has done
wrong—for example, sent the wrong information—and adminis-
trative exceptions—for example, your code, the Web Application, is
broken. Note, by extending the Exception class and the
RuntimeException class, as UserException and AdminException,
respectively, do, you have easily consolidated exception handling.
Should code throw a UserException, the exception is checked, and a
developer should use a local try-catch block to handle the problem
and inform the user. Should code throw an AdminException, the
exception is unchecked, and a developer is not expected to do any-
thing about it—rather, some previously defined mechanism, such as
a web.xml-defined exception handling JSP or Servlet, is expected to
handle the problem.

Most all Java API have custom types of exceptions, and it is a
pain to try and catch all of the different types of exceptions that
exist. Consolidation makes Java exception handling practical.

• Always Abstract Logging Functionality: Always put a layer of
abstraction around the actual code that logs information; preferably
use the java.util.logging package that was explained by this
chapter. Without a proper layer of abstraction you will always be
stuck using whatever logging method was hard coded. Should you
need to log information differently, perhaps to a different location
such as a file or special computer on a network, it will take time to
go back and fix all of the logging code. Compared to changing one
implementation of an abstract logging interface, such as a Handler
object, there is little argument for hard coding logging functionality.
Additionally, when collaborating with multiple developers, a well-
defined logging interface is a must. It can both ensure information

LOGGING AND PERFORMANCE 209

falkner.ch4.qxd 8/21/03 5:17 PM Page 209

is logged to the right place and that the information is correctly
logged.

• Consolidate Logging Functionality: Create one easy-to-use class
for all of a project’s logging. Use the java.util.logging package to
create one custom Logger object that is accessible to every class in
the Web Application. The SiteLogger Servlet is a great example of
this functionality. Developers should not need to worry about reim-
plementing logging API or about understanding a complex logging
system. Also, reducing a Web Application’s logging mechanism to
one logging class provides a direct method of changing where infor-
mation is logged. It is clearly desirable to have one logging class
versus changing countless System.out.println() method calls (or
other equivalents).

• Always Create a Web Application-Wide Error Page: Use web.xml
to define at least one user-friendly error page to catch any thrown
exception. Several examples of such error pages were provided in
this chapter. Use at least one of them to ensure a user never sees a
cryptic message generated by a container.

The five points represent a complete philosophy for handling a Web
Application’s exceptions and logging needs. After reading through this chapter,
the points should come as no surprise. Take the philosophy and use or adapt it to
handle exceptions.

Summary
Exceptions are a fundamental part of Java. When a program has a problem, an
instance of a Throwable object is thrown. Java accounts for thrown exceptions by
allowing bits of code to catch the offending object. Throwing and catching
Throwable objects is a fundamental part of Java and is not specific to JSP and
Servlets. In the first half of this chapter the basic exception handling mechanisms
of Java were rehashed. Following this discussion the JSP and Servlet specific
exception handling mechanisms were introduced.

Like all Java objects, JSP and Servlets can throw exceptions. Exceptions
thrown to a Web Application are either caught and forwarded to an appropriate
error page or handled by the container. This sort of application-wide exception
handling is a very handy feature of JSP and Servlets. Preventing a user from
seeing a cryptic Java debugging message is always a high priority. Web
Application error handling easily provides a solution.

210 EXCEPTION HANDLING

falkner.ch4.qxd 8/21/03 5:17 PM Page 210

Web Applications can manage two distinct types of errors that might occur.
The first type of error is a Throwable object thrown from a Servlet or JSP. Using
the web.xml error-page, exception-type, and location elements, any type of
thrown object can be caught and passed to an error. The second type of error is
when a Servlet or JSP sends an HTTP response error code back with a response.
Instead of showing the undesired content of the original page, the contents of an
error page can be displayed by specifying the error-page, error-code, and
location elements in web.xml.

When handling exceptions with JSP and Servlets, there is no great way of
keeping track of information that pertains to the problem. The ServletContext
log() methods are usually inadequate, and often a robust logging API is pre-
ferred as a solution. The second half of this chapter introduced using the
java.util.logging package as a good solution for logging Web Application
information. The java.util.logging package is a highly flexible and efficient
solution for keeping track of all sorts of information during runtime. The
SiteLogger Servlet (Listing 4-24) was introduced to help illustrate this point.

Exception handling and logging are critical parts of Servlets and JSP devel-
opment. Problematic code is always a nuisance when programming so it helps to
properly plan for the worst. This chapter rounded out a basic JSP and Servlet
skill-set with good methods of keeping track of possibly problematic code. With
these skills it is now safe to start introducing some of the more complex features
and uses of the J2EE Web Tier. The next chapter introduces JavaBeans, how they
interact with Servlets and JSP, and explains why they are commonly used in Web
Applications.

SUMMARY 211

falkner.ch4.qxd 8/21/03 5:17 PM Page 211

falkner.ch4.qxd 8/21/03 5:17 PM Page 212

213

Chapter 5

JavaBeans and the JSP Expression
Language

In this chapter, we are going to take a look at JavaBeans and the JSP expression
language (EL). The first half of the chapter is devoted solely to JavaBeans.
JavaBeans have been around for a long time, and the term means many different
things to Java developers. It is well worth understanding JavaBeans so that you
can use them if desired, but most importantly understand what other developers
mean when the topic is discussed. The second half of this chapter explains the JSP
expression language (new as of JSP 2.0). The JSP EL provides a simple, elegant
solution to embedding expressions in JSP and provides a method to avoid using
the traditional JSP expression, <%= %>, and some of the JavaBean actions. In some
cases the JSP EL is required in order to provide a practical solution to a problem,
for instance, expression in JSP authored in XML syntax; in many other cases the
JSP EL provides an arguably better solution to what JSP has traditionally offered.

Why introduce JavaBeans and the JSP EL now? There are several reasons, but
put simply, JavaBeans are something you should know about, although the func-
tionality is not as helpful as it used to be. However, the JSP EL is arguably a
superior method of doing tasks commonly done by traditional JSP expressions
or the JSP JavaBean actions. Therefore, it is helpful to introduce the functionality
so the rest of the book can encourage its use; finally, when dealing with custom
actions, namely Chapter 6 and Chapter 7, the JSP EL is required. In general, this
chapter is taking care of some required housekeeping before we delve into the
more complex aspects of Servlets and JSP; however, you can certainly expect to
find several tips and techniques in this chapter that will apply to Servlet and JSP
development on the whole.

falkner.ch5.qxd 8/21/03 5:38 PM Page 213

214 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

This chapter discusses the following topics:

• What a JavaBean is and what constitutes a JavaBean.

• Servlet and JSP support for JavaBeans.

• Good uses of JavaBeans.

• What the JSP Expression Language (JSP EL) is.

• JSP EL syntax.

• JSP EL function: binding static Java methods to the JSP EL.

• Good uses of the JSP EL (relative to JSP Expression Language and
JavaBeans).

Compared to the other chapters this one is small, but it is still meant to be
read straight through. Discussion of JavaBeans and the JSP EL is kept almost
completely separate until the very last section of the chapter.

JavaBeans
The term JavaBean commonly appears when using Servlets and JSP. In practice,
JavaBean is really just a fancy name for a Java class that follows a few coding con-
ventions. Technically, a JavaBean is any class that implements the java.io.
Serializable interface and provides a default, no-argument constructor. A
JavaBean conventionally also provides a few “getter” and “setter” methods, but
technically, these are not necessary for a class to be considered a JavaBean.
JavaBeans are never required for use with JSP and Servlets, but they commonly
appear because they are helpful for passing scoped information. One of the goals
of this chapter is to officially introduce JavaBeans and explain why they are
helpful and why they are commonly used with JSP and Servlets.

Get and Set Methods
JavaBeans are usually very simple to create and use. Like anything, a JavaBean can
be made complex, but the most common use of a JavaBean is as an object that
stores data on the server-side. As a data-storage object, a JavaBean is just a simple
class that typically has private data, called properties. These properties are typi-
cally made available through public accessors and mutators (i.e., getters and
setters). The convention is to take the member name of the property and create
two methods by adding “get” and “set” to the property’s name with the first letter
always capitalized. If, for example, a JavaBean had a variable named value, the
appropriate get and set methods would be getValue() and setValue(). Listing

falkner.ch5.qxd 8/21/03 5:38 PM Page 214

5-1 is an example of how a Java class might properly implement these methods
to be considered a JavaBean.

Listing 5-1 ExampleBean.java

public class ExampleBean implements java.io.Serializable

{

String value;

public ExampleBean() {

}

public String getValue(){

return value;

}

public void setValue(String value){

this.value = value;

}

}

Note that the get and set methods in Listing 5-1 are not mandated by an
interface. Get and set methods are completely dependent on the name of the
variable they reference. An interface could not be used to adequately describe this,
nor could an interface correctly guess the return value or parameters required for
the methods. In the specific case of Listing 5-1 the property type was a String, and
it returned a String object from getValue() and required a String parameter for
setValue(). These requirements were completely arbitrary and can change
depending on the particular JavaBean. The only important convention to keep
consistent is the “get” and “set” added before the variable’s name. In cases where
there are many different variables, use many different get and set methods.

Why Get and Set Methods?
So why are get and set methods required by a JavaBean? In a word, encapsulation.
From ExampleBean.java it might appear using a get and set method is a more
tedious way of declaring a variable public. However, get and set methods do have
some very helpful and practical uses. The variable being used by the get and set
methods does not have to be known outside the class. Any bit of code can be
included with the get and set methods. The value returned by the method does
not have to be an actual variable located in the class. Instead, it might be derived
from other variables or even created on the fly from something completely unre-
lated to the JavaBean. This level of abstraction is the most helpful feature of get
and set methods.

GET AND SET METHODS 215

falkner.ch5.qxd 8/21/03 5:38 PM Page 215

Another helpful feature of JavaBeans is that other software can be built to
take advantage of them. The use of methods to abstract member access is nothing
new in the world of programming, but it can be done in many different ways. Get
and set methods are a de facto method of supplying the functionality. This is very
apparent in Servlets and JSP, as JSP provides a set of standard actions designed to
manipulate JavaBeans. These standard actions can be very helpful and are com-

216 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

JavaBeans in More Detail

JavaBeans are defined in the JavaBeans specification that you can download
from Sun’s Java Web site (http://java.sun.com/products/javabeans/).
The specification here talks about the full scope and use of JavaBeans.
JavaBeans were originally designed for use in UI development and as such
come with a great deal of support for Swing UI design tools. This support
includes property listeners and event handling, none of which is needed for
JSP and Servlet development.

The JavaBeans specification also appeared after Java itself was released. This
meant that originally there were many classes in the JDK that wanted to be
considered as JavaBeans but did not follow the naming conventions men-
tioned previously. To allow these classes to be “brought into the fold”, the
JavaBeans specification defines a set of helper classes in the java.beans package
that allow a bean developer to define the properties the class wanted exposed
as bean properties. These are classes such as java.beans.BeanInfo, and
java.beans.PropertyDescriptor. Again, these classes will not be discussed
further in this book as most, if not all, beans do not follow the get and set
naming conventions.

The java.beans package also defines an “introspector” class (java.beans.
Introspector). This class is used to discover the names of the accessors and
mutators associated with a given bean property. The introspector will use Java
reflection and the helper classes mentioned previously to discover the correct
method names to be used. This is mentioned because when a JSP uses the tags
we are about to discuss to manage JavaBeans, the generated Servlet will use this
introspector class to ensure the bean access is done correctly. You will see code
that uses this class when debugging JSP, so we do not want you to be surprised.

falkner.ch5.qxd 8/21/03 5:38 PM Page 216

monly used in popular design patterns such as MVC. Chapter 11 of this book
covers MVC along with how JavaBeans are used as part of that design idiom.
Right now it is only important to have a good understanding of what JavaBeans
are in relation to JSP and Servlets.

Servlets, JSP, and JavaBeans
JavaBeans would not have been mentioned if they were not commonly used with
JSP and Servlets. There is no requirement mandating JavaBeans be used with JSP
and Servlets, but the JSP standard actions and the JSP EL are a convenient way of
using the beans for all levels of JSP developers. This is the primary reason
JavaBeans are used as commonly as they are. Before looking at why this is the
case, we need to see what exactly JSP provides as JavaBean standard actions.

The JSP standard actions, excluding the ones that relate to JavaBeans, were
covered with JSP in Chapter 3. The JavaBean custom actions follow the same
XML-compatible syntax and are also available for use with any JSP-compliant
container. The actions are as described in the following sections.

<jsp:useBean/>
The useBean action declares a JavaBean for use in a JSP. Once declared, the bean
becomes a scripting variable that can be accessed by both scripting elements and
other custom tags used in the JSP. The full syntax for the useBean tag is as follows:

<jsp:useBean id="bean's name" scope="bean's scope" typeSpec/>

The useBean action must always have two things specified: the bean’s name
and information about what class should be used. Optionally, the useBean action
may also specify a particular scope for the declared JavaBean. The value of the id
attribute may be any value as a long as it is a unique name among other useBean
declarations in the same JSP. If the name is not unique, an exception is thrown by
the JSP container at translation time of the JSP.

Valid values for the scope attribute are as follow:

• page: The page value places the JavaBean as an attribute to the
javax.servlet.jsp.PageContext for the current page. The bean is
discarded upon completion of the current request.

SERVLETS, JSP, AND JAVABEANS 217

falkner.ch5.qxd 8/21/03 5:38 PM Page 217

• request: The request value places the JavaBean in request scope.
The JavaBean is available from the current page’s ServletRequest
object via the getAttribute() method. The JavaBean is discarded
upon completion of the current request.

• session: The session value places the JavaBean in session scope.
The JavaBean can be accessed via the getAttribute() method of
the HttpSession object associated with a client. The JavaBean auto-
matically persists until the session is invalidated. A translation time
error is raised if the session value is used on a JSP that has
declared it is not participating in a session.

• application: The application value places the JavaBean in appli-
cation scope. The JavaBean persists as long as the application does
and can be accessed via the getAttribute() method of the Web
Application’s ServletContext object.

Along with the id attribute and scope attribute, the useBean action needs to
know what Java class should be initialized as the JavaBean. In most cases this is
done by simply using the class or type attribute and specifying as a value the
fully qualified Java class name. However, the useBean action also allows for any
of the following combinations to be used when declaring what type of JavaBean
is to be initialized.

class= className

type= typeName class= className

type= typeName beanName= beanName

type= typeName

The attributes have the following meanings:

• class: The class attribute must declare the fully qualified name of
the class that defines the JavaBean. The class name is case sensitive.
If the class and beanName attributes are not specified, an instance
of the JavaBean must be present in the given scope.

• beanName: The beanName attribute defines the name of a JavaBean,
as expected by the instantiate() method of the java.beans.Beans
class. The beanName attribute can be a runtime value specified by an
expression.

218 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 218

• type: The type attribute, if specified, defines the type of the
scripting variable defined. This allows the type of the scripting
variable to be distinct from, but related to, the type of the imple-
mentation class specified. The type is required to be either the class
itself, a superclass of the class, or an interface implemented by the
class specified. The object referenced is required to be of this type;
otherwise, a java.lang.ClassCastException shall occur at request
time. If the type attribute is unspecified, the value is the same as the
value of the class attribute.

Using <jsp:useBean/>
In the simplest of cases, a useBean action is equivalent to a scriptlet that declares
a new instance of a variable as shown in Listing 5-2.

Consider the following use of the useBean action:

Listing 5-2 useBean Action

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<jsp:useBean id="date" class="java.util.Date" />

The date/time is <%= date %>

</body>

</html>

Listing 5-3 could have easily been authored as the following code. The only
difference between the two is that the preceding code does not require the use of
a scriptlet.

Listing 5-3 useBean Action When Declaring and Using Variables

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<% java.util.Date date = new java.util.Date(); %>

SERVLETS, JSP, AND JAVABEANS 219

falkner.ch5.qxd 8/21/03 5:38 PM Page 219

The date/time is <%= date %>

</body>

</html>

This translation should help clarify what the useBean action is doing when
declaring and using variables in the page scope of a JSP. By using the useBean
action, no scriptlets are required on the JSP. The functionality is the same as if a
scriptlet was used, but it is important to see that by using the useBean action,
some scriptlets can be eliminated from the JSP. This concept is more important
in the upcoming section where the getProperty and setProperty actions are
introduced. With these actions it is possible to fully remove the need for scripting
elements.

The useBean action actually does more than simply create a bean, which is
what the previous code showed. The useBean action first checks if the bean
already exists in this scope and if so reuses the existing bean. Scope checking
makes the useBean action a convenient method of passing beans via request,
session, or application scope and accessing them in a JSP. This is important func-
tionality to be aware of, and it is what makes the useBean action a helpful
standard action.

By applying the scope check to Listing 5-3, the scriptlet would really resemble
something similar to Listing 5-4. In page scope it is redundant, but in request,
session, and application scopes, the check is helpful.

Listing 5-4 useBeanScriptletCheck.jsp

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<%

Object temp = pageContext.findAttribute("date");

java.util.Date tdate = null;

if (temp != null && temp instanceof java.util.Date) {

tdate = (java.util.Date) temp;

}

else {

tdate = new java.util.Date();

}

%>

220 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 220

The date/time is <%= tdate %>

</body>

</html>

It is important to note that the JavaBean is created only if the class attribute
is used. If the type attribute alone is used, the JavaBean must already exist in the
specified scope. Why is this considered necessary? In the design chapter, Chapter
11, the MVC pattern will be introduced. Using this design model a JSP and
Servlet typically communicate by passing data in JavaBeans. A Servlet will typi-
cally create a JavaBean, store the bean in a particular scope, and then forward to
the JSP. The JSP should only be called from the Servlet and should never have to
create the JavaBean itself. To facilitate this, the type property should be used
rather than class.

<jsp:getProperty/> and <jsp:setProperty/>
Complementing the useBean action are the getProperty and setProperty
actions. The getProperty action provides a convenient way of invoking a get
method, and the setProperty action provides a convenient way of invoking a
set method. With all three of the bean-manipulating actions, it is now possible
to remove the majority of scripting elements.

<jsp:getProperty/>
The getProperty action provides a way of removing many scriptlets and expres-
sions. The action can be used to invoke a get method of a JavaBean and uses the
following syntax.

<jsp:getProperty name="name" property="method" />

The name attribute references the name of a JavaBean previously introduced
to the JSP by the useBean action. The property attribute is the name of the get
method that should be invoked. The results of the get method are placed in the
implicit out object after being converted to a string either by calling the
toString() method or straight conversion in the case of primitives.

JavaBeans used by the getProperty action are found by invoking the
PageContext findAttribute() method. A JavaBean previously set in a scope,
such as request, session, or application, is not found unless useBean action has
been used to make the bean visible to the JSP.

SERVLETS, JSP, AND JAVABEANS 221

falkner.ch5.qxd 8/21/03 5:38 PM Page 221

Consider the Java Bean in Listing 5-5. It is used as a simple data storage bean
designed to hold information about a user.

Listing 5-5 User.java

package com.jspbook;

public class User {

protected String name = null;

protected String password = null;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getPassword() {

return password;

}

public void setPassword(String password) {

this.password = password;

}

}

Save the preceding code as User.java in the /WEB-INF/classes/com/jsp
book directory of the jspbook Web Application. The JavaBean is nothing special.
It has a get and set method for the name and password variables. Combining the
useBean and getProperty actions, the User bean is used on the following JSP.
Save Listing 5-6 as getProperty.jsp in the root directory of the jspbook Web
Application.

Listing 5-6 getProperty.jsp

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<jsp:useBean id="user" class="com.jspbook.User" />

<%

222 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 222

user.setName("Bob");

user.setPassword("password");

%>

Hello <jsp:getProperty name="user" property=”name"/>, welcome to

this web page!

</body>

</html>

Notice the name attribute of the getProperty action matches up with the id
of the useBean action and the property attribute is name, not getName().The
results of the getProperty action can be seen by then browsing to http://
127.0.0.1/jspbook/getProperty.jsp. Figure 5-1 shows a browser rendering of
the output.

<jsp:setProperty/>
The setProperty action is used to set values of a bean. The setProperty action
uses similar attributes as the getProperty action but with the addition of a few
new attributes. The syntax for the setProperty action is as follows.

<jsp:setProperty name="name" property="method" valueAttribute />

The name and property attributes are required and provide the name of the
JavaBean and set method to be invoked on the bean. In addition to the name and
property attributes, a value needs to be provided for a set method of the
property’s value. The value can be specified in one of two ways:

value="value"

SERVLETS, JSP, AND JAVABEANS 223

Figure 5-1 Browser Rendering of getProperty.jsp

falkner.ch5.qxd 8/21/03 5:38 PM Page 223

The value attribute is used to set a given value as the parameter for the set
method. The value of the value attribute may be a runtime value specified by a
expression.

param="value"

A value can be retrieved from a request parameter. If the param attribute is
used, the value of this attribute is used as the name of a request parameter. The
value of the request parameter is used as the value for the bean’s set method.

In the case where there are multiple parameters needing to be set as values of
a JavaBean, the convenient * value may be specified. When * is used as the value
of the param attribute, a one-to-one mapping is attempted between each request
parameter to a set method of the same name.

Either one of the above methods may be used to provide a value for a set
method. If both methods are used, a translation time error is raised.

With the useBean, getProperty, and setProperty actions, many scriptlets
and expressions can be eliminated from a JSP. The only functionality the three
actions cannot accomplish is iteration, or conditional evaluation, but in Chapter
6, the JSTL fills this deficiency. Listing 5-7 can be rewritten using the set
Property action as follows.

Listing 5-7 setProperty.jsp

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<jsp:useBean id="user" class="com.jspbook.User" />

<jsp:setProperty name="user" property="name" value="Bob"/>

<jsp:setProperty name="user" property="password"

value="password"/>

Hello <jsp:getProperty name="user" property="name"/>, welcome to

this web page!

</body>

</html>

The use of the setProperty action is straightforward. The scriptlet previ-
ously used in Listing 5-5 is replaced with two setProperty actions. In both
uses of the setProperty action, the value attribute is used to specify a set, a
String value. The JSP produces the same output shown in Figure 5-1 previ-
ously.

224 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 224

Bean Initialization
Typically, a JSP will not create JavaBeans. Many applications will be written using
an MVC, or Model II, approach, in which case a Servlet will create the JavaBeans
and JSP will reference them. However, for applications that use only a few JSP,
beans are still useful. In these cases, in addition to creating beans, a JSP may need
to initialize those beans.

Beans are Java objects with default constructors, which means that typically
a bean will be created in a vanilla state. The bean may need to be initialized before
use by calling the necessary set methods. To ensure a bean is properly initialized
before use in a JSP, the JSP uses the jsp:useBean tag’s body. Any code in the body
of the tag is only executed when the bean is first created. So, for example, if a
request comes into a JSP and that JSP has a useBean tag with request scope, that
JSP will create the bean. If the useBean has a “body”, that body will “execute”. If
the JSP then forwards to another JSP, and that JSP has a useBean tag for the same
bean also with request scope, that bean will not be created. Just a reference will
be retrieved from the request object. Even if that second useBean tag has a body,
the body will not be executed. The body of the useBean tag is (morally) its con-
structor. An example is shown here

<jsp:useBean id="user" class="com.jspbook.User">

<jsp:setProperty name="user" property="name" value="Bob"/>

<jsp:setProperty name="user"

property="password"

value="password"/>

</jsp:useBean>

In this example, the user bean is in page scope. This means that whenever
the page is executed, the bean will be created (remember that page scope means
private to this page). Whenever a bean is created, its body is executed; that
means the two setProperty calls will run and initialize the bean.

Good Use of JavaBeans
JavaBeans are not something meant to blow a developer away. The functionality
provided by a JavaBean can be helpful but is not grandiose. What JavaBeans and
the associated custom actions provide a developer with are two things: a simple,
clean syntax and elimination of scripting elements. The simple, clean syntax is
helpful because of its inherent properties. Keeping a JSP legible is a key factor to
making it easy to maintain. The simple syntax is also helpful when cooperating
with a mixed group of developers because it is easy to teach any level of pro-
grammer the useBean, getProperty, and setProperty actions. The equivalent

GOOD USE OF JAVABEANS 225

falkner.ch5.qxd 8/21/03 5:38 PM Page 225

scripting elements are also easy to use, but a few simple tags are always much
more familiar to an HTML savvy developer. JavaBeans are also helpful because
they help remove the need for scripting elements. By enforcing the use of the
useBean, getProperty, and setProperty actions, a code stays clean and is done
in a more object-orientated approach. There is never a need to embed lengthy
bits of code in a scripting element. The better approach is to encapsulate the code
in a Java object such as a bean.

Design Patterns and JavaBeans
The concept of what the useBean, getProperty, and setProperty actions are
doing is helpful to understand. If an alternative to the standard actions is being
used, it is usually a custom action mimicking the functionality of the standard
actions but with a special enhancement for a particular framework or project.

The important thing to remember is the elimination of scripting element
logic in a JSP. Logic encapsulated by scripting elements is almost always best
placed elsewhere, usually in a Java class. JSP is powerful because it is as simple as
authoring a static HTML or XML document. JSP can provide all of the func-
tionality other dynamic server-side technologies can, but JSP is also easy to use
for any, non-Java included, server-side developer. Building around this strong
point is one of the best design patterns you can use, and it is one that JavaBeans
happen to fit in nicely.

One thing to take into account when writing JavaBeans for use in JSP is that
JavaBeans should be “environment agnostic”. Good design will often separate the
application into layers such as the business logic layer and the user interface layer.
JavaBeans will be used for two things: executing business logic and/or carrying
data between these layers. Beans that carry data are used to communicate
between the business logic and the user interface layer. These beans typically have
simple properties that are set in the business logic layer and accessed in the UI
layer. Beans also execute business logic. The business logic is often independent
of the environment in which it is executed—that is, the same business logic could
be executed in a Servlet, JSP, or any other Java class.

To ensure that all beans are maximally reusable, a bean’s functionality should
not rely on data types from a particular environment. What this means in
practice is that, for example, if a Servlet uses a bean, that bean should never be
passed Servlet types, such as HttpServletRequest or HttpServletResponse ref-
erences, as these objects are not available in other non-Servlet environments.

226 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 226

JSP. 2.0 Expression Language
One of the main features of JSP 2.0 is a JSP-specific expression language, com-
monly called the JSP EL. The JSP EL is superior to the JSP expressions described
in Chapter 3 because it provides a cleaner syntax and a language designed spe-
cially for JSP. Additionally, the JSP EL works well with JSP in XML syntax. As is
soon explained, the JSP EL does not require the use of characters that are part of
XML markup—this means JSP EL can inherently work with JSP in XML syntax;
regular JSP expressions do not.

The benefits of the JSP EL are easy to illustrate. A JSP author can use an
expression, such as <%= ... %>, to access a runtime value. The syntax works, but
it is awkward when embedded as a tag’s attribute value, and the expression
directly embeds Java syntax. For example, a custom tag with a dynamic attribute
value previously had to be authored as the following:

<ex:tag attribute="<%= pageContext.getAttribute("value") %>">

The syntax is awkward because it complicates the simple custom tag syntax
with markup inside a tag. Additionally, the expression must use complete Java
syntax which further damages the simplicity of the markup. If the preceding was
authored using the JSP EL, it would look like this:

<ex:tag attribute="${value}">

The functionality is the same, but the code is much simpler. Another feature
of the JSP EL is that it can be used anywhere in a JSP, not just in a custom tag
attribute. This makes the JSP EL a simple, powerful alternative to scripting ele-
ments.

Disabling the EL
Before JSP 2.0 the expression syntax, ${...}, used by the JSP EL was not
reserved. Because of this the EL might cause backwards compatibility issues
with JSP 1.2 and earlier code. To prevent the new EL from causing troubles with
old code, by default the JSP EL is disabled for Web Applications that use a
web.xml file as defined by Servlets 2.3 or the following. For applications that use
the Servlet 2.4 defined web.xml, the JSP EL is automatically enabled. Any indi-
vidual JSP may enable or disable the JSP EL through use of the isScripting
Enabled page directive as described in Chapter 2. The JSP EL may also be con-
figured application-wide using the scripting-enabled element of the web.xml
JSP configuration.

JSP. 2.0 EXPRESSION LANGUAGE 227

falkner.ch5.qxd 8/21/03 5:38 PM Page 227

JSP EL Syntax
The JSP Expression Language is designed to be simple, robust, and minimally
impact backwards compatibility issues. The expression language handles both
expressions and literals. Expressions are always enclosed by the ${ } characters.
For example:

<c:if test="${value < 10}" />

Values that do not begin with ${ are still treated as a literal. The value of the
literal is parsed to the expected type depending on the tag’s TLD (Tag Library
Descriptor) entry:

<c:if test="true" />

In cases where a literal value contains the ${ characters, it must be escaped
with the $\{ characters.

Attributes
Attributes in the EL are accessed by name, with an optional scope. Members,
getter methods, and array items are all treated in the same fashion and replaced
with a “ . ”. Properties accessed using this method may be nested arbitrarily deep.
For example, an object a with a member b would be accessed as ${a.b}. Likewise
an array a could have the b member accessed with the same expression—in other
words, a[b] could be written as ${a.b} using the EL. Additionally, a JavaBean a
with a getter method for b would use the same expression—in other words,
a.getB() could also be written as ${a.b}. Note that the two syntaxes are inter-
changeable, that is, ${a.b} is the equivalent of ${a["b"]}.

Objects do not have to be in page scope for the EL to use them. The EL eval-
uates an identifier by looking up its value as an attribute according to the
behavior of PageContext findAttribute() method. For example, ${value} will
look for the attribute named value by searching the page, request, session, and
application scopes in that order. If the attribute is not found, null is returned.

The EL defines a set of implicit objects with pageContext, page, request,
session, and application matching the JSP equivalents. The EL additionally
defines the following implicit objects:

• Implicit Scoped-Attribute Objects: The EL defines the implicit
pageScope, requestScope, sessionScope, and applicationScope
objects that each represent a map of the objects set in the respective
scope.

228 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 228

• param: The param implicit object is a Map that maps parameter
names to a single String parameter value. The value is obtained by
calling the ServletRequest getParameter() method for individual
names. In practice the param implicit object provides a convenient
way of accessing request values.

• paramValues: The paramValues implicit object is a Map that maps
parameter names to an array of String objects. Objects in the array
are the values for that parameter name. The paramValues implicit
object does not represent an array of all the request parameters,
only all parameters with the same name. The paramValues implicit
object returns values by invoking the ServletRequest
getParameterValues() method.

• header: The header implicit object is a Map that maps all of the
header values, which are available via ServletRequest
getHeaders().

• headerValues: The headerValues implicit object is a Map that maps
all of the head values, which are available via ServletRequest
getHeaders(). For completeness the headerValues object should be
used when reading header values from a request, but in practice
usually only one value is sent per header name, and using the
header object is perfectly fine.

• cookie: A Map that maps the single cookie objects that are available
by invoking HttpServletRequest getCookies(). If there are mul-
tiple cookies with the same name, only the first one encountered is
placed in the Map.

When an expression references one of the implicit objects by name, the
appropriate object is returned instead of the corresponding attribute. For
example, ${request} returns the HttpServletRequest object, even if there is an
existing request attribute in some scope.

Literals
The JSTL EL defines the following literals:

• Boolean: The true and false boolean values have identical literal
values as used in Java.

• Long: Long values are preserved as defined by Java.

• Float: Floating point values are preserved as defined by Java.

JSP. 2.0 EXPRESSION LANGUAGE 229

falkner.ch5.qxd 8/21/03 5:38 PM Page 229

• String: String literal values are treated identically as in Java. Double
quotes, ", are escaped as \", and single quotes, ', are escaped as \',
and \ is escaped as \\.

• Null: The null literal is as defined by Java.

Operators
The EL provides the basic arithmetic operators: +, -, *, and /, along with the
modulus operator %. The EL also provides logic operators and, or, and not, which
correspond to the Java operators &&, ||, and !, respectively. EL support for com-
parison operations is identical to Java: ==, !=, <, >, <=, >=. Comparisons may be
made against other values or against boolean, string, integer, or floating point lit-
erals. The abbreviations lt, gt, lte, or gte may also be used as replacements for
<, >, <=, and >=, respectively.

The EL operators use the following order of preference from top to bottom,
left to right:

• []

• ()

• -

• *, /, div, %, mod

• +, -

• <, >, <=, >=, lt, gt, le, ge

• &&, and

• ||, or

Reserved Words
The EL defined a few reserved words that should not be used within EL expres-
sions: and, eq, gt, true, instanceof, or, ne, le, false, empty, not, lt, ge, null,
div, and mod. Some of the words currently do not do anything but may be used
in future versions of the JSP specification.

EL Functions
A feature of the EL is function binding. An EL function borrows the idea of qual-
ified namespaces, as used, to allow EL syntax to be linked to static Java functions.
Functions that are available to be used by the EL must be specified by a TLD by
using the function element. For example:

230 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 230

<taglib>

...

<function>

<name>foo</name>

<function-class>com.jspbook.FooFunctions</function-class>

<function-signature>

String bar(String)

</function-signature>

</function>

</taglib>

The preceding code defines a function that named foo and maps to the bar()
static function that must be defined by the com.jspbook.FooFunctions class.
The signature of the method is additionally defined by the function-signature
element in the TLD so that the EL can appropriately validate input and return the
correct type of object. In general, each function is defined using one function
element, and a TLD may define as many functions as needed.

EL functions are used by specifying the function name followed by (), with
parameter values defined as needed. If the preceding function was being used,
with the default namespace, it would be: ${bar('a string')}. The expression
would return a String object and could be used in either template text or a
custom tag’s attribute. Should functions from non-default namespaces be nec-
essary, they must be declared explicitly by placing the appropriate namespace
before the function call. For example, assuming the bar function was in a tag
library declared with the prefix f, then it would be explicitly declared using:
${f:bar('a string')}.

In theory, EL functions can do all sorts of things and JSTL 1.1 introduced a
number of them, in particular string manipulation functions. Chapter 6 details
the JSTL and associated functionality.

Good Uses of the JSP EL
There are several use cases where you can accomplish the same task using either
traditional JSP expressions, the JSP EL, the JavaBean actions, or a combination of
the three. In the one obvious case, putting XML-friendly expression in a JSP
authored in XML syntax, always use the JSP EL; there is no reason not to. In most
of the other cases, also consider using the JSP EL as a preferred choice. Compared
to regular JSP expressions, the JSP EL provides a simpler, non-Java method of
accomplishing the same job. Additionally, with JSP EL functions you can literally
do anything that a regular JSP expression can do.

JSP. 2.0 EXPRESSION LANGUAGE 231

falkner.ch5.qxd 8/21/03 5:38 PM Page 231

The most common use case of JSP expressions, JSP EL expressions, and
JavaBeans is to access a scoped Java object and display it as a string. In this case
the JSP EL does a great job, and for many practical purposes is all you will ever
need the JSP EL to do. A simple ${foo} and a scoped variable, in any scope, will
be displayed as a string. The syntax is natural, simple, and most importantly ade-
quate. For these reasons you will notice that almost every single example in the
later chapters uses the JSP EL. In general, this book suggests you always prefer the
JSP EL over the JavaBean actions and regular JSP expressions for this type of
functionality.

Besides the more obvious good uses, the ones that you will find scattered
throughout the book, an excellent use of the JSP EL is to not abuse its function-
ality. The JSP EL is nothing more than an expression language. Yes, the JSP EL can
do arithmetic operations, boolean operations, and bind static Java methods;
however, do not go out of the way to use this functionality. Keep in mind JSP pro-
vides several methods of accomplishing the same goal. If you want to take a stab
at what most developers consider “good practice”, read through the later chapters
of this book. You should note that custom tags and Servlet-related functionality
are commonly used to encapsulate a lot of code, and JSP is usually used as a
simple presentation layer that only requires the basic ${foo} use of the JSP EL.

The JSP EL Doesn’t Require JavaBeans
A handy technique to speed up Web Application development is to use the JSP
EL and java.util.Properties objects (or any map object) to replace
JavaBeans. A good traditional design practice is to divide up a dynamic page into
pure Java code and a simple JSP with as few scripting elements as possible. In
order to communicate between the two parts, a JavaBean with the appropriate
getter and setter methods would be used. Coding the JavaBean is straight-
forward; however, it does take a little bit of effort and time—possibly more than
a little if you are unfamiliar with Java or don’t have a nice build system set up
for the Web Application. Take, for example, Listing 5-5 and a JSP logically
similar to Listing 5-6, both that were shown previously. Listing 5-6 was an
example of the JavaBean actions used to access a scoped JavaBean. We will reuse
the JSP but change the code to use the JSP EL and then take the setter methods
out of the JSP as shown in Listing 5-8.

Listing 5-8 NoJavaBean.jsp

<html>

<head>

<title>useBean Example</title>

232 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

falkner.ch5.qxd 8/21/03 5:38 PM Page 232

JSP. 2.0 EXPRESSION LANGUAGE 233

</head>

<body>

Hello ${user.name}, welcome to this web page!

</body>

</html>

Note the page is simplified (as a result of good coding practice suggested in the
last section), but we accomplished the same as before. A scoped JavaBean is
expected to be available so that the appropriate name value is displayed. Assume
the JavaBean is Listing 5-5 that you saw previously, a simple Java class with a few
getter and setter methods. Finally assume the code that sets the bean’s values is
executed sometime before the JSP is invoked (it doesn’t matter when or how; later
chapters show that Filters are usually used for this). Listing 5-9 shows the changes.

Listing 5-9 NoJavaBean.jsp Bean Setting Logic

...// start of the class or scriptlet

String name = request.getParameter("name");

String password = request.getParameter("password");

// perform an validation required...

User user = new User();

user.setName(name);

user.setPassword(password);

request.setAttribute("user", user);

... // rest of class or scriptlet

The code does nothing surprising; a new instance of the JavaBean is created,
populated, and put in request scope. Because the JSP EL expression matches the
field “name” to the getName() method of Listing 5-5, the JSP will display the
appropriate value.

However, there is no reason a JavaBean needs to be used. We could have just
as easily used a java.util.Properties object and completely skipped whatever
time and effort are associated with the JavaBean. Listing 5-10 shows what the
code might contain.

Listing 5-10 NoJavaBean.jsp Bean Setting Logic, Using a Properties Object

...// start of the class or scriptlet

String name = request.getParameter("name");

String password = request.getParameter("password");

// perform an validation required...

Properties user = new Properties();

user.setProperty("name", name);

user.setProperty("password", password);

falkner.ch5.qxd 8/21/03 5:38 PM Page 233

234 JAVABEANS AND THE JSP EXPRESSION LANGUAGE

request.setAttribute("user", user);

... // rest of class or scriptlet

And now Listing 5-5 would not be needed for the JSP, Listing 5-7, to function
properly. What we save is the time and effort required to code and deploy the
JavaBean. What is lost is control over what happens during the getter and setter
methods, which may or may not be an issue, and we also have the possibility of
losing a little performance—the JavaBean is likely going to consume less memory
than the Properties object.

However you look at it, the JSP EL does eliminate the need for JavaBeans in
most practical situations. Not only do the scoped objects work the same, but it
also tends to be easier to default to using java.util.Properties objects instead
of JavaBeans. There is less work required to get the project going and less code to
worry about maintaining; however, this is a moot point. Properties objects really
only work well as a data storage JavaBean, as illustrated in Listing 5-5, and not
much else. If you are doing some clever tricks with getter and setter methods, it
is likely you will be stuck coding JavaBeans to complement your Web
Application, whether you are using the JSP EL or not.

Summary
JavaBeans are a simple but helpful addition to JSP. As used by JSP, a JavaBean is
really nothing more than a fancy name for a way to code a Java class. By following
certain design restrictions, it is easy to create a set of JSP actions that can manip-
ulate and use any of those classes. JavaBeans are an example of a set of design
restrictions, primarily get and set methods, and the JavaBean standard actions are
available for use with JSP.

The JSP EL is another helpful feature of JSP. The JSP EL provides an intuitive,
non-Java method of writing expressions that do simple logic and access scoped
variables. By itself there is little the JSP EL does, but the JSP EL is commonly used
with custom tags and popular design patterns. Throughout the rest of the book
the JSP EL will be appearing often; note how the JSP EL is used in examples and
think about how it complements the JSP.

The final point presented in this chapter is that there are several good uses for
the JSP EL. Simplifying JSP—removing classic JSP expressions and JavaBean
actions—is a good example, and using JSP EL expression with JSP in XML syntax
is almost required. However, the JSP EL in some respects eliminates the need for
coding JavaBeans. Understand the technique, as it can simplify Web Application
development.

falkner.ch5.qxd 8/21/03 5:38 PM Page 234

235

Chapter 6

JavaServer Pages Standard Tag
Library

Custom tag libraries are one of the most helpful tools available to a JSP
developer; however, the set of tags defined by the JSP specification, known as
“standard actions”, does leave something to be desired. The JavaServer Pages
Standard Tag Library (JSTL) is a complementary specification to J2EE that
defines an extended set of standard JSP tags. The tags are based upon common
uses of custom actions and include tags commonly found with popular frame-
works and containers.

This chapter discusses the following topics:

• An introduction to the current official JSTL specification.

• Why you should consider using the JSTL.

• How to install the JSTL 1.0 reference implementation API.

• Detailed coverage of the various JSTL tags.

• Discussion on practical uses of the JSTL.

The greater point of this chapter is to introduce JSP custom tags by showing
some examples of some arguably good implementations. In addition to learning
about some helpful tags, this should help the next chapter’s discussion when we
discuss how to build your own custom tags.

JSTL 1.0 Specification
The JSTL 1.0 specification is an official Java Specification Request (JSR) done
through Sun’s Java Community Process (JCP), http://www.jcp.org. A copy of
the JSTL specifications can be downloaded from the official JSTL Web page,
http://java.sun.com/products/jsp/jstl. The idea of an extended set of JSP

falkner.ch6.qxd 8/21/03 5:39 PM Page 235

236 JAVASERVER PAGES STANDARD TAG LIBRARY

standard actions has been around since the early JSP specifications, but it only
officially appeared just before the release of JSP 2.0. The JSTL 1.0 release includes
the following tags:

• Iteration and conditional: Iteration and conditional logic are com-
monly needed by a JSP; however, the only standard method of
achieving this functionality is by using scripting elements.
Sometimes the use of scripting elements is not desired, so custom
tags are built as replacements. The JSTL provides a standard set of
custom tags for iterating through a collection or providing condi-
tional logic.

• Expression Language: One of the much-anticipated features of the
JSTL is the new JSP expression language it provides. The JSTL EL is
a JSP-focused expression language designed to replace embedding
Java code via JSP expression elements. The JSTL provides a few tags
for evaluating arbitrary JSTL expressions. The JSTL expression lan-
guage has been superseded by the expression language in JSP 2.0

• URL manipulation: JSP has a very limited support for URL manip-
ulation. Resources outside a JSP application cannot be forwarded to
or included using the standard JSP actions, nor does JSP provide a
method of ensuring a URL is properly encoded with parameters
and session information. The JSTL solves all of these problems with
a set of URL manipulating tags.

• i18n-capable text formatting: Internationalization support is a dif-
ficult task and JSP provides no default support for it. The most
common solutions to supporting i18N issues via JSP are stan-
dardized by the JSTL in a set of custom tags.

• XML manipulation: XML is widely used with Java, so the JSTL
provides a set of custom tags designed particularly for manipulating
XML.

• Database access: Databases are a standard solution to storing the
information complex, dynamic Web sites rely on. The JSTL provides
a set of SQL tags that allow for SQL queries to be performed on an
existing database.

One of the much anticipated features of the JSTL is the new JSP expression
language it provides. The JSTL EL is a JSP-focused expression language designed
to replace scriptlets. Not all of the tags included in the JSTL are widely regarded
as a good idea, but many of the tags are very beneficial to JSP developers. Each of

falkner.ch6.qxd 8/21/03 5:39 PM Page 236

the previous sets of tags are covered individually in this chapter. For each set an
introduction to the tags is given along with examples of use and an objective view
of how helpful the tags are and for what purposes they should be used.

Why You Should Use the JSTL
The JSTL is fairly new, but the functionality it replaces is not new. Everything the
JSTL provides can be done, and usually is done, with existing sets of custom tags
matched to a particular framework or JSP container. It is pointless to pretend that
the JSTL should always be used versus previous existing solutions, but there are
a few good reasons the JSTL should be adopted as the preferred solution. The
JSTL is a standard, so it was built collectively by the members of the JSP com-
munity and it reflects a good, helpful implementation of many useful functions.
Embracing the JSTL saves a developer from having to build equivalent tags or
learn the equivalent set of tags being used by a particular project. The JSTL is also
implemented under a liberal open source license and is hosted by the Apache
Jakarta community1. The code can be used with no strings attached, and a strong
development community continuously works to improve it.

Another great reason to use the JSTL is if you are either not a Java pro-
grammer or if you could care less about using the widely pushed MVC design
pattern (explained in Chapter 7) that involves using Servlets, Filters, JavaBeans,
and JSP. There are many JSTL tags whose use conflicts with the use JSP is pri-
marily intended for: creating user interfaces. However, these tags are helpful in
certain situations. In an attempt to promote good practice2 within this book, we
do not promote the use of some of the JSTL tags; the reasons are given in the
respective sections. However, if you are building prototypes or small applications,
then all of the JSTL tags can be useful (even the “evil” SQL tag library).

Installing the JSTL
For the examples in this chapter, an implementation of the JSTL needs to be
installed. The source code and binary distributions of the JSTL can be found at
http://jakarta.apache.org/builds/jakarta-taglibs/releases/standard/.
Download the binary distribution and unpack the compressed file. With the
JSTL 1.0 release are the following files:

INSTALLING THE JSTL 237

1. The JSTL reference implementation—that is, container vendors are free to implement the JSTL
and optimize it for use with their container.
2. In the authors’ joint opinion, of course.

falkner.ch6.qxd 8/21/03 5:39 PM Page 237

• README: The README file contains a brief summary of every-
thing included in the JSTL 1.0 binary release.

• /lib folder: The /lib folder contains all of the JAR files required by
the JSTL. The JAR files including the JSTL tag handlers also contain
the required TLD files. For a simple installation of the JSTL, all of
the files in the /lib directory can be copied into the /WEB-INF/lib
directory of the jspbook Web Application. In practice this may not
always be the best way to install the JSTL. There are many libraries
that may conflict with files in the JDK or other JAR files previously
installed in the application, such as the XML libraries, for example.

• /tld folder: The TLD folder contains a copy of each of the TLD files
required for the individual JSTL sets of tags. Each set of tags
includes two TLD files: one with the JSTL expression language
enabled and one without.

• standard-docs.war: The standard-docs.war file is a WAR that con-
tains the basic JSTL documentation. Deploying this WAR provides a
convenient method of keeping a local copy of the JSTL documen-
tation.

• standard-examples.war: The standard-examples.war file is a WAR
that contains examples of the JSTL.

For the purposes of this book, the specific JSTL TLDs, standard-docs.war
and standard-examples.war files, are not covered.

To install the JSTL for use with the jspbook Web Application, copy the
standard.jar and jstl.jar files from the /lib directory of the JSTL binary
release to the /WEB-INF/lib directory of the jspbook Web Application. Reload
Tomcat and the installation is complete.

JSTL Expression Language
One of the main features of JSTL 1.0 was the addition of a new JSP-specific
expression language, commonly called the JSTL EL; however, the JSTL 1.0 was
released before the JSP 2.0 specification. JSP 2.0 standardized and extended the
JSTL EL as the JSP expression language, as was covered in Chapter 5. The JSP
2.0 EL is a superset of the JSTL EL, and all examples in this book use the JSP 2.0
expression language. In the special case where you are developing with JSP 1.2 and
the JSTL, consult the JSTL documentation for available JSTL functionality.

238 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 238

Twin Libraries
There are two libraries of each set of tags in the JSTL. One set of tags provides
support for the EL; the other relies on only regular JSP expressions. The non-EL
tags exist because the JSTL was standardized before JSP 2.0. There is no reason
for this book to spend time discussing the JSTL tag libraries that implement
support for the JSTL EL. The only reason the point is brought up is so that no
confusion is had at the expense of the two similar libraries.

Core Tags
The core set of JSTL tags includes tags that are helpful in most every JSP project.
These tags leverage the EL and seek to consolidate equivalent tags implemented
by JSP frameworks, container vendors, and individual authors. Core JSTL tags all
share the same URI, http://java.sun.com/jstl/core, and can further be seg-
mented based on specific functionality.

General-Purpose Tags
Included with the core JSTL tags are a set of general-purpose tags. These tags
along with the EL are used for common simple tasks, but the tasks themselves are
not built to accomplish a specific larger goal. The tags consist of the out, set,
remove, and catch actions.

<c:out>
The out tag takes a JSTL expression and evaluates the result, sending output to
the page’s current JspWriter object. The tag is helpful as an alternative to the
commonly used getProperty action. In cases where a JavaBean is not present, or
a developer prefers not to use the bean, the out action provides equivalent func-
tionality. However, in JSP 2.0 out is largely irrelevant; simply putting the equiv-
alent expression directly on the page has exactly the same effect.

The out action has three attributes:

• value: The value of the value attribute is the expression to evaluate.
The results of the expression are sent to a client using the current
page’s JspWriter object. The value of the value attribute may be
specified at runtime.

• escapeXml: The escapeXml attribute specifies if the output of the
resulting string should be converted to character entity codes. By
default the value is true and the characters <, >, &, ', and " result in

CORE TAGS 239

falkner.ch6.qxd 8/21/03 5:39 PM Page 239

<, >, and &, ', and ". The value of the
escapeXml attribute may be specified at runtime.

• default: The default attribute defines the default value to be used
in case the expression fails or results in null.

The out action is very straightforward. Listing 6-1 illustrates the out action
being used on a literal.

Listing 6-1 JSTLout.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title><c:out> Action Example</title>

</head>

<body>

<c:out value="${'<tag> , &'}"/>

</body>

</html>

The resulting page is illustrated in Figure 6-1. The literal value is properly
escaped so it displays correctly in a browser. Should this not be what is required,
the escapeXml attribute could be set to false, such as escapeXml="false".

A good question to ask is why the JSTL out tag is better than simply
embedding the expression directly where it is needed. For most practical pur-
poses there is no reason unless you are escaping markup syntax—namely < and
> symbols as < and >. Using only an EL expression in Listing 6-1 would
have resulted in <tag> literally appearing in the output instead of <tag>

tag, and in the browser rendering, the text would not have appeared.

240 JAVASERVER PAGES STANDARD TAG LIBRARY

Figure 6-1 Browser Rendering of JSTLout.jsp

falkner.ch6.qxd 8/21/03 5:39 PM Page 240

<c:set>
The set action is a JSTL-friendly version of the setProperty action. The tag is
helpful because it evaluates an expression and uses the results to set a value of a
JavaBean or a java.util.Map object.

The set action has the following attributes:

• value: The value attribute is the expression to be evaluated. This
attribute may be a runtime value.

• var: The value of the var attribute is the name of an exported
variable that is the result of the expression. The type of the variable
is whatever the expression evaluates to. This attribute is used when
the set action is evaluating a variable to be used by its body content
or other components of the JSP.

• scope: The scope attribute defines the scope of the object named by
the var attribute. Valid values are page, request, session, and
application, with page being the default.

• target: The target attribute is the name of the target object whose
property will be set. The object resulting must be either a JavaBean
object with an appropriate setter method or a java.util.Map
object. This attribute may be a runtime value.

• property: The property attribute is the name of the property to be
set of the object specified by the target attribute. This attribute
may be a runtime value.

There are two primary ways in which the set action is intended for use. The
first use is to set a property of a JavaBean or Map object. In this case the set action
uses the value, target and property attributes:

<c:set value="expression" target="target object"

property="name of property" />

The second use is to set a scoped variable for use later in the JSP or another
resource of the Web Application. In this case the set action would use the value
and var attributes, optionally the scope attribute.

<c:set value="value" var="varName"/>

In both cases the value attribute can be omitted in favor of using the tag’s
body content to replace the expression. In general it is not recommended you
design using the set action. As with the setProperty action, the set action

CORE TAGS 241

falkner.ch6.qxd 8/21/03 5:39 PM Page 241

embeds code in a JSP that is not desirable. The logic is better abstracted com-
pletely out of the JSP as done in the Model 2 design pattern, Chapter 11.

<c:remove>
The remove action provides a method of removing a scoped variable. This action
is not normally particularly helpful, but it can aid in ensuring that a JSP cleans
up any scoped resources it is responsible for. Scoped variables left in session or
application scope can be a nuisance and should not be used unless needed.

The remove action has two attributes:

• scope: The scope attribute defines the scope to search when
removing a variable. If the scope attribute is not defined, the
variable is removed by calling the PageContext
removeAttribute(varName) method. If the scope attribute is
defined, the variable is removed by calling the PageContext
removeAttribute(varName, scope) method.

• var: The var attribute defines the name of the variable to remove.

Use of the remove action is straightforward; however, it is not recommended
you design using the remove action. With a good design and proper use of scoped
variables, there should never be a need for a JSP to clean up a scoped resource.
This type of logic is not something that is best suited for a JSP, and it should be
abstracted completely out of the JSP as done in the Model 2 design pattern,
Chapter 11.

<c:catch>
The catch action provides a method of error handling for specific parts of a JSP.
The feature is helpful as it can prevent a non-critical exception from terminating
the execution of a JSP. The catch action works by encapsulating its body content
in a try-catch statement.

The catch action only has one attribute, var. The var attribute is the name
of the variable in which a caught exception is stored. The type of the variable is
the same type as the thrown exception. Should the var attribute not be specified,
then the exception is caught and not saved.

Use of the catch action is straightforward. Simply surround problematic
code with a catch action to prevent the exception from reaching the page’s error
handling mechanism. As with the remove and set actions, the catch action
should not normally be used. The functionality it provides is much better placed
outside of a JSP as dictated by the Model 2 design pattern, Chapter 11. Later on

242 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 242

in the chapter a further explanation of the merits of avoiding the remove, set,
and catch actions is provided with the JSTL SQL and XML tags.

Iteration
The core JSTL iteration tags exist to iterate over collections of objects. The tags
exist as a good alternative to embedding a Java for, while, or do-while loop via
a scriptlet. There are two core iteration tags: forEach and forTokens. The
forEach tag is the more commonly used tag because it iterates over a collection
of objects. The forTokens tag is used to break a string into tokens and iterate
through each of the tokens.

There are good reasons why it would be better to eliminate iterating scriptlets
in favor of the JSTL iteration tags. The first and obvious reason is to make it
easier to understand what a JSP is doing. Eliminating scriptlets in favor of custom
tags increases the amount of markup on a page and reduces the amount of Java
code. The end result is a JSP that is easier to read. Consider the JSP in Listing 6-
2, which uses an Iterator object and a while loop.

Listing 6-2 ScriptletIteration.jsp

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

<%

Iterator set = (Iterator)request.getAttribute("set");

while (set.hasNext()) { %>

The value is <%= set.next() %>

<% } %>

</body>

</html>

The code is purposely made about as simple as it can get; however, it is still
difficult to see what is going on, especially if you are unfamiliar with Java as you
would expect of many page-development authors. This is almost always the case,
because code appearing in a scripting element is not markup. It is Java. Mixing
Java with markup makes it difficult to read either. By using a set of JSP custom
tags to replace iteration scriptlets, it is easier to read the page as a whole. Listing
6-3 illustrates what the equivalent page would look like using the JSTL forEach
tag.

CORE TAGS 243

falkner.ch6.qxd 8/21/03 5:39 PM Page 243

Listing 6-3 JSTLIteration.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

<c:forEach var="item" begin="0" items="${set}">

The value is <c:out value="${item}"/>

</c:forEach>

</body>

</html>

The difference is minor, but it does result in a cleaner page. The markup of a
custom tag matches the markup of the surrounding text. The result is that a JSP
developer seeing this page for the first time should easily be able to figure out
what is going on. The same logic holds true for more realistic and complex
examples where there is much more markup and complex code being used in the
iteration. In the case of scriptlets the more complex the JSP gets, the harder it is
to understand what is going on and the harder it becomes to maintain code.

Another much more important benefit to using the JSTL iteration tags is to
enforce clean development of JSP. Certain design patterns, such as Model 2, are
built around removing unneeded code from a JSP, usually all the scripting ele-
ments. The reason is not to prevent a JSP developer from using iteration, but to
prevent a JSP developer from having the freedom to embed arbitrary Java code
in scriptlets. Allowing for any type of code can be detrimental to the design of a
Web Application. By completely disabling scripting elements and only allowing
JSTL iteration tags, it can be ensured a JSP does not have bad code embedded via
scripting elements.

<forEach>
The forEach tag provides for iteration over a collection of objects. Currently, the
forEach tag supports iteration over an array, java.util.Collection, java.
util.Iterator, java.util.Enumeration, or a java.util.Map. In all cases the
forEach tag iterates over each primitive, or object, in the collection and exposes
it for use by the tag’s body.

The forEach tag allows for the following attributes:

244 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 244

• var: The var attribute defines the name of the current object, or
primitive, exposed to the body of the tag during iteration. Its type
depends on the underlying collection. The var attribute must be a
static String value.

• items: The items attribute defines the collection of items to iterate
over. The value may be specified at runtime.

• varStatus: The varStatus attribute defines the name of the
exported scoped variable that provides the status of the iteration.
The object exported is of type javax.servlet.jsp.jstl.LoopTag
Status. The attribute’s value must be a static String value and it has
nested scope.

• begin: The begin attribute is an int value that sets where the iter-
ation should begin. If no value is specified, the iteration index
begins at 0, or the first item of the collection. The value of the
begin attribute may be a runtime value.

• end: The end attribute is an int value that determines inclusively
where the iteration is to stop. If no value is specified, the iteration
stops after going through the entire collection. The value of the end
attribute may be a runtime value.

• step: The step attribute is an int value that determines the “step”
to use when iterating. Only step items are iterated through—that is,
if step is 2, then every other item is skipped during the iteration.
The step value may be a runtime value.

The typical use of the forEach tag is to iterate through a collection passed via
the request object. Listing 6-4 illustrates the tag used in a JSP. For more complex
uses the iteration may begin, end, or selectively iterate over particular objects.
Listing 6-4 illustrates an iteration starting at the second item of the collection and
only using the first out of every three items in the collection.

Listing 6-4 JSTLIterationComplex.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

CORE TAGS 245

falkner.ch6.qxd 8/21/03 5:39 PM Page 245

<c:forEach var="item" begin="0" items="${set}"

begin="2" step="3">

The value is <%= item %>

</c:forEach>

</body>

</html>

While the iteration tag is helpful in many cases, there is one well-known case
that can be problematic. The common task of iterating over a JDBC ResultSet,
showing a select number of results at a time, can cause trouble because of
caching. Notably many iterations are generated by doing a query on a database,
as covered in Chapter 14. When only showing a few select entries from a result,
such as items 1 through 20 or 21 through 40, and so on, it is very reasonable to
cache the complete query and only show chunks of it as requested. Compared to
doing the query each time, this can save a lot of time, memory, and processing
power. The problem arises because there are many logical places for caching the
information. One would be the JSTL forEach tag, and another would be the
database connection that is generating the results. Caching information in more
than one place is not desirable, especially if it is a very large result set.

Avoiding the problem is simple. Choose where to cache information and
then make sure it is only cached there. Be wary of JSTL forEach tag implemen-
tations that attempt to auto-cache for you3. Also be wary of any other code which
“simplifies” this sort of task for you. While making it easier to develop, you are
trading the amount of control you have over optimizations such as caches.

<forTokens>
The forTokens tag parses a String into tokens based on a given delimiter. All of
the tokens are then iterated over, the same as the forEach tag. All of the attributes
of the forEach tag are shared by the forTokens tag. One new attribute is addi-
tionally allowed: delims. The delims attribute defines the value used to delimit
tokens in the source String. Any String value may be used as a delimiter. The
delims attribute value may also be a runtime value.

Additionally the items attribute takes on a new meaning with the forTokens
tag. Instead of defining a collection to iterate through, the items attribute is the
String to parse.

246 JAVASERVER PAGES STANDARD TAG LIBRARY

3. The JSTL reference implementation “featured” auto-caching with the forEach tag. This caused
problems, especially when used with the JSTL SQL tags and a JDBC driver that also auto-caches
results. Large results would take up twice as much memory.

falkner.ch6.qxd 8/21/03 5:39 PM Page 246

In use the forTokens tag is identical to the forEach tag but with the delims
attribute specifying a token delimiter. Listing 6-5 provides an example of the
forTokens tag iterating through a literal String value.

Listing 6-5 JSTLforTokens.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title>Iteration Example</title>

</head>

<body>

<c:forTokens var="item" delims="~" items="token1~token2~token3">

The value is <c:out value="${item}" />

</c:forTokens>

</body>

</html>

Conditionals
JSTL core conditional tags support simple statements such as a Java if and
switch. The tags are a replacement for scriptlets commonly needed to accom-
plish the same functionality. Like the iteration tags, by using the conditional tags
a cleaner markup-orientated syntax can be maintained in favor of scripting ele-
ments. There are two main groups of conditional tags: if and choose. The if tag
mimics a simple Java if statement, while the choose tag mimics a Java switch or
if/else statement.

<c:if>
The if tag allows the conditional execution of its body depending on the value of
a test attribute. Should the test result in true, the contents of the tag’s body are
evaluated. Should the test result in false, the contents of the tag’s body are skipped.

The if action has the following attributes:

• test: The test attribute is the condition for if the body content
should be shown or not. A literal true or false value may be used,
but an expression is most helpful.

• var: The var attribute is an optional attribute that defines the name
of a scoped variable. A scoped variable defined by the var attribute
contains the results of the test attribute and can be further used by
the JSP.

CORE TAGS 247

falkner.ch6.qxd 8/21/03 5:39 PM Page 247

• scope: The scope attribute defines the scope of the var attribute.
Valid values for the scope attribute are page, request, session, and
application.

Sometimes the if tag’s functionality is best abstracted using a good design
pattern, but there are cases where the if tag can be very convenient. A good
example is reminding a user he or she needs to log in. A site’s main page may be
freely available to the public, but the rest of the site requires a user to have logged
on. To remind a user they need to log on, a simple conditional can be used on the
main page. Listing 6-6 illustrates how this could be done, assuming after logging
in a session-scoped object, user, is set.

Listing 6-6 JSTLif.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title><c:if> Action Example</title>

</head>

<body>

<c:if test="${user == null}">

<form>

Name: <input name="name">

Pass: <input name="pass">

</form>

</c:if>

<c:if test="${user != null}">

Welcome ${user.name}

</c:if>

<!--

Rest of main page here...

-->

</body>

</html>

The page has two simple checks: one for if the user is logged on and one for
if he or she is not. Should the user be logged on, a welcome message is displayed.

<c:if test="${user != null}">

Welcome ${user.name}

</c:if>

248 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 248

Should a user not be logged on, a log-on form is displayed.

<c:if test="${user == null}">

<form>

Name: <input name="name">

Pass: <input name="pass">

</form>

</c:if>

In both cases the full contents of the page will be shown. If the contents were
restricted, then the if action would not be the best of choices. Instead two com-
pletely separate JSP should be shown, depending on if the user needs to log in or
not.

<choose>, <when>, and <otherwise>
The choose tag performs conditional block execution of sub when tags. It renders
the body of the first when tag whose test condition evaluates to true. If none of the
test conditions evaluate to true, then the body of an otherwise tag is evaluated. If
no otherwise tag is present, nothing happens.

The choose and otherwise tags have no attributes. The when tag has one
attribute, test. The test attribute is an expression that determines if the con-
dition of a when tag is true. If true, the body content of the when tag is evaluated.

Use of the choose tag is straightforward and the tag is as helpful as the if tag.
In some situations it makes sense to move the functionality completely out of the
JSP, but there are circumstances where the choose tag is a convenient solution.
For example, you can author the equivalent of Listing 6-6 by using the choose,
when, and otherwise tags that are shown in Listing 6-7.

Listing 6-7 JSTLchoose.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title><c:choose> Action Example</title>

</head>

<body>

<c:choose>

<c:when test="${user == null}">

<form>

Name: <input name="name">

Pass: <input name="pass">

</form>

CORE TAGS 249

falkner.ch6.qxd 8/21/03 5:39 PM Page 249

</c:when>

<c:otherwise>

Welcome ${user.name}"

</c:otherwise>

</c:choose>

<!--

Rest of main page here...

-->

</body>

</html>

URL Manipulation
JSP provide weak support for URL manipulation. The JSP include action only
allows for inclusion of resources in the Web Application. External pages or
resources can only be included via a custom solution. JSP also manage state via
cookies with a fall-back mechanism of URL rewriting. If a client does not
support cookies, URL rewriting must be used, but there is no way to automati-
cally rewrite all URLs. The JSTL provides a solution to both of these problems
with a few custom tags.

<c:import> and <c:param>
The import tag provides all of the functionality of the include action but also
allows for inclusion of absolute URLs. For example, using the import tag allows
for inclusion of content from a different Web site or an FTP server. Content
retrieved by the import tag can also be made available in a few different ways. By
default the included information is directly sent to the page’s current JspWriter
object, but optional attributes may be used to specify a scoped variable or a
Reader object where the content should be made available.

The import tag has the following attributes:

• url: The value of the url attribute is the URL to import. Valid
values include both relative and absolute URLs. The value may be
specified by a runtime value.

• context: The context attribute can be used to provide the name of
a context when accessing a relative URL resource that belongs to a
foreign context. The value may be specified by a runtime value. A
foreign context is another Web Application that is executing on the
same Web server. This value should be used if the URL is relative to

250 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 250

that named foreign context. Note that this is the equivalent of a
request dispatch across Web Application boundaries and may not
work on particular containers due to security or other restrictions.

• var: The var attribute can be used to name a scoped variable to
contain the resource’s content. The type of the variable is String.

• scope: The scope attribute defines the scope of a variable named by
the var attribute. Valid values are page, request, session, and
application.

• charEncoding: The charEncoding attribute can be used to specify
the character encoding of the content at the input resource. By
default it is assumed the standard, ISO-8859-1, encoding is used.

• varReader: The varReader attribute is available to create a Reader
object for use by content in the import tag’s body. The value of the
varReader attribute is the name of the scoped variable; the type of
the variable is java.io.Reader.

There are two ways to use the import tag. The first is to import local or
remote content and send it directly to the client. In this case the url attribute is
required to specify the URL to include, optionally with the context and
charEncoding attributes.

<c:import url="url" />

The results of such an include depend on the resource being included. If, for
example, the following JSP was used:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<c:import url="http://www.jspbook.com" />

The result would be identical to the code generated by browsing to http://
www.jspbook.com: relative style sheets and images wouldn’t work, but the code
would be the same.

The second method of using the import action is to import the contents of
the URL to a scoped variable or to a Reader object. In this case the import action
would be used with the url attribute and either the varReader or var attributes,
optionally the context, scope, and charEncoding attributes. For instance, to
show the source code of a local or remote Web page, you could combine the
import and out actions as shown in Listing 6-8.

CORE TAGS 251

falkner.ch6.qxd 8/21/03 5:39 PM Page 251

Listing 6-8 JSTLimport.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title><c:import> Action Example</title>

</head>

<body>

Here is the source code of the main page:

<pre>

<c:import url="welcome.html" var="value"/>

<c:out value="${value}"/>

</pre>

</body>

</html>

The result of Listing 6-8 is a page that shows the code sent back from a
response to http://127.0.0.1/jspbook/welcome.html. Note the code in the
case of HTML; the source code is the same as the result. However, if Listing 6-8
is used to request a JSP, it shows the response, not the source code. Figure 6-2
shows a browser rendering of the results.

<c:param>
The param tag complements the import tag by allowing proper URL request
parameters to be specified with a URL. Commonly, a URL request parameter is

252 JAVASERVER PAGES STANDARD TAG LIBRARY

Figure 6-2 Browser Rendering of JSTLimport.jsp

falkner.ch6.qxd 8/21/03 5:39 PM Page 252

hard coded to the end of a URL—for example, test.jsp?name=value. However,
this practice does not always work because a URL must be encoded as defined in
RFC 2396, http://www.ietf.org/rfc/rfc2396.txt. Without proper encoding,
the URL parameters may not be correctly sent with a request. To ensure proper
encoding, the JSTL provides the param tag.

The param tag has two attributes:

• name: The name attribute specifies the name of the URL parameter.

• value: The value attribute specifies the value of the URL parameter.

The param tag is used as a child of the import tag to set URL parameters.

<c:url>
The url tag is a method the JSTL provides to automatically encode URLs with
session information and parameters. As a container is required to try and keep a
session associated with a client, cookies4 are used and work perfectly fine unless
a client purposely disables them or does not support them. In the case where a
client does not support cookies, session information needs to be directly encoded
with a URL. A JSP developer can do this manually by replacing all URLs with a
call to the HttpServletResponse encodeURL() method. For instance, the fol-
lowing anchor tag:

Book Site

would be changed to:

<a href='<%= response.encodeURL("index.jsp")%>'>

Book Site

The practice works; the JSTL url action is just an alternative method of
writing the call to the encodeURL() method. The only real advantage the url tag
provides is proper URL encoding, including any parameters specified by children
param tags.

The url tag has the following attributes:

• value: The value attribute is used to provide the URL to be
processed.

CORE TAGS 253

4. Cookies are formally covered in Chapter 9.

falkner.ch6.qxd 8/21/03 5:39 PM Page 253

• context: The context attribute defines the name of the context
when specifying a relative URL resource of a foreign context.

• var: The var attribute can be used to export the rewritten URL to a
scoped variable. The value of the var variable is the processed URL.
The type of the variable is String. The variable’s scope depends on
the scope attribute.

• scope: The scope attribute determines the scope of the object
named by the var attribute. Valid values are page, request, session,
and application.

The url tag only changes relative URLs to avoid accidentally exposing session
information—that is, /index.jsp would be encoded, but http://www.jspbook.
com would not.

For most practical purposes the url tag works but is just plain awkward. It
does provide a method of encoding a URL with parameters, but do not think you
always need to properly encode URLs. Preserving session information in case a
client does not use cookies is helpful, but can be safely ignored unless a Web
Application relies on always keeping session state. Should keeping session be
mandated, then use the encodeURL() method or the url tag as needed.
Alternatively, another cleaner solution to providing URL encoding support is to
abstract the formatting via a multi-client design as covered in Chapter 13.

<redirect>
The redirect tag complements the URL manipulating tags by providing a tag
that properly encodes a client-side redirection. The functionality of the redirect
tag is equivalent to calling the HttpServletResponse sendRedirect() method.
The tag may have child param tags used to define parameters.

The redirect tag allows the following parameters:

• url: The url attribute specifies the relative or absolute URL the
client should be redirected to.

• context: The context attribute specifies the name of the context to
use when the url attribute refers to a foreign context.

Using the redirect tag is straightforward; however, you are not encouraged
to design around using it. The functionality provided by the redirect tag is best
abstracted out of a JSP as shown in Chapter 11.

254 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 254

i18n-Capable Text Formatting
The JSTL i18n tags are a collection of text-formatting tags designed for interna-
tionalized Web sites. The tags are a good implementation to one of the most
commonly used i18n solutions. The JSTL i18n text-formatting tags are covered
along with other internationalization issues in Chapter 12.

XML Manipulation
XML today is used for many things. In the past it was mostly used as a data
description format, but today, for example, one of the primary uses of XML is as
a Web format for Web Services5. Because XML is so widely used, there are many
situations where XML documents need to be created and manipulated. The JSTL
XML tags provide a JSP-centric way of doing this. The XML tags are a well-done
set of JSP custom tags that provide a flexible way of manipulating XML. As a
good Servlet and JSP developer, you should understand Java and be able to take
advantage of the functionality it provides. By implementing a Java-centric design
pattern such as Model 2 via a Servlet or Filter, as defined in Chapter 11, it may be
unnecessary to use the JSTL XML tags at all.

However, JSP can be used as a way of managing and creating XML for tech-
nologies such as Web Services. The JSTL XML tags are a good adjunct to the
standard JSTL tags if you are mostly processing XML rather than plain HTML.
However, this book assumes that you are writing Web Applications and not Web
Services. It also assumes that you have no or limited XML knowledge. To get full
value from the JSTL XML tags, you need to understand other XML-related tech-
nologies: XPath and XSLT. For these reasons only cursory coverage will be given
to the XML tags.

What the XML tags provide are a few XML manipulation functions and the
XML equivalent of the JSTL core and conditional tags. The specific tags are
further explained:

• Core XML Tags: The JSTL XML tags provide equivalents to the core
JSTL tags, but with support for both the EL and XPath. XPath
allows queries to be done on XML documents to return subsets of
the information. XPath is fairly analogous to using an SQL query
on a relational database. By using XPath and the JSTL XML tags, it

XML MANIPULATION 255

5. Web Services is a technology for describing services and providing information online using
XML. Due to the platform-neutral nature of XML, Web Services are growing as a popular solution
for this need.

falkner.ch6.qxd 8/21/03 5:39 PM Page 255

is easy to use an object representation of an XML document in a
similar fashion as a JavaBean.

• Flow Control Tags: The JSTL XML flow tags consist of an XPath
implementation of the choose, when, otherwise, if, and forEach
tags.

• Transformation Tags: The JSTL XML transformation tags provide
a method of applying XSLT transformations to XML content.

The only new set of functionality is found in the transformation tags. If you
are familiar with XSLT, these tags provide an easy way to apply XSLT to XML doc-
uments—easy, assuming you are using JSP and the JSTL. The JSTL XML trans-
formation tags do not offer any outstanding benefit besides working with JSP.

SQL Tags
The common use of SQL and Database Management Systems (DBMSs) merited
the creation of a set of SQL tags. The JSTL SQL tags provide a simple interface for
executing SQL queries on a database via JSP. How helpful these tags are is com-
monly questioned because they directly violate the idea of only placing presen-
tation logic in a JSP. The functionality the SQL tags provide is best placed elsewhere
in a Web Application as dictated by the Model 2 design pattern. Admittedly, the
JSTL creators understood this, but the tags were still created as a simple way for a
JSP developer, not necessarily a Java developer, to work with a database.

The view of the JSTL SQL tags taken in this book is that they are a poor sub-
stitute for understanding Java, JDBC, and a good design pattern. Understand this
view is not always true, but it is one that applies to the majority of JSP projects
you are likely to work on. As the book progresses, the alternative to using the SQL
tags, JDBC, and Model 2 design are covered in full.

Justification for Skipping the SQL Tags
In this book there are many programming practices that are promoted but have
a good chance of being misinterpreted. It is clearly stated in countless places,
including the introduction and back of the book, that this book takes a Java skill
set and applies it to Servlets and JSP to create good Web Applications. By “good”,
potentially complex is meant. You bought a book because you wanted direction
and advice on doing things with Servlets and JSP—not just simple, figure-it-out-
in-five-minute things, but also the hardest of tasks. Purposely discouraging use
of select JSTL tags might appear to go against this, but it is the goal of this book
that justifies skipping these tags.

256 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 256

All of the JSTL tags are designed to be simple to learn. They provide the
same functionality an experienced Java developer has available but through a
non-programming interface. In other words, Java allows a developer to do any-
thing but requires learning a lot more before being able to start doing a little.
The JSTL requires someone to learn very little but be able to do a lot, not as
much as pure Java, but enough for building simple Web Applications. The JSTL
SQL tags are intended for the cases where understanding or using as little Java
as possible is desired. These types of cases do not merit a full book! You can
figure this out in a matter of minutes, do an adequate job of building a Web
Application, and save yourself $50 and some shelf space. You are encouraged to
do this should the situation arise. However, in cases where you need to build
something complex and build it right, a solid understanding of Java, Servlets,
and JSP are what you need. That is what merits buying this book, and that is
what this book is about.

Any Java developer will agree the larger a project gets, the more critical a
good design pattern is to ensure the project is successful. Good design patterns
do not pop into your head after five minutes of wishing you did not have to learn
Java. Good design patterns evolve from the use of a technology and experience of
other developers who previously did the same type of project. Should it be
obvious or not, this book is preparing you for a sound understanding of good,
proved JSP and Servlet design patterns, specifically the Model 2, or MVC design
pattern, with an emphasis on how this allows for good internationalization
support, multi-client support, and future project maintenance. The JSTL SQL
tags do not fit into this overall goal. They promote a limited Model 2-conflicting
use of the functionality JSP and Servlets provide and that is why they are skipped.
The authors would say to never use these tags, so why are they in the JSTL? There
are two arguments given for their inclusion: first, prototyping. If you are proto-
typing, you often need a “quick and dirty” solution; the JSTL SQL tags are a quick
and dirty SQL solution. Second, if you are writing a small Web Application
(maybe a page or two), in which case you may feel that using MVC is overkill.
However, you should remember that small applications quickly grow to be large
applications, and using these tags may lead to all sorts of maintenance headaches.

On a slight tangent, if you truly desire to be a J2EE expert, it is wise to
understand all of the options available to a Java, JSP, and Servlet developer. This
allows you to make an informed and appropriate decision on a case-by-case
basis when developing Web Applications. Understanding when JSP and Servlets
are an overkill is helpful to save time and effort. A good understanding of the
full JSTL is helpful in this regard as it nicely complements simple applications.
If you are interested in a good, comprehensive discussion of the JSTL, we suggest

JUSTIFICATION FOR SKIPPING THE SQL TAGS 257

falkner.ch6.qxd 8/21/03 5:39 PM Page 257

the following book, JSTL in Action (ISBN 1930110529), by Shawn Bayern. He is
the JSTL implementation leader, and explains all of the intricate uses of the
JSTL.

Summary
The JSTL is a helpful tool for a JSP developer; it provides a standard set of custom
tags that extend the standard JSP actions to incorporate the most commonly
needed custom tags. Additionally, the JSTL expression language is a powerful new
feature available to custom tag authors.

The JSTL is most helpful because it defines a standard set of iteration tags
and conditional tags and because it inspired the JSP EL. These features of the
JSTL aid a JSP developer in rapidly creating JSP without requiring the use of
scripting elements. The expression language is particularly helpful because it is
designed specifically for JSP. Compared to embedding Java syntax in a regular
expression, the JSP EL is much more convenient.

Not all parts of the JSTL are intended for use by all JSP developers. Tags such
as the SQL tags work, but are not suggested for use by readers of this book. A
solid understanding of Java provides a finer, more flexible, and native solution to
achieving the same functionality.

258 JAVASERVER PAGES STANDARD TAG LIBRARY

falkner.ch6.qxd 8/21/03 5:39 PM Page 258

259

Chapter 7

Custom Tag Libraries

In Chapter 3, we introduced JavaServer Pages. The introduction focused on the
core concepts of JSP and explained how JSP complements Servlets in the J2EE
Web tier; however, a very important set of JSP functionality was completely
ignored—custom tags. In Chapter 3 the topic of custom tags, also called custom
actions, was avoided in favor of establishing the more fundamental concepts of
JSP. Custom tag use is not a topic that can be fully covered by a few pages of dis-
cussion. A proper explanation of custom tags easily fills a chapter itself, while full
coverage of custom tag uses can easily fill a few more.

In this chapter a complete introduction is given for custom tags. The topics
of focus are how to build custom tags and why custom tags are helpful. These two
subjects are important to understand before we get too far into the possible use
cases for the technology. Being able to design and implement your own set of
custom tags is an invaluable skill for a JSP developer to have. This skill can be
applied to many different situations as was shown in Chapter 6 and will be shown
in the later chapters covering security, internationalization, and multi-client
design. Compared to a simple scriptlet, building a custom tag requires a notable
amount more effort. If you are to be a good JSP developer, a full understanding
of JSP custom tags is needed. This chapter is the foundation of such an under-
standing.

We discuss the following topics in this chapter:

• Why you should use custom tags.

• The basics of tag libraries (all types).

• How custom tags are used currently.

• New JSP 2.0 custom tags versus old custom tags.

• Tag library descriptors; the web.xml for a custom tag library.

• Simple JSP 2.0 custom tags.

falkner.ch7.qxd 8/21/03 5:40 PM Page 259

260 CUSTOM TAG LIBRARIES

• JSP 2.0 .tag files; JSP-like authoring of custom tags.

• Classic custom tags, pre-JSP 2.0.

• Mixing new and old custom tags.

• Tag scripting variables; setting and using scoped objects via custom
tags.

• Tag library listeners; registering Servlet listeners via tag library
descriptors.

• Tag library validation; compile-time checking of custom tag use.

This is one of the longer chapters; however, you are not expected to read the
whole thing straight through. Only the first half of the chapter, all the way
through the discussion of “simple” tags and .tag files, and the last few topics, tag
library listeners and tag library validation are required; the complete discussion
about classic custom tags is provided only for completeness. If you only care to
know what is needed for the later chapters of the book (i.e., what you will likely
need when developing new Web Applications), feel free to skip the discussion on
pre-JSP 2.0 custom tags, but be aware almost all existing custom tag libraries are
implemented via classic custom tags. If you want to be a well-informed JSP
developer, you will certainly benefit from reading the whole chapter straight
through.

Why Custom Tags?
A few points about custom tags have been touched on, but there are many good
reasons as to why custom tags are helpful. Before we get to how one goes about
building a custom tag, it is helpful to understand why exactly you would want to
build one. In summary, here is a formal list of the primary reasons:

• Custom tags provide a method to cleanly separate logic from
content: Custom tags and the scripting elements provide the same
functionality. A JSP custom tag can do everything that can be done
with a scriptlet. The difference is in how the two technologies are
authored. Scriptlets directly embed code with chunks of static
markup. Custom tags abstract code behind markup that resembles
HTML. Scriptlets are not a good method for abstracting logic from
formatting. A scriptlet often mixes both data-manipulating code
and the code that is responsible for presenting data. This results in
the JSP being overly complicated and requiring a competent Java
developer to even create it. Custom tags move all of the logic into

falkner.ch7.qxd 8/21/03 5:40 PM Page 260

separate Java classes that are bound to simple tags. The logic can
easily be manipulated without touching the JSP, and the simple tags
can easily be used for authoring content.

• Ease of use: Custom tags are easy to use. Both programmers and
non-programmers can intuitively use custom tags. They are an ideal
mechanism to enhance the Web tier of an application, especially
when collaborating with a mixed group of developers. An HTML-
savvy developer with no Java experience can easily pick up and suc-
cessfully use a custom tag library. For this reason custom tags are a
great way to interface complex logic into a simple presentation layer
authored in languages such as HTML or XML.

• Portability: Custom tags are portable. A complete set of custom
tags can be packaged into a single JAR file and deployed across
many Web Applications. Compared to scriptlets, this is a huge
advantage, both when developing the code and when using existing
custom tag libraries.

A good way to think of a custom tag is as a component, written in either Java
or JSP, that encapsulates some behavior. To the page author, custom tags look like
HTML, or at the very least XML. To a tag developer, a custom tag can either be a
Java class or a fragment of a JSP. In all cases the syntax is very familiar and follows
with the strong points of the respective language.

Tag Library Basics
A Tag Library is a collection of custom tags typically designed to complement
each other and accomplish a common goal. The Tags within the library are
written either in Java or as JSP fragments and can be used by a JSP as described
by a Tag Library Descriptor (TLD) file. Most sets of custom tags come packaged
as one JAR file which can be easily deployed with any Web Application.

An easy way to think of a custom tag is as an abstracted scriptlet. Similar to
a scriptlet, the tag consists of code completely authored by a JSP developer or
development tool. However, unlike a scriptlet the code itself is not present
directly on the JSP. Instead of directly embedding code within a JSP, the code is
abstractly bound to the JSP by means of a TLD. Figure 7-1 illustrates the concept.

Notice in Figure 7-1 that the abstracted code is referred to as either a “tag
handler” or a “tag file”. Both tag files and tag handler classes can be used to power
a custom tag. Tag files are covered later in the chapter but function as easy ways

TAG LIBRARY BASICS 261

falkner.ch7.qxd 8/21/03 5:40 PM Page 261

to make tag handlers. Tag handlers are the official name for the Java class that
encapsulates the code that makes a custom tag work.

Tag handlers, tag library descriptors, and the markup involved in using them
are the focus of this chapter. The topics nicely fill a chapter and comprise every-
thing you need to start building JSP custom tags.

How Are Tags Being Used?
Custom tags are commonly used for all the dynamic aspects of JSP. Tag libraries
are not the best solution for everything, but they are the preferred method for
embedding dynamic functionality in a JSP. Many simple and illustrative uses of
custom tags appear throughout this chapter. Do not let this fool you into
thinking this is a limitation of the technology. Custom tags have many practical
uses that are covered in depth by the later chapters. As both a preview of the later
chapters and as background information, here are some of the more helpful uses
of custom tags.

MVC
Model View Control, also called Model 2, is currently the most commonly used
design pattern for developing Web Applications. The MVC design pattern is

262 CUSTOM TAG LIBRARIES

Tag Handler or JSP Fragment

JSP

public class FooTag {

 public FooTag() {
 // initialize
 }
 public doTag()
 throws JspException{
 }
 ...
}

<% taglib prefix=”foo”
 uri=”/WEB-INF/foo.tld” %>
<html>
 <head>
 <title>A little page</title>
 </head>
 <body>
 <foo:menu title=”A menu”/>
 This is a page.
 </body>
</html>

Tag Library Descriptor

Figure 7-1 Overview of Custom Tags

falkner.ch7.qxd 8/21/03 5:40 PM Page 262

popular because it focuses on breaking down a Web Application into logical par-
titions and encourages developers to abide by the divisions. The View partition
corresponds to the part of the Web Application that is responsible for rendering
data into a format the client is expecting. This division is commonly left to a JSP
that can easily display information via the standard JSP actions or custom ones.

Internationalization
Internationalization is a very important issue with Web site development.
Creating a multilingual site can be a daunting task. One very practical method of
providing this sort of functionality via JSP is to encapsulate all text-producing
elements as custom tags. Each tag would be responsible for determining the
correct text to produce based on the locality of the client. This might be done as
the following:

<%@taglib prefix="in" uri="/WEB-INF/i18n.tld" %>

<html>

<head>

<in:title id="groups"/>

</head>

...

The preceding is an example of a custom tag named title in an i18n tag
library. The tag is passed an ID attribute that it will typically use as an index into
a resource bundle, extracting the correct text based on the locale of the client. It
is this extracted text that is displayed as the result of the tag and that appears as
the page title.

Internationalization tags are popular because they solve i18n issues with a
very clean approach. The internationalization chapter includes further infor-
mation regarding internationalization issues and using custom tags to solve
them.

Multi-Client Support
There are many more client types today than in the past. For example, Web
browsers have different capabilities; there are clients that expect XML and hand-
held clients, such as phones and Personal Digital Assistants (PDAs), expect their
data in WML format. A single Web site can support this multitude of clients. The
issue is very similar to that of internationalization; however, it is a problem with
appropriately formatting content rather than producing the same content in dif-
ferent languages. As with internationalization issues, custom tags provide a good

HOW ARE TAGS BEING USED? 263

falkner.ch7.qxd 8/21/03 5:40 PM Page 263

solution to supporting various types of content format. The following is an
example of how these tags might be used:

<%@taglib prefix="mct" uri="/WEB-INF/mct.tld" %>

<mct:page>

<mct:p>Some text</mct:p>

</mct:page>

The preceding is a similar illustration to that of the internationalization tag,
but notice that both custom tags are used for the formatting, not the text. In these
examples, the custom tags are responsible for generating the appropriate format
for the client requesting the content. This is a helpful design feature for a Web site
that might need to send the same content in HTML, XHTML, XML, PDF, or
WML depending on the particular client.

The topic of multi-client support is further covered in Chapter 13.

Conditionals, Iterations, and Simple, Needed Tasks
There are countless cases that always seem to appear on a JSP. Some good
examples of these cases are conditionals and iterations. A simple scriptlet suffices
as does a simple custom tag, but the tag is almost always preferred to keep the
code clean. Currently, JSP does not provide a set of standard actions that solve the
most common cases, but there has been a move to integrate such tags into the set
of standard actions. As you read in the previous chapter, the current version of
the JavaServer Pages Standard Tag Library (JSTL) provides a few of these simple
tags.

Countless Illogical Ways
Despite conventional wisdom, and in the author’s opinion, there are countless
custom tags being used in a manner that they should not be. These tags always
seem to have a semi-plausible reason for existing but are frowned upon by many
of the JSP community. Such tags are often used to place business logic onto a JSP.
The authors have argued throughout the book that this is not good practice. As
tags were originally designed to avoid this very practice, it seems perverse to use
tags to do this. Why is this done? The answer is usually ease of use, but for all
practical purposes, this excuse is not a good one.

In both the last chapter and this chapter there are some clear illustrations and
commentary on these “bad” tags and why we believe you should not use them. It
is not the intention of this book to illustrate bad practices, but without bringing
up the bad uses, it is difficult to clearly illustrate what types of custom tags you

264 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 264

should think hard about before using. Additionally, the issue of unhelpful tags is
of significance or else it would not have even received a mention. There are many
existing sets of tags, even standardized tags, that are, or at least should be, of little
practical purpose.

New and Old Custom Tags
The JSP 2.0 specification was originally named the JSP 1.3 specification, but
enough significant changes were introduced that it made sense to promote the
new specification to JSP 2.0. Some of the most significant changes that pushed
the title change are related directly to JSP custom tags. In previous versions of
JSP, custom tags were something that were complex and suited only for Java
developers. However, what custom tags did was so helpful that non-Java devel-
opers complained that JSP should extend its flexibility to make custom tags easy
to use for all JSP authors. Additionally, JSP has been under scrutiny for a long
time because many of its features (namely custom tags) can be used well outside
the context of HTTP Servlets. JSP 2.0 introduces additions that solve these
issues.

Claiming that all of the custom tag functionality introduced in JSP 2.0 is
complementary to what already existed is simply not true. Many of the additions
are a superior form of building custom tags. The better way to look at JSP 2.0
custom tags is to divide them into two categories: new “simple” custom tags and
old custom tags. Both types of tags work and provide identical functionality. The
difference between the two types of tags is that the new custom tags provide a
more simple and intuitive solution. All custom tags can be used in any combi-
nation on the same JSP.

In this book the basic functionality of custom tags is completely covered by
this chapter. First, the newer approach of building custom tags is introduced and
explained. We would strongly encourage you to use the new simple approach;
however, the older approach for implementing custom tags is also covered. It can
be left as optional reading, but it is very helpful to understand because almost
every existing custom tag was built following the strategy.

Tag Library Descriptors (TLDs)
Deciding how to approach the task of explaining custom tags is difficult because
it is hard to know where to start. Tag handlers, JSP Fragments, and .tag files are
by far the most important aspects of custom tags to explain; however, TLD files
are needed before the majority of custom tags are able to do anything. A problem
arises because it makes sense to try and explain TLD files first, but there many

TAG LIBRARY DESCRIPTORS (TLDS) 265

falkner.ch7.qxd 8/21/03 5:40 PM Page 265

parts of the TLD that just do not make sense until tag handlers have been
explained. To solve this problem, TLD files are explained via many little parts that
appear throughout this chapter.

In this section the basics of TLD files are introduced, and discussion covers
everything needed to start using simple tag handlers. TLD files are not covered
completely by this part of the chapter. Slightly more complex parts of the TLD
file, such as declaring attributes and initial parameters, are covered in the relevant
later parts of this chapter. At the end of the chapter a brief recap of TLD files is
given to summarize everything.

What Is a Tag Library Descriptor?
In the abstract sense a Tag Library Descriptor is the mechanism that binds
custom tag code to the simple markup that appears in a JSP. The concrete form
of a TLD is an XML file that usually appears in the /WEB-INF directory of a Web
Application. You can also bundle a TLD with a packaged tag library JAR, but
assume for now all TLD files appear as a simple XML file with the “tld” extension.

For this chapter you will need to have a TLD file that describes the custom
tag examples. Start that file now by saving Listing 7-1 as example.tld in the
/WEB-INF directory of the jspbook Web Application.

Listing 7-1 A Simple TLD File

<taglib

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"

version="2.0">

<tlib-version>1.0</tlib-version>

<jsp-version>2.0</jsp-version>

<short-name>Example TLD</short-name>

<uri>http://www.jspbook.com/example.tld</uri>

<tag>

<name>foo</name>

<tag-class>com.jspbook.FooTag</tag-class>

<body-content>empty</body-content>

</tag>

</taglib>

In the code you can see that a TLD file is nothing more than a collection of
tag elements. All of the elements are important and inform a JSP container about

266 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 266

the tag library. Listing 7-1 uses one tag element, but multiple tag elements can
be used as needed to describe the complete tag library. This will be illustrated as
the chapter progresses. In Listing 7-1 the very basic child elements of tag are
used: name, tag-class, and body-content. Name defines the unique element
name of the custom tag. The value specified in the body of the name element must
be unique among all the other tags defined in the same TLD. The tag-class
element specifies the Java class that should be loaded as the tag handler class. The
value of the tag-class element does not have to be unique for the TLD, but it
does have to be a fully qualified name of an existing Java class. The body-content
element defines what type of code, if any, is allowed to be inserted inside the body
of the custom tag when used by a JSP. Valid values for the body-content element
are empty, JSP, scriptless, and tagdependent and indicate if the tag body
should be empty; contain nested JSP syntax (including scripting elements); only
contain template text, EL expressions, and JSP action elements (no scripting ele-
ments are allowed); or left as is for interpretation by the custom tag, respectively.

Other important points to note about Listing 7-1 are in the first few lines of
code. After the XML declaration is the root node of the TLD, the taglib element.
All of the other TLD elements must appear between the starting and ending
taglib tags. Following the starting taglib tag are the following elements:

<tlib-version>1.0</tlib-version>

<jsp-version>2.0</jsp-version>

<short-name>Example TLD</short-name>

These elements are mandatory; however, unlike the tag element, they must
only appear once. The tlib-version specifies the version number of the tag
library. The jsp-version element defines the required version of JSP the tag
library relies on. This value should be set according to your specific release of
custom tags and the JSP functionality relied upon. The short-name element is
used to give a short title to the set of custom tags. It is intended to aid JSP devel-
opment tools.

Listing 7-1 is not a complete reference to the TLD elements. It is only the
minimum requirement for a TLD file. The example.tld file will be filled out
further as the chapter progresses, but it will never include all of the possible TLD
elements. A complete reference for the JSP 2.0 TLD is available at http://
java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd.

Using a Tag Library Descriptor
After building both a TLD and the code the TLD links to, a tag library is ready
for use in a JSP. There are currently a number of different methods of referencing

TAG LIBRARY DESCRIPTORS (TLDS) 267

falkner.ch7.qxd 8/21/03 5:40 PM Page 267

a custom tag library. Each method is helpful in different situations, and it is good
to understand all of them. The following sections cover some of the different
methods.

Relative URI
A relative URI is defined by the JSP specification as a URI without a protocol and
host and is the most direct method of informing a Web Application about the
location of a TLD. Relative URIs are further divided into two. A root-relative URI
is one that starts with a “/”, while a non-root-relative URI has no leading “/.”
Using a relative URI is as easy as specifying the relative path to a TLD file as the
value of the taglib directive’s uri attribute.

Take, for example, a simple JSP that uses example.tld to define some custom
tags. Listing 7-2 is an example of what this code might look like. The example
also assumes the JSP is saved in the root directory of the jspbook Web
Application.

Listing 7-2 Relative URI Definitions

<%@ taglib uri="/WEB-INF/example.tld" prefix="foo" %>

<html>

<body>

<foo:bar/>

</body>

</html>

Both the HTML code and the foo tag serve no practical purpose and are used
only to illustrate a tag. The important point of the example is how the taglib
directive knows where to find the TLD file for the tag library. The TLD is iden-
tified by the actual path to the file, /WEB-INF/example.tld1.

A relative URI is the easiest method for learning because it is direct and
usually intuitive; however, there are a few major flaws that make this approach
less desirable for practical use. If a non-root-relative URI is used, such as <%@
taglib uri="example.tld" prefix="foo" %>, then the URI for a specific JSP is
different depending on where the actual JSP file is located relative to the TLD file.
Should a JSP be moved to a different part of a Web Application, the URI value
would need to be changed. Should the TLD file be moved, all JSP referencing it
via a relative URI would need to be updated. In situations where either of these

268 CUSTOM TAG LIBRARIES

1. Note a relative URI should always use forward slashes, /, never backward slashes, \, regardless of
the operating system being used on the server.

falkner.ch7.qxd 8/21/03 5:40 PM Page 268

cases happen frequently, using a relative URI becomes inconvenient. A relative
URI can also be overly complex, depending on the location of files within a Web
Application. A JSP in three subdirectories from the root directory would have a
relative URI similar to “../../../WEB-INF/example.tld”, which is slightly
annoying to keep track of.

A root-relative URI does not have this problem; however, it has other issues.
Suppose the tag developer decides to package his or her tags into a JAR file—this
relative URI is now useless as the TLD will not be at the specified location. What
is needed is “an extra level of indirection”2.

Web Application-Defined URI
Compared to a relative URI a more practical approach is to define an application-
wide abstract URI corresponding to the real location of the TLD file. JSP wishing
to use the corresponding tag library would then use the abstract URI and let the
Web Application resolve the actual location of the TLD file. This approach is ben-
eficial because it allows for a simple fictional URI to be used by all JSP, taking
advantage of the tags.

The only drawback to Web Application-defined URIs is they are slightly more
complex to set up than a relative URI. An application-wide URI is defined by an
entry in the web.xml file of a Web Application. Add Listing 7-3 into /WEB-
INF/web.xml of the jspbook Web Application. Insert the entry after any instances
of the error-page element.

Listing 7-3 web.xml TLD URI Definition

<taglib>

<taglib-uri>http://www.jspbook.com/example</taglib-uri>

<taglib-location>/WEB-INF/example.tld</taglib-location>

</taglib>

The taglib element defines an abstract URI that corresponds to a given
location of a TLD file. The two child elements, taglib-uri and taglib-
location, are used to create a unique, fictitious URI and reference the location
of the actual TLD, respectively. The taglib element may only have one of each of
these child elements, but a TLD file may have many taglib elements. This col-
lection of taglib elements is called the taglib map.

TAG LIBRARY DESCRIPTORS (TLDS) 269

2. “There is no problem in computer science that cannot be solved by adding an extra level of indi-
rection”.

falkner.ch7.qxd 8/21/03 5:40 PM Page 269

Setting up a set of taglib entries in the web.xml file is a manual and possibly
error-prone process. To get around this problem, the JSP specification offers an
easy solution: it will build the map for you. To do this you simply do two things:
to the TLD file add a <uri></uri> entry that contains the URI you want the
developer to use, and place the TLD file in the Web Application’s WEB-INF
directory or a subdirectory of WEB-INF. Given the preceding URI, adding the fol-
lowing

<uri>http://www.jspbook.com/example</uri>

to the TLD file and placing the TLD file in WEB-INF would have exactly the same
affect as adding the taglib map to the web.xml file.

As another convenience, a developer can package a tag library as a JAR file.
In this case the developer should place any TLD files into the JAR’s META-INF
directory (or a subdirectory). Any JAR files placed in the Web Application are
read by the container, and any TLDs found in the JAR’s META-INF directory have
their URIs added to the map automatically3,4.

After a new taglib element has been added to web.xml, the Web Application
must be restarted for the changes to take effect. Reload the jspbook Web
Application so that the new application-wide URI is available for future examples
in this chapter. Listing 7-4 illustrates a JSP that uses the newly defined URI.

Listing 7-4 Use of Abstract Custom Tag URI

<%@ taglib uri="http://www.jspbook.com/example" prefix="foo" %>

<html>

<body>

<foo:bar />

</body>

</html>

Highlighted is the new URI, which is the same for all JSP using these tags.
Notice also this URI does not resolve to any real TLD file, but it could be used to
reference a real location. In many cases collections of tag libraries use the tag
library’s homepage as the relative URI. This practice inserts a subtle reminder of
the tag’s origin as well as a place to find out more information about the tags.

270 CUSTOM TAG LIBRARIES

3. Note that even if you use a relative URI, the taglib map is always searched first before the con-
tainer tries to resolve the URI to a file name.
4. The container may also add “well-known” URIs to the taglib map.

falkner.ch7.qxd 8/21/03 5:40 PM Page 270

XML Namespaces and JSP in XML Syntax
With JSP 2.0 one of the original approaches of specifying custom tag libraries has
been outdated with a much more flexible approach. In JSP 1.2 the “JSP in XML”
syntax was introduced. Since the taglib directive is not XML-compatible, an
alternative XML namespace-like approach was allowed for “JSP in XML” syntax.
This approach works, but is now superseded by full XML namespace support for
declaring a set of custom tags for a JSP in any syntax.

XML namespaces are an alternative method to declaring a set of custom tags
in a JSP. The namespace support is XML-compatible and uses the syntax in
Listing 7-5.

Listing 7-5 Use of XML Custom Tag Library Declaration

<prefix:name xmlns:prefix="URI"/>

In the preceding code prefix and URI are equivalent to the respective taglib
directive attributes, and name is the name of a tag defined by the TLD. Note, in
order to use this form of tag library declaration, the JSP must be declared as in
XML format, such as a .jspx file.

Simple JSP 2.0 Custom Tags
JSP 2.0 gives a new meaning to what JSP developers have previously considered
custom tags. JSP 2.0 introduces custom tags that have a simple life cycle and that
can optionally be authored using JSP rather than Java code. The tags are refer-
enced as “Simple” for two reasons. First is because they are arguably much
simpler to write and use than the classic custom tag handlers. The second reason
is because the functionality is based around the javax.servlet.jsp.SimpleTag
interface.

Understanding how a Simple custom tag works starts with understanding the
life cycle of the tag. This life cycle applies to Simple tags coded via Java or JSP tag
files as shown in Figure 7-2.

The life cycle has two parts: initialization and doTag(). The initialization sets
the tag’s parent and body. Both the parent and body are important; the parent
allows for tag collaboration and the body allows the tag to optionally process its
body. The second part of the simple tag life cycle is the doTag() method. This
method is invoked when the tag should do its action. Once the doTag() method
returns, the custom tag has finished doing its job.

As a custom tag developer, typically only the doTag() part of the SimpleTag
life cycle is of interest. A JSP container will appropriately set both the parent and
body. It should be clear that only worrying about one thing, the doTag() method,

SIMPLE JSP 2.0 CUSTOM TAGS 271

falkner.ch7.qxd 8/21/03 5:40 PM Page 271

makes simple tags straightforward to code. If you want a custom tag to do any-
thing, you simply provide a doTag() method. Ensuring proper synchronization
and state management lies completely within the code of the doTag() method5.

SimpleTag Interface
The javax.servlet.jsp.tagext.SimpleTag interface is the interface all
SimpleTag classes must implement. The SimpleTag interface does not extend the
javax.servlet.jsp.tagext.Tag interface and does not work like a classic JSP
custom tag. The SimpleTag interface defines the following methods:

• doTag(): The doTag() method is invoked by a JSP container during
execution of the custom tag. A custom tag developer should
override the doTag() method to execute any custom logic the tag is
responsible for. Before execution of the doTag() method the
setParent(), setJspBody(), and setJspContext() methods are all
invoked by the JSP container. This allows the doTag() method to
have full access to the JspFragment object representing its body and
to the current JspContext. The doTag() method can return
EVAL_PAGE or SKIP_PAGE to either continue evaluating the page after
the tag or to skip evaluation of the rest of the JSP, respectively.

• getParent(): The getParent() method returns the custom tag sur-
rounding this tag, if it exists. The method returns
java.lang.Object as the custom tag which may either be an
instance of SimpleTag or Tag.

272 CUSTOM TAG LIBRARIES

Initialize

Service
doTag()

javax.servlet.jsp.tagext.SimpleTag

Figure 7-2 SimpleTag Life Cycle

5. Relative to classic tag handlers—that is, pre-JSP 2.0, custom tags did not have this luxury. A few
coding tricks were required to accomplish even simple things such as iteration and state man-
agement. If they are of interest, the latter half of this chapter discusses these outdated issues.

falkner.ch7.qxd 8/21/03 5:40 PM Page 272

• setJspBody(javax.servlets.jsp.JspFragment): The setJspBody()
method sets the current JspFragment object during runtime. This
method is guaranteed to be properly invoked by a JSP container
during runtime before the doTag() method.

• setJspContext(javax.servlets.jsp.JspContext): The
setJspContext() method sets the current JspContext object
during runtime. This method is guaranteed to be properly invoked
by a JSP container during runtime before invoking the doTag()
method.

• setParent(javax.servlets.jsp.JspTag): The JSP container invokes the
setParent() method to set the current parent tag, if it exists. The
method takes an argument of javax.servlets.jsp.
JspTag as the parent that can be an instance of either Tag or
SimpleTag. JspTag serves as a base class for Tag and SimpleTag for
safety-type purposes.

Use of the SimpleTag interface is designed to be straightforward. The
javax.servlet.jsp.tagext.SimpleTagSupport class exists as a base implemen-
tation of the interface. The only thing a custom tag author needs to do is extend
SimpleTagSupport and override the doTag() method. For instance, a simple and
unoriginal "Hello World!" tag would be coded as shown in Listing 7-6.

Listing 7-6 HelloSimpleTag.java

package com.jspbook;

import javax.servlet.jsp.tagext.SimpleTagSupport;

import javax.servlet.jsp.*;

import java.io.IOException;

public class HelloSimpleTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {

JspWriter out = jspContext.getOut();

out.println("Hello World!");

}

}

The code is simple. The doTag() method takes the current JspContext
object, jspContext, and uses it to send “Hello World!” to the current JspWriter
object. When the tag is used on a JSP, it will replace the custom tag syntax with
“Hello World!”. Try the tag out by deploying it in /WEB-INF/example.tld.

SIMPLE JSP 2.0 CUSTOM TAGS 273

falkner.ch7.qxd 8/21/03 5:40 PM Page 273

<tag>

<name>hello</name>

<tag-class>com.jspbook.HelloSimpleTag</tag-class>

<body-content>empty</body-content>

</tag>

Save HelloSimpleTag.java in the /WEB-INF/classes/com/jspbook directory
of the jspbook Web Application, compile the code, and reload the application for
the change to take effect. Once the application has been reloaded, the tag is ready
for use. Listing 7-7 is a simple JSP that uses the tag.

Listing 7-7 HelloSimpleTagTest.jsp

<%@ taglib prefix="ex" uri="WEB-INF/example.tld"%>

<html>

<head>

<title>A test of HelloSimpleTag.java</title>

</head>

<body>

<ex:hello/>

</body>

</html>

The preceding code is a simple HTML page that has the hello tag used in its
body. Save Listing 7-7 in the base directory of the jspbook Web Application and
browse to http://127.0.0.1/jspbook/HelloSimpleTagTest.jsp. The resulting
page replaces the hello tag with “Hello World!” Figure 7-3 shows a browser ren-
dering of the results.

All simple uses of the SimpleTag interface are similar to Listing 7-7. The
important concept to see is that any code can be placed in the doTag() method.
In the preceding example we saw how the code can access the current JspContext
object of the page. This is important because the JspContext provides access to
the current JspWriter for the page and because it can be cast to a PageContext
object in order to access the HttpServletRequest and HttpServletResponse.

The simplicity of the doTag() method does a good job of hiding all of the
complex things it can be used for. More complex tags can use the doTag()
method in combination with attribute values, to evaluate the tag’s body content,
or to iterate over the body content multiple times. All of these uses are explained
shortly. First, we start with how to add static and dynamic attributes to custom
tags.

274 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 274

Attributes
In just about every SGML6-based language, attributes are relied upon to expand
and customize the functionality of a tag. The markup linked to custom tags is no
different. Attributes can be used with custom tags, and they are very helpful for
expanding the functionality provided by a tag handler.

Attributes for a custom tag can either be static or dynamic. Static attributes
are formally declared in the TLD. Dynamic attributes are freely declared during
a specific use of the tag. The two different types of attributes are helpful for dif-
ferent reasons. Static attributes can be fully described in a TLD and have a limited
but automatic set of validation logic associated with them. For instance, a static
attribute can be declared in a TLD to have the name “value” and be required
whenever the tag is used. This is helpful because it means a JSP developer will
always be forced to use the “value” attribute when using the tag. In contrast,
dynamic attributes need not be declared in the TLD. Dynamic attributes are
more flexible because any attribute can be defined during a given use of the tag;
however, the drawback is that validation of the attribute is slightly more complex.

Static Attributes and TLD Declaration
Static attributes require a JSP developer to do two things. First, a custom tag class
needs to implement setter methods, identical to JavaBean setter methods, for all
of the attributes of the tag. For example, assume a custom tag is needed to show
the current date. Additionally, the format of the date needs to be flexible enough
so that different uses of the tag can display different formats. The task is easy to

SIMPLE JSP 2.0 CUSTOM TAGS 275

Figure 7-3 Browser Rendering of HelloSimpleTagTest.jsp

6. Standard Generalized Markup Language (SGML) is a standard that describes what markup lan-
guages, such as HTML, should use as syntax in order to be more easily understood.

falkner.ch7.qxd 8/21/03 5:40 PM Page 275

complete using a simple tag, the java.text.SimpleDateFormat object, and an
attribute. Listing 7-8 includes the complete code.

Listing 7-8 FormatDateTag.java

package com.jspbook;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.Date;

import java.text.SimpleDateFormat;

import java.io.IOException;

public class FormatDateTag extends SimpleTagSupport {

private String format;

public void setFormat(String format) {

this.format = format;

}

public void doTag() throws JspException, IOException {

JspWriter out = jspContext.getOut();

if (format != null) {

SimpleDateFormat sdf = new SimpleDateFormat(format);

out.println(sdf.format(new Date()));

}

else {

out.println(new Date().toString());

}

}

}

Highlighted are the specific lines for the attribute. The attribute’s name is
“format”, so the setter method is setFormat(). A data member format is declared
to keep the value set by this attribute. Later on, it will be shown that this setter
method allows for the date tag to be used as follows:

<ex:date format="format value"/>

This is beneficial because the attribute format is where the custom tag gets
the desired format for the current date/time. If you are familiar with the
java.text.SimpleDateFormat class, then you should easily recognize the class
takes a java.util.Date object and a specified format, and produces a pretty-
much formatted string.

276 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 276

SimpleDateFormat sdf =

new SimpleDateFormat(format);

out.println(sdf.format(new Date()));

This is exactly what the code in the doTag() method is doing, and the format
variable is being used to define the format. A user of the date tag will be able to
choose any of the formatting options available with the SimpleDateFormat
object.

The second part of using a static attribute is declaring it in the custom tag’s
TLD. Attributes are declared in a TLD by adding an attribute child element to
a tag’s entry. The attribute element in turn requires a few more child elements
to describe the attribute. The JSP specification defines the following possible
child elements for the attribute element:

• name: The name element defines the name of an attribute. Each
attribute name must be unique for a particular tag.

• required: The required element tells the container if the page
author must supply a value for this attribute; as this is optional, the
container supplies a default value if the element is missing. This
default value is false.

• rtexprvalue: The rtexprvalue element is used to declare if a
runtime expression value for a tag attribute is valid. It is possible
that a static value might be required so that a TagLibraryValidator
object can properly verify the JSP. TagLibraryValidator objects are
covered later in this chapter.

• type: The type element defines the Java class-type of this attribute.
By default String is assumed, but a custom tag attribute may be of
any Java class-type.

• description: The container does not use the description element
either at page translation or runtime. It is simply there for the tag
author to give the page author examples of how to use the tag.

• fragment: The fragment element is used to declare if this attribute
value should be treated as a JspFragment.

Only the name element is required to define an attribute, but depending on
how the attribute is being used, you may need to include some of the optional
attribute child elements.

To finish the FormatDateTag.java example, a declaration needs to be added
for the format attribute. Listing 7-9 includes the entry in example.tld.

SIMPLE JSP 2.0 CUSTOM TAGS 277

falkner.ch7.qxd 8/21/03 5:40 PM Page 277

278 CUSTOM TAG LIBRARIES

Listing 7-9 Adding a Simple Attribute Entry in a TLD

<tag>

<name>date</name>

<tag-class>com.jspbook.FormatDateTag</tag-class>

<body-content>empty</body-content>

<attribute>

<name>format</name>

</attribute>

</tag>

In the preceding listing, the highlighted lines of code are the ones responsible
for declaring the attribute. Make sure the complete entry is in WEB-
INF/example.tld and the custom tag will finally be ready for use. Try out the
custom tag by creating a JSP that uses it. Listing 7-10 is such a JSP.

Listing 7-10 FormatDateTagTest.jsp

<%@ taglib prefix="ex" uri="http://www.jspbook.com/example" %>

<html>

<head>

<title>A Custom Tag Example</title>

</head>

<body>

The current date is <ex:date format="dd/MM/yyyy" />.

</body>

</html>

The format attribute is the same one defined by the TLD and coded in
FormatDateTag.java. The value specified in the format attribute is used as the
formatting for time-stamp generated by the date tag. This can be verified by
revisiting FormatDateTagTest.jsp. Compile FormatDateTag.java and reload
the jspbook Web Application to have the TLD and tag handler changes take effect
and then visit http://127.0.0.1/jspbook/FormatDateTagTest.jsp. The result
is an HTML page with a date formatted as specified in the format attribute.
Figure 7-4 shows a browser rendering of the results.

The formatting of the time-stamp can also easily be changed in the future by
changing the value of the format attribute. This process is very easy and can be
done without changing the TLD or tag handler class. If for instance the tag was
being used in the United States, the format attribute would likely be
“MM/dd/yyyy”. If the tag was being used in the United Kingdom, the format
attribute would likely be “dd/MM/yyyy”. The values are allowed to be anything
the java.text.SimpleDateFormat class supports.

falkner.ch7.qxd 8/21/03 5:40 PM Page 278

As many static attributes may be used with a tag as are needed. The only
requirement is that each attribute has an entry in the corresponding TLD and
that a setter method exists for the attribute in the custom tag’s class. One other
thing to note is that static attributes can be marked as required. If a “required”
attribute is missing from the tag entered on the JSP, the page will not compile.

Dynamic Attributes
Coding in setter methods and adding entries in a TLD can become tedious for
custom tag developers. In some cases there may even be a need to use a custom
tag that does not have a predefined set of valid attributes. In both of these cases
a JSP developer can use dynamic attributes. A great example of this is a tag within
a tag library that emulates an HTML element. HTML elements may have many
attributes that such a tag would simply want to echo to the output stream.
Writing such a tag using static attributes would be difficult, but using dynamic
attributes would be trivial. Dynamic attributes are not required to be individually
declared in a TLD, but a TLD must reference the tag and define that dynamic
attributes are valid to use with it.

Coding a custom tag that uses dynamic attributes is slightly different from
one that uses static attributes. Instead of requiring a setter method of each
attribute, dynamic attributes are all handled by the javax.servlet.jsp.tagext.
DynamicAttributes interface. This interface defines one method:

setDynamicAttribute(String uri, String localName, Object value)

The setDynamicAttribute() method takes three parameters. The first
parameter specifies the URI of the attribute, or null if the default URI is being
used. The second parameter is the name of the attribute. The third parameter is
the value of the attribute.

SIMPLE JSP 2.0 CUSTOM TAGS 279

Figure 7-4 FormatDateTagTest.jsp with the New Time-Stamp Formatting

falkner.ch7.qxd 8/21/03 5:40 PM Page 279

A custom tag that supports dynamic attributes must implement the
DynamicAttributes interface. All dynamic attributes used with the tag are pre-
sented to the tag via the setDynamicAttribute() method and it is up to the
custom tag to deal with the attributes appropriately.

As an example, Listing 7-11 includes a simple tag that allows for dynamic
attributes and lists any dynamic attributes used with it.

Listing 7-11 DynamicAttributeTag.java

package com.jspbook;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.*;

import java.io.IOException;

public class DynamicAttributeTag

extends SimpleTagSupport implements DynamicAttributes {

protected Hashtable map = new Hashtable();

public void setDynamicAttribute(String uri, String name,

Object value) throws JspException{

map.put(name, value);

}

public void doTag() throws JspException, IOException {

JspWriter out = jspContext.getOut();

for (Enumeration keys = map.keys();

keys.hasMoreElements();) {

Object key = keys.nextElement();

Object value = map.get(key);

out.print("Attribute:
");

out.print("name: " + key.toString() + "
");

out.print("value: " + value.toString() + "
");

}

}

}

The preceding code illustrates how the DynamicAttributes interface can be
implemented. The setDynamicAttribute() method is added to the tag’s code
and is used to handle dynamic attributes.

public void setDynamicAttribute(String uri, String name,

Object value) throws JspException{

280 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 280

SIMPLE JSP 2.0 CUSTOM TAGS 281

map.put(name, value);

}

In Listing 7-11 all of the dynamic attributes are saved in a java.util.
Hashtable object. Next, the doTag() method iterates through all the collected
values and displays information about them.

for (Enumeration keys = map.keys();

keys.hasMoreElements();) {

Object key = keys.nextElement();

Object value = map.get(key);

out.print("Attribute:
");

out.print("name: " + key.toString() + "
");

out.print("value: " + value.toString() + "
");

}

In most situations the values passed by the setDynamicAttribute() method
would be applied to a further use, such as the format attribute in Listing 7-8.
Additionally, individual setter methods can be coded into the custom tag’s code
to be delegated to by the setDynamicAttribute() method. Attribute validation
can also be added to the setDynamicAttribute() method. If attribute infor-
mation is invalid at runtime, the doDynamicAttribute() method can throw an
instance of JspException.

Like static attributes, a custom tag that uses dynamic attributes must be
declared via a TLD; however, the entry need only include the dynamic-
attributes element as a child element of tag instead of numerous child
attribute elements. The entry for Listing 7-11 would be:

<tag>

<name>dynamicAttribute</name>

<tag-class>com.jspbook.DynamicAttributeTag</tag-class>

<dynamic-attributes>true</dynamic-attributes>

</tag>

Save this entry in /WEB-INF/example.tld and save DynamicAttribute
Tag.java in the /WEB-INF/classes/com/jspbook directory of the jspbook Web
Application. Compile the code and reload the application. The new tag is then
ready for use. Try out the custom tag with the JSP in Listing 7-12.

Listing 7-12 DynamicAttributeTagTest.jsp

<%@ taglib uri="http://www.jspbook.com/example" prefix="ex"%>

<html>

<head>

<title>A test of DynamicAttributeTag.java</title>

falkner.ch7.qxd 8/21/03 5:40 PM Page 281

</head>

<body>

<ex:dynamicAttribute name="test" value="a value"/>

</body>

</html>

Save DynamicAttributeTagTest.jsp in the base directory of the jspbook
Web Application and browse to http://127.0.0.1/DynamicAttributeTagTest.
jsp. A page appears listing all of the attributes that were set for the Dynamic
Attribute tag. Try editing the page to add or remove attributes and see how the
results change. Figure 7-5 provides a browser rendering of Listing 7-12.

The important point here is that custom tags may have attributes defined.
The attributes can be either static or dynamic; mix and use the functionality as it
best fits your project. Keep in mind when coding a tag that implements the
DynamicAttributes interface, you can still code in setter methods for individual
attributes in case you decide to later use static attributes.

Runtime Attribute Values
By default attribute values are calculated at page translation time and are required
to be hard coded strings. In all the previous examples custom tag attributes have
been static name/value pairs—for example, name="value" or format="MM/dd/
yyyy". This is not a limitation of custom tags. Runtime String and non-string
objects can be used as custom tag attributes when needed. We shall first take a look
at using runtime String objects as the value for a tag attribute.

When using a runtime String object instead of a static string value, the
rtexprvalue element must be set to true for the corresponding attribute decla-
ration in the tag’s TLD. This is the only change that is required for both the TLD

282 CUSTOM TAG LIBRARIES

Figure 7-5 Browser Rendering of the Results of DynamicAttributeTagTest.jsp

falkner.ch7.qxd 8/21/03 5:40 PM Page 282

and the tag handler, assuming that the code was already designed for a static
string value. Continuing with the date tag example, a runtime value can be used
for the format attribute to dynamically set a format of a generated date. This
combined with the HTTP accept-language header allows the JSP to guess and
set the date formatting based on a client’s locale7.

For the runtime value example, two things are required. First, the TLD needs
to be updated to allow for the format attribute to be a runtime value. The change
is small and highlighted in Listing 7-13.

Listing 7-13 Allowing for a Runtime Attribute via a TLD

<tag>

<name>date</name>

<tag-class>com.jspbook.FormatDateTag</tag-class>

<body-content>empty</body-content>

<attribute>

<name>format</name>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

The change in FormatDateTagTest.jsp is significant, not because of the TLD
change but because of the HTTP header data mining. Save FormatDateTagTest.
jsp as FormatDateLocaleTest.jsp and add the following changes in Listing 7-14.

Listing 7-14 FormatDateLocaleTest.jsp

<%

String format = "yyyy/MM/dd";

request.setAttribute("format", format);

String language = request.getHeader("accept-language");

if (language != null) {

if (language.indexOf("en-us") != -1 ||

language.indexOf("en-US") != -1 ||

language.indexOf("EN-US") != -1) {

format = "MM/dd/yyyy";

}

else if (

language.indexOf("en-uk") != -1 ||

language.indexOf("en-UK") != -1 ||

SIMPLE JSP 2.0 CUSTOM TAGS 283

7. The locale header was mentioned in Chapter 2 with HTTP headers. Chapter 12 continues on with
further discussion of mining locale information from HTTP headers.

falkner.ch7.qxd 8/21/03 5:40 PM Page 283

284 CUSTOM TAG LIBRARIES

language.indexOf("EN-UK") != -1) {

format = "dd/MM/yyyy";

}

}

%>

<%@ taglib prefix="ex" uri="http://www.jspbook.com/example" %>

<html>

<head>

<title>A test of FormatDateTag.java</title>

</head>

<body>

The date is <ex:date format="${format}" />.

</body>

</html>

The preceding code now uses a simple scriptlet to populate a scripting
variable format for use as the format attribute of the date tag. The end effect is
that the format attribute is dynamically set to try and match the locale of a client.
By default the original format “yyyy/MM/dd” is used, but if the scriptlet can
detect a UK client, the appropriate formatting is used. Figure 7-6 shows a browser
rendering of a client visiting from the United States.

In some cases it might be helpful to pass in a non-String object as a tag
attribute. Should this be the case a few changes are required when declaring and
coding in support for the attributes. In a TLD the type element needs to be used
along with a value specifying the Java class of the object. Take for instance the fol-
lowing code assuming it is a line from a JSP.

<foo:example date='<%= new Date() %>'/>

By default this code throws a translation exception. When an expression is
used to set the value of a custom tag’s attribute, it does not automatically call the
toString() method of that object. Instead, the object itself is used when calling
the set method of the appropriate tag handler. In order to verify the tag handler
is expecting the proper class, in this case java.util.Date not java.lang.String,
the type element needs to be declared in the TLD with the appropriate type as a
value. In this particular case the TLD entry would be the following:

<tag>

<name>date</name>

<tag-class>foo.Bar</tag-class>

<body-content>empty</body-content>

<attribute>

falkner.ch7.qxd 8/21/03 5:40 PM Page 284

SIMPLE JSP 2.0 CUSTOM TAGS 285

Figure 7-6 Browser Rendering of FormatDateLocaleTest.jsp for a US Client

<name>date</name>

<rtexprvalue>true</rtexprvalue>

<type>java.util.Date</type>

</attribute>

</tag>

Do not worry about adding this entry into example.tld. Understanding and
being able to use String attributes are far more important.

Body Evaluation and Iteration
So far this chapter has explained how to use the SimpleTag interface to create
custom tags that can access the current JspContext object and that can take
advantage of attributes. Quite a lot can be accomplished with just the mentioned
functionality; however, simple tags can be used for much more. A very important
aspect of the doTag() method is that it can optionally evaluate the body content
of its corresponding tag in a JSP. The setJspBody() method of the SimpleTag
interface is always called before invoking the doTag() method; this sets the value
of the SimpleTagSupport’s jspBody variable. This variable is of type JspFragment
and can be invoked, sending the data to a specified writer. This means a simple
tag can optionally invoke the JSP fragment, which represents its body content,
any number of times.

Recall the HelloSimpleTag.java example, Listing 7-6. In HelloSimpleTag.
java the message “Hello World!” is directly sent to the current JspWriter object.

JspWriter out = jspContext.getout();

out.println("Hello World!");

The same functionality can be accomplished by placing the message “Hello
World!” in the body of the custom tag and having the doTag() method evaluate

falkner.ch7.qxd 8/21/03 5:40 PM Page 285

the body. For example, Listing 7-15 shows the change in HelloSimpleTagTest.
jsp.

Listing 7-15 BodySimpleTagTest.jsp

<%@ taglib prefix="ex" uri="http://www.jspbook.com/example"%>

<html>

<head>

<title>A test of BodySimpleTag.java</title>

</head>

<body>

<ex:body>

Hello World!

</ex:body>

</body>

</html>

Now instead of using an empty body, the tag includes the message as its body
content. In turn, the tag’s code needs to be updated to evaluate the body instead
of directly using “Hello World!”. Listing 7-16 is the new simple tag’s code.

Listing 7-16 BodySimpleTag.java

package com.jspbook;

import javax.servlet.jsp.tagext.SimpleTagSupport;

import java.io.IOException;

import javax.servlet.jsp.*;

public class BodySimpleTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {

// null means 'send the output to JspContext.getOut()'

jspBody.invoke(null);

}

}

Before trying out the new tag, add an entry in example.tld.

<tag>

<name>body</name>

<tag-class>com.jspbook.BodySimpleTag</tag-class>

<body-content>JSP</body-content>

</tag>

286 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 286

SIMPLE JSP 2.0 CUSTOM TAGS 287

Compile the tag’s code and reload the jspbook Web Application. The example
is now ready to be used. Execute Listing 7-16 by browsing to http://127.0.
0.1/jspbook/BodySimpleTagTest.jsp. The result is identical to Figure 7-5, but
this time the content comes from the body of the custom tag. Try changing the
body content and see how the changes appear in the result. Now, if you were
authoring HTML, it may appear to be silly to even bother using a tag such as
BodySimpleTag.java. Why not simply write the message in text? Do not miss the
point of this example. A layer of abstraction has been placed between the content
and the JSP. The custom tag determines what should be done with the JSP
fragment and can optionally include, ignore, or do any other prelude or post-
processing effects of the content.

It is easy to think of good examples of body-manipulating tags. Conditional
or iteration tags, both of which were shown last chapter, are excellent examples.
A simple tag does not have to evaluate its body. Based on an attribute value, the
custom tag could either include or ignore the JSP fragment of body content:

public void doTag() {

JspWriter out = jspContext.getout();

if (attributeValue == true) {

jspFragment.invoke(out, null);

}

}

Even more helpful, the body content might be a template that is to be applied
to an array of values.

public void doTag() {

String[] values = {"one", "two", "three"};

for(int i=0; i<values.length;i++) {

HashMap map = new HashMap();

map.put("value", values[i]);

jspFragment.invoke(null);

}

}

The point to understand is that simple tags can optionally evaluate their body
any number of times. Another helpful feature is that the text produced by the
body can be buffered to any java.io.Writer object. A JspWriter object works,
but you could just as easily buffer the content for further manipulation using
something such as a java.io.CharArrayBuffer.

falkner.ch7.qxd 8/21/03 5:40 PM Page 287

.tag Files
The JSP specification strives to define helpful functionality for all levels of devel-
opers. Custom tags have been notoriously known as one of the most complex fea-
tures of JSP. While true, custom tags are only difficult if you do not know Java. To
a Java developer, you, being able to connect simple markup to pure Java classes
should be bliss. JSP provides a front end for simple and rapid creation of content.
SimpleTag classes powering the JSP provide a direct interface to the flexibility of
the Java programming language.

JSP 2.0 introduces .tag files. These are a very powerful addition to the JSP
specification. What .tag files do is remove the need for Java when authoring a
custom tag. In many cases this is very helpful. One of the reasons for using JSP
and Servlets together is to separate content and logic; and the way this is enforced
is by not allowing code onto a JSP and not allowing out.write() calls in a
Servlet. However, both classic and the new simple tags will typically contain
many out.write() calls, so all that has happened is the code for producing
output has moved from one Java component, the Servlet, to another, the tag! Tag
files get around this problem by allowing developers to write tags in JSP. Just like
in JSP this power should not be abused—Java code should not be put in tag files;
otherwise, exactly the same problems arise as when code is placed in JSP. Instead,
“tag” files should be written as a mixture of script and expressions. Tag files and
simple tags written in Java are complementary technology. You should use simple
tags when you need mostly logic with a little data and tag files when you need
tags that act as templates with a large(-ish) amount of text and a small number
of expressions.

What Is a .tag File?
A .tag file is a JSP source file with some additional directives and standard
actions available for use. A complete .tag file functions identically to a Simple
Tag and can be used as a custom tag on another JSP. For example, you can author
HelloSimpleTag.java (as shown previously in Listing 7-4) by using a .tag file.
The complete .tag file is shown in Listing 7-17.

Listing 7-17 hello.tag

Hello World!

Quite simple, and, yes it is a complete custom tag! To use this .tag file as a
custom tag, the only thing required would be to drop the .tag file into the Web
Application. Like Servlet classes, tags cannot simply be added to the root of the
application; instead they live in a subdirectory of WEB-INF called tags or in a sub-

288 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 288

directory of the tags directory. No TLD, no tag lib map; simply drop it in and
go.

To use the tag inside a JSP the JSP has to reference the tag. Listing 7-18 shows
an example of this. Save this file as HelloSimpleTagFileTest.jsp into the root
of the jspbook Web Application.

Listing 7-17 HelloSimpleTagFileTest.jsp

<%@ taglib prefix="h" tagdir="/WEB-INF/tags" %>

<html>

<head>

<title>A test of HelloSimpleTag.java</title>

</head>

<body>

<h:hello/>

</body>

</html>

The preceding code is a simple JSP page that has the hello tag used in its body.
Browse to http://127.0.0.1/jspbook/HelloSimpleTagFileTest.jsp. The
resulting page replaces the hello tag with “Hello World!”. Figure 7-3 shows a
browser rendering of the results.

Notice that the tag is introduced to the page by the tagdir attribute of the
tag directive. This was introduced in JSP 2.0 to add support for tag files. The
tagdir directive tells the container where to find the tag file and it must start with
/WEB-INF/tags.

All tags that are in the same subdirectory of the “tags” directory are defined
to be part of the same tag library, so the following contains three tag libraries:

WEB-INF/tags/alice.tag

WEB-INF/tags/bob.tag

WEB-INF/tags/support/help.tag

WEB-INF/tags/date/time/date.tag

with alice and bob being in the “tags” tag library, help being in the support tag
library, and date being in the date-time tag library. Using this information the
container builds an implicit TLD for each tag library. The TLD contains the
short name for the tag library and a <tag> entry for each tag in the directory.
The short name is derived from the directory name. If the tag file is in the tags
directory, then the short name is simply tags; otherwise, the short-name is the
directory name with all “/” (or “\” on Windows) replaced with a “-”, and with
WEB-INF/tags removed. So in the above example WEB-INF/tags/date/time

SIMPLE JSP 2.0 CUSTOM TAGS 289

falkner.ch7.qxd 8/21/03 5:40 PM Page 289

becomes date-time. Notice that short names are not unique. For example, a
developer could also create a directory called WEB-INF/tags/date-time.

Tag files can also be packaged in a JAR file. In this case the .tag files should
be placed in the JAR’s META-INF/tags directory and a TLD created for them. Just
like simple tags, this TLD file defines the tag. JSP 2.0 defines two new elements
that are used to define .tag files, <tag-file> and <path>. The <tag-file>
element is a child of <taglib> element and is used instead of <tag>. The tag-
file element simply contains the name of the tag and its path; within a JAR file
the path must start with META-INF/tags. For example:

<taglib>

<!-- ... other elements elided for clarity -->

<tag-file>

<name>alice</name>

<location>META-INF/tags/names</location>

</tag-file>

</taglib>

This would define a tag called alice with the .tag file in the META-
INF/tags/name directory of the JAR.

In the preceding examples tags in the WEB-INF/tags directory were not given
a TLD file. Instead, it was left up to the container to generate an implicit TLD,
whereas tags in a JAR file do have a TLD. However, it is possible to also supply
.tag files with a TLD. If you do this, simply reference the TLD on the JSP as you
would for a simple tag and then write the TLD using the tag-file element. Why
would this be necessary? Two reasons: one is that a layer of indirection is often
good—changing the tag location in a single TLD is easier than changing multiple
tagdir locations in multiple JSPs. The other reason is that you might want to
specify more or just different information than goes in the implicit TLD.
However, as will be seen shortly, a better way of specifying a .tag file’s TLD infor-
mation is to use the tag directive introduced in JSP 2.0.

How a container implements support for a tag file is ambiguous. The JSP
specification only outlines how the functionality must work, not how it is imple-
mented. In some implementations, where performance is key, a .tag file will be
compiled directly in to a SimpleTag class. In cases where performance is not as
important, a .tag file might be directly interpreted. Other solutions for sup-
porting a .tag file are also valid.

290 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 290

Coding a .tag File
Before coding a helpful .tag file there are some important directives and
standard JSP actions to be aware of. The directives are used like the JSP directives
in Chapter 3, but they are used to specify all of the information normally con-
tained in a TLD file. The directives available for use in a .tag file are the taglib,
include, tag, attribute, and variable. The taglib and include directives are
identical to the JSP directives previously explained. The other directives are only
available for use in .tag files and are covered in the upcoming sections. Note that
the .tag file directives do mimic the elements of a TLD; in most cases the direc-
tives are completely analogous to elements you can also define in a TLD.

There are two new standard actions available for use with a .tag file: the
doBody and invoke actions. These are covered in a following section.

<%@ tag %>
The tag directive is to a .tag file what the page directive is to a JSP. A tag
directive is completely optional and can be used to define information about a
custom tag. Most of the supplied information is identical to the meta-infor-
mation supplied by a TLD used with a SimpleTag class. The tag directive may
appear many times in the same .tag file, but a translation error arises if any two
uses of the tag directive define values for the same attribute.

The attributes for the tag directive are as follows:

• display-name: The display-name attribute defines a short name
that is intended to be displayed by tools. If no value is specified,
then the attribute defaults to the value of the name attribute.

• body-content: The body-content attribute provides information on
the content of the body of the tag. Valid values for this attribute are
empty, tagdependent, or scriptless. A translation error will result
if JSP or any other value is used. The default value is scriptless.

• dynamic-attributes: The dynamic-attributes attribute indicates
whether this tag supports additional attributes with dynamic
names. If the value is true, the generated tag handler must
implement the javax.servlet.jsp.tagext.DynamicAttributes
interface. The possible values for this attribute are true and false.
The default value is false. If a .tag file specifies this attribute, then
the container creates a page scope variable for each dynamic
attribute passed in.

SIMPLE JSP 2.0 CUSTOM TAGS 291

falkner.ch7.qxd 8/21/03 5:40 PM Page 291

• small-icon: The small-icon attribute defines a relative path, from
the tag source file, of an image file containing a small icon that can
be used by tools. By default it is assumed no small icon is to be used
for the tag.

• large-icon: The large-icon attribute defines a relative path, from
the tag source file, of an image file containing a large icon that can
be used by tools. By default it is assumed no large icon is to be used
for the tag.

• description: The description attribute defines an arbitrary string
that describes this tag. The default value is to have no description.

• example: The example attribute defines an arbitrary string that rep-
resents an informal description of an example use of this action.
The default is to assume no example is available.

• pageEncoding: The pageEncoding attribute functions identically to
the pageEncoding attribute in the JSP page directive.

• language: The language attribute functions identically to the
language attribute of the JSP page directive.

• import: The import attribute functions identically to the import
attribute of the JSP page directive.

• isELIgnored: The isELIgnored attribute functions same as the
isELIgnored attribute of the JSP page directive. Unlike the page
directive, there is no web.xml configuration element for the
isELIgnored tag directive attribute.

Use of the tag directive is straightforward. In most cases you can completely
skip the directive and have everything work perfectly fine—for instance, hello.
tag, Listing 7-17. In a TLD the only information mandated for a custom tag is a
unique action name for the tag and the location of the tag’s code. With a.tag file
the developer specifys neither of these, as they can be implied by the container.

In more complex or robust uses of a .tag file it may be necessary to provide
additional information about the custom tag. In these cases the appropriate
attributes can be used as required.

<%@ attribute %>
The attribute directive is analogous to the attribute element in a TLD file.
Multiple attribute directives can be used in the same .tag file. The attribute
directive has the following attributes:

292 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 292

• name: The name attribute defines a unique name of the attribute
being declared. A translation error results if more than one
attribute directive used in the same.tag file has identical values
for the name attribute. The name attribute is required to be defined
in any occurrence of the attribute directive.

• required: The required attribute is an optional attribute that deter-
mines if the attribute being described is required (true) or optional
(false). By default the value false is assumed.

• fragment: The fragment attribute is an optional attribute that
determines if the attribute is a fragment to be evaluated by the tag
handler. If the value true is specified, the type attribute is fixed at
javax.servlet.jsp.tagext.JspFragment and a translation error
will result if the type attribute is specified. Additionally, if this
attribute is true, the rtexprvalue attribute is fixed at true and a
translation error will result if the rtexprvalue attribute is specified.
If the value of the fragment attribute is false, then the attribute’s
value is assumed to be a “normal” value evaluated by the JSP con-
tainer. The default value is false.

• rtexprvalue: The rtexprvalue is an optional attribute that deter-
mines if the attribute’s value may be dynamically calculated at
runtime via an expression. The default value is false.

• type: The type attribute is an optional attribute that determines the
runtime type of the attribute’s value. By default the value is
assumed to be of type java.lang.String.

• description: The description attribute is an option attribute that
can be used to provide a description of the attribute.

Use of the attribute directive is analogous to the corresponding entries in a
TLD. The only difference is that the values are set via the attribute directive. You
should be easily able to convert the previous date-formatting simple tag to a .tag
file. Instead of rehashing that example, let’s introduce one of the most helpful
features of custom tags: abstracting DHTML. This book constantly hints at a
good Server, JSP, and Java design pattern MVC, which is fully covered in a later
chapter. The design effectively stops Java- and HTML-savvy developers from
haphazardly creating unmaintainable pages with HTML and various snippets of
Java code; however, the design pattern does nothing to stop an overly ambitious
HTML developer from abusing DHTML—for example, creating equally as con-

SIMPLE JSP 2.0 CUSTOM TAGS 293

falkner.ch7.qxd 8/21/03 5:40 PM Page 293

fusing HTML pages using a combination of HTML, JavaScript, and Cascading
Style Sheets. The solution: abstract DHTML via custom tags.

By using custom tags, .tag files in particular, you can easily abstract DHTML
widgets to a few simple tags. Take, for example, the popular, simple DHTML
rollover effect. When the mouse moves over an image, the image changes; usually
a picture of a button changes to a pressed button. Likewise, when the mouse
leaves the picture the image changes back to the original. This effect is nothing
more than a small chunk of JavaScript. Listing 7-18 provides an example HTML
page with the script.

Listing 7-18 rollover.html

<html>

The 'off' image:

The 'on' image:

The rollover image:

<a href="index.htm" onmouseover="button.src='button_on.gif';"

onmouseout="button.src='button_off.gif';">

</html>

Try out the effect by saving the HTML page in the base directory of the
jspbook Web Application. Next, create two images for the rollover; for conve-
nience you can download button_on.gif and button_off.gif from http://
www.jspbook.com/images. Save both of these images in the base directory of the
jspbook Web Application. Browse to http://127.0.0.1/jspbook/rollover.
html to see the effect. Figure 7-7 provides an example.

294 CUSTOM TAG LIBRARIES

Figure 7-7 DHTML Rollover Image Effect (Showing the “on” Button)

falkner.ch7.qxd 8/21/03 5:40 PM Page 294

SIMPLE JSP 2.0 CUSTOM TAGS 295

Note the browser rendering is not completely accurate since this is a dynamic
effect. Shown is one state of the button, but as you move the mouse on and off,
the image changes from the on image to the off image.

The script works by handling DHTML mouse events. Initially, an image is
displayed according to the HTML img tag.

Any image will do, but for the desired effect it is helpful to use a picture that
you have a slightly changed version of—for example, a button clicked on for
image one and the same button clicked off for image two.

Next the DHTML mouse events are used to execute some JavaScript
whenever the mouse enters or leaves the image.

<a href="index.html"

onmouseover="button.src='button_on.gif';"

onmouseout="button.src='button_off.gif';">

When the mouse enters the image, the JavaScript for onmouseover is exe-
cuted and the image is changed from button_off.gif to button_on.gif. When
the mouse leaves the image, the JavaScript for onmouseover is executed and the
image is changed from button_on.gif to button_off.gif. Thus, the overall
effect is a changing, or rollover, image.

Understanding the DHTML is not important compared to understanding
why it is bad to let overly ambitious HTML developers use it. Embedding an
image in HTML requires one tag.

Making a rollover version of the image requires several tags.

<a href="index.htm" onmouseover="button.src='button_on.gif';"

onmouseout="button.src='button_off.gif';">

Which set of code is more intuitive? Which set will be less confusing to a
developer after he or she is hired to manage existing HTML code? The answer is
obviously the first choice: the single img tag; however, that choice doesn’t do the
cool rollover effect. The obvious solution is to take advantage of JSP, abstract the
HTML image tag altogether and make a .tag file that is easy to use but creates
DHTML rollover images. Listing 7-19 is an example.

Listing 7-19 rollover.tag

<%@ attribute name="link" required="true" %>

falkner.ch7.qxd 8/21/03 5:40 PM Page 295

<%@ attribute name="image" required="true" %>

<a href="${link}" onmouseover="${image}.src='${image}_on.gif';"

onmouseout="${image}.src='${image}_off.gif';">

Save the preceding code as rollover.tag in the /WEB-INF/tags directory of
the jspbook Web Application. The code creates a custom tag, rollover, that
requires two attributes, link and image. The link attribute provides the link if
the image is clicked on, and the image attribute provides the base name of the
rollover images (assumed to be a GIF in this case).

Try out the rollover tag by using it in a JSP. Save Listing 7-20 as rollover.jsp
in the base directory of the jspbook Web Application.

Listing 7-20 rollover.jsp

<%@ taglib prefix="x" tagdir="/WEB-INF/tags"%>

<html>

The 'off' image:

The 'on' image:

The rollover image:

<x:rollover image="button" link="index.html"/>

</html>

Test out the page by browsing to http://127.0.0.1/jspbook/rollover.jsp.
The results are the same as with the previous HTML example.

Behold the power of custom tags! A JSP developer can abstract anything he
or she wants behind a simple tag or, better put, minimize the code required to
accomplish a task. Instead of hand-coding something such as DHTML widgets
repeatedly for a page, abstract the DHTML with a simple tag. Tag files in par-
ticular are good for abstracting DHTML since it is as easy to author the tag as it
is to author the DHTML.

The design pattern chapter expands upon the idea of abstracting DHTML via
custom tags.

<%@ variable %>
The variable directive is analogous to the variable element in a TLD. Multiple
variable directives may be used in the same .tag file.

The variable directive has the following attributes:

• name-given: The name-given attribute defines a scripting variable
to be defined in the page invoking this tag. A fatal translation error

296 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 296

will also occur if two variable directives have the same name-
given.

• variable-class: The variable-class attribute is optional and used
to define the type of the variable. The default value is
java.lang.String.

• scope: The scope attribute optionally defines the scope of the
scripting variable defined. Valid values for this attribute are
AT_BEGIN, AT_END, or NESTED. The default value is NESTED.

• declare: The declare attribute optionally declares whether the
variable is declared or not. The default value is true.

• description: The description attribute can be used to provide an
optional description of the variable. By default it is assumed no
description is present.

The variable directive is helpful for use in all cases where scripting variables
are helpful with simple tags. The JSTL is designed around being able to easily take
advantage of scoped variables. Instead of requiring Java, it is possible to program
solely using custom tags, which is a design pattern promoted by the JSTL (and
some developers that prefer using JSP instead of Servlets), but a design pattern
that is discouraged by this book.

Previously, scripting variables had been introduced solely by scriptlets and
declarations; however, custom tags can also create scripting variables. A scripting
variable created by a custom tag is accessible as if it was declared by a scriptlet,
meaning it can be used elsewhere on the JSP dependent on how the variable was
declared. By default the variable will only exist in the body of the tag (NESTED
scope), but the scope can be set to AT_BEGIN or AT_END to have the variable be
accessible to the page starting at the beginning custom tag or ending custom tag,
respectively.

In general, tag-declared scripting variables are not very helpful on their own.
Scripting variables are helpful when combined with other custom tags designed
to use the scripting variables. The topic of scripting variables will not be dis-
cussed at length; however, for completeness here is an example of the variable
directive.

You’ll recall the code for PageCounter.jsp (Listing 3-5 in Chapter 3), the JSP
that used a declaration, an expression, and a scriptlet to count the number of
times a JSP had been requested for view. The code works, although the JSP has a
notable amount of script and does not abstract the logic used to count page
views. A superior form of the page can be created by using a simple .tag file that
sets a scripting variable, as shown in Listing 7-21.

SIMPLE JSP 2.0 CUSTOM TAGS 297

falkner.ch7.qxd 8/21/03 5:40 PM Page 297

Listing 7-21 PageCounter2.jsp

<%@ taglib prefix="x" tagdir="/WEB-INF/tags" %>

<x:count/>

<html>

<head>

<title>PageCounter.jsp</title>

</head>

<body>

This page has been visited <%= pageCount %> times.

</body>

</html>

Save the preceding code as PageCounter2.jsp in the root directory of the
jspbook Web Application. The code is an enhanced version of PageCounter.jsp,
although instead of using a directive the page relies on a custom tag to keep track
of page visits. The code for the custom tag is a .tag file that keeps count and sets
a scoped variable, pageCount, for the JSP to use, as illustrated in Listing 7-22.

Listing 7-22 count.tag

<%@ variable name-given="pageCount"

variable-class="java.lang.Integer"

scope="AT_BEGIN"%>

<%

Integer pageCount =

(Integer)application.getAttribute("pageCount");

if (pageCount == null) {

application.setAttribute("pageCount", new Integer(1));

}

else {

pageCount = new Integer(1+pageCount.intValue());

application.setAttribute("pageCount", pageCount);

}

%>

Save the code as count.tag in the /WEB-INF/tags directory of the jspbook
Web Application. The .tag file uses the variable directive to declare a scripting
variable named pageCount of type java.lang.Integer. This variable is what is
later used by the JSP. The code after the variable directive sets and updates a
count variable stashed in application scope. The result of using count.tag and
PageCounter2.jsp is that we now have a simplified JSP and an abstract method
of keeping page count. Most anyone, including non-Java developers, can use the
count tag, and should the logic powering the counting mechanism be changed,

298 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 298

only the code of count.tag needs to be updated. All JSP using the count.tag will
automatically reflect the update.

Test out the code by browsing to http://127.0.0.1/jspbook/Page
Counter2.jsp. A page will appear and function similar to PageCounter1.jsp,
Figure 3-5.

<jsp:doBody/>
The doBody action is a standard JSP action that is only available for use in .tag
files. Using the action elsewhere raises an exception. The doBody action is used by
a .tag file to execute the body content defined for the .tag file. For example, con-
sider the JSP in Listing 7-23, which uses a custom tag and explicitly defines the
body for it:

Listing 7-23 doBodyExample.jsp

<%@ taglib prefix="x" tagdir="/WEB-INF/tags" %>

<x:aTag>

<jsp:body>

Some body content, ${blah}.

</jsp:body>

</x:aTag>

Assume Listing 7-24 is the custom tag’s code.

Listing 7-24 aTag.tag

Invoke the body:

<jsp:doBody/>

The result of executing doBodyExample.jsp is shown in Listing 7-25.

Listing 7-25 Text Generated by doBodyExample.jsp

Invoke the body:

Some body content, .

Use of the doBody action should be clear; it evaluates the body content of the
tag. The doBody action can be skipped, used, or used multiple times depending
on what the .tag file is designed to do.

Cooperating Tags
Simple tags collaborate with children tags by being passed the JspFragment
object that represents the tag’s body. However, simple tags can also collaborate

SIMPLE JSP 2.0 CUSTOM TAGS 299

falkner.ch7.qxd 8/21/03 5:40 PM Page 299

with parent tags by using the getParent() method. The getParent() method
returns an Object that represents the tag handler class, which wraps the current
tag (null if no parent tags exist). The object can appropriately be typecast into
either an instance of Tag or SimpleTag and be further manipulated.

Classic JSP Tag Handlers
Before JSP 2.0, custom tags were more complex to code and deploy. As mentioned
previously in this chapter, the new SimpleTag interface can be used as a complete
replacement for the older custom tag mechanism. It is recommended you use the
SimpleTag interface as it is easier to use and generally much more intuitive. The
following discussion on classic JSP custom tags (i.e., tags that implement the Tag
interface) is solely for completeness. It can be skipped but is helpful to read
because currently the majority of existing custom tags are built based on them.

A tag handler is a Java class that comprises the logic of a custom tag. There
are three distinct kinds of tags: “basic” tags, “iteration” tags, and “body” tags. In
the tag development model each of these tag types is represented by a Java
interface: javax.servlet.jsp.Tag, javax.servlet.jsp.IterationTag, and
javax.servlet.jsp.BodyTag, respectively. Each of these tag types has a well-
defined set of methods and life cycle that will be fully covered by this chapter.

Basic Tags
A basic tag is a tag that implements the Tag interface. Basic tags are used to create
a tag that never needs to process its body or iterate over its body content. Simple
tags are the superclass of all the other custom tag interfaces and are the easiest
tags to write and understand.

Tag Life Cycle
The Tag interface defines six methods all custom tags must implement. Only
three of the methods are related to the tag’s life cycle. The methods are
doStartTag(), doEndTag(), and release(). The doStartTag() method is called
when the JSP is being evaluated and the starting element of the custom tag is
found. The doEndTag() method is the complement and is invoked when the
ending element of the custom tag is encountered. Once the doEndTag() is fin-
ished, the release() method is invoked to clean up any resources the tag might
have initialized. Figure 7-8 shows a graphical representation of this life cycle.

The life cycle is self-explanatory. A custom tag is encountered and the
doStartTag() method is invoked. Once the end of the tag is encountered, the

300 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 300

doEndTag() method is invoked and the tag is finished. If the tag is an empty
element—for example, <t:someTag/>, the doStartTag() and doEndTag()—
methods are still invoked in succession. Usually for multiple instances of the
custom tag a separate tag handler instance is loaded and used, but a container
is free to re-use a tag instance if the set of attributes passed to both tag elements
matches. The release() method is called after the tag instance is used for the
final time.

Imagine the following fictitious JSP that uses the foo tag in two different
places (Figure 7-9). Each use would typically have a separate instance of the tag
handler class corresponding to the foo tag. Labeled are the conceptual points
where the doStartTag() and doEndTag() methods are invoked.

Simple tags may have content in between the starting and ending tags, as
shown in Figure 7-9, but the tag never gets to process its body content. This

CLASSIC JSP TAG HANDLERS 301

Figure 7-8 Tag Life Cycle

<html>
<body>
<h1>A Header</h1>
<x:foo>
Some text on the page.
</x:foo>
</body>
</html>

doStartTag()

doEndTag()

Figure 7-9 JSP Example of the Tag Life Cycle Invocation

falkner.ch7.qxd 8/21/03 5:40 PM Page 301

means anything that appears as the body of a simple tag cannot be processed by
the tag directly, but the contents of the tag may still be processed by the container
and any resulting output written to the page’s output stream.

Tag Interface
Three of the methods of the Tag interface have been briefly mentioned: doStart
Tag(), doEndTag() and release(). However, these methods were not fully
explained and there are three additional methods included in the Tag interface:
getParent(), setPageContext(), and setParent(). All six of these methods are
important to understand and are summarized as follows.

int doStartTag()
The doStartTag() method is invoked when the JSP encounters the starting of
the custom tag. This method can be used to either initialize resources needed by
the other methods of the tag, or it can perform some logic and choose to either
skip evaluation of the tag’s body content or skip evaluation of the rest of a JSP.
The action a JSP takes after calling the doStartTag() method is based on the
return value of the method. There are two valid values the doStartTag() method
can return: SKIP_BODY and EVAL_BODY_INCLUDE. Both of these values are final
static int primitives defined by the Tag interface. Should the doStartTag()
method return the SKIP_BODY method, the JSP container will skip evaluation of
the tag’s body content. If the doStartTag() method returns EVAL_BODY_INCLUDE,
the JSP container will evaluate the contents of the tag’s body into the current JSP
output buffer.

int doEndTag()
The doEndTag() method is invoked when the JSP encounters the closing element
of a custom tag. This method can be used to perform any logic that needs to be
done after the evaluation of the tag’s body content but before the tag instance is
freed for possible re-use. After calling the doEndTag() method, evaluation of the
JSP continues as specified by the return value of the method. There are two valid
return values for the doEndTag() method: SKIP_PAGE and EVAL_PAGE. Both of
these values are final static int primitives defined by the Tag interface. Should
the doEndTag() method return the SKIP_PAGE value, the current JSP will stop
evaluating the current page. If the doEndTag() method returns EVAL_PAGE, the
current JSP will continue to be processed.

void release()
The release() method is the final method invoked on a custom tag. The
release() method is called when the custom tag is no longer going to be used by

302 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 302

the JSP container and should release its state. The release() method is guar-
anteed to be invoked at least once before the tag is made available for garbage col-
lection, but multiple doStartTag() and doEndTag() methods calls may occur
before the release() method is ever called.

Tag getParent()
The getParent() method allows a custom tag to access the closest encapsulating
parent custom tag. The tag is returned as the superclass Tag but can be typecast
accordingly.

void setParent(Tag t)
The setParent() method is invoked by the JSP container during runtime to set
the correct parent Tag object of a particular custom tag. If there is no encapsu-
lating custom tag, null is set.

void setPageContext(PageContext p)
The setPageContext() method sets the appropriate PageContext object for a
JSP. The setPageContext() method is invoked by the JSP container prior to
calling the doStartTag() method.

Coding a BasicTag
For most practical purposes the doStartTag() and doEndTag() methods are all
that a developer cares about when implementing a simple tag. The setPage
Context() and setParent() methods are handled by the container, and the
getParent() and release() methods are needed in only a few circumstances.

A simple tag can be coded in a few different ways; however, a developer is
rarely required to implement the Tag interface from scratch. The JSP API
includes the javax.servlet.jsp.TagSupport class, which is an adapter class that
provides a default implementation of a simple tag. The easiest and most practical
method of coding a simple tag is to extend TagSupport and override any method
that needs customization.

Take, for example, the foo tag that has been used in all of this chapter’s
examples. Listing 7-26 is a simple example of extending the TagSupport class to
create this previously fictitious tag.

Listing 7-26 FooTag.java

package com.jspbook;

import com.jspbook.*;

import javax.servlet.jsp.tagext.*;

CLASSIC JSP TAG HANDLERS 303

falkner.ch7.qxd 8/21/03 5:40 PM Page 303

304 CUSTOM TAG LIBRARIES

import javax.servlet.jsp.*;

import java.io.*;

public class FooTag extends TagSupport {

public int doStartTag() throws JspException {

JspWriter out = pageContext.getOut();

try {

out.println("foo");

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

Note the above tag is intended solely for illustration purposes. Listing 7-26
demonstrates a few of the subtle but important points of coding a simple tag. The
first thing to notice is the declaration of the custom tag. Instead of implementing
all the Tag interface methods by hand, the TagSupport class was extended.

public class FooTag extends TagSupport {

By extending TagSupport the complete Tag interface is inherited and the
FooTag is a valid tag handler.

Another important part of FooTag.java to notice is that only the method
needing customization is actually implemented. Out of the six required methods
in the Tag interface only the doStartTag() method is overridden. The conve-
nience of only needing to selectively customize reduces the overall amount of
code and makes it easier to understand what the tag handler is doing.

public int doStartTag() throws JspException {

JspWriter out = pageContext.getOut();

try {

out.println("foo");

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

falkner.ch7.qxd 8/21/03 5:40 PM Page 304

Inside the tag handler not much is going on. The foo tag is using the
PageContext object to obtain access to the output stream and print “foo”. At the
end of the doStartTag() method, the SKIP_BODY value is returned, indicating
that the doEndTag() method should not be invoked.

Tag Handler Exception Handling
Tag handlers deal with exceptions differently than JSP. Inside a JSP all of the
scripting elements have the benefit of being surrounded by an implicit try-catch
block. This often lulls a JSP developer into forgetting Java code does throw excep-
tions and that they must be handled. A tag handler does not have an implicit try-
catch block. All exceptions must be handled explicitly during execution of the tag
handler’s methods.

FooTag.java, Listing 7-26, is a good example of this difference. The
doStartTag() method is defined to throw a JspException, but all other forms of
exceptions must be explicitly handled. In the case of a simple out.println() call,
the possible java.io.IOException needs to be caught. The code does this by sur-
rounding everything in a try-catch block and passing any exception out as a
JspException. The error handling mechanism of the specific JSP is then assumed
to handle the problem.

Keep in mind the issue of exception handling when coding tag handlers. This
is especially an issue when porting over scripting elements into tag handler code.
Often a straight conversion simply does not work because the scripting element
relied on the implicit JSP try-catch statement.

TagSupport
The TagSupport class is more than a simple implementation of the Tag interface.
The TagSupport object is a full implementation of both the Tag and
IterationTag interfaces along with some other miscellaneous helpful methods.
Not all of the methods are worth mentioning right now, but there is one
important one to be aware of:

static Tag findAncestorWithClass(Tag from, java.lang.Class klass)

The findAncestorWithClass() method is a superior form of the
getParent() method provided by the Tag interface. If a custom tag relies on
cooperating with another custom tag, it needs to be able to easily find the other
tag. Calling the getParent() method does return the nearest neighboring
custom tag, but it might not be the one the tag is expecting to cooperate with. In

CLASSIC JSP TAG HANDLERS 305

falkner.ch7.qxd 8/21/03 5:40 PM Page 305

lieu of always needing to loop through and verify parent class types, the
findAncestorWithClass() method can be used.

The TagSupport helper class is further covered later in the chapter with iter-
ation tags.

Using a Tag Handler and TLD with JSP
So far we have discussed how to build all of the components required for a simple
tag but have yet to actually put everything together. It is a helpful exercise to walk
through this process and demonstrate a working example of a custom tag built
from scratch. So far the only tag we have built in this chapter is the rather
unhelpful foo tag. If you recall, this tag already has an appropriate TLD entry and
is ready to be used. To complement this tag, let us build another slightly more
helpful basic tag.

The new tag we are going to build is the date tag. The date tag is another
basic tag handler, and it will be designed to give the current date and time of the
server the JSP was executed from. Save Listing 7-27 as DateTag.java.

Listing 7-27 DateTag.java

package com.jspbook;

import com.jspbook.*;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.*;

import java.io.*;

public class DateTag extends TagSupport {

public int doStartTag() throws JspException {

JspWriter out = pageContext.getOut();

try {

Date date = new Date();

out.println(date.toString());

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

return SKIP_BODY;

}

}

306 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 306

The preceding code greatly resembles FooTag.java. It is a simple tag handler
that extends TagSupport and overrides the doStartTag() method. The only dif-
ference between the two tags is that DateTag.java creates a new java.util.Date
object and serializes it for a user to see.

The primary reason for creating the date tag was so a new tag would need to
be added to the example TLD file. This is something that needs to be done each
time a tag is added to a tag library so it is helpful to be familiar with the process.
You’ll recall that the example.tld file was previously created and saved in the
/WEB-INF directory of the jspbook Web Application. Edit this file to now include
an entry for the newly created date tag as shown in Listing 7-28.

Listing 7-28 DateTag.java Addition to examples.tld

<tag>

<name>date</name>

<tag-class>com.jspbook.DateTag</tag-class>

<body-content>empty</body-content>

</tag>

Make sure the addition appears as a child of the taglib element and either
immediately before or after an instance of a tag element. Compile both the
FooTag.java and DateTag.java files and reload the jspbook Web Application to
reflect the changes.

With both tag handler codes complete and the TLD up to date, the tag library
is ready for use in a JSP. Save Listing 7-29 as TagLibraryExample.jsp in the root
directory of the jspbook Web Application.

Listing 7-29 TagLibraryExample.jsp

<%@ taglib prefix="x" uri="http://www.jspbook.com/example" %>

<html>

<head>

<title>A Custom Tag Example</title>

</head>

<body>

The date/time is <x:date/>, <x:foo/>!

</body>

</html>

Browse to http://www.jspbook.com/TagLibraryExample.jsp to see the
results of the custom tags. Figure 7-10 shows the output rendered by a Web
browser. Both the date and foo tags are appropriately executed and appear to the
client as some text in an HTML page.

CLASSIC JSP TAG HANDLERS 307

falkner.ch7.qxd 8/21/03 5:40 PM Page 307

The page displayed in Figure 7-10 is the conclusion of this simple walk-
though implementation of custom tags. You now know how to create a simple
tag, define it in a TLD, and create a JSP that uses the tag. This is a good start to
understanding custom tags, but we have yet to see many of the features that make
custom tags powerful.

Re-Using Tags
An important and commonly misunderstood point is that a container has the
option to cache a tag instance instead of creating a new tag each time a JSP uses
a custom tag. This allows containers to create one instance of a tag and re-use it
for efficiency reasons when needed. However, there are limitations on the tags
that can be re-used. When a tag is first used, it will be initialized by the container.
All the properties set in the tag element are passed to the tag; if the tag has
optional properties and those properties are not defined on the page, the tag will
use default values for those elements. Re-using a tag implies that the container
will not need to re-initialize the tag; this has two consequences. First, a tag can
only be re-used if it has exactly the same set of attributes as a previous usage.
Second, it is vital that a tag instance re-initialize any properties whose values have
changed to the state they were in just before doStartTag() method was called. In
many cases this second criterion is problematic because a container relies on the
tag resetting itself when the doEndTag() method is invoked. When coding a
custom tag that initializes class-wide variables, be sure these variables are reset
each time the doEndTag() method is invoked.

A simple example of this is FormattedDateTag.java, Listing 7-30.
FormattedDateTag.java declares the class-wide variable format. After running
through the tag once, the variable might be altered. To prevent this alteration
from lingering around if the tag is cached, the doStartTag() method should be

308 CUSTOM TAG LIBRARIES

Figure 7-10 Browser Rendering of TagLibraryExample.jsp

falkner.ch7.qxd 8/21/03 5:40 PM Page 308

changed to reset format to null. The problem was purposely overlooked in pre-
vious examples to keep things simple and because it is not really a severe
problem. However, to always ensure FormattedDateTag.java performs as
expected, the following addition needs to be made to the code.

Listing 7-30 FormattedDateTag.java Fixed for Consistency

package com.jspbook;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.*;

import java.text.*;

import java.io.*;

public class FormattedDateTag extends TagSupport {

private String format;

public void setFormat(String format) {

this.format = format;

}

public int doStartTag() throws JspException {

JspWriter out = pageContext.getOut();

try {

if (format != null) {

SimpleDateFormat sdf =

new SimpleDateFormat(format);

out.println(sdf.format(new Date()));

}

else {

out.println(new Date().toString());

}

}

catch (IOException e) {

throw new JspException(e.getMessage());

}

finally {

format = null;

}

return SKIP_BODY;

}

}

CLASSIC JSP TAG HANDLERS 309

falkner.ch7.qxd 8/21/03 5:40 PM Page 309

TryCatchFinally Interface
A tag’s life cycle is fully defined by the JSP specification. As stated previously,
the doStartTag() method is invoked after the tag is fully initialized; between the
doStartTag() and doEndTag() method calls, the container assumes that the tag
is holding state that must be preserved. After the doEndTag() method, the tag is
available for re-use. The release() method is called before the tag is made
available for garbage collection. After calling the release() method, the con-
tainer assumes that the tag has given up all resources including properties, parent
references, and so on.

However, it is possible that the doEndTag() method is never called. This
happens if the tag throws an exception before the doEndTag() would normally be
called. If the tag creates or manages resources and would normally give up those
resources in its doEndTag() method, the tag now has a problem! How does the
tag release those resources? To guarantee that resources are released even in the
case of failure, the tag should implement the TryCatchFinally interface.
TryCatchFinally is an interface representation of the try-catch-finally block
shown in Chapter 4 and has two methods: doCatch() and doFinally(). These
two methods provide identical functionality to the catch and finally clauses
available for try statements. An easy way to understand the concept is to assume
a custom tag implementing the TryCatchFinally interface always gets translated
to a Servlet with the equivalent of the following code:

Tag tag = getTagFromSomewhere();

// initialize tag

// ...

// use tag

try {

tag.doStartTag();

..

tag.doEndTag();

}

catch (Throwable t)

{

// catch exception

tag.doCatch(t);

}

finally

{

310 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 310

// release usage specific resources

tag.doFinally();

}

tag.release(); // release long-term resources

The preceding code illustrates how a container can use the TryCatchFinally
interface to provide the equivalent of a try-catch-finally block for a custom tag.
Understanding this concept is critical as it is the only way to mimic a try-catch-
finally statement that spans across life cycle methods of a custom tag based on the
Tag interface. It is the responsibility of the tag author to correctly declare and
implement the TryCatchFinally interface methods in a custom tag.

Cooperating Tags
Among the cardinal rules of programming are keeping your methods short and
breaking complex code into reusable components. Supertags should never be
written that try to do everything. Each tag should be a self-contained unit that
does a single part of a goal. This often means that tags need to cooperate with
other tags if they are to work well.

Tags typically cooperate by nesting one tag inside another.

<%@taglib prefix="mt" uri="/WEB-INF/mytags.tld" %>

<mt:outerTag>

<mt:innerTag/>

</mt:outerTag>

To cooperate, the innerTag needs to get a reference to the outerTag. As we
saw earlier, when tags are initialized, the container calls the tag’s setParent()
method, passing a reference to the Java object that is the parent. For the outer tag
shown in the previous example, the parent would be passed as null. However, the
inner tag shown previously would be passed a reference to the Java class that
implements the outerTag tag. The reference passed is of type Tag. The inner tag
can then call methods on or get data from the parent. To do this, the inner tag
would simply cast the reference to the correct type, as shown in Listing 7-31.

Listing 7-31 Fictitious Cooperating Tag Handler

public class InnerTag extends TagSupport {

OuterTag outerTag = null;

public int doStartTag() throws JspException {

outerTag = (OuterTag)parent;

CLASSIC JSP TAG HANDLERS 311

falkner.ch7.qxd 8/21/03 5:40 PM Page 311

// invoke any needed methods

outerTag.fooMethod();

// do other work here

}

}

Notice that while the inner tag can get a reference to its parent, there is no
standard way for the references to be passed the other way. A parent does not get
a reference to its children.

In Listing 7-31 the inner tag’s doStartTag() method defines a variable of
type OuterTag that is assumed to be the tag handler class of the outerTag tag. To
use a reference to the outer tag, the inner tag simply casts the parent data member
to be an OuterTag. But where does the tag get the parent data member from? It’s
not defined in the tag. Remember that the tag extends TagSupport and that
TagSupport implements Tag, which means that TagSupport provides an imple-
mentation of the setParent() method. This implementation simply defines a
variable

Tag parent;

and saves the reference passed to it, the setParent call:

public void setParent(Tag t) {

parent = t;

}

While in simple cases Listing 7-31 works perfectly fine, there is a flaw with the
code. The child is blindly casting the parent value to the type it should be if one
were to assume innerTag was always nested directly one level deep from a
outerTag. But suppose that the tag is nested not one but several levels deep. The
following is a perfectly valid JSP:

<%@taglib prefix="mt" uri="/WEB-INF/mytags.tld" %>

<%@taglib prefix="yt" uri="/WEB-INF/yourtags.tld" %>

<mt:outerTag>

<yt:someOtherInnerTag>

<mt:innerTag/>

</yt:someOtherInnerTag>

</mt:outerTag>

Note that the tag is not only one extra level detached from its parent; its
parent is also from a different tag library. Now the inner tag may not know any-
thing about its parent. Not only that, for the inner tag to work it has to get a ref-
erence to the outerTag, not the random tag stuck in between.

312 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 312

Using only the Tag interface to solve this problem is reasonably difficult and
requires looping through parent tags and checking each tag handler’s type. An
alternative is the convenience findAncestorWithClass() method provided by
TagSupport. Recall TagSupport provides the following method:

static Tag findAncestorWithClass(Tag from, java.lang.Class klass)

This method finds a reference to the tag implemented by a given Java class as
specified by the klass parameter. The container maintains a stack of tags linked
by their parent values. Starting at the from parameter, this method walks that
stack looking for an instance of the right Class. Using what was just explained
Listing 7-31 would be better coded as shown by Listing 7-32.

Listing 7-32 Better Implementation of Cooperating Tags

public class InnerTag extends TagSupport {

OuterTag outerTag = null;

public int doStartTag() throws JspException {

outerTag = (OuterTag)findAncestorWithClass(this,

OuterTag.class);

if(outerTag != null) {

// invoke needed methods

outerTag.callParentMethod();

// do other work here

}

}

}

This code works independent of tags nested arbitrarily deep and cases where
tags from different tag libraries are mixed.

Mixing New Tags with Classic Tags
Cooperation among classic tags is reasonably simple as all classic tags implement
the Tag interface. This means that getParent, setParent, and findAncestorWith
Class can all rely on the fact that the tags they are dealing with are all instances
of javax.servlet.jsp.tagext.Tag. Cooperation among simple tags is also easy;
all simple tags implement the same interface, javax.servlet.jsp.tagext.
SimpleTag. Problems arise when simple tags and classic tags are mixed. Imagine
this scenario:

<mt:simpleTag>

<mt:classicTag/>

CLASSIC JSP TAG HANDLERS 313

falkner.ch7.qxd 8/21/03 5:40 PM Page 313

</mt:simpleTag>
Here, there is a problem. When the container calls the classicTag’s setParent,
it wants to pass a reference to a tag, but the simple tag does not implement Tag.
To get around this issue, the container instead creates an instance of a Tag
Adapter. The TagAdapter simply wraps a simple tag and exposes it as if it were a
tag. The nested classicTag could now be coded like this:

public class InnerTag extends TagSupport {

OuterTag outerTag = null;

public int doStartTag() throws JspException {

outerTag = (OuterTag)parent.getAdaptee();

// invoke any needed methods

outerTag.fooMethod();

// do other work here

}

}

Notice that the tag now has to call getAdaptee(); this method gets a reference
to the tag that the adapter is wrapping.

This problem does not arise if the tags were nested like this:

<mt:classicTag>

<mt:simpleTag/>

</mt:classicTag>
The simple tag’s setParent() method takes a reference to a JspTag interface.
This is a new interface introduced in JSP 2.0 that has no methods. It is simply
there to provide a degree of type safety and to support situations such as this. In
JSP 2.0 the Tag interface extends JspTag, so all classic tags extend the JspTag
interface automatically. The SimpleTag interface also extends Tag so all simple
tags are also instances of JspTag.

There is still one problem left to solve. We said previously that simply calling
getParent() wasn’t good enough; a nested tag should really call the find
AncestorWithClass() method. The findAncestorWithClass() method works
fine if a classic tag needs to find a reference to another classic tag it is nested
inside, but if a classic tag needs to get a reference to an arbitrary simple tag some-
where within the stack of tags, the findAncestorWithClass() method will not
work because it is typed to return an instance of Tag and not an instance of
JspTag. To fix this problem, SimpleTagSupport has its own copy of find

AncestorWithClass that works correctly.

314 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 314

Given this

<mt:simpleTag>

<yt:someOtherInnerTag>

<mt:innerTag/>

</yt:someOtherInnerTag>

</mt:simpleTag>

the inner tag should be coded like this:

public class InnerTag extends TagSupport {

MySimpleTag simpleTag = null;

public int doStartTag() throws JspException {

simpleTag = (MySimpleTag

)SimpleTagSupport.findAncestorWithClass(this, OuterTag.class);

if(simpleTag != null) {

// invoke needed methods

simpleTag.callParentMethod();

// do other work here

}

}

}

So, if a nested tag is looking for a classic tag ancestor, it should use the
TagSupport.findAncestorWithClass() method. However, if it’s looking for a
simple tag ancestor, it should use the SimpleTagSupport.findAncestorWith
Class() method.

Iteration Tags
Iteration tags are an enhanced version of a simple tag. Iteration tags can do every-
thing a simple tag can with the addition of being able to repeatedly evaluate its
body. The reevaluation is managed by introducing a new method in the custom
tag life cycle: doAfterBody(). The doAfterBody() method is invoked after the
doStartTag() method and before the doEndTag() method. The doAfterBody()
method determines if either the body should be reevaluated, calling doAfter
Body() again, or if the doEndTag() method should be invoked.

With the doEndTag() method added to the simple tag life cycle, the iteration
tag life cycle now appears in Figure 7-11.

CLASSIC JSP TAG HANDLERS 315

falkner.ch7.qxd 8/21/03 5:40 PM Page 315

IterationTag Interface
For a tag handler to be treated as an iteration tag, it must implement the
javax.servlet.jsp.IterationTag interface. The IterationTag interface is a
subclass of the Tag interface and defines only one new method:

public int doAfterBody() throws JspException

The doAfterBody() method is invoked after the doStartTag() method if it
returns EVAL_BODY_INCLUDE. As illustrated in Figure 7-11 the doAfterBody()
method can be invoked multiple times depending on the return value of the
method. If doAfterBody() returns EVAL_BODY_AGAIN, then the tag’s body is
reevaluated and the doAfterBody() method is invoked again. If the
doAfterBody() method returns SKIP_BODY, then the doEndTag() method is
invoked.

While not re-listed, keep in mind all of the simple tag methods are still
available to an iteration tag. Converting a simple tag to an iteration tag is as easy
as implementing the IterationTag interface and coding a doAfterBody()
method for the tag.

Coding an Iteration Tag
Iteration tags are as easy to code as simple tags. The helper class TagSupport
implements both the Tag and IterationTag interfaces. For practical purposes
extending TagSupport for both simple and iteration tags is of no consequence to
a JSP developer. The single method the IterationTag interface adds does not
interfere with the execution of a simple tag, nor does it add significant overhead
to the code. The real difference between coding a simple tag and iteration tag is

316 CUSTOM TAG LIBRARIES

Constructor

Service
doStartTag()

Destruction
release()

javax.servlet.jsp.tagext.IterationTag

doAfterBody()

doEndTag()

Figure 7-11 Iteration Tag Life Cycle

falkner.ch7.qxd 8/21/03 5:40 PM Page 316

choosing when you need to have the functionality of the doAfterBody() method.
If the doAfterBody() method is needed, simply code it into a tag handler and
have the doStartTag() method return EVAL_BODY_INCLUDE.

The most helpful use of iteration tags is implied by their name, iteration. By
using an iteration tag, redundant chunks of template text can be eliminated in a
JSP. The functionality is identical to that of a scriptlet using a for, while, or do
while loop. Consider the JSP in Listing 7-33.

Listing 7-33 A JSP with a Few Links

<%

// An array of links

String[] links = new String[5];

links[0] = "http://www.jspbook.com";

links[1] = "http://java.sun.com";

links[2] = "http://www.jspinsider.com";

links[3] = "http://www.developmentor.com";

links[4] = "http://www.aw.com";

%>

<html>

<head>

<title>Eliminating Redundency</title>

</head>

<body>

Some helpful JSP and Servlet links

<a href="<%= links[0] %>"><%= links[0] %>

<a href="<%= links[1] %>"><%= links[1] %>

<a href="<%= links[2] %>"><%= links[2] %>

<a href="<%= links[3] %>"><%= links[3] %>

<a href="<%= links[4] %>"><%= links[4] %>

</body>

</html>

Listing 7-33 is illustrating a poor use of JSP. One benefit of the page com-
pared to an HTML equivalent is that it is re-using the array values. This simple
re-use allows for each single change to an array value to be reflected in the two

CLASSIC JSP TAG HANDLERS 317

falkner.ch7.qxd 8/21/03 5:40 PM Page 317

later uses on JSP. However, this JSP still contains a lot of redundant markup. Each
line of code between the unordered list tag, , is exactly the same as the line
above it with the exception of the array slot being accessed. These lines of code
should be eliminated in favor of one line of code that is repeatedly used while
iterating through the values in the array. This can easily be done with a scriptlet
and either a for, while, or do while loop, as illustrated in Chapter 3, but it can
also be done by an iteration tag.

Right now it is up to you to eliminate the markup redundancy using what has
been explained about iteration tags. This can be done with the iteration tag in
Listing 7-34.

Listing 7-34 LinkIterationTag.java

package com.jspbook;

import javax.servlet.jsp.tagext.TagSupport;

import javax.servlet.jsp.JspException;

import javax.servlet.ServletRequest;

public class LinkIterationTag extends TagSupport {

String[] links;

int count;

public int doStartTag() throws JspException {

// get the array of links

ServletRequest request = pageContext.getRequest();

links = (String[])request.getAttribute("links");

// reset count

count = 0;

// set current link

pageContext.setAttribute("link", links[count]);

count++;

return EVAL_BODY_INCLUDE;

}

public int doAfterBody() throws JspException {

if(count < links.length) {

try {

pageContext.setAttribute("link", links[count]);

count++;

}

catch (Exception e) {

318 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 318

throw new JspException();

}

return EVAL_BODY_AGAIN;

}

else {

return SKIP_BODY;

}

}

}

In the preceding code a simple iteration tag is created that relies on a variable
bound to request scope named links. The tag takes this variable, treats it as an
array of strings, and loops through each object in the array. The looping is done
by setting a PageContext variable, link, and evaluating the tag’s body. Before
using this tag we need to add an appropriate entry in this chapter’s example TLD
file. Edit example.tld to include the tag definition in Listing 7-35.

Listing 7-35 LinkIterationTag.java Entry in example.tld

<tag>

<name>iterateLinks</name>

<tag-class>com.jspbook.LinkIterationTag</tag-class>

<body-content>JSP</body-content>

</tag>

Listing 7-36 provides an example of how a JSP might use this tag.

Listing 7-36 LinkIterationTag.jsp

<%

// An array of links

String[] links = new String[5];

links[0] = "http://www.jspbook.com";

links[1] = "http://java.sun.com";

links[2] = "http://www.jspinsider.com";

links[3] = "http://www.developmentor.com";

links[4] = "http://www.aw.com";

request.setAttribute("links", links);

%>

<%@ taglib prefix="x" uri="http://www.jspbook.com/example" %>

<html>

<head>

<title>Eliminating Redundency</title>

</head>

<body>

CLASSIC JSP TAG HANDLERS 319

falkner.ch7.qxd 8/21/03 5:40 PM Page 319

Some helpful JSP and Servlet links

<x:iterateLinks>

${link}

</x:iterateLinks>

</body>

</html>

Notice the preceding code now eliminates the redundant markup in the
unordered list. Now one set of the markup is used with the link values being
placed dynamically during each body evaluation of the iterateLinks tag.

Save LinkIterationTag.java in the /WEB-INF/classes/com/jspbook

directory of the jspbook Web Application and save LinkIterationTag.jsp in the
root directory of the jspbook Web Application. After compiling the tag handler,
reload the Web Application and visit http://127.0.0.1/jspbook/Link

IterationTag.jsp. The new tag handler loops through all of the objects in the
array and displays them with the expected markup. Figure 7-12 shows a browser
rendering of the output.

In addition to coding and seeing an iteration tag work, there are two more
points of interest in Listing 7-36; notice that the array of String objects, links, is
passed to the custom tag via request scope. However, the link variable is passed
from the tag back to the JSP in page scope. Why isn’t the page scope used in both
of these cases? The code is done in consideration of a practical application of this
type of code. The preceding JSP can actually be split into two parts: one page that
creates the links array and places it in request scope and a second page that con-

320 CUSTOM TAG LIBRARIES

Figure 7-12 Browser Rendering of LinkIterationTag.jsp

falkner.ch7.qxd 8/21/03 5:40 PM Page 320

tains only the HTML markup and the iterateLinks tag. This type of design
would cleanly separate the two parts of the page and allow for the second half to
be used with any array of links. A degree of separation such as this is very helpful
and it is introduced now so that you can start thinking about it before reaching
the full discussion of design patterns in Chapter 11. The second point of interest
is the use of the PageContext getAttribute() method for accessing the appro-
priate link variable during each evaluation of the iterateLinks tag body. For
cleaner code this would best be done by either another custom tag or by setting
a JavaBean in page scope and using the standard getProperty action. In the given
example it is used for simplicity.

Body Tags
In this chapter we have so far seen two of the three types of tag handlers: simple
tags and iteration tags. The third type of tag handler is a body tag. Body tags extend
the functionality of an iteration and allow a tag handler to access and manipulate
the content contained within its body. Because of this increased functionality-
body tags require a more complex life cycle and are more processor, intensive than
simple tags and iteration tags.

The body tag life cycle extends the iteration tag life cycle by adding in one
new method: doInitBody(). The doInitBody() method is invoked after the
doStartTag() method but before the first evaluation of the tag’s body content.
Figure 7-13 illustrates the body tag life cycle.

BodyTag Interface
A body tag must implement the BodyTag interface. The BodyTag interface defines
the following methods:

• public int doInitBody(): The doInitBody() method is invoked if
the doStartTag() method returns EVAL_BODY_BUFFERD, a static
integer defined by the BodyTag interface. The doInitBody() method
exists so that a custom body tag can appropriately initialize a
BodyContent object after it has been set by the JSP container but
before evaluation of the tag’s body content.

• public void setBodyContent(): The setBodyContent() method is
used by the JSP container to set the BodyContent object of a body
tag before invoking the doInitBody() method.

The BodyTag interface also relies on the BodyContent object to
represent the body content of a custom tag. The BodyContent object

CLASSIC JSP TAG HANDLERS 321

falkner.ch7.qxd 8/21/03 5:40 PM Page 321

is a subclass of JspWriter and provides a buffer that a tag handler
can locally use to write out content. In addition to the methods
provided by JspWriter, the BodyContent object provides the fol-
lowing methods.

• void clearBody(): The clearBody() method clears the contents of
the current BodyContent object. This method is helpful should the
contents of the BodyContent need to be cleared so that new content
can be written.

• void flush(): The flush() method is not to be used. It is an
override of the JspWriter flush() method to disable the contents
of a BodyContent object from being flushed. If the content of a
BodyContent object needs to be cleared, use the clearBody()
method. To write the contents of a BodyContent object to the
current JSP output stream, use the writeOut() method and pass in
the appropriate JspWriter object.

• JspWriter getEnclosingWriter(): The getEnclosingWriter()
method returns the JspWriter object used to construct the
BodyContent tag.

• java.io.Reader getReader(): The getReader() method returns the
content of this BodyContent object as a Reader object. This method
is helpful when the contents of the BodyContent object are to be
used for another process such as a transformation.

• String getString(): The getString() method returns the content of
the BodyContent objects buffer as a String.

322 CUSTOM TAG LIBRARIES

Constructor

Service
doStartTag()

Destruction
release()

javax.servlet.jsp.tagext.BodyTag

doAfterBody()

doEndTag()

doInitBody()

Figure 7-13 Body Tag Life Cycle

falkner.ch7.qxd 8/21/03 5:40 PM Page 322

• void writeOut(java.io.Writer out): The writeOut() method writes
the contents of the BodyContent objects buffer to the given Writer
object.

Coding a Body Tag
The TagSupport object previously used when coding simple and iteration tags
does not implement the BodyTag interface. The BodyTag interface adds a
noticeable amount of overhead in comparison to a basic simple or iteration tag.
Managing a BodyContent object is something that a tag does not require unless
it wishes to access its body. For this reason the JSP API provides a separate
extension of the TagSupport object for authoring a body tag, BodyTagSupport.
The BodyTagSupport object is a subclass of TagSupport and provides all of the
methods required by the Tag, IterationTag, and BodyTag interface.

In addition to all the methods of the BodyTag interface, BodyTagSupport pro-
vides two extra methods:

• BodyContent getBodyContent(): The getBodyContent() method
returns the current BodyContent object for a body tag, extending
the BodyTag.

• JspWriter getPreviousOut(): The getPreviousOut() method
returns the JspWriter object that surrounds the current body tag.

Similar to other tags, body tags can have two types of content in their body:
static text or JSP. However, with body tags it is a slightly more important issue to
have the correct type of body content for the tag. Since a body tag has access to
its body, there is the possibility that the tag might be expecting to interpret the
content verbatim, not after the JSP container evaluates it. This is especially
important in cases where the body tag might be being used to interpret a JSP-like
code that would be munged by the JSP container.

Body tags are rarely used in practice. The functionality they provide is
helpful, but it is not functionality that tends to follow good coding practices
popular design patterns use. There are a few use cases, some of which are imple-
mented by the JSTL, where a body tag is being used to evaluate code contained
within its body. Specifically, it is not uncommon to see a set of custom tags that
can process an embedded chunk of XML or SQL. In these cases the tags exist but
are rarely used because a different design that does not rely on the tags can better
implement the same functionality.

CLASSIC JSP TAG HANDLERS 323

falkner.ch7.qxd 8/21/03 5:40 PM Page 323

Nested Body Tag Ambiguities
Body tags introduce a few ambiguities with what we understand so far about
JSP. The problem arises because of the BodyContent buffer a body tag uses to
handle content. A BodyContent object acts as the JspWriter for content in a
body tag’s content. What happens when a nested tag calls the pageContext
getOut() method? The getOut() method returns the JspWriter object stored
by the PageContext object representing the JSP. This is normally the JspWriter
object, which is associated with sending output to a buffer that eventually
flushes directly to a client. However, calling this method directly from a tag
embedded within a body tag intuitively seems to break the system. Content of a
body tag should be sent to the BodyContent of the appropriate body tag. It
should not sidestep this process and directly access the main JSP’s output
stream. An important point to understand is that nested tags in this scenario do
not break the system. When a body tag obtains a BodyContent object, it does it
by calling the pushBody() method of PageContext. This method saves the
existing JspWriter and creates a new one that is then associated with the JSP’s
PageContext object as the current output stream. The end result is that nested
tags within a body tag always receive the JspWriter associated with the parent
body tag and therefore work as expected.

Tag Scripting Variables
A custom tag has the ability to define scripting variables for use with the scripting
elements. This functionality is not commonly used because it tends to go against
commonly agreed-upon, good JSP design patterns. Custom tags are best used to
eliminate the amount of scripting elements that appear on a JSP. Using a custom
tag to create a few scripting variables only encourages more scripting elements to
be used. This is a bad practice and leads to unmaintainable code. For this reason,
in general, this entire section is not recommended for use. It is included solely for
completeness and so that you as a reader can identify code that attempts to use
the functionality.

There are two methods by which a JSP developer can declare scripting vari-
ables via a custom tag. The first solution is by means of a Tag Extra Information
(TEI) class. Originally this class was designed as the only method to declare JSP
scripting variables and validate tag attribute values at translation time. TEI
classes were superceded in JSP 1.2 by the combination of TLD elements to
declare scripting variables and TagLibraryValidator (TLV) classes. These two
methods are covered in the following sections, and TagLibraryValidator classes
are covered later in the chapter.

324 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 324

TLD-Declared Scripting Variables
Scripting variables can be declared by the TLD by using the variable child
element of the tag element. The variable element in turn has a few children ele-
ments that describe the scripting variable that is being declared. The children
elements are as follows:

• name-given: The name-given element defines the name given for
the scripting variable. The name must be unique among the names
of other scripting variables in the same scope.

• name-from-attribute: The name-from-attribute element specifies
the name of an attribute whose translation-time value will give the
name of the variable. Either the name-given or name-from-
attribute is required.

• variable-class: The variable-class element specifies the class of
the variable. The default class is java.lang.String, but any Java
class is valid.

• declare: The declare element specifies whether the variable is
declared or not. The default value is true.

• scope: The scope element defines the scope of the scripting
variable. The scope can either be AT_BEGIN, AT_END, or NESTED.
AT_BEGIN specifies the variable comes into scope at the beginning of
the custom tag. AT_END specifies the scripting variable comes into
scope and is available after the ending of the custom tag. The
NESTED_VALUE specifies the variable is only available in the body of
the custom tag.

To declare a simple scripting variable, only the name-given attribute is
required. Take, for example, the example for an iteration tag, Listing 7-34. For
simplicity this code used the PageContext getAttribute() method via a scriptlet
to access an object passed from a tag handler. The best solution would be to
abstract access to the attribute behind another custom tag, but another fairly
good solution is to have the tag handler declare a few scripting variables. This can
easily be done by adding the change to the tag’s TLD entry, as shown in Listing
7-37.

Listing 7-37 Declaring Scripting Variables for the iterateLinks Tag

<tag>

<name>iterateLinks</name>

<tag-class>com.jspbook.LinkIterationTag</tag-class>

CLASSIC JSP TAG HANDLERS 325

falkner.ch7.qxd 8/21/03 5:40 PM Page 325

326 CUSTOM TAG LIBRARIES

<body-content>JSP</body-content>

<variable>

<name-given>link</name-given>

<variable-class>String</variable-class>

</variable>

</tag>

Edit example.tld to include the preceding declaration. The newly declared
variable will then be available for a JSP using the iterateLinks tag. Listing 7-38
modifies LinkIterationTag.jsp to show how the scripting variable can be used.

Listing 7-38 LinkIterationTagVariable.jsp

<%

// An array of links

String[] links = new String[5];

links[0] = "http://www.jspbook.com";

links[1] = "http://java.sun.com";

links[2] = "http://www.jspinsider.com";

links[3] = "http://www.developmentor.com";

links[4] = "http://www.aw.com";

request.setAttribute("links", links);

%>

<%@ taglib prefix="x" uri="http://www.jspbook.com/example" %>

<html>

<head>

<title>Eliminating Redundency</title>

</head>

<body>

Some helpful JSP and Servlet links

<x:iterateLinks>

${link}

</x:iterateLinks>

</body>

</html>

Notice the only difference between the preceding code and the code for
LinkIterationTag.jsp is the preceding code can directly reference the link
variable instead of using PageContext getAttribute(). Since the TLD file
declares the link scripting variable, it is valid to use a direct reference to the link
variable, even though it was not declared previously by a scriptlet.

falkner.ch7.qxd 8/21/03 5:40 PM Page 326

TagExtraInfo Classes
TagExtraInfo classes are the original method for declaring JSP scripting variables
from a tag handler. A TEI class provides the same information as the TLD
variable element but in a slightly different method. Unlike the TLD variable
element, a TEI class declares scripting elements from inside a Java class. The TLD
is used only to reference the appropriate TEI class.

When creating a TEI class, two things are required: a javax.servlet.jsp.
TagExtraInfo subclass and a teiclass element in the TLD declaration for the tag.
The TagExtraInfo subclass is responsible for declaring any scripting variables the
tag creates, and the teiclass element provides the name of this class. The TEI
class itself is responsible for providing a getVariableInfo() method that returns
an array of javax.servlet.jsp.tagext.VariableInfo objects describing all of
the scripting variables.

VariableInfo objects are just a Java object representation of the information
needed for a scripting element: the name for the script variable, the type of the
variable, its availability scope, and whether the page needs to declare the variable.
These values correspond to the name-given or name-from-attribute, variable-
type, scope, and declare elements, respectively, of the TLD variable element.
In code, all of these values are passed via the VariableInfo object construct that
is illustrated in Listing 7-39.

Listing 7-39 TEI Class for LinkIterationTag.java

import javax.servlet.jsp.tagext.*;

public class LinkIterationTEI extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {

// create a VariableInfo

VariableInfo info =

new VariableInfo("link", "String", true,

VariableInfo.NESTED);

VariableInfo[] vi = { info };

return vi;

}

}

The preceding code is the equivalent to the previous TLD entry for the
iterateLinks tag, Listing 7-35. If you wish to try the TEI class, save the above code
as LinkIterationTEI.java in the /WEB-INF/classes/com/jspbook directory of the

CLASSIC JSP TAG HANDLERS 327

falkner.ch7.qxd 8/21/03 5:40 PM Page 327

328 CUSTOM TAG LIBRARIES

jspbook Web application. Compile LinkIteration.java and add Listing 7-40 in
example.tld.

Listing 7-40 TEI TLD Entry

<tag>

<name>iterateLinks</name>

<tag-class>com.jspbook.LinkIterationTag</tag-class>

<teiclass>com.jspbook.LinkIterationTEI</teiclass>

<body-content>JSP</body-content>

<!--

<variable>

<name-given>link</name-given>

<variable-class>String</variable-class>

</variable>

-->

</tag>

...

After adding the preceding entry in example.tld, reload the jspbook Web
Application and visit http://127.0.0.1/jspbook/LinkIterationTagVariable.
jsp. The same results are displayed as in Figure 7-12, but this time the JSP is using
the TEI class instead of the TLD entry to declare the scripting variables.

Tag Library Listeners
A custom tag library may rely on the functionality provided by a Servlet event lis-
tener, but we know from Chapter 2 that listener objects need to be registered with
web.xml. To solve this problem, JSP custom tag developers may deploy listeners
via the Tag Library Descriptor.

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?,

display-name?, small-icon?, large-icon?, description?, validator?,

listener*, tag+) >

And a listener element is as follows:

<listener>some.package.MyListener</listener>

The order in which listeners defined as tags are called is undefined; it is com-
monly the order in which the container discovers the TLD files.

falkner.ch7.qxd 8/21/03 5:40 PM Page 328

Validation
Tags may be authored and used by different people. It can be very difficult for the
tag author to tell the tag user exactly how to use the tag. For example, a tag’s
attributes may have to be a specific type or have a specific value range, a given tag
may need a certain type of parent, or tags may expect to have specific children.

While the custom action mechanism of JSP has some built-in validation, this
is limited in what it can achieve. For example, the page compiler can check that
all the “required” attributes are defined and that the user hasn’t set any attribute
the tag is not expecting. However, the compiler cannot check that the attribute
values are of the right type (perhaps the whole page is text) or that the values are
in the correct range. This can only be done by the tag author. Since the JSP 1.2
release, a tag author can specify that he or she wants to validate a page. This is
done by creating a class that implements javax.servlet.jsp.tagext.Tag
LibraryValidator and specifying this class’s availability through the TLD. This
class gives the author a great deal of flexibility during the validation process.

The TagLibraryValidator class looks like this:

java.util.Map getInitParameters()

void release()

void setInitParameters(java.util.Map map)

ValidationMessage[] validate(String prefix,

String uri,

PageData page)

To associate the validator with a tag, an entry is added to the TLD:

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?,

display-name?, small-icon?, large-icon?, description?, validator?,

listener*, tag+) >

Notice that a validator is associated with a tag library, not with individual tags
within the library. The DTD for the validator element looks like this:

<!ELEMENT validator (validator-class, init-param*, description?) >

and for the init-param like this:

<!ELEMENT init-param (param-name, param-value, description?)>

An example TLD would look something like:

<taglib>

<!-- other taglib entries -->

<validator>

<validator-class>some.package.TagValidator</validator-class>

CLASSIC JSP TAG HANDLERS 329

falkner.ch7.qxd 8/21/03 5:40 PM Page 329

<init-param>

<param-name>count</param-name>

<param-value>1</param-value>

</init-param>

<init-param>

<param-name>language</param-name>

<param-value>en</param-value>

</init-param>

</validator>

<!-- other taglib entries -->

</taglib>

The validator is executed once and only once, when the page is first compiled,
and validators have a life cycle. The first thing the page compiler does is call the
setInitParameters() method passing a java.util.Map containing the init-
params. Once initialized the page compiler calls the validate method. Like tags,
validators can be cached for re-use. If the validator is to be re-used, the page com-
piler first determines if the set of init-params are the same as the previous use; if
they are, then validate is called again. If the init-params have changed, the page
compiler calls release and then calls the setInitParameters() method, passing
the new set, and finally calls validate.

The validate method is passed the prefix the tag is using, the URI from the
taglib directive, and a PageData object. It is the PageData object that gives the
validator access to the page. The PageData object wraps an InputStream through
which the validator can read the page in XML format. This view of the page is the
JSP 1.2 XML view. The page starts with a <jsp:root...> declaration and con-
tains all the page data as XML elements.

The validate method will parse the page and check its validation criteria. If
the page is valid, the method returns null. If the validation fails, the page returns
an array of ValidationMessage objects. Each ValidationMessage object should
contain a validation message, and an id identifying the element that caused the
error. In JSP 1.2 a container when generating an XML view of a page is able to
add a jsp:id attribute to each element on the page (this is entirely optional).
This attribute extends the attribute set the element normally has and is available
to the validator class through the PageData object’s XML view. If this value is
there, the validator should use this when reporting validation errors.

Summary
Custom tags provide an incredibly flexible set of functionality to a JSP developer.
Every JSP developer should fully understand custom tags before attempting to

330 CUSTOM TAG LIBRARIES

falkner.ch7.qxd 8/21/03 5:40 PM Page 330

code a major JSP project. In this chapter we learned the basics of custom tags and
established a sound foundation for later chapters to expand upon the concepts
learned here and demonstrate custom tag use cases.

Custom tags are broken down into three main categories: simple tags, iter-
ation tags, and body tags. These categories are all enforced by the Tag, Iteration
Tag, and BodyTag interfaces, respectively. The different types of tags all extend
from the base functionality of simple tags to provide a more robust functionality.
Simple tags are nothing more than a simple mechanism to abstract Java code
from a JSP into a tag handler class. Iteration tags extend the simple tag to allow
for repetitious evaluation of the content body of a custom tag. Body tags extend
both simple and iteration tags to allow for a tag that can abstract code, evaluate
its body multiple times, and also manipulate its body.

Custom tags don’t do all the work themselves. To enhance what a tag is able
to do, the JSP specifications allow for custom tags to have attributes, scripting
variables, validators, and listeners. All of these enhancements make custom tags
a powerful tool for a JSP developer and allow for many things to be done with
custom tags.

SUMMARY 331

falkner.ch7.qxd 8/21/03 5:40 PM Page 331

falkner.ch7.qxd 8/21/03 5:40 PM Page 332

333

Chapter 8

Filters

While Servlets and JSPs are extremely powerful and useful, they are not the
best method of fulfilling every need of a Web Application developer. Often an
application requires that some code is executed whenever a request is sent to any
resource within an application, or maybe to a subset of resources. Security is a
classic example of this. If an application requires a user to log on, then typically
every resource within the application (except the logon page!) would need a
security check to run before the resource was executed. Services such as these are
often required by an application and most Web servers have a way of providing
these. For example, Tomcat has “valves” and Microsoft Internet Information
Server has IS API filters. To allow J2EE Web Application developers the ability to
offer these services in a container independent fashion, the Servlet 2.3 specifi-
cation introduced Filters.

This chapter discusses the following topics:

• Introduction to Filters and a look at Servlet Filters.

• The Filter life cycle.

• Coding a simple Filter.

• Filter configuration

• Wrappers; filtering the request and response.

• Two Filters every Web Application should have: cache and com-
pression Filters.

• Using Filters to replace JSP functionality.

This chapter is meant to be read from start to finish, and it is strongly
encouraged that you do so because it is a very important chapter. Filters greatly
complement JSP, basically replacing Servlets, and you will find lots of Filters
being used in later chapters. Especially in Chapter 15, when we create a complete
Web Application, there will be several issues resolved by simply deploying a Filter

falkner.ch8.qxd 8/21/03 6:12 PM Page 333

334 FILTERS

that was either provided in this chapter, the design pattern chapter, or the inter-
nationalization chapter (and the same issues can be solved in most any existing
Web Application by doing the same thing; Filters can be that generic). You need
to understand Servlet Filters.

Introducing Filters
Filters are components that sit between a request and the intended endpoint of
that request. The endpoint could be a static or dynamic resource such as an
HTML page, JSP, or a Servlet1. Filters are able to:

• Read the request data on the way to the endpoint.

• Wrap the request before passing it on.

• Wrap the response before passing it on.

• Manipulate the response data on the way back output.

• Return errors to the client.

• Request dispatch to another resource and ignore the original URL.

• Generate its own response before returning to the client.

This makes Filters very powerful—in fact, so powerful that developers have
to be very careful when using them. When using Filters, the developer is much
closer to the HTTP protocol than with a Servlet and must understand the pro-
tocol in much more detail. For example, when using Servlets, a developer can
pretty much ignore the HTTP content-length header, but when using Filters
and producing data, the Filter writer may have to know the size of the content
and set the value of that header.

What Is a Filter?
Physically a Filter is a component that intercepts a request sent to a resource in a
Web Application. Filters exist as part of a chain, with the last link in the chain
being the requested resource. A Filter can choose to pass the request on, in which
case the request will be forwarded to either the next Filter in the Filter chain or,
if this is the last Filter in the chain, to the requested resource. The Filter also sees
the response before it is returned to the client. Figure 8-1 illustrates the concept.

1. Filters also apply to “fictitious” resources. A request that would normally generate a 404 error can
pass through a Filter and the same Filter can optionally generate a response for it instead of dis-
playing the error.

falkner.ch8.qxd 8/21/03 6:12 PM Page 334

Figure 8-1 shows the code path when Filters are invoked. A client makes a
request to a resource, such as a Servlet, JSP, or static file, and the Web Application
is configured such that any number of Filters are invoked for the request. Each
Filter is invoked in turn, and each Filter passes on the request down the Filter
“chain” until the endpoint is executed.

Filters are helpful because they allow a Web developer to cleanly add any
number of layers of pre-processing and post-processing to a request and
response. The functionality can be mimicked using Servlets and request dis-
patching, but it is a slightly convoluted approach and requires forwarding all
requests through one or more Servlets before reaching the final endpoint. By
using Filters it is easy to seamlessly define and apply a Filter to existing Web
Application resources.

The Servlet 2.4 specification further extends the utility of Filters. It is now
possible to install Filters that get invoked on a RequestDispatcher forward or
include or that get invoked in the case of an error.

The Filter Life Cycle
The Filter life cycle is conceptually identical to the three-phase Servlet life cycle.
A Filter goes through initialization, service, and destruction. The initialization
occurs only once, when the Filter is first loaded for use by a Web Application. The
service phase of the Filter life cycle is invoked each time the Filter is applied to a

INTRODUCING FILTERS 335

Endpoint
Servlet, JSP, HTML, etc.

Filter

Filter

Filter

 Client

Container

request response

Figure 8-1 Listing Path to Servlet Through Filters

falkner.ch8.qxd 8/21/03 6:12 PM Page 335

request and response. The destruction phase is invoked after a Web Application
is completely finished using the Filter and all resources of the Filter need to be
properly terminated. Figure 8-2 illustrates the Filter life cycle.

The diagram shown in Figure 8-2 does not need much explanation.
Compared to the Servlet life cycle, Figure 2-1, it includes the exact same init()
and destroy() methods matching initialization and destruction phases, respec-
tively. The only difference requiring explanation is the new doFilter() method
that corresponds to the service phase of the life cycle. The doFilter() method is
the method invoked by a container when applying a Filter to a ServletRequest
and ServletResponse. Both the request and response are passed as parameters to
this method and that is where the Filter is customized to do its specific task.

Coding a Simple Filter
A Filter must implement the javax.servlet.Filter interface. This interface
defines the life cycle of a Filter and enforces a custom Filter that supports all the
needed methods. The Filter interface defines three methods:

• void init(FilterConfig config) throws ServletException: The
init() method is invoked when the container first loads the Filter.
This method is used to gather the initialization parameters from the
web.xml file and to execute any other initialization code placed in
the method. It is passed a reference to a FilterConfig object that is
used to access the initialization data. The method is called once and
once only.

336 FILTERS

Initialization
init()

Service
doFilter()

Destruction
destroy()

Request

Response

Filter

Figure 8-2 The Filter Life Cycle

falkner.ch8.qxd 8/21/03 6:12 PM Page 336

• void destroy(): The destroy() method is called when the Filter is
unloaded from memory. Typically this will be when the application
shuts down. The destroy() method is best used to properly close
any external resources initialized by the Filter.

• void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException: The
doFilter() method is where all the work is done by a Filter. Three
parameters are passed into the method: an instance of a
ServletRequest, ServletResponse, and FilterChain object. In the
case of an HttpServlet, the ServletRequest and ServletResponse
objects are instances of HttpServletRequest and
HttpServletResponse. A Filter needs to typecast them to access
methods available only to HttpServletRequest and
HttpServletResponse objects, respectively.

Like the Servlet service methods the doFilter() method may be
called by multiple threads simultaneously. Access to non-local vari-
ables and resources needs to be done in a thread-safe manner.

The preceding three methods should be fairly intuitive, but there are two new
objects introduced: FilterConfig and FilterChain. The FilterConfig object is
used for Filter configuration, and the FilterChain object represents the current
chain of Filters being applied to a request and response. Both of these objects are
further explained later in this section.

For all practical purposes a Filter provides the same functionality as a Servlet.
The only difference is a Filter enforces a clean separation between each resource
in the chain. This is an important concept to understand because it is why Filters
are a helpful addition to Servlets, and in some cases a superior form of a Servlet.
As an illustration of this point, take for example the Filter in Listing 8-1. It is a
Filter generating a simple response to a client—the equivalent of the HelloWorld
Servlet seen in Chapter 2.

Listing 8-1 HelloWorldFilter.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorldFilter implements Filter{

INTRODUCING FILTERS 337

falkner.ch8.qxd 8/21/03 6:12 PM Page 337

public void init(FilterConfig config)

{

}

public void doFilter(ServletRequest req,

ServletResponse res,

FilterChain filter)

throws IOException, ServletException {

HttpServletRequest request = (HttpServletRequest)req;

HttpServletResponse response = (HttpServletResponse)res;

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Hello World!</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Hello World!</h1>");

out.println("</body>");

out.println("</html>");

return;

}

public void destroy()

{

}

}

Try out the HelloWorld Filter. Save Listing 8-1 as HelloWorldFilter.java in
the /WEB-INF/classes/com/jspbook directory of the jspbook Web Application.
Compile the code, but before seeing any results the Filter needs to be deployed
with the Web Application. Deployment of a Filter is surprising similar to a
Servlet. The only difference is the name of the web.xml elements that are used.
Instead of the servlet, servlet-name, and servlet-class elements, the filter,
filter-name, and filter-class elements are used. The three new elements
provide the same respective functionality, with the only difference being a Filter
instead of a Servlet is being loaded and configured. In use it would resemble the
entry in Listing 8-2. Add the following code to web.xml in the /WEB-INF directory
of the jspbook Web Application.

338 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 338

Listing 8-2 HelloWorldFilter Entry in web.xml

<filter>

<filter-name>HelloWorldFilter</filter-name>

<filter-class>com.jspbook.HelloWorldFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>HelloWorldFilter</filter-name>

<url-pattern>/HelloWorldFilter</url-pattern>

</filter-mapping>

Make sure the preceding entry in web.xml occurs before any servlet ele-
ments but after the context-param element. Save the changes and reload the
jspbook Web Application. Visit http://127.0.0.1/jspbook/HelloWorldFilter
to see the newly added Filter in use. Figure 8-3 shows a browser rendering of the
results.

It should be clear that a Filter can do exactly what a Servlet can. A “Hello
World” example is simple and direct, but do not miss the point: Filters are
Servlets with some extra functionality. Any example from Chapter 2 could have
been implemented as a Filter. This chapter won’t dwell on the point that you can
re-create all of the examples in Chapter 2 as Filters.The focus is Filters do a better
job than Servlets.

Filter Chains
Filter chains are what make Filters helpful. Listing 8-2 illustrated how a Filter can
be used as a Servlet, but this is not what Filters were designed for. Recall the most
important method in the Filter interface is the doFilter() method, and it is
passed three parameters that are instances of a ServletRequest, Servlet

Response, and a FilterChain object. The ServletRequest and ServletResponse

INTRODUCING FILTERS 339

Figure 8-3 Browser Rendering of HelloWorldFilter

falkner.ch8.qxd 8/21/03 6:12 PM Page 339

objects were covered thoroughly in Chapter 2. They are what allows a Filter to
mimic a Servlet, but FilterChain is new. The FilterChain object represents the
possible stack of Filters being executed on a particular request and response. This
is where a Filter provides a convenient enhancement over a Servlet.

As illustrated in Figure 8-1 Filters provide a mechanism for cleanly applying
layers of functionality to a ServletRequest and ServletResponse. This is in con-
trast to the single endpoint a Servlet is designed to be. By using Filters it is easy
to divide up functionality into many logical layers and stack them as desired.
When using a Servlet this functionality must be done via some clever request dis-
patching. Figure 8-4 illustrates the concept.

Shown in Figure 8-4 is a mock example of some real-world requirements of
a Web Application. Security, efficiency, and content generation are all valid con-
ceptual requirements. In practice how these requirements are implemented
varies, but as a Web Application grows, it is difficult to easily manage these
requirements unless a clean enforcement of functional separation is used. The
separation can be done by both Servlets and Filters, but Filters provide a very
direct separation and enforcement layer.

The layered separation Filters provide is due to the FilterChain object. A
FilterChain object represents the chain of Filters a Web Application is con-
figured to use on a particular real or fictitious endpoint. A Filter is passed this
object during runtime invocation of the doFilter() method because it needs to
decide if the Filter should fully handle a request and response or if it should only
manipulate the pair and pass them on to the next Filter in the chain. In cases
where multiple Filters are applied to the same endpoint, the ordering of Filter

340 FILTERS

Figure 8-4 Filters Versus Servlets

falkner.ch8.qxd 8/21/03 6:12 PM Page 340

execution matches the ascending order of filter-mapping elements defined in
web.xml.

As shown with the HelloWorldFilter, Listing 8-1, a Filter can stop execution
of subsequent Filters in the chain by simply returning from the doFilter()
method. This causes the Web Application to return back through any Filters pre-
viously executed and to finish sending the response to a client. Should a Filter
need to continue executing further links down the chain, then the FilterChain
object’s doFilter() method needs to be invoked. The doFilter() method of the
FilterChain object corresponds to the next Filter or the possible endpoint of the
chain. By invoking the doFilter() method a Filter stops and waits for the next
resource in the chain to manipulate the request and response. Upon returning
from the FilterChain.doFilter() method, the current Filter finishes its own
execution.

The concept of a Filter chain is important. It is what distinguishes a Filter
from a Servlet. As an example let’s start with a Filter that is very commonly used:
a link tracking Filter. The Filter will do a very practical task: track the site’s traffic.
The concept of link tracking is not new; you have already seen a Servlet do the
task in Chapter 2. However, the Servlet did not track incoming links and referrals.
Filters are well suited for this task since they can seamlessly be applied to all
requests. Save Listing 8-3 as LinkTrackerFilter.java in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application.

Listing 8-3 LinkTrackerFilter.java

package com.jspbook;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LinkTrackerFilter implements Filter {

Calendar startDate = Calendar.getInstance();

static int count = 0;

public static Hashtable requests = new Hashtable();

public static Hashtable responses = new Hashtable();

public static Hashtable referers = new Hashtable();

FilterConfig fc = null;

public void doFilter(ServletRequest req, ServletResponse res,

FilterChain chain) throws IOException,

INTRODUCING FILTERS 341

falkner.ch8.qxd 8/21/03 6:12 PM Page 341

ServletException {

HttpServletRequest request = (HttpServletRequest) req;

HttpServletResponse response = (HttpServletResponse) res;

String uri = request.getRequestURI();

String path = request.getContextPath();

String turi = uri.substring(path.length(), uri.length());

if (turi.startsWith("/redirect")) {

String url = request.getParameter("url");

// error check!

if (url == null || url.equals("")) {

response.sendRedirect(path);

return;

}

Link l = new Link();

l.url = url;

l.count = 1;

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (responses.get(l.url)!=null){

l = (Link)responses.get(l.url);

l.count++;

}

else {

responses.put(l.url, l);

}

response.sendRedirect(url);

return;

}

if (uri.endsWith(".js") || uri.endsWith(".css") ||

uri.endsWith(".gif") || uri.endsWith(".png") ||

uri.endsWith(".jpg")|| uri.endsWith(".jpeg")) {

chain.doFilter(req, res);

return;

}

{

// Log request

Link l = new Link();

l.url = uri;

l.count = 1;

342 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 342

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (requests.get(l.url)!=null){

l = (Link)requests.get(l.url);

l.count++;

}

else {

requests.put(l.url, l);

}

}

// log referer

String referer = request.getHeader("referer");

if (referer != null && !referer.equals("")) {

Link l = new Link();

l.url = referer;

l.count = 1;

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (referers.get(l.url)!=null){

l = (Link)referers.get(l.url);

l.count++;

}

else {

referers.put(l.url, l);

}

}

//log the hit

count++;

chain.doFilter(req, res);

}

public void init(FilterConfig filterConfig) {

this.fc = filterConfig;

}

public void destroy() {

this.fc = null;

}

// total visitors

public int getCount() {

return count;

}

INTRODUCING FILTERS 343

falkner.ch8.qxd 8/21/03 6:12 PM Page 343

public static Link[] getRequests() {

Collection c = requests.values();

Vector v = new Vector(c);

Collections.sort(v, new LinkComparator());

return (Link[])v.toArray(new Link[0]);

}

public static Link[] getResponses() {

Collection c = responses.values();

Vector v = new Vector(c);

Collections.sort(v, new LinkComparator());

return (Link[])v.toArray(new Link[0]);

}

public static Link[] getReferers() {

Collection c = referers.values();

Vector v = new Vector(c);

Collections.sort(v, new LinkComparator());

return (Link[])v.toArray(new Link[0]);

}

public long getDays() {

Calendar now = Calendar.getInstance();

long a = startDate.getTimeInMillis();

long b = now.getTimeInMillis();

long between = b-a;

long days = (between/(1000*60*60*24));

if (days < 1)

days = 1;

return days;

}

}

The Filter works by keeping three Hashtable objects to track incoming
requests, referrals of incoming requests, and outgoing responses.

public static Hashtable requests = new Hashtable();

public static Hashtable responses = new Hashtable();

public static Hashtable referers = new Hashtable();

Each time the Filter processes a request (which should be every time a
request is made), the Hashtables are updated accordingly. If a request is sent to

344 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 344

the “/redirect” URL, it will be logged in the referral table and the response is
redirected.

if (uri.startsWith("/redirect")) {

String url = request.getParameter("url");

// error check!

if (url == null || url.equals("")) {

response.sendRedirect("/");

return;

}

Link l = new Link();

l.url = url;

l.count = 1;

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (responses.get(l.url)!=null){

l = (Link)responses.get(l.url);

l.count++;

}

else {

responses.put(l.url, l);

}

response.sendRedirect(url);

return;

}

Logging is done via encapsulating the information in a JavaBean that we will
create later. The point to see is that the LinkTracker Filter treats the “/redirect”
URL specially. If using the LinkTracker Filter with your Web Application, don’t
have another resource use the “/redirect” URL or else it will never receive a
request. All other requests are treated as requests for resources found within the
Web Application. The LinkTracker Filter logs the URL the request was trying to
reach and the referrer of the request.

{

// Log request

Link l = new Link();

l.url = uri;

l.count = 1;

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (requests.get(l.url)!=null){

l = (Link)requests.get(l.url);

l.count++;

}

INTRODUCING FILTERS 345

falkner.ch8.qxd 8/21/03 6:12 PM Page 345

else {

requests.put(l.url, l);

}

}

// log referer

String referer = request.getHeader("referer");

if (referer != null && !referer.equals("")) {

Link l = new Link();

l.url = referer;

l.count = 1;

l.lastVisited = Calendar.getInstance().getTimeInMillis();

if (referers.get(l.url)!=null){

l = (Link)referers.get(l.url);

l.count++;

}

else {

referers.put(l.url, l);

}

}

The URL is easily obtained using the HttpServletRequest object’s get
RequestURI() method.

String uri = request.getRequestURI();

Referral information is obtained by mining the HTTP referer header.

String referer = request.getHeader("referer");

if (referer != null && !referer.equals("")) {

Note that the referer header is not required to be set, so don’t rely on it con-
taining a value. The LinkTracker Filter explicitly checks to make sure the referer
header is not null or an empty string before logging referral information.

Finally, the Filter invokes the all-important doFilter() method to allow
other Filters, Servlets, and JSP to have a chance at handling the request.

chain.doFilter(req, res);

The doFilter() method is not difficult to use, but it is important to under-
stand why the LinkTracker Filter invoked it and the HelloWorld Filter did not.
The HelloWorld Filter was generating the entire response—it had no need to let
other Filters, JSP, or Servlets handle the request. In contrast, the LinkTracker
Filter is meant to be transparent to the rest of the Web Application; other Filters,
Servlets, and JSP shouldn’t be affected at all by the link tracking logic. In general,

346 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 346

all Filters that are supposed to be transparent—that is, be applied to a whole Web
Application and not “break” things, should properly invoke the doFilter()
method.

Deploy the filter to intercept all requests. Add Listing 8-4 into web.xml.

Listing 8-4 LinkTracker Filter Deployment

<filter>

<filter-name>LinkTrackerFilter</filter-name>

<filter-class>com.jspbook.LinkTrackerFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>LinkTrackerFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Before we can test out the LinkTracker Filter, a few more additions are
required. The Filter stores information via a JavaBean object. Without the
JavaBean, LinkTrackerFilter.java won’t compile. Listing 8-5 is the required
JavaBean.

Listing 8-5 Link.java

package com.jspbook;

public class Link {

protected int count;

protected String url;

protected long lastVisited;

public int getCount() {

return count;

}

public String getUrl() {

return url;

}

public long getLastVisited() {

return lastVisited;

}

}

Save the preceding code as Link.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application. There is nothing tricky about

INTRODUCING FILTERS 347

falkner.ch8.qxd 8/21/03 6:12 PM Page 347

the preceding code. The JavaBean provides a read-only method (for code outside
the com.jspbook class) to get information about tracked links.

Another requirement for the LinkTracker class is a Comparator class. The
Filter provides methods for getting a current list of either the request, referral, or
response information. Each method converts the related Hashtable into a sorted
array. For efficiency the array is sorted using Java’s implementation of merge sort
via the Collections object. In order to do the sorting, an implementation of the
Comparator interface is required. Listing 8-6 illustrates the implementation.

Listing 8-6 LinkComparator.java

package com.jspbook;

import java.util.*;

public class LinkComparator implements java.util.Comparator {

public int compare(Object o1, Object o2) {

Link l1 = (Link)o1;

Link l2 = (Link)o2;

return l2.getCount() - l1.getCount();

}

public boolean equals(Object o1, Object o2) {

Link l1 = (Link)o1;

Link l2 = (Link)o2;

if (l2.getCount() == l1.getCount()) {

return true;

}

return false;

}

}

Save the preceding code as LinkComparator.java in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application. The code provides two
methods, compare() and equals(), as mandated by the Comparator interface,
and provides a method to compare two instances of the Link object. Elaboration
on the Comparator interface can be found in the Java documentation for
java.util.Comparator.

LinkTracker.java, Link.java, and LinkComparator.java are the only
classes required for the link tracking Filter, but the Filter is pointless without
something to display its statistics. We need to build a Servlet or JSP that displays
the link information tracked by the Filter. For simplicity we will use JSP and save

348 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 348

Listing 8-7 as linktracker.jsp in the root directory of the jspbook Web
Application.

Listing 8-7 linktracker.jsp

<%@ page import="com.jspbook.*"%>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<% Link[] links = LinkTrackerFilter.getRequests();

Link[] responses = LinkTrackerFilter.getResponses();

Link[] referers = LinkTrackerFilter.getReferers();

%>

<p class="h1">Requests</p>

<c:forEach var="r" begin="0" items="${requests}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

<p class="h1">Responses</p>

<c:forEach var="r" begin="0" items="${responses}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

<p class="h1">Referers</p>

<c:forEach var="r" begin="0" items="${referers}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

The JSP uses three loops to display ordered information about requests,
responses, and referrals. Information is obtained from the getRequests(),
getResponses(), and getReferers() method, respectively, of the link tracking
Filter. The end result is a single HTML page that displays the information tracked
by the LinkTracker Filter.

Try out the link tracking Filter by compiling LinkTracker.java, Link.java,
and LinkComparator.java, reloading the Web Application, and browsing to
http://127.0.0.1/jspbook/linktracker.jsp. You will see a page displaying
the link tracking statistics. Figure 8-5 provides a browser rendering of the results.

Initially information is sparse; until you make HTTP requests for various
resources in the Web Application, there is nothing to track. Try browsing around
to various previous code examples. Upon returning to linktracker.jsp you will
see their information added. Responses are only tracked if links are specially
encoded for the link tracking Filter. Links to external resources need to be directed
to/redirected (of the jspbook Web Application) with the URL parameter set with

INTRODUCING FILTERS 349

falkner.ch8.qxd 8/21/03 6:12 PM Page 349

the outbound URL. For example, the outgoing link “http://google.com” needs to
be changed to “/redirect?url=http://google.com”. The technique is the same as the
one used by the LinkTracker Servlet coded in Listing 2-6 in Chapter 2. If needed,
review the Chapter 2 example for a full explanation and how it was used.

So what has been gained by this example? The example illustrates the
intended, popular use of Filters: as a component that adds functionality to pos-
sibly the entire Web Application but need not affect underlying resources. The
doFilter() method is responsible for this, and it is important to realize how
powerful the functionality is. Imagine other layered services such as security,
caching, or content compression, and you should easily see why Filters are a
helpful addition to the Servlet specifications.

Filter Configuration
Filters can be configured in the same method as a Servlet. The Filter web.xml
element may contain any number of init-param elements to define custom ini-
tialization parameters. Discussion of the init-param and child param-name and
param-value elements is skipped because it was already explained in Chapter 2
under Servlet configuration.

Initial parameters defined for a Filter can be accessed via the FilterConfig
object passed as a parameter to the init() method. The FilterConfig class has
a striking resemblance to the ServletConfig class used with Servlets. The fol-
lowing are the methods provided by FilterConfig:

• String getFilterName(): The getFilterName() method returns the
name of a Filter as defined in the Filter’s web.xml entry.

350 FILTERS

Figure 8-5 Browser Rendering of linktracker.jsp

falkner.ch8.qxd 8/21/03 6:12 PM Page 350

INTRODUCING FILTERS 351

• String getInitParameter(String name): The getInitParameter()
method returns the value matched to the name of a given initial
parameter name. The parameter’s name and value are defined by
the param-name and param-value elements, respectively, in the
Filter’s web.xml entry. If no name match is found, null is returned.

• Enumeration getInitParameterNames(): The getInitParameter
Names() method returns a java.util.Enumeration object including
all of the Filter’s initial parameter names. The initial parameter
names are the same as the ones defined by the param-name elements
of the Filter’s web.xml entry.

• ServletContext getServletContext(): The getServletContext()
method returns the ServletContext of the Filter’s Web Application.

Filters and Request Dispatching
By default a chain of Filters is only constructed to handle a request made by a
client. If a request is dispatched using either the forward() or include()
methods of the RequestDispatcher object, Filters are not applied. However, this
functionality can be configured via web.xml. A filter-mapping element may
include any number of request dispatcher elements to configure how the Filter
is applied to requests. The dispatcher element has four possible values: REQUEST,
INCLUDE, FORWARD, and ERROR. The different values represent if the Filter should
be applied to only client requests, only includes, only forwards, only errors, or
any combination of the four.

For example, applying Listing 8-5 to only RequestDispatcher include()

calls could be accomplished by:

<filter>

<filter-name>LinkTracker</filter-name>

<filter-class>com.jspbook.LinkTracker</filter-class>

</filter>

<filter-mapping>

<filter-name>LinkTracker</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

Note the use of the dispatcher element. If the preceding mapping is used,
the Filter is no longer applied to incoming client requests, only Request

falkner.ch8.qxd 8/21/03 6:12 PM Page 351

352 FILTERS

Dispatcherinclude() calls. If the Filter needs to be applied to two or more types
of requests, then more dispatcher elements can be used:

<filter-mapping>

<filter-name>LinkTracker</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>INCLUDE</dispatcher>

<dispatcher>REQUEST</dispatcher>

</filter-mapping>

Use of the dispatcher element is straightforward and helpful if you need to
adjust what the Filter is applied to. By default Filters are configured to be ideal for
uses such as caching and compression, where an entire page is optionally eval-
uated or not. You would not want a JSP to evaluate half a page, produce some
text, then have an include produce the second half of the page as compressed text
because of a Filter. You would want the Filter on the included page to be skipped.
By default this is exactly what would happen. However, the opposite might also
be desired. A security Filter might need to be applied to all requests, even
attempts to include content. In this case the Filter could be configured to do
exactly that. The greater point is that Filters can be used with request dispatching;
use the functionality if it is needed.

Wrappers
Another very powerful feature of Filters is the ability to optionally wrap a request
and/or a response. Wrapping is used to encapsulate a given request or response
inside another (customized) one. The benefit of wrapping comes from custom
coding a particular wrapping object to manipulate a request or response in a way
not normally done. Wrappers are an extremely important part of Filters. There
are many uses for this sort of functionality—some of which are demonstrated in
this chapter and later in the book.

A side point to note about wrappers is they are not a feature specific to
Filters. The functionality and associated classes were introduced with Filters in
the Servlet 2.3 specifications, but request and response wrapping can be done by
a normal Servlet. Commonly, this fact is ignored, but as the topic is discussed
further, keep in mind that the RequestDispatcher forward() and include()
methods can be used with wrappers to do the exact same thing.

falkner.ch8.qxd 8/21/03 6:12 PM Page 352

Request Wrapping
A request and a response are wrapped differently. A wrapper is really just an
implementation of the respective object being wrapped. A request wrapper
would be an implementation of ServletRequest. In the case of an HttpServlet
Request, the wrapper would be an implementation of HttpServletRequest. The
Servlet API provides the ServletRequestWrapper and HttpServletRequest
Wrapper classes as wrappers for subclassing. Creating a new custom wrapper can
be done by extending the appropriate class and custom coding the desired
methods.

In the case of wrapping a request there have been few good uses of the func-
tionality. Pre-processing of request information is normally done to populate
objects with information that is later displayed by a Servlet or JSP. In particular,
JavaBeans are commonly populated by Filters so the information can easily be
shown by a JSP via the getProperty standard action or the EL. In this common
use case, a request wrapper works, but it is usually easier to populate the JavaBean
using a few lines of code and setting it in request scope.

There are a few use cases where request wrapping is absolutely needed. These
cases occur whenever the functionality in either the ServletRequest or
HttpServletRequest methods needs to be changed. As an example of one of
these use cases, imagine a customization of the HttpServletRequest object to
provide audit information. Information about the invocation is recorded to a log
file each time one of the methods is invoked. Normally this type of auditing
would be difficult to accomplish as it would involve editing the source code for
the HttpServletRequest implementation, but request wrapping easily provides
the functionality. The wrapper in Listing 8-8 is a customized version of
HttpServletRequest that leaves an audit trail of method invocations.

Listing 8-8 Audit Trail Wrapper for HttpServletRequest

package com.jspbook;

import java.io.*;

import java.util.logging.*;

import javax.servlet.*;

import javax.servlet.http.*;

class AuditRequestWrapper extends HttpServletRequestWrapper {

Logger logger;

public AuditRequestWrapper(Logger logger,

HttpServletRequest request) {

super(request);

WRAPPERS 353

falkner.ch8.qxd 8/21/03 6:12 PM Page 353

this.logger = logger;

}

public String getContentType() {

String contentType = super.getContentType();

logger.fine("ContentType[" + contentType + "]");

return contentType;

}

public int getContentLength() {

int contentLength = super.getContentLength();

logger.fine("getContentLength[" + contentLength + "]");

return contentLength;

}

public long getDateHeader(String s) {

long date = super.getDateHeader(s);

logger.fine("getDateHeader[" + s + ": " + date + "]");

return date;

}

public String getHeader(String s) {

String header = super.getHeader(s);

logger.fine("getHeader[" + s + ": " + header + "]");

return header;

}

public int getIntHeader(String s) {

int header = super.getIntHeader(s);

logger.fine("getIntHeader[" + s + ": " + header + "]");

return header;

}

public String getQueryString() {

String queryString = super.getQueryString();

logger.fine("getQueryString[" + queryString + "]");

return queryString;

}

// other methods left out for clarity

}

The wrapper is very simple. As shown here it logs calls to certain methods
using the logger available to the Web Application. Notice that the wrapper has a

354 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 354

WRAPPERS 355

constructor that takes a Logger and an HttpServletRequest. This is needed by
the wrapper class the Filter uses. Listing 8-9 includes the code for the wrapper.

Listing 8-9 AuditFilter.java

package com.jspbook;

import java.io.*;

import java.util.logging.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class AuditFilter implements javax.servlet.Filter {

public void doFilter(ServletRequest req, ServletResponse res,

FilterChain chain) throws IOException, ServletException {

Logger logger = SiteLogger.getLogger();

AuditRequestWrapper wrappedRequest =

new AuditRequestWrapper(logger, (HttpServletRequest)req);

chain.doFilter(wrappedRequest, res);

}

public void init(FilterConfig filterConfig) {

// noop

}

public void destroy() {

// noop

}

}

Notice where the Filter wraps the request. Before calling the chain.do
Filter() method, the AuditFilter wraps the HttpServletRequest object with
the AuditRequestWrapper class.

...

Logger logger = SiteLogger.getLogger();

AuditRequestWrapper wrappedRequest =

new AuditRequestWrapper(logger, (HttpServletRequest)req);

chain.doFilter(wrappedRequest, res);

...

Now subsequent resources, such as JSP or Servlets that use the wrapped
request, will leave the audit trail of method invocation information.

falkner.ch8.qxd 8/21/03 6:12 PM Page 355

Test out the AuditFilter by deploying it with the jspbook Web Application.
Add the following entry to web.xml.

<filter>

<filter-name>AuditFilter</filter-name>

<filter-class>com.jspbook.AuditFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>AuditFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Save the changes to web.xml, compile AuditFilter.java, AuditRequest
Wrapper.java, and reload the jspbook Web Application for the changes to take
effect. Resources in the jspbook Web Application now leave an audit trail of the
methods they invoke on the HttpServletRequest object.

A direct test of the AuditFilter can be given with a simple JSP. Save Listing 8-
10 as TestAuditFilter.jsp in the base directory of the jspbook Web Application.

Listing 8-10 TestAuditFilter.jsp

<html>

<body>

Testing the Audit Filter.

<%

request.getContentLength();

request.getHeader("Host");

%>

</body>

</html>

Browse to http://127.0.0.1/jspbook/TestAuditFilter.jsp to test the
Filter. The output of the JSP does not change. It is a simple line of text, “Testing
the Audit Filter”. The important point to note is that the API calls the JSP is using
are leaving an audit trail2. The trail looks something similar to the following.

May 15, 2002 3:10:28 PM com.jspbook.AuditRequestWrapper

getQueryString

INFO: getQueryString[null]

356 FILTERS

2. The Audit Filter logs at the FINE level of the java.util.logging package. If the SiteLogger
Servlet is configured to ignore FINE messages, then you will not see the audit trail. Browse to
http://127.0.0.1/jspbook/SiteLoggerAdmin.jsp?level=ALL to change the
logging level appropriately.

falkner.ch8.qxd 8/21/03 6:12 PM Page 356

May 15, 2002 3:10:28 PM com.jspbook.AuditRequestWrapper

getContentLength

INFO: getContentLength[-1]

May 15, 2002 3:10:28 PM com.jspbook.AuditRequestWrapper getHeader

INFO: getHeader[Host: 127.0.0.1]

Notice the JSP calls to the getContentLength() method and the get
Header() methods are logged. However, the Filter also logs a call to the get
QueryString() method even though it is not explicitly called by the JSP. The
getQueryString() method must be called by the container. The important
thing to realize is that all calls should go through the wrapper classes, even calls
made by the container. In other words, the container should not access the
underlying request and response objects directly through internal APIs. It
should always follow the contract of accessing the objects through the request
and response interfaces.

Response Wrapping
Manipulating the response is much more difficult than wrapping the request.
The request object is substantially read only, whereas a response contains lots of
generated information including the output data. If you want to manipulate the
output data, the information needs to either first be captured or a custom writer
object needs to be used. Either of these changes usually means the HTTP
response headers need to be also customized, particularly Content-Length and
Content-Type. Wrapping a response is done in a similar fashion as wrapping a
request. The Servlet API includes the ServletResponseWrapper and HttpServlet
ResponseWrapper classes, which can easily be extended and customized.

Along with the complexity of wrapping a response comes a great deal of
functionality. Being able to capture and manipulate output content allows a filter
to have full authority over what a client sees. This functionality can be put to
many good uses, and it is well worth understanding response wrapping.

Compression Filters
Arguably one of the best uses of response wrapping is to provide dynamic com-
pression of content. The idea behind a compression Filter is sending less content
to a client means the content downloads faster. This concept is absolutely true;
whenever the same information can be sent using less space, it is desirable, espe-
cially when dealing with low-bandwidth clients.

Compression works by eliminating redundant information. Most text files
are full of redundancy, particularly in the case of markup languages such as

WRAPPERS 357

falkner.ch8.qxd 8/21/03 6:12 PM Page 357

HTML. Compressing a lengthy chunk of HTML or DHTML can result in a size
decrease by a factor of six. Compression cannot blindly be applied to all content
in a Web Application. Web browsers expect to see information in a format they
can understand. Most often a developer simply assumes that every browser can
understand HTML sent with the standard encoding. This mindset works, but
completely ignores optimizations many Web browsers implement, namely, com-
pression. You’ll recall the ShowHeaders Servlet built in Chapter 2 (Listing 2-8).
This Servlet dumps a listing of all the HTTP request headers sent by a client.
While not used in that example, we can take advantage of them now, specifically
the user-encoding header. This HTTP header provides a listing of all the
encoding formats the client’s software understands. If a client lists a compression
format here, it means the browser can understand content compressed using the
specific format.

Here is a sample listing of the user-encoding header from Chapter 2:

accept-encoding: gzip, deflate, compress;q=0.9

Notice the listing of the popular GZIP compression algorithm. This algo-
rithm is commonly implemented by current Web browsers and provides an easy
method of compressing the output of a lengthy Web page. The Java 2 Standard
Edition conveniently includes the GzipOutputStream class that is a stream imple-
mentation of the compression algorithm. By combining this class with a simple
Filter, we can dynamically compress the output of a lengthy Web page. The end
result is that a client that supports gzip compression will receive the exact same
content as other clients, but will only have to wait a fraction of the time to
download it.

A simple compression filter is quite handy to have. The following code is such
a Filter. Save Listing 8-11 as GZIPFilter.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application.

Listing 8-11 GZIPFilter.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GZIPFilter implements Filter {

public void doFilter(ServletRequest req, ServletResponse res,

FilterChain chain) throws IOException, ServletException {

358 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 358

WRAPPERS 359

if (req instanceof HttpServletRequest) {

HttpServletRequest request = (HttpServletRequest) req;

HttpServletResponse response = (HttpServletResponse) res;

String ae = request.getHeader("accept-encoding");

if (ae != null && ae.indexOf("gzip") != -1) {

System.out.println("GZIP supported, compressing.");

GZIPResponseWrapper wrappedResponse =

new GZIPResponseWrapper(response);

chain.doFilter(req, wrappedResponse);

wrappedResponse.finishResponse();

return;

}

chain.doFilter(req, res);

}

}

public void init(FilterConfig filterConfig) {

// noop

}

public void destroy() {

// noop

}

}

As mentioned earlier, response manipulating Filters are a bit more difficult to
properly code. This occurs because response manipulating Filters need to both
capture the original output and also reset HTTP response headers to match the
changes. The preceding code for the GZIP Filter illustrates this point. The GZIP
Filter by itself does little. In the main doFilter() method it checks to see if the
client supports GZIP compression.

String ae = request.getHeader("accept-encoding");

if (ae != null && ae.indexOf("gzip") != -1) {

GZIPServletResponseWrapper wrappedResponse =

new GZIPServletResponseWrapper(response);

chain.doFilter(req, wrappedResponse);

wrappedResponse.finishResponse();

return;

If so, a GZIPResponseWrapper is used. If not, the Filter does nothing. The
GZIPResponseWrapper is being used to capture the normally generated content to
pipe it through a GZIPOutputStream. The GZIPResponseWrapper class is also a
custom-made class. Here is the code for the GZIPResponseWrapper. Save Listing

falkner.ch8.qxd 8/21/03 6:12 PM Page 359

8-12 as GZIPResponseWrapper.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application.

Listing 8-12 GZIPResponseWrapper

package com.jspbook;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GZIPResponseWrapper extends HttpServletResponseWrapper

{

protected HttpServletResponse origResponse = null;

protected ServletOutputStream stream = null;

protected PrintWriter writer = null;

public GZIPResponseWrapper(HttpServletResponse response) {

super(response);

origResponse = response;

}

public ServletOutputStream createOutputStream() throws IOException

{

return (new GZIPResponseStream(origResponse));

}

public void finishResponse() {

try {

if (writer != null) {

writer.close();

} else {

if (stream != null) {

stream.close();

}

}

} catch (IOException e) {}

}

public void flushBuffer() throws IOException {

stream.flush();

}

360 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 360

public ServletOutputStream getOutputStream() throws IOException {

if (writer != null) {

throw new IllegalStateException("getWriter() has already been

called!");

}

if (stream == null)

stream = createOutputStream();

return (stream);

}

public PrintWriter getWriter() throws IOException {

if (writer != null) {

return (writer);

}

if (stream != null) {

throw new IllegalStateException("getOutputStream() has already

been called!");

}

stream = createOutputStream();

writer = new PrintWriter(new OutputStreamWriter(stream, "UTF-

8"));

return (writer);

}

public void setContentLength(int length) {}

}

The preceding code performs only one important task: use GZIPResponse
Stream instead of ServletOutputStream. The rest of the code is just filler to
ensure the wrapper class uses the GZIPResponseStream with all the HttpServlet
Response methods. The GZIPResponseStream is where all the work is done. In this
class the content that is normally sent directly to a client is instead captured in a
buffer and piped through a GZIPOutputStream. The compressed content is then
sent to a client along with corrections to the appropriate HTTP headers. As with
the GZIPResponseWrapper, the GZIPResponseStream is also a custom class needed
for this example. Here is the code for the GZIPResponseStream class. Save Listing
8-13 as GZIPResponseStream.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application.

WRAPPERS 361

falkner.ch8.qxd 8/21/03 6:12 PM Page 361

Listing 8-13 GZIPResponseStream.java

package com.jspbook;

import java.io.*;

import java.util.zip.GZIPOutputStream;

import javax.servlet.*;

import javax.servlet.http.*;

public class GZIPResponseStream extends ServletOutputStream {

protected ByteArrayOutputStream baos = null;

protected GZIPOutputStream gzipstream = null;

protected boolean closed = false;

protected HttpServletResponse response = null;

protected ServletOutputStream output = null;

public GZIPResponseStream(HttpServletResponse response) throws

IOException {

super();

closed = false;

this.response = response;

this.output = response.getOutputStream();

baos = new ByteArrayOutputStream();

gzipstream = new GZIPOutputStream(baos);

}

public void close() throws IOException {

if (closed) {

throw new IOException("This output stream has already been

closed");

}

gzipstream.finish();

byte[] bytes = baos.toByteArray();

response.addHeader("Content-Length",

Integer.toString(bytes.length));

response.addHeader("Content-Encoding", "gzip");

output.write(bytes);

output.flush();

362 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 362

output.close();

closed = true;

}

public void flush() throws IOException {

if (closed) {

throw new IOException("Cannot flush a closed output stream");

}

gzipstream.flush();

}

public void write(int b) throws IOException {

if (closed) {

throw new IOException("Cannot write to a closed output

stream");

}

gzipstream.write((byte)b);

}

public void write(byte b[]) throws IOException {

write(b, 0, b.length);

}

public void write(byte b[], int off, int len) throws IOException {

System.out.println("writing...");

if (closed) {

throw new IOException("Cannot write to a closed output

stream");

}

gzipstream.write(b, off, len);

}

public boolean closed() {

return (this.closed);

}

public void reset() {

//noop

}

}

The GZIPResponseStream has many important points to understand. The
first is what the class is doing. With more complex Filters, a Web developer can
completely override the normal functionality found with the Servlet API. In this

WRAPPERS 363

falkner.ch8.qxd 8/21/03 6:12 PM Page 363

364 FILTERS

case the ServletOutputStream object is given a major rework. Such a radical
change to one of the base classes of Servlets is possible thanks to the custom
response wrapper. The change works because the class extends ServletOutput
Stream.

...

public class GZIPResponseStream extends ServletOutputStream {

...

The response wrapper, GZIPServletResponseWrapper, then takes advantage
of Java polymorphism and uses the class as if it were a ServletOutputStream.

The next important point is what the GZIPResponseStream is doing with
information written to it by a JSP, Servlet, or static page. The information is not
sent to a client; instead, it is written to a java.util.zip.GZIPOutputStream that
is buffered locally.

...

public void write(int b) throws IOException {

...

gzipstream.write((byte)b);

}

public void write(byte b[]) throws IOException {

write(b, 0, b.length);

}

public void write(byte b[], int off, int len) throws IOException {

...

gzipstream.write(b, off, len);

}

After the entire output is buffered and compressed, the compressed content
is then sent directly to the client along with modified HTTP response headers.
The close() method of the GZIPResponseStream is responsible for this as it is
guaranteed to be called last and only once for each response.

...

public void close() throws IOException {

if (closed) {

throw new IOException("This output stream has already been

closed");

}

falkner.ch8.qxd 8/21/03 6:12 PM Page 364

WRAPPERS 365

gzipstream.finish();

//get the compressed bytes

byte[] bytes = baos.toByteArray();

response.addHeader("Content-Encoding", "gzip");

output.write(bytes);

output.flush();

output.close();

closed = true;

}

...

The end result is that should a client support GZIP compression, the
GZIPFilter automatically compresses content requested by that client. Should
compression not be supported, then the normal, uncompressed form of the
content is sent. Test out the Filter by deploying it with the jspbook Web
Application. Add Listing 8-14 into web.xml to apply the GZIPFilter to all
resources in the jspbook Web Application.

Listing 8-14 GZIPFilter web.xml Entry

<filter>

<filter-name>GZIPFilter</filter-name>

<filter-class>com.jspbook.GZIPFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>GZIPFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Save the preceding changes to web.xml, compile GZIPFilter.java, GZIP
ResponseWrapper.java, and GZIPResponseStream.java, and reload the jspbook
Web Application for the changes to take effect. The Filter can be tested by visiting
any of the existing examples made by the jspbook Web Application. Should your
browser support compression, the example’s output is compressed before being
sent. To double-check if your browser does support compression, revisit the
ShowHeaders Servlet, http://127.0.0.1/jspbook/ShowHeaders. If the accept-
encoding header includes the value gzip, then your browser does.

Unfortunately for the sake of learning, the process of compression on the
server-side and decompression on the client-side is done seamlessly to an end
user. To see the actual compression yourself, a lower view HTTP is required.
Recall in Chapter 2 with the introduction to HTTP, an example used the telnet
program to spoof an HTTP request. By doing this, the raw contents of an HTTP

falkner.ch8.qxd 8/21/03 6:12 PM Page 365

366 FILTERS

Figure 8-6 Spoofed HTTP Request to welcome.html

request and response can be seen. To see the effect of the GZIPFilter, spoof
another HTTP request for a resource in the jspbook Web Application. Take, for
example, the welcome page, http://127.0.0.1/jspbook/welcome.html. Spoof
an HTTP request by running telnet on port 80.

telnet 127.0.0.1 80

After the program loads manually, make the HTTP request.

GET /jspbook/welcome.html HTTP/1.0

The result is an HTTP response with the contents of the page. Figure 8-6
shows the entire process.

Figure 8-6 is not compressed. This is because the spoofed HTTP request did
not include an HTTP header to inform the server it accepts content encoded via
GZIP comjjpression. Redo the spoofed request, but this time add the following
line to the request.

GET /jspbook/welcome.html HTTP/1.0

accept-encoding:gzip;

falkner.ch8.qxd 8/21/03 6:12 PM Page 366

Now the response content is compressed. The request and response are
shown in Figure 8-7.

The content is gibberish, but compressed gibberish. The important point is
that the GZIP compression Filter is working. Should a client accept compressed
content, it will be sent. Manually we cannot easily decompress the content, but
should a browser be reading this response, it would have little trouble decom-
pressing and rendering the content.

Compression: What Has Been Gained?
The compression Filter is one of the more lengthy examples of this book, but it
is also one of the more helpful ones. A compression Filter is a re-usable com-
ponent that can be applied to just about every Web Application. The strong point
of this Filter is that it reduces the amount of information a client must download.
The weak point is that it adds extra post-processing to the time it takes to gen-
erate the response. In most cases the time it takes to generate a response is
dwarfed by the time it takes for a client to download the response. So usually
using a plain compression Filter such as the GZIP Filter is always a helpful
addition, but for optimum efficiency combine the compression Filter with a
cache Filter.

WRAPPERS 367

Figure 8-7 Spoofed HTTP Request with Compression to welcome.html

falkner.ch8.qxd 8/21/03 6:12 PM Page 367

It has been mentioned quite a few times that the GZIP compression algo-
rithm is good because it shrinks the size of the content being sent to a client.
Hopefully, you have accepted the usefulness of the compression algorithm, but
for clarity let’s see just how helpful the compression is. A simple Servlet can show
the point. Save Listing 8-15 as CompressionTest.java in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application.

Listing 8-15 CompressionTest.java

package com.jspbook;

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CompressionTest extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Compression Test</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>Compression Test</h1>");

out.println("<form>");

String url = request.getParameter("url");

if (url != null) {

out.print("<input size=\"50\" name=\"url\" ");

out.println("value=\""+url+"\">");

} else {

out.println("<input size=\"50\" name=\"url\">");

}

out.print("<input type=\"submit\" value=\"Check\">");

out.println("</form>");

out.println("URL: "+ url);

if (url != null) {

URL noCompress = new URL(url);

HttpURLConnection huc =

368 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 368

(HttpURLConnection)noCompress.openConnection();

huc.setRequestProperty("user-agent","Mozilla(MSIE)");

huc.connect();

ByteArrayOutputStream baos = new ByteArrayOutputStream();

InputStream is = huc.getInputStream();

while(is.read() != -1) {

baos.write((byte)is.read());

}

byte[] b1 = baos.toByteArray();

URL compress = new URL(url);

HttpURLConnection hucCompress =

(HttpURLConnection)noCompress.openConnection();

hucCompress.setRequestProperty("accept-encoding","gzip");

hucCompress.setRequestProperty("user-agent","Mozilla(MSIE)");

hucCompress.connect();

ByteArrayOutputStream baosCompress =

new ByteArrayOutputStream();

InputStream isCompress = hucCompress.getInputStream();

while(isCompress.read() != -1) {

baosCompress.write((byte)isCompress.read());

}

byte[] b2 = baosCompress.toByteArray();

out.print("<pre>");

out.println("Uncompressed: " + b1.length);

out.println("Compressed: " + b2.length);

out.print("Space saved: "+(b1.length-b2.length)+", or ");

out.println((((b1.length - b2.length)*100)/b1.length)+"%");

out.println("Downstream(2kbps)");

out.println(" No GZIP: "+(float)b1.length/2000+"seconds");

out.println(" GZIP: "+(float)b2.length/2000+"seconds");

out.println("Downstream(5kbps)");

out.println(" No GZIP: "+(float)b1.length/5000+"seconds");

out.println(" GZIP: "+(float)b2.length/5000+"seconds");

out.println("Downstream(10kbps)");

out.println(" No GZIP: "+(float)b1.length/10000+"seconds");

out.println(" GZIP: "+(float)b2.length/10000+"seconds");

out.println("</pre>");

}

out.println("</body>");

out.println("</html>");

}

}

WRAPPERS 369

falkner.ch8.qxd 8/21/03 6:12 PM Page 369

The preceding code uses a Servlet that uses an HTML page to create a form
to query for a URL. After getting a URL, the java.net.URL class is used to open
a connection up to the URL and receive the response. A second URL is opened
up to the same connection and requests a compressed version of the same infor-
mation. After getting the two, the size of the content is compared and displayed
in HTML. Figure 8-8 shows a rendering of the results when testing http://
127.0.0.1/jspbook/welcome.html.

For welcome.html the results are unimpressive. After all this work, the Filter
is only saving 16% of the time it takes to download the content. You can try any
other example in the jspbook Web Application and you’ll see similar results. The
16% hardly seems like it is worth saving. One could argue with really big down-
loads the 16% is noticeable, but that is not enough justification to Filter content
with GZIP compression. The fact is that GZIP is a good algorithm and it can
produce up to about 1:6 compression ratio, but the GZIP algorithm approaches
this ratio only with highly redundant information or with lots of information so
that more redundancy is more likely to occur. All of the examples in the jspbook
Web Application are simply too small!

370 FILTERS

Figure 8-8 CompressionTest Servlet on welcome.html

falkner.ch8.qxd 8/21/03 6:12 PM Page 370

Take into consideration a more realistic example. Consider the main page of
JSP Insider, http://www.jspinsider.com. This is a fair example of a complex
page that has plenty of styled content and some DHTML. Fortunately JSP Insider
uses the same GZIP Filter. Try running the compression test Filter on
http://www.jspinsider.com. Figure 8-9 shows the results.

The results are quite impressive! On a more realistic Web page the com-
pressed content is 79% smaller than the uncompressed. It is about 5 times faster
to download the page when using the GZIP Filter.

The lesson learned is the GZIP compression Filter is most helpful when there
is a lot of content. For small examples, usually up to 5k, there is really no good
reason to compress the content. However, in larger pages, 5k+, the benefit really
starts to show.

Cache Filters
Caching is another one of the more helpful uses of response wrapping. The idea
behind a cache Filter is to minimize the amount of time it takes to produce a
dynamic page. This functionality complements compression Filters and can

WRAPPERS 371

Figure 8-9 CompressionTest Filter on http://www.jspinsider.com

falkner.ch8.qxd 8/21/03 6:12 PM Page 371

greatly reduce the overhead involved in using dynamic resources such as JSP and
Servlets.

A cache Filter works by keeping a copy of a response in memory or on a local
disk and re-using it for future requests to the same resource. By doing this the
cache Filter can intercept an incoming request, check if the cache for it is valid,
and optionally send the cached version of the response. The time benefit comes
from using the cache instead of generating the dynamic response. In cases where
a Servlet or JSP performs some complex logic or accesses some time-consuming
resources, a caching mechanism can greatly increase performance.

The downside to caching is the removal of dynamic generation; some pages
cannot be cached. The whole point of using dynamic pages is to create a page on
the fly that cannot be done statically. A cache is simply a static version of a page’s
output. Dynamic pages and caches seem to conflict, but in practice there are
plenty of places caching is handy. Consider that not all dynamic pages change
each time a client makes a request. Plenty of dynamic pages are only dynamic
because they include resources that may possibly change, but are likely not to.
One of the most common cases is a dynamic include such as a header or footer.
Using a dynamic include is nice, but the end result of the page does not change
until one of the includes changes. All of the requests between changes receive the
same response. Caching in this case can be very effective as long as the cache is
reset occasionally or whenever the includes are changed. The same type of
caching can be applied to news pages or listings of links generated by a database.

The point is a good cache Filter is helpful to have because not all dynamic
resources need to be generated every time a client makes a request. We have yet
to see some good examples in this book to apply a cache filter to, but there will
be a few appearing in later chapters. For those examples and to give a concrete
example of caching, we are now going to build a simple cache Filter. Save Listing
8-16 as CacheFilter.java in the /WEB-INF/classes/com/jspbook directory of
the jspbook Web Application.

Listing 8-16 CacheFilter.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class CacheFilter implements Filter {

372 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 372

ServletContext sc;

FilterConfig fc;

long cacheTimeout = Long.MAX_VALUE;

public void doFilter(ServletRequest req, ServletResponse res,

FilterChain chain)

throws IOException, ServletException {

HttpServletRequest request = (HttpServletRequest) req;

HttpServletResponse response = (HttpServletResponse) res;

// check if was a resource that shouldn't be cached.

String r = sc.getRealPath("");

String path = fc.getInitParameter(request.getRequestURI());

if (path!= null && path.equals("nocache")) {

chain.doFilter(request, response);

return;

}

path = r+path;

// customize to match parameters

String id = request.getRequestURI()+request.getQueryString();

// optionally append i18n sensitivity

String localeSensitive = fc.getInitParameter("locale-

sensitive");

if (localeSensitive != null) {

StringWriter ldata = new StringWriter();

Enumeration locales = request.getLocales();

while (locales.hasMoreElements()) {

Locale locale = (Locale)locales.nextElement();

ldata.write(locale.getISO3Language());

}

id = id + ldata.toString();

}

File tempDir = (File)sc.getAttribute(

"javax.servlet.context.tempdir");

// get possible cache

String temp = tempDir.getAbsolutePath();

File file = new File(temp+id);

// get current resource

if (path == null) {

WRAPPERS 373

falkner.ch8.qxd 8/21/03 6:12 PM Page 373

path = sc.getRealPath(request.getRequestURI());

}

File current = new File(path);

try {

long now = Calendar.getInstance().getTimeInMillis();

//set timestamp check

if (!file.exists() || (file.exists() &&

current.lastModified() > file.lastModified()) ||

cacheTimeout < now - file.lastModified()) {

String name = file.getAbsolutePath();

name = name.substring(0,name.lastIndexOf("/"));

new File(name).mkdirs();

ByteArrayOutputStream baos = new ByteArrayOutputStream();

CacheResponseWrapper wrappedResponse =

new CacheResponseWrapper(response, baos);

chain.doFilter(req, wrappedResponse);

FileOutputStream fos = new FileOutputStream(file);

fos.write(baos.toByteArray());

fos.flush();

fos.close();

}

} catch (ServletException e) {

if (!file.exists()) {

throw new ServletException(e);

}

}

catch (IOException e) {

if (!file.exists()) {

throw e;

}

}

FileInputStream fis = new FileInputStream(file);

String mt = sc.getMimeType(request.getRequestURI());

response.setContentType(mt);

ServletOutputStream sos = res.getOutputStream();

for (int i = fis.read(); i!= -1; i = fis.read()) {

sos.write((byte)i);

}

}

374 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 374

public void init(FilterConfig filterConfig) {

this.fc = filterConfig;

String ct = fc.getInitParameter("cacheTimeout");

if (ct != null) {

cacheTimeout = 60*1000*Long.parseLong(ct);

}

this.sc = filterConfig.getServletContext();

}

public void destroy() {

this.sc = null;

this.fc = null;

}

}

The preceding code works by keeping a cache of all resources it is applied to,
in the Servlet-defined temporary working directory. If a cache doesn’t exist and
a response can be cached, the Filter wraps the response and invokes the
doFilter() method in order to have the container generate a response. Then
the Filter both caches the response and sends the content to a client. On subse-
quent requests for the same resource, the response is used straight from the
cache, completely skipping the doFilter() method.

Given the preceding description, the Filter’s code is easy to understand. First,
a check is made to see if a resource should be cached.

// check if was a resource that shouldn't be cached.

String path = fc.getInitParameter(request.getRequestURI());

if (path!= null && path.equals("nocache")) {

chain.doFilter(request, response);

return;

}

By default it is assumed all resources should be cached, but a URL can be
ignored by setting an initial parameter of the same name with a value of
“nocache”. For example, if /index.jsp should not be cached, the Filter would
have a initial parameter named “/index.jsp” set with the value “nocache”.

Should a response be valid for caching, the Filter checks to see if it has already
been cached.

// customize to match parameters

String id = request.getRequestURI()+request.getQueryString();

WRAPPERS 375

falkner.ch8.qxd 8/21/03 6:12 PM Page 375

376 FILTERS

3. Internationalization (i18N) is covered by a later chapter, but a good cache Filter should check
more than just the URL to determine if cached content should be used. In Chapter 15 a proper dis-
cussion will address why this is so important.

// optionally append i18n sensitivity3

...

File tempDir = (File)sc.getAttribute(

"javax.servlet.context.tempdir");

// get possible cache

String temp = tempDir.getAbsolutePath();

File file = new File(temp+id);

// get current resource

if (path == null) {

path = sc.getRealPath(request.getRequestURI());

}

File current = new File(path);

try {

long now = Calendar.getInstance().getTimeInMillis();

//set timestamp check

if (!file.exists() || (file.exists() &&

current.lastModified() > file.lastModified()) ||

cacheTimeout < now - file.lastModified()) {

Two File objects are created: one for the possible cache—that is, the saved
response in the temporary work directory—and one for the file the container
used to generate a response—that is, a JSP. If the cache doesn’t exist or the current
file has a newer time-stamp, meaning the page has been updated and the cache is
invalid, a new cache is made.

try {

long now = Calendar.getInstance().getTimeInMillis();

//set timestamp check

if (!file.exists() || (file.exists() &&

current.lastModified() > file.lastModified()) ||

cacheTimeout < now - file.lastModified()) {

String name = file.getAbsolutePath();

name = name.substring(0,name.lastIndexOf("/"));

new File(name).mkdirs();

ByteArrayOutputStream baos = new ByteArrayOutputStream();

falkner.ch8.qxd 8/21/03 6:12 PM Page 376

WRAPPERS 377

CacheResponseWrapper wrappedResponse =

new CacheResponseWrapper(response, baos);

chain.doFilter(req, wrappedResponse);

FileOutputStream fos = new FileOutputStream(file);

fos.write(baos.toByteArray());

fos.flush();

fos.close();

}

}

The new cache is made by wrapping the response with a CacheResponse
Wrapper object, which we will code shortly, that is assumed to take an output
stream and write the contents of a response to it. Ideally, the output stream is a
ByteArrayOutputStream, making it possible to buffer a complete response. A
successfully buffered response is then cached as a file in the Temporary Work
directory.

After a new cache is made or the filter decides to use an existing cache, the
cached file is read and sent as the response.

FileInputStream fis = new FileInputStream(file);

String mt = sc.getMimeType(request.getRequestURI());

response.setContentType(mt);

ServletOutputStream sos = res.getOutputStream();

for (int i = fis.read(); i!= -1; i = fis.read()) {

sos.write((byte)i);

}

Information about the responses MIME type is taken directly from web.xml.
It is assumed a mime-mapping element is set for each type of content being
cached. By default Tomcat includes all of the common mappings; however, if you
were to use a non-conventional URL ending, such as “.xhtml” for XHTML, a new
mime-mapping element is required in web.xml.

<mime-mapping>

<extension>xhtml</extension>

<mime-type>application/xhtml+xml</mime-type>

</mime-mapping>

The end result is that the Filter caches responses and uses its cache to skip the
time required to generate dynamic pages. Cached content is always properly
encoded and sent back identically, as if it was the generated response. However,
one problem still exists. What about pages that slowly change? Pages that can be

falkner.ch8.qxd 8/21/03 6:12 PM Page 377

cached but need to be updated every once in a while—for example, a news page
that is generated by querying a database? It may be fine to cache the page for per-
formance, but the cache should automatically expire every so often in order to
refresh the news, regardless if the code for the news page changes or not. The cache
Filter also provides this sort of functionality, by allowing a cache time-out value to
be specified as an initial parameter. The parameter’s name is cacheTimeout, and
the value is the number of minutes before a cache should be invalidated.

CacheFilter.java is only part of the complete cache Filter. In order to create
cached copies of a response, the response itself needs to be captured. The
CacheResponseWrapper class is used by the CacheFilter to capture and cache
responses. The code for the CacheResponseWrapper class is very similar to the
GZIPResponseWrapper and is as follows. Save Listing 8-17 as CacheResponse
Wrapper.java in the /WEB-INF/classes/com/jspbook directory of the jspbook
Web Application.

Listing 8-17 CacheResponseWrapper.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CacheResponseWrapper

extends HttpServletResponseWrapper {

protected HttpServletResponse origResponse = null;

protected ServletOutputStream stream = null;

protected PrintWriter writer = null;

protected OutputStream cache = null;

public CacheResponseWrapper(HttpServletResponse response,

OutputStream cache) {

super(response);

origResponse = response;

this.cache = cache;

}

public ServletOutputStream createOutputStream()

throws IOException {

return (new CacheResponseStream(origResponse, cache));

}

378 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 378

WRAPPERS 379

public void flushBuffer() throws IOException {

stream.flush();

}

public ServletOutputStream getOutputStream()

throws IOException {

if (writer != null) {

throw new IllegalStateException(

"getWriter() has already been called!");

}

if (stream == null)

stream = createOutputStream();

return (stream);

}

public PrintWriter getWriter() throws IOException {

if (writer != null) {

return (writer);

}

if (stream != null) {

throw new IllegalStateException(

"getOutputStream() has already been called!");

}

stream = createOutputStream();

writer = new PrintWriter(new OutputStreamWriter(stream, "UTF-

8"));

return (writer);

}

}

There is only one important point to note about CacheResponseWrapper.
java. Instead of a ServletResponseStream, the class returns a CacheResponse
Stream.

public ServletOutputStream createOutputStream()

throws IOException {

return (new CacheResponseStream(origResponse, cache));

}

A clear pattern should be appearing with output-capturing response wrappers.
The wrapper class itself usually has little to do with capturing a response. All of the

falkner.ch8.qxd 8/21/03 6:12 PM Page 379

logic involved in creating a response is encapsulated by the ServletOutputStream
class. Custom wrapper objects are commonly just a method of changing the default
ServletOutputStream returned by a ServletResponse to a custom subclass of
ServletOutputStream. In this case the custom class is CacheResponseStream. The
important caching code occurs in the CacheResponseStream class.

The CacheResponseStream class is used by the cache Filter to save a response’s
content to a given output stream. As the cache Filter uses the class, a
ByteArrayOutputStream object is used as the output stream and a response is kept
as an array of bytes. The cached bytes are then used to save the response as a file
and to send the response to the client. The code for the CacheResponseStream is
as follows. Save Listing 8-18 as CacheResponseStream.java in the /WEB-INF/
class/com/jspbook directory of the jspbook Web Application.

Listing 8-18 CacheResponseStream.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CacheResponseStream extends ServletOutputStream {

protected boolean closed = false;

protected HttpServletResponse response = null;

protected ServletOutputStream output = null;

protected OutputStream cache = null;

public CacheResponseStream(HttpServletResponse response,

OutputStream cache) throws IOException {

super();

closed = false;

this.response = response;

this.cache = cache;

}

public void close() throws IOException {

if (closed) {

throw new IOException(

"This output stream has already been closed");

}

380 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 380

cache.close();

closed = true;

}

public void flush() throws IOException {

if (closed) {

throw new IOException(

"Cannot flush a closed output stream");

}

cache.flush();

}

public void write(int b) throws IOException {

if (closed) {

throw new IOException(

"Cannot write to a closed output stream");

}

cache.write((byte)b);

}

public void write(byte b[]) throws IOException {

write(b, 0, b.length);

}

public void write(byte b[], int off, int len)

throws IOException {

if (closed) {

throw new IOException(

"Cannot write to a closed output stream");

}

cache.write(b, off, len);

}

public boolean closed() {

return (this.closed);

}

public void reset() {

//noop

}

}

There is one important point to note about CacheResponseStream. All of the
write methods are overridden to write to a custom OutputStream class, which

WRAPPERS 381

falkner.ch8.qxd 8/21/03 6:12 PM Page 381

382 FILTERS

must be passed as an argument to the class’s constructor. By doing this, the
CacheResponseStream object ensures no content is sent to a client—all content is
sent to the provided OutputStream object.

With the CacheFilter, CacheResponseWrapper, and CacheResponseStream
classes, the cache Filter is ready to be used. Deploy the Filter with the jspbook
Web Application by adding Listing 8-19 in web.xml. Make sure the second part
of this entry appears after the mapping for the GZIP Filter.

Listing 8-19 web.xml Entry for the Cache Filter

...

<filter>

<filter-name>CacheFilter</filter-name>

<filter-class>com.jspbook.CacheFilter</filter-class>

</filter>

...

<filter-mapping>

<filter-name>GZIPFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>CacheFilter</filter-name>

<url-pattern>/timemonger.jsp</url-pattern>

<init-param>

<param-name>cacheTimeout</param-name>

<param-value>1</param-value>

</init-param>

</filter-mapping>

...

Unlike the GZIP Filter, the cache Filter should not be applied to an entire
Web Application. As was previously mentioned, some pages must not be cached
because they produce a dynamic output for each client request. This is the reason
the web.xml entry in Listing 8-18 only maps the cache Filter to timemonger.jsp.
Currently, timemonger.jsp is a fictitious page, but we will soon create it as an
example to illustrate the cache Filter in use. Later, discussion will be finished
about the cache Filter, explaining how it knows to reset a cache and why it was
applied after the GZIP Filter.

The code for timemonger.jsp can be anything that consumes time. All
dynamic pages will consume time, but it is helpful to have a clear example. For
timemonger.jsp, we will create a page with a few nested loops that do nothing
but consume time as shown in Listing 8-20.

falkner.ch8.qxd 8/21/03 6:12 PM Page 382

Listing 8-20 timemonger.jsp

<html>

<head>

<title>Cache Filter Test</title>

</head>

<body>

A test of the cache Filter.

<%

// mock time-consuming code

for (int i=0;i<100000;i++) {

for (int j=0;j<1000;j++) {

//noop

}

}

%>

</body>

</html>

You can informally test the page by browsing to http://127.0.0.1/
jspbook/timemonger.jsp. The page takes a few seconds to load, but on subse-
quent requests you should notice it takes a lot less time. However, an informal test
is of little help. The point of a cache Filter is that it provides notable performance
increases. We can formally test the page using a simple JSP.

Save Listing 8-21 as TestCache.jsp in the root directory of the jspbook Web
Application.

Listing 8-21 TestCache.jsp

<%@ page import="java.util.*, java.net.*, java.io.*" %>

<%

String url = request.getParameter("url");

long[] times = new long[2];

if (url != null) {

for (int i=0;i<2;i++) {

long start = Calendar.getInstance().getTimeInMillis();

URL u = new URL(url);

HttpURLConnection huc =

(HttpURLConnection)u.openConnection();

huc.setRequestProperty("user-agent","Mozilla(MSIE)");

huc.connect();

ByteArrayOutputStream baos = new ByteArrayOutputStream();

InputStream is = huc.getInputStream();

while(is.read() != -1) {

WRAPPERS 383

falkner.ch8.qxd 8/21/03 6:12 PM Page 383

baos.write((byte)is.read());

}

long stop = Calendar.getInstance().getTimeInMillis();

times[i] = stop-start;

}

}

request.setAttribute("t1", new Long(times[0]));

request.setAttribute("t2", new Long(times[1]));

request.setAttribute("url", url);

%><html>

<head>

<title>Cache Test</title>

</head>

<body>

<h1>Cache Test Page</h1>

Enter a URL to test.

<form method="POST">

<input name="url" size="50">

<input type="submit" value="Check URL">

</form>

<p>Testing: ${url}</p>

Request 1: ${t1} milliseconds

Request 2: ${t2} milliseconds

Time saved: ${t1-t2} milliseconds

</body>

</html>

The page is a JSP that tests URLs, similar to TestCompression.jsp. A con-
nection is opened to a specific URL and the content is requested twice. It is
assumed that the server is not currently caching the response to the URL; the first
request should take the full time of generating the request. However, the second
request is assumed to hit the cache. There is little we can do to ensure that
TestCache.jsp works as expected for all URLs, but because we know how our
cache Filter works and we can control our cache, the test will work for us.

Make sure all of the cache Filter classes are compiled, the web.xml modifica-
tions are saved, and reload the jspbook Web Application to reflect the changes.
Browse to http://127.0.0.1/jspbook/TestCache.jsp to start the test. Fill in
the form with the URL to timemonger.jsp: http://127.0.0.1/jspbook/time
monger.jsp. Submit the information and a report is presented of the response
times. Figure 8-10 provides a browser rendering of the results.

384 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 384

The speed difference comes from the cache Filter doing its job. If you look in
the temporary work directory Tomcat keeps for the jspbook Web Application,
you will notice a new file has appeared, timemonger.jspnull. This file is a copy
of the HTML generated by timemonger.jsp. The cache Filter is saving time by
using this file instead of reevaluating timemonger.jsp each time a request is
made. Note, that TestCache.jsp will only work once every minute with the
current Filter configuration due to the one-minute cache time-out.

The benefit of a cache Filter should be clear; caching optimizes the amount
of time it takes to generate a static, or usually static, response. The cache Filter
introduced in this chapter is a helpful Filter to know about and use in a Web
Application. The time difference between using a cached copy of content versus
a dynamic response by a JSP or Servlet can be quite dramatic. When possible, it
is always worth caching dynamically generated responses.

Caching Servlet Responses
The cache Filter we just created caches information based on a URL and by
checking if the file that generates that URL is outdated—that is, it checks the
time-stamp of the JSP or HTML page. However, the response of a Servlet is
cached as easily as the response generated from a JSP or HTML page, but when a
Servlet is updated it is difficult to determine based on a URL what .java file cor-
responds to the Servlet. It can be done by parsing web.xml, checking the URL
mapping element, but this is a task left to you. For simplicity, CacheFilter.java

WRAPPERS 385

Figure 8-10 Browser Rendering of the Cache Test

falkner.ch8.qxd 8/21/03 6:12 PM Page 385

386 FILTERS

uses a manual check. If a URL is mapped to a Servlet, you may ensure that the
cache is updated each time the Servlet’s code is updated by setting an initial con-
figuration element.

Previously in the chapter, a point was made on how CacheFilter.java can
be made to not cache particular URLs. An initial parameter of the same name as
the URL can be set with the value “nocache”. For example, the following config-
uration would skip caching index.jsp.

<filter>

<filter-name>Cache</filter-name>

<filter-class>com.jspbook.CacheFilter</filter-class>

<init-param>

<param-name>/jspbook/index.jsp</param-name>

<param-value>nocache</param-value>

</init-param>

</filter>

Nothing was noted about what happens if the value is other than “nocache”.
Any other value is treated as if it is the location of a file in the Web Application
that should be time-checked. For example, if the URL /index.jsp is generated by
a Servlet, /WEB-INF/classes/com/jspbook/Index.java, the following mapping
would map cache invalidation to that file.

<filter>

<filter-name>Cache</filter-name>

<filter-class>com.jspbook.CacheFilter</filter-class>

<init-param>

<param-name>/index.jsp</param-name>

<param-value>/WEB-INF/classes/com/jspbook/Index.java</param-

value>

</init-param>

</filter>

Using the above mapping, if a change was made to the Index.java Servlet (or
whatever else the file may be), the cache for /index.jsp would be reset. By pro-
viding this functionality, it is possible to control caching of both implicitly
mapped resources, such as HTML or JSP files, and explicitly mapped resources,
such as Servlets and Filters.

Caching and Fault Tolerance
A superb use of caching that is worth mentioning is fault tolerance. A cached copy
of a response is good for more than simply speeding up a request. Imagine a sit-

falkner.ch8.qxd 8/21/03 6:12 PM Page 386

FILTERS THAT PROVIDE JSP-REPLACING FUNCTIONALITY 387

uation where a Web Application is working perfectly fine with a cache Filter
speeding up responses. What happens should a change occur, perhaps a JSP typo
or a database failure? Normally an exception is thrown and the user is presented
with an error page, as detailed in Chapter 4. However, assuming a cache of the
would-be generated response exists, there may be no need to show the error page.
Instead show the cache and continue to do so until the resource is fixed—that is,
the code typo is corrected or the database comes back online.

The cache Filter we just created tries to be fault tolerant. The code that
invokes the doFilter() method is surrounded by a try-catch statement.

try {

...

} catch (ServletException e) {

if (!file.exists()) {

throw new ServletException(e);

}

}

catch (IOException e) {

if (!file.exists()) {

throw e;

}

}

Should an exception be thrown, the filter optionally re-throws the exception
based on if a cache exists or not. If a cache exists, the cache is displayed. When no
cache exists, the exception is passed to the Web Application and assumed to be
handled by an error page.

The implicit fault-tolerance behavior of CacheFilter.java may or may not
be what you need, but it is helpful in almost any situation where a cache Filter is
helpful. Therefore, bundling the code with the cache Filter is a valid decision. In
any case, it is helpful to see that the fault-tolerance mechanism works. Browse to
the time-wasting page, http://127.0.0.1/jspbook/timemonger.jsp, to ensure
a version of it is in the current cache. Next, deliberately introduce an error in the
page—make a typo in the code. Browse back to the page and note that instead of
an error page, the cached content is displayed.

Filters That Provide JSP-Replacing Functionality
Throughout the book both Servlets and JSPs have been treated as comple-
mentary technologies that you should use when building Web Applications. This
is true, but in some cases it may be desirable to use another styling language
besides JSP. For instance, the standardized XML styling mechanism is the

falkner.ch8.qxd 8/21/03 6:12 PM Page 387

eXtensible Stylesheet Language Transformations (XSLTs). XSLT is popularly used
with many XML projects including Java XML projects. Should you be working
on a project with a group of XML/XSLT developers, it makes little sense to com-
pletely drop XSLT in favor of learning JSP. The better solution would be to stick
with XML/XSLT and build a Filter takes care of the transformations.

Such a Filter is not difficult to build and it could easily operate by inter-
cepting requests to all resources of a certain extension—say, *.xml. Instead of
showing resources ending in XML, the Filter could automatically apply an XSLT
stylesheet and return the transformed content. If you are familiar with XSLT, the
Filter could additionally do a check to see if the client can do transformations
(most current browsers do). If that is the case, then the Filter could simply give
the raw XML and XSLT to a client and avoid doing a server-side transformation
altogether.

A JSP Replacing Filter will not be demonstrated by this book. It goes against
the primary theme, and the topic itself deserves discussing many more unrelated
topics for completeness. The important point to take away from this section is
that Filters are part of the Servlet specification and are not tied to JSP. Should it
be desired to use a JSP replacing technology for style, Filters are an ideal choice
for the Web Application implementation.

Summary
Filters are an extremely powerful addition to the Servlet specification. They allow
the manipulation of data both before and after the resource has executed and in
a method that is cleanly implemented. With that power comes the responsibility
of knowing and understanding the HTTP protocol. Filters will be used for many
things from data manipulation, through logging and security. Use them, but use
them with care!

In this chapter, we didn’t introduce many new concepts because a Filter is
very much like a Servlet. After explaining the similarities and the few important
differences, discussion quickly changed to focus on what Filters are best used for.
Link tracking, auditing code, compression, and caching were all demonstrated.
The Filters used are all helpful ones to know about, and the code examples can
be migrated directly into your Servlet projects.

Look for further uses of Filters in the chapters to come. There are many more
great uses that work their way into the chapters that pertain to design pattern,
multi-client support, and security.

388 FILTERS

falkner.ch8.qxd 8/21/03 6:12 PM Page 388

389

Chapter 9

Managing State in a Web
Application

State is an important concept to be aware of in all types of programming. After
all, conventional programming relies on being able to accurately persist what a
program has done. Web programming is no different, and there are many
important things to be aware of when managing state in a Web Application. In
some cases you can get by perfectly fine assuming the state of a Web Application
is kept consistent enough to perform adequately. However, a good Web
Application programmer needs to understand why state management is an issue
and how to always ensure it is done properly. It is the goal of this chapter to
clearly define and illustrate how to appropriately manage state in a Web
Application.

This chapter discusses the following topics:

• Maintaining session state with HTTP, a stateless protocol.

• The javax.servlet.http.HttpSession object and a proper look at
session scope.

• Persisting session state.

• Cookies and saving bits of information in the client’s browser.

• Initializing session resources.

• State and thread safety.

• The javax.servlet.SingleThreadModel interface, which is some-
thing that should not be used.

This chapter is intended to be read straight through; however, it is a chapter
that is not critical to developing simple JSP-orientated Web Applications. You
could skim this chapter and still be able to get your job done although the issues

falkner.ch9.qxd 8/21/03 6:44 PM Page 389

390 MANAGING STATE IN A WEB APPLICATION

presented and covered by this chapter are critical to Web Applications that must
work properly. If you plan on making a career out of being a JSP or Servlet
developer, you need to read the entire chapter.

HTTP and Session State
HTTP and session state have to do with how a Web Application uses HTTP to
maintain the state of a user’s session. HTTP is a connected protocol; it goes over
TCP1 and not UDP2. When a browser sends a request to a server, the browser
establishes a connection, sends an HTTP request, and consumes an HTTP
response. If the response is an HTML page, then the client will typically parse the
page looking for other tags that require data to be downloaded (such as IMG or
applet tags). If there are such tags on the page, then the browser will re-use the
same connection to download that data. However, as soon as the page “trans-
action” is complete, the browser will close the connection. This has a major
impact on the way Web Applications work. Most applications maintain data on
behalf of a user and need to track users. The data may be a shopping cart or
simply user preferences, but as each user request is sent over a different con-
nection, there is no way to link subsequent requests and keep the state.

You may think it would be possible to identify users by their IP address. IP
addresses are unique on the network, so why can those not be used? There are
many reasons for not using IP addresses. For example, the computer used to
author this chapter has an IP address of 192.168.0.2, this is a “non-routable” IP3

address. Such an address is used only to identify computers on a local network.
The computer is connected through a router. That router has a real routable IP
address provided by the ISP it is using. The router uses Network Address
Translation (NAT) to the IP address and the connection to the Internet. When
the computer browses to a server, the server sees the IP address of the router, not
of the PC. Many, many users are connected through routers or proxies of some
description. Their IP address never makes it out onto the Internet; instead the IP
address of the proxy is sent, so a server trying to use an IP address to uniquely
identify a client would end up identifying some group of clients behind a proxy!

1. Transmission Control Protocol (TCP) is a “connection-orientated” protocol because the service it
provides guarantees information gets to its destination.
2. User Datagram Protocol (UDP) is a “connection-less” protocol because it does not ensure infor-
mation gets to its destination.
3. The Internet Protocol (IP) distinctly segregates addresses into different categories for use. Non-
routable addresses fall into various ranges; one of the ranges starts with 192.168, which is only
valid on internal networks.

falkner.ch9.qxd 8/21/03 6:44 PM Page 390

The concept that is important to understand can clearly be illustrated by the
JSP in Listing 9-1.

Listing 9-1 ShowIPAddress.jsp

<html>

<head>

<title>ShowIPAddress.jsp</title>

</head>

<body>

Remote Address : <%= request.getRemoteAddr()%>

</body>

</html>

Save the preceding code as ShowIPAddress.jsp in the base directory of the
jspbook Web Application. Try out the code to find your IP; browse to http://
127.0.0.1/jspbook/ShowIPAddress.jsp. The IP address of your local computer
is shown. Figure 9-1 shows a browser rendering of the Servlet’s output4.

Now to illustrate the point. Browse the online example of this Servlet
running at the book support site, http://www.jspbook.com/examples/ShowIP
Address.jsp. There is a good chance that the returned page will display an IP
address that is not yours. For example, on the computer used to author this
chapter, the example shows an IP address of 194.117.xxx.xxx, which is a cache
server running somewhere inside of an ISP. The point is that a server cannot
track users by using their IP address. Something else is needed, and that some-
thing has to be provided at either the application or application protocol (HTTP)
layer of the stack5.

Using an ID to Identify Clients
Given the preceding, you should be curious as to how a server identifies a client.
Essentially, the client and server code need to exchange some identifier that
uniquely identifies this client to this server. Note that this identifier does not
uniquely identify this client on the Internet; it is a value that only means some-
thing to the server that creates it. This identifier can be exchanged either with or
without the client’s cooperation.

HTTP AND SESSION STATE 391

4. If you are using local loopback, 127.0.0.1, this will show up as your IP address when running the
example locally. You can check the IP address of your machine (if it has one) using command
prompt utilities such as ifconfig, on Linux, or ipconfig, on Windows.
5. The commonly referenced ISO 7-layer model of the Internet.

falkner.ch9.qxd 8/21/03 6:44 PM Page 391

There are typically three ways that this ID will be exchanged: as an HTTP
header (cookies), as extra data attached to a URL (URL rewriting), or by having
each page contain a form and then send the ID as part of the form data (hidden
fields). The first two of these mechanisms are supported as part of the Servlet
specification, but the third is not. The third option is an application-level way of
managing state and will not be discussed further here. Depending on the type of
application you are building, there might be an inherent ID mechanism, and not
all Web Applications are designed to produce HTML.

javax.servlet.http.HttpSession
The Servlet specification defines a class, HttpSession, and several APIs that allow
an application to manage client state, also called session state or conversational
state. A Servlet or JSP can create a new HttpSession or get the existing one by
invoking the getSession() method. If an instance of HttpSession is created by an
application, it will be associated with an ID and will hold the client’s data. The
generated ID will be sent back to the client either as a Cookie or by using URL
re-writing (more on this later).

Information about a client’s current session can be obtained at any time. The
JSP in Listing 9-2 exposes a client’s session for debugging purposes.

Listing 9-2 ShowSession.jsp

<html>

<head>

<title>ShowSession.jsp</title>

</head>

<body>

Session ID : <%= session.getId() %>

isNew: <%= session.isNew() %>

392 MANAGING STATE IN A WEB APPLICATION

Figure 9-1 Browser Rendering of ShowIPAddress.jsp

falkner.ch9.qxd 8/21/03 6:44 PM Page 392

</body>

</html>

There is one important thing in the preceding code that needs to be
explained. There is no call to HttpServletRequest getSession(). This is because
all JSPs automatically do this in order to establish the implicit session object. If
the preceding was authored as a Servlet, the getSession() call would have to be
explicitly coded. This is both a good and bad thing. It is good because the
implicit session object can be helpful; however, it is bad because if you do not
want to have the overhead of sessions, then you need to explicitly declare so in
the JSP page directive. In the case of Servlets, sessions are not created until you
first call the HttpServletRequest getSession() method.

Save the preceding code as ShowSession.jsp in the base directory of the
jspbook Web Application. Browse to http://127.0.0.1/jspbook/ShowSession.
jsp. Your unique session ID will be shown. It should resemble Figure 9-2.

The session ID is displayed after “Session ID”. Each client a Web Application
is keeping track of has one of these unique identification numbers associated
with it. The boolean value isNew describes if the session was just created, true, or
if this is a subsequent request of an existing session.

Session Scope
The HttpSession object is a data container. The data stored in the container are
private to a given client and will persist until the server destroys the client’s
session. HttpSession has four methods that allow objects to be used with session
scope.

• Object getAttribute(java.lang.String name): The getAttribute()
method returns an object bound to the session with the given

HTTP AND SESSION STATE 393

Figure 9-2 Browser Rendering of ShowSession.jsp

falkner.ch9.qxd 8/21/03 6:44 PM Page 393

name. Usually the object is an instance of a subclass and must be
typecast appropriately before use.

• Enumeration getAttributeNames(): The getAttributeNames()
method returns a java.util.Enumeration object with all of the
names of objects bound to the session. In combination with the
getAttribute() method, this method is helpful in determining
what objects are currently bound in session scope.

• Object removeAttribute(java.lang.String name): The
removeAttribute() method removes an object with the given name
from session scope and returns it, or null is returned if no object is
bound with that name.

• void setAttribute(String name, Object attribute): The
setAttribute() method is used to bind an object to the session
with the given name. Any object previously bound with the same
name is removed.

These methods are used by an application to store data on behalf of a client.
The data stored in session scope are held as name/value pairs. The names are
strings, and the values are Java objects.

Session scope is helpful for scoping any object that must be accessed during
subsequent requests. For example, if an application manages a shopping cart, the
information about the shopping cart needs to somehow be persisted during mul-
tiple requests from the client.

The code to persist an object in session scope resembles the following; this
would be the code for a fictitious shopping cart object, ShoppingCart:

ShoppingCart shoppingCart = new ShoppingCart();

HttpSession session = request.getSession();

session.setAttribute("cart", shoppingCart);

Subsequent calls to the same Servlet or completely different Servlets can then
manipulate the same shopping cart via its session binding.

HttpSession session = request.getSession();

ShoppingCart shoppingCart =

(ShoppingCart)session.getAttribute("cart");

From the preceding example it should be clear how to use the HttpSession
object and why you might want to use it. However, it has been previously mentioned
that HTTP is a stateless protocol and that IP cannot be used to accurately track
session ID. You should be curious as to how a Web Application successfully keeps

394 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 394

HTTP AND SESSION STATE 395

6. See http://ciac.llnl.gov/ciac/bulletins/i-034.shtml

track of users. How does the unique ID go back and forth between the sever and
client? The mechanism used is one of two things: either Cookies or URL rewriting.

Cookies
Cookies were originally developed by Netscape Communications to solve the
problem of keeping session context using HTTP. Cookies consist of a server
sending some information, a “cookie”, for a client to store locally, and on future
requests to that server, the client sends back the cookie information via HTTP
headers. Assuming the client’s software supports cookies, the whole process
requires no user interactions and is an ideal tool for keeping session context.

Cookies are currently standardized by the Internet Engineering Task Force
(IETF), http://www.ietf.org/rfc/rfc2109.txt, but this does not mean that
cookies have absolute support on all Web-savvy software. Due to the nature of
cookies they can be used to snoop, to a limited extent6, on a client’s browsing
habits. For the most part cookie abuse is not a problem, but because of the issue,
most browsers allow cookies to be disabled.

Cookies are name/value pairs that in HTTP are exchanged via two headers:
Set-Cookie and Cookie. Set-Cookie goes from the server to the client, and
Cookie from client to server. The Set-Cookie header is sent once, when the
session is first established. Cookies have a time-out, and a client keeps a copy of
the cookie’s value until that time-out expires.

The headers can be seen by spoofing an HTTP request using the same
method that was shown in Chapter 2. For example, a spoofed request to Tomcat
results in the following content. The Set-Cookie header is easily spotted:

HTTP/1.1 200 OK

Date: Thu, 30 May 2002 16:48:08 GMT

Transfer-Encoding: chunked

Server: Apache Tomcat/5.0 (HTTP/1.1 Connector)

Set-Cookie:

JSESSIONID=50BAB1DB58D45F833D78D9EC1C5A10C5;Path=/jspbook

...

Subsequent requests for content are then responsible for passing the given
cookie information back to the server:

GET /jspbook/servlet/com.jspbook.SessionState HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

falkner.ch9.qxd 8/21/03 6:44 PM Page 395

396 MANAGING STATE IN A WEB APPLICATION

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, */*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET

CLR 1.0.3705)

Host: localhost:8080 Connection: Keep-Alive

Cookie: JSESSIONID=50BAB1DB58D45F833D78D9EC1C5A10C5

Cookies are not designed to only provide session ID; they can be used to
share any little “cookie” of information. The Servlet specification defines a cookie
that Web Applications should use to convey session ID: JSESSIONID. The value of
the cookie follows after the equal sign, =, and is a long hexadecimal string—that
is, the session ID. JSESSIONID is a reserved name and you should ensure Servlet
and JSP code do not improperly manipulate it.

Besides the simple name/value of a cookie there are extra methods of sending
meta-information using the cookie’s value. However, understanding the exact
method is not important because the Servlet API abstracts away the technical
details of a cookie with the javax.servlet.http.Cookie class. Using the Cookie
class, you can manipulate all aspects of a cookie using familiar Java methods.

The Cookie object has the following methods:

• getComment(): The getComment() method returns the comment
describing the purpose of this cookie, or null if the cookie has no
comment.

• getDomain(): The getDomain() method returns a String object
representing the domain name set for this cookie. The domain
name defines what hosts the cookie is sent to by the client.

• getMaxAge(): The getMaxAge() method returns an int value repre-
senting the maximum age of the cookie, specified in seconds. A
value of –1 indicates the cookie will persist until browser shutdown.

• getName(): The getName() method returns a String object repre-
senting the name of the cookie.

• getPath(): The getPath() method returns a String object repre-
senting the path on the server to which the browser returns this
cookie. A path is similar to a Servlet mapping and can narrow a
cookie’s use to certain URL patterns for a particular domain name.

• getSecure(): The getSecure() method returns a boolean value that
is true if the browser is sending cookies only over a secure protocol,
or false if the browser can send cookies using any protocol. HTTP is

falkner.ch9.qxd 8/21/03 6:44 PM Page 396

an insecure protocol. Secure protocols such as SSL and TLS are dis-
cussed in Chapter 10.

• getValue(): The getValue() method returns a String object repre-
senting the value of the cookie.

• getVersion(): The getVersion() method returns an int repre-
senting the version of the protocol this cookie complies with.

• setComment(java.lang.String purpose): The setComment()
method is used to specify a comment that describes a cookie’s
purpose.

• setDomain(java.lang.String pattern): The setDomain() method
specifies the domain within which this cookie should be presented.

• setMaxAge(int expiry): The setMaxAge() method sets the
maximum age of the cookie in seconds.

• setPath(java.lang.String uri): The setPath() method specifies a
path for the cookie to which the client should return the cookie for
a particular domain.

• setSecure(boolean flag): Indicates to the browser whether the
cookie should only be sent using a secure protocol, such as HTTPS
or SSL.

• setValue(java.lang.String newValue): The setValue() method
assigns a new value to a cookie after the cookie is created. The
default value of a cookie is specified when calling the constructor.

• setVersion(int v): The setVersion() method sets the version of the
cookie protocol this cookie complies with.

Cookies sent from a client’s request can be retrieved using the getCookies()
method of the corresponding HttpServletRequest instance. Newly created
Cookie objects can be sent with a response by calling the addCookie() method of
the corresponding HttpServletResponse instance. A new instance of a Cookie
object can be created by calling the Cookie constructor and providing a cookie
name and value as parameters. The only thing you need to worry about is
invoking the getter and setter methods of the Cookie instance, depending on
what you are doing with the cookie.

It is helpful to be familiar with manipulating cookies because they are a pow-
erful tool and something that is used should you like it or not. Being able to read
cookies is helpful if you are trying to debug a session or if you are persisting
information on the client-side via cookies. Accessing cookies from a request is
simple and demonstrated by the JSP in Listing 9-3.

HTTP AND SESSION STATE 397

falkner.ch9.qxd 8/21/03 6:44 PM Page 397

Listing 9-3 ShowCookies.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<html>

<head>

<title>Cookies Sent By Your Client</title>

</head>

<body>

<h1>Cookies sent by your client</h1>

<c:forEach var="c" begin="0" items="${cookie}">

Name: ${c.value.name}

Value: ${c.value.value}

</c:forEach>

</body>

</html>

The JSP uses the JSTL and JSP EL to loop through all of the cookies and
display information about each one. Save ShowCookies.jsp in the base directory
of the jspbook Web Application. Browse to http://127.0.0.1/jspbook/Show
Cookies.jsp at anytime to see what cookies your browser is currently keeping
track of. Figure 9-3 shows what the output looks like when rendered by a Web
browser.

Figure 9-3 provides a nice insight to what cookies are being used by a Web
Application; however, this is not the only use of reading cookie values. The infor-
mation contained in a cookie can be used for anything.

Depending on the specific browser, the number of cookies a client will keep
track of varies, but usually 20 cookies are allowed from a particular domain. Uses
of cookies vary depending upon the specific implementation, but it is easy to
show how to create, modify, and destroy cookies with another simple Servlet. To
extend ShowCookies.jsp, Listing 9-4 is a Servlet that allows cookies to be arbi-
trarily added, removed, or edited.

Listing 9-4 EditCookies.java

package com.jspbook;

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class EditCookies extends HttpServlet {

398 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 398

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Cookie[] cookies = request.getCookies();

// Get parameters to add/edit a cookie.

String cookieName = request.getParameter("name");

String cookieValue = request.getParameter("value");

if (cookieName != null && !cookieName.equals("")

&& cookieValue != null && !cookieValue.equals("")) {

Cookie cookie = new Cookie(cookieName, cookieValue);

response.addCookie(cookie);

response.sendRedirect("/jspbook/EditCookies");

}

// Delete a cookie if requested.

String cookieToDelete =

request.getParameter("deleteCookie");

if (cookieToDelete != null && !cookieToDelete.equals("")) {

for (int i=0;i<cookies.length;i++) {

Cookie cookie = cookies[i];

if(cookie.getName().equals(cookieToDelete)) {

cookie.setMaxAge(0);

response.addCookie(cookie);

HTTP AND SESSION STATE 399

Figure 9-3 Browser Rendering of ShowCookies.jsp

falkner.ch9.qxd 8/21/03 6:44 PM Page 399

response.sendRedirect("/jspbook/EditCookies");

}

}

}

out.println("<html>");

out.println("<head>");

out.println("<title>Cookies sent by your client</title>");

out.println("</head>");

out.println("<body>");

out.println("<p>The following cookies were sent:</p>");

if (cookies == null) {

out.println("No cookies were sent!
");

}

else {

// List the current cookies.

for (int i=0; i<cookies.length ;i++) {

Cookie cookie = cookies[i];

out.println("<h3>Cookie #" +i + "</h3>");

out.println("<form method=\"post\">");

out.print("Name: <input name=\"name\" value=\"");

out.println(cookie.getName()+"\">
");

out.print("Value: <input name=\"value\"");

out.println(" value=\""+cookie.getValue()+"\">
");

out.print("<input type=\"submit\"");

out.println(" value=\"Update Cookie\">

");

out.println("</form>");

}

}

// A form for creating a new cookie.

out.println("<h3>Create a New Cookie</h3>
");

out.println("<form method=\"post\">");

out.println("Name: <input name=\"name\">
");

out.println("Value: <input name=\"value\">
");

out.print("<input type=\"submit\"");

out.println(" value=\"Add Cookie\">
");

out.println("</form>");

// A form to delete cookies.

if (cookies!=null) {

out.println("<h3>Delete a Cookie</h3>");

out.println("<form method=\"post\">");

out.println("<select name=\"deleteCookie\">");

for (int i=0; i<cookies.length ;i++) {

400 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 400

Cookie cookie = cookies[i];

out.print("<option value=\""+cookie.getName()+"\">");

out.println(cookie.getName()+"</option>
");

}

out.println("</select>");

out.print("<input type=\"submit\"");

out.println("value=\"Delete Cookie\">
");

out.println("</form>");

}

out.println("</body>");

out.println("</html>");

}

// Forward all POST requests to the doGet() method.

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

doGet(request, response);

}

}

The Servlet provides a Java version of the code used in ShowCookies.jsp—
that is, using the HttpServletRequest getCookies() method and manipulating
Cookie objects. Additionally, the Servlet makes the cookies available via HTML
forms for easy manipulation, including creation and deletion. Deleted cookies
are not deleted on the server-side; rather the Servlet sets a cookie’s life span to be
zero seconds and requests the client to reload the page. To try the Servlet, save the
code as EditCookies.java in the /WEB-INF/classes/com/jspbook directory of
the jspbook Web Application. Compile and deploy the Servlet to the /Edit
Cookies path of the Web Application. After reloaded in the Web Application,
browse to http://127.0.0.1/jspbook/EditCookies to use the Servlet. Figure 9-
4 shows what the Servlet’s output looks like when rendered by a Web browser.

Being able to edit cookies is an important skill to have, but do not forget the
original point. Cookies are the primary method of sharing a unique session ID
with a client. The adjective “primary” is used because most of the time cookies do
a great job of seamlessly maintaining session state; however, cookies do not work
all the time. A client can disable support for cookies. Should a Web Application
rely on always keeping session state, this is a problem. The solution is to use an
old URL manipulation trick, URL rewriting.

HTTP AND SESSION STATE 401

falkner.ch9.qxd 8/21/03 6:44 PM Page 401

Tracking Users via Cookies
A very popular use of cookies is to track how often a user visits your Web site.
Most people dislike the notion of a Web site being able to collect this information;
however, the vast majority of people are simply unaware it can be done. Because
of the default support most browsers provided for cookies, this technique is a
good one to know about. The trick to tracking when a user last visited your Web
site is to stash a piece of information on their computer with a time-stamp. Each
time the user makes a visit, the time-stamp can be checked for, and if it exists, you
know exactly when that specific computer last visited your Web site.

The code used to accomplish this is quite simple. Listing 9-5 is an example of
a JSP that tracks user visits by using cookies.

Listing 9-5 CookieTracker.jsp

<%

Cookie[] cookies = request.getCookies();

String timestamp = new java.util.Date().toString();

Cookie ts = new Cookie("timestamp",timestamp);

response.addCookie(ts);

Cookie lastvisit = null;

402 MANAGING STATE IN A WEB APPLICATION

Figure 9-4 Browser Rendering of EditCookies Servlet

falkner.ch9.qxd 8/21/03 6:44 PM Page 402

for (int i=0;i<cookies.length;i++) {

Cookie temp = cookies[i];

if (temp.getName().equals("timestamp")) {

lastvisit = temp;

break;

}

}

if (lastvisit == null) {

lastvisit = ts;

}

request.setAttribute("lastvisit", lastvisit);

%>

<html>

<head>

<title>Cookie Visitor Tracker</title>

</head>

<body>

You last visited this website: ${lastvisit.value}

</body>

</html>

Save the preceding code as CookieTracker.jsp in the base directory of the
jspbook Web Application. Browse to http://127.0.0.1/jspbook/Cookie
Tracker.jsp to test out the code. The first time you browse to the page-no time-
stamp cookie will exist so the last-visit time will be the current time. Wait a few
minutes or longer and browse to the page a second time. It will tell you when you
last visited! Figure 9-5 shows a browser rendering of the results.

This code will work on any client that supports cookies, which is most every
Web browser. While the value of the cookie was read and shown back to the user
by CookieTracker.jsp, it may not be a good idea to do this to real users. If the
information is being kept only for server-side statistics, keep it there. Do not try
to amaze users by showing them that you know this information. The feature’s
“coolness” factor is easily dwarfed by its questionable ethics. Although if you do
intend to implement this type of functionality, an easy method of doing so is via
a Filter set to intercept all requests to the Web Application.

URL Rewriting
When cookies fail, a container needs to find another method for keeping track of
sessions. Most often this is accomplished by using a trick that does not involve
anything beyond the basic HTTP protocol. Since a Web Application usually

HTTP AND SESSION STATE 403

falkner.ch9.qxd 8/21/03 6:44 PM Page 403

needs to understand HTTP before making a request, this approach is often ade-
quate for providing universal session tracking.

As the name implies, URL rewriting provides an effective way to track ses-
sions with HTTP by rewriting a URL to make a new one. The goal of URL
rewriting is to make the original URL contain both itself and a session identifi-
cation. There is no particular method in which URL rewriting is best done as
long as a server is able to correctly parse out information from a rewritten URL.
Valid methods include anything from adding parameters to making completely
new URLs. A quick example easily shows what a rewritten URL might look like.
Assume you were visiting http://www.jspbook.com and the server had assigned
you a session identifier of 12345. Some rewritten URLs might resemble the fol-
lowing:

• http://www.jspbook.com?session=12345

• http://www.jspbook.com/session=12345

• http://www.jspbook.com;12345

The downside to URL rewriting is that it involves rewriting every single URL
each time a page is generated. If the server sends a link that neglects to include
session information, the system breaks when a user follows it because the session
ID is lost. While a good implementation would not let this happen, it still means
every page has to be dynamically created for different clients. This is very prob-
lematic for sites that rely on static pages and caches for good performance. There
is no great method of sidestepping this restriction. Unless there is good reason to
rewrite URLs, do not bother. Use cookies. Cookies work well and are supported
on the vast majority of clients.

As with cookies, the Servlet API makes URL rewriting easy. The HttpServlet
Response object provides the following methods for rewriting a URL.

404 MANAGING STATE IN A WEB APPLICATION

Figure 9-5 Browser Rendering of CookieTracker.jsp

falkner.ch9.qxd 8/21/03 6:44 PM Page 404

HTTP AND SESSION STATE 405

• encodeURL(java.lang.String url): The encodeURL() method takes
as a parameter a URL to encode and returns a String representing
the encoded URL. Should no encoding be required, the URL is
returned as given.

• encodeRedirectURL(java.lang.String url): The
encodeRedirectURL() method works in the same fashion but
encodes the URL for redirection via the HTTP 302 response code.

Using the Servlet API to encode URLs is straightforward. The JSP in Listing
9-6 illustrates using the encodeURL() method to encode a session ID with a given
URL.

Listing 9-6 EncodeURL.jsp

<html>

<head>

<title>Examples of URL encoding</title>

</head>

<body>

A local URL: index.jsp

<%= response.encodeURL("index.jsp") %>

<%= response.encodeRedirectURL("index.jsp") %>

A remote URL: http://www.jspbook.com

<%= response.encodeURL("http://www.jspbook.com") %>

<%= response.encodeRedirectURL("http://www.jspbook.com") %>

</body>

</html>

Save this code as EncodeURL.jsp in the base directory of the jspbook Web
Application. Disable cookie support on your Web browser and browse to
http://127.0.0.1/jspbook/EncodeURL.jsp. Look at the source code sent back
by Tomcat:

<html>

<head>

<title>Examples of URL encoding</title>

</head>

<body>

A local URL: index.jsp

index.jsp;jsessionid=90E613EC5444E9A3441EA8F4725135E1

index.jsp;jsessionid=90E613EC5444E9A3441EA8F4725135E1

falkner.ch9.qxd 8/21/03 6:44 PM Page 405

A remote URL: http://www.jspbook.com

http://www.jspbook.com

http://www.jspbook.com

</body>

</html>

Note that there are two URLs, with one URL being encoded and the other
not. The encoding is done by the HttpServletResponse encodeURL() method
and used to tack on the session ID to a URL. Should the link be clicked on, the
server will automatically parse out the ID and use it as needed.

The example just shown directly puts the encodeURL() method call in a JSP.
Adding java code to a JSP is generally regarded as a bad idea (see the design
chapter for more details). The best way to encode URLs on a page is to use tag
libraries. If you recall, the JSTL includes the url action for doing exactly this.
Additionally, custom tag libraries make an ideal mechanism for abstracting all re-
writing logic, which means it can be simple to arbitrarily manipulate the logic
being used to rewrite URLs. The multi-client support chapter (Chapter 13) dis-
cusses this concept further and provides an example.

Initializing Session Resources
Commonly it is helpful to initialize resources once when a session is created so
that the resources can be used throughout the session. An excellent example is
initializing a database connection, or any remote connection, and using it
throughout the entire life span of a session. This is favorable to creating, using,
and destroying a remote connection per each request because it takes a notable
amount of time to set up remote connections.

There are two methods of initializing session resources. The first method is
the more inelegant and relies on checking if the HttpSession object is new, by
invoking the isNew() method, each time the session is accessed.

HttpSession session = null;

session = request.getSession(true);

if(session.isNew())

{

//initialize session resources...

}

This method works because it is an explicit call to the isNew() method, but
it is inelegant because it requires a conditional check. The second, more elegant
method is to use the javax.servlet.http.HttpSessionListener interface. The

406 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 406

HttpSessionListener interface defines two methods that notify a resource if a
session is created or destroyed:

• void sessionCreated(HttpSessionEvent se): The sessionCreated()
method is invoked when an HttpSession is created.

• void sessionDestroyed(HttpSessionEvent se): The
sessionDestroyed() method is invoked whenever an HttpSession
is about to be destroyed by the server7.

Any object that needs to know if a session has been created or destroyed can
implement the HttpSessionListener interface and be notified accordingly. The
HttpSessionEvent object only has one method, getSession(), which returns the
HttpSession object that was created or that will be destroyed.

The only tricky part to using the HttpSessionListener interface is regis-
tering objects that implement it with a Web Application. The interface itself is a
commonly used event notification design pattern, well known with other Java
API. However, the pattern relies on knowing which objects are registered to
receive events. In a Web Application this is done by explicitly declaring session
listening objects in web.xml. The listener element is used to define listener
classes, via child listener-class elements, as shown in Listing 9-7.

Listing 9-7 Use of web.xml Listener Element

<listener>

<listener-class>com.jspbook.foo.FooListener</listener-class>

</listener>

The deployment is straightforward; each listener class is registered by
declaring it using the listener-class element. The listener class would be a sin-
gleton—for instance, a factory object responsible for managing connections—
and it would be responsible for managing resources based on the creation and
destruction of HttpSession objects.

Persisting and Loading Sessions
It can occur that a session needs to be serialized. If a Web Application is dis-
tributed on multiple servers, it is likely that each server will not keep a copy of
every session being used by the entire Web Application. Instead, sessions will be
used when needed and shared with other servers by being serialized and sent

HTTP AND SESSION STATE 407

7. Note that in the Servlet 2.3 specification this method was defined as being called after the session
was destroyed.

falkner.ch9.qxd 8/21/03 6:44 PM Page 407

across a network connection. Another case where sessions will be serialized is
when an application needs to persist them while the container is being restarted
or the Web Application is reloaded. Whatever the case is, a session can be seri-
alized and reloaded by a Web Application. Should information be in session
scope, it needs to be ensured that the information can properly handle being seri-
alized and being reloaded. The HttpSessionActivationListener interface is
used for this purpose.

The HttpSessionActivationListener interface defines two methods:

• void sessionDidActivate(HttpSessionEvent): The
sessionDidActivate() method is invoked immediately after a
session is activated or a serialized version of the session was loaded.

• void sessionWillPassivate(HttpSessionEvent): The sessionWill
Passivate() method is invoked just before a session is about to be
passivated, or serialized. Any object that cannot handle being passi-
vated should be handled appropriately.

Using these two methods, an object can listen for when a session is about to
be serialized and act appropriately. For instance, any external resource, such as a
URL connection or database connection, will not be serialization-friendly.
Instead of attempting to serialize the connection itself, the information needed
for the connection should be serialized and the object removed from session
scope and closed before the session is passivated. When the session is activated,
the serialized information can then be used to re-create the connection.

All containers must support the java.io.Serialization interface for objects
in session scope. Any object in session scope that implements this interface will be
serialized appropriately using the writeObject() and readObject() methods.
Additionally, container vendors may choose to provide special support for serial-
izing other types of objects; however, caution should be taken on relying on this
type of functionality because it will limit the Web Application’s portability
between different containers.

In single-server environments—that is, most every small to medium-sized
Web Application—it is usually safe to assume information stored in session scope
will not be serialized. The majority of the time, if not all of the time, in these
environments, the objects’ references are kept in memory by one JVM until the
session expires, or is terminated. However, the Servlet specification puts in fair
warning that containers in a single-server environment may opt to use multiple
JVMs and the HttpSessionActivationListener should always be used on
objects that are stored in a session, and that themselves reference objects that do

408 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 408

not implement the serialization interface. Additionally, static variables should
not be relied on for keeping application state8: instead, a database should be used.
Use the HttpSessionActivationListener interface liberally if you have the time.

Knowing If an Object Is Bound to Session
The Servlet specification provides the HttpSessionBindingListener interface.
This interface provides two methods that allow a listener object to know when an
object is bound or removed from session:

• valueBound(HttpSessionBindingEvent event): The valueBound()
method notifies the object that it is being bound to a session and
identifies the session.

• valueUnbound(HttpSessionBindingEvent event): The
valueUnbound() method notifies the object that it is being unbound
from a session and identifies the session.

A listener object registered with this interface is notified when an object is
either bound or unbound to session scope. The listener is helpful when used to
manage resources needed to complement objects in session scope. For example,
user information is usually persisted in a database. When a user object is loaded
into session scope, it may be necessary to populate it with the correct infor-
mation; likewise, when the object is unloaded, it may be necessary to update the
database with the newest information. The HttpSessionBindingListener
interface can be used to create a listener class that loads and persists user infor-
mation in a database accordingly. The relevant code would be the following:

public class UserListener implements HttpSessionBindingListener{

public void valueBound(HttpSessionBindingEvent e){

// check for right object type

if (e.getValue() instanceof foo.User) {

foo.User user = (foo.User)e.getValue();

// load user information from database

}

}

public void valueUnbound(HttpSessionBindingEvent e){

// check for right object type

HTTP AND SESSION STATE 409

8. In this book static variables have been used to maintain state—for example, with the page visit-
counting JSP. This practice is improper use of keeping application state, but Tomcat 5 does run in
only one JVM on a single-server environment.

falkner.ch9.qxd 8/21/03 6:44 PM Page 409

if (e.getValue() instanceof foo.User) {

foo.User user = (foo.User)e.getValue();

// serialize user information into database

}

}

// any other methods

...

The methods on this object are called when the object is added to or removed
from a session.

Session Time-outs
All HttpSession objects have a finite life. A session either time-outs when it has
been inactive for a certain period of time, or a session can also be invalidated by
the application. An application can be told to invalidate a session at any time by
invoking the HttpSession invalidate() method. If a session is not explicitly
invalidated, it will automatically be invalidated after a given period of time. The
period of time a session can be idle before it is timed-out can be set via the
session-config element and child element session-timeout of web.xml.

<session-config>

<session-timeout>15</session-timeout>

</session-config>

By default all sessions time-out after 15 minutes. If an integer value is spec-
ified in the body of the session-timeout element, it will be treated as the
number of minutes a Web Application should save session information about a
client. A negative number or 0 value number means indefinitely.

In addition to being able to directly invoke the invalidate() method of the
HttpSession object, there are other methods that can be used to both mine
information and manipulate the time-out period of a session:

• getCreationTime(): The getCreationTime() method returns a long
string representing the number of milliseconds since the epoch,
midnight January 1, 1970, GMT.

• getLastAccessedTime(): The getLastAccessedTime() method
returns the last time the client sent a request associated with this
session, as the number of milliseconds since the epoch, midnight
January 1, 1970, GMT, and marked by the time the container
received the request.

410 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 410

• invalidate(): The invalidate() method invalidates a session and
removes any objects bound to it.

• isNew(): The isNew() method returns a boolean value representing
if the session was newly created and the client does not yet know
about it.

• setMaxInactiveInterval(int time): The setMaxInactiveInterval()
method can be used to set the amount of time, in seconds, between
subsequent requests.

Persistent State
So far this chapter has only discussed the concrete use of sessions and the session
API. There is another aspect of session management that has to be discussed: how
to manage state in a multi-server(or multi-JVM) environment. Sessions hold user
state, and the model that has been discussed up until now is one where the user
state is held in memory on a Web server. This leads to a problem when more than
one server is being used to handle requests. Either the system will have to ensure
that all requests from the same user always go to the same request-processing server
or that all of the servers in the system will need to share session information.

The first solution, sending all requests from the same user to the same server,
may not be desirable for two main reasons: load balancing and session backup.
Load balancing is the act where a set of servers handle one large task that an indi-
vidual server would be unable to cope with by itself—for example, too many
HTTP requests to a Web Application. Ideally, load balancing for a Web
Application can be done on a per-request basis, each time a request is made to
the application; the server that is least burdened handles the request. Figure 9-6
illustrates the concept.

However, keeping session information on one server and forcing all requests
to that server ruins this practice. Instead of per-request load balancing, the
servers would have to do per-session load balancing. The solution can work, but
is usually not favored because it loses the performance benefits of a per-request
system. The second problem is, What happens when a server crashes? If state
information is only saved in memory on one server and that server crashes, the
information is lost. Clearly an unacceptable situation to be in.

The second solution, sharing state information, is the preferred approach.
Sharing state information is making session information available to all servers
that may need it. Usually, this is accomplished by either one of two ways: session
smearing or using a dedicated session database. Session smearing is the act of
“smearing” a session’s state across multiple servers. A dedicated session database

PERSISTENT STATE 411

falkner.ch9.qxd 8/21/03 6:44 PM Page 411

is just that—a dedicated server that keeps track of sessions and shares the infor-
mation as needed with other servers. Both session smearing and using a session
database are discussed further in the following sections.

Session Smearing
Session smearing is generally a vendor-specific solution. Most containers, espe-
cially full J2EE servers, provide some method of seamlessly clustering together
many computers to run one Web Application. The Servlet specification defines
the distributable web.xml element for when this is the case. When the distrib-
utable element is used in web.xml, it means the Web Application may be dis-
tributed across many different servers. It also means that both the session and
application scopes become much more difficult to manage. In particular
HttpSession objects have the possibility of being serialized and shuffled between
different servers depending on which server is processing a request related to that
session.

The Servlet specification solves this problem by defining a few event listeners
and one requirement: objects in session scope must implement the java.io.
Serializable interface (or must be understood by the container to be serial-
izable; see later). Containers that support multi-server environments must
support at a minimum the methods of the Serializable interface and be able to
invoke writeObject() and readObject() appropriately to persist and load
session information. As a developer this gives you the control of overriding these
methods and being able to customize what happens as objects are moved
between different servers and JVM.

Using the Serializable interface does work and generally that is all you
need to do in order to successfully have session-scoped objects smear around a

412 MANAGING STATE IN A WEB APPLICATION

Load BalancerRequests

Web Server

Web Server

Web Server

Response

Response

Response

Figure 9-6 Per-Request Load Balancing Using a Server Farm

falkner.ch9.qxd 8/21/03 6:44 PM Page 412

multi-server environment. However, the Serializable interface does have a few
drawbacks including the performance limitations of Java’s default object serial-
ization and that serialization works poorly for shuffling around live connections,
such as an open URL. The Servlet specification addresses this issue by allowing
vendors to optionally implement any other session-persisting functionality they
wish. This is both good and bad. Vendor-specific features usually work well but
tie a developer to only being able to use that vendor’s products. You should avoid
vendor-specific container features for Web Application state management if you
do not want to be tied to a specific vendor.

Sharing State Information via a Database
Sharing state information via a database is just that: using a centralized server to
manage important Web Application state information. The state-sharing server
is then the only part of the Web Application that needs fail-safe support. Most
databases provide this anyhow, and other servers can rely on the state-sharing
server for any information they need. Figure 9-7 provides an illustration of the
concept.

A state-sharing database is an appealing solution because it allows a Web
Application’s developers to have full support over state-persistent functionality.
Any code created is not tied to a specific vendor and can be optimized completely
for a specific use case. Building a state-sharing database involves more work than
using a vendor-made solution, but it is by no means a daunting task. The Servlet
API provides a few listener classes that work well as a solution: ServletRequest
Listener and HttpSessionListener.

Both of these classes were previously covered by both this chapter and
Chapter 2 with the basics of the Servlet API. The listeners are useful with a state-

PERSISTENT STATE 413

Load BalancerRequests

Web Server

Web Server

Response

Response

Session
DB

Figure 9-7 Sharing State Using a Dedicated State-Sharing Database

falkner.ch9.qxd 8/21/03 6:44 PM Page 413

sharing database because they can load and save information based on the cre-
ation and destruction events of the listeners. For per-request–style load balancing
the ServletRequestListener interface is ideal. When a request is created, the
interface can access the state-sharing database and populate any needed infor-
mation. When a request is destroyed, the listener can save any changes to the
state-sharing database. For per-session load balancing the HttpSessionListener
interface is ideal. The loading and saving of state information would be the same
as with the ServletRequestListener object but done on a per-session basis.

An example of creating and using a state-sharing database will not be pro-
vided for two reasons. The first reason is that the functionality is not commonly
needed on the average Servlet and JSP-based project. The concepts should be
clear and it will be left to you to implement such a system if you need it. Second,
is that the functionality can easily slow down a multi-server application and
defeat the point of implementing the system in the first place. A central database
is almost always the worst-performing piece of software in an application, and as
such it is often the most heavily optimized. It is hard to begin building a good
state-sharing database without understanding the concepts of Chapter 14, and
even then it is difficult to build an optimized one without knowing the specific
database being used and the state information that needs to be shared.

State and Thread Safety
Web servers are designed to handle many concurrent users and many concurrent
requests from those users. Typically, to handle requests Web servers create many
threads, with each thread handling a request. Remember that a given named
Servlet is a singleton—that is, there is only one instance of a given named Servlet
in memory. This means that when a Web server receives multiple requests for a
Servlet, all those requests are dispatched to that Servlet on multiple concurrent
threads, which means that Servlets must be written to be thread-safe. This section
examines thread safety in Servlets and how to achieve it. There is no getting away
from this: Servlets and JSP must be written in a thread-safe manner.

Table 9-1 shows the various “scopes” of data that an application in a Web
server will use. Some data are “naturally” thread-safe and no special steps need to
be taken to protect access to that data. Some data, however, may be accessed by
multiple threads at the same time, and care must be taken when using that data.

In many cases it is obvious what does and does not need protecting. Local
variables are thread-safe: a thread has only one stack and local variables live on
that stack; only one thread can be touching those variables at any given time.
Method parameters are generally safe for the same reason; in particular,

414 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 414

HttpServletRequest and HttpServletResponse are guaranteed to be thread-
safe. A Web server will either create a new request and response object for each
new request, or the server will pool request and response objects. In either case
each call is guaranteed to get its own request and response object.

Other objects are also obviously not thread-safe; static data, instance data,
session-scoped9 data, and application-scoped data fall into this category. These
objects are worth further discussion because poorly done code that deals with
these objects can result in unexpected Web Application behavior. The following
sections further explain the relevant issues and how to ensure thread safety.

STATE AND THREAD SAFETY 415

Table 9-1 Scopes of Data in a Web Application

Scope Naturally Thread-Safe? Example

Statics No class foo{

private static double d;

Instance data No class foo{

private double d;

Method parameters Yes void

doGet(HttpServletRequest

req, HttpServletResponse

resp)

Local variable Yes void

doGet(HttpServletRequest

req, HttpServletResponse

resp)

{

double a;

Session state No HttpSession sess

(HttpSession) = req.getSession();

Application state No ServletContext ctx =

(ServletContext) getServletContext();

9. It may not be obvious that session state can be accessed from multiple threads concurrently. Surely
one client means one session means one thread. However, a given client can send multiple concurrent
requests to a server. Each request will have its own thread and each thread can touch the session.
How does the client do this? An application may have multiple frames; a client may send a request,
cancel the request and the client; and resend the request; a client may have multiple open windows,
etc., etc.

falkner.ch9.qxd 8/21/03 6:44 PM Page 415

Synchronizing
Protecting state in Java is easy in theory but more difficult in practice. Java has
built-in support for synchronization with the synchronized keyword. This can be
used to synchronize entire methods or as a form of “critical section”, which protects
access to blocks of code. The Java 2 specification defines the official thread syn-
chronization statement and safety mechanisms in section 17, “Threads and Locks”.
If you are unfamiliar with threads, do take the time to read this section. The Java
specifications are available free online at http://java.sun.com.

Synchronization is something that should be used minimally in an appli-
cation. When synchronizing, you are essentially taking a “lock” on a block of
code, and locks cause contention. Many threads could be trying to take that lock
at the same time. Contention of any sort will harm scalability; contention of
threads is no different. Because of this there is one golden rule to remember: Only
synchronize what you have to! For example, typically, read access to data often
happens far more frequently than write access. It is therefore possible to allow
many readers to access data concurrently and so reduce contention. However,
only one writer should ever be allowed to access an item of data. Java does not
provide native read/write synchronization, but these are not difficult to develop
yourself (there are many excellent resources). It may well be worth investing time
in defining read locks and write locks to limit the amount of contention you
have. Whatever approach an application takes, it is always important to keep lock
times at a minimum.

Protecting Servlet State
New Servlet developers often get into trouble with thread safety because they fail
to realize that a Servlet container is multi-threaded. One instance of a Servlet will
be shared with many concurrent client requests. By default this is exactly what is
done, and it makes a simple Servlet a highly scalable piece of code. An easy way
to think of this concept is by saying a container only loads one instance of a
Servlet into memory, but it calls the service methods each time a client sends a
request, regardless if the previous request is finished yet.

As this applies to your code, any variable declared inside a service method10,
such as doGet(), will be unique to a specific request. However, any variable
defined outside a service method is shared by all requests. This includes all
requests by all clients, not just all requests from the same client. For this reason it

416 MANAGING STATE IN A WEB APPLICATION

10. The same issue is present in a JSP. Remember, declaration elements declare code outside of the
JSP service method.

falkner.ch9.qxd 8/21/03 6:44 PM Page 416

STATE AND THREAD SAFETY 417

is bad practice to declare variables outside the service methods unless there is
good reason to do so. This is usually intuitive, but understand that thread safety
is part of the reason why. For clarity let’s look at a Servlet that is not thread-safe
and point out exactly why. For example, look at Listing 9-8, which is the code
for the NotThreadSafe Servlet. The goal of this Servlet is to read a few request
parameters and display them to a user; however, this would not always happen
correctly because the Servlet suffers from poor thread safety.

Listing 9-8 NotThreadSafe.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class NotThreadSafe extends HttpServlet {

String value1;

String value2;

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>NotThreadSafe!</title>");

out.println("</head>");

out.println("<body>");

out.println("The values are:
");

value1 = request.getParameter("value1");

value2 = request.getParameter("value2");

out.println("Value 1: "+value1+"
");

out.println("Value 2: "+value2+"
");

out.println("Are they the same as submitted?");

out.println("</body>");

out.println("</html>");

}

}

falkner.ch9.qxd 8/21/03 6:44 PM Page 417

418 MANAGING STATE IN A WEB APPLICATION

The problem lies in declaring the variables as instance variables rather than
local to the doGet() method. What the Servlet is actually doing is showing
whatever set of request parameters was last saved in the variables, not necessarily
the given client’s set of parameters. Yes, it is likely a given client will set the vari-
ables and then immediately execute the code that displays the values, but this is
not guaranteed. A second request might have changed these values before they
are displayed by the NotThreadSafe Servlet. To avoid the problem, the variables
would better be declared inside the doGet() method. The ThreadSafe Servlet in
Listing 9-9 shows how to fix the code to ensure the correct set of parameter
values is always shown.

Listing 9-9 ThreadSafe.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ThreadSafe extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>ThreadSafe</title>");

out.println("</head>");

out.println("<body>");

out.println("The values are:
");

String value1 = request.getParameter("value1");

String value2 = request.getParameter("value2");

out.println("Value 1: "+value1+"
");

out.println("Value 2: "+value2+"
");

out.println("They are the same as submitted?");

out.println("</body>");

out.println("</html>");

}

}

falkner.ch9.qxd 8/21/03 6:44 PM Page 418

STATE AND THREAD SAFETY 419

From the simple example above do not think that thread safety equals
declaring all variables inside a service method. This is certainly not the case, and
there are many good reasons for declaring a variable common to many threads.
Examples include anything placed in the session or application scopes as well as
some Servlet-specific variables, such as the Hashtable used in the LinkTracker
Servlet (Listing 2-6 in Chapter 2). Understand that more common than not a
variable should be placed inside the appropriate service method. While some-
times inefficient, it usually ensures code is thread-safe.

When a variable needs to be shared by multiple requests, there are methods
of ensuring proper synchronization. The easiest method is to simply declare the
entire service method as synchronized. Applying the synchronized keyword to
an entire service method effectively restricts a single Servlet to processing clients’
requests one at a time. An example of the NotThreadSafe Servlet synchronized in
this style is shown in Listing 9-10.

Listing 9-10 SynchronizedNotThreadSafe.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SynchronizedNotThreadSafe extends HttpServlet {

String value1;

String value2;

public synchronized void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>NotThreadSafe!</title>");

out.println("</head>");

out.println("<body>");

out.println("The values are:
");

value1 = request.getParameter("value1");

value2 = request.getParameter("value2");

falkner.ch9.qxd 8/21/03 6:44 PM Page 419

out.println("Value 1: "+value1+"
");

out.println("Value 2: "+value2+"
");

out.println("Are they the same as submitted?");

out.println("</body>");

out.println("</html>");

}

}

While proper synchronization is assured, in practice the preceding Servlet
would have incredibly poor performance. Do not do this! A better approach to
take would be using the synchronized statement only around the block of code
that needs synchronizing. This approach is the preferred method of providing
synchronization for objects in the scope of many threads. You should refer to the
source code for the LinkTracker Servlet (Listing 2-6) for a good example of using
the synchronized statement in this manner.

javax.servlet.SingleThreadModel
The Servlet API contains an interface called javax.servlet.SingleThread
Model. This is a signature interface (i.e., it has no methods to implement), which,
when implemented by a Servlet, marks that Servlet as single-threaded. What does
this mean? Typically, a Web server will create a single instance of a Servlet to
handle all requests made to that Servlet (remember that it is possible to have
multiple instances of the same Servlet, based on the servlet-name element in the
deployment descriptor), which is one of the reasons why Servlets have to be
thread-safe. However, when a Servlet implements javax.servlet.SingleThread
Model, the container must only allow a single thread to call this Servlet instance
at any one time. On the surface this seems like a great idea. No more worries
about multi-threaded access, as the Servlet is single-threaded. Unfortunately, this
is not true.

The SingleThreadModel interface introduces issues without solving any-
thing. If you use SingleThreadModel you immediately cause scalability problems
in your applications. You only allow a single thread through that Servlet at any
one time, and the Servlet becomes a bottleneck. Containers are free to create
many instances of a SingleThreadModel Servlet to ease this problem, but some
do not. A bigger issue, though, is that a Servlet that implements SingleThread
Model still has to care about threads. If a SingleThreadModel-implementing
Servlet uses either the ServletContext or an HttpSession, then access to these
objects must still be done in a thread-safe way. The SingleThreadModel interface
only guarantees this instance of the Servlet is single-threaded. It does not stop all
the threads in the server, so other Servlets or other instances of the same Servlet

420 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 420

could (and will) access ServletContext and HttpSession. Do not use the
javax.servlet.SingleThreadModel interface. It comes with a high price for no
benefit, and because of the drawbacks, the interface has been deprecated in the
Servlet 2.4 specification.

Protecting Session and Application State
Both the HttpSession object and the ServletContext object are shared
resources. The ServletContext object can be accessed by many Servlets or JSP at
the same time. The HttpSession object can be accessed at the same time by two
different requests from a client. In uses of both objects proper synchronization
should be used.

The simplest solution to providing accurate session and application in state
is to always wrap access to the associated object in a synchronized block. Listing
9-11 demonstrates wrapping a session access using a synchronization block.

Listing 9-11 Synchronizing Session Access

User user = new User();

HttpSession session = request.getSession(true);

synchronized(session) {

session.setAttribute("user", user);

// other session access code

}

Note that the synchronized block is synchronized using the session object
itself. This ensures that all access of the session object is done in a synchronous
manner. Similarly, code that is used to manipulate the ServletContext object
should include a similar synchronization block as illustrated in Listing 9-12.

Listing 9-12 Protecting Access to the ServletContext

ServletContext ctx = getServletContext();

synchronized(ctx)

{

User user = (User) ctx.getAttribute("user");

// other 'application' access code

}

The point to take away from this example is that all access to the
ServletContext and HttpSession objects should be wrapped in an appropriate
synchronized block. While a simple practice, it is important to ensure proper
state is maintained.

STATE AND THREAD SAFETY 421

falkner.ch9.qxd 8/21/03 6:44 PM Page 421

Summary
This chapter introduced some very important and commonly overlooked
problems of Servlets and JSP. All Web Applications are expected to maintain
state. Where and how that state is maintained is important to understand as a
Web developer. Perhaps the most important state-management topic brought up
in this chapter was that of the HttpSession object. By default HTTP is stateless.
Solving this problem are HTTP cookies, but cookies do not always work. For
absolute session maintenance, URL rewriting should be used.

State maintenance can be tough, especially in the case of a multi-server envi-
ronment. In multi-server environments a Web Application is not run on one
server by one JVM. Instead, many servers are used to manage running the Web
Application in order to handle large volumes of incoming requests. In cases in
which a Web Application is marked distributable via web.xml, sessions are freely
shuffled around a Web Application. Care should be taken to ensure resources in
session scope are properly serialized and shared.

The final part of this chapter dealt with the all-important topic of synchro-
nization. Servlets and JSPs are Java code and can have many threads accessing
them concurrently. To ensure proper state is maintained, standard Java thread-
safety techniques should be employed: Servlets should avoid static and instance
variables and JSP should additionally avoid declarations. In all cases where either
application or session scope is being accessed, it is important to wrap the relevant
code in a synchronized block.

422 MANAGING STATE IN A WEB APPLICATION

falkner.ch9.qxd 8/21/03 6:44 PM Page 422

423

Chapter 10

Security

One of the features of Java is how easily code can be downloaded and com-
posed into a running application. However, such code has the potential to
execute critical operations that manipulate sensitive system data, so it is imper-
ative to distinguish code that can be trusted from code that cannot. To this end,
the Java security model is based on the origin of the running code. Sensitive oper-
ations are allowed or disallowed based on where the classes in the current call
stack were loaded from and/or who signed them.

In a distributed system, code representing business operations is hosted on
one or more servers. A client request acts as a trigger to execute server code that
has the potential to perform critical operations that manipulate sensitive system
data. It is important to distinguish requests that can be trusted from those that
cannot. The server must enforce security based on who is attempting to run the
code, and that means being able to verify the identity of the caller.

Ensuring security gets more complicated when client and server commu-
nicate over a public network where servers may be more easily spoofed. The
client may also want some guarantee that the server is genuine before accepting
or providing certain information. There are questions to be answered. How can
the system tell which clients can be trusted? How is it possible to specify which
clients can access which functionality? How can the clients tell which servers can
be trusted? How can malicious persons be stopped from accessing the system or
tampering with requests and responses? How can sensitive data be hidden from
prying eyes? All of these are questions of security and are answered in this
chapter.

This chapter discusses the following topics:

• What security is.

• Declarative security: securing resources via web.xml.

• Programmatic security.

falkner.ch10.qxd 8/29/03 1:01 PM Page 423

424 SECURITY

• Encrypting communication: protecting information that is sent
between the client and server.

• How secure is secure: a slight tangent on how secure Web
Application security really is.

The contents of this chapter are intended to be read straight through. The
topic of Web Application security is of great importance. Without it how can you
prevent a user from accessing restricted parts of a site? More importantly, think
about Web Applications being used for e-commerce; if you are running a
business with an online presence, it is imperative to have security in order to
protect personal information about clients (e.g., credit card numbers).

What Do We Mean by Security?
There are several terms we have to introduce when talking about security. The
first term is security principal or principal for short. A principal is one of the
parties involved in a communication. It could be a human user or a machine or
maybe a piece of software. In the security literature, principals are often given
names. Alice and Bob are the two principals trying to communicate; Eve is an
eavesdropper listening in on the communication; and Mallory is a malicious
attacker trying to change the data being communicated or in someway disrupt
the communication. This naming convention will be used by this chapter, and
there are many principals that we will introduce.

Security in distributed systems is based on the principals being able to trust
each other. Before they can trust each other, principals have to know who they are
communicating with—that is, Alice has to be able to know it is Bob on the other
end of the communication and vice versa. To do this Alice has to be able to prove
that she is talking to Bob. This process is called Authentication. In a client/server
scenario the server usually wants to authenticate the client. However, there are
times when the client wants to authenticate the server—for example, if the client
is sending the server credit card details, the client must be able to trust the server.
Also, there are occasions where mutual authentication is needed. To authenticate
a principal, the principal has to provide a set of credentials. The credentials could
be a user name/password pair, a fingerprint, a retinal scan, a certificate, or any-
thing that can uniquely identify the principal. These credentials are then typically
passed to a trusted authority (called Trent in security literature) to be checked.
Trent could be a database holding the credentials, or it could be a Kerberos server,
or some other third party such as a certifying authority—for example, Thwate or
Verisign.

falkner.ch10.qxd 8/29/03 1:01 PM Page 424

Once a principal has been authenticated, the next problem that arises is this:
Are they allowed to perform whatever action they have requested? Alice may have
proved that she is talking to Bob, but is Bob allowed to perform the requested
action? This step is called authorization.

When Alice and Bob are exchanging data, attackers may be able to change
that data while it is in transit. Alice and Bob may need to know that the data has
been changed. There are techniques that can be used to perform this checking. In
security this is called data integrity.

And finally, suppose that the data exchange between Alice and Bob must be
confidential—that is, not only should Mallory not be able to change the data, but
Eve should not be able to read it. In this case the data has to be Encrypted. In the
world of HTTP the technique used to manage encryption is Transport Layer
Security (TLS), formerly known as Secure Sockets Layer (SSL). This is used via
the HTTPS protocol that will be examined later.

Declarative Security
Adding security to an application can be a tedious but necessary task, and much
of the work is similar regardless of the application being written. Take, for
example, the following security operations that all applications share:

• Receives a request.

• Authenticates the caller.

• Checks the caller’s authorization.

• Allows or disallows access.

Because of the similarity in the security work different applications have to do,
it is possible to abstract security away into a framework. In the case of J2EE,
security frameworks are typically not programmatic but are declarative. What does
this mean? It means that an application can specify via deployment settings (i.e.,
web.xml) the level of security that a given resource needs, and that security is pro-
vided by the Web Application container. This declarative approach is reasonably
flexible and reasonably easy to use. The Servlet specification also allows applica-
tions to add “hooks” into the container providing security to allow an application
to fine-tune the container’s offered security.

An application can also choose to ignore this declarative security entirely and
provide its own security. Typically, an application doing this will provide a Filter
to handle all requests and will do all the necessary security checks in the Filter. One
important thing to realize about security is that all checks should be made as early
as possible. For example, an application should not let a request get all the way to

DECLARATIVE SECURITY 425

falkner.ch10.qxd 8/29/03 1:01 PM Page 425

the database before deciding the caller is not authorized to use the database.
Remember that security is expensive in terms of resources used; therefore, check
early and check only as frequently as necessary. For example, once a user has been
authenticated, there may be no need to re-authenticate them on every request.

Role-Based Security
The first type of declarative security we will discuss is role-based security. In the
Servlet world security is based on two things: resources and roles.

• Resources are the things that need protecting.

• Roles are the users authorized to access those resources.

So what is a role? Imagine a public Web site with thousands of individual
users, most of whom are unknown to the site’s maintainers. Different users will be
given different levels of access. For example, there may be a free portion of the site
open to all, a portion of the site open to only those who have paid a subscription,
and a portion of the site only open to administrators of the site. In theory it would
be possible to check every single access to the site based on the user’s credentials,
so Alice could access all the site, Bob could access the non-subscription part, Joe
could access the non-subscription part and the subscription part, and so on and
so forth for all the different principals of the site. But for thousands of users, man-
aging individual user access quickly becomes a nightmare. Instead, what happens
is that users are assigned to a “role”. In this case there may be three roles: non-sub-
scriber, subscriber, and administrator. Each user would be assigned to a role when
he or she browses to the site. Each resource in the site is then accessible only to
certain roles. Notice that roles and role-names are entirely application-specific;
there are no standard roles that all applications can or must use.

The Servlet specification has nothing to say about how users are assigned to
roles, in neither the naming scheme you use nor the code used to enforce it. The
specification simply says that roles exist and that a container must recognize
them. In Tomcat1 the default mechanism of managing roles is the tomcat-
users.xml file in the /conf directory of your Tomcat installation. The default file
looks like this:

<tomcat-users>

<user name="tomcat" password="tomcat" roles="tomcat" />

426 SECURITY

1. Remember, the only standard containers must adhere to are the declarative rules in web.xml,
not the tomcat-users.xml file or any other Tomcat mechanism. If you are using a different con-
tainer, read the container’s documentation on defining roles.

falkner.ch10.qxd 8/29/03 1:01 PM Page 426

DECLARATIVE SECURITY 427

<user name="role1" password="tomcat" roles="role1" />

<user name="both" password="tomcat" roles="tomcat,role1" />

</tomcat-users>

This file defines a simple mapping between user name, password, and role.
Notice that a given user may have multiple roles, for example, user name=“both”
is in the "tomcat" role and the "role1" role. In Tomcat, the areas in which roles
are defined are called realms, and in particular this XML file-based mechanism is
called the memory realm. It is the realm you get by default in your application if
you do not change the Tomcat configuration. However, Tomcat ships with other
realms, notably the JDBC realm and the JNDI realm. These offer more flexibility
for an application. We will come back to realms and configuration in a moment,
but first let us take a look at how roles are used in an application.

Role-based security restrictions can be placed on Web Application resources by
using the security-constraint element in web.xml. As an example, add Listing
10-1 to /web.xml in the /WEB-INF directory of the jspbook Web Application:

Listing 10-1 Security Constraint Entry in web.xml

...

<web-app>

...

<security-constraint>

<web-resource-collection>

<web-resource-name>SecuredBookSite</web-resource-name>

<url-pattern>/secured/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>Reader</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Read Access</realm-name>

</login-config>

...

The preceding entry uses the <security-constraint> element to restrict any
HTTP GET or POST call to any URL matching /secured/*. The web-resource-
name child element is used to provide an arbitrary name, in this example
SecuredBookSite:

falkner.ch10.qxd 8/29/03 1:01 PM Page 427

<web-resource-name>SecuredBookSite</web-resource-name>

It does not matter what you choose as a name. Later on we will see the name
is only used as meta-information. The more important children elements are
url-pattern and http-method. The url-pattern element works identically to
the url-pattern element for a Servlet, JSP, or Filter mapping. The http-method
element is new, but intuitive to use. It can have a value that matches any of the
HTTP methods, and each method specified is checked before use. For instance,
in the above example GET and POST were specified:

<http-method>GET</http-method>

<http-method>POST</http-method>

These two entries would mean any HTTP GET or POST request to a URL
matched by /secured/* would be subject to the security restriction.

The final part of the <security-constraint>, the auth-constraint child
element, is used to match the security restriction to a defined role. Individual
roles are defined by role-name elements. In the preceding entry the role Reader
is given access to the secured resources:

<auth-constraint>

<role-name>Reader</role-name>

</auth-constraint>

Last, the login-config element is used to describe the basic form of authen-
tication2.

<security-role>

<role-name>Reader</role-name>

</security-role>

The end result is that only users in the role Reader are able to browse to
resources under the /secured directory of the jspbook Web Application. You can
try out the security restriction even without a /secured directory or resources in
it. Save the security entry and reload the jspbook Web Application. Then try
browsing to any URL including the /security directory. For instance:

http://127.0.0.1/jspbook/secured/SecurityTest

Instead of getting a 404 error or seeing a resource (should one exist), you
should see a dialog box asking you to log on. Figure 10-1 shows what the log on

428 SECURITY

2. There are multiple types of authentication mechanisms a Web Application offers. Each scheme has
a different level of security, and all schemes are discussed later in the chapter.

falkner.ch10.qxd 8/29/03 1:01 PM Page 428

box presented by Mozilla looks like. It will be similar regardless of the browser
you are using.

Enter anything you like for a user name or password value. Regardless of
what you put in, the Web Application will deny you access to the requested
resource (even if it does not exist). Click on Cancel to remove the authentication
box. Figure 10-2 shows what the typical access denied page looks like.

It should be clear that the /secured virtual directory is now secure to random
visitors using HTTP to access the site. If you wish to add users that can see the
resource, you need to define them via the container-specific method. As we have

DECLARATIVE SECURITY 429

Figure 10-1 Mozilla Log On

Figure 10-2 Authentication Failure

falkner.ch10.qxd 8/29/03 1:01 PM Page 429

seen with Tomcat, the tomcat-users.xml file works. Add the following entry in
this file:

<user name="reader" password="reader" roles="Reader" />

Reload Tomcat for the memory realm to be updated and try browsing back
to the same resource as you did before. This time when the authentication box
pops up, enter “reader” as the user name and “reader” as the password, as shown
in Figure 10-3.

After submitting the form, the Web Application proceeds to check the user
name and password. Should the information be correct, then the resource
requested is shown. In the case of a fictitious URL, a 404 page is shown, but
should a real resource exist, then it is displayed.

In general, this is how declarative security works with a Web Application. You
decide what URL mappings need to be secure and what roles are required, then
add the appropriate security-constraint entries to web.xml.

Configuring Realms
A fair warning: This section is Tomcat-specific. “Realms” are something concep-
tually similar in just about every container; however, the actual implementation
will be slightly different. You cannot apply this specific section to all containers,
but you can apply all of the other declarative security that is defined by the
Servlet specification.

As just mentioned, Tomcat user definitions are stored as “realms”, and
Tomcat comes with three realm implementations: a memory realm (the tomcat-
users.xml file you have just seen), a JDBC realm, and a JNDI realm (see Chapter
15 for more on JDBC and JNDI). Under Tomcat, realms are configured as part of
Tomcat’s server.xml file. A realm can have various scopes: it can be made
available for all applications this instance of Tomcat is running, for all applica-
tions on a particular virtual host this instance of Tomcat is managing, or simply
for a given application. To configure the realm in one of these ways, you simply
nest a <Realm> element within the appropriate parent element, either within
<Engine>, <Host>, or <Context>, respectively. You may think that realms should
be specific to an application—that is, a user should separately log onto each
application he or she uses. However, many Web sites offer a mechanism called
single-sign-on where an end user simply logs on once to any given server and that
sign-on is shared by all applications on that server. By having a flexible realm
configuration, Tomcat is able to offer this ability.

430 SECURITY

falkner.ch10.qxd 8/29/03 1:01 PM Page 430

For all realms the configuration of the <Realm> element takes the same form
and looks like this:

<Realm className="classname" otherAttr1="" otherAttr2="" etc.../>

For the memory realm the entry would look like this:

<Realm classname="org.apache.catalina.realm.MemoryRealm"

debug="0"

digest="MD5"

pathname="conf/tomcat-users.xml"/>

• debug specifies the level of logging information produced by the
realms: the higher the number the more detail; the default is 0.

• digest specifies the name of a security digest algorithm to use so
that the passwords can be stored as non-plaintext.

• pathname is the absolute or CATALINA_HOME relative path to the
.xml file containing the roles. This defaults to conf/tomcat-
users.xml.

The major problem with the memory realm is that it is static—that is, you
cannot dynamically add new users to roles once the application has started. The
memory realm should only be used for testing and demonstration purposes (as
here), not in real-world applications.

Be aware that Tomcat does not offer any “user management” for any of its
realms. It is entirely up to the application to provide mechanisms to add and
remove users to and from roles within a realm. Be aware also that the mecha-
nisms defined here are Tomcat-specific. All the Servlet specification requires is

DECLARATIVE SECURITY 431

Figure 10-3 Authenticating a User

falkner.ch10.qxd 8/29/03 1:01 PM Page 431

that a container provides a mapping between an authenticated user and a role or
group of roles. The specification does not say how this mapping is to be made.
That is entirely down to the container, and each container will have its own
mechanism to do this.

The Big Picture
Figure 10-4 shows the flow of control when a client tries to access a protected
resource. Bob (the client) initially makes an HTTP request to Alice (the server).
Alice checks the security-constraint elements of web.xml looking for a user-
data-constraint element. If the user-data-constraint specifies DIGEST or
CONFIDENTIAL, Alice will redirect the initial request so that a new request is gen-
erated that uses HTTPS. There will be more on this later. When the request
arrives, using the correct protocol Alice now checks for a Web-resource-col-
lection element within the appropriate security-constraint element to see if
access to the requested resource is restricted based on the URL and the HTTP
method sent in the request. This check can only take place if Bob has already been
assigned a set of roles. To assign these roles, Bob has to be authenticated by Alice.
So, if Alice has not previously authenticated Bob, then she does so now. How this
authentication happens will be discussed shortly. If Bob is not authenticated,

432 SECURITY

Servletweb.xml

check if
secured resource

check
transport

requirements

check
authentication
requirements

check
authorization
requirements

Web application

HTTPs request

401 Unauthorized

403 Access Denied

200 OK

Figure 10-4 Flow of Control for Authentication and Authorization

falkner.ch10.qxd 8/29/03 1:01 PM Page 432

Alice returns an error. If Bob authenticates, then Alice (not the application)
assigns the client to a role. Alice then checks that Bob is authorized to make this
call. If Bob is authorized, then the call succeeds; if Bob is not authorized to access
this resource, then another, different error is returned by Alice. Note that all of
this work is done by the actual Web server (Tomcat, in our examples), not within
your application. The application does not get to see the request until all these
checks are passed.

HTTP defines a simple challenge/response authentication mechanism that
supports two built-in authentication schemes, basic authentication and digest
authentication, each of which verifies that both parties in an exchange know a
shared secret password. Basic authentication is defined as part of the HTTP RFC,
RFC 2616, while Digest is defined in an adjunct to the main HTTP RFC, RFC
2617. To illustrate the challenge/response mechanism, let us look at the simpler
of the two authentication schemes, basic authentication. Authentication is
needed if Bob attempts to access a secured resource, perhaps by sending an
HTTP request to Alice as shown in Listing 10-2.

Listing 10-2 A Client HTTP Request

GET /secureApp/secured/SecurityTest HTTP/1.1

Host: localhost

HTTP authentication is based on challenge-response: Alice issues the chal-
lenge and Bob must respond with the appropriate credentials. In this case the
challenge from Alice takes the form of an HTTP “401 Unauthorized” response
with an HTTP “WWW-Authenticate” header as shown in Listing 10-3.

Listing 10-3 The Server Challenge for Basic Authentication

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="jspbook"

The “WWW-Authenticate” header contains the name of the authentication
scheme (“Basic”) and the security realm (“jspbook”). The security realm tells
Bob what set of credentials he should use. Bob’s response is to resubmit the
request along with an additional HTTP “Authorization” header whose value con-
tains the scheme (“Basic”), the realm (“jspbook”), and the credentials. The cre-
dentials are simply a user name and password that have been base-64 encoded.
Listing 10-4 illustrates this.

DECLARATIVE SECURITY 433

falkner.ch10.qxd 8/29/03 1:01 PM Page 433

Listing 10-4 The Client Resubmits the HTTP Request with Basic Authentication Credentials

GET /secureApp/secured/SecurityTest HTTP/1.1

Host: localhost

Authorization: Basic ZnJlZDp0b21jYXQ=

If authentication fails, Alice sends back another “401 Unauthorized”
response. If authentication succeeds, then Alice will attempt an authorization
check. This check determines whether the authenticated caller is allowed access
to the resource. If authorization fails—that is, access is not allowed, then the
server sends back a “403 Access denied” response.

Basic authentication is very limited. The major problem with basic authenti-
cation is that the user name and password are essentially sent as plain text. Base-
64 encoding is not encryption and is completely reversible by anyone. This means
that the user name/password pair is open to be read by Eve or Mallory, who could
use it to gain access to any other resource protected by the same user
name/password pair. It also means that a malicious server could spoof a service
in order to gain a password.

Another problem comes about because of the fact that HTTP is a stateless
protocol. Being stateless implies that authentication information must be
included with every client request for a secured resource. Once authenticated,
Bob will typically cache the credentials for a given subset of server resources (for
all resources that share the same URL base perhaps) and will re-issue those cre-
dentials, unprompted, with subsequent requests. The problem with this is that it
opens up the possibility of “replay” attacks. In a replay attack, a valid request is
repeatedly re-sent to the server by an attacker. This is bad if the request represents
an operation such as “transfer $100 from account A to account B”.

For these reasons it only makes sense to use basic authentication over an
already secure link—for example, encrypted and with strong server authentication.

Digest authentication was introduced in HTTP 1.1 and is designed to
improve on basic authentication by allowing Bob to prove knowledge of a
password without transmitting the password on the wire. Digest authentication
also provides more safeguards against replay attacks.

The digest challenge/response mechanism works in a similar way to basic
authentication, but the details of the challenge and response are different. This
time Alice’s challenge looks something like Listing 10-5.

Listing 10-5 The Server Challenge for Digest Authentication

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="jspbook",

434 SECURITY

falkner.ch10.qxd 8/29/03 1:01 PM Page 434

qop="auth",

nonce="5fef9f6239b0526151d6eebd12196cdc",

opaque="c8202b69f571bdf3ece44c4ce6ee2466"

The “WWW-Authenticate” header contains the name of the authentication
scheme (“Digest”) and the security realm (“jspbook”) as before, but digest
authentication requires other parameters for the authentication to happen and
these are also included in the header. The most interesting parameter is the
“nonce”, which stands for “number once”. The nonce is a number—uniquely gen-
erated by the server, meaningful only to the server, and valid only for the current
authentication—so the nonce is valid only for a given 401 status code.

Once Bob receives the “401 Unauthorized” he resubmits the HTTP request as
in Listing 10-5 with an “Authorization” header whose “response” parameter is the
calculated digest. Notice that Bob never sends the password on the wire, but only
the digest is transmitted.

A digest is a fixed-length encoding of some piece of data. It has the properties
that the data cannot be easily deduced from the digest and that two digests are
identical for the same data. However, note that two different pieces of data can
also produce the same digest, but the chances of randomly selecting two items of
data that produce the same digest are very, very small. Bob calculates a digest of
the user name, password, realm, nonce, HTTP method, and request URI using a
secure digest algorithm. The default digest algorithm used is MD5, although
others can be specified. After everything is calculated, a response is sent that
resembles Listing 10-6.

Listing 10-6 The Client Resubmits the HTTP Request with Digest Authentication Credentials

GET /jspbook/secured/SecurityTest HTTP/1.1

Host: localhost

Authorization: Digest username="reader",

realm="jspbook",

qop="auth",

algorithm="MD5",

uri="/jspbook/secured/SecurityTest",

nonce="e60ede51960d0f15dd5b6a9bb715dbd3",

nc=00000001,

cnonce="d35d64e34652169436cef64df7327f41",

opaque="9da8ed8720b206d71ebce39cf0ca42bd",

response="49f194c2babc4cb28c4e7edc63655a64"

DECLARATIVE SECURITY 435

falkner.ch10.qxd 8/29/03 1:01 PM Page 435

When Alice receives this request, she also creates a message digest from the
same data used by the client. Alice would have to have received Bob’s password
using some “out-of-band”3 technique. Alice then compares the value of the digest
she has generated with the digest sent by Bob. If the values are the same, then the
credentials are valid, and subject to an authorization check, the caller is allowed
access to the requested resource. If the values are different, then authentication
fails and the server sends back a “401 Unauthorized” error. If authorization fails,
the server sends back a “403 Access Denied” error.

Because the password is never sent in the clear, digest authentication is
much safer than basic authentication, but it isn’t perfect. For example, the
server must hold each user’s password in a form suitable for calculating the
MD5 digest, and these passwords must be stored securely, because anyone pos-
sessing them could masquerade as any valid user. Also, depending on the
server’s choice of nonce, digest authentication is potentially open to replay
attacks. There is nothing stopping Mallory simply taking a copy of the request
and re-sending it to Alice with the digest intact. One recommended approach
is for the server to compose the nonce from a hash of the resource URL, a
resource “ETag” (an ETag is essentially a unique identifier for the requested
resource; see the HTTP RFC for more information on ETags), a time-stamp,
and a private key known only to the server. This way the server can guard
against replay attacks by restricting the re-use of a nonce to the specified
resource and limiting the period of the nonce’s validity as defined by the time-
stamp. That would probably be safe enough for HTTP GET calls, but to com-
pletely prevent replay attacks against non-idempotent operations requested by
HTTP POST calls, the server would need to refuse to accept a nonce it had seen
before. Given that the HTTP protocol is stateless, this is more work for the
server. Generally, the safer the nonce, the greater the load on the server, and the
more re-authentication is required by the caller4.

Either basic authentication or digest authentication may be acceptable to a
server when securing a resource, in which case the server can send a challenge
with multiple “WWW-Authenticate” headers as in Listing 10-7.

436 SECURITY

3. Any method besides sending the password at that moment over the wire. Presumably the shared
password is sent in a secure fashion previously, or else it is a moot point to ever assume the digest is
providing security.
4. In general, all digital security requires more work to ensure something is secure—that is, of the
appropriate difficulty level a malicious principal would have to crack.

falkner.ch10.qxd 8/29/03 1:01 PM Page 436

Listing 10-7 The Server Challenge for Either Basic or Digest Authentication

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="jspbook"

WWW-Authenticate: Digest realm="jspbook",

qop="auth",

nonce="5fef9f6239b0526151d6eebd12196cdc",

opaque="c8202b69f571bdf3ece44c4ce6ee2466"

Using multiple authentication schemes is not a good idea. The client is at
liberty to choose the strongest scheme it understands so there is a possibility that
authentication could be downgraded to basic—in other words, the client might
not understand digest. This opens up a “man-in-the-middle” attack where
Malory (who is malicious, remember) can pretend to be the client, downgrade
the authentication scheme, and start acquiring passwords.

There are other techniques not explored here that can be practiced within the
scope of the digest authentication scheme by both client and server to minimize
the chance of standard “man-in-the-middle” attacks and raise the quality of pro-
tection to ensure that both headers and data are safe from tampering. But
although digest authentication is somewhat more secure than portrayed here, it
is purely designed to be an improvement over the more serious flaws of basic
authentication and is not, nor was never intended to be, a means for completely
secure communication. Both basic authentication and digest authentication
schemes rely on a shared secret. Neither scheme:

• defines how the secret might be exchanged initially,

• allows client and server to be cryptographically assured of each
other’s identity,

• mandates the use of the secret to guarantee that data exchanged
between the two has not been tampered with,

• mandates the use of the secret to encrypt the conversation so that
others may not see it.

There are some attacks that can only be prevented by sending HTTP requests
and responses over a cryptographically encrypted channel, so that even if bad
people can intercept transactions, then they are of no use. The Secure Sockets
Layer (SSL), discussed later, addresses all of these concerns.

Configuring Basic or Digest Authentication
In the original example of the declarative web.xml entries, basic authentication
was used. This is because basic authentication is the default authentication a Web

DECLARATIVE SECURITY 437

falkner.ch10.qxd 8/29/03 1:01 PM Page 437

438 SECURITY

Application will use. To change the authentication scheme, the login-config
element must be used:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Reader</realm-name>

</login-config>

This code is an example of the login-config element as it was previously
used in the chapter. Authentication schemes are configured by setting the auth-
method child element to be the desired scheme. So far we have seen both basic
and digest authentication. These schemes are defined by the BASIC and DIGEST
values, respectively. In the code given, basic authentication is specified. The
realm-name element provides the name of the security realm.

Custom Form-Based Authentication
Before progressing to HTTPS there is a slight tangent that is well worth dis-
cussing. The default authentication box, Figure 10-1, is not mandated. You can
build a custom form that will be presented to a user in a much more stylish
fashion. The Servlet specification defines this functionality as “Form” authenti-
cation.

With HTTP authentication the client application is in control of the user
interface that the log in mechanism uses—that is, it is the browser that pops up
the dialog box that the user fills in. Giving the auth-method setting a value of
FORM allows the Web Application to define its own login pages so it has control
over the look and feel of the login procedure. Listing 10-8 shows how to con-
figure this in the application deployment descriptor.

Listing 10-8 Form-Based Authentication Configuration

<web-app>

...

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>/login.jsp</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

...

</web-app>

falkner.ch10.qxd 8/29/03 1:01 PM Page 438

Note in addition to the auth-method element, the form-login-page element
is used to define the page to use and a custom error-page. Use of these elements
should be intuitive; form-login-page specifies a resource that includes the form
and form-error-page specifies the error page.

Custom login and error page are free to be any type of resource, for example,
Servlet, JSP, HTML, and use any style they prefer. The only restriction is that the
login page must direct the request to “j_security_check” and provide values for
the “j_username” and “j_password” parameters, such as the example in Listing
10-9.

Listing 10-9 Form-Based Logon Page

<html>

<body>

<form method="POST" action="j_security_check" >

User Name: <input type="text" name="j_username">

Password : <input type="password" name="j_password">

<input type="submit" value="Log on">

</form>

</body>

</html>

You can try the preceding page by editing web.xml to use the login-config
element shown in Listing 10-8, saving Listing 10-9 as login.jsp in the root
directory of the jspbook Web Application, and reloading the Web Application for
the changes to take effect. After the application reloads, browse back to http://
localhost/jspbook/secured/SecurityTest. This time instead of Figure 10-1,
the HTML form is displayed. Figure 10-5 provides a browser rendering for the
output.

When FORM is specified as the auth-method, the container still performs the
authentication check but not your application. For this reason the Servlet specifi-
cation defines the value of the form’s action as “j_security_check” and the names
of the user name and password fields as “j_username” and “j_password”. POST
must be used as the form method. When the container sees the “j_security_check”
action, it uses some internal mechanism to authenticate the caller.

If the login succeeds and the caller is authorized to access the secured
resource, then the container uses a session-id to identify a login session for the
caller from that point on. The container maintains the login session with a cookie
containing the session-id. The server sends the cookie back to the client, and as
long as the caller presents this cookie with subsequent requests, then the con-
tainer will know who the caller is.

DECLARATIVE SECURITY 439

falkner.ch10.qxd 8/29/03 1:01 PM Page 439

If the login succeeds but the calling principal is not allowed access to the
requested resource, then the server sends back a “403 Access Denied” response. If
the login fails, then the server sends back the page identified by the form-error-
page setting.

Form-based authentication suffers from the same problems as basic authen-
tication. It is obviously not secure by default as there is no strong authentication
of the server and the password is cleared. It is possible to force the form-based
login interaction to take place over a secure channel by specifying a transport
guarantee for the secured resource, as is later discussed in this chapter. One other
issue with form authentication is that because session tracking with form-based
authentication and URL rewriting is quite difficult (due to requiring
“j_security_check”), then, typically, for form-based authentication to work,
cookies must be enabled.

Programmatic Security in a Servlet/JSP
All the preceding authentication mechanisms result in one of two things: either
the user is not authenticated or he or she is authenticated and assigned mem-
bership of one or more roles.

A role is just a grouping of authenticated principals, normally defined by
some function such as Sales, Marketing, Reader, etc. The means by which prin-
cipals are placed in roles is entirely vendor-specific and is not covered by the
Servlet specification. Once roles have been created and role membership defined,
then role-based security constraints can be applied to a Web collection. Access to
a resource will be granted if either:

• No authentication scheme is in place.

440 SECURITY

Figure 10-5 Browser Rendering of Custom HTML Authentication Form

falkner.ch10.qxd 8/29/03 1:01 PM Page 440

• The Web collection has no role-based security constraint.

• The caller is in at least one role allowed access.

Otherwise, access is denied.
Role-based security is good because we can keep the access control configu-

ration separate from the Servlet and JSP code. The programmer does not need to
write any security-related code at all if they do not want to. But how realistic is
this mechanism? Role-based security is a fairly static and inflexible approach:
either the caller passes the access check based on role membership or not. If the
caller passes, then the resource is returned or the Servlet/JSP code starts exe-
cuting. If not, a “403 Access Denied” response is sent back to the caller.

However, it may not be possible to work out whether access is allowed until
runtime based on questions, such as “What is the caller’s credit limit?” In
addition it may be that a given resource works very similarly for callers in two dif-
ferent roles. Imagine a request that returns customer details. For salespeople the
request might return all the customer information apart from the customer’s
credit limit, whereas for a manager, the request would return all the information
including the credit limit. In this case, if all the application could do was decide
whether a call was allowed based on the caller’s role, the application would need
two separate resources. These resources would be very similar, the only difference
being whether the credit limit was included in the output. Duplicating resources
is error-prone; if the customer details change, then both resources have to be
amended.

To deal with these kinds of scenarios, the application can obtain information
about the caller or the caller’s role membership at runtime and perform different
logic on the basis of what is discovered. The HttpServletRequest object provides
the following methods, which can be used to mine security information at
runtime:

• String getAuthType(): The getAuthType() method returns a
String object that represents the name of the authentication
scheme used to protect the Servlet. While not usually helpful, this
can be used to determine how form information was submitted.

• boolean isUserInRole(java.lang.String role): The isUserInRole()
method returns a boolean value: true if the user is in the given role
or false if they are not.

• String getProtocol(): The getProtocol() method returns a String
object representing the protocol that was used to send the request.

PROGRAMMATIC SECURITY IN A SERVLET/JSP 441

falkner.ch10.qxd 8/29/03 1:01 PM Page 441

This value can be checked to determine if a secure protocol was
used.

• boolean isSecure(): The isSecure() method returns a boolean
value representing if the request was made using HTTPS. A value of
true means it was and the connection is secure. A value of false
means the request was not.

• Principle getUserPrinciple(): The getUserPrinciple() method
returns a java.security.Principle object that contains the name
of the current authenticated user.

The most helpful of these methods is the isUserInRole() method. This
method can be used to easily provide programmatic checks to see if a user is in a
particular role. For example:

void doPost(HttpServletRequest req,

HttpServletResponse res) {

if (req.isUserInRole("ManagersRole")) {

// Do some Manager stuff

} else if (req.isUserInRole("ReaderRole")) {

// Do some Sales stuff

} else {

throw Exception("User does not have access!");

}

}

There is one problem with using a Servlet to provide programmatic checks
such as this. The Servlet is written by a programmer, and the role names are hard
coded into the Servlet. The Servlet is deployed by a “deployer”, and the names
used for the roles by the deployer might not be the same as the names used by the
Servlet. To solve this problem, the security-role-ref element may be used
when defining a Servlet.

The security-role-ref element provides a concrete name a Servlet can ref-
erence and a configurable name a deployer can optionally change to match
whatever role-naming scheme is used. The security-role-ref element has two
child elements that define this information: role-name and role-link. The
role-name element defines the static value a Servlet may reference. The role-
link value is a role name a deployer can modify as needed. In use, the security-
role-ref element always resembles Listing 10-10.

Listing 10-10 Example of web.xml security-role-ref Element
...

<servlet>

442 SECURITY

falkner.ch10.qxd 8/29/03 1:01 PM Page 442

SECURE ENCRYPTED COMMUNICATION 443

<servlet-name>FooServlet</servlet-name>

<servlet-class>com.jspbook.FooServlet</servlet-class>

<security-role-ref>

<!-- role-name is used in the application-->

<role-name>ReaderRole</role-name>

<role-link>Reader</role-link>

</security-role-ref>

</servlet>

<security-role>

<role-name>Reader</role-name>

</security-role>

...

Note the security-role-ref element is used as a child element of the
servlet element. The reference is only valid for the Servlet it is defined with.
Additionally, the security-role element has been defined to create a role named
“Reader”.

<security-role>

<role-name>Reader</role-name>

</security-role>

This is required only when doing application-level security and making use
of the security-role-ref element. The entry is not needed if all the authenti-
cation and authorization is managed by the container.

Secure Encrypted Communication
The preceding discussion talked about using security to perform authentication,
authorization, and data integrity. However, there are other things that must be
done to provide a fully secure conversation between Alice and Bob. The first is
encryption. If Bob wants to send private data to Alice—for example, credit card
numbers—it had better be encrypted. However, there is no point in encrypting
the data if the endpoint Bob is sending the data to is itself not trusted. In other
words, before Bob sends private data to Alice, Bob should know that he is talking
to Alice; Bob has to authenticate Alice. This is the opposite authentication that
was talked about previously where Alice (the server) authenticated Bob (the
client). Now, the client has to authenticate the server before sending the data.
Modern cryptography allows for both these things to happen.

Cryptography allows data to be encrypted with a key so that it can only be
decrypted with a “matching” key. There are two types of key encryption, sym-
metric key encryption and asymmetric key encryption.

falkner.ch10.qxd 8/29/03 1:01 PM Page 443

A symmetric key represents a shared secret, and the same key is used to both
encrypt and decrypt the data. The problem with symmetric key encryption is
“key exchange”. How do two parties securely exchange a symmetric key? Alice
cannot simply send it to Bob because Mallory can see it.

An asymmetric key is a key that is split into two parts: the private key and the
public key. Either can decrypt data encrypted by the other—that is, data
encrypted by the public key only can be decrypted by the private and vice versa.
Note that data encrypted by one key can only be decrypted with the other key.
The private key is truly private. It is only known by a single entity. The public key
is truly public and can be known by everyone.

Encrypting data with the public key is useful, as that data can only be
decrypted with the private key. That means that no one can read that data except
the private key owner. That is, if Bob encrypts data using Alice’s public key, only
Alice can decrypt that data.

What about encrypting data using a private key? If Alice encrypts data using
her private key, anybody can decrypt it with Alice’s public key (the key is public
and so is available to anybody). This is also extremely useful as it can be used to
prove identity. If Alice sends Bob some plain text, and also encrypts that plaintext
with her private key and sends the encrypted data, Bob can take the encrypted
data and decrypt it with Alice’s public key. He can then compare the decrypted
data with the plaintext and compare them. If the comparison is equal, then the
plain text must have come from the person whose public key Bob has, so Bob
“proves” the data has come from Alice. In this case, Alice is said to have “signed”
her data, and typically a hash of the data, rather than the data itself, is signed. A
question you should be asking at this point is “How does Bob know that he has
Alice’s key and not somebody else’s?” This is where something called certificates
come in, but we will postpone discussion of certificates for now.

So which do we use, symmetric or asymmetric keys? Asymmetric encryption
is fine for encrypting/decrypting a hash but is typically an order of magnitude,
or slower than a symmetric key when used for encrypting/decrypting bulk data5.
So the best bet is for two principals to exchange a symmetric key for data
encryption, valid for the lifetime of the interaction between the two principals.
But how best to exchange this session key securely so that it cannot be seen and
so that both parties really know who they are sharing the key with? The answer

444 SECURITY

5. Using public key private key pairs also has other issues. For example, an attacker will have a copy
of the public key; the attacker will also have lots of ciphertext encrypted with the private key. The
attacker could also guess some of the plaintext that was encrypted (such as request lines and HTTP
headers). The more data an attacker has, the easier it is to break the encryption.

falkner.ch10.qxd 8/29/03 1:01 PM Page 444

is using asymmetric keys. Not only do asymmetric keys lend themselves toward
generating digital signatures but also secure exchange of symmetric keys.

Alice and Bob want to exchange a session key. Alice generates a session key
and encrypts it with Bob’s public key. She signs the encrypted session key with
her private key and sends the signed encrypted session key to Bob. Bob can use
Alice’s public key to verify the data came from Alice and only Bob can decrypt
the session key. Bob now has trust in Alice and the session key. Bob now
encrypts the session key with Alice’s public key. He signs the encrypted session
key with his private key and sends the signed encrypted session key back to
Alice. Alice now has trust in Bob and the session key. This assumes, of course,
that Alice and Bob have already securely exchanged public keys. Even though
public keys can be read and used by anyone, what they cannot do is send public
keys to each other on the wire.

If Mallory were to intercept the key exchange, he could just sit in the middle
and pretend to be Bob to Alice and Alice to Bob and read all traffic between them.
If Alice and Bob knew each other, they could exchange public keys face to face
without Mallory being able to get in the middle. If not, they could use a trusted
intermediary, Trent (someone they had both securely exchanged keys with in the
past). Assume Alice and Bob both trust Trent and have already obtained Trent’s
public key securely. Also suppose Trent trusts both of them and has already
obtained their public keys securely. Trent can put Bob’s public key and details in
a package called a certificate, sign it, and send it to Alice. She knows it came from
Trent and can trust the contents. Likewise, Trent can place Alice’s public key in a
signed certificate and send it to Bob who knows it came from Trent and has not
been tampered with in transit. In fact, Trent could issue Alice and Bob their own
certificates, signed by him. This way, for example, Bob could authenticate himself
to any other party that also trusted Trent by just sending his certificate (signed by
Trent) containing his public key.

Of course, this authentication technique, involving certificate exchange, only
works among those parties who trust Trent. Those who have certificates signed
by Trudy cannot exchange certificates with those who have certificates signed by
Trent, unless, that is, Trudy and Trent both have certificates themselves that are
issued and signed by someone they both trust, Todd. This is termed a certificate
chain. In this case, for Bob to authenticate to Carol (who trusts Trudy) he must
pass her both his certificate (signed by Trent) and Trent’s certificate (signed by
Todd). In this way Carol can verify that Bob is trusted by Trent who is trusted by
Todd and that is OK because Trudy (who Carol trusts) is also trusted by Todd. At
the top of the tree there must be some single certificate authority (CA) that
everyone trusts and who is able to sign their own certificates.

SECURE ENCRYPTED COMMUNICATION 445

falkner.ch10.qxd 8/29/03 1:01 PM Page 445

In the real world there is a standard for certificates called X.509, and there are
several CAs who are trusted by everyone and whose public keys are well known—
for example, Verisign. Certificates issued by Verisign are globally recognized, and
Verisign’s public key gets distributed with commercial client and server software
such as browsers and Web servers. A company could act as its own certificate
authority to all of its departments, but those certificates would only be usable
within the company, not globally.

So where are we? In order for two parties to authenticate each other they
exchange certificates and then they can use asymmetric encryption to exchange
a session key securely. From that point on, data can be encrypted or signed using
the shared session key. This is essentially what SSL does, although it’s a little more
complex than that. There are two modes that make sense in SSL. First, mutual
authentication where the caller and server exchange certificates so they both
know who each other is. Second, server authentication where the server sends a
certificate to the caller so the caller knows who the server is. SSL uses a four-way
handshake, shown in Figure 10-6, that progressively builds up trust between the
two parties.

A vastly simplified explanation follows, involving a client running on behalf
of Alice and a server running on behalf of Bob.

• Leg 1: Alice sends a random number and an ordered list of
acceptable cipher suites (each cipher-suite indicates the algorithms
to be used for data encryption, signatures, etc.) to Bob.

• Leg 2: Bob receives Alice’s transmission and sends back a random
number of his own (independent of the client-generated random
number), the chosen cipher-suite, his certificate, and, optionally, a
request for the client’s (Alice’s) certificate.

• Leg 3: Alice receives Bob’s transmission and verifies Bob’s certificate.
If it is valid, she now has Bob’s public key but cannot prove it’s him
on the other end. If Bob asked her for her certificate, then she sends
it. Then she generates another random number (called the pre-
master secret) and encrypts it with Bob’s public key (so only he can
read it) and sends that. Next she constructs a signature (using her
private key) of all the handshake data that has formed part of the
conversation up until this point and sends that. This is sometimes
called the certificate verification code. Following that she uses the
pre-master secret to generate all the keys required to perform data
encryption and provide signatures according to the cipher-suite she
negotiated with Bob. She then sends an instruction to say that she is

446 SECURITY

falkner.ch10.qxd 8/29/03 1:01 PM Page 446

going to start using the negotiated cipher-suite. Finally, she sends a
message authentication code (MAC). This is a signature (using the
signature generation key from the negotiated cipher-suite) of all the
handshake data that has formed part of the conversation up until
this point.

• Leg 4: Bob receives Alice’s transmission. He verifies her certificate, if
she sent it, and if it is valid, he now has Alice’s public key but
cannot prove it’s her on the other end yet. He then decrypts the pre-
master secret and uses it to generate all the keys required to perform
data encryption and provide signatures according to the cipher-
suite he negotiated with Alice. He now has the same set of keys as
Alice. This allows Bob to verify the MAC, and if it is OK, then he is
sure it is Alice on the other end because the MAC protects the entire
conversation so far. Bob now sends an instruction to say that he is
also going to start using the negotiated cipher-suite. Finally, he
sends a MAC, which is a signature (that uses the signature gener-
ation key from the negotiated cipher-suite) of all the handshake
data that has formed part of the conversation up until this point.

SECURE ENCRYPTED COMMUNICATION 447

Client Hello
(random#
+ cipher-suite
list)

Server Hello
(random# + cipher-suite
+ server cert
+ client cert request*

Client Finish
(client cert*,
encrypted pre-master secret,
cert verification code*,
change cipher spec
Message Authentication
Code)

Server Finish
(change cipher spec,
MAC)

*Optional

Figure 10-6 Illustration of a Four-Way SSL Handshake

falkner.ch10.qxd 8/29/03 1:01 PM Page 447

Alice receives Bob’s transmission and uses the negotiated
cipher-suite to decrypt it and verify the MAC. If it is OK, then she is
sure it is Bob on the other end because only he could have
decrypted the pre-master secret used to generate the key used to
generate the MAC. They are done. Alice knows she is talking to Bob
and Bob may know he is talking to Alice (if he asked her for a cer-
tificate). They have exchanged keys used for data encryption and to
ensure data integrity.

SSL/TLS is a lot of work! But the work is needed. In cases where it must be
ensured, to a best effort, that information is secure and authentic, then you have
little choice but to use SSL. The good news is that you do not have to implement
the entire SSL protocol before using it with a Web Application. Should your con-
tainer support SSL, then it is the container vendor’s job to implement it. In most
popular containers, Tomcat included, SSL support is available. The only thing
you need to provide is a certificate from a CA.

Specifying HTTPS
One of the web.xml elements that has yet to be explained is the user-data-
constraint element. The user-data-constraint element can be used to specify
the level of security a request and response must adhere to. The child element
transport-guarantee can be used to set a value of either NONE, INTEGRAL, or CON-
FIDENTIAL. The NONE value is the default and requires no level of security be
enforced. The INTEGRAL value specifies that a container must ensure the integrity
of information—that is, it has not changed during transit but it might have been
read by others. The CONFIDENTIAL value requires that information sent in a
request and response is both private and unchanged—for example, SSL.

Use of the user-data-constraint element is straightforward. For example,
to ensure the protected part of a Web Application is kept completely confidential,
the following entry could be used:

...

<security-constraint>

<web-resource-collection>

<web-resource-name>SecuredBookSite</web-resource-name>

<url-pattern>/tlssecured/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

448 SECURITY

falkner.ch10.qxd 8/29/03 1:01 PM Page 448

SECURE ENCRYPTED COMMUNICATION 449

</web-resource-collection>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

...

Now all resources under the /tlssecured virtual folder of a Web Application
are completely private, not just difficult to see. If you try this on your PC—for
example, browse to http://127.0.0.1/jspbook/tlssecured/Foo—instead of
HTTP the browser would automatically redirect to a secure port/protocol, for
instance, https://127.0.0.1/jspbook/tlssecured using port 443. You can try
this on your own PC, but there are several things that have to first be done.

• Locate the following entry in /conf/server.xml file of your Tomcat
installation and make sure the value of port is “443”, because by
default Tomcat uses 8443:

<Connector

className="org.apache.catalina.connector.http.HttpConnector"

port="443" minProcessors="5" maxProcessors="75"

enableLookups="true"

acceptCount="10" debug="0" scheme="https" secure="true">

• By default the above code is commented out; uncomment it.

• Locate the following entry; also in server.xml:

<Connector

className="org.apache.catalina.connector.http.HttpConnector"

port="80" minProcessors="5" maxProcessors="75"

enableLookups="true" redirectPort="443"

acceptCount="10" debug="0"

connectionTimeout="60000"/>

Make sure that port is set to 80 (as done in Chapter 1) and that redirectPort
is set to 443. These values are the default HTTPS and HTTP ports; the values for
a default Tomcat install are 8443 and 8080, respectively. The important thing for
now is that the value of redirectPort in the second entry matches the value of
the port for the first entry; they are both 443 in the examples shown here.

falkner.ch10.qxd 8/29/03 1:01 PM Page 449

Once you have uncommented the HTTPS entry, Tomcat is almost ready to
listen for HTTPS requests, but to do so, you have to install a security certificate.
A certificate is an integral part of HTTPS as will be seen later6. Type one of the
following to generate a certificate:

• In Windows, execute

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

• In Linux, execute

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

Fill in the values that are asked for by keytool. The values may be fictitious as
this is a custom certificate made by you, but they will be appearing later. Make
sure that both requested passwords are “changeit” (without the quote marks).
Figure 10-7 shows a complete execution of the program.

Once that is done a .keystore file is generated in your home directory with all
the information needed by the certificate. Tomcat needs to know about the cer-
tificate you just generated. By default Tomcat looks in the home directory of the
user that executed it for the .keystore file, which is convenient7. Now you can
browse to a resource under the /tlssecured virtual directory and SSL will be used.
For instance, try browsing to http://127.0.0.1/jspbook/tlssecured/. The URL
is redirected to https://127.0.0.1/jspbook/tlssecured/ and you are asked for
a user name and password. Assuming you put in the correct information the
content is displayed same as before, but the complete request and response are
thoroughly encrypted (even if it is just a 404 page). Since you created a custom cer-
tificate, do not be surprised if your Web browser complains about the certificate’s
validity. It is a certificate that no third party will verify because you never registered
it with a CA. For instance, Mozilla will complain similar to Figure 10-8, but it is fine
because the certificate is only being used for an example.

Typically, in HTTPS only the server is authenticated—that is, the server does
not care who you are, but a secure connection is still needed. As the discussion of
the SSL handshake above shows, HTTPS does allow for mutual authentication.

450 SECURITY

6. If you are using a JDK prior to JDK 1.4, you will need to download and install the Java Secure
Sockets Extensions, JSSE. See Sun’s Web site at http://java.sun.com/products/jsse/ for
more details.
7. If Tomcat cannot find the .keystore file, you need to manually set the location of it using the
factory elements keyStore attribute. See http://jakarta.apache.org/tomcat/
tomcat-5.0-doc/ssl-howto.html for more information.

falkner.ch10.qxd 8/29/03 1:01 PM Page 450

In this case where this is needed, the client has to install their certificate in the
browser. Additionally, the auth-method element must be set to CLIENT-CERT.

If a request was made over a secure channel, then the Servlet can find out via
isSecure(). Additionally, the container associates some of the characteristics of
the secure channel with the following request scoped attributes:

• javax.servlet.request.cipher-suite: The
javax.servlet.request.cipher-suite attribute is a String object
that represents the cipher-suite used by the secure connection.

• javax.servlet.request.key-size: The
javax.servlet.request.key-size attribute is an Integer object
representing the size of the key used to encrypt content.

• java.security.cert.X509Certificate: The
java.security.cert.X509Certificate attribute is an array of
java.security.cert.X509Certificate objects that represent the
SSL certificates used with the request.

The attributes can be mined as needed to know more about the security of the
connection. For more information about the X509Certificate object, consult the
Java documentation for the object and the rest of the Java 2 Security API.

SECURE ENCRYPTED COMMUNICATION 451

Figure 10-7 Using Java’s Keytool to Create a Certificate

falkner.ch10.qxd 8/29/03 1:01 PM Page 451

How Secure Is Security?
Throughout this whole discussion of security the term “secure” has been used to
imply complete security. However, it is important to note that as of yet there have
been no absolute foolproof methods of digital encryption. This is not an effort to
make you paranoid, but it is a fact that is important to understand as a good
developer. For all practical purposes, protocols such as SSL/TLS are agreed to be
well beyond what is considered feasible for someone to crack with modern
equipment—likely even technology developed in the near future8. When using
SSL/TLS, the security you can assure users of is well worth placing your bet on.

Why digital encryption is not perfect is worth understanding. In short, all
digital information is represented by 1’s and 0’s, and the only thing encryption
does is randomize these 1’s and 0’s. The randomized 1’s and 0’s are sent publicly
across the Web—and a key is used to privately convert the randomized infor-
mation back into a meaningful set of 1’s and 0’s. Hence, when using good cryp-
tography, such as SSL/TLS, your odds of being compromised are directly related
to the size of your key.

452 SECURITY

Figure 10-8 Invalid Certificate in Mozilla

8. It should be noted that it has been proven in theory that quantum computers can break popular
encryption, such as SSL/TLS, in small amounts of time; however, as of yet quantum computers do
not exist.

falkner.ch10.qxd 8/29/03 1:01 PM Page 452

Since a key itself is a set of 1’s and 0’s, basic probability can be used to figure
out your odds are as good as 2x, where x is the length of a key—that is, if the key
is one bit long, it is either 1 or 0. If I try both keys, one of the results has to be the
correct decrypted information. Likewise, if a key is of length 2, then there are four
possibilities, and so on. Being an exponential equation the odds of having your
security compromised grow exponentially with key size. In practice the common
range of key sizes is usually between 128 bits and 512 bits, equating to 2128, which
is 1:34,028,236,692*1038, and 2512, which is 1:1,340,780,793*10154. The odds of
winning a large lottery are dwarfed by these numbers. Additionally, to convert
these figures to processing time, you have to multiply by the time it takes to suc-
cessfully decrypt using a key and verify if the information is meaningful. Even
with extreme parallel processing, these numbers are ridiculously huge.

The point at hand is that security is important and yes a Web Application
provides a perfectly good method of implementing it. When developing a
“secure” application, it does little good to say it is secure without knowing why it
is secure. In this chapter we have covered completely the chore of implementing
a “secure” Web Application, and we have also touched on why the application is
secure. If you are interested in a complete discussion and dissection of all the
acronyms, algorithms, and protocols used by conventional cryptography, it is rec-
ommended you read Cryptography and Network Security, Principles and Practice,
by William Stallings.

Encryption and Compression and Caching
A topic of minor importance but worth mentioning is that of how to properly
implement encryption, compression, and caching. In Chapter 8, Filters were
introduced and the paradigm was presented that Filters can cleanly be stacked to
provide layered functionality (see Figure 8-1). Additionally, the concepts of com-
pression and caching were introduced because they are ideal uses for a Filter.
Security and encryption are also ideal for a Filter. If it was not for the fact that
most (if not all) containers already implement adequate security, then a security
Filter would have made an ideal example for this chapter.

The point to raise is, the three topics, encryption, compression, and caching,
are all excellent ways to provide support for in a Web Application; however, you
should not haphazardly combine the three. For instance, the point was raised
about correctly using compression Filters with caching Filters. A cached copy of
compressed content would not work for clients that do not support compression.
Be careful not to stack Filters in a method that would create this problem. The
same concept applies to encryption. With security introduced by this chapter, the

ENCRYPTION AND COMPRESSION AND CACHING 453

falkner.ch10.qxd 8/29/03 1:01 PM Page 453

topic of encryption has also been introduced and you may desire to use non-
standardized encryption for security. Be careful about where encryption is
stacked in relation to caching and compression. Do not put encryption behind
either a cache or compression layer, as shown in Figure 10-9!

Figure 10-9 is bad because non-symmetric encryption cannot be expected to
work if copies of pre-encrypted content are cached. Technologies such as SSL
require a lot of processing power and bandwidth because of the security they
provide via good encryption. Caching to eliminate this problem is not an option!

Another important point is that the goal of compression is to remove all
redundancy content may contain. The goal of encryption is to completely ran-
domize content and eliminate any patterns. Trying to compress encrypted
content is futile. Doing so only results in extra, unneeded server-side work.

The correct way to always apply compression and encryption is to compress
content, then encrypt the compressed content as shown in Figure 10-10.

Caching can be implemented either before compression, after compression,
or at both places. It depends on what you are trying to optimize when using the
cache. The concept to take away from this section is that it does matter where and
how encryption, compression, and caching are implemented. Thankfully, the
security mechanisms defined by the Servlet specification are designed to prevent
these problems from ever happening. However, when building custom security

454 SECURITY

Endpoint
Servlet, JSP, HTML, etc.

Security

Cache

Compression

 Client

Container

request response

Figure 10-9 Poorly Stacked Filters

falkner.ch10.qxd 8/29/03 1:01 PM Page 454

Filters (or Filter-like functionality if you are using IIS, Apache, etc., to com-
plement a container) be aware of what you are doing!

Summary
Security is important and Web Applications are designed with this in mind.
Understanding the basics of cryptography and how it is implemented via Servlets
and JSP rounds out your skill-set even further. Instead of creating a site that
anyone can freely visit and use, you are now able to clearly define who can see
what and how it can be seen. The ability to provide this security is imperative
when building Web Applications that contain content or services of a sensitive
nature.

Cryptography is complex, but implementing cryptography in a Web
Application is designed to be as simple as possible. The Servlet specification
clearly defines an interface by which container vendors can implement any form
of security. As a developer the only thing that needs to be completely understood
is how to configure the Servlet-provided interface. In most cases, this is done via
declarative security using web.xml. In cases where a finer granularity of control is
required, programmatic security can be implemented.

The specific security implementations covered in this chapter ranged from
simple to complex. Both HTTP basic and digest authentication were covered

SUMMARY 455

Endpoint
Servlet, JSP, HTML, etc.

Cache

Compression

Security

 Client

Container

request response

Figure 10-10 Correct Method to Implement Encryption, Compression, and Caching

falkner.ch10.qxd 8/29/03 1:02 PM Page 455

along with a Web Application’s method of providing custom forms and error
pages. In the realm of complex cryptography the SSL/TLS protocol was intro-
duced along with certificates for creating truly secure communications. While
none of the specific algorithms available for use with SSL/TLS were covered, it
was shown that the security provided is adequate for ensuring “secure” con-
nections.

456 SECURITY

falkner.ch10.qxd 8/29/03 1:02 PM Page 456

457

Chapter 11

Design Patterns

Developers have been building JSP and Servlet Web Applications for a number
of years. There are many ways to produce content via Servlets and JSP, but there
are only a few ways that are commonly agreed upon as good. Understanding what
exists, both good and bad, greatly increases your ability to build a good Web
Application. This chapter is an overview of the common design patterns imple-
mented by Web Application developers. In many ways this is one of the most
important chapters of this book as it is something you can experiment with only
after having a good understanding of the JSP and Servlet specifications.

This chapter discusses the following topics:

• An explanation on why you should use design patterns.

• Discussion of the Model 1 design pattern: naming the way new
developers often code.

• Discussion of the Model 2 design pattern: the encouraged method
for building a Web Application.

• Discussion of the Model 11⁄2 design pattern: a practical method of
doing Model 2.

• Using the Jakarta Struts framework: introducing a very popular
Model 2 framework.

• Abstracting DHTML via custom tags.

This chapter is intended to be read through from start to finish, especially
since information in this chapter cannot be found in the Servlet and JSP specifi-
cations. In many of the previous chapters the information was nothing more
than an enhanced description of what you can find in various official J2EE doc-
uments. In this chapter realize the value of what is being presented. This is not a

falkner.ch11.qxd 8/29/03 1:01 PM Page 457

458 DESIGN PATTERNS

chapter where you cut and paste together examples to make a final product. This
is a chapter about concepts and how they can be applied using Servlets and JSP.

Why Use a Design Pattern?
There are many reasons why a design pattern is favorable to use. Here is a formal
list of the benefits:

• Reduce Development Time: A good design pattern helps concep-
tually to break down a complex system into manageable tasks. This
allows developers to individually code parts of the Web Application
they are best suited for. It also allows individual components to be
built and replaced without harming the existing code base.

• Reduced Maintenance Time: The majority of projects involve mainte-
nance of an already existing system. Maintenance can be a nightmare
should a system be hacked together when it was initially built. Good
design plans ahead to simplify future maintenance concerns.

• Collaboration: Not all developers share the same expertise. Often a
mixed group of developers is assigned to a task especially in the case
of a larger project. A good design can successfully enforce sepa-
ration of a project’s functionality into areas that collaborating
developers are most familiar, and ensure separate parts of a project
seamlessly fit together.

The importance of having design patterns grows with the size of a project.
Rebuilding an existing, working Web Application is never desirable. While
rebuilding a small Web Application is feasible, rebuilding a large Web Application
is not. Good design ensures a Web Application should never need a complete
overhaul.

Common Design Patterns
There are many ways in which to classify design patterns. What is important are
the concepts behind the design pattern, not the buzzwords or acronyms. Design
concepts hold true to every project and do not date as code does. This chapter
focuses on one very important concept: why it is important to logically separate
a Web Application’s functionality. This concept is the foundation of popular JSP
and Servlet design patterns and implies many smaller points of good practice
when coding with Java, Servlets, and JSP.

falkner.ch11.qxd 8/29/03 1:01 PM Page 458

To explain the most commonly used JSP and Servlet design patterns, a
common vocabulary is needed. This chapter uses the popular terms of Model 1,
Model 2, and Model 11⁄2. The Model 1 and Model 2 design patterns are general
classifications of how a Web Application can be structured. Model 11⁄2 is a prac-
tical approach at implementing Model 2 concepts using a method, which is quick
and can later be ported to a Model 2 design. Both Model 1 and Model 2 are
explained further in the following sections. Discussion of Model 11⁄2 is provided
after the Model 2 design pattern is covered.

Model 1
Model 1 is used to refer to what is usually the intuitive approach to using JSP and
Servlets; a Model 1 architecture is what a new JSP and Servlet developer are likely
to build. The concept behind a Model 1 architecture is simple: code functionality
wherever the functionality is needed. The approach is very popular because it is
both simple and provides instant gratification. Should security be needed, code
it in. Should a JSP need information from a database, code in the query.

The concept of a Model 1 architecture should be simple to see. Everything
relies on a request going to one resource and the resource returning the correct
reply. Figure 11-1 illustrates the concept.

Note in Figure 11-1 the single resource is a JSP or Servlet, not the Web
Application. While a Web Application is always responsible for handling a request
and response, the issue we are highlighting is how the Web Application handles the
request and response. In the extreme case of the Model 1 architecture, an entire
request and response is handled by a single endpoint such as a JSP or Servlet.

Simple Model 1 Web Site
In code the concept is easy to illustrate. Consider a simple news Web site. The site
consists of three different pages: a page about the site, a news page, and a page to

COMMON DESIGN PATTERNS 459

View Endpoint 1
(JSP or Servlet)

Model 1 Web Application

request response

View Endpoint 2
(JSP or Servlet)

...

request response

Figure 11-1 Illustration of the Model 1 Architecture

falkner.ch11.qxd 8/29/03 1:01 PM Page 459

add news. It is assumed the site only needs to be available in HTML format and
users do not have to log on before adding news to the site. Save Listing 11-1 as
index.jsp in the /model1 directory of the jspbook Web Application.

Listing 11-1 Model 1 Example of index.jsp

<jsp:include page="header.jsp"/>

<%@ page import="

java.io.*,

javax.xml.parsers.*,

org.w3c.dom.*" %>

<%

ServletContext sc = pageContext.getServletContext();

String dir = sc.getRealPath("/model1");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc= null;

if (file.exists()) {

doc = db.parse(file);

}

if (doc != null) {

NodeList nodes = doc.getElementsByTagName("story");

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

%>

<hr>

<h3><a href="<%= e.getAttribute("link") %>">

<%= e.getAttribute("title") %></h3>

<%= e.getAttribute("story") %>

<%

}

}

%>

<jsp:include page="footer.jsp"/>

The page index.jsp is the main page of the site and is responsible for
showing all the current news. The important point to note about index.jsp is
that the page does not have a form on it but does have some scripting elements.
The scripting elements are used to load and read information about the current
news. The news is saved in an XML file, news.xml, in the /model1 directory of the
jspbook Web Application. We will create the XML file later.

460 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 460

For several reasons a flat file is not a good choice for persisting information;
a database management system (DBMS) is the preferred choice as explained later
in Chapter 14. The flat file used now is more than adequate to illustrate the
important design pattern concepts. Later with the Model 2 design pattern it is
shown that the choice of data persistence really does not matter from a JSP or
Servlet developer’s perspective.

Listing 11-2 is the code for the page to add news. Save Listing 11-2 as
addnews.jsp in the /model1 directory of the jspbook Web Application.

Listing 11-2 Model 1 Example of addnews.jsp

<jsp:include page="header.jsp"/>

<%@ page import="

java.io.*,

javax.xml.parsers.*,

org.w3c.dom.*,

javax.xml.transform.*,

javax.xml.transform.stream.*,

javax.xml.transform.dom.*" %>

<%

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title != null && !title.equals("") &&

story != null && !story.trim().equals("") &&

link != null && !link.equals("")) {

ServletContext sc = pageContext.getServletContext();

String dir = sc.getRealPath("/model1");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = null;

if (file.exists()){

doc = db.parse(file);

}

else {

doc = db.newDocument();

Element root = doc.createElement("news");

doc.appendChild(root);

}

Element news = doc.createElement("story");

news.setAttribute("title",title);

COMMON DESIGN PATTERNS 461

falkner.ch11.qxd 8/29/03 1:01 PM Page 461

news.setAttribute("link",link);

news.setAttribute("story",story);

doc.getDocumentElement().appendChild(news);

TransformerFactory tf = TransformerFactory.newInstance();

Transformer t = tf.newTransformer();

DOMSource source = new DOMSource(doc);

StreamResult result =

new StreamResult(new FileOutputStream(file));

t.transform(source, result);

%>

<p align="center">You news has been added!

Back to main page.</p>

<% }

else {

if(title == null) {

title = "";

}

if(link == null) {

link = "";

}

if(story == null) {

story = "";

}

%>

<h3>Add News</h3>

<p>Fill in all fields to add your news to Foo news.</p>

<form method="post">

Tile: <input size="50" name="title" value="<%= title%>">

Link: <input size="50" name="link" value="<%= link%>">

Story:

<textarea cols="50" rows="10" name="story">

<%= story%>

</textarea>

<input type="submit" value="Add News">

</form>

<% } %>

<jsp:include page="footer.jsp"/>

The important points to note about addnews.jsp is that the page includes
some scripting elements and a method of soliciting information from a user, an

462 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 462

HTML form. The code itself is nothing spectacular. The page checks to see if
form information has been submitted. If so, the information is used to create a
news entry. If not, an HTML form is displayed for the user to fill in a news story.

The page with information about the news site is the simplest of the three
pages. Save Listing 11-3 as about.jsp in the /model1 directory of the jspbook
Web Application.

Listing 11-3 Model 1 Example of about.jsp

<jsp:include page="header.jsp"/>

<h2>About</h2>

<p>Foo news is a news resource about Foo. Contact

us at foo@jspbook.com.</p>

<pre>

foo /foo/ 1. interj. Term of disgust. 2. [very common] Used very

generally as a sample name for absolutely anything, esp. programs

and

files (esp. scratch files). 3. First on the standard list of

metasyntactic variables used in syntax examples. See also bar.*

</pre>

*Cited from http://www.jargon.org

<jsp:include page="footer.jsp"/>

The important points to note in about.jsp are the page does not include
scripting elements and it also lacks a method of soliciting feedback from a user.
The page consists of only HTML used to display information.

Complementing all three pages is a simple header and footer file. Save Listing
11-4 as header.jsp and Listing 11-5 as footer.jsp, respectively, in the /model1
directory of the jspbook Web Application.

Listing 11-4 header.jsp

<html>

<head>

<title>Foo News - News about Foo, news that matters.</title>

</head>

<body>

<h1>Foo News</h1>

News about Foo, news that matters.

<center>

About

Add News

View News

</center>

COMMON DESIGN PATTERNS 463

falkner.ch11.qxd 8/29/03 1:01 PM Page 463

Listing 11-5 footer.jsp

<center>

<small>Copyright © 2002 Foo Bar Inc.</small>

</center>

</body>

</html>

What is most important to understand is that all three of the preceding pages
work. They have some very deliberate flaws that are discussed later, but they do
all work. Test out the pages by browsing to each of them. First, start with
about.jsp, http://127.0.0.1/jspbook/model1/about.jsp. Figure 11-2 shows a
browser rendering of the results.

The about page always looks the same. The only dynamic action JSP provides
for the page is the include action. Besides the two includes the page is just static
content. There are many pages similar to this in a real Web Application. They are
the pages that can only be done in one way. The only benefit dynamic server-side
functionality can provide is to eliminate page redundancies such as a header and
footer.

464 DESIGN PATTERNS

Figure 11-2 Browser Rendering of about.jsp

falkner.ch11.qxd 8/29/03 1:01 PM Page 464

The next page to examine is addnews.jsp, http://127.0.0.1/jspbook/
model1/addnews.jsp. Browse to this page to see what it does. By default the page
displays a form that can be filled out to add a news entry. Figure 11-3 shows a
browser rendering of the default page.

The page is also the same page that accepts a filled out form. Should a form
be filled out with information for a news article and submitted, the page adds the
news to news.xml and displays a thank-you page. Try out the functionality by
filling in all of the fields and submitting the form. Figure 11-4 shows a browser
rendering of the results: a thank-you page.

The thank-you page of addnews.jsp is a simple confirmation and a link to
the main news page.

Finally, try out the main news page, index.jsp, http://127.0.0.1/jspbook/
model1/index.jsp. The news page shows all of the articles recorded in news.xml.
Each news item is shown sequentially as listed in the file. On the page you should
see one news item for each submission done via addnews.jsp. Figure 11-5 shows
a browser rendering of the results after two pieces of news have been submitted.

It is important to see and understand the entire sample Web site works
because this is the initial goal of the Web Application. Should a particular design

COMMON DESIGN PATTERNS 465

Figure 11-3 Browser Rendering of addnews.jsp

falkner.ch11.qxd 8/29/03 1:01 PM Page 465

466 DESIGN PATTERNS

Figure 11-4 Browser Rendering of addnews.jsp Thank-you Page

Figure 11-5 Browser Rendering of index.jsp

falkner.ch11.qxd 8/29/03 1:01 PM Page 466

pattern not work, it would be ridiculous to discuss it. Understand the preceding
site does work and it is in what would be considered a Model 1 architecture.

Why Is This Model 1?
Discussion of the Web site’s code has initially been avoided because what the
code does is not the point of interest in the example. All of the design patterns
mentioned in this chapter can be used to make any sort of Web site. Where the
code is placed is the emphasis of the chapter. Recall with the introduction of the
Model 1 architecture, it was stated the design is classified by each request being
mapped to a single endpoint. The endpoint is solely responsible for generating
the final response.

What makes the sample application follow a Model 1 architecture is that it
directly follows this rule. The diagram of the Web Application is shown in Figure
11-6.

Each request URL goes to exactly one resource in the Web Application. All of
the response-generating logic is included in the same resource, and the result is
three JSPs with differing levels of complexity. In this example all three pages are
specifically chosen to include different types of functionality. Keep in mind that
in a more realistic Web Application there are many of the same types of pages.
However, for the sake of design discussion consider these three general cate-
gories:

• static page: A static page is a page easily authored in languages such
as HTML. The contents of the page do not change and the best way
to author the page is as a single document. The page about.jsp is
an example of a static type of page. The content generated by
about.jsp does not rely on any of the advanced features JSP and
Servlets offer such as scripting elements.

COMMON DESIGN PATTERNS 467

View Endpoint 1
about.jsp

Model 1 Web Application

request response

View Endpoint 2
addnews.jsp

request response

View Endpoint 3
index.jsp

request response

Figure 11-6 Model 1 Diagram Applied

falkner.ch11.qxd 8/29/03 1:01 PM Page 467

• dynamic page: A dynamic page is one that relies on the dynamic
server-side functionality provided by Servlets and JSP. Dynamic
pages cannot be authored as a static page because the content gen-
erated may be different for each different request. In the sample
application, index.jsp is an example of a dynamic page. The page’s
response relies on the embedded scripting elements. Without them
the page would not function.

• dynamic form page: A dynamic form page is a dynamic page
requiring participation from a user. In almost every case this is a
page with an HTML form on it. In the example Web Application,
addnews.jsp is an example of a dynamic page with a form.

All three of the preceding types are important, but the specific names given
to the types are not. The names listed are nothing more than self-descriptive
terms needed as a point of reference.

The types are important because they are what illustrate the strengths and
weaknesses of different design patterns. Static pages are used in all design pat-
terns. Generally, it is desirable to have as many static pages as possible because
they are as easy to author as the formatting language being used, usually HTML
or XML. Dynamic pages are where different design patterns are important.
Where the logic of a dynamic page is placed can greatly impact the ease of which
the page is developed and maintained in the future. As illustrated by about.jsp,
index.jsp, and addnews.jsp the Model 1 architecture handles all three types of
pages by creating a single page for each and adding in dynamic functionality
where needed.

Model 1 Weaknesses
There are no great strengths to the Model 1 design pattern, and it is not recom-
mended you use it at all. The only time you should consider using the Model 1
architecture is if you are building a trivial Web Application. Beyond this the only
possibly good argument for the architecture is it can be built by developers with
limited knowledge and experience in JSP and Servlets. Ease of authoring is com-
monly a benefit associated with the architecture, but it is simply not true. The
Model 1 architecture lacks sufficient benefits to justify a complete section of dis-
cussion. Instead, we are going to directly focus on the weaknesses of the archi-
tecture as an introduction to the Model 2 design pattern.

There are many weaknesses of the Model 1 design pattern that become
apparent on inspection. The design limits development of dynamic pages to
developers familiar with JSP and Servlets. The design makes dynamic pages

468 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 468

COMMON DESIGN PATTERNS 469

overly complex and cryptic due to excessive amounts of embedded scripts. The
design creates pages that are difficult to maintain and makes it hard to collab-
orate when building the pages. All of these weaknesses are what make the Model
1 design pattern undesirable to use.

The issue of development and maintenance is the most problematic of the
Model 1 design pattern. A mixed group of developers is usually involved in con-
struction and maintenance of a Web Application. The Model 1 design pattern
directly embeds dynamic code alongside static formatting; this practice requires
all developers be familiar with all of the technologies being used. Usually the
required technologies include HTML, Java, JSP, and Servlets, but any number of
other technologies such as SQL, DHTML, XML, EJB, and XSLT might be present.
Requiring all developers are familiar with such a large technology base is prob-
lematic because it is hard to ensure every developer has an adequate skill-set to
properly manipulate the Web Application, especially in later stages of the
project’s life cycle when maintenance is required. Lengthy, complex, and usually
cryptic JSP and Servlets are hard to edit without breaking existing functionality.

A good example of the complexity introduced by the Model 1 design pattern
can be seen in both index.jsp and addnews.jsp. Compared to about.jsp, these
pages are hard to digest! You’ll recall the following section from index.jsp
(Listing 11-6).

Listing 11-6 Scripting Elements Used in index.jsp

...

<%

ServletContext sc = pageContext.getServletContext();

String dir = sc.getRealPath("/model1");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc= null;

if (file.exists()) {

doc = db.parse(file);

}

if (doc != null) {

NodeList nodes = doc.getElementsByTagName("story");

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

%>

<hr>

<h3><a href="<%= e.getAttribute("link") %>"><%=

falkner.ch11.qxd 8/29/03 1:01 PM Page 469

470 DESIGN PATTERNS

e.getAttribute("title") %></h3>

<%= e.getAttribute("story") %>

<%

}

}

%>

...

The code is looping through each of the news entries and creating the HTML
needed to show them. Complicating this is all of the code required to load and
parse the XML file containing news items. The code is needed, but there is no
reason the code has to be embedded in a scriptlet. The point here is that the
Model 1 design pattern is flawed because it allows a developer to haphazardly
insert Java code where they please. There is no separation of the data access code
and the code responsible for generating a response. The same flaw is present with
the XML-manipulating code in addnews.jsp.

Another good example of haphazardly used scripting elements can be seen in
addnews.jsp. The page should really be two separate pages. Instead, both pages
are combined into one large JSP with a conditional (Listing 11-7).

Listing 11-7 Condition Scriptlet from addnews.jsp

...

<%

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title != null && !title.equals("") &&

story != null && !story.equals("") &&

link != null && !link.equals("")) {

...

%>

<p align="center">You news has been added!

Back to main page.</p>

<% }

else {

%>

<h3>Add News</h3>

<p>Fill in all fields to add your news to Foo news.</p>

<form method="post">

Tile: <input size="50" name="title">

falkner.ch11.qxd 8/29/03 1:01 PM Page 470

COMMON DESIGN PATTERNS 471

Link: <input size="50" name="link">

Story:<textarea cols="50" rows="10" name="story" />

<input type="submit" value="Add News">

</form>

<% } %>

Combining pages is a bad idea because it turns a few relatively simple pages
into one complex one. The code is harder to manage, and future attempts to
change the page’s code have the possibility of breaking any of the other combined
pages. In the case of addnews.jsp the troubles caused by combining multiple
pages may not be as obvious as it should. Due to the simplicity of the code the
combination of pages might seem like a slick JSP trick, but be aware multiple
pages should not be combined. Combined pages are common to the Model 1
design pattern, especially when using a form to get feedback from a user and
trying to preserve a single endpoint.

Using dynamic pages with forms brings up another good illustration of the
mixed logic and formatting the Model 1 design uses. When soliciting infor-
mation from a user, the information must be validated appropriately. In the case
of HTML forms as much validation as possible should be done on the client side
to avoid round-trips; however, often the only good place for the validation to go
is on the server-side. There is no reason validation logic should be placed with
code designed to format output. However, in the Model 1 design pattern this is
exactly where the code goes. Review the validation code in addnews.jsp, which
was used to ensure a user has entered information (Listing 11-8).

Listing 11-8 Validation Code in addnews.jsp

<%

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title != null && !title.equals("") &&

story != null && !story.trim().equals("") &&

link != null && !link.equals("")) {

...

%>

<p align="center">You news has been added!

Back to main page.</p>

<% }

else {

falkner.ch11.qxd 8/29/03 1:01 PM Page 471

472 DESIGN PATTERNS

if(title == null) {

title = "";

}

if(link == null) {

link = "";

}

if(story == null) {

story = "";

}

%>

<h3>Add News</h3>

<p>Fill in all fields to add your news to Foo news.</p>

<form method="post">

Tile: <input size="50" name="title" value="<%= title%>">

Link: <input size="50" name="link" value="<%= link%>">

Story:

<textarea cols="50" rows="10" name="story">

<%= story%>

</textarea>

<input type="submit" value="Add News">

</form>

<% } %>

The code is as lengthy as the markup needed to create the HTML form!
Together, the markup and the validation code are a mess. The page is made overly
complex and will not be easy to maintain.

It should begin to be obvious that the flaws of the Model 1 design pattern are
due to the JSP scripting elements. JSP scripting elements are a poor interface
between the formatting markup and the Java code responsible for generating
dynamic content. The result is a cryptic JSP consisting of intermixed markup and
Java code. There is no clean separation behind the logically different types of
code.

Model 2
The Model 2, also called Model View Control or MVC, design pattern is one that
seeks to solve the problems of Model 1. The Model 2 design pattern logically
makes sense, works, and is commonly agreed upon as the best method of imple-
menting a Web Application using Servlets and JSP. The Model 2 architecture was
popularized in the JSP and Servlet community by the Jakarta Struts Framework,
http://jakarta.apache.org/struts. Struts is still a popular Model framework,

falkner.ch11.qxd 8/29/03 1:01 PM Page 472

and it is introduced later in the chapter, but initial examples of the Model 2
design are built from scratch to best illustrate important concepts.

The Model 2 design pattern defines a clean separation of a Web Application’s
business logic from presentation logic. Business logic consists of everything
required to get needed runtime information. Presentation logic consists of every-
thing needed to format the information into a form a client expects. By sepa-
rating the two, both parts are kept simple and are more easily manipulated.
Model 2 is also called MVC because commonly the separation is termed as cre-
ating Model, View, and Control. The Model component is a representation of the
application’s data repository and code involved with reading, writing, and vali-
dating information. The View component is responsible for interacting with a
user. The Control component links the other two components and is responsible
for providing a proper view to a user and keeping Model current.

As applied to JSP and Servlets, the Model 2 paradigm can be implemented in
a few different ways. Almost always the View component is solely done via JSP.
JSP provide an excellent method for creating View components for the com-
monly needed HTML and XML formats. The Model component is usually
encapsulated as a set of JavaBeans that are easy to manipulate with JSP, and the
Control component is either a Servlet or Filter designed to accept and appropri-
ately direct requests and responses sent by a client. Picture the design imple-
mented as illustrated in Figure 11-7.

There are a few important concepts to understand about the Model 2 design
pattern. As illustrated in Figure 11-7 everything is cleanly separated. The clean
separation is the most important aspect of the design pattern because it layers the
different types of functionality. More important concepts shown by Figure 11-7

COMMON DESIGN PATTERNS 473

View Endpoint 1
(JSP or Servlet)

Model 1
(JavaBean)

Control
(Filter or Servlet)

Model 2 Web Application

request response

View Endpoint 2
(JSP or Servlet)

Model 2
(JavaBean) ...

...

Figure 11-7 Model 2 Architecture

falkner.ch11.qxd 8/29/03 1:01 PM Page 473

are the interfaces the different parts of the design use to communicate. Most
important are the JavaBeans being used by the View. As is later explained this
interface helps to greatly simplify creation and maintenance of the JSP needed to
provide the appropriate View. The final important concept to note is how the
Control component is implemented. A Filter or Servlet accepting all requests and
responses is a very convenient place to implement security, logging, and any
other application-wide functionality.

Simple Model 2 Web Site
We are now going to rebuild the simple application used in the Model 1 section
to follow a Model 2 architecture. The example is needed to concretely illustrate
the concepts of this design pattern. Should you expect to seamlessly extend the
example into practical use, there are a few caveats, but these caveats are discussed
later and followed by an introduction to a good Model 2 framework for use in
real-world applications.

Rebuilding the sample application requires adding in some new classes. A
Filter is used as the Control component and a Java bean is required to commu-
nicate with the JSP View pages. The resulting application is an example of a
Model 2 architecture.

Not all parts of the Model 1 application need to be rebuilt. The static pages
header.jsp, footer.jsp, and about.jsp are all the same. Copy these pages from
the /jspbook/model1 directory over to the /jspbook/model2 directory. In general,
static pages are as efficient as they can be in regard to the Model 1 versus Model 2
designs. The difference between the patterns pivots about dynamic functionality.
Also copy news.xml from the /jspbook/model1 directory over to the
/jspbook/model2 directory. This keeps example news entries used in the Model 1
example.

The most complex part of the new design is the Filter used as the Control
component. The Filter is designed to intercept all requests and execute implicit
Java classes that are assumed to contain the Model 2 logic. Save Listing 11-9 as
ControlFilter.java in the /WEB-INF/classes/com/jspbook directory of the
jspbook Web Application. Discussion of how the Filter works occurs after the
code.

Listing 11-9 ControlFilter.java

package com.jspbook;

import java.io.*;

474 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 474

import javax.servlet.*;

import javax.servlet.http.*;

public class ControlFilter implements Filter {

protected FilterConfig config = null;

public void init(FilterConfig filterConfig) {

config = filterConfig;

}

public void doFilter (ServletRequest req,

ServletResponse res,

FilterChain chain)

throws IOException, ServletException {

if (!(req instanceof HttpServletRequest)) {

throw new

ServletException("Filter requires a HTTP request.");

}

// determine name of implicit control component.

HttpServletRequest request = (HttpServletRequest)req;

HttpServletResponse response = (HttpServletResponse)res;

String uri = request.getRequestURI();

int start = uri.lastIndexOf("/")+1;

int stop = uri.lastIndexOf(".");

String name = "default";

if (start < stop) {

name = uri.substring(start, stop);

}

boolean doFilter = true;

// try to load and run an implicit MVC control component.

try {

Object o =

Class.forName("com.jspbook."+name).newInstance();

if (!(o instanceof Control)) {

throw new ServletException("Class com.jspbook."+name+" does

not implement com.jspbook.Control");

}

Control control = (Control)o;

doFilter = control.doLogic(request, response);

}

COMMON DESIGN PATTERNS 475

falkner.ch11.qxd 8/29/03 1:01 PM Page 475

catch (ClassNotFoundException e) {

//ignore

}

catch (InstantiationException e) {

throw new ServletException(e);

}

catch (IllegalAccessException e) {

throw new ServletException(e);

}

// do whatever is next

if (doFilter) {

chain.doFilter(request, response);

}

}

public void destroy() {

// noop

}

}

The Filter is designed to accept all requests, check for an implicit Model 2
logic component (based on the URL), and execute the implicit logic component,
should it exist. The implicit logic component scheme is simple: the name of the
resource being accessed is assumed to be the name of a Model 2 logic component
in the com.jspbook package.

String uri = request.getRequestURI();

String name =

uri.substring(uri.lastIndexOf("/")+1, uri.lastIndexOf("."));

try {

Object o =

Class.forName("com.jspbook."+name).newInstance();

if (!(o instanceof Control)) {

throw new ServletException(

"Class com.jspbook."+name+" does not implement

com.jspbook.Control");

}

Control control = (Control)o;

control.doLogic(request, response);

}

476 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 476

For example, if index.jsp is being requested, then the Filter checks for the
com.jspbook.index1 class. If the class exists, it has a chance to process the request
and response before index.jsp. The only catch is that Java objects are not inher-
ently designed to do this—we need to make an interface. The Control Filter
assumes logic components implement the Control interface, which we will next
create, so that the object has a method, doLogic(), that can be passed the current
request and response.

Listing 11-10 is the code for the Control interface. Save the code as Control.
java in the /WEB-INF/classes/com/jspbook directory of the jspbook Web
Application.

Listing 11-10 Control.java

package com.jspbook;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

import javax.servlet.ServletException;

interface Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException;

}

The interface is straightforward; a single method is defined: doLogic() that
has instances of the HttpServletRequest and HttpServletResponse as argu-
ments. The doLogic() method also throws instances of ServletException and
IOException so that Servlet-related exceptions can be passed to the Web
Application.

The Control Filter only provides a loose contract for coding Model 2 logic
components. We still need to code individual logic components for each of the
dynamic resources in the Model 2 Web Application. The first component we will
code is for the index page, the Model 1 code that was used previously, which is
shown in Listing 11-11.

COMMON DESIGN PATTERNS 477

1. The use of a lowercase class name, index.java instead of Index.java, does go against Java-
style guidelines; however, the choice is deliberate in order to ensure that implicit control objects don’t
conflict with existing classes. The practice is questionable, and you can certainly use a different
system, such as proper class names, in a control package.

falkner.ch11.qxd 8/29/03 1:01 PM Page 477

478 DESIGN PATTERNS

Listing 11-11 Model 1 index.jsp Scripting Elements

<%

ServletContext sc = pageContext.getServletContext();

String dir = sc.getRealPath("/model1");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc= null;

if (file.exists()) {

doc = db.parse(file);

}

if (doc != null) {

NodeList nodes = doc.getElementsByTagName("story");

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

%>

<hr>

<h3><a href="<%= e.getAttribute("link") %>"><%=

e.getAttribute("title") %></h3>

<%= e.getAttribute("story") %>

<%

}

}

%>

For the Model 2 version of the index page we are attempting to remove all
scripts. Therefore, the script’s logic needs to be built into a logic component for
use with the Control Filter. We will assume the index page will also be named
index.jsp in this Web site, meaning its implicit logic component is index.java.
Save Listing 11-12 as index.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook Web Application.

Listing 11-12 index.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import javax.xml.parsers.*;

falkner.ch11.qxd 8/29/03 1:01 PM Page 478

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import java.util.*;

public class index implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

try {

ServletContext sc =

request.getSession().getServletContext();

String dir = sc.getRealPath("/model2");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc= null;

if (file.exists()) {

doc = db.parse(file);

}

if (doc != null) {

NodeList nodes = doc.getElementsByTagName("story");

Properties[] ads = new Properties[nodes.getLength()];

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

ads[i] = new Properties();

ads[i].setProperty("link", e.getAttribute("link"));

ads[i].setProperty(

"title", e.getAttribute("title"));

ads[i].setProperty(

"story", e.getAttribute("story"));

}

request.setAttribute("news", ads);

}

} catch(SAXException e) {

throw new ServletException(e.getMessage());

}

COMMON DESIGN PATTERNS 479

falkner.ch11.qxd 8/29/03 1:01 PM Page 479

catch (ParserConfigurationException e) {

throw new ServletException(e.getMessage());

}

return true;

}

}

The only major difference between the code in Listing 11-10 and Listing 11-11
is the Model 2 version does not send output directly to a client. Instead, the values
for each of the news items are stored in a java.util.Properties object:

Properties[] ads = new Properties[nodes.getLength()];

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

ads[i] = new Properties();

ads[i].setProperty("link", e.getAttribute("link"));

ads[i].setProperty(

"title", e.getAttribute("title"));

ads[i].setProperty(

"story", e.getAttribute("story"));

}

All of the news items are placed in one array that is then put in request scope.

request.setAttribute("news", ads);

By using the request-scoped variable we have created an interface for the pre-
sentation JSP to use. Instead of relying on a script, the JSP can now be done
purely with markup if we use the JSTL and JSP EL. The new code for index.jsp
is as follows. Save Listing 11-13 as index.jsp in the model2 directory of the
jspbook Web Application.

Listing 11-13 Model 2 index.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<jsp:include page="header.jsp"/>

<c:forEach var="story" begin="0" items="${news}">

<hr>

<h3>

${story.title}

</h3>

${story.story}

</c:forEach>

<jsp:include page="footer.jsp"/>

480 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 480

The code is simple compared to Listing 11-1! The difference is important to
see because index.jsp has now become trivial to maintain. Editing the page is as
simple as editing an HTML page. Thanks to the JSP standard actions, the
expression language, and the JSTL, no scripting elements are required.

The page still produces the same results as you saw previously in Figure 11-5.
Try it out by compiling ControlFilter.java and deploying the Filter to accept all
requests to the Model 2 application. Listing 11-14 is the entry needed for web.xml.

Listing 11-14 web.xml Entry for ControlFilter.java

<filter>

<filter-name>ControlFilter</filter-name>

<filter-class>com.jspbook.ControlFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>ControlFilter</filter-name>

<url-pattern>/model2/*</url-pattern>

</filter-mapping>

After deploying the Filter, reload the jspbook Web Application. Next copy
news.xml and header.jsp and footer.jsp from the /model1 directory into the
/model2 directory and browse to http://127.0.0.1/jspbook/model2/

index.jsp. The results are the same as Figure 11-5. The benefit is the two sim-
plified components, index.java and index.jsp, compared to one overly
complex JSP.

The new code for adding news also benefits from the Model 2 architecture in
the same ways as the index page. Instead of one overly complex JSP, such as
Listing 11-2, we will create a simple logic component and a simple JSP. Here is
the logic for the Control component. Save Listing 11-15 as addnews.java in the
/WEB-INF/classes/com/jspbook directory of the jspbook Web Application.

Listing 11-15 addnews.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.*;

COMMON DESIGN PATTERNS 481

falkner.ch11.qxd 8/29/03 1:01 PM Page 481

import org.w3c.dom.*;

import org.xml.sax.*;

import java.util.*;

public class addnews implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext sc =

request.getSession().getServletContext();

try {

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title != null && !title.equals("") &&

story != null && !story.trim().equals("") &&

link != null && !link.equals("")) {

String dir = sc.getRealPath("/model2");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = null;

if (file.exists()) {

doc = db.parse(file);

} else {

doc = db.newDocument();

Element root = doc.createElement("news");

doc.appendChild(root);

}

Element news = doc.createElement("story");

news.setAttribute("title",title);

news.setAttribute("link",link);

news.setAttribute("story",story);

doc.getDocumentElement().appendChild(news);

TransformerFactory tf =

TransformerFactory.newInstance();

Transformer t = tf.newTransformer();

DOMSource source = new DOMSource(doc);

StreamResult result =

new StreamResult(new FileOutputStream(file));

t.transform(source, result);

sc.getRequestDispatcher(

482 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 482

"/model2/addnews_thanks.jsp").forward(request,

response);

} else {

Properties an = new Properties();

an.setProperty("title", title);

an.setProperty("link", link);

an.setProperty("story", story);

request.setAttribute("form",an);

}

} catch (TransformerException e) {

throw new IOException(e.getMessage());

}

catch (SAXException e) {

throw new ServletException(e.getMessage());

}

catch (ParserConfigurationException e) {

throw new ServletException(e.getMessage());

}

return true;

}

}

Compile the code and it is ready for use. No deployment is required because
the Control Filter will implicitly check for the class, but we still need to code
addnews.jsp. Save Listing 11-16 as addnews.jsp in the model2 directory of the
jspbook Web Application.

Listing 11-16 Model 2 Code for addnews.jsp

<jsp:include page="header.jsp"/>

<h3>Add News</h3>

<p>Fill in all fields to add your news to Foo news.</p>

<form method="post">

Tile: <input size="50" name="title" value="${form.title}">

Link: <input size="50" name="link" value="${form.link}">

Story:

<textarea cols="50" rows="10" name="story">

${form.story}

</textarea>

<input type="submit" value="Add News">

</form>

<jsp:include page="footer.jsp"/>

COMMON DESIGN PATTERNS 483

falkner.ch11.qxd 8/29/03 1:01 PM Page 483

The code is simple compared to Listing 11-2. Again, the Model 2 design
pattern has turned a complex, code-filled JSP into a simple page of markup.
Although, the preceding code is not the complete equivalent of addnews.jsp

from the Model 1 application. The confirmation page is broken out into its own
page. Save Listing 11-17 as addnews_thanks.jsp.

Listing 11-17 addnews_thanks.jsp

<jsp:include page="header.jsp"/>

<p align="center">You news has been added!

Back to main page.</p>

<jsp:include page="footer.jsp"/>

With the new addnews.jsp and addnews_thanks.jsp, the complex addnews.
jsp page from the Model 1 example is now two simple pages. Each page can easily
be edited by a developer with HTML experience and an understanding of the
JSTL actions and the JSP EL.

Try out addnews.jsp by browsing to http://127.0.0.1/jspbook/model2/
addnews.jsp. The result is the same as in Figure 11-3. The functionality is also
the same. The input from the page is properly validated and optionally kept
should one of the form fields be blank.

Why Is This Model 2?
This is a Model 2 application because it strongly enforces the separation of
business logic from presentation. Let’s review the application. The application
has been split into a controller with several models and views. The Filter is acting
as the controller. When it receives a request, the Filter initializes an appropriate
model then forwards control to the view, which in this case is a JSP. Before for-
warding control, the controller stores needed information in request scope. The
view JSP then extracts the data from the model and uses it to create the presen-
tation data, the HTML.

Do not think of this application as Model 2 because we have named some-
thing Model, View, and Control. The important thing to see is at no point in this
application does business logic mix with presentation—that is, no scripting ele-
ments are used and no HTML is produced by the Filter or logic components.
Instead, View components contain only HTML markup and the dynamic data to
show. Model and Control components are used to abstract out all the code
responsible for generating the dynamic data.

The example Model 2 application is separated into a few components. We
have one main Filter that accepts all request and pre-processes all responses,

484 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 484

ControlFilter.java. In addition to the Filter there are five very simple JSP:
header.jsp, footer.jsp, about.jsp, addnews.jsp, and index.jsp. The pages
communicate with the Filter via request-scoped variables. Compared to our
original Model 2 diagram, Figure 11-6, the code fits in as shown in Figure 11-8.

The illustration shows the clean separation of presentation and business
logic. There is a stark difference between Figure 11-7 and the equivalent diagram
for the Model 1 example, Figure 11-6. In the Model 1 example all requests were
sent directly to one endpoint. In the Model 2 example all requests are first passed
through the Control Filter, optionally executing Model logic, and then sent to the
appropriate View. The end result is a few simple, manageable Model 2 compo-
nents compared to the three complex Model 1 JSP. This is typical of the MVC
architecture. Instead of a few hard-to-maintain components, several easy-to-
maintain components are created, and that is exactly why it is desirable to use the
Model 2 design pattern.

Model 2 Strengths
The primary benefit of the Model 2 architecture is a clean separation of business
logic and presentation. This is clearly illustrated by the changes seen in
index.jsp, Listing 11-1 to Listing 11-13, and addnews.jsp, Listing 11-2 to
Listing 11-16, and Listing 11-17. The pages are clean, even elegant, compared to
the Model 1 versions. Maintenance is as simple as editing HTML. Consider also
that the code in any of the View components cannot possibly disrupt the Model
code. This is important because it is a problem that plagues the Model 1 design
pattern. Making a simple typo fix in a Model 1 page can result in accidentally
changing code that affects the entire application. In the Model 2 design pattern

COMMON DESIGN PATTERNS 485

View
addnews.jsp

Model
News.java

Control
ControlFilter.java

Web Application

request response

View
index.jsp

View
about.jsp

Model
News.java

Figure 11-8 Model 2 Illustration of Example Application

falkner.ch11.qxd 8/29/03 1:01 PM Page 485

this can be made impossible. The request-scoped variables used to pass View
information only contain the needed View information. The View page has no
idea where the information came from nor does it care. Take a look at index.jsp,
addnews.jsp, and about.jsp for the Model 2 example, and you can see the worst
thing the page is possible of is creating some bad HTML.

The clean separation of logic and presentation also benefits the Model compo-
nents. At no time do the View pages care about how the information is obtained.
Should the Model use a database, flat file, or anything else, it does not matter. This
point alone makes the Model 2 design pattern far superior to Model 1. A proper
level of abstraction is always between the View and Model components. A Model 2
application can freely change the underlying data model of a Web Application as
much as is needed with no danger of disrupting View components. As long as the
interface between the two, the request-scoped variables, are correctly used, the JSP
View pages work.

Another minor but helpful strength of the Model 2 design pattern comes
from the Control component. The Control component provides a perfect place
to manipulate all requests and responses going through the Web Application. It
is a convenient place for security, logging, error handling, and anything else a
Filter is commonly used for. In some cases, such as error handling, the Control
component is arguably better. The Control component can use native Java try-
catch-finally statements instead of relying on an error passed via request para-
meters or as an HTTP error code.

Overall, the Model 2 architecture has many benefits when compared to
Model 1. The benefits all come from clean separation of logic and presentation.
This separation is not unlike the object-orientated programming concepts on
which Java is based. By breaking a Web Application down into logical compo-
nents, it is much easier to build and maintain the entire thing.

Model 2 Weaknesses
The Model 2 architecture has no significant weakness compared to the advan-
tages it provides for a Web Application. The only arguable weakness is developers
following the design pattern must be trained in how it works, but this is a
weakness common to any good programming technique.

Potentially arguable weaknesses of the Model 2 design pattern include devel-
opment time and runtime performance. By sheer numbers a Model 2 application
is designed to have more components than a Model 1 application. If the logic is
followed that more components means a longer development time, then it is a
possible weakness. However, more components in the Model 2 case does not

486 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 486

mean longer development time. The components are all encapsulation of logical
parts of the application. The result is a bunch of simple components, which can
more easily be created and maintained compared to overly complex Model 1
endpoints. The possible argument of the Model 2 architecture performing worse
at runtime is also not true. Performance is always dependent on a case-by-case
basis, and in all cases the time it takes to populate and pass a request parameter
is dwarfed by the time it takes to send a response to a client, so it is the round-
trip time that is typically the largest in many applications.

Caveats of This Example
As previously mentioned there are a few caveats with the Model 2 example appli-
cation. The concepts covered are sound; the code is weak for the Model and
Control components. What is provided in our implementation is close to the
bare minimum required to get the job done, which is usually all you care for
anyhow. However, as is presented later in the chapter, there are several enhance-
ments possible for a Model 2 framework.

Good Model 2 Implementation
Separation of business from presentation logic is the difference between the
Model 2 and Model 1 design patterns. What was shown previously in this chapter
is how to build upon the strengths of JSP: keeping a clean and easy to author
syntax and minimizing the amount of non-presentation logic embedded in the
code. The topic left for discussion is how to best implement all of the business
logic outside of embedding it in a JSP. Before Filters were introduced, it was
common to combine this logic in the Control component of a Model 2 Web
Application. With Filters the choice is now between combining logic in a MVC
Control component or as additional Filters.

In almost all cases Filters are the best method of implementing code that
should be applied to a given set of requests or responses. This type of code
includes security, form validation, caching, and compression. The reason Filters
are the best method is because the Filter chain has a very strict separation of com-
ponents. The Filter chain is invoked link by link with each link tied by a contract
consisting of the doFilter() method. The strict separation allows for multiple
specialized Filter components to be built and layered accordingly. The resulting
chain can then be an ideal implementation of good object-oriented functionality
that is reusable for future projects.

The trick to implementing a good modular Model 2 Web Application is
understanding where code should go and why. The current Model 2 design we

COMMON DESIGN PATTERNS 487

falkner.ch11.qxd 8/29/03 1:01 PM Page 487

have is not a good, complete picture of a Web Application. Figure 11-7 should be
redrawn as Figure 11-9.

Figure 11-9 adds in one more important and practical parts to our Model 2
design: reusable layered functionality. This functionality comes in the form of
Filters because they are a standard component for J2EE Web Applications. The
same effect can be achieved with a pluggable component scheme and a good
Model 2 Control implementation, but the pluggable components would only be
helpful in combination with the same Control component. Filters can be univer-
sally helpful regardless of the Web Application.

The important point to understand is why Figure 11-9 adds in the additional
layer to our Model 2 design. Think of a request coming to a Web Application.
Understanding how Filters work, it is clear an appropriate Filter chain will be
constructed by the Web Application to handle the particular request. The chain
can consist of zero to many links and eventually results in an endpoint. If you
think of the chain hanging vertically, it should be easy to relate it to a stack, much
like the OSI or DOD Internet models2. Figure 11-10 illustrates our Model 2 stack.

The stack has two layers: business logic and a presentation logic endpoint.
The layers are the exact same thing described by any Model 2 design discussion.
The business logic layer handles all of the business logic needed by the presen-
tation logic layer. The presentation logic layer is then given only the information

488 DESIGN PATTERNS

View Endpoint 1
(JSP or Servlet)

Model 1
(JavaBean)

Control
(Filter or Servlet)

Practical Model 2 Web Application

request response

View Endpoint 2
(JSP or Servlet)

Model 2
(JavaBean) ...

...

Layered, Reusable Functionality
(Filters)

Figure 11-9 Good, Complete Picture of a Web Application

2. International Standards Organization 7-layer stack, or Department of Defense 4-layer equivalent.

falkner.ch11.qxd 8/29/03 1:01 PM Page 488

it needs to create a response. As we previously saw, this method of stacking func-
tionality is good because it makes creating and maintaining a Web Application
easier than the Model 1 approach. The question now is, How do we improve this
Model 2 stack keeping in mind Servlets and JSP are the tools being used to build
it?

There is one great improvement we can make to this Model 2 stack: factor out
the reusable business logic into higher layers. This results in moving reusable
logic out of the business logic layer and into new, higher level of the stack. This
higher level is a place where code can be placed that does not care about the par-
ticular endpoint of the stack. It only cares about manipulating a request or
response. The new, improved Model 2 stack is as shown in Figure 11-11.

Note the new top level of the stack, reusable Filters. This top level is a place
to put code that can be re-used across many Web Applications and is helpful
regardless of specific endpoints. It is a separation of business logic specific to a
particular endpoint and business logic universal to all endpoints. We want to do
this because it further modularizes code and makes building new Web
Applications simpler.

COMMON DESIGN PATTERNS 489

Business Logic

Presentation Logic

Model 2 Stack

Figure 11-10 Model 2 Stack

Business Logic

Presentation Logic

Improved Model 2 Stack

Reusable Filters

Figure 11-11 Improved Model 2 Stack

falkner.ch11.qxd 8/29/03 1:01 PM Page 489

The idea of what we are doing with the improved Model 2 stack can clearly
be shown with the existing code examples. Consider the Model 2 application
built in this chapter. The code factored out from the scripting elements in the
Model 1 application what always had to do with a particular endpoint. For this
reason all of this code would naturally go into the business logic stack of the
improved Model 2 design. However, consider some realistic needs of the appli-
cation. What if users were required to be logged into some part of the Web
Application, or if caching or compression was desired for the responses? Where
would this code go? In a purely conceptual Model 2 application it would go with
all the other business logic. However, practically the code would best be imple-
mented as a Filter as demonstrated in Chapter 8. The reason should be clear: by
keeping the code in a Filter, it is easier to re-use the Filter in future Web
Applications. If the code was coded with the other business logic for a particular
endpoint, then it could not be re-used in a future Web Application. Therefore, the
code for security, cache, or compression would best be placed in the reusable
Filter layer of the improved Model 2 design.

Understanding Model 2 is important. It can save a lot of time in both devel-
oping and maintaining a Web Application; however, understanding how to best
practically implement a Model 2 application with Servlets and JSP allows you to
further optimize the benefits of the design pattern. In all cases try to use a Model 2
design when creating a Web Application. When possible think about how physically
you are implementing the Model 2 application. In many cases it is possible to take
advantage of Filters to create components applicable to any application.

Jakarta Struts
The Struts Framework is often called “The Framework” for developing Model 2
Web Applications with Servlets and JSP. The Struts framework originated from
the Apache Jakarta project, http://jakarta.apache.org, alongside Tomcat.
Thanks to the dedication and support of many Jakarta developers, Struts quickly
became a good framework for developing Model 2 Web Applications.

Struts is still a good framework to use for building Model 2 Web
Applications. The Struts framework provides a project with a generic Control
Servlet, a supporting tag library for creating forms, and other features such as
internationalization support. The Struts framework comes with a full set of user
and developer documentation, and Struts has one of the most active user com-
munities around. For all of these reasons Struts is an excellent framework to both
understand and use as a Servlet and JSP developer. To finish our discussion on

490 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 490

design patterns, we will take a look at the Struts framework and some tips for
using the framework to get a project off to a quick start.

Installing Struts
The Struts framework is available in both binary and source code distributions
under the Apache Software Foundation license. The project can be used free for
both commercial and non-commercial projects, but if you are unfamiliar with
the Apache license, be sure to take the time to read and understand it. The Apache
group has supported the development of some fantastic software, and the least
you can do is spend the time to properly understand the page-long license.

Struts is being covered in this chapter because it is a helpful framework for
developing Model 2 Web Applications. Leaving off discussion with a few simple
Model 2 examples is no way to get you started on a real-world project. For the
Struts discussion you will need to download the latest release of Struts. The spe-
cific version used by this book is the binary release of Struts 1.0.2. The release can
be downloaded at http://jakarta.apache.org/struts. If you do not have this
code, download it now.

What Is in Struts 1.0.2?
Included with Struts 1.0.2 are quite a few things including: Struts, documen-
tation, examples, and a quick start Web Application. The Struts download
explains all of this in its included documentation and the online version of the
same. There is no point in this book providing a rehash of all of this excellent
documentation, especially when the material covered here has the potential to be
outdated by new releases of Struts. Instead, this chapter provides only a quick
overview of Struts in an attempt to complement the documentation. You are
wholeheartedly recommended to read the official, current documentation if you
would like to use Struts with a project outside the scope of this book.

The only thing this chapter can do better than the Struts’ documentation is give
an objective view of Struts 1.0.2 functionality and explain how it works with all of
the other concepts we have covered in this book. This is the approach that will be
taken, but first you need to understand what comes with the Struts download.

Decompress the binary installation of Struts into a convenient directory. The
following files are present:

• lib/struts.jar: This JAR file contains all of the Java classes included
in Struts. It is available so existing Web Applications can take
advantage of Struts.

JAKARTA STRUTS 491

falkner.ch11.qxd 8/29/03 1:01 PM Page 491

• lib/struts*.tld: All of the .tld files in the /lib directory are the Tag
Library Descriptor files for the Struts custom tag libraries. When
installing Struts for use with an existing Web Application, these files
are needed to describe the Struts tag libraries.

• webapps/struts-blank.war: The struts-blank.war file is a simple,
empty Web Application with all of the Struts resources installed and
configured for use. When starting a new Web Application from
scratch, this file is an excellent way to have Struts pre-installed.

• webapps/struts-documentation.war: The struts-
documentation.war file includes all of the Struts documentation.
The documentation includes generated Java API documentation
and user and developer guides. All of the documentation in
struts-documentation.war can be found online at
http://jakarta.apache.org/struts. The WAR file is just a conve-
nient method for keeping a local copy of the Struts documentation.

• webapps/struts-example.war: The struts-example.war file is an
example Web Application built using Struts. The application
includes a full walk-through along with source code.

• webapps/struts-exercise-taglib.war: The struts-exercise-
taglib.war is a Web Application containing test pages for the
various custom tags supported by Struts. The WAR is primarily
intended for Struts developers but may also be useful as simple
examples of the usage of various Struts tags.

• webapps/struts-template.war: The struts-template.war file is a
Web Application that introduces and demonstrates the Struts tem-
plate tags.

• webapps/struts-upload.war: The struts-upload.war file is a Web
Application demonstrating how to upload files using the Struts
framework.

In this chapter only a few of the included Struts files are examined.
Installation of Struts with an existing and a new application are covered along
with using the Struts controller Servlet. The example application, documen-
tation, template, and tag library WAR files are not covered.

Creating a New Struts Web Application
Creating a new Struts-based Web Application from scratch is simple. The
struts-blank.war file is a WAR that automatically deploys an empty Web

492 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 492

Application with Struts pre-installed. Simply deploy the WAR file with a con-
tainer to have a Web Application ready to go with Struts already installed. With
Tomcat the Web Application can be deployed by copying struts-blank.war to
the /webapps directory of Tomcat. Restart Tomcat and the WAR file is deployed
to a sub-directory of the same name. Rename the WAR file before deploying the
Web Application to get a custom-named directory.

After deploying the struts-blank.war file, the Web Application is ready to
go. For the later examples of this chapter an example application is required.
Copy struts-blank.war to the /webapps directory of your Tomcat installation.
Restart Tomcat and the application is deployed. Browse to http://127.0.0.1/
struts-blank to test if the new Web Application is correctly installed. If it is, the
screen that is shown in Figure 11-12 should be displayed.

You now have a Struts-ready Web Application. As an example of how to use
Struts we will re-implement the example Model 2 application with the Struts
framework. Not all parts of the application need to be rebuilt. The JSP View pages
can remain exactly as they are. Copy header.jsp, footer.jsp, index.jsp,
about.jsp, news.xml, and addnews.jsp from the /webapps/jspbook/model2
directory to the /webapps/struts-blank directory of your Tomcat installation.
For the View pages the JSTL is required. Copy over jstl.jar and standard.jar
from the /webapps/jspbook/WEB-INF/lib directory to the /webapps/struts-
blank/WEB-INF/lib directory of your Tomcat installation. The News JavaBean
previously created is also re-used in the Struts version of the application. Copy
News.java from the jspbook Web Application to the /WEB-INF/classes/com/
jspbook directory of the struts-blank Web Application.

JAKARTA STRUTS 493

Figure 11-12 Deployment of Struts Blank Web Application

falkner.ch11.qxd 8/29/03 1:01 PM Page 493

The Vew components are the only ones that seamlessly work with the new
Struts-based Web Application. In the next few sections we will rebuild the Model
and Control components to take advantage of Struts.

Installing Struts with an Existing Web Application
A Web Application can start using Struts at any time by installing and config-
uring the needed Struts resources. Compared to using the struts-blank.war file,
manually installing Struts is slightly more difficult. Complete instructions for
installation of Struts with an existing Web Application can be found in the Struts
User Guide.

Struts Control Servlet
The core of the Struts framework is the pre-built Control Servlet. The Control
Servlet is a configurable Model 2 Control component that allows for pluggable
Model components and easy interaction with forms. We can take advantage of
the Struts Control Servlet to provide a robust mechanism for the Model compo-
nents of our Model 2 application. Recall this was the largest caveat of the pre-
vious Model 2 example. Struts provides a more appealing alternative to hard
coding Model logic into ControlFilter.java.

Struts was built around the JSP 1.1 and Servlet 2.2 specifications. What this
means is Struts does not currently take advantage of Filter functionality. Instead,
the Struts framework relies on all requests ending with a fictitious extension,
usually .do3. The control Servlet intercepts all requests with the fictitious
extension and forwards them to the appropriate JSP or Servlet. The specific con-
figuration for the Struts Control Servlet is an entry in web.xml, the same as any
other Servlet. The struts-blank.war file automatically has the Servlet deployed.
If you look in web.xml of the struts-blank Web Application, you should find the
code in Listing 11-18.

Listing 11-18 Default Struts web.xml Entry

...

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-

494 DESIGN PATTERNS

3. The .do extension is commonly used because it is what the Struts examples use, but any
extension can be used.

falkner.ch11.qxd 8/29/03 1:01 PM Page 494

class>

...

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

...

The Struts Control Servlet intercepts all requests ending in .do. Cut out from
the preceding entry are the specific initialization parameters for the Control
Servlet. All of these parameters are explained further by the Struts documen-
tation. The default entry for the Control Servlet suffices for most situations
including this example.

An important point to understand about the Control Servlet is how it differs
from the previous Model 2 example’s Filter. With the Filter, requests could go
directly to a concrete endpoint—for example, the URL for index.jsp is http://
127.0.0.1/struts-blank/index.jsp. With the Struts Redirection Servlet all
requests need to go to the fictitious .do endpoint. While the fictitious endpoint
can be redirected to any concrete endpoint, the difference is usually just
exchanging .jsp for .do—for example, a request to index.jsp would be done in
Struts by requesting http://127.0.0.1/struts-blank/index.do. The difference
is minor and only due to how Struts implements the Model 2 Control com-
ponent.

There are pros and cons to implementing a Model 2 design with a Control
component as either a Servlet or Filter. The general consensus is a Filter is the
best approach. Seamlessly and cleanly stacking layers of Filters on top of a con-
crete endpoint is usually much more intuitive and requires less configuration.
However, using the Struts approach is helpful because it keeps a layer of
abstraction between all requests and the endpoints they link to. The abstraction
is helpful in situations where the underlying endpoints need to change. However,
the abstraction creates the classic Struts problem of ensuring potentially mali-
cious users do not try to directly browse .jsp files instead of abstract .do map-
pings4.

JAKARTA STRUTS 495

4. Silly or not, the solution to this problem is usually to move all JSP source code to a subdirectory of
/WEB-INF. By doing this no direct requests to the JSP can be made by outside clients, but internal
Servlet redirection still works.

falkner.ch11.qxd 8/29/03 1:01 PM Page 495

Actions
The great part about using Struts is taking advantage of the pre-built Model 2
Control component. With this part of the Model 2 application automatically
installed and ready to go, the only thing we need to worry about is creating Model
and View components. In Struts, Model components are referred to as Actions.
The Control Servlet allows for a subclass of org.apache.struts.action.Action
to encapsulate the business logic required for a particular request. An Action
class in Struts is analogous to the hard-coded business logic used in
ControlFilter.java.

Struts’ Actions are a good reason to use the Struts controller versus the simple
ControlFilter.java used previously in this chapter. By using Struts’ Action
classes all of the business logic associated with a particular View page is com-
pletely encapsulated in one class. This allows for Action classes to be easily
plugged in for use and debugged should something go wrong. It also prevents the
controller component from becoming bloated with all of the Model code.
ControlFilter.java would quickly bloat with code should it be implemented in
a real Web Application. An approach such as the Action classes Struts uses is
clearly a better option.

Using Action Classes
Using an Action class requires two things: a subclass of Action used to encap-
sulate all of the business logic for a given request, and an entry to the Struts con-
figuration file to allow Struts to associate a given request or set of requests with a
given action.

The Action class acts as a base class for Java classes. A new Struts action class
needs to extend org.apache.struts.action.Action and override the perform()
method. The perform() method is invoked by the Control Servlet before for-
warding a request to a View page. By encapsulating business logic in the
perform() method, it is guaranteed to be executed before the request reaches the
appropriate View.

The perform() method looks like this:

ActionMapping perform(ActionMapping am, ActionForm form,

HttpServletRequest request, HttpServletResponse response)

The perform() method is passed the same parameters as the Servlet service
methods with additional parameters of a Struts org.apache.struts.action.
ActionMapping class and an org.apache.struts.action.ActionForm class.
The ActionMapping class is a representation of the configuration mapping

496 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 496

Struts used to determine the appropriate Action class. The ActionForm class is an
optional class that may be used to represent an HTML form-based request.
Returned from the perform() method is an instance of org.apache.action.

ActionForward providing information about what the Control Servlet should
next do with a request. If null is returned, it is assumed the request and
response are completely handled by the current Action class.

The skeleton of a custom Action class is always the same. Extend Action and
override the perform() method. Listing 11-19 shows how the skeleton class
would look in code.

Listing 11-19 BlankAction.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

public final class BlankAction extends Action {

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

//handle request and response...

return null;

}

}

The preceding class is an example of a custom Action class that does nothing.
A more practical implementation of the class would involve placing business
logic where the comment is. Because the perform() method’s parameters include
the current HttpServletRequest and HttpServletResponse, the same business
logic a JSP or Servlet would use can be used. Take for instance the code used in
ControlFilter.java for the index.jsp. The same code authored as a Struts
Action is as follows. Save Listing 11-20 as IndexAction.java in the /WEB-INF/
classes/com/jspbook directory of the struts-blank Web Application.

JAKARTA STRUTS 497

falkner.ch11.qxd 8/29/03 1:01 PM Page 497

Listing 11-20 IndexAction.java

package com.jspbook;

import java.io.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import java.util.*;

public final class IndexAction extends Action {

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

ServletContext sc = getServlet().getServletContext();

try {

String dir = sc.getRealPath("/");

File file = new File(dir+"/news.xml");

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc= null;

if (file.exists()) {

doc = db.parse(file);

}

if (doc != null) {

NodeList nodes = doc.getElementsByTagName("story");

Properties[] ads = new Properties[nodes.getLength()];

for (int i = 0; i < nodes.getLength();i++) {

Element e = (Element)nodes.item(i);

ads[i] = new Properties();

ads[i].setProperty("link", e.getAttribute("link"));

ads[i].setProperty("title", e.getAttribute("title"));

ads[i].setProperty("story", e.getAttribute("story"));

498 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 498

JAKARTA STRUTS 499

}

request.setAttribute("news", ads);

}

} catch(SAXException e) {

throw new ServletException(e.getMessage());

}

catch (ParserConfigurationException e) {

throw new ServletException(e.getMessage());

}

// Forward control to the specified success URI

return (mapping.findForward("success"));

}

}

The preceding code has two changes from the code used in ControlFilter.
java for index.jsp. The first change is how the class accesses the Web
Application’s ServletContext object. The second change is the object returned
by the perform() method.

The Action class is not an instance of a Servlet or Filter. With all of the
previous examples in this book we have used either the ServletConfig or
FilterConfig objects to access the Web Application’s ServletContext. In
ControlFilter.java the ServletContext object is required in order to find the
correct location of news.xml.

...

ServletContext sc = fc.getServletContext();

...

String dir = sc.getRealPath("/model2");

File file = new File(dir+"/news.xml");

...

In IndexAction.java the ServletContext object is accessed slightly differ-
ently. Instead of getting a reference from a configuration object, the get
Servlet() method is used to reference the Control Servlet, which in turn pro-
vides the getServletContext() method.

...

ServletContext sc = getServlet().getServletContext();

...

String dir = sc.getRealPath("/");

File file = new File(dir+"/news.xml");

...

falkner.ch11.qxd 8/29/03 1:01 PM Page 499

500 DESIGN PATTERNS

The change is due to a difference in how subclasses of Action access the
appropriate ServletContext.

The second change is much more important and is heavily related to the
Struts configuration file. Note IndexAction.java returns an instance of
ActionForward retrieved from the ActionMapping parameter passed to the
perform() method.

...

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

...

return (mapping.findForward("success"));

...

The returned object is telling the Control Servlet the business logic has suc-
cessfully completed and the View resource identified as “success” should now
handle the request and response. In BlankAction.java a null value is returned.
The null value informs the Control Servlet the response is finished, which is the
same as skipping the optional invocation of FilterChain doFilter() in a Filter’s
doFilter() method. By returning an ActionForward object, the Action class is
doing the equivalent of invoking the FilterChain.doFilter() method.

Unlike a Filter chain, the resources invoked by the Struts Control Filter are
dependent on the Struts configuration file. The Struts configuration file is an
XML configuration file that is used in a similar fashion as web.xml. By default the
Struts configuration file is struts-config.xml located in the /WEB-INF directory.
The Struts configuration file contains four different root elements for the dif-
ferent functionality Struts provides:

• data-sources: The data-sources element is used to define zero to
many data-source child elements, which define data sources. A data
source is a JDBC 2.0 Standard Extension data source object. Data
source objects defined by the Struts configuration file are made
available as a ServletContext attribute (i.e., application scope bean).
Data sources are a convenient and modular way to interface with
commonly used data repositories. The functionality is not relevant to
this chapter, but is covered further in Chapter 14.

• form-beans: The form-beans element is used to define zero to
many form-bean children elements, which each define Struts’ form

falkner.ch11.qxd 8/29/03 1:01 PM Page 500

JAKARTA STRUTS 501

bean. A form bean is a JavaBean representation of an HTML form.
HTML forms are commonly used by Web Applications, and Struts
has specialized support for them. Full coverage of Struts’ form
beans can be found in the documentation included with Struts.

• global-forwards: The global-forward element is used to define
zero to many global-forward children elements, which each define
a Struts global forward. A global forward is a Struts-wide method of
mapping an abstract URL to a real endpoint in the Web
Application. Global forwards are helpful to a Struts developer, but
the functionality is not relevant to this chapter. Further coverage of
Struts’ global forwards is found in the documentation that is
included with Struts.

• action-mappings: The action-mappings element is used to define
zero to many action-mapping child elements, which each define an
action mapping. An action mapping is a mapping between an
Action class and an abstract Struts URL. The mapping also defines
possible endpoints for the Action class to forward to.

Right now we are only interested in using the Struts configuration file to
define some action mappings. Edit struts-config.xml file in the Struts blank
Web Application to include the code in Listing 11-21.

Listing 11-21 An Action Mapping for the Struts Configuration File

...

<action-mappings>

<action

path="/index"

type="com.jspbook.IndexAction">

<forward name="success" path="/index.jsp"/>

</action>

...

</action-mappings>

...

This entry adds an action mapping for the /index URL (i.e., index.do) and
the custom IndexAction class. The path attribute defines the abstract URL, and
the type attribute defines the custom action class to use. Additionally, the
forward sub-element is used to define an action forward named “success” that
goes to index.jsp.

falkner.ch11.qxd 8/29/03 1:01 PM Page 501

All parts of Listing 11-21 should be intuitive to understand. The entry asso-
ciates IndexAction.java with index.do. Additionally, a View page is defined for
“success”, indicating index.jsp is a possible endpoint to use after invoking the
perform() method of IndexAction.java. Recall in IndexAction.java the Action
Forward object identified by “success” is always returned at the end of the
perform() method. The ActionForward object is nothing more than an object
representation of the forward element in the action mapping.

With the preceding entry in struts-config.xml and the newly made action
class, Struts is ready to show the index page of the example Model 2 application.
Before trying the code, be sure to compile IndexAction.java and copy over the rel-
evant files (index.jsp, news.xml, header.jsp, and footer.jsp) to the struts-blank
Web Application. Reload the struts-blank Web Application for the changes to take
effect. Browse to http://127.0.0.1/struts-blank/index.do to see the newly
made action mapping. Figure 11-13 shows a browser rendering of the results.

Additional action-mapping elements can be added to the struts-config file
for any number of actions. A complete reference for the action-mapping element
and the forward sub-element can be found with the Struts documentation in the
Struts User Guide. The important functionality to understand is that Struts pro-
vides a convenient method to encapsulate and implement Model logic. This
nicely complements the JSP view components we have previously seen and
makes Struts a helpful framework to use.

Another action is required for the Model logic corresponding to
addnews.jsp. The Struts action is very similar to IndexAction.java, but it
encapsulates the Model code for addnews.jsp. Save Listing 11-22 as AddNews
Action.java.

502 DESIGN PATTERNS

Figure 11-13 Browser Rendering of index.do

falkner.ch11.qxd 8/29/03 1:01 PM Page 502

Listing 11-22 AddNewsAction.java

package com.jspbook;

import java.io.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

public final class AddNewsAction extends Action {

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

ServletContext sc = getServlet().getServletContext();

try {

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title == null || title.equals("") ||

story == null || story.trim().equals("") ||

link == null || link.equals("")) {

News an = new News();

an.setTitle(title);

an.setLink(link);

an.setStory(story);

request.setAttribute("form",an);

return (mapping.findForward("failure"));

}

String dir = sc.getRealPath("/");

File file = new File(dir+"/news.xml");

JAKARTA STRUTS 503

falkner.ch11.qxd 8/29/03 1:01 PM Page 503

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = null;

if (file.exists()) {

doc = db.parse(file);

} else {

doc = db.newDocument();

Element root = doc.createElement("news");

doc.appendChild(root);

}

Element news = doc.createElement("story");

news.setAttribute("title",title);

news.setAttribute("link",link);

news.setAttribute("story",story);

doc.getDocumentElement().appendChild(news);

TransformerFactory tf =

TransformerFactory.newInstance();

Transformer t = tf.newTransformer();

DOMSource source = new DOMSource(doc);

StreamResult result =

new StreamResult(new FileOutputStream(file));

t.transform(source, result);

return (mapping.findForward("success"));

} catch (TransformerException e) {

throw new IOException(e.getMessage());

}

catch (SAXException e) {

throw new ServletException(e.getMessage());

}

catch (ParserConfigurationException e) {

throw new ServletException(e.getMessage());

}

}

}

The preceding code is a Struts action that encapsulates all of the business
logic needed for addnews.jsp. There are two major changes between this code
and the code previously used with ControlFilter.java. The Struts action
returns two different ActionForward objects depending if the information sub-

504 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 504

JAKARTA STRUTS 505

mitted by a user is valid. If the information is valid, the ActionForward object is
returned corresponding to “success”.

return (mapping.findForward("success"));

Should the validation fail, an ActionForward object is returned corre-
sponding to “failure”.

...

String title = request.getParameter("title");

String link = request.getParameter("link");

String story = request.getParameter("story");

if (title == null || title.equals("") ||

story == null || story.trim().equals("") ||

link == null || link.equals("")) {

News an = new News();

an.setTitle(title);

an.setLink(link);

an.setStory(story);

request.setAttribute("form",an);

return (mapping.findForward("failure"));

}

...

The “success” and “failure” mappings provide a method of choosing between
the two responses possible for the form. If valid information is given, a new entry
is created in news.xml and a successful transaction is made. If bad information is
given, the transaction is a failure. The “success” and “failure” mappings are just
self-named mappings for the two respective outcomes of validating the form
information. The endpoint associated with “success” and “failure” is declared in
struts-config.xml as follows. Edit struts-config.xml in the /WEB-INF
directory of the struts-blank Web Application to include the code in Listing 11-23.

Listing 11-23 Action Mapping for addnews.jsp
...

<action-mappings>

<action

path="/index"

type="com.jspbook.IndexAction">

<forward name="success" path="/index.jsp"/>

</action>

falkner.ch11.qxd 8/29/03 1:01 PM Page 505

506 DESIGN PATTERNS

Figure 11-14 Browser Rendering of addnews.do

<action

path="/addnews"

type="com.jspbook.AddNewsAction">

<forward name="success" path="/addnews_thanks.jsp"/>

<forward name="failure" path="/addnews.jsp"/>

</action>

...

</action-mappings>

...

The two endpoints are the same ones used in ControlFilter.java;
addnews_thanks.jsp for “success” and addnews.jsp for “failure”.

With the new entry in struts-config.xml the page for adding news is ready
to be used. Before trying out the page, compile AddNewsAction.java and reload
the struts-blank Web Application for the changes to take effect. After reloading
the Web Application, browse to http://127.0.0.1/struts-blank/addnews.do.
The new action is used and addnews.jsp displays an HTML form. Figure 11-14
shows a browser rendering of the results.

falkner.ch11.qxd 8/29/03 1:01 PM Page 506

The page functions the same as it did in the other example applications. If a
user correctly fills out the form, a news entry is added to news.xml and the con-
firmation page is shown. Should a user leave any of the form fields blank, the
form is redisplayed with all of the previously filled values included.

Using Struts
The Jakarta Struts framework is designed to do many things, but the most helpful
thing the framework provides is a pre-built Control component and a method to
encapsulate business logic. With the about, index, and add-news pages we have
seen how Struts can be used to create a Model 2 Web Application.

Actions are the only Struts functionality we are going to cover in this chapter,
but any experienced Struts user will be quick to point out that Actions are not the
only things Struts provides. Struts does in fact have much more functionality,
including a few tag libraries and an enhanced version of JavaBeans for working
with HTML forms. These extra features of Struts are not covered for a few reasons.
First, they are not relevant to this chapter. The reason Struts was introduced was to
show a good implementation of a system that allowed for modular Model compo-
nents to complement View components. That is exactly what was covered in this
chapter. The second reason the extra Struts functionalities are not fully covered is
because they are quickly becoming dated. Many of the most helpful features of
Struts such as logic and iteration tags have been officially implemented in the JSTL.
Both solutions work, but this book recommends learning the standardized JSTL.
Finally, the framework is nice, but there are many ways to implement what some of
the “helpful” features are trying to do. Apply the concepts presented in this book
and your good judgment to find the best solution for you.

Struts is a great choice for cleanly modularizing Model, View, and Control
components. When building a Model 2 Web Application for production use, keep
Struts in mind. It is a good way to get a quick start implementing a Model 2
design pattern.

Model 11⁄2
So far two design patterns have been presented: Model 1 and Model 2. We would
strongly recommend that you use the Model 2 design pattern when possible, but
as you will quickly find, the Model 2 design pattern initially takes a while to
become familiar with. Building various different components and then assem-
bling them together can be tedious. It can also slow down the time it takes to test
changes. In other words, if you change a JSP, it is recompiled and redeployed
automatically; if you change a Java class, you need to compile and deploy it man-

JAKARTA STRUTS 507

falkner.ch11.qxd 8/29/03 1:01 PM Page 507

ually. If you are used to building lots of JSP and few Java classes, you will likely
agree that JSP is much quicker to develop with. However, if you are used to devel-
oping Java classes and have a nice build tool, such as Ant, you will be able to build
Model 2 applications just as quickly as Model 1.

Why Model 11⁄2 is brought up in this chapter is because it is a very practical tech-
nique for rapidly develop Model 2(ish) code. If you dislike using a build tool, or are
in a situation where no build tool is available, Model 11⁄2 is a great way to rapidly
develop a Model 2–like page, only using JSP. Then later on the Model 2–like code
can easily be changed to be a clean JSP and business logic encapsulated by a Java
class. Another tangential reason that Model 11⁄2 is introduced is that it is how the
majority of this book’s JSP examples are demonstrated. If an example used earlier
in the book is helpful, it should be easy for you to port into a Model 2 application.

How the Model 11⁄2 design pattern is implemented is simple. First, develop a
JSP as if it were going to be part of a Model 2 Web Application—that is, only
responsible for the display logic. Next, create one scriptlet at the head of the JSP
that encapsulates all the business logic. For instance:

<%

String foo = "Hello World";

request.setAttribute("foo",foo);

%>

<html>

Today's message is ${foo}.

</html>

While simplistic, you should get the point. The first part of the page handles
all the business logic relating to the JSP: directives and bits of Java code for
loading JavaBeans or other scoped variables.

<%

String foo = "Hello World";

request.setAttribute("foo",foo);

%>

Note that leaving the variables in implicit page scope is bad because a Model 2
Control component will not share page scope with the JSP. Always using either
request scope, session scope, or application scope ensures the variables will be in a
proper scope for either a Model 1 or Model 2 JSP.

The second part of the JSP is all of the presentation logic—that is, exactly
what the JSP would have if it was being used in a Model 2 Web Application.

508 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 508

<html>

Today's message is ${foo}.

</html>

In practice the Model 11⁄2 design pattern works as follows. Use JSP to quickly
develop possibly volatile code. Once the code is adequately tested, port all the
business logic into a separate Java class and delete it from the JSP. By doing this,
development time can be kept efficient, due to the JSP, and future maintenance
can be kept efficient due to a modular Java class. The only slight disadvantage to
the Model 11⁄2 approach is that a Java class will not have the implicit JSP variables
available for use. This can be solved easily by either naming the respective class
variables identically to the JSP implicit variables or by doing a search and replace.

Weaknesses of Model 11⁄2
In general Model 11⁄2 is a helpful concept to be aware of. Being an overzealous
Model 2 developer can make life difficult and can result in alienating
non–Model 2 developers. Model 11⁄2 is an illustration that the concepts of Model
2 can be applied in a Model 1 environment, thus providing a nice gray area of
functionality between Model 1 and Model 2 design patterns. However, the
Model 11⁄2 design pattern is not perfect and is not a replacement for Model 2.
Model 11⁄2 still allows for the serious Model 1 flaws that Model 2 was designed to
eliminate. By allowing scripting elements in a JSP, all of the Model 1 weaknesses
are present in Model 11⁄2. With Model 2 it is practical to add the scripting-
invalid JSP 2.0 configuration element5, to ensure no scripting elements are
present when a JSP is being translated by a container. With Model 11⁄2 it is not.
Unless you are developing alone, or with a very benevolent group of developers,
is it unwise to assume a Model 11⁄2 design is really working.

Another significant weakness of the Model 11⁄2 design pattern is that it does
not ensure appropriate error handling. One of the nice advantages of Model 2 is
that the business logic can take full advantage of Java try-catch blocks, and a
compiler will enforce that checked errors are handled appropriately. Because of
the implicit try-catch block, which scriptlets have—for example,

try {

<% //scriptlet code %>

}

catch (Exception e) {//JSP error handling}

JAKARTA STRUTS 509

5. You can create a custom Tag Library Validator class in JSP versions prior to 2.0.

falkner.ch11.qxd 8/29/03 1:01 PM Page 509

There is no similar enforcement that Model 11⁄2 code provides appropriate
error handling. Porting Model 11⁄2 code to a Model 2 design is tedious if the code
was implemented assuming JSP error handling exists.

Abstracting DHTML via Custom Tags
In the tag library chapter the point was brought up that custom tags are
excellent for abstracting DHTML. In general, a good way to think of custom tags
is as being good for abstracting repetitive, messy parts of a JSP. Applying this to
HTML and XHTML, DHTML is a great candidate for abstraction. A good
Model 2 design can ensure Java code does not needlessly mix with HTML and
complicate a page; however, the usual Model 2 design does little to ensure the
HTML itself is not messy. HTML by itself is simple and straightforward to use
and maintain, but by itself HTML does little. In order to spice up HTML, com-
plementary technologies such as the Document Object Model (DOM),
JavaScript, JScript, and Cascading Style Sheets (CSS), collectively referred to as
Dynamic HTML (DHTML), are used. What is usually considered a “good”
HTML page often contains an undecipherable mix of all the HTML comple-
menting technologies.

The bonus to a DHTML page is that it can be styled nicely and contain
dynamic functionality, such as a drop-down menu or a rollover image. The
drawback to a DHTML page is that it is often a disaster to maintain; a complex
page using HTML, DOM, JavaScript, and CSS usually isn’t simplified much by
removing Java snippets—in other words, the Model 2 design pattern doesn’t fix
everything. An excellent way to complement a Web Application that takes
advantage of DHTML is to abstract any complex DHTML widget via custom
tags.

Why Abstract DHTML with Custom Tags?
The primary benefits to abstracting DHTML via custom tags is that complex
DHTML widgets can be reduced to a few custom actions. For example, recall the
rollover example in the custom tag chapter. A single custom action is all that is
needed to author a DHTML rollover image. The bare minimum information is
required: the image’s name and link; the rest of the DHTML details are taken care
of by the custom tag. This example easily demonstrates how a custom action can
effectively eliminate a chunk of DHTML that would otherwise complicate the
HTML page. Additionally, the DHTML code is now consolidated in one place.
Imagine a page that uses multiple rollover effects, perhaps a menu with ten items.
Instead of coding the DHTML for several rollover effects and needing to re-code

510 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 510

each instance if a change to the DHTML is needed, a single tag file encapsulates
the entire DHTML widget.

Using custom actions also reduces the knowledge content developers must
have in order to build JSP presentation pages. It is much easier to let one good
DHTML developer create complex widgets and have several HTML developers
create content. The HTML developers can additionally use the widgets when
needed by taking advantage of the simple custom actions. When it comes time to
maintain the Web Application, this scheme pays off. Instead of several complex
HTML pages, there will be several simpler pages and a few abstracted DHTML
widgets.

Coding DHTML Widget Custom Actions
The hardest part of abstracting DHTML widgets is knowing how to author the
DHTML. Tag files were presented earlier in this book and provide an intuitive
approach for authoring DHTML. The overall tact is to reduce a DHTML widget
to its most generic form. Listing 11-24 provides the code you can use as the
generic widget. Save it as a .tag file (or a few .tag files) and then deploy the tag
for use with a Web Application. An excellent example is the rollover effect that
was covered in the tag library chapter. You’ll recall Listing 7-18 in Chapter 7,
which was the code for rollover.html. It contained the DHTML for a single
image rollover effect.

Listing 11-24 DHTML for an Image Rollover

<a href="index.html" onmouseover="button.src='button_on.gif';"

onmouseout="button.src='button_off.gif';">

This code is a specific instance of the DHTML needed for a rollover image.
JavaScript is used to change the picture depending on if the mouse is hovering
over the image or not. The specific images being used are button_on.gif and
button_off.gif.

In order to make Listing 11-24 generic, remove any specific names or values
and replace them with a variable. The generic form of Listing 11-25 is illustrated
by rollover.tag that you saw previously in Listing 7-18 in Chapter 7.

Listing 11-25 rollover.tag (Redisplayed for Convenience)

<%@ attribute name="link" required="true" %>

<%@ attribute name="image" required="true" %>

<a href="${link}" onmouseover="${image}.src='${image}_on.gif';"

ABSTRACTING DHTML VIA CUSTOM TAGS 511

falkner.ch11.qxd 8/29/03 1:01 PM Page 511

onmouseout="${image}.src='${image}_off.gif';">

Note the specific values for the link and image are replaced with variables.
The strategy is to have the values replaced at runtime for specific uses of the
widget; the custom tag somehow has to provide the specific values, likely by using
attributes. In the case of rollover.tag this is exactly how the job is accom-
plished: the image attribute provides the base name of the image, and the link
attribute provides the link.

In general, the technique of abstracting DHTML widgets with custom tags is
straightforward and helpful. Use the design pattern to ensure HTML pages are
not unnecessarily complicated by DHTML.

Summary
Design patterns can greatly simplify the process of building and maintaining a
Web Application. With JSP and Servlets there are two prominent design patterns:
Model 1 and Model 2. For all practical purposes Model 1 is not a real design
pattern; it is more a name for how most Web Applications are intuitively built.
JSP and Servlets are not best used by combining both presentation logic and
business logic in the same endpoint. This practice creates unmaintainable code
and ignores the strengths of JSP and Servlets. A popular and proved solution to
the problem is self-enforcing a clean separation of the business logic and presen-
tation logic. The Model 2 design pattern advocates such a separation and is
superior compared to the Model 1 design pattern when developing a Web
Application.

Understanding and implementing the Model 2 design pattern are two dif-
ferent things. A flexible Model 2 framework can go a long way toward enforcing
a good Model 2 implementation. In this chapter the Struts framework was pre-
sented as a practical solution for a modular Model 2 framework. Combining
Struts components with JSP and the JSTL, a Model 2 Web Application of any size
can be built.

512 DESIGN PATTERNS

falkner.ch11.qxd 8/29/03 1:01 PM Page 512

513

Chapter 12

Internationalization

The World Wide Web is not truly world-compatible. Most Web sites and the
technology used to build them are designed for western European languages—
primarily English. This is not a limitation of the Web; it is a restriction developers
either choose or are unable to build beyond. The issue of internationalization
support is being able to provide a Web site that can produce content in a number
of different languages. In this chapter the focus is how to successfully build an
internationalized Web Application.

Internationalization, commonly abbreviated as i18n because it starts with an
I, ends with an N, and has 18 letters in between, is an important concept to
understand. Ideally, this chapter is for developers responsible for Web
Applications that are either non-English or for a Web Application that must
simultaneously support multiple languages. While it is certainly possible today
you personally will not have to build a non-English Web site, in the future you
almost certainly will. The concepts are important to understand for a good
Servlet and JSP developer, and the implementation techniques used to interna-
tionalize an application can be applied to other things. Even if you are developing
an English-only Web site, i18n development is something you should still be
aware of as a developer. Take, for instance, multiple versions of the same lan-
guage, such as differences between British and American English. British readers
dislike seeing common English words such as colour1 being spelled incorrectly
and the use of the letter “z” where an “s” should be used, such as familiarise rather
than familiarize2.

1. Of course, this is written by the British half of the authoring team; the U.S. half insists that colour
is spelled color.
2. In the eigthteenth century Noah Webster published the first authoritative American English dic-
tionary that is largely credited for the current spelling differences.

falkner.ch12.qxd 8/21/03 7:02 PM Page 513

514 INTERNATIONALIZATION

Content Encoding
Blatantly put, the World Wide Web is heavily tied to, if not built around, western
European languages. This attachment is likely due to the early origins of the Web3

that sprouted from Europe and then grew in the United States and European
countries. However, what is important to know as a developer is that the default
character encoding of HTTP is ISO-8859-1, also called Latin-1. The encoding
contains byte-to-character mappings for the characters most commonly used by
the western European languages such as English, Spanish, French, Italian, and
German. Additionally, HTML provides convenient escape sequences for the ISO-
8859-1 character set.

Using characters outside of the ISO-8859-1 by default ends up as gibberish in
ISO-8859-1–based applications. This is an experience far too many novice Web
developers have and it is easy to understand why. Non–ISO-8859-1 characters
treated as ISO-8859-1 characters creates, gibberish; take for instance some
Japanese text obtained from Yahoo! Japan, http://www.yahoo.co.jp, which is
shown in Figure 12-1.

Treating the content as if it were in the ISO-8859-1 encoding results in Figure
12-2.

The point to understand is that text is meaningless without the proper
encoding. When developing an i18n Web Application, you need to be careful to use
the proper encoding, not just the default. A full list of character encodings and asso-
ciated RFC documents can be found at http://www.iana.org/assignments/
character-sets.

ISO-8859-1
As a Web developer you need to be familiar with ISO-8859-1. Not just the keys
on your keyboard, but all of the characters HTTP supports by default. Should
you be building a Web site that only needs languages supported by ISO-8859-1,
then it makes sense to use the standard. English, Spanish, Danish, Dutch, French,
Italian, German, and other ISO-8859-1 language–supporting Web sites have this
luxury.

The only problem that occurs when developing using ISO-8859-1 is that
most keyboards are specialized for a particular language. As an English developer
it is easy to to create most of a Spanish Web site, but the common English key-

3. Tim Berners Lee defined HTTP and started the World Wide Web at CERN (Conseil European
pour la Recherche Nucleaire), the European Organization for Nuclear Research in 1989 and released
it into the wild in 1991. See http://www.w3.org/People/Berners-Lee/ for more details.

falkner.ch12.qxd 8/21/03 7:02 PM Page 514

CONTENT ENCODING 515

Figure 12-1 Yahoo! Japan

Figure 12-2 Yahoo! Japan Rendered Assuming ISO-8859-1

falkner.ch12.qxd 8/21/03 7:02 PM Page 515

board does not include certain Spanish characters such as the tilde (ñ). In order
to create this character, there are two good options. The first is to use a text editor
capable of inserting particular characters not found on your keyboard. As long as
the document is encoded as ISO-8859-1, there is no issue displaying the text in a
browser. The second option is to use a character entity. HTML 2.0 introduced
this functionality. Considering HTML is in version 4 now, it is fairly safe to
assume the vast majority of HTML clients support character entities.

An HTML character entity allows any ISO-8859-1 character to be typed
using a series of ASCII characters. The series starts with an ampersand, &, ends
with a semi-colon, ;, and includes a unique set of characters between. Usually the
characters are an abbreviated form of the desired character’s proper name. For
example, ampersand can only be properly authored using one of these sequences.
The sequence for ampersand is &. When rendered by a Web browser, the
characters & are not directly shown; instead, only the & character is.

Knowing how to make an ampersand is not too helpful, but knowing the
character entities for all the ISO-8859-1 characters is. Complete references are at
http://www.w3.org/TR/REC-html40/sgml/entities.html and http://www.
htmlhelp.com/reference/html40/entities/. By using these characters, it is
possible for developers of a specific ISO-8859-1 language to create any of the
other default languages supported. For example, Listing 12-1 is the Spanish
equivalent of the HelloWorld.jsp, authored by using only ASCII.

Listing 12-1 HolaMundo.jsp

<html>

<head>

<title>¡Hola Mundo!</title>

</head>

<body>

En Español:

<h1>¡Hola Mundo!</h1>

</body>

</html>

The same text could also be sent from a Servlet. The characters outputted
should all be familiar; it is how a browser renders the characters that is inter-
esting. Figure 12-3 shows a browser rendering of the output from HolaMundo.
jsp.

The named character entities as just illustrated do not represent all of the
ISO-8859-1 characters. Uncommon characters must be referenced using the

516 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 516

numerical entity. The difference is inserting a pound sign4, #, and a numerical
value. Conveniently, the numerical values correspond to the Unicode escapes for
characters, which is explained later in this chapter.

Unicode
A universal character set does exist. The trouble with ISO-8859-1 is that it cannot
be easily extended because it uses only 8 bits, meaning 28, or 256 possible char-
acters. Many languages, such as Japanese or Chinese, require thousands of
characters and symbols. The solution to this problem is to expand the number of
bits used to store information. The Unicode Worldwide Character Standard does
just that and uses two bytes, 216, or 65,536 possibilities, and provides support for
the principal written languages of the Americas, Europe, the Middle East, Africa,
India, Asia, and Pacifica.

The Unicode standard can be found at http://www.unicode.org. Recall that
Java uses Unicode as its default character encoding and can convert between
Unicode and the encodings summarized by the J2SDK 1.4 documentation,
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html. The
current version of Unicode that Java supports can always be found by referencing
the java.lang.Character class. Java 1.4 supports Unicode 3.0. Additionally, the
core Java i18n classes provide a helpful mechanism for developers building i18n
Java applications. Later in the chapter a few of these classes are used. If you are
unfamiliar with the Java i18n classes, refer to Sun’s Java internationalization doc-
umentation, http://java.sun.com/j2se/1.4/docs/guide/intl/index.html.

CONTENT ENCODING 517

Figure 12-3 Browser Rendering of HolaMundo.jsp

4. As an internationalization footnote this character (#) is called a hash in the United Kingdom (see
http://www.theregister.co.uk/content/28/26042.html for an amusing discussion
of this character).

falkner.ch12.qxd 8/21/03 7:02 PM Page 517

Thanks to Java’s excellent support for Unicode and translation to other
prominent character encodings, it is possible for a Servlet- and JSP-based Web
Application to have robust support for i18n content.

UTF-8 and UCS-2
In most cases the best method of generating a page is to put it in the specific
encoding of a client. However, in cases where multiple languages must appear on
the same page, Unicode should be used. There are two common ways to use
Unicode, UCS-2 and UTF-8. Universal Character Set 2-byte form (UCS-2)
encodes Unicode characters in their natural format: two bytes per character. UCS
Transform Format, 8-bit form (UTF-8), encodes Unicode characters using a
varying number of bytes depending on the character set. UTF-8 is more com-
monly used because it can encode the US-ASCII character set with just one byte
per character. For this reason, UTF-8 use on the World Wide Web is much more
common than UCS-2.

Most modern applications, specifically Web browsers, have full support for
UTF-8. When coding a multi-lingual Web page, it is the de facto standard to use
UTF-8 encoding. More information about UTF-8 can be found with RFC 2279,
http://www.ietf.org/rfc/rfc2279.txt.

Working with Non-ISO-8859-1 Encoding
While the standard encoding is commonly used, clients are never forced to use it,
nor are you. By default a Web application assumes information sent with an
HTTP request is encoded using ISO-8859-1. Should it not, then it is assumed
extra information is sent to determine the correct content encoding. The
encoding information is made available through the HttpServletRequest.
getContentEncoding() method.

Provided a client is using a different encoding, the information is usually
specified in the content-type header. For example, plaintext information
encoded using UTF-8 should have a content header of text/plain; charset=

UTF-8. First, the header specifies the MIME types, as it should, but afterward, a
semi-colon follows with encoding information. This encoding information is
what is used to determine the type of encoding that has been applied to content.
In the case that either the server or client botches this header, then there is little
that can be done.

Most of the time invoking a method such as getParameter() returns a
properly encoded String object. In rare cases the encoding may get incorrectly

518 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 518

decoded and gibberish results. To avoid the problem, the decoding of posted
information can be manually changed with a few simple lines of code:

String value = request.getParameter("param");

value = new String(value.getBytes(),

request.getCharacterEncoding());

Alternatively, if you know precisely the encoding that is to be used, it can
always be set by replacing the call. For example, forcing UTF-8 would be the fol-
lowing:

String value = request.getParameter("param");

value = new String(value.getBytes(), "UTF-8");

Assuming an encoding is not recommended for general use because it creates
the same problem that previously existed, content encoded differently
improperly decodes. However, if the encoding must be set manually, it can be
done using the preceding snippet of code.

When sending content to a client, a non-default encoding may be specified
by manipulating the content-type header in a similar fashion. Directly invoke
the setContentType() method with encoding information appended to the
MIME type. However, when doing this, be sure to send content to a client using
the specified encoding. Do not set the content-type header to be text/html;
charset=Shift_JIS, Japanese, and then send content encoded as the default ISO-
8859-1. Either use the ServletResponse setLocale() method to automatically
set the content-type header and handle the output, or manually set the content-
type header and ensure the content is sent using the appropriate encoding. With
a Servlet this can be done by invoking setContentType() and then manually cre-
ating a PrintWriter from a ServletOutputStream. For instance a UTF-8
PrintWriter would be as follows:

response.setContentType("text/html; charset=UTF-8");

ServletOutputStream sos = response.getOutputStream();

PrintWriter out =

new PrintWriter(new OutputStreamWriter(sos,"UTF-8"), true);

response.setLocale("","");

out.println("<html>"); // output content as normal

Other encodings are done in the same fashion, but by switching UTF-8 to the
particular format. When using a JSP the output format can be set by the page
directive’s pageEncoding and contentType attributes. The meaning of these
attributes is slightly dependent on if one, both, or none is used. The attributes are

CONTENT ENCODING 519

falkner.ch12.qxd 8/21/03 7:02 PM Page 519

summarized in Table 12-1, which are taken from section 4.1 of the JSP 2.0 spec-
ification.

Where

<defaultType> is “text/html” for JSP Pages in standard syntax, or
“text/xml” for JSP Documents in XML syntax.

<contentType charset> value is the charset portion of <contentType> if
specified, or defaults to <defaultEncoding> if not specified.

<defaultInputEncoding> is “ISO-8859-1” for JSP Pages in standard
syntax, or “UTF-8” or “UTF-16” for JSP Documents in XML syntax
(depending on the type detected as per the rules in the XML speci-
fication). Note that in the case of include directives the default
input encoding is derived from the initial page, not from any of the
included pages.

Unicode Escapes
Unicode escapes are a method of creating Unicode characters by using ASCII
characters, which is very convenient because it allows English developers to insert
Unicode characters in Java code. A Unicode escape in Java starts with \u and is
followed by four characters describing the hexadecimal value of the Unicode
character. For example, the character ñ can be represented by the Unicode escape
\u00F1.

What Unicode escapes mean for Servlets and JSP is that code can be authored
that takes full advantage of Unicode. A HelloWorld Servlet in the true spirit of
saying hello to the world would need to take advantage of Unicode. Listing 12-2
is an example of a Servlet that uses Unicode to send a “HelloWorld” in many dif-
ferent languages. Translations are courtesy of the babel fish, http://babel.
altavista.com.

Listing 12-2 i18nHelloWorld.java

package com.jspbook;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class i18nHelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

520 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 520

throws IOException, ServletException {

response.setContentType("text/html; charset=UTF-8");

ServletOutputStream sos = response.getOutputStream();

PrintWriter out =

new PrintWriter(new OutputStreamWriter(sos,"UTF-8"),

true);

out.println("<html>");

out.println("<head>");

out.println("<title>i18n Hello World!</title>");

out.println("</head>");

out.println("<body>");

// Chinese

out.println("<h1>\u4f60\u597d\u4e16\u754c!</h1>");

out.println("<h1>Hello World!</h1>"); // English

out.println("<h1>Bonjour Monde!</h1>"); // French

out.println("<h1>Hallo Welt!</h1>"); // German

out.println("<h1>Ciao Mondo!</h1>"); // Italian

out.println("<h1>\u3053\u3093\u306b\u3061\u306f\u4e16\u754c!</h1>");

//Japanese

out.println("<h1>\uc5ec\ubcf4\uc138\uc694 \uc138\uacc4

!</h1>"); // Korean

out.println("<h1>\u00a1Hola Mundo!</h1>");// Spanish

out.println("</body>");

out.println("</html>");

}

}

CONTENT ENCODING 521

Table 12-1 pageEncoding and contentType Attribute Meaning

pageEncoding contentType Input JSP Source Output Content
Page Directive Page Directive Encoding Type
Attribute Attribute
(<encoding>) (<contentType)

specified specified <encoding> <contentType>

specified not specified <encoding> “<defaultType>;charset
=<encoding>”

not specified specified <contentType charset> <contentType>

not specified not specified <defaultInput Encoding> “<defaultType>charset=
<default InputEncoding>”

falkner.ch12.qxd 8/21/03 7:02 PM Page 521

When executed, the Servlet displays a series of hellos, each in a different lan-
guage. The rendered page is shown in Figure 12-4. In order to properly see the
page, your Web browser must fully support UTF-8.

In i18nHelloWorld.java Unicode escapes are used to author the Unicode
characters not found in ASCII. Keep in mind Java source file can also be authored
directly as Unicode, which is what most non-ASCII developers do. Using only
ASCII and escape characters is tedious. Alternatively, most modern Java compiles
provide a command line option of compiling Java source files in just about any
encoding. For instance Sun’s javac, bundled with the J2SDK 1.4, allows for the
encoding flag to specify a Java source file’s encoding; the list of supported
encodings is extensive.

Unicode, and other encodings, can also be used with JSP. As shown in Table
12-1 of the JSP specifications, the encoding attribute can be used to specify a

522 INTERNATIONALIZATION

Figure 12-4 Browser Rendering of i18nHelloWorld.java Output

falkner.ch12.qxd 8/21/03 7:02 PM Page 522

non-default input encoding. For instance, the JSP in Listing 12-3 demonstrates
an equivalent of i18nHelloWorld.java as a JSP.

Listing 12-3 i18nHelloWorld.jsp

<%@ page pageEncoding="utf-8"%><html>

<head>

<title>i18n Hello World!</title>

</head>

<body>

<h1> !</h1>

<h1>Hello World!</h1>

<h1>Bonjour Monde!</h1>

<h1>Hallo Welt!</h1>

<h1>Ciao Mondo!</h1>

<h1> !</h1>

<h1> !</h1>

<h1>¡Hola Mundo!</h1>

</body>

</html>

The page is encoded in UTF-8 and the pageEncoding attribute ensures the
JSP is parsed correctly and sent to a client with the correct encoding. If you are
typing in this page, be sure to use a UTF-8-capable editor.

i18n Implementation Techniques
Non-standard character encodings allow most any language to be used with
Servlets and JSP, but implementing a multi-lingual Web Application is a chore
itself. The problem i18n presents a Web developer is how to store and format
more than one version of content. With all of the previous examples of this book
it has been assumed the Web Application was being built to show one format in
one language. This assumption simplified examples by allowing content and for-
matting to be hard coded in the same Servlet or JSP. With i18n the assumption is
no longer valid.

Providing support for multiple versions of the same content can be done in
many different ways. Outlined in this chapter are two different methods that are
widely used and considered most practical. The first method involves a simple
but brute force approach at solving the problem: make a separate page for each
language. The second method is a more elegant but complex approach: abstract
the content out from the formatting. Either of these two approaches works, and

I18N IMPLEMENTATION TECHNIQUES 523

falkner.ch12.qxd 8/21/03 7:02 PM Page 523

both are suited for different needs. However, the suggestion for building an
optimal Web Application is to take the second approach.

Another approach to providing i18n support that is not covered by this
chapter is to translate completed Web pages on the fly. A simple Filter and a good
set of translation APIs would allow for this; however, there is no good, standard
Java translation API available.

Language Detection
All i18n implementation techniques rely on a Web Application being able to
detect what type of language a user prefers. Understanding how to properly
detect a user’s language is critical because without it you are left to guess what
type of content is desired. Guessing is no better than showing one language to all
users. For all of the i18n implementation techniques it is assumed the appro-
priate language is detectable.

There are three good methods of detecting the language a client prefers:

• Inquire: Use an HTML form to ask what language a user would
prefer. This method is not the most elegant but it does work.

• HTTP accept-language and accept-charset headers: A Web
browser can identify a user’s preferred language(s) and encoding(s)
by setting the HTTP accept-language and accept-charset
headers, respectively. The value of these headers includes the two-
letter language codes the client supports and the encoding formats
supported.

• URL Encoding: Language preference can be encoded in a URL. The
URL may lead to a real page with the correct language or lead to a
fictitious resource that is intercepted by an i18n component.

Inquiring
Asking a user via an HTML form is something with which you should be
familiar. Reading form parameters was covered in Chapter 2. The only difficult
part of using this technique is how to appropriately show the form. If the form is
only in one language, then it will not be understood by users of different lan-
guages. The solution is to use a form with options in all of the languages sup-
ported. The complete form can be translated, or alternative methods of
communicating the meaning can be used such as pictures. A popular approach is
to use a form with pictures of various countrie’s flags.

524 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 524

HTTP Accept-Language and Accept-Charset Headers
Inquiring what type of language a user prefers is not the most elegant method to
determine what language to use. It is a guaranteed method of getting the job
done, but should a user already provide this information, then it is not necessary
to ask. The HTTP accept-language and accept-charset headers are a method
available for a user to specify a preferred language. A better solution to deter-
mining a user’s preferred language is to first check the user-language header and
rely on inquiry as a fall-back mechanism.

Mining information from the accept-language and accept-charset
headers is straightforward. To determine a user’s preferred language, invoke the
HttpServletRequest getHeader() method with "accept-language" as the
parameter:

String preferredLanguage = request.getHeader("accept-language");

You can check if your browser is sending this information by visiting the
ShowHeaders Servlet from Chapter 2, Listing 2-8. An example of what the header
usually contains for an English user is the following:

en-us, en;q=0.50

The two-letter language code for English is en; the -us is an optional two-
letter country code. In addition to the country code preference, information can
be included by appending a q-value. The q-value determines the preference for
language it follows. By convention the languages are listed in order of preference;
however, in cases where multiple languages are supported, the q-values are a clear
method of indicating which one a user would prefer.

The accept-charset header, not to be confused with accept-encoding, is
mined in the same fashion as the accept-language header:

String preferredCharset = request.getHeader("accept-charset");

The information sent by this browser is another comma-separated list of
encodings with option q-values. Should your browser be sending this infor-
mation, it is also shown by the ShowHeaders Servlet. Usually, the value of this
header is similar to the following:

ISO-8859-1, utf-8;q=0.66, *;q=0.66

An asterisk symbolizes any character encoding. It is a polite method of
informing a server to send whatever it can should the preferred encodings not be
supported.

I18N IMPLEMENTATION TECHNIQUES 525

falkner.ch12.qxd 8/21/03 7:02 PM Page 525

Note that the HTTP specifications do not mandate use of the accept-
language or accept-charset headers. While they are commonly provided, it is
not guaranteed. For this reason if it is critical to always have a method of language
detection, then an HTML form should be relied on as a fall-back mechanism.

Once information has successfully been obtained about preferred languages,
it can be used in a variety of different ways. A simple conditional check works,
but more commonly Java’s built-in support, resource bundles, are used. These
techniques are discussed further with the specific implementation techniques.

Persisting Language Information and URL Encoding
Another direct, custom method of determining a user’s language preferences is to
use URL encoding. Information about a preferred language can be easily encoded
in either a real or fictitious URL. For instance, should copies of language-specific
content be stored in different directories, the directories can be named according
to the two-digit language codes. Language detection can then be achieved by
checking to see if a URL includes a particular language code.

String url = request.getRequestURI();

if (url.indexOf("/en/") != -1) {...)

Likewise, language information can be encoded in a fictitious URL, such as
appending a two-letter language code to the end of a real URL or using the same
method just described. As explained later in the chapter, there is good reason not
to want to keep multiple copies of formatted content. A fictitious URL can be
created with the intention of leading to a real language-specific–producing JSP or
Servlet.

Language-encoded URLs are a popular approach to avoid reliance on the
accept-language and accept-charset headers. Many popular Web sites—for
example, Yahoo!—have registered domain names with extensions for different
languages such as http://www.yahoo.com for English and http://www.yahoo.
co.jp for Japanese. The domain names work well for users to bookmark or
remember when visiting the site’s default main page.

A user’s language preferences only need to be detected once, similar to session
information. Should a session be used, the preferences can set in session scope and
be re-used on subsequent visits. If session context is not being maintained, then
URL encoding can be used to persist a user’s language preferences. Alternatively, if
cookies are supported, the information can be kept using a cookie.

526 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 526

Multiple Pages
The first and usually most rapid method of developing an i18n Web Application
is to create multiple copies of all the content. Each copy is translated into a
desired language, and the user is directed to the correct copy appropriately. While
this approach causes problems with maintenance, it is intuitive to implement and
well suited for small projects.

In essence, the strategy is to make a copy of the Web Application for each lan-
guage. Content in one language refers to other content in that language. A
common naming scheme keeps different translations of the content separate. For
instance, welcome.html, Listing 1-3 in Chapter 1, is a simple example of a Web
page with some English content.

<html>

<head>

<title>Welcome!</title>

</head>

<body>

Welcome to the example Web Application for

<i>Servlets and JSP the J2EE Web Tier</i>.

</body>

</html>

Following the multiple copy design, a valid naming scheme would be to give
all English pages a name, then subsequently translate the pages and insert the
language’s three-character code followed by a “-” before the English name. For
instance, the French version of welcome.html would be saved as welcome-
fra.html and would include the code in Listing 12-4.

Listing 12-4 welcome-fra.html French Translation of welcome.html

<html>

<head>

<title>Bienvenue!</title>

</head>

<body>

Bienvenue à la demande d'enchaînement d'exemple de

<i>Servlets and JSP the J2EE Web Tier</i>.

</body>

</html>

If the page required dynamic content, then the code would be inserted and it
would be saved as a JSP. The point to see is that the implementation works by pro-
viding pre-translated versions of entire Web pages on the server-side. The tech-

I18N IMPLEMENTATION TECHNIQUES 527

falkner.ch12.qxd 8/21/03 7:02 PM Page 527

nique works well with Servlet Filters because a single Filter can seamlessly
intercept all requests to a resource, say, welcome.html—and attempt to localize to
say— welcome-fra.html, depending on the preferred language of the client. The
overall effect is that all requests can be sent to a single page, such as welcome.html,
but responses will be appropriately localized if the server has a translated version
of the content. To illustrate the technique, Listing 12-5 includes such a Filter.

Listing 12-5 Simplei18nFilter.java

package com.jspbook;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Simplei18nFilter implements Filter {

protected static FilterConfig config = null;

public void init(FilterConfig filterConfig) {

config = filterConfig;

}

public void destroy() {

config = null;

}

public void doFilter(ServletRequest req,

ServletResponse res,

FilterChain chain)

throws IOException, ServletException {

if (res instanceof HttpServletResponse) {

HttpServletRequest request = (HttpServletRequest)req;

HttpServletResponse response = (HttpServletResponse)res;

String uri = request.getRequestURI();

if (uri.endsWith("/")) {

chain.doFilter(request, response);

return;

}

String path = request.getContextPath();

uri = uri.substring(path.length(), uri.length());

uri = getLanguage(uri, request);

ServletContext sc = config.getServletContext();

528 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 528

I18N IMPLEMENTATION TECHNIQUES 529

sc.getRequestDispatcher(uri).forward(request, response);

}

}

public static String getLanguage(String uri,

HttpServletRequest request) {

ServletContext sc = config.getServletContext();

Enumeration enum = request.getLocales();

String postfix =

uri.substring(uri.lastIndexOf("."), uri.length());

String temp = uri.substring(0,uri.length()-postfix.length());

while(enum.hasMoreElements()) {

Locale l = (Locale)enum.nextElement();

String lang = l.getISO3Language();

String file = sc.getRealPath(temp+"-"+lang+postfix);

System.out.println("Trying: "+file);

File f = new File(file);

if (f.exists()) {

return temp+"-"+lang+postfix;

}

}

return uri;

}

}

The code works by intercepting a request and attempting to forward it to the
most localized version of content.

String uri = request.getRequestURI();

String path = request.getContextPath();

uri = uri.substring(path.length(), uri.length());

uri = getLanguage(uri, request);

ServletContext sc = config.getServletContext();

sc.getRequestDispatcher(uri).forward(request, response);

The getLanguage() method is responsible for determining the most localized
language.

Enumeration enum = request.getLocales();

String postfix =

uri.substring(uri.lastIndexOf("."), uri.length());

String temp = uri.substring(0,uri.length()-postfix.length());

while(enum.hasMoreElements()) {

Locale l = (Locale)enum.nextElement();

String lang = l.getISO3Language();

falkner.ch12.qxd 8/21/03 7:02 PM Page 529

String file = sc.getRealPath(temp+"-"+lang+postfix);

System.out.println("Trying: "+file);

File f = new File(file);

if (f.exists()) {

return temp+"-"+lang+postfix;

}

}

return uri;

}

It code checks for files named identically to the base file, such as welcome.
html, but with the appropriate language, such as welcome-fra.html, to match a
client’s preferred language. Preferences are obtained by invoking the HttpServlet
Request object’s getLocales() method, and the files are checked using the
ServletContext getRealPath() method. If no localized version is found, the file
with the base name is returned.

Save Listing 12-5 as Simplei18nFilter.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application. Deploy the Filter to intercept
all requests to welcome.html, save welcome-fra.html in the base directory of the
jspbook Web Application, and reload Tomcat for the changes to take effect. Browse
to http://127.0.0.1/jspbook/welcome.html to see the localized page. Assuming
you have English set to be the preferred language, Figure 12-5 is displayed.

If you have another language set as preferred and a localized version of the
page in that language exists on the server, the localized version of the content is
displayed. For example, since we also have welcome-fra.html in the same
directory as welcome.html, if you set your browser’s preferred language to be
French, Figure 12-6 is shown.

Note that the requested URL is still http://127.0.0.1/jspbook/welcome.
html, but the content of welcome-fra.html is returned. This is because the Filter
is appropriately localizing the content on the server-side; to the client it appears
as if welcome.html is authored in their preferred language. This is incredibly
helpful because it means a Web Application does not have to code language
localized links to go to appropriate language localized pages. For example, in
every page linking to the welcome page, regardless of language, the link is
welcome.html. Compared to manually coding in welcome-fra.html, welcome-
jpn.html, and so on, based on the language, this is much easier. Supporting a
new language is always as easy as authoring new pages and naming them appro-
priately so that the Simple i18n Filter uses them. Plus the Filter is designed to use
UTF-8 encoding, which means it supports any language Unicode supports.

530 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 530

Using pre-translated copies of entire Web pages works well for small Web
Applications that are not likely to change. A “small Web Application” should be
interpreted to mean anything that is not burdensome for your translation
method to be used with. This technique for providing i18n support can quickly
become a problem with pages that constantly change. Each time a change is
made, it must be replicated to all of the translated pages. In regard to content
there is little that can be done to prevent this, but there is no reason that changes
to a page’s formatting should require a change. By consolidating format infor-
mation into one template page and abstracting the content out of the page, the
problem can be minimized. This is the suggested approach for developing
complex i18n Web applications, and it is covered in the next section.

Content Abstraction
Implementing an i18n Web application that can grow and change involves
abstracting content. Following the Model 2 design pattern, the process is easy to

I18N IMPLEMENTATION TECHNIQUES 531

Figure 12-5 English Version of welcome.html

Figure 12-6 French Version of welcome.html

falkner.ch12.qxd 8/21/03 7:02 PM Page 531

implement. With previous examples it was assumed content is only needed in
one language. Only the dynamic parts of the page were generated on the fly; the
static content was coded in along with formatting code. In a multi-lingual Web
Application, content needs to be abstracted since it is no longer always in the
same language.

For example, welcome.html is the page that welcomes a user to the Web
Application that was shown previously in Figure 1-12 in Chapter 1. You’ll recall
the code for welcome.html is the following:

<html>

<head>

<title>Welcome!</title>

</head>

<body>

Welcome to the example Web Application for

<i>Servlets and JSP the J2EE Web Tier</i>.

</body>

</html>

For an internationalized application this page does little good since it is only
in English. Abstracting the content from this page allows it to be i18n-friendly.
The code in Listing 12-6 is a dynamic version of the page that would allow for
any number of languages to be used5.

Listing 12-6 welcome.jsp

<html>

<head>

<title>${content.title}</title>

</head>

<body>

${content.welcome}

</body>

</html>

The only static part of the page is the formatting that is perfectly fine
assuming HTML is the only thing being produced. In cases where different
formats are required, a multi-client design, as discussed in Chapter 13, should be
used. The point of Listing 12-6 is that the title and welcome message are actually
identifiers. These identifiers reference the actual text to be displayed. That text

532 INTERNATIONALIZATION

5. Assuming the correct encoding is used.

falkner.ch12.qxd 8/21/03 7:02 PM Page 532

can be changed at runtime to custom-tailor the page to a particular language.
Assuming a Model 2 design is being used, a control component would be respon-
sible for populating an object, such as a JavaBean, with the correct title and
welcome message for the page, and then passing the object via request scope.

If the user preferred English, the resulting welcome page could be similar to
Figure 12-7. Or equally as flexible, if the user preferred French, the resulting
welcome page could be similar to Figure 12-8.

The only difficult part to implementing this type of content abstraction is
determining the correct language in order to populate the values to display. This
logic can be done in many different ways, but the Java API conveniently provides
resource bundles.

Resource Bundles
A resource bundle is the default J2EE method of determining and preparing locale
specific content for a user. A resource bundle is represented by the java.
util.ResourceBundle object. The object provides a set of static methods that
take a base name and Locale object and return a resource bundle populated with
appropriate values. The values come from searching through provided property
files and determining which best matches the requested Locale. Resource
bundles work very well in practice and are the de facto method of providing i18n
content support.

Resource bundles are the i18n mechanism that you are encouraged to use. As
so, we need to be more familiar with how they function. The first thing needed
to use a resource bundle is a Locale object describing a user’s locale. Using the
Locale, the resource bundle loads an appropriate resource file to obtain resource,
specific information. The appropriate resource file is determined by using a com-
bination of a base name and locale information. The base name determines the

I18N IMPLEMENTATION TECHNIQUES 533

Figure 12-7 welcome.jsp in English, Rendered by a Web Browser

falkner.ch12.qxd 8/21/03 7:02 PM Page 533

starting name of the file. Locale-specific files are determined by appending an “_”
along with the locale’s appropriate two-digit country code6. For instance, a base
name for the welcome page’s resource bundle might be welcome. The English
resource bundle would be named welcome_en, because en is the two-digit lan-
guage code for English. The resource bundle for French would be welcome_fr, fr
being the two-digit code for French. The naming scheme continues for all of the
languages used. The scheme also extends to cover dialects. For example, as we
have already discussed, U.S. English is different from U.K. English, and Canadian
French is different from French French is different from Swiss French. To encode
these differences, the name of the resource bundle also contains another two-
letter encoding for the country. This means you could have welcome_fr_CH or
welcome_fr_FR. And to extend it even further, there is also a “variant” value to
specify vendor-specific information. The algorithm used to load resource
bundles goes from most- to least-specific value. That is, if an application asks for
a “Swiss French” locale (fr_CH) and it does not exist, but a more general French
locale does, then the existing resource bundle for the French (fr) locale is loaded.

Information in a resource bundle property file is specified by name/value
pairs. Each line of a property file contains a name followed by a value with an
equal sign separating them. The format is designed to be simple and works well
for storing small amounts of information. For example, the property file that is
needed to produce the same English output that was shown previously in
Figure 12-7 would be Listing 12-7.

534 INTERNATIONALIZATION

Figure 12-8 welcome.jsp in French, Rendered by a Web Browser

6. The API documentation for java.util.Locale provides a reference to all the two-letter lan-
guage codes.

falkner.ch12.qxd 8/21/03 7:02 PM Page 534

Listing 12-7 welcome_en.properties (English property File for the Resource Bundle Used in
welcome.jsp)

title=Welcome!

welcome=Welcome to the example Web Application for <i>Servlets and

JSP the J2EE Web Tier</i>.

Note the second line only wraps to fit on this book page. In the property file
there is no line return after the word “and”. To use this property file, it needs to
be in the current class path of the Web Application—that is, the /WEB-INF/
classes folder or any sub-folder thereof.

To use the newly made property file with welcome.jsp, two more compo-
nents are required. Following a true Model 2 design, the logic that loads the
resource bundle needs to be abstracted out of the JSP and a JavaBean used as an
interface to pass values. The JavaBean in Listing 12-8 is straightforward.

Listing 12-8 Welcome.java

package com.jspbook;

public class Welcome {

protected String title = null;

protected String welcome = null;

public String getTitle() {

return title;

}

public void setTitle(String title) {

this.title = title;

}

public String getWelcome() {

return welcome;

}

public void setWelcome(String welcome) {

this.welcome = welcome;

}

}

Appropriate getter and setter methods are all the JavaBean is used for. It is a
facade for the real logic responsible for loading the correct i18n content.

The code responsible for loading the i18n values is of interest. Using the
Locale object obtained from an HttpServletRequest, a resource bundle is ini-
tialized with the correct i18n content.

I18N IMPLEMENTATION TECHNIQUES 535

falkner.ch12.qxd 8/21/03 7:02 PM Page 535

536 INTERNATIONALIZATION

Locale locale = request.getLocale();

ResourceBundle rb = ResourceBundle.getBundle("welcome", locale);

Only two lines of code are required because the ResourceBundle object
encapsulates all of the code responsible for determining an appropriate property
file and parsing name/value pairs. Use this code with the page’s JavaBean to make
a complete working example as shown in Listing 12-9.

Listing 12-9 welcome.jsp (Model 11⁄2 Style to Load and Use Dynamic i18n Values)

<%@ page import="java.util.*, com.jspbook.*"%>

<%

Locale locale = request.getLocale();

ResourceBundle rb = ResourceBundle.getBundle("welcome", locale);

Welcome content = new Welcome();

content.setTitle(rb.getString("title"));

content.setWelcome(rb.getString("welcome"));

request.setAttribute("content", content);

%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<head>

<title>${content.title}</title>

</head>

<body>

${content.welcome}

</body>

</html>

Note the code is included with the JSP in a Model 11⁄2 design. This is for sim-
plicity in the example. With a Model 2 design the highlighted code at the start of
the page would be removed and placed in a control component.

The complete example can now be executed. Assuming you are an English
developer, or that your Web browser sets the accept-language header to prefer
English, Figure 12-7 is shown when browsing to welcome.jsp.

Support for new languages is as easy as adding new property files to the class
path. For instance, the property file that is needed for French content is shown in
Listing 12-10.

Listing 12-10 welcome_fr.properties

title=Bienvenue!

welcome=Bienvenue à la demande d'enchaînement d'exemple de

<i>Servlets and JSP the J2EE Web Tier</i>.

falkner.ch12.qxd 8/21/03 7:02 PM Page 536

Be sure to save welcome_fr.properties in the class path of your Web
Application, such as /WEB-INF/classes directory. Now, should a French
developer browse to the site, the content returned is in French. The end result is
the same as was shown in Figure 12-8. The example can go on and on with as
many different languages as you can build property files for.

The code used with welcome.jsp illustrates why using a resource bundle is
encouraged for i18n. Another custom solution, such as using a database for
content, would work, but it complicates the logic needed for storing and
retrieving i18n content. A resource bundle is simple and allows i18n developers
to continuously create and modify property files for required i18n locales.
Another good point should be raised about using Model 2 with i18n pages. Using
the approach shown with Listing 12-9, the content is not limited to coming from
a resource bundle. Should resource bundles not be adequate or a different mech-
anism already exists, the needed code can be exchanged for the resource bundle
code.

JSTL i18n Message Tags
As an alternative to following a strict Model 2 design pattern for i18n content, the
JSTL provides a set of i18n tags. A specific sub-set of the JSTL i18n tags is the
message tags that mimic the functionality illustrated with welcome.jsp. The
advantage of using the JSTL message tags is that they remove the need for a
JavaBean and control component. Instead, the JSP encapsulates all of the logic
required to load a resource bundle and retrieves properties from it. The disad-
vantage of the JSTL message tags is that they limit a JSP developer to only using
resource bundles.

It is suggested you follow a strict Model 2 approach as previously described
in this chapter. It keeps a proper level of abstraction between the JSP and i18n
content generation and is suited for complex and growing Web Applications.
However, understanding the JSTL approach is helpful because it allows for i18n
applications to be developed rapidly with only a minor drawback.

There are three different JSTL message tags and use of each tag is straight-
forward; however, only two tags are currently of interest:

• Bundle: The bundle tag loads a resource bundle and places it in
context for the other JSTL i18n tags to use. The tag has two
attributes, basename and prefix. The basename attribute is the
basename of a property file—for example, “welcome” as was used
with welcome.jsp. The prefix attribute allows for a prefix to auto-
matically be appended to a property key. Prefix values are helpful to

I18N IMPLEMENTATION TECHNIQUES 537

falkner.ch12.qxd 8/21/03 7:02 PM Page 537

ensure no two property names are the same—for example, in
welcome_en.properties the keys "title" and "welcome" were
used. The prefix com.jspbook could be appended to each to create a
more unique name.

• Message: The message tag relies on an existing resource bundle and
extracts messages from the bundle. The message tag requires the
key attribute that specifies the key of the property message to be
retrieved. The message tag also provides attributes for exporting the
value to a scoped context variable and/or from a given resource
bundle. Complete documentation for the message tag can be found
in the JSTL specification.

The third tag is the param tag, which helps simplify generation of dynamic
i18n messages at runtime. The topic is discussed further later on in this
chapter.

Use of the bundle and message tags is designed to be very similar to what was
done with welcome.jsp. The differences are that the Model 11⁄2 code is replaced
by the bundle tag, and use of the out tag is replaced by the message tag. For
example, the JSP in Listing 12-11 provides the same functionality as welcome.
jsp, provided that resource bundles are always used.

Listing 12-11 jstl_welcome.jsp, the JSTL Version of welcome.jsp

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<fmt:bundle basename="welcome">

<html>

<head>

<title><fmt:message key="title"/></title>

</head>

<body>

<fmt:message key="welcome"/>

</body>

</html>

</fmt:bundle>

The preceding code is the complete JSP. Browsing to jstl_welcome.jsp
results in identical output, depending on your locale, as shown with the examples
for welcome.jsp.

The benefits of using the JSTL i18n message tags should be clear; they are
easy—even easy enough to allow for non-Java programmers to happily use them.
However, you should not use the JSTL tags just to avoid the Java code required
by a Model 2 design pattern. The JSTL tags are great for rapid development of

538 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 538

simple i18n Web Applications. When it is known that resource bundles are always
to be used and there is minimal validation logic required of information
retrieved, then the JSTL tags are a great fit for developing the application.

Number and Date Formatting
The last important i18n topic is formatting dates and numbers correctly to a spe-
cific locale. Different languages and locales use different formats for dates and
numbers. For instance, the European and American styles of formatting a date
are different. The American standard is to use the month, followed by day, fol-
lowed by year. The European standard is to use the day, followed by month, fol-
lowed by year. Both show the same information. The only difference is in how the
information is presented.

Number and date formatting is an important topic because it is something
that can be done accurately at runtime. Based on one universal representation—
core set of Java objects—the specific number or date required by a locale can be
generated on the fly. The functionality is analogous to building an application in
one language and being able to accurately translate from that language into any
other automatically. You know already that no good, standardized language-
translation framework exists, but the Java API does provide such a framework for
number and date formatting.

The Java API provides the java.text.Format class as a base class for creating
i18n-friendly content generators. By itself Format is not very helpful, but the Java
API provides a number of other classes that extend Format to create locale-
specific content generators. Out of all the classes that exist, the ones we are inter-
ested in are java.text.DateFormat, java.text.NumberFormat, and java.text.
MessageFormat. The DateFormat and NumberFormat classes format dates and
numbers, respectively, to locale-specific formats. The MessageFormat class com-
bines the functionality of the two classes and parses token strings, inserting
localized numbers and dates appropriately.

Understanding the standard Java formatting classes is important because the
concept they are built around is important. By representing numbers and dates
in a universal fashion, it is possible to build a translation framework from the
format to a desired different format. Using such a framework is helpful because
it greatly simplifies the amount of effort required each time a date or number
needs to be generated at runtime. The existing Java i18n framework is helpful
because it works well and is extensible. As a Java developer it makes little sense to
develop a completely different i18n framework when a working one already
exists.

NUMBER AND DATE FORMATTING 539

falkner.ch12.qxd 8/21/03 7:02 PM Page 539

i18n Numbers and Dates at Runtime
Before showing some examples of using the Java format classes, it is important to
understand when it is helpful to use them. The approach promoted for use earlier
involved consolidating, formatting, and abstracting content into property files.
The techniques explained now are for use when generating runtime number and
date values. Numbers and dates that are static should still be abstracted into
property files.

For instance, an i18n currency exchange page would need to generate dates
and numbers at runtime. Imagine the site produced today’s current date and a list
of currency values. When rendered in English by a Web browser, it would
resemble Figure 12-9.

Assume the service is completely realtime and the date and numbers are gen-
erated on the fly. All of the date and number information in Figure 12-9 would
need to be dynamic, and if used in an i18n-friendly site, it should also use the Java
formatting classes. The code for the page in Model 1 style would resemble Listing
12-12.

Listing 12-12 Model 1 i18n_exchange.jsp

<%@ page import="java.util.*, java.text.*"%>

<%

MessageFormat usdf =

new MessageFormat("{0,number,currency}", Locale.US);

MessageFormat gbpf =

new MessageFormat("{0,number,currency}", Locale.UK);

540 INTERNATIONALIZATION

Figure 12-9 Browser Rendering of i18n_exchange.jsp

falkner.ch12.qxd 8/21/03 7:02 PM Page 540

MessageFormat cadf =

new MessageFormat("{0,number,currency}", Locale.CANADA);

double usd = 1;

double gbp = .65505;

double cad = 1.5716;

String usdusd = usdf.format(new Object[]{new Double(usd)});

String usdgbp = usdf.format(new Object[]{new Double(gbp)});

String usdcad = usdf.format(new Object[]{new Double(cad)});

String gbpusd = gbpf.format(new Object[]{new Double(usd/gbp)});

String gbpgbp = gbpf.format(new Object[]{new Double(1)});

String gbpcad = gbpf.format(new Object[]{new Double(cad/gbp)});

String cadusd = cadf.format(new Object[]{new Double(usd/cad)});

String cadgbp = cadf.format(new Object[]{new Double(gbp/cad)});

String cadcad = cadf.format(new Object[]{new Double(1)});

%>

<html>

<head>

<title>i18n Currency Exchange</title>

</head>

<body>

<h1>Currency Exchange Rates</h1>

Values current as of:

<%= DateFormat.getInstance().format(new Date()) %>

<table border="1">

<tr>

<td></td><td>USD</td><td>GBP</td><td>CAD</td>

</tr>

<tr>

<td>U.S. Dollar</td><td><%= usdusd %></td>

<td><%= usdgbp %></td><td><%= usdcad %></td>

</tr>

<tr>

<td>G.B. Pound</td><td><%= gbpusd %></td>

<td><%= gbpgbp %></td><td><%= gbpcad %></td>

</tr>

<tr>

<td>CA. Dollar</td><td><%= cadusd %></td>

<td><%= cadgbp %></td><td><%= cadcad %></td>

</tr>

NUMBER AND DATE FORMATTING 541

falkner.ch12.qxd 8/21/03 7:02 PM Page 541

</table>

</body>

</html>7

Note all of the dates and numbers start as Java either a java.util.Date
object or as double primitives. From there the information is passed through the
MessageFormat and DateFormat objects to produce the locale-specific format.
The information for the numbers is static for simplicity; in a real application it
would be mined from a realtime database.

Listing 12-12 is a good example of when it is helpful to take advantage of the
Java formatting classes. In contrast, here is an example of when they are not very
helpful. Imagine a Web page that included a story, articles, or any other static
information that included numbers and dates, for instance, the output illustrated
by Figure 12-10.

An i18n-friendly application producing the output seen in Figure 12-10
should still follow the recommended i18n approach shown earlier in this chapter:
abstract the content and consolidate the formatting. The code required to
produce Figure 12-10 would be similar to Listing 12-13.

Listing 12-13 i18n_static.jsp

<%@ page import="java.util.*, java.text.*"%>

<%

ResourceBundle rb = ResourceBundle.getBundle("i18nstatic");

MessageFormat mf =

542 INTERNATIONALIZATION

Figure 12-10 Browser Rendering of i18n_static.jsp

7. The extensive use of classic JSP expressions is purposely done for this example. Creating the vari-
ables, setting the variables in request scope, then using the JSP EL to access them would add a lot of
unneeded code (just in this particular example).

falkner.ch12.qxd 8/21/03 7:02 PM Page 542

new MessageFormat("{0,number,currency}");

Double doub = new Double(rb.getString("price"));

String price = mf.format(new Object[]{doub});

request.setAttribute("price", price);

Locale locale = request.getLocale();

DateFormat df = DateFormat.getInstance();

Date d = df.parse(rb.getString("date"));

String date = DateFormat.getInstance().format(d);

request.setAttribute("date", date);

%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<head>

<title><%= date %> - Today's Story</title>

</head>

<body>

On <c:out value="${date}"/> the U.S. stock market reached an

all time low with FooTech(FOO) stock reaching

<c:out value="${price}"/> per a share.

</body>

</html>

Like the earlier examples of the i18n hello world pages, Listing 12-13 requires
property files for the resource bundle to load. The English property file would be
the code in Listing 12-14.

Listing 12-14 English i18n_static Property File

date=8/21/02 10:08 PM

price=1

Property files for other languages would be similar but with content in the
appropriate language. The reason the DateFormat and MessageFormat classes
should not be used in Listing 12-13 is because they are not needed! The dates and
numbers are static. Generating them at runtime consumes time and processing
power and complicates code.

Using DateFormat, NumberFormat, and MessageFormat
Using the Java formatting classes is straightforward. The number and date repre-
sentations used by these classes are the same objects and primitives commonly
used with Java. Dates are represented by instances of the java.util.Date object,
and numbers are represented by long and double primitives. You should already
be familiar with these objects and primitives. To use the formatting classes, the

NUMBER AND DATE FORMATTING 543

falkner.ch12.qxd 8/21/03 7:02 PM Page 543

only things required are a Date, long or double, and a Locale object describing
the user’s locale.

The formatting classes work well with a Servlet or JSP because of the
HttpServletRequest getLocale() method. As Listing 12-13 demonstrated, the
methods of DateFormat and NumberFormat are intuitive to use.

Locale locale = request.getLocale();

DateFormat df = DateFormat.getInstance();

Date d = df.parse(rb.getString("date"));

String date = DateFormat.getInstance().format(d);

First, a Locale object is obtained by invoking the getLocale() method of the
request. This step is always required unless a custom method is being used to identify
what language a user prefers. After initializing an appropriate Locale object the for-
matting class is initialized with the locale and passed the date or number to format.
The returned value is a String object describing the date or number in the appro-
priate locale.

Both DateFormat and NumberFormat work as described above. Each object
provides a getInstance() method that takes a Locale object as a parameter and
returns an initialized instance of either DateFormat or NumberFormat. After an
instance of the needed object is obtained, then the format() method is available
to provide locale-specific string representations of either dates or numbers.

Formatting Messages Using MessageFormat
The MessageFormat class is a combination of the DateFormat and NumberFormat
classes. A complete string with special tokens embedded in it can be formatted by
the MessageFormat object into a locale-specific representation. The Message
Format object does not translate text from one language into another; it only con-
catenates language-specific strings together with dynamic values.

It is helpful to use the MessageFormat class to avoid situations where using a
resource bundle and a property file becomes tedious. Any page that contains a lot
of dynamic and static content can be problematic to abstract via a property file.
For instance, a page is designed to be custom-tailored to a specific user and to
their locale. The English output of the page for a user named “foo” is shown in
Figure 12-11.

The code for this page is problematic because of all the dynamic information
being used. Recall with welcome.jsp the property file needed to contain
key/value pairs: title and welcome. Figure 12-11 looks similar but because of the
dynamic information, many more key/value pairs are required. The user’s name,
current date, and money information cannot be stored in a property file. Instead,

544 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 544

the content must be broken up into smaller sections that can be stored in the
property files. A property file describing these static sections would resemble
Listing 12-15.

Listing 12-15 Property File for tedious_messageformat.jsp

message1=Hello

message2=, it is

message3= and you have $

message4= in your pocket.

The tedious part of using a property file for tedious_messageformat.jsp is
that it requires a complex endpoint. Imagine a JSP designed to use Listing 12-15,
and it would resemble Listing 12-16.

Listing 12-16 tedious_messageformat.jsp

<%@ page import="java.util.*"%>

<%

Locale locale = request.getLocale();

ResourceBundle rb =

ResourceBundle.getBundle("tedious_messageformat", locale);

request.setAttribute("message1", rb.getString("message1"));

request.setAttribute("message2", rb.getString("message2"));

request.setAttribute("message3", rb.getString("message3"));

request.setAttribute("message4", rb.getString("message4"));

String name = "foo";

Date date = new Date();

Integer integer = new Integer(10);

request.setAttribute("name", name);

request.setAttribute("date", date);

NUMBER AND DATE FORMATTING 545

Figure 12-11 Browser Rendering of messageformat.jsp in English

falkner.ch12.qxd 8/21/03 7:02 PM Page 545

request.setAttribute("integer", integer);

%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<head>

<title>Message Format Example</title>

</head>

<body>

${message1}${name}${message2}${date}

${message3}${integer}${message4}

</body>

</html>

The preceding code illustrates when using simple property files and resource
bundles, or the equivalent functionality, breaks down. The more dynamic bits of
information in a page, the more complex the system becomes. The paragraph of
content in the page needs to be broken into many different small chunks, each
loaded and passed to the JSP View page. A common solution to the problem is to
represent dynamic information with tokens, such as the format MessageFormat
uses.

The MessageFormat class allows for pages such as tedious_message
format.jsp to still be represented with a few strings, similar to welcome.jsp.
This is accomplished by escaping dynamic information with tokens. The specific
format is fully specified by the Java documentation for java.text.Message
Format, but the basic format is to pass a string and a token of Java objects into a
format method. The string contains a set of numbered tokens such as {0}, {1},
and {2}. Each token is replaced by the corresponding item in the array passed to
the format method. For instance, the following code

String string = "Hello {0}, good {1}.";

Object[] objects = {"foo", "morning"};

String result = MessageFormat.format(string, objects);

ends up with the string result having the value "Hello foo, good morning".
In addition to simple token replacement, the MessageFormat object also has

direct support for the DateFormat and NumberFormat classes. A token can include
additional information besides the entry number of the array of objects passed
to the format() method. Date, time, and number options are available as defined
in the API documentation for java.text.MessageFormat; reference the API doc-
umentation for specific information.

The method of specifying locale-specific numbers, times, or dates as tokens
requires adding some extra information between the token’s { and }. The index

546 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 546

number of the array item is still the first argument. Optionally, additional infor-
mation can be appended after the array index number with comma delimiters.
The first argument added can specify if the token is a number, date, or time and
further information can detail more information about the token. For instance,
the following code

String string = "Hello {0}, it is {1,date} and you have {2, number,

currency} in your pocket.";

Object[] objects = {"foo", new Date(), new Integer(10)};

String result = MessageFormat.format(string, objects);

results in a string saying the equivalent of, “Hello foo, it is July 31, 2002 and you
have $10.00 in your pocket”, but formatted to your default locale and with the
current date. The code is beneficial because the same array of objects can be
passed to the equivalent string but translated in any language. For example, the
English property file would have the same string shown in Listing 12-17 as a
value to a key.

Listing 12-17 messageformat.properties

message=Hello {0}, it is {1,date} and you have {2, number, currency}

in your pocket.

Furthermore, a French property file would have the translated string that is
the same as the earlier examples of using resource bundles, as shown in Listing
12-18.

Listing 12-18 messageformat_fr.properties

message=Bonjour {0}, c''est {1, date} et vous avez {2, number,

currency} dans votre poche.

Note the tokens are left verbatim because they are already in the format
MessageFormat is expecting. The point to see with the two property files is that
by using an object like MessageFormat, it is possible to avoid the tedious use of
property files as illustrated in Listing 12-19. The i18n content with correctly for-
matted, dynamic numbers and dates is reduced to a few entries in a property file.

Listing 12-19 messageformat.jsp (Model 11⁄2 Style)

<%@ page import="java.text.*, java.util.*"%>

<%

NUMBER AND DATE FORMATTING 547

falkner.ch12.qxd 8/21/03 7:02 PM Page 547

Locale locale = request.getLocale();

ResourceBundle rb =

ResourceBundle.getBundle("messageformat", locale);

Object[] objects = {"foo", new Date(), new Integer(10) };

MessageFormat mf =

new MessageFormat(rb.getString("message"), locale);

String result = mf.format(objects);

request.setAttribute("result", result);

%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<head>

<title>Message Format Example</title>

</head>

<body>

${result}

</body>

</html>

Before trying out the preceding code, save messageformat.jsp in the base
directory of the jspbook Web Application and save messageformat.properties
and messageformat_fr.properties in the /WEB-INF/classes/ directory. Reload
Tomcat for the changes to take effect and browse to http://127.0.0.1/jspbook/
messageformat.jsp. Assuming your browser’s language preference is English,
Figure 12-12 displays an example. If your browser’s language preference is set to
French, Figure 12-13 would appear.

Understand why it is helpful to use an object such as MessageFormat to sim-
plify handling dynamic i18n content. Numbers and dates can automatically be

548 INTERNATIONALIZATION

Figure 12-12 English Example of messageformat.jsp

falkner.ch12.qxd 8/21/03 7:02 PM Page 548

accurately translated on the fly. Abstracting this functionality into a set of objects
saves the time and effort needed when coding the equivalent into an i18n appli-
cation. The Java format classes do exist and work well, especially with the Java
i18n framework and the Servlet API.

JSTL Number and Date Formatting Tags
The JSTL includes a complete set of i18n number and date formatting tags. The
tags themselves are modeled directly off the DateFormat, MessageFormat, and
NumberFormat classes and are straightforward to use. The benefit of using the
JSTL i18n tags versus the Model 11⁄2 code examples seen previously in this chapter,
or a full-fledged Model 2 implementation, is that no extra code is required to
load the appropriate resource bundle and populate request-scoped objects.
However, the drawback to using the JSTL i18n tags is that you are always relying
on resource bundles to satisfy your internationalization needs, which is a fairly
good assumption since resource bundles are about as good of a solution as you
will find.

JSTL Message Tag with Parameters
For completeness it is worth mentioning that the JSTL message tag, introduced
earlier in this chapter, does use the MessageFormat object and so the JSTL
resource bundle tags still work well when building a simple i18n Web application
based off resource bundles. The third JSTL resource bundle tag not mentioned
earlier is the param tag. The param tag allows for objects to be defined that are
subsequently passed as an array of objects to the MessageFormat object’s
format() method. The order of items in the array is identical to the order param
tags.

NUMBER AND DATE FORMATTING 549

Figure 12-13 French Example of messageformat.jsp

falkner.ch12.qxd 8/21/03 7:02 PM Page 549

The param tag works as a child to the message tag. As you saw in Listing 12-8
previously, it was shown the message tag can reference a key of a loaded resource
bundle. Should the value corresponding to this key be a string with Message
Format tokens, then the tokens need param tags to define the corresponding
objects. For example, Listing 12-20 is a modification of Listing 12-8, which uses
only the JSTL to accomplish the same functionality.

Listing 12-20 jstl_messageformat.jsp

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<fmt:bundle basename="messageformat">

<html>

<head>

<title></title>

</head>

<body>

<%

java.util.Date date = new java.util.Date();

request.setAttribute("date", date);

%>

<fmt:message key="message">

<fmt:param value="foo"/>

<fmt:param value="${date}"/>

<fmt:param value="${10}"/>

</fmt:message>

</body>

</html>

</fmt:bundle>

The param action is straightforward to use and sets the values needed by
MessageFormat.

Summary
Internationalization is a serious issue when developing Web Applications that are
truly for the global community. Building a successful i18n Web site revolves
around three main issues: abstracting content, understanding content encoding,
and formating numbers and dates to be locale-specific.

By abstracting content, more than one type of language can be used with an
internationally friendly format. For instance, HTML formatting is the same
regardless of language. Only the content embedded within the formatting is lan-
guage-specific. By abstracting out this content, the same formatting can be
repeatedly re-used with all of the languages the page is designed for. In this

550 INTERNATIONALIZATION

falkner.ch12.qxd 8/21/03 7:02 PM Page 550

chapter two specific types of content abstraction were given: Model 2 and via the
JSTL i18n message tags.

Content encoding is another critical issue to understand when developing an
i18n-friendly Web Application. Core Web technologies, such as HTTP and
HTML were built for use with the western European languages—ISO-8859-1
encoding. However, the world consists of more than just the western European
countries. Unicode does exist and is starting to solve the problem, but for now it
is important to ensure content generated in a non-ISO-8859-1 encoding is cor-
rectly sent and retrieved from a client.

The final issue covered in this chapter is how to format numbers and dates to
locale-specific formats. In many cases the information for numbers and dates is
identical in different languages but formatted differently. In these cases there isn’t
any need to keep completely separate copies of the content for different lan-
guages. The same content can be re-used with the correct formatting applied.

SUMMARY 551

falkner.ch12.qxd 8/21/03 7:02 PM Page 551

falkner.ch12.qxd 8/21/03 7:02 PM Page 552

553

Chapter 13

Multi-Client Support

The goal of most Web sites is to build something everyone can see; there are
many different types of software used to visit Web pages. When building static
Web sites, there is no option apart from building something that everyone hope-
fully can see. Dynamic Web sites alleviate this problem by allowing content to be
generated at runtime, specific to a particular client. By taking advantage of
dynamic functionality, it is possible to build something everyone can correctly see.

The term “multi-client” means that there are multiple different types of
clients visiting a Web site. Most commonly, developers only think of a Web site as
HTML and assume a client is using some software that can view HTML.
However, this practice does not always work because HTML is not the only tech-
nology used on the Web, and even if it were, there are still problems to be
addressed. First, consider the fact that there are different versions of HTML. This
alone implies that software exists with varying support for the different versions
of HTML. Coding for full backwards-compatibility with HTML 1.0 is not very
helpful because it prevents taking advantage of the current HTML features. The
only good options are to try and support all of the different versions of HTML
or to selectively support a version of HTML the majority of users are able to use.

Now consider all of the other technologies besides HTML. Many tech-
nologies exist to complement HTML, technologies such as Cascading Style
Sheets, ECMAScript, and the Document Object Model, and many technologies
exist that can replace HTML such as XHTML, XML, MS Word, and Adobe’s
Portable Document Format (PDF). Choosing only to support basic HTML
greatly limits the type of content JSP can deliver to users. Likewise, choosing only
to support formats such as MS Word limits the number of users able to be served.
What this chapter is about is using Servlets and JSP in a fashion that allows tai-
loring to multiple different types of clients.

falkner.ch13.qxd 8/21/03 6:58 PM Page 553

554 MULTI-CLIENT SUPPORT

This chapter discusses the following topics:

• Who this chapter is for: multi-client design is nice, but not usually a
necessity.

• Separating format from content.

• Templates: quick and dirty multi-client support.

• Transformations: robust but harder to implement multi-client
support.

• Solving common multi-client problems: making an abstract
interface, client detection, and URL encoding.

• Producing non-text formats.

Similar to the other chapters, this chapter is intended to be read straight
through; however, this chapter is not critical to developing Servlet- and JSP-based
projects, nor do you need the material to understand the rest of the book. What
is presented in this chapter is how to make one set of content produce several
formats, such as HTML, XHTML, PDF, and so on. Besides being able to produce
more than one format, several helpful programming techniques arise from the
concepts presented by this chapter and are explained for use. In general, this
chapter covers a topic that is currently becoming popular in the world of Servlets
and JSP, but is not commonly considered a necessity. Read this chapter if you
want to learn more about the trend of abstracting presentation logic.

Who Should Read This Chapter
Before continuing further it is important to understand who this chapter is
aimed at helping. In general, a good multi-client design is beneficial for any Web
site. The reasons are the same as designing a Web site with international issues in
mind. The functionality provided does not hinder anything previously
developed; it only expands how easily the site can grow to support future clients.
In the case of internationalization, a Web site can more easily grow to support
different languages. With multi-client design, a Web site can more easily grow to
support different content formats.

How a multi-client design works is the same as the suggested approach to
internationalization: add a proper layer of abstraction to the logic required for
the functionality. The only drawback to adding a layer of abstraction is that some
extra time and effort are required when initially designing the application. The
goal of this chapter is to clearly explain and expedite the process of designing a
multi-client-compatible Web site. This is done by explaining commonly used

falkner.ch13.qxd 8/21/03 6:58 PM Page 554

techniques and by providing examples. However, this does not mean every single
Web Application should be designed multi-client-compatible. If a project has the
luxury of only requiring one specific format, then by all means only build that
format. For the majority of projects that do not have this luxury, a good multi-
client design is a necessity.

Separating Format from Content
A multi-client design relies on separating formatting logic from the content gen-
eration. By separating out formatting logic it is possible to abstract that logic
behind a common interface. The common interface can then be used freely while
the formatting it produces is specialized as needed. As applied to Servlets and JSP,
separating format from content and then abstracting formatting can be a very
easy process, especially when following a Model 2 design.

Recall with Model 2 the emphasis is on removing all business logic from pre-
sentation logic. In practice this means breaking a Web Application into two parts.
One part handles all business logic, such as querying a database, logging, or val-
idating information, and creates the dynamic content required for a presentation
component. The presentation component is then the second part of the Web
Application; it takes the dynamic content, formats it along with static content,
and produces a response for a client. When implemented as suggested, the
business logic is coded in either a Servlet or Filter, and the presentation logic is a
JSP. Communicating between the two components is a custom Java object,
usually a JavaBean.

The Model 2 design pattern is important for multi-client design because it
eliminates any redundancy of business logic. Presentation logic is completely
handled by a JSP—for example, the HTML formatting applied to dynamic
content. Separating out formatting logic is then trivial and can be done in a few
different ways, specifically, either templates or transformation. The point is illus-
trated in Listing 13-1.

Listing 13-1 A Model 2 Presentation JSP

<html>

<head>

<title>Model 2 Multi-Client Example</title>

</head>

<body>

<image src="logo.png">

<h1>Welcome ${user.name} to the example!</h1>

<p>This webpage is an example of the type of page you'd see from a

SEPARATING FORMAT FROM CONTENT 555

falkner.ch13.qxd 8/21/03 6:58 PM Page 555

556 MULTI-CLIENT SUPPORT

Model 2 Web Application. No business logic on the page!

</body>

</html>

Highlighted in Listing 13-1 is the formatting. The important point is that all
of this formatting is the responsibility of the JSP. Dynamic information generated
by the business logic is not assuming anything about the formatting: it is only
providing the correct user name for the JSP to display. The JSP is responsible for
taking all content, both static and dynamic, and formatting it correctly for a
client to see.

This is helpful because it means a different format can be applied with
minimal effort. For example, imagine the Web site is current with technology
trends and provides content in both HTML and XHTML formats. Listing 13-1
formats the content into HTML; formatting into XHTML only requires one
more additional JSP. Listing 13-2 is an example of the XHTML formatting JSP.

Listing 13-2 An XHTML Model 2 Presentation JSP

<html>

<head>

<title>Model 2 Multi-Client Example</title>

</head>

<body>

<h1>Welcome ${user.name} to the example!</h1>

<p>This webpage is an example of the type of page you'd see from a

Model 2 Web Application. No business logic on the page!</p>

</body>

</html>

Note the two formats chosen in this case are similar. This is on purpose to
keep the example simple. It is important to see that Listing 13-1 is not valid
XHTML; it is HTML. The corrections to make it valid XHTML are minor: a </p>
and an ending / for the img tag; however, the end result a client sees is a page in
a distinctly different format. How the application would work is by detecting
which type of format a client needs and using the correct JSP. Should it be an
HTML client, then the business logic is performed and the response presented by
Listing 13-1. Should the client request XHTML, the business logic is performed,
and the response is presented by Listing 13-2. Either case the same business logic
is executed. Also, future formats can be added by creating new JSP.

In essence, this is exactly what multi-client formatting is all about: isolating
formatting logic and abstracting it. However, there are some important issues to

falkner.ch13.qxd 8/21/03 6:58 PM Page 556

consider when implementing a multi-client design. The code that is shown in
Listing 13-1 and Listing 13-2, respectively, only works for text-based formatting
and if the content is in one language. These are not limitations of Servlets or JSP;
they are only limitations of how the example was implemented. In the rest of the
chapter we will show how a proper multi-client implementation can allow for
any binary format, including non-text. We will also explain how a good multi-
client design complements a good internationalization design, meaning i18n-
compatible sites available in multiple formats!

Implementing Multi-Client Support
There are a few techniques commonly used to provide multi-client support.
Many approaches work, but it is desirable to have a multi-client design that sup-
ports the following:

• Eliminates redundancy: If something is only needed once, only use it
once. Both static text and non-formatting-related code fall into this
category. A good solution should not require multiple copies of the
same code. If multiple copies of text or code exist, maintenance
becomes more difficult because a change to one of the copies requires
a change to all. This is the primary reason why a Model 2 design pro-
vides a good place to implement multi-client support. Should a JSP
embed business logic, such as a user login check, each JSP presen-
tation page would need to have a copy of the code. A simple change
to one of the pages would require a change to all of the pages.

A good multi-client design eliminates all redundancy. Relevant
code, formatting, and text should appear only once.

• Cleanly extensible: The reason for implementing a multi-client design
is to allow for more than one type of content formatting. Restricting
to a set number of formats is no better than restricting to the original
single format. A good multi-client design provides a framework for
implementing any type of formatting that might be required both
now and in the future. Formats should also be cleanly separate from
each other. Manipulating one format should not affect others.

• Easy to use: A good multi-client design should be easy to use. JSP is
a powerful tool because it is simple. The markup associated with a
JSP is easier to understand than Java code, especially by developers
unfamiliar with Java. Moving away from the simplicity of JSP
defeats the purpose of using the technology, as with Servlets.

IMPLEMENTING MULTI-CLIENT SUPPORT 557

falkner.ch13.qxd 8/21/03 6:58 PM Page 557

Supporting all of these features is certainly possible with Servlets and JSP. In
practice a good multi-client design is just a specific implementation of a good
Model 2 design. As mentioned previously the Model 2 pattern provides a method
of consolidating business logic and keeping it separate from presentation code.
This is good because with multi-client support the emphasis is on specializing
presentation code. Therefore, by starting with a Model 2 design, half of the Web
application is already finished. What is left is customizing the presentation code
to produce multiple formats. There are two methods of accomplishing this: tem-
plates and transformations.

Templates
The term template refers to creating a JSP formatting template that content is
pushed through. Creating support for a new format can then be accomplished by
creating a new template. In practice this approach requires building a set of JSP
for each format required. Figure 13-1 shows what the high-level design looks like.

An important point to note in Figure 13-1 is there are multiple possible JSP
endpoints to a request. The different endpoints generate the equivalent pages but
in different formats. The number of endpoints is the number of formats desired.
Because of the extra endpoints a slight modification needs to be made to the
Filter or Servlet responsible for business logic. Instead of always assuming a
single endpoint, the Control component needs to selectively forward to the JSP
responsible for the specific format.

The code for selectively forwarding can easily be done by using a fictitious
URL and some browser client-detection code. For instance, a Filter can be used
to intercept all requests to the Web Application. Requests for the fictitious URL
ending with .html are forwarded to an HTML-formatting JSP; requests for the
fictitious URL ending with .xhtml are forwarded to an XHTML-formatting JSP.
As long as the JSP template pages follow a common naming scheme, the solution
is simple to implement. Consider a Web site using Listing 13-1 and Listing 13-2
for different formatting and a Filter to encapsulate all business logic. The code for
the Filter is provided in Listing 13-3.

Listing 13-3 MCTemplateFilter.java

package com.jspbook;

import java.io.*;

import java.util.*;

558 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 558

import javax.servlet.*;

import javax.servlet.http.*;

public class MCTemplateFilter implements Filter {

FilterConfig fc = null;

public void doFilter(ServletRequest req,

ServletResponse res,

FilterChain chain) throws IOException, ServletException {

HttpServletRequest request = (HttpServletRequest) req;

String uri = request.getRequestURI();

String client = "HTML";

if (uri.endsWith("xhtml")) {

client = "XHTML";

}

// business logic...

HashMap user = new HashMap();

user.put("name", "Bruce");

request.setAttribute("user", user);

ServletContext sc = fc.getServletContext();

sc.getRequestDispatcher("/mc/MCexample"+client+".jsp").

forward(request, res);

}

IMPLEMENTING MULTI-CLIENT SUPPORT 559

View
JSP Template 1

Model
JavaBean

Control
Filter or Servlet

Web Application

request response

View
JSP Template 2

View
JSP Template x...

More
Templates...

Figure 13-1 Multi-Client Support via Templates

falkner.ch13.qxd 8/21/03 6:58 PM Page 559

public void init(FilterConfig filterConfig) {

fc = filterConfig;

}

public void destroy() {

fc = null;

}

}

Save Listing 13-3 as MCTemplateFilter.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook Web Application. Save Listing 13-1 and Listing
13-2 as MCexampleHTML.jsp and MCexampleXHTML.jsp, respectively, in the /mc
directory of the jspbook Web Application. The Filter is designed to intercept a
request and direct it to either the HTML or XHTML template depending on the
ending of the URL.

String uri = request.getRequestURI();

String client = "HTML";

if (uri.endsWith("xhtml")) {

client = "XHTML";

}

By default the client variable is set to HTML, meaning the HTML version of
the page will be shown. Should the URL end with ".xhtml", then the XHTML
version of the page is shown. Later in the Filter, in lieu of invoking chain.
doFilter(), the request is forwarded to the correct JSP.

ServletContext sc = fc.getServletContext();

sc.getRequestDispatcher("/mc/MCexample"+client+".jsp").

forward(request, res);

The correct JSP is determined by using the begining of the page name,
"MCexample", appending either HTML or XHTML, and finally ".jsp".

Try out the code example by deploying MCTemplateFilter.java to filter all
requests to the /mc directory.

<filter>

<filter-name>MCTemplateFilter</filter-name>

<filter-class>com.jspbook.MCTemplateFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>MCTemplateFilter</filter-name>

<url-pattern>/mc/*</url-pattern>

</filter-mapping>

560 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 560

After deploying the Filter, reload the jspbook Web Application and browse to
http://127.0.0.1/jspbook/mc/MCexample.html. The page shown is the HTML
version, MCexampleHTML.jsp. Listing 13-4 is the code generated for the response.

Listing 13-4 Response from MCexampleHTML.jsp

<html>

<head>

<title>Model 2 Multi-Client Example</title>

</head>

<body>

<h1>Welcome Bruce to the example!</h1>

<p>This webpage is an example of the type of page you'd see from

a Model 2 Web Application. No business logic on the page!

</body>

</html>

The response is the HTML version of the page. Next, try browsing to
http://127.0.0.1/jspbook/mc/MCexample.xhtml. The response returned this
time is the XHTML version of the page. Listing 13-5 shows the code returned in
the response.

Listing 13-5 Response Generated by MCexampleXHTML.jsp

<html>

<head>

<title>Model 2 Multi-Client Example</title>

</head>

<body>

<h1>Welcome Bruce to the example!</h1>

<p>This webpage is an example of the type of page you'd see from

a Model 2 Web Application. No business logic on the page!</p>

</body>

</html>

This time the code is returned in XHTML format; note that browser ren-
derings of the results are not used because they would look identical. The
example illustrates how a template system can be created for a Web site. Formats
are detected by the URL extension and one main Filter intercepts all requests and
directs them to the proper resource.

The preceding example can be expanded to create a Filter that detects more
than just HTML and XHTML support. In the request headers a client sends is the

IMPLEMENTING MULTI-CLIENT SUPPORT 561

falkner.ch13.qxd 8/21/03 6:58 PM Page 561

user-agent field. This header contains information about the software a client is
using to visit a site. The user-agent header can be mined to determine if the
client is using Mozilla, Internet Explorer, Netscape, or any other popular Web
browser and custom-tailor a page specifically to that browser. For instance, if a
user is using Internet Explorer, a Web page can be custom-tailored to take
advantage of MS-specific Windows features. Likewise, if a client is using Mozilla,
the response can take advantage of XUL1. Any number of formats can be sup-
ported. All that is required is a set of JSP templates to produce the correct format.

Benefits and Drawbacks of Templates
The benefit of templates is that they are easy to and intuitive to create, especially
for markup language formats. JSP already excels at producing these formats, and
most authors know how to use JSP to make them. The drawback to using a tem-
plate is each format requires a new JSP. The JSP clutter a Web Application, but
more importantly multiple copies tempt a developer to put redundant content in
the templates. For instance, in Listing 13-1 and Listing 13-2 only part of the
content is dynamic, the name of the user. The rest of the content on the page is
copied directly, leaving two copies of the same information. Should the HTML
template be changed, the same changes would need to be applied to the XHTML
template.

Solving the problem of redundant content on templates requires some work.
The solution is to treat all text as if it is dynamic and pull the content from one
central location. Static content is then consolidated into one place and more
easily maintained. Template pages end up looking like the examples from the
internationalization chapter. Listing 13-6 shows what Listing 13-1 might look
like should the page be authored in this fashion.

Listing 13-6 Consolidated Content

<html>

<head>

<title>${content.title}</title>

</head>

<body>

<h1>${content.welcome}</h1>

562 MULTI-CLIENT SUPPORT

1. XUL is an HTML replacement technology designed by the Mozilla developers (http://www.
mozilla.org). The technology is similar to HTML, but uses XML and JavaScript to create a
much more robust development tool.

falkner.ch13.qxd 8/21/03 6:58 PM Page 562

<p>${content.intro}

</body>

</html>

Notice how all of the content, both static and dynamic, has been replaced
with JSP expressions. The expressions display dynamic values from a scoped
object named content; assume the values correspond to the text needed for the
title of the page, the welcome message, and the introduction.

By consolidating code, as shown in Listing 13-6, the problem of redundant
content is eliminated. All content can be stored in one central location and passed
to JSP View components as needed. This solution also allows for easy integration
of multiple languages for internationalization purposes.

There is only one major fault to using templates for multi-client support:
fitting content to a template. A problem arises when content does not fit a tem-
plate. In contrived examples the content always has nice places to fit between the
formatting, such as Listing 13-6. In practice there are cases where formatting does
not fit. For example, consider the following HTML paragraph.

<p>this is a paragraph authored in HTML.

Abstracted to a template it could be reduced to the following:

<p>${paragraph}

The problem arises should formatting need to be embedded in the paragraph
such as a link in the middle of the text:

<p>this is a paragraph with a link in it.

Abstracting to a template as previously done no longer works for non-HTML
formats. The link would literally appear as “link” in
the middle of a PDF or MS Word document. This problem is the bane of using
templates as a full multi-client solution. Templates still work if the problem is
purposely avoided, but a truly robust multi-client design requires a full transfor-
mation from an intermediate format into the final format.

Transformations
A transformation is a more complex but more robust multi-client solution com-
pared to templates. The difference between a template and a transformation is
the transformation uses an interface, or pseudo-format, to cleanly abstract the
final format. When a client requests a particular format, the pseudo-format,
along with content, is transformed into the final result. A commonly used trans-

IMPLEMENTING MULTI-CLIENT SUPPORT 563

falkner.ch13.qxd 8/21/03 6:58 PM Page 563

formation is to represent a document using Java objects, then to write output
streams that rely on the Java objects as input. The Java objects are the abstract
interface, and the output stream performs the transformations. Figure 13-2 illus-
trates the concept as applied to a Model 2 Web Application.

Note that Figure 13-2 only has a single endpoint instead of the many required
by templates. With transformations only one endpoint is required because the
endpoint is the content with pseudo-formatting. The actual transformation into
the final format is done elsewhere.

Transformations are an ideal solution to multi-client design because of the
clean abstraction they provide for formatting. Consider the one serious flaw with
templates: making content fit to the template. With transformations this is not an
issue because the pseudo-format can freely be used. For instance, consider the
following transformation JSP:

<%@ taglib uri="transformation tags..." prefix="t"%>

<t:h1>A Title</t:h1>

<t:p>Some paragraph with information.</t:p>

Note no static formatting is used; all formatting is done via custom tags. The
JSP transforms by using the custom tags. If the preceding code was being con-
verted into HTML, the custom tags would output the equivalent HTML for-
matting, likewise for XHTML or any other format.

Recall the problem with templates was formatting that appears in content. In
the case of transformations this is not a problem because all formatting is part of
the multi-client interface. For instance, the equivalent of the problematic tem-
plate would be the following as a transformation JSP:

564 MULTI-CLIENT SUPPORT

View
JSP Transformation

Model
JavaBean

Control
Filter or Servlet

Web Application

request response

View
JSP Transformation

Model
JavaBean More

Transformations...

Figure 13-2 Transformations

falkner.ch13.qxd 8/21/03 6:58 PM Page 564

<%@ taglib uri="transformation tags..." prefix="t"%>

<t:h1>A Title</t:h1>

<t:p>Some paragraph with a <t:link url="foo.html">link</t:link> in

it.</t:p>

The link is in the same place, but note it is a custom tag. Like the other
custom tags, the link tag would be responsible for generating the correct for-
matting at runtime. Since the link is not static HTML, there is no issue of it con-
flicting with non-HTML formats.

Implementing Transformations
There are a few good existing approaches to implementing transformations with
Servlets and JSP. The common approaches are to use JSP custom tags to abstract
all formatting or to use JSP to produce a standard format and have a Filter
transform the result. Here are some techniques and frameworks to be aware of:

• FOP: Formatting Objects Processor (FOP) is a framework designed
to take XSL Formatting Objects, http://www.w3.org/TR/2001/
REC-xsl-20011015/, and convert them into a number of different
output formats. The framework primarily supports PDF, but has
partial support for many other formats. The idea behind FOP is
great, but not related at all to Servlets and JSP. However, since the
framework is authored in Java, it is easy to use JSP to produce XSL-
FO and have a Filter execute FOP on the response. More infor-
mation can be found on FOP at http://xml.apache.org/fop.

• Cocoon: Cocoon is a framework built by the Apache Jakarta com-
munity and is designed to pipeline XML information through tem-
plates and/or transformations. The framework allows for JSP as a
starting point, but is really more of a JSP alternative. What Cocoon
does is take a starting XML document and apply a number of XSLT
transformations to it. Cocoon also supports FOP for transforma-
tions on XSL-FO. Further information can be found about Cocoon
at http://xml.apache.org/cocoon/index.html.

• Multi-Client Tags: The Multi-Client Tags framework is an attempt
at making the simplest possible multi-client interface. The project is
centered around a simple HTML-like set of custom tags and
Cascading Style Sheets. The project is simple to learn (literally takes
five minutes) and generates HTML, XHTML, PDF, and printer-

IMPLEMENTING MULTI-CLIENT SUPPORT 565

falkner.ch13.qxd 8/21/03 6:58 PM Page 565

friendly formats. Further information about the Multi-Client Tags
(MCT) can be found at http://www.jspinsider.com/jspkit/mct/.

Transformations are the best method of providing multi-client support. As
so, it is worth examining further to see how transformations can be implemented
with Servlets and JSP. For further examples in this chapter we will be using the
Multi-Client Tags project from JSP Insider, http://www.jspinsider.com. This
project is ideal for demonstration as it is geared to be simple and intuitive for a
JSP developer. It is also open source and under a liberal license.

Installing the Multi-Client Tags
Before continuing further you will need to download the JSP Insider Multi-
Client Tags for later examples in this chapter. Download the example WAR from
http://www.jspinsider.com/jspkit/mct/ji-mct.war. Deploy the WAR by
placing it in the /webapps directory of your Tomcat installation and reloading
Tomcat. The WAR automatically deploys itself to the /webapps/ji-mct directory
of Tomcat.

The example Web Application is much like the Struts WAR file used in
Chapter 12. When starting from scratch, the MCT WAR is ideal because it pre-
installs all of the needed components and configuration files for the framework.
However, should you need to install the MCT with an existing Web Application,
consult the installation documentation at http://www.jspinsider.com/
jspkit/mct/.

Solving Multi-Client Problems
Implementing multi-client support revolves around finding good solutions to
multi-client problems. In the following sections the common multi-client
problems are outlined and solved with an example base of the MCT. The
common problems consist of defining a good interface for transformations,
detecting client types, and providing non-text formats.

Creating a Multi-Client Interface
A multi-client interface is the intermediate format to which all of the other
formats are derived from. It is important to have a robust interface defined in
order not to restrict what type of formats the interface can be used to define. It is
also important for the interface to be easy to use or else multi-client support
becomes a hassle to implement. For our interface we will re-use the simple
interface defined by the Multi-Client Tags.

566 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 566

The Multi-Client Tags are modeled directly after HTML and include a few
tags that allow for text, tables, links, and images to be defined on a page. The tags
are as follows:

• page: The page tag is used to represent the common header and
footer of a page. All other MCT tags must be used as child elements
of this tag. Only one instance of the page tag is allowed to appear
per page.

• p: The paragraph tag, p, is used identically at the HTML paragraph
tag. Text that is surrounded by the tag automatically has line breaks
inserted. The tag is a convenient method of applying styles to spe-
cific chunks of text.

• c: The character tag, c, is used like the HTML span tag. Text sur-
rounded by the tag has the tag’s style applied to it. The character tag
differs from the paragraph tag in that it does not insert a line break
before and after the text it styles.

• link: The link tag provides a method of embedding links, should
they be supported, in a document. In formats such as HTML the
link tag acts identically to an anchor tag.

• image: The image tag provides a method of embedding external
images into a document. In the case of HTML this is identical to
the image, img, tag. In other formats, such as PDF, an image is
embedded in a best effort attempt to match.

• table: The table tag is analogous to the HTML table tag. This tag
allows for structured formatting in a document by means of seg-
menting a page into rows and columns.

• tr: The tr tag is analogous to the HTML table row tag, tr. The tag
must be used as a child tag of a table and defines rows of that table.

• tc: The tc tag is analogous to the HTML table division tag, td. The
tag must be used as a child tag of a table row and defines divisions
of that row.

Most of the MCT tags are fairly intuitive and work identically to the HTML
equivalents. This is because the tags primarily generate HTML, and most JSP
developers are already very familiar with HTML. However, what is important is
that this interface is able to support all the features needed. For instance, these
tags allow for text, links, images, and tables. For most practical purposes this is
perfectly fine; however, should more functionality be required, additional tags
would need to be made.

SOLVING MULTI-CLIENT PROBLEMS 567

falkner.ch13.qxd 8/21/03 6:58 PM Page 567

Complementing all of the tags are attributes and styling rules in compliance
with Cascading Style Sheets (CSS). CSS is a technology defined by the W3C to
style HTML elements. The same HTML CSS rules apply to MCT tags. Together,
the small set of custom tags and CSS rules provide an adequate multi-client
interface for the most common needs of a Web site.

The MCT interface is intuitive to use for anyone with HTML experience. In
most respects it is exactly like authoring an HTML-producing JSP, but the tags on
the page need to be MCT markup. Take, for example, the following JSP. Save
Listing 13-7 as HelloWorld.jsp in the base directory of the /ji-mct Web
Application.

Listing 13-7 Multi-Client-Compatible HelloWorld

<page>

<p style="font-size:20pt; color:blue;">HelloWorld!</p>

</page>

The page is a “Hello World” equivalent to the first Servlet and JSP examples
of this book. The difference is this example is using a set of multi-client custom
tags. At runtime the tags dynamically generate the appropriate format a client
desires to view. Try browsing to http://127.0.0.1/ji-mct/HelloWorld.
html to see the HTML version. Likewise, an XHTML, PDF, or text format of the
same content can be viewed by browsing to the same URL but with a .xhtml,
.pdf, or .txt extension, respectively. Figure 13-3 shows a browser rendering of
the HTML version using a Web browser.

The XHTML version of HelloWorld.jsp renders the same as Figure 13-3;
you can check the source code to see the difference. The PDF version requires
special software to view the format but also looks alike. Figure 13-4 shows the
PDF version rendered by Adobe’s browser PDF viewer plug-in, http://www.
adobe.com.

568 MULTI-CLIENT SUPPORT

Figure 13-3 Browser Rendering of HelloWorld.jsp

falkner.ch13.qxd 8/21/03 6:58 PM Page 568

Note that PDF is a print-quality format. The multi-client “Hello World” can
be printed picture perfect as it appears in Figure 13-4, although the functionality
is more helpful when a tutorial or article is authored via multi-client tags. The
text format is a simple form that almost everyone can view. Figure 13-5 shows a
browser rendering of HelloWorld.jsp as rendered in text.

All of these formats work and only one simple JSP is producing them! The
URL extensions are fictitious and managed by a Filter that intercepts requests to
the Web Application. Eventually, everything is directed to HelloWorld.jsp. The
power of using a good multi-client framework should now be obvious. With a
simple custom tag interface it is possible to easily create pages available in many
different formats. This allows for seamless support of proprietary formats, old
software, and printer-friendly content.

SOLVING MULTI-CLIENT PROBLEMS 569

Figure 13-4 PDF Plug-in Rendering of HelloWorld.jsp

Figure 13-5 Text Rendering of HelloWorld.jsp

falkner.ch13.qxd 8/21/03 6:58 PM Page 569

Transformations
A good interface is only half of a multi-client framework. The code behind the
interface needs to be able to support multiple formats and do a good job of it.
The magic of the MCT framework comes from a transformer class that pipes
MCT content through different handler classes, as shown in Listing 13-8.

Listing 13-8 Multi-Client Version of a “Hello World” Page

<page>

<p style="font-size:20pt; color:blue;">HelloWorld!</p>

</page>

Listing 13-9 shows the desired HTML output.

Listing 13-9 HTML Output from the Multi-Client “Hello World” Page

<html>

<p style="color:blue;font-size:20pt;">HelloWorld!</p>

</html>

Note the content in both cases is the same; the text does not change. Only the
formatting before and after bits of content needs to be changed. In the case text
markup, it is simple enough to implement this functionality via Java.

// before content

out.write("<html>");

out.write(content);

// after content

out.write("</html>");

The trick is being able to parse the MCT content and know when a starting
tag, ending tag, or content is present. Given what you know about the MCT
syntax, it should seem simple enough to start coding such a parser; however, the
parser is a component that can be expected to come with the MCT framework.
The MCT framework comes with such a parser. The parser only expects MCT
developers code “handler” classes—Java code that takes events, such as tag start
and tag stop—to generate the appropriate markup.

After seeing one MCT handler class, it is intuitive how they work and how
you could code new ones. Listing 13-10 is the code for the MCT’s default HTML
handler—that is, the class that converts MCT syntax to HTML markup.

570 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 570

Listing 13-10 HtmlHandler.java

package com.jspinsider.jspkit.mct;

public class HtmlHandler extends AbstractHandler {

public void startTag(int uri, Attributes attributes)

throws Exception {

switch (uri) {

case P: {

write("<p"+style.getInline()+">");

break;

}

case C: {

write("<span"+style.getInline()+">");

break;

}

case PAGE: {

if (!includes) {

write("<html"+style.getInline()+">");

}

break;

}

case IMAGE: {

String u = (String)attributes.get("uri");

if (u == null)

break;

if (u.startsWith("file:"))

u = u.substring(5,u.length());

write("<img src=\""+u+"\""+style.getInline());

String align = style.getProperty("align");

if (align != null) {

write(" align=\""+align+"\"");

}

write(">");

break;

}

case LINK: {

String u = (String)attributes.get("uri");

startLink(u);

break;

}

case TABLE: {

write("<table"+style.getInline()+">");

break;

SOLVING MULTI-CLIENT PROBLEMS 571

falkner.ch13.qxd 8/21/03 6:58 PM Page 571

}

case TR: {

write("<tr"+style.getInline()+">");

break;

}

case TC: {

write("<td"+style.getInline()+">");

break;

}

default: {

break;

}

}

}

protected void startLink(String u) throws Exception {

MultiClientConfig mcc = MultiClientFilter.getConfig();

String localRedirect = "";

String prefix = ".html";

if (u.indexOf(".") != -1) {

prefix = "";

}

String href = u+prefix;

// get the link rewriter

try {

Object o = Class.forName(mcc.getProperty(

"com.jspinsider.jspkit.mct.MultiClientRewriter")).newInstance();

if (!(o instanceof MultiClientRewriter)) {

throw new Exception(

"Class does not implement MultiClientRewriter.");

}

MultiClientRewriter mcr = (MultiClientRewriter)o;

href = mcr.rewrite(href);

}

catch (ClassNotFoundException e) {

//ignore

}

catch (InstantiationException e) {

// noop

}

572 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 572

catch (IllegalAccessException e) {

// noop

}

write("");

}

public void endTag(int uri) throws Exception {

switch (uri) {

case P: {

write("</p>");

break;

}

case C: {

write("");

break;

}

case PAGE: {

if (!includes) {

write("</html>");

}

break;

}

case IMAGE: {

//noop

break;

}

case LINK: {

write("");

break;

}

case TABLE: {

write("</table>");

break;

}

case TR: {

write("</tr>");

break;

}

case TC: {

write("</td>");

break;

}

SOLVING MULTI-CLIENT PROBLEMS 573

falkner.ch13.qxd 8/21/03 6:58 PM Page 573

574 MULTI-CLIENT SUPPORT

default: {

break;

}

}

}

}

There are several important parts of the HtmlHandler class. First, the class
extends the com.jspinsider.jspkit.mct.AbstractHandler class. The
AbstractHandler class provides everything the parser needs: a method for
writing content, a method for firing a start tag event, and a method for firing an
end tag event.

package com.jspinsider.jspkit.mct;

public class HtmlHandler extends AbstractHandler {

public void startTag(int uri, Attributes attributes)

throws Exception {

...

}

public void endTag(int uri) throws Exception {

...

}

}

The content writing method is implicitly implemented by the Abstract
Handler class. The method can be overridden, but it will be left as an exercise you
can try on your own. More important are the startTag() and endTag()
methods, highlighted in the preceding code snippet. The startTag() method is
fired each time a new MCT tag is parsed. The endTag() method is fired when an
ending tag is parsed. The arguments for each method include an integer value
that specifies which MCT tag was parsed.

Examine the startTag() method more closely to see how the functionality is
expected for use.

public void startTag(int uri, Attributes attributes)

throws Exception {

switch (uri) {

case P: {

write("<p"+style.getInline()+">");

break;

}

case C: {

falkner.ch13.qxd 8/21/03 6:58 PM Page 574

SOLVING MULTI-CLIENT PROBLEMS 575

write("<span"+style.getInline()+">");

break;

}

case PAGE: {

if (!includes) {

write("<html"+style.getInline()+">");

}

break;

}

...

The integer value, uri, is used by a switch statement. Each of the different
cases appropriately translates the MCT syntax into the appropriate output
format. For example, the P case, the static integer defined for the p tag (para-
graph), generates HTML markup for a paragraph.

case P: {

write("<p"+style.getInline()+">");

break;

}

Likewise, in the endTag() method the switch case for P, a paragraph, gen-
erates the complementary HTML.

public void endTag(int uri) throws Exception {

switch (uri) {

case P: {

write("</p>");

break;

}

...

Together the startTag() and endTag() methods can be used to generate for-
matting. In the case of the startTag() method, an object representing the tag’s
attributes is also passed.

The HtmlHandler class is not the only handler that comes with the MCT
framework. All of the default-supported formats have a handler class and you can
find the source code in the com.jspinsider.jspkit.mct package of the Multi-
Client Tags framework. Bringing all of the handler classes together is a Servlet
Filter. The Filter handles HTTP requests, generates MCT syntax by forwarding
requests to JSP, and pipes MCT syntax through handler classes. The complete
code can be found in the com.jspinsider.jspkit.mct class; however, the
snippet in Listing 13-11 enables you to see what the Filter is doing.

falkner.ch13.qxd 8/21/03 6:58 PM Page 575

576 MULTI-CLIENT SUPPORT

Listing 13-11 Snippet of MCT Servlet Filter

// Get the response (i.e., MCT synatx)

CacheResponseWrapper crw =

new CacheResponseWrapper((HttpServletResponse)response, buffer);

sc.getRequestDispatcher(

getURI(request)).forward(request, crw);

// get byte array representing content

byte[] content = buffer.toByteArray();

// Make SAX Handler

SAXParserFactory spf =

SAXParserFactory.newInstance();

SAXParser sp = spf.newSAXParser();

// wrap appropriately for the client

switch (client.getType()) {

...

case MultiClient.HTML : {

HtmlHandler h = new HtmlHandler();

h.setOutputStream(out);

sp.parse(new ByteArrayInputStream(content), h);

h.flush();

break;

}

The Filter first buffers the content of a JSP, assumed to be in MCT syntax.

CacheResponseWrapper crw =

new CacheResponseWrapper(

(HttpServletResponse)response, buffer);

sc.getRequestDispatcher(

getURI(request)).forward(request, crw);

// get byte array representing content

byte[] content = buffer.toByteArray();

The technique is identical to the cache Filter coded in Chapter 8. The
response is wrapped and a custom Servlet OutputStream is used to buffer the
response.

Next, a parser is created and the content is parsed using an MCT handler
class.

falkner.ch13.qxd 8/21/03 6:58 PM Page 576

SOLVING MULTI-CLIENT PROBLEMS 577

2. In Chapter 15 a complete Web Application is built. The Web Application uses the MCT for multi-
client support and is a great place to look for code examples.

SAXParserFactory spf =

SAXParserFactory.newInstance();

SAXParser sp = spf.newSAXParser();

// wrap appropriately for the client

switch (client.getType()) {

...

case MultiClient.HTML : {

HtmlHandler h = new HtmlHandler();

h.setOutputStream(out);

sp.parse(new ByteArrayInputStream(content), h);

h.flush();

break;

}

The HTML case is illustrated by the preceding code. The previously buffered
response is parsed by a SAXParser class (a Java API XML parser) and handled by
the HtmlHandler class. The output stream for the handler is set to be the
response to a client—meaning the HTML content is sent as the response to the
request. The end result is that JSP content, assumed to generate MCT syntax, gets
piped selectively through a handler class and the result is displayed to a client.

The important point is that multi-client syntax, MCT syntax in this case, is
transformed to a format a client wants. From our perspective, it doesn’t really
matter how this is done as long as it gets done correctly—which is what the MCT
framework is doing. However, it is helpful to have a good idea of how the
internals of the MCT framework work. If you want to extend or implement your
own multi-client framework, it is a good place to start.

With the MCT framework installed, you are set to start coding pages. All of
the material covered in the previous chapters can be used; however, now instead
of assuming HTML syntax, use MCT syntax. There is little point in rehashing all
of the previous chapters with an MCT syntax example; it will be up to you to play
around with the new functionality2. However, it should be clear as to why a
multi-client framework is helpful. The only thing content developers, tradi-
tionally HTML developers, need to care about is coding to the multi-client
interface—that is, the MCT tags. By doing this, your Web Application seamlessly
supports HTML, XHTML, PDF, and any other format you can code a trans-
former for.

falkner.ch13.qxd 8/21/03 6:58 PM Page 577

Detecting Client Types
A multi-client design is great for supporting the latest and greatest formats and
keeping support for other required formats. Initially, the multi-client design can
be designed to support a possibly bland, but required, technology. Later on, new
specialized formats can be added as desired. The trick to making a multi-client
design stretches beyond knowing how to generate many different formats. With
more than one format the problem arises of how to appropriately detect which
format a client wants or which format a client should be given.

As illustrated previously in Listing 13-3, there is one very direct method of
ensuring a multi-client design generates the appropriate format. Simply encode
URLs to be distinctly different for different formats. The method illustrated was
to change the extension of a URL based on the type of format desired—that is,
.html generates HTML, .pdf generates PDF and so on. Distinct URLs work, but
they have two serious drawbacks. First, for formats such as HTML and XHTML,
there are many embedded links that lead to other documents. When using dis-
tinct URLs, each of these links must be encoded during runtime to specify the
correct format. This issue is a slight hassle but is not to hard too solve; it is dis-
cussed later in this chapter with URL rewriting. The second more serious issue is
how to distinguish between two slightly different implementations of the same
format, for example, the notorious Microsoft Internet Explorer and the early
Netscape Navigator, version 4.x and earlier. Both of these Web browsers support
HTML, but they each have unique support for Dynamic HTML. Should your
multi-client design support DHTML, it is imperative to be able to distinguish
which specific style of HTML and client-side scripts should be sent back.

Here are the best methods for detecting what type of format a Web
Application user would prefer:

• Asking: Usually the least elegant solution, a simple HTML form can
be used to inquire what type of format the client would prefer. The
information can then be stored in session context for later access.

• HTTP user-agent header: The HTTP user-agent header is an
HTTP header client software can use to describe itself. In practice
this header is almost always accurately populated. Many non-
mainstream software packages even allow for a client to falsely pop-
ulate this value assuming it is put to use by a server. By doing this,
the software can purposely request it be allowed to see content a
server might normally withhold.

• HTTP accept and accept-encoding header: The accept-encoding
header was previously explained with the GZIP compression Filter

578 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 578

example in Chapter 6. The header is very helpful for determining
the special formats that a client can accept. In practice most of the
formats are irrelevant to a multi-client design; a specific Filter such
as the GZIP Filter is better suited for handling these types of
formats. More helpful for a multi-client design is the HTTP accept
header. This header lists all of the MIME types a client can accept.
Web browsers in particular tend to accept many different types of
formats, all of which are normally listed by this header.

For further discussion the HTTP user-agent and accept headers are going
to be more closely examined. Creating an HTML form and using session context
is something you should already be very familiar with.

Recall that in Chapter 2 a Servlet was built that demonstrated how to access
the HTTP request headers sent by a client. This Servlet is deployed with the
jspbook Web Application and can be viewed by browsing to http://127.
0.0.1/jspbook/ShowHeaders. Figure 13-6 shows what a browser rendering of the
results looks like.

Notice both of the HTTP headers we are interested in appear. They are sent
by a client same as all of the other HTTP request headers. Accessing them is
nothing new; understanding them is. Focus on the user-agent header. Here is a
sample one as shown in Figure 13-6.

SOLVING MULTI-CLIENT PROBLEMS 579

Figure 13-6 Browser Rendering of ShowHeaders Servlet

falkner.ch13.qxd 8/21/03 6:58 PM Page 579

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.0) Gecko/20021202

This is about average for the amount of information you can expect to find
in this header. Included is a single text identification for the Web browser fol-
lowed by optional, more specific information about the platform running the
software. The software ID is what is usually most helpful: it can distinguish
between browsers such as Netscape 4.x, Internet Explorer, and Mozilla. The pre-
ceding browser ID is Mozilla/5.0. This identification is for the new Mozilla Web
browser, also the core of Netscape 6.x. The first part of the ID references Mozilla
as the browser, and the last part claims the browser is version 5.0 of Mozilla. Early
versions of Navigator use this ID also, but have the version number changed. This
version number is how you can determine if the browser is an early Netscape 4.x
or less browser or a version of the rebuilt Mozilla-based browser.

Alternatively, this is what a user-agent header sent by Internet Explorer
looks like.

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)

Note the confusing “Mozilla/4.0” identification. Why Microsoft does this is
unclear, but is rumored to be related to the early browser wars with Netscape.
What is unique about the IE identification is the later specified “MSIE 6.0”. This
is how Netscape, Mozilla, and IE can all be distinguished from the server-side.
The three browsers make up the vast majority of software used by people
browsing the World Wide Web.

The other information in the HTTP user-agent header is more granular and
can be used to understand more about the specific computer. For instance, the
Mozilla header identified the client’s computer was running Linux on an Intel
Pentium 3 using the X11 windowing system to render Mozilla. The Internet
Explorer header additionally claimed the client’s computer was running
Windows NT 5.0, I.E. Windows 2000, and had patch Q312461 applied to it.
Usually the platform identification information is not very helpful, but it can
affect format rendering. If your multi-client design is based around mining
platform information from the user-agent header, consult the documentation
for particular Web browsers of interest. There you can find specific details on the
meaning of extraneous headers.

The accept header is much more direct to use than the user-agent header.
The header lists in order of preference all of the MIME types it can accept. From
Figure 13-6 the example header is the following:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/

plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

580 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 580

MIME types were introduced in Chapter 2. Each MIME type is a unique
identifier to a type of content. For example, text/xml is the MIME type for XML.
Likewise, text/html is the MIME type for HTML. Use of the accept header is as
easy as parsing the string and trying to match the first header with a format your
multi-client design supports. In some cases, such as HTML, it may be desirable
to also parse the user-agent header to see exactly what client software is being
used.

Some good examples of mining format preferences using the preceding
methods can be found in the multi-client framework. The com.jspinsider.
jspkit.mct.ClientTable class encapsulates all of the code the framework uses
to take an instance of HttpServletRequest and determine what format to gen-
erate. Consult this class for some code examples.

Printer-Friendly Formats
A very common feature of a Web site is to offer two versions of its content:
normal and printer-friendly. The difference between the two is the printer-
friendly version is designed for a user to print and read on a piece of paper. A
printer-friendly format is nice to have for a few reasons. The primary reason is
because most users do not care about advertisements or fancy graphics; they only
want the content. Another reason is that many sites are designed to provide
print-quality articles, tutorials, or other information online. Whatever the reason
is, a good multi-client design is a great method for seamlessly adding printer-
friendly formatting to a page.

Keep in mind a multi-client design does not need to produce radically dif-
ferent formats. A good use of a multi-client design is to produce two of the same
formats, one in normal and one in printer-friendly form—for instance, via
HTML. Such support can be accomplished by adding in completely different
APIs for each format, similar to the MCT frameworks handler classes, or by a
simple educated decision on how a Web site is made. For instance, most Web sites
are completely printer-friendly except for a few banners or navigation included
on each page. Ignoring the includes is easy to code and instantly turns a page into
a printer-friendly format.

The concept should be clear, but if you are interested in seeing a multi-client
framework produce a printer-friendly format, look to the MCT. This framework
provides explicit support for both HTML and XHTML printer-friendly formats.
Support also allows different header and footer pages to be used.

SOLVING MULTI-CLIENT PROBLEMS 581

falkner.ch13.qxd 8/21/03 6:58 PM Page 581

URL Rewriting
A subtle but very beneficial effect of using JSP custom tags for transformations is
the abstraction of link generation. By following the pattern suggested earlier in
this chapter, the interface for generating a link is a custom tag, equivalent of the
HTML anchor tag.

<link uri="URL">link text</link>

In the MCT framework the anchor tag is renamed the link tag, but the tag
does the same work. The “URL” is specified as an attribute to the link tag. By
doing this, the value of the URL can be manipulated before being converted to an
output format. This allows for session information, parameter encoding, and
other custom URL encodings to be used.

Recall the discussion in Chapter 9 about how session context is maintained.
By default cookies are used and usually work perfectly fine. However, cookie
support is not mandatory. HTTP is a stateless protocol and a client can disable
cookie support. If keeping session context is critical, all local links must be
encoded to contain session context, e.g., a link to /index.html would be encoded
as /index.html;jsessionid=ID#. The specific session ID is only available at
runtime. The encoding must be done by invoking the HttpSession Response

encodeURL() method. In the case of HTML, an encoded anchor tag would look
similar to the following:

<a href="<%= response.encodeURL("URL") %>">link text

Or alternatively the JSTL url tag may be used as explained in Chapter 6. In
either case the syntax is awkward. In a purely cosmetic sense a multi-client link
tag is both easier to author and read without sacrificing functionality. The
awkward encodeURL() call can be moved into the handler’s code using code that
is similar to the following:

public void setHref(String rawUrl) {

HttpServletResponse response = pageContext.getResponse();

this.url = response.encodeURL(rawUrl);

}

More importantly the encoding of the URL is completely abstracted. For
instance, imagine the encodeURL() method or the JSTL url action has been used
on all of the local links in a Web Application. Session context is ensured, but what
if the application needs to start tracking use of remote links, perhaps as illus-
trated by both the link tracking Servlet in Chapter 2 and the link-tracking Filter
in Chapter 8. The change would require another encoding of the URL, meaning

582 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 582

all of the links would have to be changed! The more links, the more tedious and
time-consuming the task is. By using a multi-client link tag, the change and any
future changes are consolidated to one tag handler. This makes it simple to
support custom URL-encoding logic needed by any format.

URL Rewriting Using the MCT Framework
Knowledge of URL rewriting is important thing. Complementing the preceding
discussion is a concrete example using the MCT framework. One of the good fea-
tures of the MCT is the support for URL rewriting, and it is important to under-
stand how the functionality works. You’ll recall the preceding discussion pointed
out that the benefit of using a multi-client interface allowed for easy URL
rewriting. Listing 13-12 shows an example of a JSP.

Listing 13-12 A JSP with a Few Hyperlinks

<page>

<p>Some Links:</p>

<p>

<link uri="http://www.jspbook.com">Book Support Site</link>,

<link uri="helloworld.html">helloworld.html</link>,

<link uri="helloworld.xhtml">helloworld.xhtml</link>,

<link uri="helloworld.pdf">helloworld.pdf</link>,

<link uri="helloworld.pdf">helloworld.rtf</link>

</p>

</page>

The JSP contains a set of links (uses of the MCT link action). Save the pre-
ceding Listing 13-12 as links.jsp in the base directory of the ji_mct Web
Application. By default the JSP in Listing 13-13 produces an HTML page.

Listing 13-13 Source Listing Produced by links.jsp

<html>

<p>Some Links:</p>

<p>

Book Support Site,

helloworld.html,

helloworld.xhtml,

SOLVING MULTI-CLIENT PROBLEMS 583

falkner.ch13.qxd 8/21/03 6:58 PM Page 583

helloworld.pdf,

helloworld.rtf

</p>

</html>

You can test this out for yourself by browsing to http://127.0.0.1/
ji_mct/links.html. Each of the hyperlinks has an href value as expected, the
same information specified in the MCT link tag. However, imagine you needed
all of the links to be encoded to support a particular feature of the Web
Application, perhaps to be compatible with a link tracking system as illustrated
in Chapter 23. Now, each of the links would need to be rewritten to use the
system. Assuming we use the LinkTracker Servlet from Chapter 2, Listing 13-14
shows the new source code.

Listing 13-14 LinkTracker enListingd Page

<html>

<p>Some Links:</p>

<p>

Book Support Site,

helloworld.html,

helloworld.xhtml,

helloworld.pdf,

helloworld.rtf

</p>

</html>

The change is that links are encoded to have /LinkTracker?url= appended
before them in order to use the LinkTracker Servlet. The preceding code shows
what a raw conversion of un-encoded links would be; however, it is a poor choice
for a few different reasons.

Primarily, the above code is undesirable because it locks the JSP into using
the LinkTracker Servlet. If a new, better link-tracker system is implemented, it
may require that all the links be encoded again. Doing each encoding by hand is
tedious and leaves room for error. Imagine having to encode all of the different
links used by a medium-sized Web Application. Additionally, the preceding code
is undesirable because it makes simple, intuitive links into something that is
neither simple nor intuitive. A developer unfamiliar with the LinkTracker Servlet
would be baffled as to why all of the links are encoded.

584 MULTI-CLIENT SUPPORT

3. LinkTracker.java, but another common encoding would be to include session information
as explained in Chapter 9.

falkner.ch13.qxd 8/21/03 6:58 PM Page 584

The preceding problems can be solved by abstracting link encoding using
the a multi-client design and a link action. With the MCT, the link action is
already used, as shown previously in Listing 13-12. Changing how the link
action behaves could be done by editing the source code for the tag; however, the
framework knows URL encoding is a helpful feature, and it provides explicit
support for it through the com.jspinsider.jspkit.mct.MultiClientRewriter
interface. A class implementing this interface can be created and defined as an
initial parameter for the MCT framework to use. For example, save Listing
13-15 as ExampleRewriter.java in the /WEB-INF/classes/com/jspbook
directory of the ji_mct Web Application.

Listing 13-15 ExampleRewriter.java

package com.jspbook;

import com.jspinsider.jspkit.mct.MultiClientRewriter;

public class ExampleRewriter implements MultiClientRewriter {

public String rewrite(String url) {

url = "/LinkTracker?url="+url;

return url;

}

}

The codes implements the one method of the MultiClientRewriter
interface: public String rewrite(String url). The method takes a URL as a para-
meter and returns a new URL as the rewritten version.

url = "/LinkTracker?url="+url;

return url;

When used with the MCT framework, this class will filter all uri attribute
values of the link action and generate properly encoded links, hence, encoding all
of the links properly. Try out the class by compiling it and specifying it for use.
Edit web.xml in the /WEB-INF directory of the ji_mct Web Application to include
Listing 13-16.

Listing 13-16 Using ExampleRewriter with the MCT Framework

...

<filter>

<filter-name>MultiClientFilter</filter-name>

<filter-class>

SOLVING MULTI-CLIENT PROBLEMS 585

falkner.ch13.qxd 8/21/03 6:58 PM Page 585

586 MULTI-CLIENT SUPPORT

com.jspinsider.jspkit.mct.MultiClientFilter

</filter-class>

<init-param>

<param-name>

com.jspinsider.jspkit.mct.MultiClientRewriter

</param-name>

<param-value>com.jspbook.ExampleRewriter</param-value>

</init-param>

</filter>

...

Reload the ji_mct Web Application and browse back to http://127.
0.0.1/ji_mct/links.html. This time instead of seeing Listing 13-12, the
properly encoded links are present as in Listing 13-13. All of the link encoding
has been consolidated to the one link-rewriting class!

The preceding illustration of URL rewriting is an excellent example of how
URL rewriting should be done in a Web Application. Links can still be authored
using the simple, intuitive approach HTML offers, and functionality, such as link
tracking, or even session tracking, can be encoded as needed. Should the
encoding the links use need to be changed, one class can be edited and all of the
Web Application’s links will reflect the change. All of this is possible thanks to a
good multi-client design.

Non-Text Formats
Non-text formats are easy to produce using Servlets or Filters, as illustrated in the
Dynamic Image Servlet, Listing 2-5 in Chapter 2; however, the simplicity of using
JSP and custom tags for multi-client design comes at a very obvious drawback.
JSP is not designed to produce non-text formats, such as PDF, MS Word docu-
ments, or images. The problem is directly related to the JspWriter object. It is
assumed you are always sending text from a JSP. Getting around this design
feature is difficult, even futile, using only JSP. However, getting around the issue
is simple using a Servlet or Filter. Both of these classes can directly obtain a
ServletOutputStream.

Generating a non-text format is tough compared to markup languages. Most
non-text formats do not have an intuitive format that can be appropriately rep-
resented by the simple startTag() and endTag() scheme promoted earlier in this
chapter, nor do non-text formats usually adhere to representing content as text.
A great benefit to non-text formats is they can completely optimize or alter the
encoding of text, which usually they do. For these reasons it is not prudent to
attempt to understand everything about non-text formats, especially ones with

falkner.ch13.qxd 8/21/03 6:58 PM Page 586

closed documentation. The better alternative is to turn to pre-built Java libraries
which accomplish the task.

Finding and using Java APIs for specialized formats is a task up to you.
Servlet Filters provide a method of sending arbitrary binary content to a client.
You need to find APIs that can generate the desired format. Using the MCT as an
example, PDF support is implemented by using the FOP project, http://xml.
apache.org/fop/index.html. Previously, we examined how the MCT Filter uses
the HtmlHandler in order to better understand how text formatting is produced;
examining how the Filter generates PDFs sheds light on how a binary format can
be produced, as shown in Listing 13-17.

Listing 13-17 PDF Generation Snippet of the MCT Filter

case MultiClient.PDF : {

response.setContentType("application/pdf");

// FO format

FOHandler h = new FOHandler();

ByteArrayOutputStream baos =

new ByteArrayOutputStream();

h.setOutputStream(baos);

sp.parse(new ByteArrayInputStream(content), h);

h.flush();

// use FOP

Driver driver = new Driver(new InputSource(

new ByteArrayInputStream(baos.toByteArray())),

out);

driver.setRenderer(Driver.RENDER_PDF);

driver.run();

break;

}

PDF is produced by using the FOP framework’s PDF driver. It just so
happens the FOP framework requires XML FO syntax, which is text, as its
interface. The Filter uses the FOHandler to produce XML FO from the MCT
syntax.

// FO format

FOHandler h = new FOHandler();

ByteArrayOutputStream baos =

new ByteArrayOutputStream();

SOLVING MULTI-CLIENT PROBLEMS 587

falkner.ch13.qxd 8/21/03 6:58 PM Page 587

h.setOutputStream(baos);

sp.parse(new ByteArrayInputStream(content), h);

h.flush();

The XML FO is then piped to the FOP framework’s driver.

// use FOP

Driver driver = new Driver(new InputSource(

new ByteArrayInputStream(baos.toByteArray())),

out);

driver.setRenderer(Driver.RENDER_PDF);

driver.run();

The FOP framework uses the response as an output stream, sending PDF
content to the client. Note also that the statement explicitly sets the response
content type to be "application/pdf", which is the MIME type for PDF.

If you are interested in exactly how the FOP project generates PDFs from
XML FO—in other words, if you want to know how to make PDFs from scratch,
take a look at the FOP project’s code. For all practical purposes, there is no point
in understanding it as long as the FOP project correctly generates PDFs. What we
care most about is having a Java interface for producing the binary format. Once
we have Java, we have a method of using it, namely Servlets and JSP.

Summary
Multi-client design enables a Servlet and JSP developer to create truly robust,
dynamic Web Applications. Many simple Web sites require only one format of
content, HTML. However, designing around only HTML inherently limits what
a Web Application is able to do. By abstracting formatting logic, similar to
abstracting content with i18n applications, it is possible to use any number of dif-
ferent formats on the same content. A Web site can support basic HTML, modern
XHTML, and any other format desired.

By abstracting formatting logic with a multi-client design, a few benefits are
readily available to a developer. Developing many versions of the same format is
easily possible. For instance, both regular HTML and printer-friendly HTML can
be seamlessly supported. URL rewriting is also one of the inherent benefits to a
multi-client design. An abstraction of representing links between content pro-
vides an ideal place to put custom logic for encoding session state, i18n infor-
mation, or any other miscellaneous information such as link tracking.

588 MULTI-CLIENT SUPPORT

falkner.ch13.qxd 8/21/03 6:58 PM Page 588

Most commonly Servlets and JSP are thought only to be good for generating
dynamic Web pages with text content; however, this is not true. While it is more
intuitive to generate purely text, it is certainly possible to generate non-text
formats. In order to generate any binary format, a Servlet or Filter must be used,
similar to the dynamic picture Servlet in Chapter 2. By complementing the
Servlet or Filter with custom tags, it is possible to allow JSP to also produce any
binary format.

SUMMARY 589

falkner.ch13.qxd 8/21/03 6:58 PM Page 589

falkner.ch13.qxd 8/21/03 6:58 PM Page 590

591

Chapter 14

Database Connectivity

Why have a chapter about database connectivity in a book on Servlets and
JSP? Databases are widely used in business today. Just about every real-world
application will use databases in some form or another. The advertised mindset
in J2EE is to build an application that uses an EJB1 layer to hide database con-
nectivity. In practice this can work, but it is often more problematic than it is
helpful. In this book we are taking the approach that you should not have to use
EJB and that instead you should know more about database connectivity. By
taking this approach, you will be able to build complete Web Applications
without having to worry about a slew of other J2EE specifications. However, if
one day you decide those other specifications are needed, you will be more than
prepared for them. In this chapter we will briefly introduce databases and SQL,
but the focus will be on JDBC and successfully using Java to manipulate a
database. You will be expected to pick up a good book on SQL if you want to be
a database guru.

This chapter discusses the following topics:

• What a database, relational database, and SQL are.

• CRUD (Creating, Reading, Updating, and Deleting database tables).

• JDBC (Java Database Connectivity).

• javax.sql.DataSource: an abstract method for obtaining a reference
to a database.

• java.sql.Connection: Java representation of a database connection.

• java.sql.Statement: Executing queries against a database.

• java.sql.ResultSet: Obtaining results of a database query.

1. Enterprise JavaBeans (EJB) is a J2EE method of abstracting database access and cooperation
between multiple computers in a server-side Web farm. EJB is discussed further in Chapter 15.

falkner.ch14.qxd 8/21/03 7:33 PM Page 591

592 DATABASE CONNECTIVITY

• Optimally using JDBC.

• JDBC Web Application design patterns.

This chapter is intended to be read straight through; however, if you are
already familiar with SQL and JDBC, there is no harm in skipping this chapter.
At best, it is a decent introduction to JDBC, nothing more. Embedding JDBC
code in Servlets and JSP is no different than embedding other Java code in
Servlets and JSPs.

What Is a Database?
Put simply a database is an organized collection of data. There are many forms
this collection can take: an XML DOM, a flat file, object stores, or relational data.
Different types of databases work better for different uses, but all databases exist
to organize a collection of data. The most popular type of database is the “rela-
tional”2. Relational databases were first conceived by Dr. Edgar F. Codd (an IBM
researcher) in 1969, and since then have become the dominant form of database.
Much like HttpServlets to Servlets, whenever the term database is mentioned, it
nearly always means a relational database, and it is likely that you will have to use
a relational database in your day-to-day work.

Data in a relational database is held in tables; a table consists of rows and
columns. Figure 14-1 shows a visual representation of such a table.

The columns in this table are labeled EMPLOYEE_NO, FIRST_NAME,
LAST_NAME, and SOFTWAREITEM. The order that the data is listed in the

EMPLOYEE_NO FIRST_NAME LAST_NAME SOFTWAREITEM
1001 Fred Wesley 8001
1002 Sarah Smith null
1003 Rachel Axelrod null
1004 Alice Bennet 8013
1005 Michael Sinclair null
1006 Louis Smith 8013

Figure 14-1 A Database Table

2. Relational databases are loosely based around the mathematics of sets. In practice the purity of
the mathematics has been altered for performance and practical use, but if you have previously
studied sets you should recognize the concepts.

falkner.ch14.qxd 8/21/03 7:33 PM Page 592

table is completely unimportant. Each column defines a field and each row is a
record. In a well-designed database each column will contain only one value.
Each table will have one column known as the primary key column; the primary
key will uniquely identify the record (i.e., it uniquely identifies the row of data).
For instance, in Figure 14-1 EMPLOYEE_NO uniquely identifies each person,
since the other information might not be unique.

Each table can have more than one type of key. As just mentioned, each table
will have a primary key to be used as a unique identifier; each table could also
have foreign keys. A foreign key is a reference to a different table’s primary key and
is used to establish a relationship between tables. Figure 14-2 shows an example
of this.

Here, there are two tables, EMPLOYEE and SOFTWARE. The EMPLOYEE
table has a primary key field called EMPLOYEE_NO, and the SOFTWARE table has
a primary key field called SOFTWARE_ITEM. The EMPLOYEE table also has a
foreign key field, SOFTWARE_ITEM. The connection between the SOFTWARE_
ITEM columns in both tables defines the relationship between the tables. There are
three types of relationships that can be defined:

WHAT IS A DATABASE? 593

EMPLOYEE_NO FIRST_NAME LAST_NAME SOFTWAREITEM
1001 Fred Wesley 8001
1002 Sarah Smith null
1003 Rachel Axelrod null
1004 Alice Bennet 8013
1005 Michael Sinclair null
1006 Louis Smith 8013

EMPLOYEE

Table

Row

Relationship

 SOFTWAREITEM NAME
 8001 JDK
 8013 Servlet API
 8111 Visual Cafe
 8732 Oracle
 8624 SQL Server
 8213 JBuilder

SOFTWARE

Column

Figure 14-2 Database Relationships

falkner.ch14.qxd 8/21/03 7:33 PM Page 593

• one-to-one: In a one-to-one relationship, a record in one table
refers to exactly one record in another table, and the foreign key
refers to exactly one primary key.

• one-to-many: In a one-to-many relationship, a record in one table
refers to many records in another table, but a single record in the
second table refers to exactly one record in the primary table (the
tables in Figure 14-2 show a one-to-many relationship).

• many-to-many: In a many-to-many relationship, many records in
one table can refer to many records in another table. Since primary
keys must be unique, a many-to-many relationship cannot be estab-
lished directly. Instead, this relationship is achieved typically by
having a linking table, providing two one-to-many relationships.

The types of relationships are important for various reasons, and there are
several theories about the best method of creating and referencing tables. In
practice the topic is very important as it has a direct impact on how efficiently
data stored in a relational database is managed and maintained. However, full
discussion of the topic is outside the scope of this text. Before going out and
designing a set of tables for real-world use, it is strongly suggested you read
through Database Systems: A Practical Approach to Design, Implementation, and
Management, 3/e by Thomas Connolly and Carolyn Begg.

SQL
The language used to manage and manipulate data in a relational database is
Structured Query Language, better known as SQL. SQL is simple to learn but dif-
ficult to master. We will spend a little time using SQL to help learn the basics, but
full coverage is deferred to the previously suggested text. To learn SQL it helps to
have a relational database. There are many, many databases available from all
sorts of vendors such as Oracle, IBM, and Microsoft. There are even a few
excellent, free open-source databases such as MySQL and PostgreSQL. For the
examples in the book we are going to use hsqldb (formerly Hypersonic SQL).
This is an open source, pure Java database that is ideal for this book’s use because
it is free, coded in Java, and simple to download and install. While hsqldb is fan-
tastic for learning and testing SQL, it is not good for most real-world situations.
The simplicity of the DB comes at the cost of performance and lack of advanced
features.

594 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 594

Installing hsqldb
You do need to download and install a copy of hsqldb for this chapter’s examples.
If you have access to an existing relational database, it will also work, but it is sug-
gested you use hsqldb to avoid any nuances. Download the latest copy of hsqldb
at http://hsqldb.sourceforge.net. Version 1.7 is used by this book’s examples,
available directly at http://prdownloads.sourceforge.net/hsqldb/hsqldb_
1_7_0.zip.

Installation of hsqldb is simple. Decompress the ZIP file and place
hsqldb.jar in the /commons/lib directory of your Tomcat installation3. The
installation is then complete.

Making a Database
Primarily, for reasons just mentioned, this chapter will focus on using SQL for
database manipulation, but SQL is also used for creating a database from scratch.
SQL statements can be used to create tables, put restrictions on those tables, and
most anything else you would think to do when creating a data repository. To not
get sidetracked into describing good database design and the SQL needed to
create said database, a pre-made SQL script is provided. In practice a database is
only created once; the majority of work is done by populating the database with
information and using the database to further manipulate the information.

For simplicity the database creation will be encapsulated by a JSP. This is
admittedly one of the worst ways to accomplish this task, but it is familiar and
will suffice. Save Listing 14-1 as CreateDatabase.jsp in the root directory of the
jspbook Web Application.

Listing 14-1 CreateDatabase.jsp

<%@ page import="java.io.*,java.sql.*" %>

<%

// keep code portable

File tempDir =

(File)application.getAttribute("javax.servlet.context.tempdir");

String dbDir = tempDir.getAbsolutePath();

String url = "jdbc:hsqldb:" + dbDir+"/jspbook";

String user = "sa"; // hsqldb default

String password = ""; // hsqldb default

WHAT IS A DATABASE? 595

3. The /common/lib directory makes the API available to both Tomcat and all of the Web
Applications it is running. You can put hsqldb.jar in the /WEB-INF/lib directory, but later
examples will not work because they rely on Tomcat’s having access to the API.

falkner.ch14.qxd 8/21/03 7:33 PM Page 595

// load JDBC driver - BAD! Use DataSource.

Class.forName("org.hsqldb.jdbcDriver");

Connection conn =

DriverManager.getConnection(url, user, password);

try {

Statement statement = conn.createStatement();

String link = ""; // create LINK table

link += "CREATE TABLE LINK(";

link += " URL VARCHAR(128) PRIMARY KEY,";

link += " TITLE VARCHAR(128),";

link += " DESCRIPTION VARCHAR(256)";

link += ")";

statement.executeQuery(link);

String uri = ""; // create URI table

uri += "CREATE TABLE URI(";

uri += " URI VARCHAR(40),";

uri += " URL VARCHAR(128),";

uri += " PRIMARY KEY(URI, URL)";

uri += ")";

statement.executeQuery(uri);

}

finally {

conn.close();

}

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

</head>

<body>

The Database has been successfully created.

</body>

</html>

Do not worry about understanding the preceding database code. The idea
behind the JSP is simple: browse to CreateDatabase.jsp and the database is
created. The database is serialized in the Servlet-defined temporary directory and
is not guaranteed to persist between restarts of a container. If persistence is
desired, change the value of dbDir to be any other directory, perhaps /WEB-INF of
the jspbook Web Application. The current scheme relies on CreateDatabase.jsp
to be executed each time the database needs to be created, which should only be
once for the following examples.

596 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 596

Use CreateDatabase.jsp to create the example database. Browse to http://
127.0.0.1/jspbook/CreateDatabase.jsp. After the database is created, a page is
returned that confirms the creation. Do not run CreateDatabase.jsp repeatedly
or SQL-related exceptions will be thrown because the database tables have
already been created.

The actual database created by CreateDatabase.jsp is a practical example of
a database that can be used to manage links for a Web site. Two tables are created:
LINK and URI. The link table holds information about a link, including columns
for a title, url, and description. The URI table holds a collection of unique identi-
fiers that describe groups of links. There are two columns in the uri table, url and
uri. The url column matches a url from the link table. The uri column defines an
identifier for a group of links. Later on we will populate these tables with some
links and see how to use the database with Servlets and JSP.

CRUD
CRUD is the SQL-related acronym used to describe data manipulation. CRUD
comes from the four basic types of data manipulation: Create, Read, Update, and
Delete. Create creates information in a database table. Read retrieves existing
information for display. Delete removes rows from a table, and Update changes
existing information. Commonly when dealing with SQL and a database, you will
hear people talking about “CRUD statements”; this is the SQL needed to accom-
plish one of the CRUD operations.

There are four main SQL statements that are analogous to the CRUD opera-
tions but named differently. The SQL statements are SELECT, INSERT, DELETE, and
UPDATE. The following sections lay down the fundamental concepts of these state-
ments but by no means provide comprehensive coverage.

INSERT
The SQL INSERT statement is an implementation of the “C” from CRUD, or
Create. By using insert statements, new rows of information can be placed in an
existing database table. Information added by using an INSERT statement must
comply with the database’s data integrity4 rules or else an error will occur. In the
case of Java database connectivity, often an exception is raised when invalid
information is used with an INSERT statement.

WHAT IS A DATABASE? 597

4. SQL provides a robust mechanism for defining rules that tables must follow. Common examples
are unique values for primary keys and restrictions on the size of values being placed in a database.
The job of appropriately creating these rules is usually left to the database administrator.

falkner.ch14.qxd 8/21/03 7:33 PM Page 597

The basic structure of an INSERT statement is as follows:

INSERT INTO table-name VALUES(value1, value2, value3)

where the value of the correct table is used for table-name and all of the values
needed for a row are specified between the parens following VALUES. The values
must be valid SQL types and need to be delimited by commas.

In the tables previously created by CreateDatabase.jsp, the data integrity
rules are simple. All values are strings, meaning they are a string literal sur-
rounded by single quotes. The LINK table has three columns: url, title, and
description. The sizes of the strings can be up to 128, 128, and 256 characters,
respectively. The url string must be unique from all others in the table. The URI
table has two columns: uri and url. The sizes of the columns are up to 40 and 128
characters, respectively. Together, the combination of the uri and url columns
must be unique from all others in the table. With these simple rules in mind you
should be able to imagine the SQL INSERT statements needed to put some values
in the database. Try the statements out; the JSP in Listing 14-2 provides a simple
form for executing SQL statements against the database.

Listing 14-2 ArbitrarySQL.jsp

<%@ page import="java.io.*,java.sql.*" %>

<%

// keep code portable

File tempDir =

(File)application.getAttribute("javax.servlet.context.tempdir");

String dbDir = tempDir.getAbsolutePath();

String url = "jdbc:hsqldb:" + dbDir+"/jspbook";

String user = "sa"; // hsqldb default

String password = ""; // hsqldb default

Statement sStatement = null;

Connection cConnection = null;

// load JDBC driver - BAD! Use DataSource.

Class.forName("org.hsqldb.jdbcDriver");

cConnection = DriverManager.getConnection(url, user, password);

try {

sStatement = cConnection.createStatement();

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

598 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 598

</head>

<body>

<% // poor form, Model 1

String query = request.getParameter("query");

if (query != null && !query.equals("")) {

out.println("<h2>Results of query:</h2>");

out.println(query);

ResultSet rs = sStatement.executeQuery(query);

ResultSetMetaData rsmd = rs.getMetaData();

out.print("<table border=\"1\"><tr>");

for (int i=0; i<rsmd.getColumnCount();i++) {

out.println("<td>"+rsmd.getColumnName(i+1)+"</td>");

}

out.print("</tr>");

while (rs.next()) { // show results

out.println("<tr>");

for (int i=0; i<rsmd.getColumnCount();i++) {

out.println("<td>"+rs.getString(i+1)+"</td>");

}

out.println("</tr>");

}

out.print("</table>");

cConnection.close();

}

%>

<h2>New Query</h2>

<form method="POST">

Query: <textarea name="query" cols="65"></textarea>

<input type="submit">

</form>

<%

}

catch (Exception e) {

out.println("<h2>Problem with Query</h2>");

out.print(e.getMessage());

}

finally {

cConnection.close();

}

%>

</body>

</html>

WHAT IS A DATABASE? 599

falkner.ch14.qxd 8/21/03 7:33 PM Page 599

Save Listing 14-2 as ArbitrarySQL.jsp in the base directory of the jspbook
Web Application. Don’t worry exactly what it does right now; it will be explained
later in pertinent sections. The page provides a simple form that allows state-
ments to be done on the database and shows any information returned by the
database. Browse to http://127.0.0.1/jspbook/ArbitrarySQL.jsp to test it
out. Figure 14-3 provides a browser rendering of the results.

Add a value to the link table by executing the appropriate SQL INSERT
statement. For example, the 'Book Support Site' would be:

INSERT INTO LINK VALUES(

'http://www.jspbook.com',

'Book Support Site',

'The book support site for Servlets and JSP; the J2EE Web Tier');

The line need not be broken; it is only so that it fits in this text. Type in the
preceding insert statement and click on the Submit Query button. The
statement is executed on the database and the results are displayed. Figure 14-4
shows a browser rendering of the results.

Notice that it appears as if nothing happened, but that is because the INSERT
statement does not read information from the database. It only adds infor-
mation. To read information, the SELECT statement needs to be used.

SELECT
The SQL SELECT statement is analogous to the CRUD letter “R”, or Read. A
SELECT statement queries a database for information and the database returns a

600 DATABASE CONNECTIVITY

Figure 14-3 Browser Rendering of ArbitrarySQL.jsp

falkner.ch14.qxd 8/21/03 7:33 PM Page 600

set of rows describing the desired information. The SQL SELECT statement is
often called the “workhorse” of SQL because in practice it is usually used far more
than the other CRUD statements. The basic format of the SELECT statement is as
follows:

SELECT columns FROM table-name WHERE condition(s)

SQL SELECT statements start with SELECT, followed by desired columns to
display, and a FROM clause that determines the table(s) to use when generating the
result. Optionally, a WHERE clause can be used to define a set of conditions that
must be met. Multiple conditions can be used and are joined by using the AND or
OR keyword. The conditions result in one boolean statement, determined fol-
lowing the same rules as conditions combined by and, &&, or or, ||, in Java.

The columns to show can be specified in a few different ways. We will only
look at the simplest two options including the * symbol and a comma-delimited
list of column names. The * symbol is used to mean show all columns. For
instance, to show all the entries in the link table, the following SELECT statement
can be used.

SELECT * FROM LINK

Try executing the statement using ArbitrarySQL.jsp. The result will be a
listing of the entire LINK table or all the entries you have added using INSERT

WHAT IS A DATABASE? 601

Figure 14-4 Browser Rendering of Results after the INSERT Statement

falkner.ch14.qxd 8/21/03 7:33 PM Page 601

statements. Figure 14-5 shows a browser rendering of the results when only one
row is in the LINK table.

Only one row is shown because only one is in the database. If you have pre-
viously added more rows, then multiple rows will be displayed, with all column
values showing.

A more selective set of values can be retrieved by listing the specific columns
which are needed. For instance, try executing the following SELECT statement:

SELECT URL, TITLE FROM LINK

This time only the url and title information are returned. Figure 14-6 shows
a browser rendering of the results returned from ArbitrarySQL.jsp.

In both of the preceding examples, all of the rows of the table were shown. If
only selected rows are wanted, then the WHERE clause can be used to request spe-
cific rows. For example, the following statement would only select the link for the
book support site:

SELECT * FROM LINK WHERE url = 'http://www.jspbook.com'

Try the statement out using ArbitrarySQL.jsp and see that only the one row
is returned regardless of the number of rows the LINK table has. In general, SQL

602 DATABASE CONNECTIVITY

Figure 14-5 Browser Rendering of a Row in the LINK Table

falkner.ch14.qxd 8/21/03 7:33 PM Page 602

has many operators besides equal, =. Included are operators for less than, <,

greater than, >, and similar to, LIKE. Some more uses will be shown throughout
the chapter, but the full set of operators is left outside the scope of this book.
What is important to understand is that SELECT statements can selectively return
any number of columns or rows. Which set of information is returned is up to
you and how the SELECT statement is constructed.

So far a lot can be accomplished using the SQL INSERT and SELECT state-
ments. The database can be populated with information, and queries can be
made to return sets of that information. Rounding out this functionality are the
UPDATE and DELETE statements that do exactly what the CRUD words with the
same name imply.

UPDATE
The SQL UPDATE statement updates existing rows in a table, compared to the
INSERT, which adds completely new rows. The basic format of the UPDATE
statement is as follows:

UDPATE table-name SET column-value(s) WHERE condition(s)

WHAT IS A DATABASE? 603

Figure 14-6 Browser Rendering of Columns Returned from the LINK Table

falkner.ch14.qxd 8/21/03 7:33 PM Page 603

Where the table-name value is replaced with the name of a table, the column-
value(s) are a comma-delimited set of values for columns of that table, and an
optional WHERE clause selects specific rows that are to be updated. For example,
the book support site entry can be changed by executing the following statement:

UPDATE LINK SET title = 'Superb Book Support Site'

WHERE url = 'http://www.jspbook.com'

Try the statement using ArbitrarySQL.jsp and follow it up with a SELECT
statement to list the contents of the database. The row describing the book
support site will now have the new title, as illustrated in Figure 14-7.

Not illustrated in the shown UPDATE statement is that multiple column
values can be specified at the same time using commas to delimit them.
However, be aware that any changes made by an UPDATE statement are subject to
the data integrity rules of the database. For instance, the unique primary-key
values cannot be changed by an UPDATE statement. Likewise, any other restric-
tions might prevent column values from being changed. Be sure you understand
the data integrity rules of a database before trying to execute arbitrary UPDATE
statements.

604 DATABASE CONNECTIVITY

Figure 14-7 Updated Title for the Book Support Site’s Entry in the LINK Table

falkner.ch14.qxd 8/21/03 7:33 PM Page 604

DELETE
The final SQL CRUD statement is DELETE. The SQL DELETE statement is used to
delete a select number of rows from a table(s). The basic syntax of the SQL
DELETE statement is as follows:

DELETE FROM table-name WHERE condition(s)

The table-name is the table to delete information from, and a WHERE clause
specifies rows that are to be deleted. Only complete rows can be deleted.

The SQL That Was Skipped
It was previously mentioned that SQL is easy to learn but hard to master. This
statement is very true. The basics of SQL are simple to learn and can be taught in
a few minutes, but understanding everything you can do with SQL and how it
works is not as easy. In fact, many highly paid SQL gurus are employed with the
sole task of managing a database. Mastering SQL is outside the scope of this book
and rightly so. What has been covered is enough so that you can perform enough
SQL to get by. In no way is it a complete tutorial.

There is a lot of SQL and database-related information that was skipped by
this chapter. It is important that you realize this and seriously consider reading a
good database/SQL book. Combined with this text, it will enable you to build
some truly impressive Web Applications. Using only what this chapter covers, it
is very likely you will be unable to build a good database. You will be able to
execute just about any CRUD operation or transaction5 on it you like, but you
will be lacking the theory and techniques needed to ensure the integrity of your
database. Do not take the topic lightly. If you want to act as both Web tier
developer and database administrator, learn them both!

JDBC
All DBMSs provide mechanisms for performing I/O against the database.
However, most DBMS I/O mechanisms are proprietary. If a proper layer of
abstraction is not present between the database-specific I/O operations and a
project’s code, the project is confined to the database it is built around. In Java

JDBC 605

5. A transaction is a series of related SQL statements that must be part of an atomic unit—that is, all
the statements pass or all the statements fail. Transactions are introduced later in the chapter with
JDBC.

falkner.ch14.qxd 8/21/03 7:33 PM Page 605

the popular solution to this issue is to use the standardized JDBC API. JDBC is
Java’s universal data access strategy. It allows data stored in different databases to
be accessed using a common Java API. JDBC defines a set of abstract interfaces
that a database provider implements as a piece of code called a JDBC driver. A
database client chooses an appropriate driver and uses the interfaces to access the
underlying database.

In all of the preceding code in this chapter, JDBC is what was used to com-
municate with hsqldb. In general, Java applications that use a database almost
always use JDBC to communicate with it. By learning JDBC you will be able to
successfully integrate a database with your Servlet- and JSP-based Web tier.

There are a few key classes and interfaces you need to be aware of in order to
use JDBC:

• javax.sql.DataSource: A DataSource interface is the JDBC method
of obtaining connections to a database.

• java.sql.Connection: The Connection object represents a physical
connection with a database. The communication between the
database and the Connection object is governed by an underlying
JDBC driver.

• java.sql.Statement: The Statement interface provides a method for
a Java developer to execute SQL statements on a database. The
results are returned as a java.sql.ResultSet object.

• java.sql.ResultSet: The ResultSet object represents the results of
an SQL statement. Primarily the object is only used with SQL
SELECT statements.

All of the preceeding objects are covered further in the following sections.
Additionally, there are many more JDBC objects that can be used to optimally
perform database operations. These objects will be discussed where relevant but
largely left as second priority to the preceding key classes.

javax.sql.DataSource
The DataSource interface is the preferred method of obtaining a connection to a
database. The DataSource object provides the getConnection() method that can
be used to obtain a connection to a database. As a Java developer, using the
DataSource interface is ideal because it completely abstracts any vendor-specific
information that might be attached to creating a database connection. When
combined with another Java technology, JNDI, DataSource objects also provide
a convenient method of consolidating how connections are obtained to a

606 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 606

database. This is important because it makes it theoretically6 possible to com-
pletely switch databases without causing problems to your existing code.

DataSource objects have not always been the method of obtaining a JDBC
connection. Early versions of JDBC relied on an object called a DriverManager to
manually load and return connection objects. The code for doing so can be
found in both CreateDatabase.jsp and ArbitrarySQL.jsp. It is as follows:

String url = "jdbc:hsqldb:" + dbDir+"/jspbook";

String user = "sa"; // hsqldb default

String password = ""; // hsqldb default

Class.forName("org.hsqldb.jdbcDriver");

Connection conn =

DriverManager.getConnection(url, user, password);

The code can be broken down into a few simple parts. First, a JDBC URL is
created that specifies the name and location of the database along with the
appropriate user/password information. All of this information is used by the
JDBC driver to connect to the database. The second part of the code loads an
instance of the appropriate JDBC driver:

Class.forName("org.hsqldb.jdbcDriver");

In the preceding code the org.hsqldb.jdbcDriver is loaded because it is the
JDBC driver that the hsqldb project uses. The line of code might seem pointless,
but it is needed for the later DriverManager getConnection() method call.

Connection conn =

DriverManager.getConnection(url, user, password);

The DriverManager object internally manages JDBC drivers and given the
JDBC url tries to return the appropriate driver. Assuming a valid JDBC url is used
and the JDBC driver has been loaded by the class loader—the Class.forName()
call—a connection to the database is opened.

As previously illustrated, a connection to a database can be obtained without
using a DataSource object, but there are a few things that are very undesirable
about using the previously shown method. A minor problem is the fact that sup-
posedly vendor-neutral code is suddenly vendor-specific due to the

JDBC 607

6. In practice there are several vendor-specific “features” that might not allow a seamless transition
between different databases, but that is an issue that needs to be addressed on a case-by-case basis.
When using basic SQL, as in this chapter, it is a safe assumption that the code can easily be moved to
any database.

falkner.ch14.qxd 8/21/03 7:33 PM Page 607

Class.forName() call. The problem can be avoided with a creative placement of
the call, but the best way to ensure the class loader has the appropriate class is to do
as the preceding code illustrates. Another very significant problem with the code is
that DriverManager is not an interface but a class. This matters because vendors
cannot easily optimize use of the DriverManager. There are many excellent JDBC
techniques that can result in huge performance increases, but using the
DriverManager thwarts integrating these techniques with the basic JDBC objects.

A DataSource object solves all of the problems with the classic JDBC code.
Because DataSource is an interface, vendors can code a DataSource object any
way they choose, including using optimizations. Additionally, DataSource

objects can conveniently be managed by containers so that the multiple calls to
Class.forName() and the loading of user/password and JDBC url information
are consolidated.

Configuring a DataSource for Use on Tomcat
The reason DataSource objects were not used with ArbitrarySQL.jsp and
CreateDatabase.jsp is because the DataSource needs to be configured for use
with Tomcat7. The configuration is simple but was delayed all the same. Add
Listing 14-3 to the server.xml file located in the /conf directory of your Tomcat
installation. Make sure the entry is a child of the Context element that defines the
jspbook Web Application.

Listing 14-3 Tomcat server.xml DataSource Configuration for the jspbook Web Application

...

<Context path="/jspbook" docBase="jspbook" debug="0">

<Resource name="jdbc/jspbook"

auth="Container"

type="javax.sql.DataSource"/>

<ResourceParams name="jdbc/jspbook">

<parameter>

<name>username</name>

<value>sa</value>

</parameter>

<parameter>

<name>password</name>

<value></value>

</parameter>

608 DATABASE CONNECTIVITY

7. DataSource configuration is done in a container-dependent method. If you are not using
Tomcat, consult the documentation for your specific container.

falkner.ch14.qxd 8/21/03 7:33 PM Page 608

JDBC 609

<parameter>

<name>driverClassName</name>

<value>org.hsqldb.jdbcDriver</value>

</parameter>

<parameter>

<name>url</name>

<value>JDBC url</value>

</parameter>

</ResourceParams>

</Context>

...

Information about the specific elements can be found in the Tomcat docu-
mentation; however, it should be easy to understand what the entry is doing. A
DataSource object is being registered as a resource. Included is all of the infor-
mation needed for the JDBC driver: user name, password, and connection url.
Note that the highlighted code does not include the specific value for the url
parameter. This is because the value will change depending on where the hsqldb
is being kept. Choose a place on your computer where the database should be
serialized: a good candidate is either the temporary directory provided by your
container or somewhere under the /WEB-INF directory of the jspbook Web
Application. For simplicity, choose the name jspbookdb under the /WEB-INF
directory of the jspbook Web Application. For example, if Tomcat was installed
to /usr/jakarta-tomcat-5, then the value would be the following(the URL must
always start with jdbc:hsqldb:):

...

</parameter>

<parameter>

<name>url</name>

<value>jdbc:hsqldb:/usr/jakarta-tomcat-5/webapps/jspbook/WEB-

INF/jspbookdb</value>

</parameter>

</ResourceParams>

</Context>

...

This entry would serialize the hsqldb contents in a few text files that started
with jspbookdb and were located under the /WEB-INF directory of the jspbook
Web Application. It does not matter where exactly you choose to save the
database; choose a location and all the upcoming examples will automatically
use it.

falkner.ch14.qxd 8/21/03 7:33 PM Page 609

Upgrading CreateDatabase.jsp and ArbitrarySQL.jsp
Both CreateDatabase.jsp and ArbitrarySQL.jsp are going to be helpful in the
upcoming examples. Change both of the examples by removing the following
lines:

// keep code portable

File tempDir =

(File)application.getAttribute("javax.servlet.context.tempdir");

String dbDir = tempDir.getAbsolutePath();

String url = "jdbc:hsqldb:" + dbDir+"/jspbook";

String user = "sa"; // hsqldb default

String password = ""; // hsqldb default

// load JDBC driver - BAD! Use DataSource.

Class.forName("org.hsqldb.jdbcDriver");

Connection conn =

DriverManager.getConnection(url, user, password);

Replace with the following:

InitialContext ctx = new javax.naming.InitialContext();

DataSource ds =

(javax.sql.DataSource)ctx.

lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Additionally, import the javax.sql and javax.naming packages in the page
directive. Save the new code as CreateDatabaseDataSource.jsp and Arbitrary
SQLDataSource.jsp, respectively, as to distinguish from the old code. For com-
pleteness, Listings 14-4 and 14-5 include the code for each of the pages, respec-
tively.

Listing 14-4 CreateDatabaseDataSource.jsp

<%@ page import="java.io.*,java.sql.*, javax.naming.*, javax.sql.*"

%>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

String link = ""; // create LINK table

link += "CREATE TABLE LINK(";

link += " URL VARCHAR(128) PRIMARY KEY,";

610 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 610

link += " TITLE VARCHAR(128),";

link += " DESCRIPTION VARCHAR(256)";

link += ")";

statement.executeQuery(link);

String uri = ""; // create URI table

uri += "CREATE TABLE URI(";

uri += " URI VARCHAR(40),";

uri += " URL VARCHAR(128),";

uri += " PRIMARY KEY(URI, URL)";

uri += ")";

statement.executeQuery(uri);

}

finally {

conn.close();

}

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

</head>

<body>

The Database has been successfully created.

</body>

</html>

Listing 14-5 ArbitrarySQLDataSource.jsp

<%@ page import="java.io.*,java.sql.*, javax.sql.*, javax.naming.*"

%>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

</head>

<body>

<% // poor form, Model 1

String query = request.getParameter("query");

JDBC 611

falkner.ch14.qxd 8/21/03 7:33 PM Page 611

if (query != null && !query.equals("")) {

out.println("<h2>Results of query:</h2>");

out.println(query);

ResultSet rs = statement.executeQuery(query);

ResultSetMetaData rsmd = rs.getMetaData();

out.print("<table border=\"1\"><tr>");

for (int i=0; i<rsmd.getColumnCount();i++) {

out.println("<td>"+rsmd.getColumnName(i+1)+"</td>");

}

out.print("</tr>");

while (rs.next()) { // show results

out.print("<tr>");

for (int i=0; i<rsmd.getColumnCount();i++) {

out.println("<td>"+rs.getString(i+1)+"</td>");

}

out.print("</tr>");

}

out.print("</td></table>");

//conn.close();

}

%>

<h2>New Query</h2>

<form method="POST">

Query: <textarea name="query" cols="65"></textarea>

<input type="submit">

</form>

<%

}

catch (Exception e) {

out.println("<h2>Problem with Query</h2>");

out.print(e.getMessage());

}

finally {

conn.close();

}

%>

</body>

</html>

Save Listing 14-4 as CreateDatabaseDataSource.jsp in the root directory of
the jspbook Web Application. Save Listing 14-5 as ArbitrarySQLDataSource.jsp
in the root directory of the jspbook Web Application.

612 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 612

DataSources and JNDI
The Java Naming Directory Interface (JNDI) is the Java standard for providing
access to a directory. A directory is a centralized location for obtaining access to
a resource used by Java Applications. A good way to think of JNDI is like a
phone book with phone numbers. If you wish to call a friend, you can look in
the phone book under the friend’s name for their number. With JNDI you can
look in the directory using a unique string to find a needed object. The directory
is very important because it potentially provides a place that any Java appli-
cation can look up a resource and obtain it for use, even applications that are
running in a different JVM, including those running on different servers.

The underlying mechanisms that JNDI uses will not be discussed. On a single
server, JNDI can be considered a roundabout method of calling, a factory
method, to obtain a class. In a multi-server environment, JNDI provides an
abstraction to a directory that may be responsible for indexing objects for use
with multiple applications running on different JVMs and computers. Should the
case arise where you are building a multi-server Web Application, then you can
take the time to look further into taking advantage of JNDI.

For our purposes, use of JNDI is very straightforward. First, an instance of a
JNDI context is obtained. Next, the JNDI context is used to look up the needed
DataSource object:

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

The DataSource is identified by the unique string, "java:comp/env/jdbc/
jspbook", which was previously defined by the entry added to Tomcat’s
server.xml:

...

<ResourceParams name="jdbc/jspbook">

...

The java:comp/env/ that comes before the name is a standard defined by
JNDI. The important thing here is that by using JNDI we are able to obtain access
to a DataSource object. In doing so we do not have to care about anything besides
an arbitrary name being used to index the DataSource object. Once the
DataSource object is obtained, we can then use it to establish a connection with
the database.

JDBC 613

falkner.ch14.qxd 8/21/03 7:33 PM Page 613

614 DATABASE CONNECTIVITY

java.sql.Connection and java.sql.Statement
JDBC connections are represented by the java.sql.Connection object. This
object can be used for a number of things including obtaining a java.sql.
Statement object. The Statement object is what puts JDBC into the realm of
what you should be familiar with. Once a Statement object has been obtained, it
can be used to execute SQL queries on the database.

The Statement object provides a number of methods for executing SQL
queries. The mostly straightforward and most commonly used method is
Statement execute(). The execute() method takes as an argument a String
object describing an SQL query and returns a result from the database. For
example, if you look at the code for ArbitrarySQLDataSource.jsp, it should be
clear how the JSP is executing familiar SQL statements:

...

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

try {

statement = conn.createStatement();

...

String query = request.getParameter("query");

...

ResultSet rs = statement.executeQuery(query);

...

First, a DataSource is obtained, which is then used to get a Connection
object. Once the Connection object has been retrieved, it is used to obtain a
Statement object that in turn executes SQL statements. The request parameter
named "query" is the value of the form’s text area in ArbitrarySQLDataSource.
jsp: it is nothing more than an SQL statement, such as SELECT * FROM LINK.

Manage Connections Carefully
Database connections are a valuable resource, especially when the database is on
a dedicated server that is shared potentially by multiple computers. There are a
few reasons why database connections are so valuable. Most important is the fact
that a database connection does not automatically close when an exception is
thrown in your program. It stays open and eventually times-out, at which point
the database closes the connection. In all of the code examples in this chapter,

falkner.ch14.qxd 8/21/03 7:33 PM Page 614

you will notice that Connection objects are always closed using a finally clause.
This is important because database servers can only keep so many connections
open. If too many connections are left open, the database may perform poorly or
be unavailable for use completely. To ensure this does not happen, it is important
to always make sure to properly close database connections. The same argument
also holds for JDBC statements. A JDBC version 2 driver must close any open
statements when a connection is closed. However, JDBC version 3 drivers (which
is currently what most drivers are) do not have to do this; in JDBC 3, closing a
connection automatically closes any related statements. Therefore, it is important
that you call ‘close’ on any open statements just before you close any connections.
Notice as well the odd usage: both statement.close() and connection.close()
are marked as throwing an SQLException. This means the the close methods in
the finally block must themselves be wrapped in a try-catch clause. About all that
can be done in the try-catch, though, is for the exception to be logged.

Managing database connections in practice is straightforward. Simply make
sure the call to the Connection object’s close() method is always in a finally
clause. If no try statement exists, it will be a reminder you need to make one.

SQL Transactions
So far our look at JDBC has appeared to involve an extra step. It appears that the
Connection object’s only purpose is to provide a means of obtaining a
Statement object. While partly true, there is another very important thing the
Connection object is in charge of: SQL transactions. An SQL transaction is a set
of SQL statements that must be executed at an atomic unit. Either they all work
or they all fail. This is important because there are many times when actions on
a database must be regulated. For instance, imagine a Web site created for a
bank. The site provides account services, meaning people can withdraw and
deposit money using this system. Think about the actions needed when one
person gives a sum of money to another:

• Bank withdraws money from person A.

• Back deposits money into person B’s account.

Now imagine that person B does not exist. What happens? The money is
taken out of person A’s account but goes nowhere. Letting it simply disappear
would surely aggravate the bank’s users. Instead, the problem should be detected
and the money put back in person A’s account. In summary, this is what SQL

JDBC 615

falkner.ch14.qxd 8/21/03 7:33 PM Page 615

transactions are all about, and there are many situations where transactions are
needed.

Previously, we had only been executing one SQL statement on the database
and looking to see what happened. With SQL transactions, the process is slightly
different. The Connection object controls if SQL statements are committed, or
made official. The following methods are provided:

• boolean getAutoCommit(): The getAutoCommit() method returns
a boolean value representing if SQL statements are automatically
committed to the database. If true, then each statement sent using
this connection is automatically committed to the database and
cannot be undone. If false, then statements are not committed until
the commit() method is invoked.

• void setAutoCommit(boolean commit): The setAutoCommit()
method sets if SQL statements are automatically committed or not.
If true, statements are committed automatically. If false, the
commit() method must be explicitly used to commit statements.

• void commit(): The commit() method is used to explicitly commit a
set of SQL statements.

• void rollback(): The rollback() method provides a way to undo all
of the SQL statements executed since the last commit() call. A
database is responsible for logging and correctly undoing SQL state-
ments when a rollback is done.

At this level SQL transactions are very easy to use because the database is
responsible for keeping track of statements and rolling them back if needed.
Previously, it had been assumed that SQL statements are automatically com-
mitted to the database, that is, a statement is executed and that changes can
instantly be seen. Should an SQL transaction be needed only a slight modifi-
cation needs to be made. For example, here is the code which would do a trans-
action of inserting three links in the LINK table of the jspbook database.

conn.setAutoCommit(false);

try {

statement.execute("INSERT INTO LINK VALUES('foo','foo','foo')");

statement.execute("INSERT INTO LINK VALUES('bar','bar','bar')");

statement.execute("INSERT INTO LINK VALUES('baz','baz','baz')");

conn.commit();

}

616 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 616

catch (Exception e) {

conn.rollback();

}

Obviously, the values being put into the LINK table are bogus, but that is not
the point of this example. Unless auto-commit is set to false, the database will use
a transaction for each executed statement. To use a transaction for a group of
statements, the connection must first be put into non-auto-commit mode. Next,
a try block is used to encapsulate all of the statements, including an explicit call
to commit the changes. Should something go wrong, a catch clause is used to
handle the exception and roll back any statements. By doing this, it is always
ensured that the SQL transaction will either successfully occur or appear to never
have happened.

Database Meta-Data
Another feature of the Connection object is to provide meta-data, data about the
database it is connected to. The focus of this chapter has been on being able to
safely execute SQL statements. However, what if you had no clue about what was
in the database? How would you know which tables existed and what infor-
mation they contained? This information can be obtained by using the
java.sql.DatabaseMetaData object. A DatabaseMetaData object can be
obtained by invoking the Connection object’s getMetaData() method. The
DatabaseMetaData object itself provides a robust set of methods of determining
information about a database’s tables, schema used on those tables, and all sorts
of other meta-data about the database. Consult the JavaDocs for complete infor-
mation on all of the meta-data methods available.

As a Web tier developer, the DatabaseMetaData object is of limited use. If you
were not responsible for creating the database, then usually pertinent information
about a database is provided to you; otherwise, there would be no way to accom-
plish your work. It is rare a project keeps around a tutorial on the database being
used, but usually there is either the database administrator or a copy of the SQL
used to create the database; either of these can be used to discover what is available.

The DatabaseMetaData object will not be given further coverage by this
book. Be aware it exists, but do not be surprised if you never have to use it as a
Web tier developer.

java.sql.ResultSet
The java.sql.ResultSet interface is used to describe the results of an SQL
statement that has successfully been executed on a database. Information

JDBC 617

falkner.ch14.qxd 8/21/03 7:33 PM Page 617

618 DATABASE CONNECTIVITY

requested by an SQL query is always in the form of a table, so in essence the
ResultSet object is just a representation of a table of information. An instance of
a ResultSet object is returned each time a Statement object executes a query on
a database. Information is then obtained from the ResultSet on a per row basis
using a cursor to keep track of which row is currently being read:

• boolean next(): The next() method requests the ResultSet move
to the next row in the table of returned information.

• boolean first(): The first() method moves the cursor to the first
row of the ResultSet. A boolean value is returned: true if there is a
first row or false if there are no rows. If the ResultSet for any
reason cannot move the cursor back to the first row, then an
SQLException is raised.

• boolean last(): The last() method moves the cursor to the last row
of the ResultSet. A boolean value is returned: true if there is a last
row or false if there are no rows in the result. If the ResultSet for
any reason cannot move the cursor to the last row, then an
SQLException is raised.

• boolean previous(): The previous() method moves a cursor to the
previous row in the ResultSet. A boolean value is returned: true if
the cursor is on a valid row or false if the cursor is off the
ResultSet.

The next() method is the most commonly used. This is because there are dif-
ferent types of ResultSet objects. All ResultSet objects allow for reading
through rows using the next() method, but many instances of ResultSet will
not allow for jumping the cursor around using first(), last(), previous(), or
any other non-forward method. To determine what functionality is available
with the result set, the getType() method can be used and matched to a set of
self-describing static int values defined by the ResultSet interface.

Generally, figuring out if you can scroll both forwards and backwards
through a ResultSet object is too much work compared to doing an iteration
using only the next() method. In code the iteration is simple, as previously illus-
trated by ArbitrarySQL.jsp.

ResultSet rs = statement.executeQuery(query);

...

while (rs.next()) { // show results

...// read from row here...

}

falkner.ch14.qxd 8/21/03 7:33 PM Page 618

Once at a desired row in a result set (usually all rows are desired), column
information can be obtained by invoking a number of different get methods. In
all cases the get method takes as an argument the column to retrieve. The values
returned are dependent on the method. For example, a generic getObject()
method can be invoked that will return an Object that you can typecast; alterna-
tively, a getString() method can be invoked which returns the value of the
column as a String object. In general, a convenient get method exists for all of
the different SQL data types.

Applying what we now know about ResultSet objects, it is possible to start
building some code that takes advantage of SQL and JDBC. As a first example, let
us build a simple JSP that shows the current state of the LINK and URI tables, as
illustrated in Listing 14-6.

Listing 14-6 ShowTables.jsp

<%@ page

import="java.io.*,java.sql.*,javax.sql.*,javax.naming.InitialContext

" %>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

%>

<html>

<head>

<title>Show LINK and URI Tables</title>

</head>

<body>

<h2>Contents of LINK Table</h2>

<table border="1">

<tr>

<td>URL</td>

<td>Title</td>

<td>Description</td>

</tr>

<%

ResultSet rs = statement.executeQuery("SELECT * FROM LINK");

while (rs.next()) { // show results

out.println("<tr>");

out.println("<td>"+rs.getString("url")+"</td>");

JDBC 619

falkner.ch14.qxd 8/21/03 7:33 PM Page 619

out.println("<td>"+rs.getString("title")+"</td>");

out.println("<td>"+rs.getString("description")+"</td>");

out.println("</tr>");

}

%>

</table>

<h2>Contents of URI Table</h2>

<table border="1">

<tr>

<td>URI</td>

<td>URL</td>

</tr>

<%

rs = statement.executeQuery("SELECT * FROM URI");

while (rs.next()) { // show results

out.println("<tr>");

out.println("<td>"+rs.getString("uri")+"</td>");

out.println("<td>"+rs.getString("url")+"</td>");

out.println("</tr>");

}

%>

</table>

<%

}

catch (Exception e) {

out.println("<h2>Problem with Query</h2>");

out.print(e.getMessage());

}

finally {

conn.close();

}

%>

</body>

</html>

Save the preceding code as ShowTables.jsp in the root directory of the
jspbook Web Application. Before trying the JSP out, be sure to visit Create
Database DataSource.jsp so that the database is ready. Also, add some infor-
mation to both of the database tables. Use ArbitrarySQLDataSource.jsp to
execute the following SQL commands:

INSERT INTO LINK VALUES('http://www.jspbook.com',

'Book Support Site', 'The book support site.')

INSERT INTO LINK VALUES('http://www.jspinsider.com', 'JSP Insider',

620 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 620

'JSP information site.')

INSERT INTO LINK VALUES('http://servlets.com', 'Servlets.com',

'A information site about Java Servlets.')

INSERT INTO URI VALUES('jsp','http://www.jspbook.com')

INSERT INTO URI VALUES('jsp','http://www.jspinsider.com')

INSERT INTO URI VALUES('servlets','http://servlets.com')

With the information in the database, now visit http://127.0.0.1/
jspbook/ShowTables.jsp. Displayed is a listing of all the entries in each of the
tables. Figure 14-8 shows a browser rendering of the results.

The specific entries may vary if you have further manipulated the database.
The important point is that ShowTables.jsp is listing all of the links in the two
tables. This is accomplished by iterating through a ResultSet for both the
“SELECT * FROM LINK” and “SELECT * FROM URI” SQL queries. The specific code can
be seen in ShowTables.jsp—for instance, the information from the LINK table is
shown using:

...

<h2>Contents of LINK Table</h2>

<table border="1">

<tr>

JDBC 621

Figure 14-8 Browser Rendering of ShowTables.jsp

falkner.ch14.qxd 8/21/03 7:33 PM Page 621

622 DATABASE CONNECTIVITY

8. Note that column indexes start from one, not zero. Additionally, the ResultSet object starts
before the first row of the results, so invoking next() in the while loop will not skip the first row.
9. Note also that the JDBC specification only guarantees “left-to-right”, “top-to-bottom” access of a
ResultSet. This means that to guarantee that your code works, you must access rows only using the
next() method, and you must access columns in the order they are retrieved from the database.

<td>URL</td>

<td>Title</td>

<td>Description</td>

</tr>

<tr>

<%

ResultSet rs = statement.executeQuery("SELECT * FROM LINK");

while (rs.next()) { // show results

out.println("<tr>");

out.println("<td>"+rs.getString("url")+"</td>");

out.println("<td>"+rs.getString("title")+"</td>");

out.println("<td>"+rs.getString("description")+"</td>");

out.println("</tr>");

}

%>

</tr>

</table>

...

The highlighted code is the Statement object executing “SELECT * FROM LINK”
to obtain a ResultSet object. After the query, the result set is iterated through
using a while loop and the ResultSet next() method. Since we know that each
of the columns in the LINK table is a string, the getString() method is called for
each column8,9. Mixed in with the JDBC code is the HTML required to pretty-
print the results in a table. The code for showing the URI table is done in a similar
fashion.

ResultSet Meta-Data
The ResultSet object also provides a method, getMetaData(), which returns a
ResultSetMetaData object, that describes results returned from a database. Like
the DatabaseMetaData object, the ResultSetMetaData object is usually not very
helpful to a developer. Assuming you know information about the database being
used and you know the SQL command being executed, then you know what to
expect in the results.

falkner.ch14.qxd 8/21/03 7:33 PM Page 622

JDBC 623

What the ResultSetMetaData object is good for is mining information about
columns. A good example of the functionality can be seen in ArbitrarySQLData
Source.jsp. Recall that although the JSP allows for arbitrary queries to be made,
it does not restrict to queries on a specific table or tables like ShowTables.jsp
does. The functionality was accomplished by using a ResultSetMetaData object
as follows:

...

ResultSet rs = statement.executeQuery(query);

ResultSetMetaData rsmd = rs.getMetaData();

...

while (rs.next()) { // show results

for (int i=0; i<rsmd.getColumnCount();i++) {

out.println("<td>"+rs.getString(i+1)+"</td>");

}

}

...

The first part of the code should be familiar: an SQL query is being made to
obtain a ResultSet. Next, a while loop is used to iterate through all of the rows
in the ResultSet. However, instead of hard coding in the get calls for the
column values, as done in ShowTables.jsp, a ResultSetMetaData object is used
to get a column count. The count is obtained by calling the getColumnCount()
method, and the value is used to create a for loop that iterates over each of the
columns.

The only shortcoming of the code that is used in ArbitrarySQLDataSource.
jsp is the assumption that the value of each column is a string. SQL has many
data types and this will not always be true. For the LINK and URI tables it is, but
in a more robust version of an arbitrary SQL page, the ResultSetMetaData object
should be used to determine the appropriate type of each column. The
getColumnType() method can be used in conjunction with the values defined in
java.sql.Types to achieve this functionality.

Multiple Results
Some statements are complex enough to produce multiple results. Usually these
statements are due to JDBC optimization techniques or batch operations being
executed on a database. Whatever the case may be, it is possible for multiple
ResultSet objects to be returned from a database query. In these cases special
functionality of the Statement interface must be used:

falkner.ch14.qxd 8/21/03 7:33 PM Page 623

• boolean getMoreResults(): The getMoreResults() method moves
to the next set of results for an executed statement. The new results
can be obtained by executing the getResultSet() method of the
Statement interface. The getMoreResults() method returns a
boolean value: true if another set of results exists or false if not.

• boolean getMoreResults(int current): The getMoreResults()
method moves to the next set of results and performs a specified
action on the current set of results. The action is determined by
using different self-named static integer values of the Statement
interface: CLOSE_ALL_RESULTS, CLOSE_CURRENT_RESULT, or
KEEP_CURRENT_RESULT.

A single SQL statement will never result in multiple results. Do not worry
about needing to handle multiple results unless a special JDBC operation is being
executed that results in them. In that case, code accordingly using the getMore
Results() and getResultSet() methods appropriately.

A Simple JDBC-Based Application
By now all of the basics of SQL and JDBC have been covered. Each of the topics
deserves a book in itself to fully cover them; however, with what this chapter has
introduced, you should have a good understanding of the fundamental concepts
of SQL and JDBC. It is about time that these concepts were put to practical use.
The current LINK and URI tables are designed for use as a Web site’s link man-
agement system. We shall now build such a system as an exercise of applying SQL
and JDBC to JSP and Servlets.

The basic ideal behind the system is easy to grasp. Most Web sites in some
form provide a number to links to other resources on the World Wide Web. The
links could be to other pages on the same site or to completely different Web sites.
What this application does is use the LINK and URI tables to manage a collection
of links and group them by a common index. Refresh your memory on the
entries in the LINK and URI tables; browse to ShowTables.jsp. Excluding any
additional links you might have added, the links should be present in the LINK
table that is shown in Figure 14-9. The URI table should include the information
that is shown in Figure 14-10.

If the links are not there, go back to and execute the SQL statements provided
previously in ResultSet interface discussion. If you have not yet noticed, there is
a pattern between the LINK and URI tables. The LINK table provides raw infor-
mation about a link: a URL, a title, and a description. The URI table provides
indexes for types of links and relates them to the LINK table using the unique URL

624 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 624

or the foreign key10. For example, the URI table contains two rows that have jsp
as the value of the URI column. Each of those rows also has a URL that can be
used to reference a link in the LINK table. The end result is that a query can be
done on the URI table to find all links that are indexed by jsp, or, as is meant, are
about JSP topics. The SQL query would be the following:

SELECT l.url, l.title, l.description FROM LINK l, URI u WHERE u.url

= l.url AND u.uri = 'jsp'

JDBC 625

Figure 14-9 Links in the LINK Table

Figure 14-10 Indexes in the URI Table

10. A foreign key is a value in one database table that references a primary key in another table.
Because primary keys are guaranteed to be unique, foreign keys are the method for relating database
tables.

falkner.ch14.qxd 8/21/03 7:33 PM Page 625

The preceding SQL statement uses a “join” of two tables to find the appro-
priate LINK entries that are indexed by jsp. The query could have been accom-
plished using multiple, simple SELECT statements, but the preceding is the proper
way to do the query11. The LINK table, associated with l, and the URI table, asso-
ciated with u, are combined into one big table. The larger table is then evaluated
to find entries where the URLs match and the uri value is ‘jsp’.

Try the preceding query using ArbitrarySQLDataSource.jsp. The results are
as expected: a list of links about JSP. Excluded is the obviously non-JSP site,
http://servlets.com. Figure 14-11 shows a browser rendering of the results.

Making Use of the URI and LINK Tables
Given that you know how to add, remove, and edit entries in both the LINK and
URI tables, the SQL statement demonstrated at the end of the last section is all
that is needed to use the link management system. Instead of showing the links
using ArbitrarySQLDataSource.jsp, create a custom Servlet or JSP that displays

626 DATABASE CONNECTIVITY

11. The join is a good example of an SQL skill that it is very useful or even necessary to have, but it
is not covered in this chapter.

Figure 14-11 Browser Rendering of Returned JSP-Related Links

falkner.ch14.qxd 8/21/03 7:33 PM Page 626

links based on an index. For example, Listing 14-7 is a page that prints out a
pretty list of links in HTML.

Listing 14-7 ShowLinks.jsp

<%@ page import="java.io.*,java.sql.*, javax.sql.*, javax.naming.*,

java.util.*" %>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

LinkedList links = new LinkedList();

request.setAttribute("links", links);

try {

Statement statement = conn.createStatement();

String uri = request.getParameter("uri");

if (uri != null && !uri.equals("")) {

ResultSet rs = statement.executeQuery("SELECT l.url, l.title,

l.description FROM LINK l, URI u WHERE l.url = u.url AND u.uri =

'"+uri+"'");

while (rs.next()) { // show results

Hashtable map = new Hashtable();

map.put("url", rs.getString(1));

map.put("title", rs.getString(2));

map.put("description", rs.getString(3));

links.add(map);

}

}

}

finally {

conn.close();

}

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

</head>

<body>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<c:forEach var="link" begin="0" items="${links}">

<h3 style="margin-bottom:2px;">

${link.title}

</h3>

JDBC 627

falkner.ch14.qxd 8/21/03 7:33 PM Page 627

${link.description}

</c:forEach>

</body>

</html>

The page relies on a request parameter name uri that is expected to match a
uri in the URI table. If so, a list of links is displayed for all links that match the
URI. Try the page out to view JSP-related links; browse to http://127.0.0.1/
jspbook/ShowLinks.jsp?uri=jsp. An HTML page appears with all the JSP-
related links. Figure 14-12 shows the results.

The page works equally as well to show the other types of links that have been
indexed, Servlet links. Try browsing to http://127.0.0.1/jspbook/ShowLinks.
jsp?uri=servlets. This time the page shows all of the Servlet-related links.
Figure 14-13 is a browser rendering of the results.

In general the link viewing page can be used to show any type of links that
are indexed in the URI table. The only information that needs to be changed is the
uri value passed as a parameter. Links are taken straight from the database and
formatted nicely for display.

Why Put Links in a Database?
ShowLinks.jsp is, initially, not incredibly impressive. Sure it works with a
database to display links, but just because it uses JDBC does not make it good.
What makes storing links in a database helpful is that they can very easily be
managed. ShowLinks.jsp is just a small example of how helpful database-
managed information is. For example, Show Links is a consolidated template for
showing any collection of links a site may use. Compared to keeping around mul-

628 DATABASE CONNECTIVITY

Figure 14-12 ShowLinks.jsp Showing JSP-Related Links

falkner.ch14.qxd 8/21/03 7:33 PM Page 628

tiple pages filled with various links, the advantage is huge. Just imagine how easy
it would be to change the style that ShowLinks.jsp displays links compared to
changing a few dozen HTML(ish) pages.

Styling is not the only reason for consolidating links. The Web is constantly
changing. Links to other Web sites often go bad, resulting in aggravated users. By
consolidating links in a database, it becomes incredibly easy to take care of bad
links on your Web site. A complete list of links can be obtained by looking at the
LINK table. To complement ShowLinks.jsp, another utility can be built that looks
through the LINK table and tests each link to see if it is still valid. If it is not, then
the link can be removed. When run on a regular basis, this would ensure that
users are not left with a collection of bad links. Thanks to the J2SE, building such
a link-checker is quite easy, assuming you have a database. Listing 14-8 is an
example.

Listing 14-8 LinkChecker.jsp

<%@ page import="java.io.*,java.sql.*, javax.sql.*, javax.naming.*,

java.util.*, java.net.*" %>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

LinkedList deleted = new LinkedList();

try {

Statement statement = conn.createStatement();

ResultSet rs =

statement.executeQuery("SELECT * FROM LINK");

while (rs.next()) { // show results

String url = rs.getString(1);

JDBC 629

Figure 14-13 Browser Rendering of Servlet-Related Links

falkner.ch14.qxd 8/21/03 7:33 PM Page 629

URL u = new URL(url);

boolean failed = false;

try {

HttpURLConnection huc =

(HttpURLConnection)u.openConnection();

int responseCode = huc.getResponseCode();

if (responseCode >= 400 && responseCode < 500) {

failed = true;

}

huc.disconnect();

}

catch (UnknownHostException e) {

failed = true;

}

catch (UnknownServiceException e) {

failed = true;

}

if (failed) {

statement.execute("DELETE FROM LINK WHERE url = '"+url+"'");

deleted.add(url);

}

}

}

finally {

conn.close();

}

%>

<html>

<head>

<title>Link Checker</title>

</head>

<body>

<h2>Links Deleted</h2>

<% while(deleted.size() > 0) {

String deletedUrl = (String)deleted.remove(0); %>

<%= deletedUrl %>

<% } %>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="link" begin="0" items="${links}">

<hr>

<h3>

${link.title}

</h3>

${link.description}

630 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 630

JDBC 631

</c:forEach>

</body>

</html>

The code uses the java.net.URL and java.net.URLConnection classes to try
and open a connection to each link in the LINK table.

ResultSet rs = statement.executeQuery("SELECT * FROM LINK");

while (rs.next()) { // show results

String url = rs.getString(1);

URL u = new URL(url);

boolean failed = false;

try {

HttpURLConnection huc =

(HttpURLConnection)u.openConnection();

If the connection can be opened, the HTTP response code is obtained and
checked. If it is in the 400’s, then the link is considered bad and a boolean delete
flag, failed, is set to true. Likewise, if the connection cannot be opened—that
is, an exception is thrown—then the delete flag is set to true.

int responseCode = huc.getResponseCode();

if (responseCode >= 400 && responseCode < 500) {

failed = true;

}

huc.close();

}

catch (UnknownHostException e) {

failed = true;

}

catch (UnknownServiceException e) {

failed = true;

}

Finally, if the delete flag is set, an SQL DELETE statement is used to remove the
link. Because of the database integrity rules, this also deletes any related entries
in the URI table.

if (failed) {

statement.execute("DELETE FROM LINK WHERE url = '"+url+"'");

deleted.add(url);

}

The end result is that all links in the LINK table that are not valid are removed.
Try out LinkChecker.jsp by browsing to http://127.0.0.1/jspbook/

falkner.ch14.qxd 8/21/03 7:33 PM Page 631

LinkChecker.jsp. You may wish to use ArbitrarySQLDataSource.jsp to add in
a few bogus links in order to see them removed. Any links that LinkChecker.
jsp removes are displayed in an HTML page. Figure 14-14 shows what a browser
rendering looks like after removing some bad links.

Overall, there are many other uses the LINK and URI tables can be put to.
Some more good uses would be building a simple page for people to submit links
from, perhaps, an online guest book of sorts, or building a voting system that
could keep track of a link’s popularity and display collections of links based on
the information. The link tracking is easy to do, as demonstrated in Chapter 2,
and with the link information in a database, it is easy to access and change it. The
point is that there are many things that a database full of links can be used for.
Without JDBC and the database, accomplishing the same functionality would be
difficult and involve spending the time to code an ad hoc solution.

In general, consolidating information into a database-like system is a very
good thing. By keeping everything in one central place, it is easier to manage the
information on the whole. After all, that is the idea behind databases and it is the
reason databases have such widespread adoption in programming. The demon-
strated link management system is an excellent example of the type of function-
ality JDBC and databases can add to a Web Application. Use it!

Using JDBC Optimally
Much like SQL, there is a lot more to JDBC than can be fully covered in a single
chapter. However, what this chapter has explained of JDBC so far details most
everything that is needed to successfully use JDBC in an application. What has

632 DATABASE CONNECTIVITY

Figure 14-14 A Few Bad Links Removed by LinkChecker.jsp

falkner.ch14.qxd 8/21/03 7:33 PM Page 632

yet to be covered is some of the more complex uses of JDBC which usually relate
directly to a more complex use of a DBMS. In this section of the chapter some of
the more complex concepts of JDBC and DBMS will be introduced. When pos-
sible, concrete examples are provided, but much of the functionality is related
directly to the specific database being used and the JDBC implementation pro-
vided. It would be futile for this book to try and cover all the possible databases
or guess which database you will be using for future projects. For these reasons
there will be several sections where an important concept is introduced but not
demonstrated. Instead, you are directed to consult the documentation for
whatever particular DBMS and JDBC implementation is being used.

Connection Pooling
The classic staple technique to increasing JDBC performance is to use connection
pooling. Connection pooling involves optimizing the time required to establish a
connection with a database. In most practical situations a database is being run
on a completely separate server somewhere else in the world, commonly on the
local network. In these cases the time it takes to create a connection with the
server is notably time-consuming. Therefore, the idea is to open up a pool of con-
nections, initially taking up time, then constantly re-use those connections and
never spend time establishing new connections. The technique works quite well
and pivots around keeping a pool of enough connections to handle all of your
application’s needs but not wastefully opening too many connections for the
pool.

“Classic” was used to describe connection pooling because now the practice
is commonly handled automatically by DataSource implementations. Along with
being able to specify JDBC url, user-name, and password information for a
DataSource, most implementations allow for extra features such as the amount
of connections to pool. A database administrator can then specify the amount of
desired connections to pool and allow the DataSource to seamlessly optimize
connection management. Because of the commonality of connection pooling, it
is recommended you consult the documentation for the JDBC drivers being used
on your specific project. Connection pooling at the DataSource level is ideal
because it requires no extra effort on your part.

If the database you decide to use does not provide connection pooling, you
can still do it the classic way. The best technique is to create a custom DataSource
object and a Connection object that wrap your vendor-specific ones. The custom
DataSource is used to pool connections. For example, it initially opens up x con-
nections from a vendor’s DataSource. When calls to the getConnection() method

USING JDBC OPTIMALLY 633

falkner.ch14.qxd 8/21/03 7:33 PM Page 633

are made, it provides a connection from the pool instead of requesting a new con-
nection from the vendor’s DataSource. The custom Connection object needs to
wrap the vendor’s Connection object and override the close() method. Instead
of closing the connection the wrapper should return the still-open Connection to
the pool. The end result is your custom DataSource object juggles around a fixed
number of open connections, never spending time opening up new connections.

Pooling resources is a great performance concept to be aware of, and it can be
applied to many things besides database connections. Custom tags are a good
example; just look at the life cycle. It is appealing to provide a clever example in
this chapter of a DataSource pooling Connection objects, but many good, free
implementations of connection pooling code exist. Also, as mentioned, most
JDBC vendors already have connection pooling rolled into their products. For
these reasons you will be left to consult your vendor’s JDBC documentation, and
if no connection pooling is implemented, consult the following links:

• Jakarta Commons DBCP:
http://jakarta.apache.org/commons/dbcp.html: The Database
Connection Pooling (DBCP) project is part of Jakarta’s Commons
and is designed to pool JDBC connections. The JDBC project
happens to also be the listing that Tomcat uses to pool database
connections. Being under the liberal Apache license, the listing is
great to both learn from and use.

• Jakarta Commons Pool:
http://jakarta.apache.org/commons/pool.html: The Jakarta
Commons Pool project is a general-purpose set of APIs used to
pool any type of object (not that all objects should be pooled). The
API is the foundation of the DBCP project. Being under the Apache
license, the listing is great to both learn from and use.

Optimized Statements
Execution of SQL statements is often the slowest part of database interaction.
Opening and closing connections is manageable, but a poorly done SQL
statement can dramatically slow a database down. The first step to ensuring an
SQL statement performs well is by optimizing the statement itself. This involves
structuring the SQL in such a fashion that it optimizes the joining of tables and
checking of conditions. Optimizing SQL can be very complex and is outside the
scope of this book. What is covered by this book are the different types of JDBC
Statement interfaces that can be used.

634 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 634

In this chapter only the Statement interface has been used. This interface is
suited for providing completely ad hoc queries on a database, but it is not
designed to allow a database to easily optimize those statements. Two other
Statement interfaces are available that can be used for this purpose. The inter-
faces are java.sql.PreparedStatement and java.sql.CallableStatement.

Prepared Statements
The PreparedStatement interface extends Statement and provides support for
pre-compiled, parameterized statements with input parameters. A vendor-
specific PreparedStatement implementing object can be obtained by invoking a
factory method on the Connection interface: prepareStatement(). There are
several different versions of the prepareStatement() method, each with a spe-
cific purpose. Only the most basic one will be covered by this text, although con-
ceptually all of the methods are similar.

In PreparedStatement prepareStatement(String sql), the prepare

Statement() method takes as an argument a parameterized SQL statement and
returns a PreparedStatement object. The SQL statement passed to the prepare
Statement() method is then optimized for repeated use, requiring the Prepared
Statement to fill in needed parameters.

In use, a PreparedStatement is much like a Statement but with the SQL pro-
vided when the statement is obtained. Instead of the no-argument getStatement()
method, now there is the prepareStatement() method that relies on the SQL
beforehand. For example, a simple query to obtain all of the entries in the LINK
table would be done as follows:

PreparedStatement ps =

connection.prepareStatement("SELECT * FROM LINK");

ResultSet = ps.execute();

Optimization occurs by letting the database see the statement before it needs
to be executed. By doing this the database is free to compile the statement into an
optimal form that can later be used. For single-use ad-hoc statements this opti-
mization is obviously not very helpful. A database can already optimize SQL
statements before using them when the Statement interface is used. Where the
PreparedStatement interface is helpful is when multiple queries are going to be
done using the same statement or a similar statement. For instance, if the pre-
ceding code executed the prepared statement multiple times, it would likely be
notably faster than using a Statement object to do the same.

Where the PreparedStatement interface comes in really handy is when it is
used in the parameterized form. The initial SQL statement used in the

USING JDBC OPTIMALLY 635

falkner.ch14.qxd 8/21/03 7:33 PM Page 635

prepareStatment() call does not have to be complete. Parameters can be
replaced by a question mark, ?, and replaced later before executing the statement.
What this does is allow the database to optimize the SQL statement and used the
optimized statement for different parameters. For example, in ShowLinks.jsp it
is always known what the basic SQL statement is:

SELECT l.url, l.title, l.description FROM LINK l, URI u

WHERE u.url = l.url AND u.uri = ?

The only unknown parameter is what uri should be used, or what category
of links should be shown. The better way to code ShowLinks.jsp would be to use
a PreparedStatement instead of Statement and specify the preceding SQL. At
runtime the JSP would then no longer have to obtain a new statement each time
it was making a query. Instead, the changing parameter could be applied and a
database-optimized statement used. Parameters are specified by calling an appro-
priate set method on the PreparedStatement object. The set methods are much
like the get methods on the ResultSet object. To set a string, the Prepared
Statement setString() method is used. Different set methods are available for
all the SQL data types. Like the ResultSet get methods, the set methods also
require an index number of which parameter is being set. For the SQL just
shown, there is only one parameter:

String uri = request.getParameter("uri");

PreparedStatement ps =

connection.prepareStatement("SELECT l.url, l.title, l.description

FROM LINK l, URI u

WHERE u.url = l.url AND u.uri = ?");

ps.setString(1, uri);

ResultSet = ps.execute();

In cases where multiple question marks were used in the prepared SQL
statement, then multiple set methods would need to be called to set each of the
parameters.

We have not provided a complete example of using PreparedStatement here;
however, PreparedStatements should be used wherever possible to maximize
your database performance. The usage model for PreparedStatement is exactly
the same as for a statement:

Get a Connection;

Create a PreparedStatement;

Use the PreparedStatement;

Close the PreparedStatement;

Close the Connection;

636 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 636

The strong point of PreparedStatements is to allow the database to optimize
the statement being executed, typically by creating what is called an execution
plan. However, databases will throw away that execution plan when the statement
is closed. When you look at the previous usage pattern, you will realize that each
time you use a PreparedStatement, the database works to create an execution
plan and then throws the plan away as soon as the statement is closed, so it
appears that using a PreparedStatement actually hurts rather than improves per-
formance. As a footnote to this, never keep statements or connections open
longer than is absolutely necessary. Connections and Statements both use
database resources: those resources should be given back as soon as possible to
allow the database to be as efficient as possible. In the case of Servlets, connec-
tions and statements must not outlive a single HTTP round-trip (a request/
response pair). To allow developers to get the improved performance of using a
PreparedStatement and not violate the rules of having to close statements after
each request, many database pooling implementations also pool Prepared
Statements. This means that in the same way that database connections are put
back into the pool when closed, so will preparedstatements. Notice that con-
nections and statements are being kept open longer than a single request, but the
pool will only keep a limited number open (specified by the database adminis-
trator).

Stored Procedures
The CallableStatement interface extends PreparedStatement and is used to
execute statements programmed natively into the database. A performance
increase comes from the code not needing to be compiled at all by the database.
Instead, a programmer can code the procedure natively on the database, taking
advantage of any database-specific API, and compile the procedure so that it is
ready for use. Stored procedures are very database-specific but are also the most
optimal method of performing database queries. Effectively, they sidestep the
need for SQL.

A CallableStatement is obtained by calling the callableStatement()
method of a Connection object. Like a PreparedStatement a parameterized
statement needs to be provided when calling the callableStatement()
method. Unlike a PreparedStatement the parameterized statement is not
usually in SQL. JDBC uses the XOpen escape clause ({? = call procedure_

name(?, ?)}) to provide a vendor-neutral method of calling prepared state-
ments; however, many vendors also allow a vendor-specific statement to be
used. After obtaining a CallableStatement object, a JDBC developer needs to

USING JDBC OPTIMALLY 637

falkner.ch14.qxd 8/21/03 7:33 PM Page 637

provide the proper parameters to satisfy the prepared statement. This is done
using the same set methods of PreparedStatement. The results of executing a
CallableStatement can be obtained by invoking ResultSet-like get methods or
by using the functionality inherited from the Statement interface.

Due to the nature of stored procedures, they will not be discussed further. It
is very likely that when building a high-performance database-based system that
stored procedures will be how statements are executed. However, stored proce-
dures are always vendor-specific. You will have to consult the specific documen-
tation for your favorite database to see what level of support stored procedures
have and how you can take advantage of them12.

Database Administrators Are Expected to Know a Lot
Tech books can be expensive and tedious to read. This is exactly why this chapter
was added to this book, and it is why you have yet to be directed to pick up a good
JDBC book. In practice, what you have learned in this chapter should be more
than enough to avoid needing a learn-JDBC book. You should be able to get by
just fine working with a database and incorporating JDBC with your Servlets and
JSPs. However, should you be a developer who for whatever reason is also the
acting database administrator, seriously consider finding extra help. The SQL
book suggested earlier in this chapter is a fantastic start, but it also helps to know
a lot about the database that you will be using. If the database you choose to use
comes with excellent documentation, then the issue is solved. If it does not, or
you are using a very robust (likely also extra-complex) database, such as the
pricey Microsoft, Oracle, or IBM line of products, look into a good book that
covers JDBC and that database.

JDBC Web Application Design Patterns
SQL and JDBC are powerful skills to add to your skill-set and can greatly
enhance a Web Application; however, like all things there are both good and bad
ways to implement the functionality. Sadly, this chapter has shown bad imple-
mentation after bad implementation of good SQL and JDBC concepts. In an

638 DATABASE CONNECTIVITY

12. A slight tangent: there do exist some excellent free, open source databases that can easily satisfy
most real-world applications. Most notably is the popular MySQL database. However, MySQL is well
known for its lack of uber-optimal features such as stored procedures. As of the writing of this book,
there are currently no free extra-high-performance databases. If there were, it would have been pro-
moted for use with JDBC and all Web Applications.

falkner.ch14.qxd 8/21/03 7:33 PM Page 638

attempt to rectify this misdeed, a proper attempt to discuss implementing
database-functionality is provided.

First off, this section is only discussing JDBC implementation. Installing a
database and figuring out the SQL to use against it should be completely inde-
pendent of your Servlet and JSP code. As so, this discussion of JDBC design pat-
terns does apply to all databases and is helpful for use in any Web Application.
Regardless of which database/JDBC product you are using, both open source and
commercial alike, you should read this part of the chapter as a guide to how to
code JDBC functionality into your Servlets and JSPs.

There are three roughly distinct methods of coding JDBC functionality into
a Web Application: Model 1, Model 2, and using Data Access Objects (DAO). The
first two methods should be self-explanatory given the previous chapter on
design patterns. Both approaches assume a differing number of the Web
Application developers know JDBC. In the case of the Model 1 approach, it is
assumed that the Servlet and JSP developers know JDBC. A Model 1 implemen-
tation freely intermixes JDBC code where it is needed in a JSP or Servlet, much
like all the examples in this chapter. The design is intuitive but suffers from all of
the problems of the Model 1 design pattern. The Model 2 approach assumes only
the “Model” developer needs to know JDBC. Recall the Model 2 design is based
around abstracting out where and how information comes to a JSP or Servlet,
commonly just a JSP. Instead, the focus is to restrict a JSP or Servlet to only wor-
rying about presentation logic: all other code is placed in separate, comple-
mentary components.

For most Web Applications and collaborative projects involving Web
Applications, the Model 2 design pattern will be the best method of imple-
menting JDBC with Servlets and JSP. Fewer people will be required to understand
JDBC, and the code will be safely abstracted into Model components. However,
there are certain situations where it must be guaranteed that JDBC functionality
will be used responsibly. Usually this situation is identifiable by the people in
charge of the database, not wanting developers to have the ability to use ad hoc
queries on a database. The reason being, a few malicious, or just poorly done,
queries can trash the all-important data repository.

In cases where JDBC functionality needs to absolutely be used responsibly,
there are two good options. The first is to find a very good database administrator
who will go to the trouble of securing the database against any problematic

JDBC WEB APPLICATION DESIGN PATTERNS 639

13. A view is what a user is able to see and access in a database. Views can be completely fictitious or
derived from other parts of a database.

falkner.ch14.qxd 8/21/03 7:33 PM Page 639

queries. This can be done using SQL to specify appropriate data-integrity rules,
user permissions, and database views13. However, finding such a database admin-
istrator can be difficult. An alternative solution is to abstract database access
using a DAO design pattern.

Data Access Objects Design Pattern
The Data Access Objects (DAO) design pattern, as applied to Java/JDBC, is to create
a set of Java objects that provide the appropriate CRUD actions. The objects are
then used as the sole interface for Web Application developers that need to access a
database. The design pattern has many benefits. The critical benefit of the design
pattern is that database access, including SQL queries, becomes the responsibility
of whoever codes the DAO. This means the DAO could log on to the database with
administrative privileges which it would not be a problem if they were coded
properly. Another advantage of the design pattern is that only the data object
coder(s) needs to know JDBC. Web Application developers are exposed to a pure
Java interface that can be as basic and/or intuitive as need be. Finally, the design
pattern provides true transparency of the database being used. If later on it was
desired to switch to a completely different database, only the DAO would need re-
coding. The rest of the Web Application would be safe from breaking.

Conceptually, the DAO design pattern is nothing new. It is a logical
abstraction of database-specific code. In J2EE the official implementation of the
concept is referred to as Enterprise JavaBeans (EJB). EJB can be used as a func-
tional implementation of the DAO design pattern, but many developers,
including both of this book’s authors, believe that EJB are simply overkill for
most every use. The concepts are good, but the EJB learning curve is difficult, and
the performance of the technology often suffers because of poor implemen-
tation. The preferred approach is to dissect the various components that make up
EJB and understand why they are important. From there, implement the con-
cepts as they best fit your particular project. That is the approach promoted by
this book, and that is what the last part of this chapter (and part of the next
chapter) trys to explain.

Implementing the DAO Design Pattern
If you followed this chapter’s previous discussion of CRUD, implementing the
DAO design pattern is easy. The important thing to do is create a set of objects
that have a create(), update(), delete(), and read() method or equivalents
thereof. A common practice is simply to put these methods on an associated
JavaBean. Listing 14-9, News.java, is an example.

640 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 640

JDBC WEB APPLICATION DESIGN PATTERNS 641

Listing 14-9 News.java

package com.jspbook;

public class News {

protected String title = null;

protected String link = null;

protected String story = null;

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

public String getLink() { return link; }

public void setLink(String link) { this.link = link; }

public String getStory() { return story; }

public void setStory(String story) { this.story = story; }

}

Converting News.java into a DAO would be as simple as adding the fol-
lowing methods:

package com.jspbook;

public class News {

protected String title = null;

protected String link = null;

protected String story = null;

public static void create(News[] news) {

// JDBC code to add news entries in a database

}

public static News[] read(String index) {

// JDBC code to read news entries in a database

}

public static void update(News[] news) {

// JDBC code to update news entries in a database

}

public static void delete(News[] news) {

// JDBC code to remove the given news entries

}

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

...

falkner.ch14.qxd 8/21/03 7:33 PM Page 641

The create() method takes an array of new News objects and serializes them
into the database. The read() method is given an index string that the database
can use to return a select set of News objects. The update() method takes a mod-
ified set of news objects that were previously read from the database and saves the
changes to the database. Finally, the delete() method takes a set of previously
read News objects and deletes their entries from the database. For completeness,
each of the methods should additionally throw an exception in order to provide
feedback if any of the CRUD operations cannot be accomplished.

In general, any JavaBean being used to store information, such as News.java,
can be modified using the DAO technique described previously. However, there
are many ways in which the same functionality can be achieved. The drawback of
the previous approach is that each JavaBean being used in your Web Application
now has to be cluttered up with the CRUD methods and JDBC code. To avoid
this, another popular DAO implementation is to use factory classes to encap-
sulate all of the CRUD functionality. This approach results in twice as many
classes, but overall, the code is simpler in each class. Using factories to implement
the DAO design pattern is going to be the approach we will explore further. Keep
in mind that at any time you can certainly move the logic the factories are pro-
viding into either the JavaBean itself or into any other desired class.

DAO Factories
As a complete example of an implementation of the DAO design pattern, we will
now build a simple application that uses the LINK and URI tables to provide a link
management system for a Web site. The functionality will be identical to that
which the chapter previously accomplished using ArbitrarySQLDataSource.jsp
and ShowLinks.jsp. The difference will be that the previous JDBC code is now
replaced by DAO, and the JSP used will follow the Model 11⁄2 design pattern.

The first piece of code that is needed is a JavaBean that can be used to store
information about a link, as shown in Listing 14-10.

Listing 14-10 LinkBean.java

package com.jspbook;

public class LinkBean {

protected String title = null;

protected String url = null;

protected String desc = null;

642 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 642

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

public String getUrl() { return url; }

public void setUrl(String url) { this.url = url; }

public String getDescription() { return desc; }

public void setDescription(String desc) { this.desc =desc;}

}

Save LinkBean.java in the /WEB-INF/classes/com/jspbook directory of the
jspbook Web Application. The code is straightforward; it consists of getter and
setter methods for a link’s URL, title, and description. There is nothing else that
is significant about the preceding code.

The next, more interesting piece of code is a factory class that provides the
CRUD methods needed to manipulate database entries that correspond to
LinkBean objects. Listing 14-11 is an example.

Listing 14-11 LinkFactory.java

package com.jspbook;

import java.util.*;

import javax.naming.*;

import java.sql.*;

import javax.sql.*;

public class LinkFactory {

public static void create(LinkBean[] links) throws Exception {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Statement statement = conn.createStatement();

try {

for (int i=0; i<links.length;i++) {

LinkBean link = links[i];

if (link == null) continue;

if (link.getUrl() == null) {

throw new Exception("Link #"+i+" has null for url

value!");

}

statement.executeQuery("INSERT INTO LINK

VALUES('"+link.getUrl()+"', '"+link.getTitle()+"',

JDBC WEB APPLICATION DESIGN PATTERNS 643

falkner.ch14.qxd 8/21/03 7:33 PM Page 643

'"+link.getDescription()+"')");

}

}

finally {

statement.close();

conn.close();

}

}

public static LinkBean[] read(String index) throws Exception {

String sql = "SELECT * FROM LINK";

if (index != null) {

sql = "SELECT l.url, l.title, l.description FROM LINK l, URI u

WHERE l.url = u.url AND u.uri = '"+index+"'";

}

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Statement statement = conn.createStatement();

LinkedList ll = new LinkedList();

try {

ResultSet rs = statement.executeQuery(sql);

while (rs.next()) { // show results

LinkBean link = new LinkBean();

link.setUrl(rs.getString(1));

link.setTitle(rs.getString(2));

link.setDescription(rs.getString(3));

ll.add(link);

}

LinkBean[] links = new LinkBean[ll.size()];

for(int i=0;ll.size() >0;i++) {

links[i] = (LinkBean)ll.remove(0);

}

return links;

}

finally {

conn.close();

}

}

public static void update(LinkBean[] links)

throws Exception {

// validate input

644 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 644

if (links == null || links.length == 0) return;

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Statement statement = conn.createStatement();

LinkedList ll = new LinkedList();

try {

for (int i=0;i<links.length;i++) {

LinkBean link = links[i];

if (link.getUrl() == null) continue;

statement.executeQuery("UPDATE LINK SET

title='"+link.getTitle()+"', description='"+link.getDescription()+"'

WHERE url='"+link.getUrl()+"'");

}

}

finally {

conn.close();

}

}

public static void delete(LinkBean[] links)

throws Exception {

// validate input

if (links == null || links.length == 0) return;

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Statement statement = conn.createStatement();

LinkedList ll = new LinkedList();

try {

for (int i=0;i<links.length;i++) {

LinkBean link = links[i];

if (link.getUrl() == null) continue;

statement.executeQuery("DELETE FROM LINK WHERE

url='"+link.getUrl()+"'");

}

}

finally {

conn.close();

}

}

}

JDBC WEB APPLICATION DESIGN PATTERNS 645

falkner.ch14.qxd 8/21/03 7:33 PM Page 645

646 DATABASE CONNECTIVITY

Save the preceding code as LinkFactory.java in the /WEB-INF/classes/
com/jspbook directory of the jspbook Web Application. It is important to see that
the preceding code is encapsulating all of the JDBC the Web Application needs.
The self-describing methods create(), read(), update(), and delete() use only
the LinkBean object as an interface. Thus developers do not need to know any-
thing about the database; the only thing needed is an understanding of the
LinkFactory class.

The code for LinkFactory.java is relatively lengthy compared to other code
examples in this chapter, but none of the code is new. Each of the CRUD methods
is responsible for executing the SQL needed to manipulate the database, and
information is interfaced by using the LinkBean object. For example, the read()
method takes an index string and returns an array of LinkBean objects. First, an
index is passed to the method and a connection is opened to the database:

public static Link[] read(String index) throws Exception {

// validate input

if (index == null) return new LinkBean[0];

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook");

Connection conn = ds.getConnection();

Next, an SQL statement is used to query the appropriate links:

Statement statement = conn.createStatement();

LinkedList ll = new LinkedList();

try {

ResultSet rs =

statement.executeQuery("SELECT l.url, l.title, l.description

FROM LINK l, URI u

WHERE l.url = u.url AND u.uri = '"+index+"'");

Finally, the ResultSet is iterated through to create an array of Link objects.

while (rs.next()) { // show results

LinkBean link = new LinkBean();

link.setUrl(rs.getString(1));

link.setTitle(rs.getString(2));

link.setDescription(rs.getString(3));

ll.add(link);

}

LinkBean[] links = new LinkBean[ll.size()];

for(int i=0;ll.size() >0;i++) {

falkner.ch14.qxd 8/21/03 7:33 PM Page 646

JDBC WEB APPLICATION DESIGN PATTERNS 647

links[i] = (LinkBean)ll.remove(0);

}

return links;

The other CRUD methods work in a similar fashion. Either an array of
LinkBean objects is taken and used to generate queries on the database, or the
database is queried to produce a collection of Link objects. In all cases a Servlet
and JSP developer is left only with LinkBean objects and needs to know nothing
about JDBC. The code for LinkFactory.java is just one example of a factory
class providing DAO functionality. If there were multiple types of JavaBeans for
the site used, then a factory would need to be built for each one.

Using the LinkFactory in a Servlet or JSP should be intuitive. For example,
the equivalent of ShowLinks.jsp would be Listing 14-12.

Listing 14-12 DAOShowLinks.jsp

<%@ page import="com.jspbook.*" %>

<%

String uri = request.getParameter("uri");

LinkBean[] links = LinkFactory.read(uri);

request.setAttribute("links", links);

%>

<html>

<head>

<title>JSP Book Sample Database Creation</title>

</head>

<body>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="link" begin="0" items="${links}">

<h3 style="margin-bottom:0px;">

${link.title}

</h3>

${link.description}

</c:forEach>

</body>

</html>

Note the differences in the code between ShowLinks.jsp and DAOShowLinks.
jsp. The preceding code is both clean and simple in comparison. At no time does
the JSP developer have to worry about JDBC, SQL, a database, or anything unre-
lated to the LinkBean and LinkFactory objects. Due to this abstraction, there is
no issue with the JSP developer’s executing poor queries, nor is there a problem
with any future changes to the database.

falkner.ch14.qxd 8/21/03 7:33 PM Page 647

LinkChecker.jsp is another good example to use with the LinkBean and
LinkFactory classes. Instead of mixing the JSP and JDBC code, a much cleaner
page can be developed using DAO and Model 11⁄2 as shown in Listing 14-13.

Listing 14-13 DAOLinkChecker.jsp

<%@ page import="com.jspbook.*, java.net.*, java.util.*" %>

<%

LinkBean[] links = LinkFactory.read(null);

for (int i=0;i<links.length;i++) {

LinkBean link = links[i];

String url = link.getUrl();

LinkedList deleted = new LinkedList();

request.setAttribute("deleted", deleted);

boolean failed = false;

try {

URL u = new URL(url);

HttpURLConnection huc =

(HttpURLConnection)u.openConnection();

int responseCode = huc.getResponseCode();

if (responseCode >= 400 && responseCode < 500) {

failed = true;

}

}

catch (UnknownHostException e) {

failed = true;

}

catch (UnknownServiceException e) {

failed = true;

}

catch (MalformedURLException e) {

failed = true;

}

if (failed) {

LinkFactory.delete(new LinkBean[] {link});

deleted.add(url);

}

}

%>

<html>

<head>

<title>Link Checker</title>

</head>

<body>

648 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 648

<h2>Links Deleted</h2>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="link" begin="0" items="${deleted}">

${link}

</c:forEach>

</body>

</html>

Save the preceding code as DAOLinkChecker.jsp. If you like, try the code out
by browsing to http://127.0.0.1/jspbook/DAOLinkChecker.jsp. The results
are the same as if LinkChecker.jsp was used. The important thing to see about
the preceding code is not what it does, but how it goes about doing it. The code
is again simplified by removing all of the JDBC code with a few calls to the CRUD
methods of the LinkFactory. The JSP developer is able to easily take advantage
of a database but does not have to worry about JDBC, SQL, or anything besides
LinkBean and LinkFactory.

Given the preceding two examples it should be clear how the DAO design
pattern can be implemented to abstract JDBC logic. The create() and update()
methods of the LinkFactory class were not shown in an example, but concep-
tually the functionality should be very clear. As an exercise, try building a JSP or
Servlet that adds or updates links using the Link and LinkFactory objects.

Summary
This chapter has been a broad overview of Java database connectivity and how to
implement a database for use with Servlets and JSP. Databases are the de facto
standard for consolidating a Web site’s important information, and rightly so.
Introduced in this chapter were the topics of SQL, JDBC, and methods of incor-
porating database connectivity code with your Web Application. All of the topics
could be expanded into a book themselves, especially SQL and JDBC, but what
was covered by this chapter should be sufficient to get you well on your way with
Java database connectivity.

What was sparingly covered in this chapter was the topic of SQL. Instead of
attempting a full crash course on SQL, only the fundamental concepts were
introduced. It is likely that when working on a database-driven project, a SQL-
savvy database administrator will be around to handle SQL woes. However,
should you wish to take on the roll of both Web tier developer and database
administrator, a good SQL book was suggested.

The final part of this chapter dealt with optimal uses of JDBC and practical
implementations of JDBC logic with Servlets and JSPs. In the case of optimal
uses the important concepts of connection pooling, prepared statements, and

SUMMARY 649

falkner.ch14.qxd 8/21/03 7:33 PM Page 649

stored procedures were introduced. In the practical implementation discussion,
it was explained where JDBC code fits in when using either a Model 1 or Model
2 design, and in special cases where complete abstraction of database function-
ality is needed, the Data Access Objects (DAO) design pattern was introduced for
use.

The next chapter concludes this book. You have previously learned every-
thing this book has to teach about Servlets and JSPs, and you have completed the
all-important database connectivity tangent. In the last chapter we will make a
quick review of the entire book and discuss a few of the other technologies in
J2EE and why you might want to consider using them.

650 DATABASE CONNECTIVITY

falkner.ch14.qxd 8/21/03 7:33 PM Page 650

651

Chapter 15

Building a Complete Web
Application

This is it—the last chapter! So far you have learned about coding Servlets,
JavaServer Pages, JavaBeans, custom tags, and Filters. Rounding out these skills
several popular design patterns such as Model 2, Model 11⁄2, multi-client design,
and internationalization have been included. Finally, several practical topics such
as error handling, security, and database access have been discussed so that you
can truly create a complete Web Application using Servlets and JSP. However,
there still exists one sole deficiency in this book’s content. At no time has a real,
complete Web Application been built. Each chapter focused entirely on a single
subject. Several times chapters relied on previous chapters’ material, but the
chapters have never been combined into what you are really trying to do: build a
complete Web Application.

The final chapter of this book is going to provide a review of the entire book’s
material as it should best be done: by building a complete Web Application.
When writing a book it is easy to claim “in practice you will need to use this” or
to create a contrived example to illustrate a good point. This book has done both,
and rightly so because for educational purposes, that is often the best method of
introducing a good concept. However, readers of this book are assumed to be
paid professionals or those working on becoming such—generally people who
need to be able to build a complete Web Application. Following up on such an
assumption, it is now time to demonstrate exactly what this book is all about:
building a complete Web Application using Servlets and JSP. At each possible
point while building the Web Application, a complete discussion is provided on
what is being built, which is essentially a review of the content in the various
chapters that constitute this book.

falkner.ch15.qxd 8/21/03 6:13 PM Page 651

652 BUILDING A COMPLETE WEB APPLICATION

This chapter discusses the following topics:

• Designing a Web Application.

• Distributing the workload; dividing up who does what.

• Implementing database support; creating a database and using
JDBC.

• Implementing Business Logic; Filters and the Model 2 design
pattern.

• Implementing Presentation Logic; JSP, Multi-Client Design, and
Internationalization.

• Finishing up the site: security, error handling, link tracking,
caching, and compression.

The topics should be no surprise. Everything is a logical part of a Web
Application, and everything is a topic that has been covered in detail by this book.
At every part of this chapter, discussion will be provided on why each part of the
Web Application is being built as it is, but discussion will not replace having read
the earlier chapters of this book—it is assumed you have read the book in its
entirety. Do read this chapter straight through. It provides several tips and tech-
niques for building a complete Web Application.

Designing a Web Application
All Web Applications, usually projects in general, start from the same point:
design. Somewhere someone is responsible for determining what a Web
Application needs to do, possibly also how it should be done. Depending on what
type of Web Application you are building and your place of employment, there
are several different ways a Web Application is designed. Commonly, designs are
created by either a single arbiter (i.e., you want to build a Web Application), a
project manager with feedback from a development team (i.e., a small group of
developers is responsible for building a Web Application), or from a completely
separate group of thinkers1 who provide a complete blueprint to the developers
of a Web Application (i.e., you or your team must build a given Web Application’s
blueprint). The most personally rewarding of the three is likely the first, building

1. This is meant both as good and bad; however, it almost always implies a tedious project lies ahead.
Comics, such as Dilbert (http://dilbert.com), thrive off the imbroglios of corporations, who are
responsible for the vast majority of large-scale Web Applications, that let one group design indepen-
dently of the development team.

falkner.ch15.qxd 8/21/03 6:13 PM Page 652

a complete Web Application by yourself. This chapter will design and implement
a Web Application from this viewpoint, but the design will be done as if the
workload of implementing the Web Application should be done by several inde-
pendent groups of people. This strategy will do two things: you will be respon-
sible for building an entire Web Application, and you will gain some insight on
how the task of building a Web Application can be split into smaller independent
tasks.

Serious effort has been put into using the phrase “a complete Web
Application” rather than “a real Web Application” in this chapter. What we will
design is a “real” Web Application, meaning something really in use—the com-
plete code for a Web site you have likely seen on the Internet. This chapter covers
the design and implementation of the book support site, http://www.jspbook.
com2. However, “a real Web Application” is misleading because it implies all of
the previous chapters are educational fluff when they are not. The phrase “a com-
plete Web Application” is used because that is exactly what this chapter makes: a
complete Web Application that re-uses real concepts and real code from previous
chapters.

The basic outline of the site design is to satisfy the following criteria:

• Create a book support site for this book including a news page, a
page detailing book information (and purchase information), an
errata page, FAQ, a reader feedback page, a page providing the
book’s code and, when possible, functional examples of the code,
and a promotional page with sample chapters and publicity photos.

• Support commonly used Web browsers—namely, it must be
authored in HTML.

• Support translated versions of its content so that readers of dif-
ferent languages can view the site in their desired
language.

• Provide an administrative front so that non-SQL developers and non-
Java developers can manage relevant parts of the Web Application.

The preceding outline identifies the basic criteria a Web Application would
initially have, but it still needs more details about the content of the site’s pages.
A more practical developer (such as us in this case) would also mandate the fol-
lowing criteria:

DESIGNING A WEB APPLICATION 653

2. Surely, not all Web Applications are alike; however, good effort is made in demonstrating how
code in this book can be adapted for use in any real Web Application.

falkner.ch15.qxd 8/21/03 6:13 PM Page 653

• A proper layer of data abstraction; use a database so the project is
easier maintained in the future.

• A proper layer of code abstraction; make it so a non-Java developer
can still make styled content; also ensure the code of the Web
Application is easily maintained in the future.

• Track user information; track requests and responses and provide
realtime viewing of site hits, site referrals, popular pages, what user-
agent (i.e., browser) is most commonly used, and what language is
most commonly requested.

• Properly handle all errors; don’t ever show a user a cryptic stack
trace generated by Tomcat.

• Keep sensitive information sensitive; use a Web Application’s
security mechanisms to ensure users can only access what they are
supposed to access.

• Put an Easter egg in the application3.

This chapter implements the preceding list of criteria and provides an
example at http://www.jspbook.com. Often the preceding criteria are exactly
what you would expect from good initial Web Application design. The design is
purposely made slightly more complex, especially with the i18n requirements,
than what you will likely have to build if employed as an average Web developer;
however, all the requirements are reasonable if you are employed as a good Web
developer.

Physical Implementation
Web Application design typically goes in two phases: logical design and physical
design. A logical design is a rough description4 of what the application must
support. A physical design describes is how the logical requirements are to be
implemented, in our case with Servlets and JSP. A good developer should be able
to implement a proper physical design, regardless of who made it. The following
is the summarized physical implementation of the book support site. Greater
detail is left for discussion later in the chapter.

654 BUILDING A COMPLETE WEB APPLICATION

3. We’re joking, but in the case of the book support site, one is added for fun—exactly as if we were
underpaid, overworked, slightly creative Web developers.
4. This book’s discussion of logical and physical design is either grossly deficient (traditional
business person’s opinion) or more than is required (traditional engineer’s opinion). The greater
point is that the design is adequate for the project at hand, which is illustrated by the rest of this

falkner.ch15.qxd 8/21/03 6:13 PM Page 654

The database to use is hsqldb, the database from Chapter 14, and the database
is connected to use JDBC via a DataSource object. No database-specific opti-
mizations are to be used so that another SQL-compliant database may be used in
the future.

The Web Application must follow a simple Model 2 design. A Filter will
encapsulate all of the Java code required to connect to the database and populate
request-scoped variables. JSP will be used to present the request-scoped variables
and any other static information in the appropriate format.

Conceptually, an idea of the site’s layout should be forming. Figure 15-1 pro-
vides a conceptual view of the site’s physical components.

Intuitively, the physical design is stating that each logical goal is going to be
accomplished using material this book has previously covered. The specifics of
the physical design are expanded upon in the following sections.

Create a Web Application for the Book Support Site
The first step to building any new Web Application is creating it in your con-
tainer. Start the book support site by making a new directory in the /webapps
directory of your Tomcat. Create the jspbook_site directory in the /webapps
directory of your Tomcat installation. Next, add the default directories,
jspbook_site/WEB-INF, jspbook_site/WEB-INF/lib, and jspbook_site/WEB-
INF/classes, and create a blank web.xml file5. Finally, create a new XML file,
required by Tomcat, describing the new Web Application. Save the following file
as jspbook_site.xml in the /webapps directory of Tomcat.

DESIGNING A WEB APPLICATION 655

JSP Endpoints

Web Application

hsqldb

Database

Model 2 Filter

requests responses

Figure 15-1 Conceptual View of Initial Physical Design of the Web Application

5. Listing 1-1 in Chapter 1 is an example of a blank web.xml file. We are now repeating the steps
required to create a Web Application using Tomcat—exactly what was covered in Chapter 1.

falkner.ch15.qxd 8/21/03 6:13 PM Page 655

<Context path="/jspbook_site" docBase="jspbook_site"

debug="0" privileged="true">

</Context>

With everything created, the /webapps directory should include the following
entries:

webapps/jspbook_site.xml

webapps/jspbook_site

webapps/jspbook_site/WEB-INF

webapps/jspbook_site/WEB-INF/web.xml

webapps/jspbook_site/WEB-INF/lib

webapps/jspbook_site/WEB-INF/classes

Distributing the Workload: Dividing Up Who Does What
There are three distinct parts to this project: database work, Java programming,
and presentation. The database work consists of creating the Web Application’s
database and providing a JDBC connection (or some other form of Java con-
nection). The Java programming consists of all the Java code that is to be
placed in the Model 2 logic components—the code that uses the database to
populate request-scoped variables. The presentation logic consists of creating
pages that display request-scoped information and any static information.
These three divisions can be logically found in almost all Model 2-based pro-
jects, and it is usually a good idea to divide labor according to them. Why?
Because each division has a clearly defined interface, and each part requires dif-
ferent skills.

Take for example any project that involves more than one developer. Each
developer will have a different set of skills, and it will be desirable to have
everyone working at the same time. However, it is important that when matching
skills and assigning work that developers do not interfere with each other. An
HTML-savvy, Java-deficient developer should be allowed nowhere near the
database or Java code. Likewise, a Java or SQL guru with no sense of style should
not edit the appearance of the site’s user interface. However, each developer
should be able to fully work on his or her part of the project and know their work
will not hinder the other developers. The greater point here is: it is always
desirable to enforce a division of labor for efficiency. It is also important to truly
enforce a division of labor—if a developer should not be able to do something,
make it so he or she can’t. The concept is nothing new; it is prevalent in object-
oriented programming and Java. However, it is helpful to realize the concept

656 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 656

needs to be applied to Web Applications, which are usually a combination of Java,
SQL, and HTML.

A good method of enforcing division of the work required to build a Web
Application is to use JDBC and request-scoped variables as strict interfaces. The
database developer(s) will be responsible for everything to do with the database,
ending at the JDBC driver. The Java developer(s) will be responsible for every-
thing to do with accessing a pre-defined database and populating pre-defined
request-scoped variables. The presentation developer will be responsible for
everything that has to do with formatting request-scoped variables via the JSP
EL, JSTL actions, and markup such as HTML. Enforcement of the divisions is
done via the JDBC driver, (i.e., only SQL calls can communicate with the
database), and by disallowing JSP scripting: JSP can only read request-scoped
variables via the EL and standard actions.

Practical Use of Web Application Labor Division
For practical use the division of labor described by this chapter works well, pri-
marily because of its strict interfaces. The bane of maintaining a project is having
to deal with what is considered spaghetti code, sloppy code that tends to work but
appears as gibberish—hence, not even the original coder can easily edit it, let
alone someone inheriting the code. Scripts that mix database calls, Java, and
HTML are almost always spaghetti code. It is the same issue that was discussed in
length in the design pattern chapter. However, eliminating spaghetti code is not
the only benefit of dividing labor as described. Keeping a strict interface means
you can easily determine what exactly needs to be fixed. In our case the fix can be
narrowed down to either a database table, a Java class, or a JSP—all of which are
relatively simple compared to the entire Web Application.

It should be easy to realize why the method of dividing a Web Application’s
labor as described by this chapter works; the method is exactly what has been
preached by the last few chapters. The design pattern chapter discussed the
Model 2 design pattern, including JSP and logic components, and the database
chapter discussed both simple SQL and using JDBC. However, examples are
surely the best method of bringing everything together, which is exactly why this
chapter builds the book support site. In the following three sections each division
of labor is covered in depth, as it would be applied to the book support site. You
will benefit from seeing how each section is done, and much of the code can be
directly recycled for use in other Web Applications.

DISTRIBUTING THE WORKLOAD: DIVIDING UP WHO DOES WHAT 657

falkner.ch15.qxd 8/21/03 6:13 PM Page 657

Implementing Database Support: Creating a Database
and Using JDBC
The first division of labor we will discuss is the site’s database. This section entails
the task of creating the site’s database and providing a JDBC method (i.e.,
DataSource object) for access to the database. In this chapter’s previous dis-
cussion of the site’s database and its logical design, little was covered. Now, a
complete physical design is created, and that physical design will be implemented
by our database of choice, hsqldb.

Database Physical Design
As mentioned in Chapter 14, to create a relational database, SQL is used. Little
was discussed on the actual SQL required and how to ensure the information
kept in a database is kept as it should be—in other words, ensuring data integrity.
This topic does merit a book of its own. If you wish to be a true database admin-
istrator, read the suggested book and learn a popular database. In almost every
case where a database is being used, a proper database administrator is expected
to implement it, so as a Java, Servlet, and JSP developer, this is likely not you.

This chapter will not assume you are a database administrator, but we will
discuss what is required and provide the exact syntax for it. So if you do wish to
learn about relational databases or already understand relational databases, you
do have all of the important information for the book support site’s database
right here.

Logically, the site’s database needs to keep track of all the dynamic infor-
mation we are going to use. In the case of the book support site there are a few
places it makes sense to use a database: errata, news items, FAQ, and user
feedback. Each of these places is a dynamic part of the site—users will be able to
read the current list and suggest additions. Additionally, the site’s administrator
will want to be able to edit the information. In order to keep track of errata, FAQ,
feedback, and news, the database will have four tables. Each table will keep track
of content, via a time-stamp, and a flag will keep track if the content is visible or
not. Figure 15-2 provides a conceptual view of the database tables.

The idea of the preceding four tables is that each can be queried for a current
list, validated list, of related information. For example, if a current list of news
items is desired, the news table can be queried for the latest few news items that
have been validated for showing. The information each row of the table contains
describes the unique identifier of the news entry, which also happens to be a
time-stamp, and if the item has been validated by an administrator.

658 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 658

The content that is displayed to a visitor of the Web site is not contained in
the database because of internationalization requirements. Instead of managing
the information in a database, it will be arranged in a simple file structure. The
file structure is straightforward and extensible: the default language (English)
content is authored in an arbitrarily named JSP. Other languages are also in a JSP,
named the same, but with “-” and the three-digit6 language code appended. For
example, if a page of content, index.jsp, was created, the French alternative page
(if it exists) would be index-fra.jsp: encoding issues are assumed to be handled
appropriately. More on the internationalization support is discussed later when
the actual content is being built.

Database Creation SQL
Before providing the SQL required to create the Web Application’s database, we
need to install a database. The hsqldb is going to be re-used because it works and
was covered by Chapter 14. The hsqldb JAR file is not required to be re-installed
because it was previously placed in the /common/lib directory of your Tomcat
installation, which is shared by all Web Applications7. The installation
requirement is a new resource deployment for the jspbook_site Web

IMPLEMENTING DATABASE SUPPORT: CREATING A DATABASE AND USING JDBC 659

Database (hsqldb)

News
index-to-content, visible

Errata
index-to-content, visible

FAQ
index-to-content, visible

Feedback
index-to-content, visible

Figure 15-2 Database Tables

6. ISO 639-2 (ftp://dkuug.dk/i18n/iso-639-2.txt) lists the standardized three-digit
language codes. The java.util.Locale object provides the getISO3Language() method
that provides the three-digit country codes.
7. It is still a bad idea to place all JAR files in this directory instead of /WEB-INF/lib of a specific
Web Application. JAR files in /WEB-INF/lib are included in a WAR, and the functionality they
provide is portable, meaning you can re-use it with any Web Application. However, code in the
/common/lib directory of Tomcat needs to be manually copied from container to container; the
only reason hsqldb.jar was placed in the /common/lib directory is because we are using
Tomcat to deploy the JDBC DataSource, as discussed in Chapter 14.

falkner.ch15.qxd 8/21/03 6:13 PM Page 659

Application. Edit jspbook_site.xml in the /webapps directory of Tomcat to
match Listing 15-1.

Listing 15-1 DataSource Configuration for the Book Support Site

<Context path="/jspbook_site" docBase="jspbook_site"

debug="0" privileged="true">

<Resource name="jdbc/jspbook_site"

auth="Container"

type="javax.sql.DataSource"/>

<ResourceParams name="jdbc/jspbook_site">

<parameter>

<name>username</name>

<value>sa</value>

</parameter>

<parameter>

<name>password</name>

<value></value>

</parameter>

<parameter>

<name>driverClassName</name>

<value>org.hsqldb.jdbcDriver</value>

</parameter>

<parameter>

<name>url</name>

<value>jdbc:hsqldb:/usr/jakarta-tomcat-

5/webapps/jspbook_site/WEB-INF/jspbookdb8</value>

</parameter>

</ResourceParams>

</Context>

The preceding code initializes a DataSource object that the Java developer
can use to obtain JDBC connections to the hsqldb database. Additionally, Tomcat
automatically pools connections for performance enhancement.

Reload the jspbook_site Web Application to have the changes take effect.
Once the Web Application reloads, the DataSource object can be used. Copy
ArbitrarySQLDataSource.jsp (Listing 14-5 in Chapter 14) and save it in the
admin directory of the jspbook_site Web Application. Edit the following lines to
use the jspbook_site database:

660 BUILDING A COMPLETE WEB APPLICATION

8. Note this value needs to be changed to somewhere on your computer, and preferably in the
jspbook_site Web Application.

falkner.ch15.qxd 8/21/03 6:13 PM Page 660

IMPLEMENTING DATABASE SUPPORT: CREATING A DATABASE AND USING JDBC 661

<%@ page import="java.io.*,java.sql.*, javax.sql.*, javax.naming.*"

%>

<%

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

...

With the preceding change, ArbitrarySQLDataSource.jsp now works with
the book support site’s database. SQL statements can be executed, and they will
be reflected appropriately.

The following lines of code in Listing 15-2 will create the database tables for
the book support site as described earlier in the chapter.

Listing 15-2 Database Creation Listing

CREATE TABLE NEWS (

TS BIGINT PRIMARY KEY,

VISIBLE BIT

)

CREATE TABLE FAQ (

TS BIGINT PRIMARY KEY,

VISIBLE BIT

)

CREATE TABLE FEEDBACK (

TS BIGINT PRIMARY KEY,

VISIBLE BIT

)

CREATE TABLE ERRATA (

TS BIGINT PRIMARY KEY,

VISIBLE BIT

)

Execute the above code using ArbitrarySQLDataSource.jsp. Figure 15-3
shows a browser rendering of the results.

With the tables created and the DataSource object available, the database
work is done.

Interfacing without SQL
A side note is worth mentioning before jumping straight to coding the site’s logic
components. It is assumed that the Java developers, who are responsible for inter-

falkner.ch15.qxd 8/21/03 6:13 PM Page 661

facing with the database, understand SQL. Given a DataSource object, a Java
developer has a method of executing SQL statements, CRUD actions, which is a
great solution, assuming the Java developers know SQL. However, should SQL be
a skill only found with the database developer, the Java developers will need an
alternative interface. Recall the Data Access Object design pattern mentioned in
Chapter 14. If required, a Java–JDBC developer can build a set of objects that
abstract the SQL calls using a simple set of Java objects.

The idea is, if your Java developers don’t know SQL, don’t use SQL as an
interface. Instead, use a set of Data Access Objects and a strict interface can still
be maintained.

Implementing Business Logic: Filters and the Model 2
Design Pattern
With a database in place, the next step of the Web Application is to build Model
2 logic components that interface with the database and populate request-
scoped variables. The book support Web site was logically modeled earlier in the
chapter. The site itself is not complex and does not merit a complex Model 2
scheme. For the site’s Model 2 design we will re-use the simple Model 2 Filter
from Chapter 11. Recall the Filter relies on implicit logic components named

662 BUILDING A COMPLETE WEB APPLICATION

Figure 15-3 Browser Rendering of Database Creation

falkner.ch15.qxd 8/21/03 6:13 PM Page 662

after the URL being accessed. If the logic component exists for a particular URL,
it is loaded and used before the contents of the URL are displayed.

Copy the simple Model 2 Filter, Listing 11-9 in Chapter 11, and the required
interface, Listing 11-10 also in Chapter 11, and save in the /WEB-INF/classes/
com/jspbook directory of the jspbook_site Web Application. Deploy the Filter
to intercept all requests to the Web Application as shown in Listing 15-3.

Listing 15-3 Updated web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

<filter>

<filter-name>ControlFilter</filter-name>

<filter-class>com.jspbook.ControlFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>ControlFilter</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

</web-app>

Reload the Web Application to have the changes take effect. The Model 2
Filter now attempts to load and execute implicit logic components each time a
request is made.

For internationalization support, the site will rely on the i18n Filter created
in Chapter 12. The Filter takes a request and attempts to localize the resource—
for example, the Filter interprets a request from a client who prefers French for
index.jsp to mean look for index-fra.jsp first, and if it is not found, fall back
on the English version, index.jsp. The process is similar for all other languages
with English always being the default. This decision makes i18n support as easy
as translating a page and saving it with the appropriate country code. Deploy the
Simplei18nFilter to intercept all requests to the JSP book site Web Application.
Listing 15-4 shows the updated web.xml.

Listing 15-4 Updated web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

<filter>

<filter-name>ControlFilter</filter-name>

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 663

falkner.ch15.qxd 8/21/03 6:13 PM Page 663

664 BUILDING A COMPLETE WEB APPLICATION

<filter-class>com.jspbook.ControlFilter</filter-class>

</filter>

<filter>

<filter-name>Simplei18nFilter</filter-name>

<filter-class>com.jspbook.Simplei18nFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>ControlFilter</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>Simplei18nFilter</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

</web-app>

By deploying the two Filters, we have added support for the Model 2 design
pattern and an extendable method of adding internationalized content to the
Web Application. This process was near trivial thanks to Filters and the previous
chapters of this book. Note it is important how the two Filters are deployed; the
implicit Model 2 Filter needs to intercept requests before the i18n Filter. If not,
the implicit Model 2 Filter will be searching for implicit control objects named
index_en and the like, which is not what we desire. There is no reason for this
Web Application to have multiple versions of the Control components for spe-
cific languages.

Coding Model 2 Logic Classes and Populating Request-Scoped Variables
The Model 2 Filter and the Simplei18nFilter are key parts of the Web Application,
but they are not parts that need be cared about by the site’s Java developers. Once
the Filters are deployed, they should never need to be changed. The majority of
the work is placed on creating Model 2 Logic classes and JSP content pages.
Following the division of labor suggested earlier in the chapter, currently we are
now playing the role of the Java–JDBC developers. What now needs to be imple-
mented is a set of Model 2 logic components that interface with the database and
populate request-scoped variables.

Recall that the index page, errata page, FAQ page, and feedback page obvi-
ously need logic components. The components are required to query the

falkner.ch15.qxd 8/21/03 6:13 PM Page 664

database for current news, errata, feedback, or FAQs, respectively, and populate
request-scoped variables for the JSP developers to use. The following sections
individually discuss the logic components.

An Abstract Logic Component
Because we are using the Control Filter discussed in Chapter 11, we know that all
logic components must implement the doLogic() method of the Logic interface.
A fine solution would be to start each logic component from scratch as done in
Chapter 11; however, an easier solution exists if you consider the interfaces the
book support site uses. Several of the dynamic logic components are doing the
same thing: querying a named database table and populating a request-scoped
variable of the same name. The only thing that changes between these logic com-
ponents is the name of the database table queried and the name of the request-
scoped variables.

Due to the similarity shared by the site’s database-to-request-scoped variable
interface, we can consolidate the logic components’ code into one abstract com-
ponent and take advantage of Java polymorphism to support specific instances of
the interface. Listing 15-5 includes the code for the abstract interface class.

Listing 15-5 AbstractContent.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.text.*;

public abstract class AbstractContent implements Control {

public abstract boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException;

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response,

String table)

throws ServletException, IOException {

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 665

falkner.ch15.qxd 8/21/03 6:13 PM Page 665

LinkedList content = new LinkedList();

request.setAttribute(table, content);

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.

lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ResultSet rs =

statement.executeQuery("select * from "+table+" where

visible=true");

ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()) { // show results

long l = rs.getLong(1);

Timestamp ts = new Timestamp(l);

SimpleDateFormat sdf =

new SimpleDateFormat("EEE, MMM d, yyyy HH:mm:ss z");

java.util.Date d = new java.util.Date(l);

String con =

"<p class=\"date\">"+sdf.format(d)+"</p>";

String u=

"/WEB-INF/"+table+"/"+new Long(l).toString()+".jsp";

// fix this...

StringWriter sw = new StringWriter();

String file =

request.getSession().getServletContext()

.getRealPath(Simplei18nFilter.getLanguage(u,

request));

FileInputStream fis = new FileInputStream(file);

int i = 0;

while ((i = fis.read()) != -1) {

sw.write(i);

}

con += new String(sw.toString());

content.add(con);

}

} catch (Exception e) {

throw new ServletException(e);

} finally {

666 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 666

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 667

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

return true;

}

}

Save the preceding listing as AbstractContent.java in the /WEB-INF/
classes/com/jspbook directory of the jspbook_site Web Application. It is
important to see how the listing is abstracting the process of querying a database
and populating a request-scoped variable. Two methods are used: a doLogic()
method, as required by the Control interface,

public void doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

//noop

}

and another doLogic() method that includes an extra parameter, a String for the
table’s name.

public void doLogic(HttpServletRequest request,

HttpServletResponse response, String table)

throws ServletException, IOException {

...

Note the code for the Control interface’s doLogic() method is empty: by
default nothing is done if the listing is used by the Control Filter. In contrast, the
doLogic() method with the extra parameter contains code that queries the site’s
database and populates a request-scoped variable. Both the table queried and the
request-scoped variable’s name are dynamically set by the extra parameter.

public void doLogic(HttpServletRequest request,

HttpServletResponse response, String table)

throws ServletException, IOException {

LinkedList content = new LinkedList();

request.setAttribute(table, content);

falkner.ch15.qxd 8/21/03 6:13 PM Page 667

668 BUILDING A COMPLETE WEB APPLICATION

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ResultSet rs =

statement.executeQuery("select * from "+table);

...

It is assumed a Control component will extend the AbstractContent class
and override the doLogic() method to query the correct database and populate
an appropriately named request-scoped variable. For example, the code for the
news page would override the doLogic() method as follows.

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doLogic(request, response, "news");

return true;

}

The complete code for the index logic component is provided later in the
chapter; however, it should be clear how the AbstractContent class is used. By
passing in "news" as the dynamic value, "news" will be used as the table’s name—
that is, query the news table in the database, and "news" will be used as the request-
scoped variable’s name. The functionality is helpful because the news, errata,
feedback, and FAQ pages will all recycle the same code. Instead of coding four
classes that resemble AbstractContent.java, we will simply change the name of
the dynamically passed value to either “news”, “errata”, “feedback”, or “faq”.

Logic Component for index.jsp
The index page of the book support site is being used to display current news.
Information about current news articles is maintained by the News table of the
Web Application’s database. The logic component for index.jsp needs to query
the database for current news, via JDBC, and populate an array of news items
that are placed in request scope.

It is intended that the request-scoped variables are accessed using the JSTL
and the JSP expression language. Therefore, no specific component, such as a
News object, is required to represent each news item. The interface is as follows:

falkner.ch15.qxd 8/21/03 6:13 PM Page 668

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 669

a request-scoped variable, news, is an array of String objects. Each String repre-
sents the language localized content for a news item. The interface is intended to
be used as demonstrated by the following example JSP code:

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="n" begin="0" items="${news}">

${n}

</c:forEach>

It is important to note that no scripting is required. This is important because
scripting will be disabled. JSP developers—that is, the content developers—
should not be able to embed arbitrary Java code in JSP.

The logic component itself is simple, thanks to the AbstractContent class
(Listing 15-6).

Listing 15-6 index.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class index extends AbstractContent {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doLogic(request, response, "news");

return true;

}

}

Save the preceding code as index.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook_site Web Application. The code re-uses the
code for querying the site’s database and populating a request-scoped variable by
overriding the doLogic() method.

doLogic(request, response, "news");

As the highlighted code shows, the value, "news", is passed so that the News
table is used and a request-scopued variable named news is created.

Thanks to the simple Model 2 Filter we previously installed, the task of
deploying Model 2 logic components is trivial. By saving the code in the /WEB-
INF/classes/com/jspbook directory, the logic component is ready for use. No

falkner.ch15.qxd 8/21/03 6:13 PM Page 669

configuration files need updating because the Control Filter automatically checks
for the logic component each time index.jsp (or fictitious deviants thereof) is
requested.

Logic Components for Adding and Editing News
In order to make the site more user-friendly for the administrators, a non-
technical method is required for adding and editing news items; a technical
method currently exists, such as manually creating content files and editing the
database via ArbitrarySQL.jsp. The non-technical method will be a set of
HTML forms that allow relevant information to be added, edited, or deleted. For
the set of HTML forms (which we will create shortly), a set of logic components
is needed. Save Listing 15-7 as addnews.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook_site Web Application.

Listing 15-7 addnews.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.naming.*;

public class addnews implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String title = request.getParameter("title");

String link = request.getParameter("link");

String text = request.getParameter("text");

// check values are not null

if (title == null || link == null || text == null) {

return true;

}

670 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 670

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ServletContext sc =

request.getSession().getServletContext();

String dir = sc.getRealPath("/WEB-INF/news");

new File(dir).mkdirs();

long l = Calendar.getInstance().getTimeInMillis();

// write out news item

FileWriter fw = new FileWriter(dir+"/"+l+".jsp");

fw.write("<p class=\"title\"><a href=\"");

fw.write(link+"\">"+title+"</p>");

fw.write("<p class=\"content\">");

fw.write(text);

fw.write("</p>");

fw.flush();

fw.close();

// add entry in db

statement.executeQuery("insert into news values ("+l+",0)");

response.sendRedirect("index.jsp");

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

return false;

}

}

The preceding code adds entries, via JDBC and SQL, to the News table of the
site’s database. It is assumed an HTML form will post three parameters: the title

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 671

falkner.ch15.qxd 8/21/03 6:13 PM Page 671

of the news item, the link for the news item, and the news item itself. The first
thing this logic component does is check for these three parameters.

String title = request.getParameter("title");

String link = request.getParameter("link");

String text = request.getParameter("text");

// check values are not null

if (title == null || link == null || text == null) {

return;

}

Should the check fail, the logic component does nothing—the request pro-
ceeds through, presumably back to the HTML form. If the check passes, the
information is saved to a content file in the /WEB-INF/news directory.

ServletContext sc =

request.getSession().getServletContext();

String dir = sc.getRealPath("/WEB-INF/news");

new File(dir).mkdirs();

long l = Calendar.getInstance().getTimeInMillis();

FileWriter fw = new FileWriter(dir+"/"+l+".jsp");

fw.write("<p class=\"title\"><a href=\"");

fw.write(link+"\">"+title+"</p>");

fw.write("<p class=\"content\">");

fw.write(text);

fw.write("</p>");

fw.flush();

fw.close();

Note the name of the file is a time-stamp—that is, a long value—which rep-
resents today’s date and time. The same time-stamp value is then used to create
a new entry in the News table of the site’s database.

statement.executeQuery("insert into news values ("+l+",0)");

response.sendRedirect("index.jsp");

A standard SQL insert statement is used to add the entry. By default the
news item is not set to be visible, meaning it won’t appear on the Web site until
something else sets the visible flag to true. Later, we will see how this is beneficial
for several reasons, including letting anonymous people add news items. After
the SQL statement is executed, the response is then redirected back to an index
page, which is assumed to be index.jsp.

672 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 672

In order for the addnews logic component to work, two complementary
HTML forms are required. Save Listing 15-8 as addnews.jsp in the /admin
directory of the jspbook_site Web Application.

Listing 15-8 addnews.jsp

<html>

<h2>Add News</h2>

<form method="POST">

Title: <input name="title">

Link: <input name="link">

Text: <textarea name="text"></textarea>

<input type="submit" value="Submit">

</form>

</html>

The form’s code is standard HTML and contains no surprises. Fields are pro-
vided for the title, link, and text of the news item. Note that the form’s name is
addnews.jsp, which means it will implicitly use the addnews.java logic com-
ponent.

The second form required is the generic index page, index.jsp. We already
created an index page for the Web site, but we have yet to create an index page for
the administrative pages—that is, everything in the /admin directory. Save Listing
15-9 as index.jsp in the /admin directory of the jspbook_site Web Application.

Listing 15-9 index.jsp

<html>

<h2>Add</h2>

Add News

Add FAQ

Add Errata

Add Feedback

<h2>Edit</h2>

Edit News

Edit FAQ

Edit Errata

Edit Feedback

<h2>SQL Interface to DB</h2>

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 673

falkner.ch15.qxd 8/21/03 6:13 PM Page 673

Return to Index.

</html>

Again, there is nothing tricky on this page; it is all standard HTML. There are
several links, including some that currently don’t exist. Don’t worry about the
non-existent links; the pages will be added later in the chapter. Overall, the page
is not meant to be anything but a convenience for administrators.

You can now add news entries to the Web Application. Be sure to save and
compile the new code and reload the jspbook_site Web Application for the
changes to take effect. After the Web Application reloads, browse to http://
127.0.0.1/admin/addnews.jsp. The HTML form appears and you can type in
information about a new news item. Figure 15-4 provides a browser rendering of
the results.

Fill out the form and click on the “Add News” button to submit the infor-
mation. Once submitted, the information is added to the database; however, cur-
rently, we don’t have an easy way to see the information. You can use
ArbitrarySQL.jsp to execute “select * from news” for quick verification, but
we will now create a more user-friendly interface for future use.

Another HTML form and logic component are required for editing existing
news items. Similar to AbstractContent.java, we can consolidate the code
required for the news, errata, FAQ, and feedback pages, which is exactly what we
will do. Save Listing 15-10 as edit.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook_site Web Application.

674 BUILDING A COMPLETE WEB APPLICATION

Figure 15-4 Browser Rendering of addnews.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 674

Listing 15-10 edit.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.text.*;

public class edit implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// filter random requests

String table = request.getParameter("table");

if (table == null) {

response.sendRedirect("index.jsp");

return false;

}

else if(!table.equals("faq") && !table.equals("news") &&

!table.equals("errata") && !table.equals("feedback")){

response.sendRedirect("index.jsp");

return false;

}

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ResultSet rs =

statement.executeQuery("select * from "+table);

LinkedList dates = new LinkedList();

LinkedList longs = new LinkedList();

LinkedList visibles = new LinkedList();

LinkedList texts = new LinkedList();

while (rs.next()) {

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 675

falkner.ch15.qxd 8/21/03 6:13 PM Page 675

long l = rs.getLong(1);

longs.add(new Long(l).toString());

Timestamp ts = new Timestamp(l);

SimpleDateFormat sdf =

new SimpleDateFormat("EEE, MMM d, yyyy HH:mm:ss z");

java.util.Date d = new java.util.Date(l);

dates.add(sdf.format(d));

if (rs.getBoolean(2)) {

visibles.add("checked");

} else {

visibles.add("");

}

ServletContext sc =

request.getSession().getServletContext();

String f = sc.getRealPath(

"/WEB-INF/"+table+"/"+String.valueOf(l)+".jsp");

StringWriter sw = new StringWriter();

FileReader fr = new FileReader(f);

for (int i=fr.read();i!=-1;i=fr.read()) {

sw.write(i);

}

texts.add(sw.toString());

}

request.setAttribute("dates",

dates.toArray(new String [0]));

request.setAttribute("longs",

longs.toArray(new String [0]));

request.setAttribute("visibles",

visibles.toArray(new String [0]));

request.setAttribute("texts",

texts.toArray(new String [0]));

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

676 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 676

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 677

throw new ServletException(e);

}

return true;

}

}

The preceding code relies on one parameter, “table”, to be posted from an
HTML form.

String table = request.getParameter("table");

if (table == null) {

response.sendRedirect("index.jsp");

}

else if(!table.equals("faq") && !table.equals("news") &&

!table.equals("errata") && !table.equals("feedback")){

response.sendRedirect("index.jsp");

}

The parameter is used to select which table is being edited—for example, if
the value "news" is provided, the News table will be displayed. Some validation
code is also used to ensure that either the FAQ, news, errata, or feedback is
selected. If a bad value for the table parameter is provided the request is for-
warded back to the default index page.

Note the links from index.jsp in the /admin directory already provide
correct values for the four different database tables.

Edit News

Edit FAQ

Edit Errata

Edit Feedback

Compile edit.java and reload the jspbook_site Web Application for the
changes to take effect. Next, save Listing 15-11 as edit.jsp in the /admin
directory of the jspbook_site Web Application.

Listing 15-11 edit.jsp

<html>

<h2>Edit</h2>

<form action="update.jsp" method="POST">

<input type="submit" value="Update">

<input type="hidden" name="table" value="<%=

request.getParameter("table")%>">

<% String[] dates = (String[])request.getAttribute("dates");

String[] longs = (String[])request.getAttribute("longs");

falkner.ch15.qxd 8/21/03 6:13 PM Page 677

String[] visibles = (String[])request.getAttribute("visibles");

String[] texts = (String[])request.getAttribute("texts");

for (int i=0;i<dates.length;i++) { %>

<h3><%= dates[i]%></h3>

Visible: <input name="visible<%=i%>"

type="checkbox" <%= visibles[i] %>>

Delete: <input name="delete<%=i%>" type="checkbox">

<input name="date<%=i%>" type="hidden"

value="<%= longs[i]%>">

News Item: <textarea cols="80" rows="4"

name="text<%=i%>"><%=texts[i]%></textarea>

<% } %>

<input type="submit" value="Update">

</form>

</html>

Now, you can try the editing code. Try out the new functionality by clicking
on any of the edit links found at the admin index, http://127.0.0.1/jsp-
booksite/admin/index.jsp. Click on edit news, http://127.0.0.1/jsp-

booksite/admin/edit.jsp?table=news, to see the entry you recently added to
the News table; all the other tables should still be blank. Figure 15-5 provides a
browser rendering of what the results look like.

678 BUILDING A COMPLETE WEB APPLICATION

Figure 15-5 Browser Rendering of the Results

falkner.ch15.qxd 8/21/03 6:13 PM Page 678

All of the important information is available. You can see the entry’s time-
stamp, toggle the entry (to see if visible or not), delete the entry, or edit the actual
content’s code. Do not try and edit anything as no logic component exists for that
yet. This part of the administrative tools is only for listing information about the
news, FAQ, feedback, and errata tables.

In order to have edited information saved back into the database, another
logic component is required. Save Listing 15-12 as update.java in the /WEB-INF/
classes/com/jspbook directory of the jspbook_site Web Application.

Listing 15-12 update.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.text.*;

public class update implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// filter random requests

String table = request.getParameter("table");

if (table == null) {

response.sendRedirect("index.jsp");

}

else if(!table.equals("faq") && !table.equals("news") &&

!table.equals("errata") &&

!table.equals("feedback")){

response.sendRedirect("index.jsp");

return false;

}

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 679

falkner.ch15.qxd 8/21/03 6:13 PM Page 679

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

// loop through all posted items

for (int i=0; request.getParameter("date"+i)!=null;

i++) {

// get variables we care about

String date = request.getParameter("date"+i);

String text = request.getParameter("text"+i);

String visible = request.getParameter("visible"+i);

// optionally delete

String delete = request.getParameter("delete"+i);

if (delete != null && !delete.equals("")) {

ServletContext sc =

request.getSession().getServletContext();

String f =

sc.getRealPath("/WEB-INF/news/"+date+".jsp");

new File(f).delete();

statement.executeQuery(

"delete from "+table+" where ts="+date);

continue;

}

ServletContext sc =

request.getSession().getServletContext();

String dir = sc.getRealPath("/WEB-INF/news");

// write out news item

FileWriter fw =

new FileWriter(dir+"/"+date+".jsp");

fw.write(text);

fw.flush();

fw.close();

if (visible != null && visible.equals("on")) {

visible = "1";

} else {

visible = "0";

}

statement.executeQuery(

"update " + table + " set visible=" + visible +

" where ts="+date);

680 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 680

}

response.sendRedirect("index.jsp");

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

return false;

}

}

Like edit.java, the preceding logic component works for all the database
tables. When we code the logic components for the FAQ, feedback, and errata
pages will be the task almost trivial.

Compile update.java and reload the Web Application for the changes to
take effect. With the update component in place, a user-friendly method exists
for adding and editing news; however, for good measure, save Listing 15-13 as
update.jsp in the /admin directory of the jspbook_site Web Application.

Listing 15-13 update.jsp

<html>

Update Complete.

</html>

The preceding code is silly but required due to a nuance of Tomcat. When
edit.jsp submits information, it submits the information to update.jsp (which
is intentionally fictitious). By doing this, we can put update logic in update.java
and listing logic in edit.java, making both all the simpler. However, some con-
tainers, namely Tomcat, are not happy making a request to a fake resource, even
if the resource is never really reached. By creating update.jsp, we ensure the Web
Application won’t complain about using a fake resource.

Test out the new logic components and HTML forms. You should be able to
add news items, edit news items, and delete news items using only the HTML
forms. Later on, we will build the presentation page for users, which will display
all of the currently visible news items in a pretty HTML or XHTML format.

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 681

falkner.ch15.qxd 8/21/03 6:13 PM Page 681

Logic Component for faq.jsp
The FAQ page is designed to show a list of frequently asked questions along with
answers. Information about individual questions is kept in the FAQ table. The
logic component for faq.jsp needs to query the FAQ table and include the
localized version of current FAQ. In general, the code for the FAQ logic com-
ponent is similar to index.java, but for the FAQ table.

Save Listing 15-14 as faq.java in the /WEB-INF/classes/com/jspbook
directory of the jspbook_site Web Application.

Listing 15-14 faq.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class faq extends AbstractContent {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

return doLogic(request, response, "faq");

}

}

The changes from index.java are trivial but required.

doLogic(request, response, "faq");

Note that the value "faq" is passed instead of "news", the FAQ table of the
database is queried, and the FAQ request-scope variable is populated.

Deployment of faq.java is identical to index.java. The Control Filter
implicitly checks the /WEB-INF/classes/com/jspbook directory for the class. No
extra configuration is required.

Logic Components for Adding and Editing FAQ
The additional logic components for adding and editing FAQ are simple. We are
going to rely on edit.java and update.java for editing existing values. The only
new component is one that adds entries to the FAQ database table. Like addnews.
java, the FAQ addition logic component will rely on an HTML form posting
information. The required information is everything that a FAQ logically needs:
a question and an answer. Save Listing 15-15 as addfaq.java.

682 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 682

Listing 15-15 addfaq.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.naming.*;

public class addfaq implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String question = request.getParameter("question");

String answer = request.getParameter("answer");

// check values are not null

if (question == null || answer == null) {

return true;

}

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ServletContext sc =

request.getSession().getServletContext();

String dir = sc.getRealPath("/WEB-INF/faq");

new File(dir).mkdirs();

long l = Calendar.getInstance().getTimeInMillis();

// write out news item

FileWriter fw = new FileWriter(dir+"/"+l+".jsp");

fw.write("<p class=\"title\">"+question+"</p>");

fw.write("<p class=\"news-content\">");

fw.write(answer);

fw.write("</p>");

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 683

falkner.ch15.qxd 8/21/03 6:13 PM Page 683

fw.flush();

fw.close();

// add entry in db

statement.executeQuery(

"insert into faq values ("+l+",0)");

response.sendRedirect("index.jsp");

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

return false;

}

}

Given that we examined the code for addnews.java, the code for addfaq.
java is trivial. First, the two required pieces of information are checked for: the
question and the answer.

String question = request.getParameter("question");

String answer = request.getParameter("answer");

if (question == null || answer == null) {

return;

}

The information is analogous to the title, link, and text of a news item: if the
question and answer are not present, the logic component does nothing. If the
information is posted correctly, it is saved in a content file and an entry is inserted
into the FAQ table of the site’s database.

FileWriter fw = new FileWriter(dir+"/"+l+".jsp");

fw.write("<p class=\"title\">"+question+"</p>");

fw.write("<p class=\"content\">");

fw.write(answer);

fw.write("</p>");

fw.flush();

fw.close();

684 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 684

statement.executeQuery(

"insert into faq values ("+l+",0)");

Finally, the request is directed back to the default index page.

response.sendRedirect("index.jsp");

Before trying the new logic component, a complementary HTML form is
required. Save Listing 15-16 as addfaq.jsp in the /admin directory of the
jspbook_site Web Application.

Listing 15-16 addfaq.jsp

<html>

<h2>Add FAQ</h2>

<form method="POST">

Question: <textarea name="question"></textarea>

Answer: <textarea name="answer"></textarea>

<input type="submit" value="Add FAQ">

</form>

</html>

There is nothing interesting about the preceding form; it is a standard HTML
form with fields for the question and answer. Try out the functionality by com-
piling addfaq.java and reloading the jspbook_site Web Application for the
changes to take effect. After reloading, browse to http://127.0.0.1/jspbook
site/admin/addfaq.jsp. Figure 15-6 provides a browser rendering of the results.

IMPLEMENTING BUSINESS LOGIC: FILTERS AND THE MODEL 2 DESIGN PATTERN 685

Figure 15-6 Browser Rendering of addfaq.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 685

Fill the form in with information and click the Add FAQ button. The form’s
content will then be added to the FAQ table of the site’s database. You can verify
the new logic component works by next trying to edit the table’s content,
http://127.0.0.1/jspbook_site/edit.jsp?table=faq. The entry you just
added should be displayed and be editable. Figure 15-7 provides a browser ren-
dering of what the results should look similar to.

We now have a more user-friendly method of adding, editing, and deleting
FAQ from the Web Application. As with the news page, FAQ can always be added
via ArbitrarySQLDataSource.jsp and manually authoring content pages—but
that is relatively difficult compared to a few simple HTML forms. Before we move
on, take note of how much less work we had to do in order to add and edit FAQ
entries compared to news entries; much less new code was required for adding
and editing FAQ. Thanks go directly to the generic edit.java and update.java
logic components. By re-using them, we had nothing more to do but create a
method of adding FAQ into the database.

In general, it is easy to make lots of simple logic components; however, lots
of simple logic components still take time to make. Always think ahead and
determine what can be consolidated using standard, good Object-Oriented
Programming (OOP). For example, we could have made three logic components

686 BUILDING A COMPLETE WEB APPLICATION

Figure 15-7 Browser Rendering of the Edited FAQ Entries

falkner.ch15.qxd 8/21/03 6:13 PM Page 686

for each dynamic page, such as addfaq.java, editfaq.java, and updatefaq.
java, instead of only addfaq.java and re-using edit.java and update.java. In
the end we would have had to code 12 logic components (assuming 3 for each:
news, FAQ, feedback, and errata) instead of 6. Certainly, in some cases you will
need to code lots of logic components, but always try to code as few as possible;
more code always equals more work, in both creating and maintaining.

Logic Components for the Feedback and Errata Pages
Excluded are the logic components of the feedback and errata pages; the code can
safely be omitted for brevity since it is nothing but a slight edit of the previous
pages. Given the news and FAQ pages, it should be obvious how the logic com-
ponents for the feedback and errata pages are created. If it is not, the complete
code for the entire Web Application can be obtained from http://www.jspbook.
com.

Dealing with Overly Complex Logic Components
Usually logic components are simple, straightforward classes, much like all of the
logic components for the book support site. However, it is certainly possible that
an overly complex component is required—basically, anything that seems too
large to place in a single Java class. In cases such as this, do not forget you are
using Java. Nothing stops you from building a set of classes that the single logic
class uses. The technique is also helpful for more things than reducing a single
class’s size. For example, multiple logic classes may benefit from sharing the
same abstract class, perhaps with generic functions for validating request para-
meters, or good object-oriented practices may dictate similar code that is used by
all logic classes be placed in a single helper class.

The point to remember is that when coding with Java, use Java. Don’t feel
restricted to using a single class for things such as Model 2 logic components just
because other examples do so.

Implementing Presentation Logic: JSP, Multi-Client
Design, and Internationalization
So far we have built the database and several logic components. The final part of
the Web Application is to build a series of display components that generate an
HTML page for the user’s browser. Each display component is a simple JSP that
provides some static content and displays information set in request-scoped vari-
ables. JSPs already provide a mechanism for authoring content in all the well-

IMPLEMENTING PRESENTATION LOGIC 687

falkner.ch15.qxd 8/21/03 6:13 PM Page 687

known languages, as covered in Chapter 12, and JSPs also provide a method, the
JSP EL, easily accessing request-scoped objects.

It is assumed that the JSTL and JSP expression language are familiar topics.
If you do not remember these, consult the appropriate chapter; a complete review
will not be provided. The JSTL is covered in Chapter 6, and the JSP EL is covered
in Chapter 5.

Building a Simple Presentation Page
In the simplest case a JSP presentation page is nothing more than HTML used to
mark up some content. In the most complex case, some of the dynamic features
of JSP are used to customize the HTML on the fly. In all cases even the most
complex presentation page of this Web Application will contain near-trivial code;
this is as expected and due to good Model 2 use. Listing 15-17 is an example of
one of the most complex presentation pages, the main page of the site, the news
page.

Listing 15-17 index.jsp

<p style="padding-left:15px;">Welcome to the official book support

site for <i>Servlets and JSP; the J2EE Web Tier</i>. This site was

created and is maintained by the authors of the book in order to aid

readers. Here you can find out the latest book related news, find

answers to questions people commonly ask about the book, errata, the

book's Listing, and sample chapters of the book's material.</p>

<p class="h1">News</p>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="n" begin="0" items="${news}">${n}</c:forEach>

<p>Suggest a news item.</p>

Save the preceding code as index.jsp in the root directory of the
jspbook_site Web Application, and copy the jstl.jar and standard.jar from
the jspbook Web Application to the jspbook_site Web Application’s /WEB-
INF/lib directory. The entire code is straightforward. The paragraph of text is
nothing more than that. After the introduction, the news items are displayed.
Assuming the request-scoped variables are set correctly, which is the Java pro-
grammer’s job, the JSTL iteration tag loops through the array of news items and
displays each one.

<c:forEach var="n" begin="0" items="${news}">${n}</c:forEach>

Overall, the code for index.jsp is quite basic—which is exactly the way it
should be. Someone developing or maintaining content should not care about

688 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 688

anything but the content. Styling content, checking for spelling mistakes, and
editing grammar are all valid issues, but coding around scriptlets is not. By
keeping the presentation logic simple, like we are doing, one of the most volatile
parts of the site is easy to maintain.

However, the presentation coder’s job is not restricted only to coding pages
such as index.jsp. If you actually browse to index.jsp, as it currently is, you will
notice the content is bland. Browse to http://127.0.0.1/jspbook_site/index.
jsp. Figure 15-8 shows an example browser rendering of the output.

Certainly the content is presented in HTML format, but it is not very
appealing. Another part of the presentation coder’s job is to style content. This
book is minimally concerned with style issues, but it is not difficult to spend a
second to make the book support site look decent.

Creating MCT Headers and Footers
The first element of style we shall add to the book support site are a header and
footer, something that will go on all pages and give a consistent look to pages. It
will also provide an easy method to implement a navigation bar and link a
Cascading Style Sheet. The code itself is of little interest: there is nothing more
than HTML; however, how we implement use of the header and footer is of slight
interest. First, we will get the code for the header and footer out of the way, and
then we will discuss how to use the web.xml JSP configuration elements to make
them work properly .

Save Listing 15-18 as prelude.jsp in the base directory of the jspbook_site
Web Application.

IMPLEMENTING PRESENTATION LOGIC 689

Figure 15-8 Browser Rendering of the Unstyled index.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 689

Listing 15-18 prelude.jsp

<html>

<head>

<title>Servlets and JSP the J2EE Web Tier

- Jayson Falkner and Kevin Jones</title>

<link rel="StyleSheet" type="text/css" href="style.css"/>

</head>

<body style="margin:0px;padding:0px;font-family:helvetica;">

<table width="100%" cellpadding="0" cellspacing="0">

<tr>

<td height="78" style="background-color:#788dad;

border-width:2px;

border-style:solid;

border-color:black;

padding:0px;

margin:0px;" valign="bottom">

<img src="http://www.jspbook.com/images/title.jpg"

align="left" valign="bottom">

<img src="http://www.jspbook.com/images/gnome1.jpg"

align="right">

</td>

</tr>

<tr>

<td height="15" style="color:white;

background-color:#444444;

border-width:2px;

border-style:solid;

border-top-width:0px;

border-color:black;" align="center">

<a style="color:white;"

href="http://www.jspbook.com/about.jsp">About the Book

- <a style="color:white;"

href="http://www.jspbook.com/code.jsp">Code

- <a style="color:white;"

href="http://www.jspbook.com/errata.jsp">Errata

- <a style="color:white;"

href="http://www.jspbook.com/faq.jsp">FAQ

- <a style="color:white;"

href="http://www.jspbook.com/freechapters.jsp">

Free Chapters

- <a style="color:white;"

href="http://www.jspbook.com/index.jsp">News

- <a style="color:white;"

690 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 690

href="http://www.jspbook.com/feedback.jsp">

Reader's Feedback

</td>

</tr>

</table>

Save Listing 15-19 as coda.jsp in the base directory of the jspbook_site
Web Application.

Listing 15-19 coda.jsp

<p align="center">Contact Support

 for questions or comments.</p>

<p align="center" style="font-size:8pt;">

Copyright © 2003 Jayson Falkner</p>

</body>

</html>

The header, prelude.jsp, and the footer, coda.jsp, contain nothing more
than HTML. As mentioned before, the relevant part is not in the code but in how
we will use it. In order to have the code displayed on all of the pages of the Web
site, we will use the include-prelude and include-coda JSP configuration ele-
ments of web.xml. Recall in Chapter 3 these elements were introduced. Because
Web Applications commonly have the same code included before and after the
content of a page, a standard mechanism was created for simplifying the task.
Listing 15-20 is the entry for web.xml.

Listing 15-20 Updated web.xml for Using Site-Wide Header and Footer

...

<jsp-config>

<jsp-property-group>

<url-pattern>*.jsp</url-pattern>

<include-prelude>/prelude.jsp</include-prelude>

<include-coda>/coda.jsp</include-coda>

</jsp-property-group>

</jsp-config>

...

Reload the jspbook_site Web Application for the changes to take effect.
With the new configuration, every page will automatically include the contents
of prelude.jsp at the start and coda.jsp at the end; this functionality is iden-

IMPLEMENTING PRESENTATION LOGIC 691

falkner.ch15.qxd 8/21/03 6:13 PM Page 691

692 BUILDING A COMPLETE WEB APPLICATION

Figure 15-9 Browser Rendering of index.jsp

tical to manually using JSPs to include a header and footer on each page, but with
much less code.

Now, when index.jsp is rendered as HTML, the implicit header and footer
are included. Try browsing to http://127.0.0.1/jspbook_site/index.jsp to
see the change. Figure 15-9 provides a browser rendering of the results.

The site now looks much more professional. Standard HTML can do all sorts
of things, including many spiffy things, and the site is showing a little more style.
Note that if you do not have an Internet connection, the images will not appear
because they were sneaked in by using absolute URLs.

<img src="http://www.jspbook.com/images/title.jpg"

align="left" valign="bottom">

<img src="http://www.jspbook.com/images/gnome1.jpg"

align="right">

This book is not about graphic design, rightly so, and it is assumed if you
want to include graphics on your pages, you would independently create them.
Both the title graphic and gnome image are graphics previously created and
uploaded to the online version of the book support site.

falkner.ch15.qxd 8/21/03 6:13 PM Page 692

Adding Some More Style, Cascading Style Sheets
Rarely do professionally done Web sites rely on the default styles of Web
browsers. The majority of sites choose fonts and colors that the majority of
people find user-friendly and easy to read. The book support site is intended to
be a professional site and we shall style the content as one. Cascading Style Sheets
(CSS) is the standard method of styling HTML; CSS offers far more style control
than pure HTML. A simple style sheet can add a lot to the site’s appearance; save
Listing 15-21 as style.css in the base directory of the jspbook_site Web
Application.

Listing 15-21 style.css

.h1 {

padding-left:15px;

font-size:20pt;

font-weight:bold;

}

.h2 {

padding-left:13px;

font-size:18pt;

font-weight:bold;

}

p {

padding-left:15px;

}

link {

font-style:none;

color:blue;

text-decoration:none;

}

.code {

font-style:italic;

}

.nopad {

margin-bottom:0px;

padding-bottom:0px;

margin-top:0px;

padding-top:0px;

}

.date {

padding-left:5px;

font-size:18pt;

text-decoration:underline;

IMPLEMENTING PRESENTATION LOGIC 693

falkner.ch15.qxd 8/21/03 6:13 PM Page 693

}

.title {

padding-left:10px;

font-family:times;

font-size:16pt;

font-weight:bold;

}

.content {

padding-left:10px;

padding-right:10px;

}

The style sheet defines several generic styles for the site’s presentation pages.
By default, all of the content in the jspbook_site Web Application will be styled
in a font that is different from the default, often thought of or simply taken to be
more professional, but more importantly it is also a font that is commonly pre-
ferred to the standard Times New Roman. Browse back to http://127.0.
0.1/jspbooksite/index.jsp to see the new styles applied. Figure 15-10 provides
a browser rendering of the results.

694 BUILDING A COMPLETE WEB APPLICATION

Figure 15-10 Browser Rendering of the Styled index.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 694

In general, styles can be added to style.css, and they will be applied to all
of the content in the book support site. This functionality won’t be needed for
this site, but it is generally helpful to have when developing a Web Application.

Letting a User Suggest News
Previously, we created a system for administrators to submit and edit news items;
however, it is helpful to also allow users the ability to submit news. Less work on
site administrators is always a good thing, especially if the same effect is achieved.
The addnews.java logic component can easily be re-used in a user page—in
other words, one not in the /admin directory. By doing so a user can submit news,
and the administrators will only have to worry about validating the news.

Creating a page that a user can submit news from is straightforward. Like all
the other presentation pages, we will create a JSP. Save Listing 15-22 as
addnews.jsp in the root directory of the jspbook_site Web Application.

Listing 15-22 addnews.jsp

<p class="h1">Suggest News</p>

<p>Completely fill out the following form to suggest a news item.

Note, all news must be filterd by an administrator before it is

posted on the site. Do not expect a news item that was just

submitted to instantly appear.</p>

<form method="POST" action="addnews.jsp">

<table>

<tr>

<td>Title:</td><td><input name="title" size="50"/></td>

</tr>

<tr>

<td>Link:</td><td><input name="link" size="50"/></td>

</tr>

<tr>

<td>Text:</td>

<td><textarea name="text" cols="60" rows="8"></textarea>

</td>

</tr>

</table>

<input type="submit" value="Suggest News"/>

</form>

IMPLEMENTING PRESENTATION LOGIC 695

falkner.ch15.qxd 8/21/03 6:13 PM Page 695

The page is similar to the previous addnews.jsp, placed in the /admin
directory. Verify the page works by visiting http://127.0.0.1/jspbook_site/
addnews.jsp. Figure 15-11 provides a browser rendering of the results.

Now users and administrators alike can submit news; however, only admin-
istrators can edit news items and decide what items are publicly displayed. Test
the page out by filling out the form and submitting the information. The
addnews.java logic component we created earlier handles this new page and
adds the entry to the site’s database. Try to edit the news entries, http://127.0.
0.1/jspbook_site/admin/edit.jsp?table=news, and you will find the new
entry—note also it is by default not visible.

Creating the Other Presentation Pages
With index.jsp we have finished the tedious part of building a presentation
page: creating the headers, footers, and styles. For the other presentation pages we

696 BUILDING A COMPLETE WEB APPLICATION

Figure 15-11 Browser Rendering of addnews.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 696

need only author a document that accurately describes the page. For static pages,
such as the about page, there will be nothing but a few paragraphs of text. For
dynamic pages, such as the FAQ, feedback, and errata pages, there will be para-
graphs of static text and some code that displays request-scoped variables—
much like index.jsp.

For completeness two more examples are provided of JSP view pages: one
more dynamic page and one static page. However, given the code for index.jsp it
should be obvious how these pages are to be created. Nothing new or interesting
is introduced by the code; static pages are nothing more than HTML markup and
some content. Dynamic pages are similar to index.jsp but with different static
text.

Coding the About the Book Page
The about page is nothing more than a description of the book Servlets and JSP:
The J2EE Web Tier. In many ways it is a summarized version of this book’s
preface; as Listing 15-23 shows, there is nothing suspect about this page at all. Do
not worry about spending time reading through all the markup; the text is easier
to read when rendered as HTML.

Listing 15-23 about.jsp

<p class="h1">About the Book</p>

<p><i>Servlets and JSP the J2EE Web

Tier</i> is a book authored by Jayson Falkner and Kevin Jones

about the latest in Servlets and JSP. The current version of

the book covers Servlets 2.4, JSP 2.0, and the JSTL 1.0.

Both Jayson and Kevin helped directly make the

specifications and are proud to publish one of the first

books covering technologies. Servlets and JSP the J2EE

Web Tier is comprehensive and covers everything you need to

know about building Java Web Applications.</p>

<p class="h2">Who Is This Book For?</p>

<p>Servlets and JSP the J2EE Web Tier is designed for

developers of all levels. The book assumes a reader is

familiar with HTML and the basics of Java. The book begins

by covering how to install a Servlet/JSP environment and

what is in the JSP 2.0, Servlet 2.4, and JSTL 1.0

specifications. After discussion of the raw technologies, the

IMPLEMENTING PRESENTATION LOGIC 697

falkner.ch15.qxd 8/21/03 6:13 PM Page 697

book focuses on practical uses of them. The later chapters of

the book cover topics such as state management, design

patterns, internationalization support, multi-client design, and

Java database connectivity. At all possible places Jayson

and Kevin try to share the millions of little things, both

in the specs and not, that they have learned from being

long-time Servlet and JSP developers.</p>

<p>If you are a new user, this book is for you. It starts from

the basics and covers everything up to the most advanced

topics. If you are an experienced developer, this book

provides a reference for the Servlet 2.4, JSP 2.0, and JSTL

specifications and a good discussion of advanced design

patterns and problem-solving techniques. If you are in

management, you are advised to buy multiple copies: this

is a book that will be permanently borrowed by

employees.</p>

<p class="h2">Book Specs</p>

<p class="nopad">Title: Servlets and JSP the J2EE Web Tier</p>

<p class="nopad">Published: 2003 Addison Wesley</p>

<p class="nopad">Pages:</p>

<p class="nopad">ISBN:</p>

<p>Table of Contents:</p>

<p class="nopad">Preface</p>

<p class="nopad">1 - Setting Up a Servlet and JSP Environment</p>

<p class="nopad">2 - Java Servlets</p>

<p class="nopad">3- JavaServer Pages</p>

<p class="nopad">4- Exception Handling</p>

<p class="nopad">5- JavaBeans</p>

<p class="nopad">6 - Custom Tag Libraries</p>

<p class="nopad">7 - JavaServer Pages Standard Tag Library</p>

<p class="nopad">8 - Filters</p>

<p class="nopad">9 - Managing State in a Web Application</p>

<p class="nopad">10 - Security</p>

<p class="nopad">11 - Design Patterns</p>

<p class="nopad">12 - Internationalization</p>

<p class="nopad">13 - Multi-Client Support</p>

<p class="nopad">14 - Database Connectivity</p>

<p class="nopad">15 - Building a Complete Web Application</p>

698 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 698

<p>What Other People Have Said About the Book</p>

<p>This site is authored by the authors of the book. While we

try to be benevolent, there is something to be gained from

third-party feedback. Here is an unbiased list of all the

reviews we have found.</p>

<p class="nopad">

Feedback sent to the book support site</p>

<p class="nopad">

Amazon.com Reviews</p>

<p class="nopad">

Barnes and Nobles Reviews</p>

<p class="h2">Jayson Falkner</p>

<p>Jayson's bio here.</p>

<p class="h2">Kevin Jones</p>

<p>Kevin's bio here.</p>

Save the preceding code as about.jsp in the root directory of the
jspbook_site Web Application. You can verify the preceding page, as lengthy as
it is, as nothing more than pure HTML markup; no dynamic JSP actions or JSP
expressions are used. As a result there is little discussion about the page unless we
wish to critique its use of the English language. For completeness, Figure 15-12 is
a browser rendering of the page. Browse to http://127.0.0.1/jspbook_site/
about.jsp to see this locally.

If you want to, you can read through the description. Due to this description
being this book’s preface, you will likely find it repetitive, but for new visitors to
the book support site, http://www.jspbook.com/, the description is the type of
information they should be interested in.

Coding the Other Static Pages: Free Chapters Page and Code Page
The free chapters page of the site is another purely static page. The page explains
that portions of this book are available for free and how the free portions may be
obtained. If you are interested in the source code, it is available at http://
www.jspbook.com. The code page contains links to all the code mentioned in this
text which can be found by visiting the book support site. Similar to the other
static pages, it contains nothing but HTML markup; however, you may obtain the
source code at the book support site.

IMPLEMENTING PRESENTATION LOGIC 699

falkner.ch15.qxd 8/21/03 6:13 PM Page 699

Errata Page
The errata page contains a list of the latest errata for the book. Being that erratum
may possibly be added at any given time, this page cannot do with purely static
content. Instead, a current list of errata is assumed to be maintained by the
ERRATA table in the site’s database. Each time the errata page is viewed, the
current list of errata, as provided by the database, is displayed.

Coding the errata page is conceptually identical to the index page. Some
static content is required along with the JSTL iteration tag and a JSP expression
for displaying the errata, which are dynamically populated in request scope. The
code for obtaining the current errata and populating request-scoped objects is of
no concern. It is assumed the Java developer(s) (us, in this case) previously coded
a Model 2 component for this purpose (which we did earlier in this chapter). The
code for errata.jsp is as follows. Save Listing 15-24 as errata.jsp in the root
directory of the jspbook_site Web Application.

Listing 15-24 errata.jsp

<p class="h1">Errata</p>

<p style="padding-left:15px;"><i>Servlets and JSP the J2EE Web

700 BUILDING A COMPLETE WEB APPLICATION

Figure 15-12 Browser Rendering of about.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 700

Tier</i> is not perfect, nor are the authors. We made our best

attempt at getting the book done right the first time, and we are

already trying to improve the book for the 2nd edition. If you think

something could be improved for the next edition of the book, please

let us know. Formal

errata for the 1st edition are listed on this page. You may formally

suggest the edition of a new erratum. here.</p>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="e" begin="0" items="${errata}">${e}</c:forEach>

Of interest in the preceding code is the way in which the request-scoped
interface is used.

<c:forEach var="e" begin="0" items="${errata}">${e}</c:forEach>

As with index.jsp the JSTL iteration tag is combined with a JSP expression.
Except for the specific syntax change from using the “news” request-scoped
object to using the “errata” request-scoped object, nothing merits technical dis-
cussion; the bulk of the code is simple styled content.

Letting Users Suggest Errata
As with the news items, it is beneficial to allow users to suggest errata. Providing
an email address for the book’s authors, as each page does in the footer, is a fine
solution, but it is a hassle compared to a simple HTML form—especially if the
submitter wishes to remain anonymous. In order to allow users to easily suggest
errata we will re-use the adderrata.java logic component and create an
adderrata.jsp user page.

Save Listing 15-25 as adderrata.jsp in the root directory of the jspbook_
site Web Application.

Listing 15-25 adderrata.jsp

<p class="h1">Suggest Erratum</p>

<p>You may suggest an erratum by filling out the following form.

Please completely list the fix, including where the fix is

required (i.e., page number, figure, or code). Note that

suggested erratum are not official until verified by one of the

book's authors. Do not expect suggested erratum to appear

instantly on the book's errata page.</p>

IMPLEMENTING PRESENTATION LOGIC 701

falkner.ch15.qxd 8/21/03 6:13 PM Page 701

<form method="POST" action="adderrata.jsp">

<p><textarea cols="60" rows="5" name="errata"></textarea></p>

<input type="submit" value="Suggest Errata"/>

</form>

Now, users can submit errata, anonymously or not, via adderrata.jsp. Test
the page out by browsing to http://127.0.0.1/jspbook_site/adderrata.jsp.
Figure 15-13 provides a browser rendering of the results.

Verify the page works by filling out the form and submitting the information.
Next, edit the errata, http://127.0.0.1/jspbook_site/admin/edit.jsp?

table=errata, to see the new entry. It should be no surprise that the page works
since we are not changing the HTML form nor the adderrata logic component,
just the style of the page.

Coding the Other Dynamic Pages: FAQ Pages and Feedback Pages
The other dynamic pages of the site, the FAQ pages and the feedback pages, are
similar to both the index and errata pages. One page contains a description along

702 BUILDING A COMPLETE WEB APPLICATION

Figure 15-13 Browser Rendering of adderrata.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 702

with the JSTL iteration tag and a JSP EL expression to display dynamic content.
The other pages are HTML forms that allow users to submit new content to the
site. Nothing merits discussion of these pages as the code is nearly identical to the
previous dynamic pages in this chapter. If you wish, the source code may be
obtained from http://www.jspbook.com.

Localized Content
Up until now it has been assumed that English is the only language supported by
the book support site. However, we did create a generic system for allowing
language-specific versions of content to be authored. English is only assumed as
the default language. If sometime in the future, translated versions of the book
support site’s content are available, the content can be placed in the Application
for use. In order to be recognized, the translated content must start with the same
name as the default content but end with “-” followed by the standard three-letter
language code.

We shall look at a few pages of localized content. One example will be using
a language that works with default HTTP encoding—say, French—and another
example that uses a language that requires a different encoding—say, Japanese.
Together, the two examples will demonstrate how most any language-specific
content can be added to the book support site—the greater point is that relying
on ISO-8859-1, HTTP standard encoding, does not always work, but if using a
more universal encoding, such as UTF-8, you are set for most practical purposes.

En Francais
Consider first that the Web site must support French. People fluent in French
would likely enjoy a French version of the site’s content, and our framework cer-
tainly supports French text. The method to authoring French content is to
append “-fra”, the three-letter language code for French, to the end of the default
content pages. For example, the index page is saved as index.jsp. To create a
French version of the index page, save Listing 15-26 as index-fra.jsp.

Listing 15-26 index-fra.jsp

<p style="padding-left:15px;">Bienvenue pour à l'emplacement

officiel de soutien de livre <i>Servlets and JSP; the J2EE Web

Tier</i>. Cet emplacement a été créé et est maintenu par les auteurs

du livre afin d'aider des lecteurs. Voici que vous pouvez découvrir

IMPLEMENTING PRESENTATION LOGIC 703

falkner.ch15.qxd 8/21/03 6:13 PM Page 703

les nouvelles reliées le dernier par livre, les réponses de

trouvaille aux personnes de questions s'enquièrent généralement du

livre, des errata, du code du livre, et des chapitres d'échantillon

du matériel du livre. </p>

<p class="h1">News</p>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="n" begin="0" items="${news}">${n}</c:forEach>

Save the preceding code as index-fra.jsp in the root directory of the
jsbpook_site Web Application. Note there is nothing tricky besides using
French instead of English. Since French characters are easily authored using ISO-
8859-1 encoding, the JSP was authored with no special page encoding directives.
To see the French version of the page, set your Web browser’s preference to be
French and browse to http://127.0.0.1/index.jsp9. The Web Application is
relying on the HTTP language accept-language header to be set, which is com-
monly what Web browsers do when providing language preference information.
To configure Mozilla to specify it prefers French content, go to the Edit —>
Preferences —> Languages menu and add French as the first choice. Figure 15-
14 provides a rendering of the menu.

With the language preference set, browse to http://127.0.0.1/jsp
booksite/index.jsp. Instead of the default English content, the French content
is now shown, as is illustrated in Figure 15-15.

The important point here is that our system of integrating localized content
works: we added French content and it is available to those who specify they pre-
ferred French. Now the site simultaneously supports both an English and French
version of the index page; however, a slight glitch still exists with the French
version: the header and footer are both still in English. Changing these is as
almost as easy (the implicit header and footer do not use our i18n Filter, but that
is easily fixed) as translating the header and footer files into French and saving
the information in the correct JSP.

Due to the implicit prelude and coda, we cannot rely on the Simplei18n Filter
to correctly translate implicitly included files. The includes are statically done (as
explained in Chapter 2) and will not provide a chance for the Filter to manipulate
them. The fix is to make coda.jsp and prelude.jsp dynamically include inter-
nationalized text on their own. An easy method of accomplishing this is using the
JSTL message tags demonstrated in Chapter 12.

704 BUILDING A COMPLETE WEB APPLICATION

9. The standard three-letter language code is strictly for internal use, via request dispatching, by the
Web Application. To the outside world, the URLs for content are the same regardless of the language
being shown.

falkner.ch15.qxd 8/21/03 6:13 PM Page 704

Save Listing 15-27 as the new prelude.jsp in the base directory of the
jspbook_site Web Application

Listing 15-27 prelude.jsp (updated version)

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<fmt:bundle basename="prelude">

<html>

<head>

<title><fmt:message key="title"/></title>

<link rel="StyleSheet" type="text/css" href="style.css"/>

</head>

<body style="margin:0px;padding:0px;font-family:helvetica;">

<table width="100%" cellpadding="0" cellspacing="0">

<tr>

<td height="78" style="background-color:#788dad;

border-width:2px;

border-style:solid;

IMPLEMENTING PRESENTATION LOGIC 705

Figure 15-14 Screenshot of the Mozilla Language Preferences Menu

falkner.ch15.qxd 8/21/03 6:13 PM Page 705

border-color:black;

padding:0px;

margin:0px;" valign="bottom">

<img src="http://www.jspbook.com/images/title.jpg"

align="left" valign="bottom">

<img src="http://www.jspbook.com/images/gnome1.jpg"

align="right" valign="bottom">

</td>

</tr>

<tr>

<td height="15" style="color:white;

background-color:#444444;

border-width:2px;

border-style:solid;

border-top-width:0px;

border-color:black;" align="center">

<a style="color:white;"

href="http://www.jspbook.com/about.jsp"><fmt:message

key="about"/>

- <a style="color:white;"

href="http://www.jspbook.com/code.jsp"><fmt:message

key="code"/>

- <a style="color:white;"

href="http://www.jspbook.com/errata.jsp"><fmt:message

key="errata"/>

706 BUILDING A COMPLETE WEB APPLICATION

Figure 15-15 French Version of the Index Page

falkner.ch15.qxd 8/21/03 6:13 PM Page 706

- <a style="color:white;"

href="http://www.jspbook.com/faq.jsp"><fmt:message

key="faq"/>

- <a style="color:white;"

href="http://www.jspbook.com/freechapters.jsp">

<fmt:message key="freechapters"/>

- <a style="color:white;"

href="http://www.jspbook.com/index.jsp"><fmt:message

key="news"/>

- <a style="color:white;"

href="http://www.jspbook.com/feedback.jsp">

<fmt:message key="feedback"/>

</td>

</tr>

</table>

</fmt:bundle>

Save Listing 15-28 as the updated coda.jsp in the base directory of jspbook_
site Web Application.

Listing 15-28 coda.jsp (Updated to Use i18n Tags)

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmtc"%>

<fmtc:bundle basename="coda">

<p align="center"><fmtc:message key="contact"/></p>

<p align="center" style="font-size:8pt;">

<fmtc:message key="copyright"/></p>

</body>

</html>

</fmtc:bundle>

The new files rely on resource bundles in order to display the appropriate
content. Now localizing the prelude and coda is as easy as creating the appro-
priate property files in the /WEB-INF/classes directory. For example, Listing 15-
29 provides the French property files.

Listing 15-29 prelude_fr.properties

title=Servlets and JSP the J2EE Web Tier - Jayson Falkner and Kevin

Jones

about=Au sujet du livre

code=Code

errata=Errata

faq=Questions Fréquemment Posées

IMPLEMENTING PRESENTATION LOGIC 707

falkner.ch15.qxd 8/21/03 6:13 PM Page 707

freechapters=Chapitres Libres

news=Nouvelles

feedback=La Rétroaction Du Lecteur

Listing 15-30 provides the coda.

Listing 15-30 coda_fr.properties

contact=Soutien de contact des questions ou des commentaires.

copyright=Copyright © 2003 Jayson Falkner

Save the two property files in the /WEB-INF/classes directory of the jspbook_
site Web Application and reload Tomcat to ensure the changes are reflected. The
localized header and footer will now be used when French or any other language is
preferred. Browse back to http://127.0.0.1/jspbook_site/index.jsp with the
browser’s preference still set to French. Now the entire page appears completely in
French. Figure 15-16 provides a browser rendering of the results.

The localized content for the prelude and coda are appropriately placed. In
general this is now true for all languages; new localized property files can be
added, and they will be used appropriately.

708 BUILDING A COMPLETE WEB APPLICATION

Figure 15-16 Browser Rendering of French Content with Header and Footer

falkner.ch15.qxd 8/21/03 6:13 PM Page 708

For brevity the rest of the content pages will not be translated into French by
this chapter. Instead we will focus on the other issue relating to internationalized
content: using non-default encoding.

(in Japanese)
The general idea of translating content to Japanese is the same as translating
content to French: each page needs to be translated and saved with the appropriate
extension. However, unlike the French content, authoring Japanese text using JSPs
is slightly more difficult. Instead of relying on the default encoding, we must
inform the container that the JSP will be using a special encoding and that the JSP
requires a special output encoding. Additionally, authoring Japanese text requires
a text editor that is capable of producing Japanese characters. If you do not have
such a text editor, it will be difficult to author the content in this section so it is
suggested that you download the examples from http://www.jspbook.com.

In order to author a document in Japanese an encoding must be used that
supports Japanese characters. For all of the examples in this section UTF-8
encoding is used. It does not matter what text editor you use as long as it is
capable of saving in UTF-8. Assuming you are using a UTF-8-producing text
editor, type Listing 15-31.

Listing 15-31 index-jpn.jsp
<p style="padding-left:15px;"> <c

style="font-style:italic;">Servlets and JSP; the J2EE Web Tier</c>.

</p>

<p klass="h1"> </p>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<c:forEach var="n" begin="0" items="${news}">${n}</c:forEach>

Save the preceding code as index-jpn.jsp in the root directory of the jspbook_
site Web Application. The code is a Japanese translated version of the content con-
tained in index.jsp. Similar to the French version of the page, the primary dif-
ference is that the content is no longer English; however, unlike the other two
versions of index.jsp, index-jpn.jsp must use a different content encoding. We
could explicitly declare the encoding via a JSP directive:

<%@ page pageEncoding="utf-8"%>

IMPLEMENTING PRESENTATION LOGIC 709

falkner.ch15.qxd 8/21/03 6:13 PM Page 709

However, the preferred method is to use the JSP configuration elements of
web.xml to configure all JSP. This saves the effort of putting a JSP directive on
each page, and since it is safe to assume Unicode will suffice for i18n content in
the foreseeable future, it is a generally fine solution. Listing 15-32 is the updated
web.xml to dictate the use of UTF-8.

Listing 15-32 web.xml Configured for UTF-8
...

<jsp-config>

<jsp-property-group>

<url-pattern>*.jsp</url-pattern>

<include-prelude>/prelude.jsp</include-prelude>

<include-coda>/coda.jsp</include-coda>

<page-encoding>UTF-8</page-encoding>

</jsp-property-group>

</jsp-config>

...

In order to flush out the Japanese example, an appropriately translated set of
property files is required. Here are the Japanese property files for the prelude and
coda; save Listing 25-33 as prelude_ja.properties in the /WEB-INF/classes
directory of the jspbook_site Web Application.

Listing 15-33 prelude_ja.properties

title=Servlets and JSP the J2EE Web Tier - Jayson Falkner and Kevin

Jones

about=\u672c\u306b\u3064\u3044\u3066

code=\u30b3\u30fc\u30c9

errata=\u8aa4\u308a

faq=\u983b\u7e41\u306b\u5c0b\u306d\u3089\u308c\u305f\u8cea\u554f

freechapters=\u81ea\u7531\u306a\u7ae0

news=\u81ea\u7531\u306a\u7ae0

feedback=\u30cb\u30e5\u30fc\u30b9

Save Listing 15-34 as coda_ja.properties in the /WEB-INF/classes folder
of the jspbook_site Web Application.

Listing 15-34 coda_ja.properties

contact=\u8cea\u554f\u307e\u305f\u306f\u30b3\u30e1\u30f3\u30c8\u306e

\u305f\u3081\u306e\u63a5\u89e6\u30b5\u30dd\u30fc\u30c8\u3002

copyright=Copyright © 2003 Jayson Falkner

710 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 710

Note the contents of the property files are completely authored in ISO-8859-1
encoding. Unicode characters are escaped appropriately. This is different from our
content pages, such as index-jpa.jsp, which was authored directly via UTF-8.
Normally, authoring directly in UTF-8 encoding is easier (assuming you are
working with a plaintext editor) than manually writing Unicode escape sequences;
however, property files require the escape sequences to be used.

Test out the Japanese version of the pages by setting your browser’s language
preference to Japanese and browsing to http://127.0.0.1/jspbook_site/
index.jsp. Figure 15-17 provides a browser rendering of the results.

For brevity the rest of the book support site will not be translated to Japanese
by this chapter. There is nothing relevant to show; the code for displaying
request-scoped variables and specifying encoding is exactly the same. The point
to understand is that content in any language may be authored and used by the
Web Application. Normally, this is problematic because the default encoding,
ISO-8859-1, only supports certain languages, but by using Unicode, UTF-8
encoding, it is possible to support most any language.

Finishing the Site
Before moving on, there are a few bits and pieces of the site that need to be
addressed. The bulk of the site consists of the custom components previously

FINISHING THE SITE 711

Figure 15-17 Browser Rendering of the Japanese-Translated Index Page

falkner.ch15.qxd 8/21/03 6:13 PM Page 711

addressed by this chapter. All of the custom components required coding from
scratch. Now we shall address several complementary components that were
demonstrated in previous chapters. All the components will be relatively simple
to implement; instead of coding from scratch, we will simply deploy previously
explained code listings.

The list of things to implement is as follows: site-wide error handling,
security, link tracking, caching, compression, and the site’s hidden Easter egg.
Each of the components was completely covered in previous chapters, but each
component is briefly rehashed in the following sections as it is installed for use
with the book support site.

Site-Wide Error Handling
All of the code previously provided for the book support site uses proper error
handling; however, an error can still be thrown (although it probably never will)
by the Web Application. Should this happen, the container will have to handle the
error. Normally, as with Tomcat, a stack trace is printed and displayed in a
developer-friendly fashion, meaning a cryptic page is shown to a user. To prevent
this from happening, we need to create a Web Application error page. You’ll recall
in Chapter 4 that this topic was discussed at length. The error page needs to be
nothing more than a simple JSP or Servlet that is registered via web.xml.

Listing 15-35 shows a simple error page.

Listing 15-35 error.jsp

<p class="h1">Oops!</p>

<p>An error has occurred. Information about the problem has been

logged and will be handled by administrators as soon as possible. If

you would like to send further information, please contact support.</p>

The page doesn’t do anything fancy. It apologetically informs a user that the
site has failed to function correctly. Additionally, an email address is provided in
case the user wishes to communicate further about the problem.

Save error.jsp in the root directory of the jspbook_site Web Application.
Deploy the page as the site’s default error page by adding Listing 15-36 to
web.xml.

Listing 15-36 Setting error.jsp as the Site’s Default Error Page

<error-page>

<exception-type>java.lang.Throwable</exception-type>

712 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 712

<location>/error.jsp</location>

</error-page>

Reload the Web Application for the changes to take effect. Now we have a fail-
safe counter to Tomcat’s displaying a cryptic stack trace to use. Although it
should never happen, plan for the worst. You can test the page by browsing
http://127.0.0.1/jspbook_site/error.jsp. The page provides a polite error
message and is rendered with the site’s implicit header and footer. Figure 15-18
provides a browser rendering of the results in English.

Note also that the Model 2 and i18n Filters are applied to this page. A
localized error page can be added by creating a localized version of error.jsp.

Logging Errors
Chapter 4 devoted a large section of its text to error handling, and it would be a
shame to neglect the concepts for the book support site’s Web Application.
Logging could have been more extensively used to provide information about
any of the book’s code, such as database queries, but it was omitted for simplicity.
Now logging cannot be omitted. The error page handles important information;
we must be able to keep track of what goes wrong with the Web Application so

FINISHING THE SITE 713

Figure 15-18 Browser Rendering of the Polite Error Page

falkner.ch15.qxd 8/21/03 6:13 PM Page 713

that administrators can attempt to correct the problem. To handle error logging,
we shall re-use the SiteLogger code (Listing 4-24 in Chapter 4).

Deploy the SiteLogger listener, save, and compile Listing 4-23 and Listing 4-
24 in the WEB-INF/classes/com/jspbook directory for the jspbook_site Web
Application. The listener takes care of creating a Logger class that the error page
can use at any time to log information. Listing 15-37 is required to deploy the
logger.

Listing 15-37 web.xml Update for Deploying the SiteLogger Class

...

<listener>

<listener-class>com.jspbook.SiteLogger</listener-class>

</listener>

...

The Web Application will need to be reloaded for the changes to take effect,
but before reloading it copy the classes required for the SiteLogger listener to the
jspbook_site Web Application.

With the logger deployed, we can now take advantage of it to log any infor-
mation about site errors. The Java code for doing this can be nicely encapsulated by
a Model 2 component. Listing 15-38 is the error page’s implicit Model 2 component.

Listing 15-38 error.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.util.logging.*;

public class error implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// get logger

Logger logger = com.jspbook.SiteLogger.getLogger();

// get exception

Exception e =

(Exception)request.

getAttribute("javax.servlet.jsp.jspException");

714 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 714

//log the stack trace

if (e != null) {

StringWriter message = new StringWriter();

e.printStackTrace(new PrintWriter(message));

logger.severe(message.toString());

}

return true;

}

}

Save the preceding code as error.java in the /WEB-INF/classes/com/
jspbook directory of the jspbook_site Web Application. Compile the code and
reload the Web Application for the changes to take effect. Now the Web
Application both appropriately handles errors and saves information for admin-
istrators in the /WEB-INF/log.txt file. If you have forgotten how the SiteLogger
class works, revisit Chapter 4.

Adding Security
Chapter 10 went to great lengths explaining the basics of security and why you
should use it. The greater point to take away from Chapter 10 is if only certain
people should be able to access part of a Web site, ensure only those people have
access. Never assume users are too dumb to use administrative tools (like
ArbitrarySQLDataSource.jsp), and never think the administrative portion of
the site is safe because you don’t provide a link to it.

Various levels of security exist for a Web Application: simple unencrypted
user name and password combinations, hashed user name and password
schemes, and finally completely secure communication via SSL/TLS. Each type of
security is simple to implement and can be done by configuring web.xml. For the
book support site we need to make sure only administrators have access to the
edit pages. Configure web.xml to restrict access to any URL beginning with
/admin (Listing 15-39); this will ensure regular users cannot use the adminis-
trative tools10.

Listing 15-39 Securing the /admin Directory

...

<security-constraint>

<web-resource-collection>

FINISHING THE SITE 715

10. You’ll recall security is always an arms race. Current security schemes don’t guarantee absolute
security, although the protection is very difficult—reasonable enough to call impossible—to break.

falkner.ch15.qxd 8/21/03 6:13 PM Page 715

<web-resource-name>Protected Area</web-resource-name>

<url-pattern>/admin/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>jspbook_admin</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Edit Access</realm-name>

</login-config>

...

Add the preceding code to web.xml in the WEB-INF directory of the
jspbook_site Web Application and reload the Web Application for the changes
to take effect. Now the /admin directory requires a user name and password for
access. Test the security by browsing to http://127.0.0.1/jspbook_site/
admin/index.jsp. Figure 15-19 provides a browser rendering of the security box.

You’ll recall the user name and password information need to be provided
only once per session; once you correctly type in the user name and password, the
HTTP protocol takes care of remembering you did so. The particular user name
and password we are using are the same as configured in Chapter 10 (Listing 15-
40).

Listing 15-40 Tomcat’s XML Configured Security Domain

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="jspbook_admin"/>

<user username="username"

716 BUILDING A COMPLETE WEB APPLICATION

Figure 15-19 Security Prompt for Accessing Resources in the /admin Directory

falkner.ch15.qxd 8/21/03 6:13 PM Page 716

password="password" roles="jspbook_admin"/>

</tomcat-users>

By adding Listing 15-40 we are done providing security for the Web
Application. In general, security is this easily added unless you are trying to use a
more complex security scheme, such as various different security levels for users,
or when using SSL/TLS to protect sensitive HTTP traffic such as personal infor-
mation and credit card numbers. Revisit Chapter 10 if you have forgotten how to
use the more complex security mechanisms.

Link Tracking
Most Web Applications care about tracking hits, referrers, and outbound traffic.
This functionality can easily be implemented via either a Servlet or a Filter. In
Chapter 2 and Chapter 8 we saw examples of a link tracking Servlet and a link
tracking Filter. For the book support site, we will re-use the link tracking Filter
demonstrated in Chapter 8. Copy the code for the Filter (Listing 8-3, Listing 8-5,
and Listing 8-6 from Chapter 8), and save it in the /WEB-INF/classes/com/
jspbook directory of the jspbook_site Web Application. Deploy the LinkTracker
Filter to intercept all requests (Listing 15-41).

Listing 15-41 Deployment of the LinkTracker Filter

...

<filter>

<filter-name>LinkTrackerFilter</filter-name>

<filter-class>com.jspbook.LinkTrackerFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>LinkTrackerFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

...

The important note for this deployment is that the LinkTracker Filter takes
effect before the SimpleI18nFilter. The internationalization Filter does not
chain requests through anything else down the Filter chain. With the Filters
deployed, the Web Application conceptually looks like Figure 15-20.

Now we have three different Filters stacked to provide various functionality.
Links are tracked, Model 2 logic components are executed, and internationalized
multi-client content is properly handled. At the end of the Filter chain are pre-
sentation JSPs responsible for generating content.

FINISHING THE SITE 717

falkner.ch15.qxd 8/21/03 6:13 PM Page 717

Without a complementary JSP, the link tracking Filter is pointless. The Filter
will track links, but there will be no method of seeing the information. Save
Listing 15-42 as linktracker.jsp in order to see the link tracking information.

Listing 15-42 linktracker.jsp

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

<p class="h1">Requests</p>

<c:forEach var="r" begin="0" items="${requests}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

<p class="h1">Responses</p>

<c:forEach var="r" begin="0" items="${responses}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

<p class="h1">Referrers</p>

<c:forEach var="r" begin="0" items="${referrers}">

<p class="nopad">${r.url} ${r.count}

${r.lastVisited}</p>

</c:forEach>

718 BUILDING A COMPLETE WEB APPLICATION

JSP Endpoints

Web Application

hsqldb

Database

Link Tracking Filter

Control Filter

i18n Filter

requests responses

Figure 15-20 Updated Version of the Web Application

falkner.ch15.qxd 8/21/03 6:13 PM Page 718

The preceding code is a JSP that iterates through three arrays of Link objects,
assumed to be loaded in request scope. In order for the page to work correctly, we
need to add a Model 2 logic component that uses the LinkTracker class’s
getRequests(), getResponses(), and getReferrers() methods to populate
request-scoped variables. Save Listing 15-43 as linktracker.java in the /WEB-
INF/classes/com/jspbook directory of the jspbook_site Web Application.

Listing 15-43 linktracker.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class linktracker implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Link[] requests = LinkTrackerFilter.getRequests();

request.setAttribute("requests", requests);

Link[] responses = LinkTrackerFilter.getResponses();

request.setAttribute("responses", responses);

Link[] referrers = LinkTrackerFilter.getReferrers();

request.setAttribute("referrers", referrers);

return true;

}

}

Now linktracker.jsp can be used to see the statistics tracked by the
LinkTracker Filter. Browse to http://127.0.0.1/jspbook_site/linktracker.
html to see a summary of the tracked information. Figure 15-21 provides a
browser rendering of the results.

With the Filter installed as is, it will successfully track incoming requests and
referral information; however, outgoing requests are more difficult to track.
Recall that the method of tracking an outgoing request is to send it back to your
local site, record the outbound URL, and use an HTTP client-side redirection.
The LinkTracker Filter provides the code for recording and redirecting requests,
but it relies on all of the links in the Web Application being encoded to use it.

FINISHING THE SITE 719

falkner.ch15.qxd 8/21/03 6:13 PM Page 719

The encoding scheme for links is simple: each link must go to /linktracker
and contain an HTTP parameter named “url” that provides the outbound URL.
The difficult part about encoding links is that each and every link in the Web
Application must be encoded. Doing this task by hand is tedious and not recom-
mended for large Web Applications; however, we have little choice but to do it for
the book support site. A quick search and replace, using your favorite text editor,
does the job. Recall that in the multi-client chapter a much better scheme was
suggested for encoding links: abstract all links (similar to what the JSTL url tag
does). Then the links can be encoded at runtime by the abstraction, likely a
custom tag.

After changing the links to use the link tracking Filter, note the links to
external references are now encoded to be local. For example, the link to Tomcat,
normally http://jakarta.apache.org/tomcat, is changed to redirect?url=
http://jakarta.apache.org/tomcat. If you click on the link, it still appears to
go directly to the Tomcat Web site, but it really goes back to the book support site,
records the outbound URL, and then finally redirects to Tomcat’s homepage.

720 BUILDING A COMPLETE WEB APPLICATION

Figure 15-21 Browser Rendering of linktracker.jsp

falkner.ch15.qxd 8/21/03 6:13 PM Page 720

Verify the outbound traffic tracking works by revisiting http://127.0.0.1/
jspbook_site/linktracker.jsp—note the outbound link now appears in the
tracked statistics. Figure 15-22 provides a browser rendering of the results.

The site’s link tracking functionality is now complete. The LinkTracker Filter
is an excellent modular component that is easy to add to most any site. The only
tricky part is encoding all outbound links (if you want to track them), but the
Multi-Client framework made this task trivial.

Caching and Compression
A final touch to the book support site can make the site notably more efficient
and fault-tolerant. Several layers of functionality are abstracted in order to make
coding the site simpler. Examples of this functionality include using the MCT for
abstracting formatting, querying the database for dynamic information, and
using Model 2 logic components instead of embedding code. For most practical
purposes, mostly because the book support site will likely never get more than a
moderate level of traffic, all of this abstraction doesn’t matter; however, the

FINISHING THE SITE 721

Figure 15-22 Browser Rendering of Statistics on Outbound Links

falkner.ch15.qxd 8/21/03 6:13 PM Page 721

722 BUILDING A COMPLETE WEB APPLICATION

JSP Endpoints

hsqldb

Database

Compression Filter

i18n Filter

Control Filter

Cache Filter

requests responses

Link Tracking Filter

Figure 15-23 Updated Conceptual View of Web Application

abstraction does slow things down. In order to eliminate all of the time required
to generate a dynamic response, we can cache the response using a Filter, as
demonstrated in Chapter 8. The cache can also act as fault tolerance in case for
some reason, such as a poorly done code “fix” or the database crashes, a JSP
throws an exception. Additionally, for optimal performance we can take
advantage of HTTP’s compression mechanism, also demonstrated in Chapter 8.

For the book support site we will be able to directly re-use the cache and
compression Filters created in Chapter 8. As described in Chapter 8, these two
Filters are easily re-used in most every Web Application, which is absolutely true,
and make the code quite handy. Once the Filters are applied, the conceptual view
of the Web Application will look as in Figure 15-23.

The Filters are applied as they should be: compression first, caching second.
Not all HTTP clients support compression so we cannot assume compression
should always be used. Deploy the two Filters by adding Listing 15-44 to web.xml.

Listing 15-44 Cache and Compression Filter Deployment

<filter>

<filter-name>Cache</filter-name>

<filter-class>com.jspbook.CacheFilter</filter-class>

<init-param>

falkner.ch15.qxd 8/21/03 6:13 PM Page 722

FINISHING THE SITE 723

<param-name>cacheTimeout</param-name>

<param-value>1</param-value>

</init-param>

<init-param>

<param-name>locale-sensitive</param-name>

<param-value>true</param-value>

</init-param>

</filter>

<filter>

<filter-name>Compress</filter-name>

<filter-class>com.jspbook.GZIPFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>LinkTracker</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>Compress</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>Cache</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

Next, copy the code for the two Filters and related classes from the
jspbook/WEB-INF/com/jspbook directory to the jspbook_site/WEB-INF/com/
jspbook directory (Listings 8-11, 8-12, 8-13, 8-15, 8-16, and 8-17, respectively,
from Chapter 8). Finally, reload the Web Application for the two Filters to take
effect.

An important point to note is that the cache Filter is still working properly even
though we are using localized content. Go ahead and try out the cache Filter by
requesting the same resources with different language preferences; you will get the
same content as we did previously in the chapter. Recall in Chapter 8 that we based
the cache solely off the request URL. This strategy will obviously not work with the
Simple i18n Filter; remember the same URL—say, index.jsp—may possibly lead
to a resource of the same name or a localized resource, such as index-fra.jsp. To
solve this problem, the cache Filter has the locale-sensitive parameter set.

falkner.ch15.qxd 8/21/03 6:13 PM Page 723

724 BUILDING A COMPLETE WEB APPLICATION

<filter>

<filter-name>Cache</filter-name>

<filter-class>com.jspbook.CacheFilter</filter-class>

<init-param>

<param-name>cacheTimeout</param-name>

<param-value>1</param-value>

</init-param>

<init-param>

<param-name>locale-sensitive</param-name>

<param-value>true</param-value>

</init-param>

</filter>

This parameter was not introduced in Chapter 8 because we had yet to
discuss i18n issues, but now the parameter should make sense. You’ll recall that
the code in the CacheFilter class uses the following parameter:

// optionally append i18n sensitivity

String localeSensitive = fc.getInitParameter("locale-

sensitive");

if (localeSensitive != null) {

StringWriter ldata = new StringWriter();

Enumeration locales = request.getLocales();

while (locales.hasMoreElements()) {

Locale locale = (Locale)locales.nextElement();

ldata.write(locale.getISO3Language());

}

id = id + ldata.toString();

}

The code takes all of the user’s preferred languages and uses them to cus-
tomize the cache. By doing this, the cache is effectively tied to both the URL and
the HTTP headers that dictate language preference. Between the two, the cache
Filter can successfully cache both non-i18n and i18n content alike, which is exactly
what we have it doing. In general, a good cache Filter should allow for several vari-
ables to dictate how it manages cached copies of content—for example, the URL
and language-preference headers—and allow configuration of these options via
initial parameters. This allows the same cache Filter to then be used with most any
Web Application by simply configuring a few initial parameters—a helpful Filter
indeed.

falkner.ch15.qxd 8/21/03 6:13 PM Page 724

Don’t Cache Always-Dynamic Resources!
There is another huge “gotcha” of using a cache Filter: caching resources that
must be dynamic. For simplicity we deployed the cache Filter to intercept all
requests to resources ending in .jsp; for practical use this is a mistake. Think of
all the resources that must remain dynamic—for instance, the add news com-
ponent or any of the other components that rely on a client to upload infor-
mation via an HTML form. If we leave the cache Filter as it is now, all of these
resources are broken; the cache Filter occurs before the control Filter.

...

<filter-mapping>

<filter-name>Cache</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>ControlFilter</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

...

The problem is, when the control logic needs to be executed, it won’t. If a
cache exists, the cache Filter returns it and prevents any other Filter in the chain
from executing. This will prevent the control Filter from ever getting a chance to
execute logic components associated with a URL.

What is the solution? Simply putting the cache Filter after the control Filter
works, but in a sense defeats the purpose of the cache Filter. Control components
can take a relatively long time compared to executing a JSP or Servlet, therefore,
it is helpful to cache away this time. There are a few good solutions, which can
even be used together if required. The first is to selectively cache only what
should be cached. For example, don’t deploy the cache Filter to all JSP.

<filter-mapping>

<filter-name>Cache</filter-name>

<url-pattern>*.jsp</url-pattern>

</filter-mapping>

Instead, deploy the Filter to only the resources that should always be cached.

<filter-mapping>

<filter-name>Cache</filter-name>

<url-pattern>/index.jsp</url-pattern>

</filter-mapping>

FINISHING THE SITE 725

falkner.ch15.qxd 8/21/03 6:13 PM Page 725

<filter-mapping>

<filter-name>Cache</filter-name>

<url-pattern>/about.jsp</url-pattern>

</filter-mapping>

...

This prevents the problem from ever occurring in the first place, but it adds
more work when deploying the Filter, especially if there are lots of resources that
should be cached by the Web Application.

Another good solution is to deploy the Filter to cache all resources and selec-
tively instruct the Filter to not cache specific resources via initial parameters.
Recall the cache Filter from Chapter 8 treats any initial parameter with a name
matching a URL to mean “don’t cache that URL”. This method is excellent for
easily deploying the Filter to cache everything, but telling it to ignore one or two
things is not so easily done via filter-mapping elements.

The final solution is to use two instances of the same Filter in combination
with the preceding methods. There are two obvious points that are valid for
caching: before execution of the logic component (and implicitly the JSP or
Servlet endpoint) or after the logic component but before the endpoint. If the
control logic must always be executed—for example, in the case of addnews.

jsp—you cannot cache before the logic component, but you can cache after it to
speed up the time it takes to execute the endpoint (the Servlet or JSP).

If you are trying this chapter’s code, it is assumed you will configure the cache
Filter to not cache all of the resources that must execute logic components, basi-
cally everything in the /admin directory or any of the user feedback components.
For brevity the modified cache Filter deployment code is not provided, but if you
would like to see it, it is available at http://www.jspbook.com.

Adding the Egg
A little bit of fun is in order before calling the site complete. As mentioned earlier
in the chapter, we are going to put an egg in the book support site. The egg is not
malicious, but purely something for fun and an application of techniques learned
from previous chapters. For the egg we will add in a page where people are
encouraged to upload pictures of the book; this was mentioned in the preface.
Given the strange phenomena surrounding yard gnomes and that the cover of
this book is a yard gnome, you are encouraged to send in a photo that creatively
displays the book or many copies of the book. However, we have yet to provide a
method for uploading images. A photo upload page is required.

726 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 726

FINISHING THE SITE 727

The egg, like all other components of the site, will be split into a Model 2
logic component and a presentation JSP. The JSP is a simple HTML form for
uploading a picture. Save Listing 15-45 as egg.jsp in the root directory of the
jspbook_site Web Application.

Listing 15-45 egg.jsp

<p class="h1">Photos of the yard gnome!</p>

<p>You will soon notice pictures appearing in the top right-hand

corner of the Web site. They will be images of people who have read

Servlets and JSP the J2EE Web Tier cleverly placed in the photos.

How did we get them? Simple. Readers sent them in. The rules are

simple. If you have bought and read the book, you can send a photo

in. From then on your photo will randomly appear in the top right-

hand corner of the Web site. It is a silly way of saying thanks for

reading the book.</p>

<p>Why do this? Mainly because it is fun, but in the United States

many people have a tradition of taking a yard gnome with them on

vacations. The gnome then serves as a hidden surprise in all of the

various photos taken during the trip. It can only be guessed as to

how this tradition ever started, but it is likely that normal

vacation photos were just too bland or that many people enjoy being

silly. We figure a normal photo of your workplace is also bland or

that you enjoy being silly. So, send in photos of the gnome.</p>

<p>Note that this is a completely random/arbitrary system. If you

send in a photo of you with the book, we will put it up. Creativity

is encouraged, but if for any reason we do not want to put the photo

up, then it will not be used. This is all in good fun, but it is

important to keep it within the limits of good taste and fun.</p>

<form method="POST" action="upload.jsp" enctype="multipart/form-

data">

<p>Upload a Picture: <input name="file" type="file"/></p>

<input type="submit" value="Submit Photo"/>

</form>

<center><image src="${image}"/></center>

The page consists of a lot of static text explaining the egg and a simple HTML
form. The form is the only thing that merits discussion.

<form method="POST" action="upload.jsp" enctype="multipart/form-

data">

<p>Upload a Picture: <input name="file" type="file"/></p>

<input type="submit" value="Submit Photo"/>

</form>

falkner.ch15.qxd 8/21/03 6:13 PM Page 727

The form is almost identical to the HTML form demonstrated in the file
upload discussion in Chapter 2. There are three important points: the form is
sent to upload.jsp (which we’ll create later), the form is set to be encoded as
multipart/form-data, and an input exists for submitting a file. Consult Chapter
2 for further information about the form.

Currently, upload.jsp does not exist, but that is where the form is posting its
content. The most important reason we have to upload.jsp is to create a logic
component that can deal with uploaded pictures. The general scheme for han-
dling newly uploaded pictures will be similar to the scheme used for the rest of
the site’s content. The image will be saved in a special directory (/images), and
an entry to the site’s database will be made with the image set as not visible. It will
be assumed that later on a site administrator will verify the image is okay and flag
it as visible. Listing 15-46 provides the code for the upload logic component.

Listing 15-46 upload.java

package com.jspbook;

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.util.Calendar;

import org.apache.commons.fileupload.*;

import java.util.*;

public class upload implements Control {

public boolean doLogic(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

long ts = Calendar.getInstance().getTimeInMillis();

ServletContext sc =

request.getSession().getServletContext();

String path = sc.getRealPath("/images");

org.apache.commons.fileupload.FileUpload fu = new

org.apache.commons.fileupload.FileUpload();

fu.setSizeMax(-1);

fu.setRepositoryPath(path);

try {

List l = fu.parseRequest(request);

728 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 728

Iterator i = l.iterator();

while (i.hasNext()) {

FileItem fi = (FileItem)i.next();

String postFix = ".unknown";

String name = fi.getName();

int lastDot = name.lastIndexOf(".");

if (lastDot != -1) {

postFix = fi.getName().

substring(lastDot, name.length());

}

fi.write(path+"/"+ts+postFix);

// update db

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.

lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

statement.executeQuery(

"insert into images values('"+ts+postFix+"', 0)");

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

}

} catch (Exception e) {

throw new ServletException(e);

}

response.sendRedirect("index.jsp");

return false;

}

}

FINISHING THE SITE 729

falkner.ch15.qxd 8/21/03 6:13 PM Page 729

An Images table (which we will soon create) is used to store the names of the
images and information about which images are available to show. Later on, this
table will be helpful in order to determine which images should be shown by the
egg.

Before trying to use the code for upload.java, be sure to create the Images
table in the site’s database. Use ArbitrarySQLDataSource.jsp to execute the fol-
lowing SQL statement:

CREATE TABLE IMAGES (

TS VARCHAR PRIMARY KEY,

VISIBLE BIT

)

Before testing the new upload component, ensure Tomcat doesn’t throw an
exception due to lacking upload.jsp. Save Listing 15-47 as upload.jsp—a user
should never see it.

Listing 15-47 upload.jsp

Upload Complete.

Test the file upload page by copying the JAR file for the Jakarta Commons
FileUpload API to the jspbook_site Web Application’s /WEB-INF/lib directory,
compiling the new code, reloading Tomcat, and browsing to http://127.0.0.1/
jspbook_site/egg.jsp. Select an image file to upload and click on the Submit
Photo button. After the file uploads, the index page should be displayed. You can
verify the upload worked by browsing the /images directory of the jspbook_site
Web Application. A new image is there with a time-stamp for a name and the
same extension of the uploaded image.

By itself, the egg does little. What good are uploaded images if they are not
displayed on the Web site? To complement the egg page, we will modify the
header to randomly display uploaded images that have been set as visible. In
order to accomplish this, we will create a .tag file that replaces the static image
with a dynamical image. Recall the header displays an image in the top right-
hand corner of the Web page.

Normally, this image is a picture of the gnome from the book’s cover, but we
are going to replace this image with a randomly selected, image from the images
uploaded by book readers. The change in the JSP will be minor; we will create a
custom tag to replace the HTML image tag. The custom tag needs to query the

730 BUILDING A COMPLETE WEB APPLICATION

falkner.ch15.qxd 8/21/03 6:13 PM Page 730

site’s database, pick a random visible image, and generate the HTML for the
image tag.

Here is the code for the dynamic image tag. Save Listing 15-48 as image.tag
in the /WEB-INF/tags directory of the jspbook_site Web Application.

Listing 15-48 image.tag

<%@ tag

import="java.sql.*,javax.sql.*,javax.naming.*,java.text.*,java.util.

*" %>

<%

LinkedList ll = new LinkedList();

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.

lookup("java:comp/env/jdbc/jspbook_site");

Connection conn = ds.getConnection();

try {

Statement statement = conn.createStatement();

ResultSet rs = statement.

executeQuery("select * from images where visible=true");

ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()) { // show results

ll.add(rs.getString(1));

}

} catch (Exception e) {

throw new ServletException(e);

} finally {

conn.close();

}

} catch (SQLException e) {

throw new ServletException(e);

}

catch (NamingException e) {

throw new ServletException(e);

}

String image = (String)ll.get((int)(Math.random()*ll.size()));

request.setAttribute("image", image);

%>

<img src="images/${image}" align="right"

border="0">

FINISHING THE SITE 731

falkner.ch15.qxd 8/21/03 6:13 PM Page 731

732 BUILDING A COMPLETE WEB APPLICATION

The code for the tag flushes out the previous definition. A linked list is
created and populated with all of the visible images.

LinkedList ll = new LinkedList();

...

Statement statement = conn.createStatement();

ResultSet rs = statement.

executeQuery("select * from images where visible=true");

ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()) { // show results

ll.add(rs.getString(1));

}

Based on how many images are in the linked list, a random image is chosen.
The HTML image tag is generated for that image.

String image = (String)ll.get((int)(Math.random()*ll.size()));

request.setAttribute("image", image);

%>

Additionally, the image is wrapped by an anchor tag linking back to the egg
page.

Test out the new functionality by replacing the static HTML image tag in
prelude.jsp with the new dynamic image tag. Listing 15-49 shows what the rel-
evant updated section of prelude.jsp should look like.

Listing 15-49 Using image.tag with prelude.jsp

...

<img src="http://www.jspbook.com/images/title.jpg"

align="left" valign="bottom">

<%@ taglib tagdir="/WEB-INF/tags" prefix="x"%>

<x:image/>

<%-- <img src="http://www.jspbook.com/images/gnome1.jpg"

align="right" valign="bottom">--%>

...

Test out the new functionality by browsing to http://127.0.0.1/jsp-
booksite/index.jsp. Assuming the cache is not being shown, the page will look
identical to the older version, but you can now click on the image to see the egg
page.

falkner.ch15.qxd 8/21/03 6:13 PM Page 732

In order to fully test the egg page, you will need to upload more images and
toggle them to be visible (via ArbitrarySQLDataSource.jsp or perhaps another
database edit page similar to edit.jsp). This exercise is left up to you; it should
be straight-forward given that we have already done something similar for the
news, errata, FAQ, and feedback pages. If you really want to see the tag in action,
visit the book support site, http://www.jspbook.com. You’ll notice the image in
the top right-hand corner is constantly changing.

Summary
The book is complete. You have learned all about Web Applications, Servlets,
JavaServer Pages, JavaBeans, JSP actions, the JSTL, Filters, security, design pat-
terns, internationalization, and database connectivity. Each of the first 14
chapters dealt individually with these topics. This final chapter provided a com-
prehensive look at all the previous chapters by building an actual Web
Application, which is currently used on the World Wide Web.

You should now be able to go out and build complete Web Applications using
Servlets and JSPs. Much of the code in this book can be directly recycled, such as
the link tracking, caching, and compression Filters, and all of the concepts can be
applied to get your job done. Several of the first few chapters provide complete
references for Web Application creation, Servlets, JavaServer Pages, and Filters.
The last few chapters provide practical design patterns for getting complex tasks
done, including creating multi-lingual content, dividing up logic from presen-
tation, and dividing up a Web Application’s workload between multiple devel-
opers. Overall, the theme of this book has been understanding Servlets and JSPs
and breaking down a Web Application into simple, logical components. Now that
you know these things, go do your job.

SUMMARY 733

falkner.ch15.qxd 8/21/03 6:13 PM Page 733

falkner.ch15.qxd 8/21/03 6:13 PM Page 734

Index

735

A
about.jsp JSP

for book support site, 697–699
Model 1, 463–464

About page, 696–699
Abstract logic component, 665–668
AbstractContent.java Servlet, 665–669
AbstractHandler class, 574
Abstraction

DHTML, 293–295, 510–512
for internationalization, 531–533

JSTL I18N message tags, 537–539
resource bundles for, 533–537

for logging, 209–210
to templates, 563

accept header, 68, 579–580
accept-charset header, 68, 525–526
accept-encoding header, 579
accept-language header, 68, 525–526
Action class, 496, 499
action-mapping element, 501–502
action-mappings element, 501
ActionForm class, 496–497
ActionForward class, 500, 505
ActionMapping class, 496
Actions

for DHTML widgets, 511–512
in JavaBean, 144–145, 216

jsp:getProperty, 221–223
jsp:setProperty, 223–224
jsp:useBean, 217–221

in JSP, 136
JavaBean, 144–145
jsp:fallback, jsp:params, and jsp:param,

139–143
jsp:forward, 143–144
jsp:include, 136–139, 144
tag file, 145

in JSTL
c:catch, 242–243
c:out, 239–240

c:remove, 242
c:set, 241–242

in Struts, 496–507
addCookie method, 397
addCount method

in header.jsp, 130
in PageCounter.jsp, 120

addDateHeader method, 57
adderrata.jsp JSP, 701–702
addfaq.java Servlet, 683–685
addfaq.jsp JSP, 685
addHeader method, 56
addIntHeader method, 57
addnews.java Servlet

for book support site, 670–674
Model 2, 481–483

addnews.jsp JSP
for book support site, 673, 695–696
Model 1, 461–463, 465–466, 470–471
Model 2, 483–484
Struts, 504–507

addnews_thanks.jsp JSP, 484
AddNewsAction.java Servlet, 503–505
admin directory, 715–716
AdminException.java file, 171–172
Age field, 58
align attribute, 139
ALL log level, 201
Ampersands (&)

in expression language, 230
for ISO-8891-1 characters, 516
in SELECT, 601

AND operator
in expression language, 230
in SELECT, 601

Ant utility, 14
purpose of, 26–27
working with, 27–29

Apache Jakarta community, 237
AppletExample.jsp JSP, 140–142
application implicit object, 151–152
Application scope, 95–96, 218

falkner.BM.qxd 8/21/03 7:34 PM Page 735

Application state in thread safety, 415, 421
Application-wide logging, 100–101
Applications. See Web Applications
applicationScope implicit object, 228
ArbitrarySQL.jsp JSP

for SQL statements, 598–600
upgrading, 610–613

archive attribute, 139–140
Arithmetic operators, 230
Asterisks (*)

in expression language, 230
in SELECT, 601

Asymmetric key encryption, 443–445
aTag.tag file, 299
attribute directive, 291–296
attribute element, 277
Attributes

for custom tags, 275
dynamic, 279–282
runtime, 282–285
static, 275–279

in expression language, 228–229
in JSP, 147

AuditFilter.java Servlet, 355
AuditRequestWrapper class, 353–354
auth-method element, 438–439, 451
Authentication, 424

configuring, 437–438
in declarative security, 432–437
form-based, 438–440
in role-based security, 429–431

Authorization, 425
Auto-refresh pages, 63–64
autoFlush attribute, 128, 155

B
Back-slashes (\) in JSP, 150
basename attribute, 537
Basenames for resource bundles, 534
Basic authentication, 433–434, 437–438
Basic tags, 300, 303–305
BeanInfo class, 216
beanName attribute, 218
begin attribute, 245
Blackdown Linux site, 9
BlankAction.java Servlet, 497
Block execution, conditional, 249
body-content attribute, 291
body-content element, 267
Body tags, 321–323

coding, 323–324
custom, 285–287
nested, 324

BodyContent class, 324
BodySimpleTag.java file, 286
BodySimpleTagTest.jsp JSP, 286
BodyTag interface, 321–323
BodyTagSupport interface, 323
Book support site application, 655–656

business logic for. See Business logic
caching and compression in, 721–726
databases for

interface, 661–662
physical design, 658–661

egg in, 726–733
error handling in, 712–715
link tracking in, 717–721
presentation for. See Presentation
security for, 715–717
workload distribution in, 656–657

Boolean conditions in SELECT, 601
Boolean literals, 229
Bound objects, 409–410
buffer attribute, 128
Buffering, 155
build.xml file, 26–28
bundle tag, 537–538
Business logic

for book support site, 662–665
abstract logic component, 665–668
adding news, 670–674
editing news, 675–681
FAQ, 682–687
faq.jsp, 682
feedback and errata pages, 687
index.jsp, 668–670
overly complex components, 687

encapsulating, 507
in Model 2, 473, 485–488
tags for, 264

C
c:catch action, 242
c:if tag, 247–249
c:import tag, 250–252
c:out action, 239–240
c:param tag, 252–253
c:remove action, 242
c:set action, 241–242
c tag, 567
c:url tag, 253–254
CacheFilter.java Servlet, 372–378, 724
CacheResponseStream.java Servlet, 380–382
CacheResponseWrapper class, 377
CacheResponseWrapper.java Servlet, 378–380
Caches and cache filters, 371–385

736 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 736

in book support site, 721–726
with encryption, 453–455
for fault tolerance, 386–387
for Servlet responses, 385–386
for tags, 308

CallableStatement interface, 637–638
callableStatement method, 637
CAs (certificate authorities), 446
Cascading Style Sheets (CSS)

for book support site, 693–695
for multi-client support, 568

catch action, 242
catch clause, 172–174
Catching errors, 168
CDATA sections, 164
Certificate authorities (CAs), 446
Certificates

in encryption, 444–447
keytool for, 450–451

CGI (Common Gateway Interface), 2–3
Chains, filter, 334–335, 339–350
Challenge-response authentication, 433–437
Character class, 517
Character entities, 516
character tag, 567
charEncoding attribute, 251
Checked exceptions, 182–183
choose tag, 249
class attribute, 218
Class files, 20
Classes, 24
ClassicJSP.jsp JSP, 160
classicTag tag, 314
clearBody method, 321
Client IDs, 391
Client/server programming, 51
Clients, multiple. See Multi-client support
ClientTable class, 581
close method

in CacheResponseStream, 380–381
in Connection, 615, 634
in GZIPResponseStream, 362–365
in Statement, 615

closed method
in CacheResponseStream, 381
in GZIPResponseStream, 363

Cocoon framework, 565
coda_ja.properties file, 710
coda.jsp JSP

for book support site, 691
updated, 707

Codd, Edgar F, 592
code attribute, 139
Code page, 699
codebase attribute, 139

Coding
body tags, 323–324
custom tags, 303–305
filters, 336–339
HelloWorld, 42–43
iteration tags, 316–321
scripts, 125–126
.tag files, 291–299

Collaboration, design patterns for, 458
Collections, iterations over, 244
Colons (:) for HTTP headers, 38
Columns in databases, 592–593
com.jspinsider.jspkit.mct.AbstractHandler class, 574
com.jspinsider.jspkit.mct.ClientTable class, 581
com.sun.image.codec.jpeg package, 56
Commas (,) for scriptlets, 117
Comments in JSP, 147–149
commit method, 616
Committed exceptions, 155–156
Common Gateway Interface (CGI), 2–3
Commons Pool project, 634
Community Process, 32, 235
Comparator class, 348
compare method, 348
Comparisons, 230
Compiling J2SE 1.4, 9
Compression

in book support site, 721–726
dynamic, 357–371
with encryption, 453–455
in WAR files, 25–26

Compression filters, 357–371
CompressionTest.java Servlet, 368–371
ConcurrentUserTracker class, 104
Conditional tags, 236, 247–250
Conditionals, custom tags for, 264
Conditions in SELECT, 601
conf directory, 21
config implicit object, 151
CONFIG log level, 200
Configuration files, 20
Connected protocols, 390
Connection class, 614–617
Connection-less protocols, 390
Connections

JDBC for, 614–615
pooling, 633–634

Consolidating
content, 562–563
links, 629
logging, 210
Throwable Classes, 170–172
thrown exceptions, 209

Constructors for JavaBeans, 214, 225
Containers, 1, 4–6

INDEX 737

falkner.BM.qxd 8/21/03 7:34 PM Page 737

containsHeader method, 56
Content

abstraction of, 531–533
JSTL I18N message tags, 537–539
resource bundles for, 533–537

encoding, 514
ISO-8859-1, 514–517
non-ISO-8859-1, 518–523
UCS-2, 518
Unicode, 517–518

separating
from format, 555–557
from logic, 260–261

Content-Disposition headers, 76–77
content.jsp JSP, 131, 138
Content-Length field, 58
content-type header, 58, 518–519
contentType attribute, 129, 519–521
context attribute

in import, 250–251
in redirect, 254
in url, 254

context-param element, 93
contextDestroyed method, 203
contextInitialized method, 203
Control component, pre-built, 494–495, 500, 507
Control Filter

for book support site, 665
in Struts, 500

Control interface, 477
Control.java Servlet, 477
ControlFilter.java Servlet, 474–476, 481
Controller component in Model 2, 473–474
Conversational state. See Session state
Cookie class, 396–397
Cookie header, 395
cookie implicit object, 229
Cookies, 392, 395–398

editing, 398–402
in form-based authentication, 439
for tracking users, 402–404
for URL rewriting, 403–406

CookieTracker.jsp JSP, 402–404
Cooperating tags, 299–300, 311–313
Core tags

in JSTL, 239
in XML, 255–256

count.tag file, 298
Create action in CRUD, 597
create method

in LinkFactory, 643–644
in News, 641–642

CreateDatabase.jsp JSP
for new databases, 595–598
upgrading, 610–611

createOutputStream method
in CacheResponseWrapper, 378–379
in GZIPResponseWrapper, 360

CRUD acronym, 597
CSS (Cascading Style Sheets)

for book support site, 693–695
for multi-client support, 568

Custom tags, 259–260
attributes for, 275

dynamic, 279–282
runtime, 282–285
static, 275–279

basic, 300
benefits of, 260–261
body, 285–287, 321–324
coding, 303–305
conditionals, 264
cooperating, 299–300, 311–313
for DHTML abstraction, 293–295, 510–512
exception handling in, 305–306
inappropriate uses of, 264–265
for internationalization, 263
iteration, 264, 285–287, 315–321
in JSP, 110, 306–308
life cycle of, 271–272, 300–303
listeners for, 328
mixing with classic, 313–315
for Model View Control, 262–263
for multi-client support, 263–264
overview of, 261–262
reusing, 308–309
scripting variables for, 324–328
simple, 271–272
.tag files for, 288–299
Tag Library Descriptors for, 265–271
for transformations, 564
TryCatchFinally for, 310–311
validating, 329–330

CustomException.java Servlet, 170
CustomFormatter.java Servlet, 198

D
DAO (Data Access Objects) design patterns,

639–649
DAOLinkChecker.jsp JSP, 648–649
DAOShowLinks.jsp JSP, 647
Data integrity

in databases, 598
in security, 425

data-source element, 500
data-sources element, 500
Database administrators, 638
Database Connection Pooling (DBCP) project, 634

738 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 738

Database Management Systems (DBMS), 256
DatabaseMetaData class, 617
Databases, 591–592

for book support site
interface, 661–662
physical design, 658–661

creating, 595–597
JDBC API for. See JDBC API
JSTL access to, 236
links in, 628–632
parts of, 592–594
for sharing state information, 413–414
SQL for. See SQL (Structured Query Language)

DataSource interface, 606–614
Date class, 276–277, 542–543
Date field, 58
Date formatting, 539

JSTL tags for, 549
at runtime, 540–543

date tag, 284
DateFormat class, 539, 543–544
DateTag.java Servlet, 306–307
DBCP (Database Connection Pooling) project, 634
DBMS (Database Management Systems), 256
Debugging, TRACE for, 40
Declarations

in JSP, 120–125, 162–163
in TLDs

for scripting variables, 325–326
for static attributes, 275–279

Declarative security, 425–426
authentication configuration in, 437–438
control flow in, 432–437
form-based, 438–440
Realms in, 430–432
role-based, 426–430

declare attribute, 297
declare element, 325
default attribute, 240
Default HTTP ports, 17–18
Delegation, request, 87–89, 154
Delete action in CRUD, 597
DELETE HTTP method, 40
delete method

in LinkFactory, 645
in News, 641–642

DELETE statement, 605
delims attribute, 246–247
Deploying Servlets, 43–47
Deployment Descriptor structure

for exceptions, 183
for Web Applications, 46–47

description attribute
in attribute directive, 293

in tag, 292
in variable, 297

description element, 277
Design patterns, 457–458

benefits of, 458
common, 458–459
DAO, 639–649
DHTML abstraction, 510–512
for JavaBeans, 226
in JDBC, 638–649
Model 1, 459

characteristics of, 467–468
in JDBC, 639
weaknesses in, 468–472
Web site, 459–467

Model 1-1/2, 507–510
Model 2. See Model 2 design pattern
Struts framework. See Struts framework

Designing
databases, 658–661
Web Applications, 652–654

destroy method
in AuditFilter, 355
in CacheFilter, 375
in ControlFilter, 476
in Filter, 336–337
in GZIPFilter, 359
in HelloWorldFilter, 338
in LinkTrackerFilter, 343
in MCTemplateFilter, 560
in Servlet, 35
in SimpleI18nFilter, 528

Destruction phase in Servlet life cycle, 35
Development, design patterns for, 458
DHTML

abstracting, 293–295, 510–512
actions for, 511–512
mouse events in, 295–296

Digest authentication, 433–438
Directives

in JSP, 126–133
in XML, 164–165

Directories
JNDI for, 613–614
temporary, 101–102
for Tomcat installation, 10–11

Directory translation, 96–99
Disabling expression language, 227
dispatcher element, 351
Dispatching with filters, 351–352
display-name attribute, 291
DisplayUsers.java Servlet, 105
Distinct URLs for multi-client support, 578
distributable element, 412

INDEX 739

falkner.BM.qxd 8/21/03 7:34 PM Page 739

Distributed environments, 101
doAfterBody method

in IterationTag, 315–317
in LinkIterationTag, 318–319

doBody action, 299
doBodyExample.jsp JSP, 299
doCatch method, 310
doDelete method, 41
doDynamicAttribute method, 281
doEndTag method

in custom tags, 300–301, 310
in Tag, 302–303

doFilter method
in AuditFilter, 355
in CacheFilter, 373–375
in ControlFilter, 475–476
in Filter, 337, 339–341
in GZIPFilter, 358–359
in HelloWorldFilter, 338
in LinkTrackerFilter, 341–343, 346
in MCTemplateFilter, 559
in SimpleI18nFilter, 528–529

doFinally method, 310
doGet method

in CompressionTest, 368–369
in DisplayUsers, 105
in DynamicImage, 54–55
in EditCookies, 399–401
in EnhancedErrorPage, 180
in FileUpload, 79–80
in FileUploadCommons, 86–87
in HelloWorld, 42–43
in HttpServlet, 41
in I18nHelloWorld, 520–522
in InternationalizedHelloWorld, 48–50
in LinkTracker, 59–60
in MockError, 94
in NotThreadSafe5, 417–418
in Servlet2Servlet, 90
in Servlet2Servlet2, 91
in ShowForm, 74
in ShowHeaders, 66
in ShowParameters, 69–70
in ShowSource, 97–98
in SynchronizedNotThreadSafe, 419–420
in ThreadSafe, 418

doHead method, 41
doInitBody method, 321
dollar signs ($) in expression language, 228
doLogic method

in AbstractContent, 665–669
in addfaq, 683–684
in addnews

book support site, 670–672
Model 2, 482–483

in Control, 477
in edit, 675–677
in error, 714–715
in faq, 682
in index, 479, 669
in update, 679–681
in upload, 728–729

doOptions method, 41
doPost method

in EditCookies, 401
in FileUpload, 77–79
in HttpServlet, 41
in ShowForm, 74
in ShowParameters, 70

doPut method, 41
doStartTag method

in custom tags, 300–301, 310
in DateTag, 306
in FooTag, 304
in FormattedDateTag, 309
in InnerTag, 311–315
in LinkIterationTag, 318
in Tag, 302–303

doTag method
in BodySimpleTag, 286–287
in custom tags, 271–272, 285
in DynamicAttributeTag, 280
in FormatDateTag, 276–277
in HelloSimple, 273–274
in SimpleTag, 272

doTrace method, 41
Double-quotes (“) in JSP, 150
Downloading Java 2 Standard Edition 1.4, 6–7
DriverManager class, 607
dynamic-attributes attribute, 291
Dynamic attributes for custom tags, 275,

279–282
Dynamic compression, 357–371
Dynamic pages

caching, 372, 725–726
form, 468, 471
in Model 1, 468

Dynamic strings, 119
DynamicAttributes interface, 279–280
DynamicAttributeTag.java Servlet, 280
DynamicAttributeTagTest.jsp JSP, 281–282
DynamicImage.java Servlet, 54–55

E
Ease of use

custom tags for, 261
multi-client support for, 557

edit.java Servlet, 675–681

740 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 740

edit.jsp JSP, 677–678
EditCookies.java Servlet, 398–402
Editing

cookies, 398–402
FAQ, 686–687
news, 675–681

Egg for book support site, 726–733
egg.jsp JSP, 727
EJB (Enterprise JavaBeans), 591, 640
EL. See Expression Language (EL)
el-enabled element, 134
Elements in JSP, 116
Email, error pages for, 187–191
EmailErrorPage.jsp JSP, 187–191
Encapsulating

business logic, 507
template text, 165

encodeRedirectURL method, 405
EncodeURL.jsp JSP, 405–406
encodeURL method, 405–406, 582
Encoding

content, 514
ISO-8859-1, 514–517
non-ISO-8859-1, 518–523
UCS-2, 518
Unicode, 517–518

URLs, 253–254
Encryption, 443–448

compression and caching with, 453–455
effectiveness of, 452–453
HTTPS, 448–452

end attribute, 245
endTag method, 573–575
EnhancedErrorPage.jsp JSP, 178–181
EnhancedErrorPageTest.jsp JSP, 181
enListingd page, 584
Enterprise JavaBeans (EJB), 591, 640
Environment agnostic JavaBeans, 226
Equal signs (=)

in expression language, 230
in SELECT, 603

equals method, 348
Errata for book support site

pages for, 687, 700–701
suggested by users, 701–702

errata.jsp jSP, 700–701
Errata page, 700–701
Error class, 168–169
error.java Servlet, 714–715
error.jsp JSP, 712–713
error-page element, 182–183
Error pages, 182

in book support site, 713–714
customizing, 186–191

for email, 187–191
exception based, 182–183
HTTP status based, 183–185
for Web Applications, 210

errorPage attribute, 128, 176–177
ErrorPage.jsp JSP, 176–177
Errors and exceptions. See Exception handling
Escape characters

in JSP, 149–150
in Unicode, 520–523

EscapeCharacters.jsp JSP, 150
escapeXml attribute, 239–240
ETags, 436
Event listeners, 102–106, 328
example attribute, 292
ExampleBean.java Servlet, 215
exampleform.html file, 70–71
ExampleRewriter.java Servlet, 585
exception attribute, 186
Exception based error pages, 182–183
Exception class, 168–170
exception-class element, 182
Exception handling, 167–168

in book support site, 712–715
in custom tags, 305–306
finally clause, 174
in JSP, 174–176
logging. See Logging
in Model 1-1/2, 509
philosophy for, 208–210
throwing, 155, 169–172
try and catch statements, 172–174
in Web Applications, 176

error pages for, 182–191
JSP for, 176–179
micro-managing, 176, 181
priorities for, 191
Servlets for, 179–181

exception_type attribute, 186
ExceptionThrower.java Servlet, 172–174
ExceptionThrower.jsp JSP, 173
Exclamation points (!) in expression language, 230
execute method, 614
Expression Language (EL), 110–111, 213, 227

attributes in, 228–229
disabling, 227
functions in, 230–231
for JavaBeans, 232–234
in JSTL, 236, 238–239
literals in, 229–230
operators in, 230
reserved words in, 230
syntax of, 228
uses for, 231–232

INDEX 741

falkner.BM.qxd 8/21/03 7:34 PM Page 741

Expressions
in JSP, 119–120
with templates, 563
thread-safe, 126

extends attribute, 127
Extensibility, multi-client support for, 557
Extensible Stylesheet Language Transformations

(XSLT), 387–388

F
Factories, DAO, 642–649
Failure mappings in Struts, 505
FAQ

adding, 682–686
coding, 702–703
editing, 686–687

faq.java Servlet, 682
faq.jsp JSP, 682
FastCGI, 3
Fault tolerance, cache filters for, 386–387
Feedback

in book support site, 687
pages for, 702–703

Fields in databases, 593
File class, 101
File Upload API, 85–87
FileHandler class, 197
FileNotFound.jsp JSP, 184–186
files, uploading, 72–87
fileupload.html file, 83–85
FileUpload.java Servlet, 77–84
FileUploadCommons.java Servlet, 85–87
filter element, 338
filter-class element, 338
Filter interface, 336–337
filter-mapping element, 341, 726
filter-name element, 338
FilterChain class, 337, 339–340
FilterConfig class, 337, 350–351
Filters, 333–335

for book support site, 662–664, 722–726
cache, 371–385

for fault tolerance, 386–387
for Servlet responses, 385–386

chains of, 334–335, 339–350
coding, 336–339
compression, 357–371
configuring, 350–351
with declarative security, 425
for JSP-replacing functionality, 387–388
life cycle of, 335–336
in Model 2, 487–490

request dispatching with, 351–352
in security, 453–454
in Servlets, 33

finally clause, 174
findAncestorWithClass method

in SimpleTagSupport, 314–315
in TagSupport, 305, 313–315

findAttribute method, 221, 228
FINE log level, 200–201
FINER log level, 200–201
FINEST log level, 200–201
finishResponse method, 360
first method, 618
Float literals, 229
Flow control XML tags, 256
flush method

in BodyTag, 322
in CacheResponseStream, 380
in GZIPResponseStream, 362

flushBuffer method
in CacheResponseWrapper, 379
in GZIPResponseWrapper, 360

Flushing buffers, 155
FooApplet.java Servlet, 141–143
FooTag.java Servlet, 303–304
footer.jsp JSP, 130–131, 137–138
Footers

for book support site, 689–692
in JSP, 135–136

FOP (Formatting Objects Processor)
for PDF, 587–588
for transformations, 565

forEach tag, 243–246
Foreign keys, 593, 625
Form-based authentication, 438–440
form-bean element, 500–501
form-beans element, 500–501
form-error-page element, 439–440
form-login-page element, 439
Format, separating from content, 555–557
format attribute, 278
Format class, 539
format method

in CustomFormatter, 198–199
in DateFormat, 544, 546
in Formatter, 197
in NumberFormat, 544, 546

FormatDateLocaleTest.jsp JSP, 283–285
FormatDateTag.java Servlet, 276–278
FormatDateTagTest.jsp, 278–279
formatMessage method, 197–198
FormattedDateTag.java Servlet, 308–309
Formatter class, 197–199
Formatting log records, 197–199

742 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 742

Formatting Objects Processor (FOP)
for PDF, 587–588
for transformations, 565

Forms, 392
for authentication, 438–440
for HttpServletRequest, 67–72

forName method, 607–608
forTokens tag, 243, 246–247
forward action, 143–144
forward element, 502
forward method

in PageContext, 154
in RequestDispatcher, 88, 351–352

Forward slashes (/)
in expression language, 230
for URIs, 268

Forwarding in JSP, 156
Four-way SSL handshakes, 446–447
401 Unauthorized responses, 433–434
403 Access Denied responses, 434
404 pages, 184–185
fragment attribute, 293
fragment element, 277
Fragments in JSP, 110
Free chapters page, 699
French content, 703–709
FROM clause, 601–602
Functions, 230–231

G
General-purpose tags, 239–243
GenericServlet class, 47
GET requests, 36–37, 39–40

for JavaBeans, 214–216
in role-based security, 428

getAdaptee method, 314
getAttribute method

in HttpServletRequest, 187
in HttpSession, 393–394
in PageContext, 154, 321, 325–326

getAttributeNames method, 393
getAuthType method, 441
getAutoCommit method, 616
getBodyContent method, 323
getColumnCount method, 623
getColumnType method, 623
getComment method, 396
getConcurrentUsers method, 104
getConnection method, 606
getContentEncoding method, 518
getContentLength method, 354, 357
getContentType method, 354
getContextPath method, 63

getCookies method, 229, 397, 399
getCount method

in Link, 347
in LinkTrackerFilter, 343

getCreationTime method, 410
getDateHeader method

in AuditRequestWrapper, 354
in HttpServletRequest, 65

getDays method, 344
getDescription method, 643
getDomain method, 396
getEnclosingWriter method, 322
getFilterName method, 350
getFormatter method, 197
getHeader method

in AuditRequestWrapper, 354, 357
in Formatter, 198
in HttpServletRequest, 64

getHeaderNames method, 65
getHeaders method

in HttpServletRequest, 65, 525
in ServletRequest, 229

getInitParam method, 93
getInitParameter method

in FilterConfig, 351
in ServletConfig, 47

getInitParameterNames method, 351
getInitParamNames method, 93
getInputStream method, 73
getInstance method

in DateFormat, 544
in NumberFormat, 544

getIntHeader method
in AuditRequestWrapper, 354
in HttpServletRequest, 65

getLanguage method, 529
getLastAccessedTime method, 410
getLastVisited method, 347
getLevel method, 201
getLink method, 641
getLocale method, 544
getLogger method, 202, 206–207
getMaxAge method, 396
getMetaData method

in DatabaseMetaData, 617
in ResultSet, 622

getMoreResults method, 624
getName method

in Cookie, 396
in User, 222

getNamedDispatcher method, 88
getObject method, 619
getOut method, 324
getOutputStream method

in CacheResponseWrapper, 379

INDEX 743

falkner.BM.qxd 8/21/03 7:34 PM Page 743

getOutputStream method continued
in GZIPResponseWrapper, 361
in HttpServletResponse, 52–53

getParameter method
in HttpServletRequest, 67, 73, 80, 518–519
in ServletRequest, 229

getParameterNames method, 69, 71
getParameters method, 67–68, 71
getParent method, 272, 300, 303
getPassword method, 222
getPath method, 396
getPreviousOut method, 323
getProperty action, 144, 220–223, 226
getProperty.jsp JSP, 222–223
getProtocol method, 441–442
getQueryString method, 354, 357
getReader method

in BodyTag, 322
in HttpServletRequest, 73

getRealPath method, 96, 101
getReferers method, 349

in LinkTracker, 719
in LinkTrackerFilter, 344

getRequestDispatcher method, 88
getRequests method, 349

in LinkTracker, 719
in LinkTrackerFilter, 344

getRequestURI method, 346
getResource method, 97
getResourceAsStream method, 96–97, 99
getResourcePaths method, 96, 99
getResponse method, 349
getResponses method

in LinkTracker, 719
in LinkTrackerFilter, 344

getSecure method, 396–397
getServlet method, 499
getServletConfig method, 47, 93
getServletContext method, 499

in FilterConfig, 351
in ServletConfig, 93

getSession method, 392–393, 407
getStatement method, 635
getStory method, 641
getString method, 322, 619
getTail method, 198
getTitle method

in LinkBean, 643
in News, 641
in Welcome, 535

getType method, 618
getUrl method

in Link, 347
in LinkBean, 643

getUserPrinciple method, 442

getValue method
in Cookie, 397
in ExampleBean, 215

getVariableInfo method, 327
getVersion method, 397
getWelcome method, 535
getWriter method

in CacheResponseWrapper, 379
in GZIPResponseWrapper, 361
in HttpServletRequest, 156
in HttpServletResponse, 52

global-forward elements, 501
global-forwards element, 501
Good coding practice, 125–126
Greater than signs (>)

in expression language, 230
in SELECT, 603

gt operator, 230
gte operator, 230
gzip compression, 358, 368, 370
GZIPFilter.java Servlet, 358–359
GzipOutputStream class, 358–359
GZIPResponseStream.java Servlet,

362–364
GZIPResponseWrapper class, 359–360
GZIPServletResponseWrapper class, 364

H
Handler class, 194, 196–197
Handlers for logging, 196–199
Hashes (#), 517
Hashtable class, 344–345
HEAD method, 40
header implicit object, 229
header.jsp JSP

Model 1, 463–464
purpose of, 130

Headers
auto-refresh and wait pages for, 63–64
for book support site, 689–692
in HTTP, 38–39
for HttpServletRequest, 64–67
for HttpServletResponse, 56–57
in JSP, 135–136, 156
redirection with, 57–63

headerValues implicit object, 229
height attribute, 140
hello.tag file, 288
HelloDate.jsp JSP, 145–147
HelloSimpleTag.java Servlet, 273–274
HelloSimpleTagFileTest.jsp JSP, 289
HelloSimpleTagTest.jsp JSP, 274–275

744 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 744

HelloWorld.java Servlet
coding, 42–43
deploying, 43–47

HelloWorld.jsp JSP
multi-client, 568–569
Servlet equivalent, 112–114

HelloWorldFilter.java Servlet, 337–338
HelloWorld$jsp class, 114–115
HolaMundo.jsp JSP, 516–517
Host field, 68
hspace attribute, 140
hsqldb, installing, 595
HTML

for forms, 67–77
headers for, 57
links in, 60–61
println in, 52–53

HtmlHandler.java Servlet, 571–575
HTTP (Hyper Text Transfer Protocol)

headers in, 38–39
requests in, 36–37, 39–40
response codes in, 38, 40–41
responses in, 37–39
Servlets in, 32
session state in. See Session state
Tomcat ports for, 17–18

HTTP 404 exception code, 184–185
http-method element, 428
HTTP status based error pages, 183–185
HTTPS, 448–452
HttpServlet class, 35, 41

coding objects in, 41–43
life cycle of objects in, 41–42

HttpServletRequest class, 42, 51, 64
for file uploads, 72–87
form data and parameters for, 67–72
headers for, 64–67
request delegation in, 87–89
request scope in, 89–92
for security information, 441
thread safety with, 415
with wrappers, 353–354

HttpServletRequestWrapper class, 353
HttpServletResponse class, 42, 51–56

response headers for, 56–57
auto-refresh and wait pages for, 63–64
redirection in, 57–63

thread safety with, 415
for URL rewriting, 404–406

HttpServletResponseWrapper class, 357
HttpSession class, 392–394

for shared objects, 421
timeouts with, 410–411

HttpSessionActivationListener interface, 408–409
HttpSessionBindingListener interface, 409

HttpSessionEvent class, 407
HttpSessionListener interface, 103–104, 406–407,

413–414
Hyper Text Transfer Protocol (HTTP)

headers in, 38–39
requests in, 36–37, 39–40
response codes in, 38, 40–41
responses in, 37–39
Servlets in, 32
session state in. See Session state
Tomcat ports for, 17–18

I
i18n. See Internationalization
i18n-capable text formatting, 236
i18n_exchange.jsp JSP, 540–543
i18n filter, 663
i18n_static.jsp JSP, 542–543
i18n_static property file, 543
i18nHelloWorld.java Servlet, 520–522
i18nHelloWorld.jsp JSP, 523
id attribute, 217
IDs for session state, 391
if tag, 247–249
IllegalStateException exception, 144, 155–156
Image rollover, 295–296, 511–512
image tag, 567
image.tag file, 731–732
ImageEncoder class, 56
Implicit objects, 150–153

in EL, 228–229
out, 154–155
page, 159
pageContext, 153–154

import attribute
in page, 127
in tag, 292

import tag, 250–252
include action, 136–139, 147
include-coda element, 134–135
include directive, 129–132, 291
include method

in PageContext, 154
in RequestDispatcher, 88, 351–352

include-prelude element, 134–135
included-coda element, 134
index-fra.jsp JSP, 703–704
index.html file, 21–23
index.java Servlet

for book support site, 669
Model 2, 478

index-jpa.jsp JSP, 710
index-jpn.jsp JSP, 709–710

INDEX 745

falkner.BM.qxd 8/21/03 7:34 PM Page 745

index.jsp JSP, 501
for book support site, 673–674, 688–689, 692
business logic for, 668–670
Model 1, 460, 466, 469
Model 2, 480–481

IndexAction class, 501–502
IndexAction.java Servlet, 498–500, 502
INFO log level, 200
info method, 195
init method

in AuditFilter, 355
in ControlFilter, 475
in Filter, 336
in FooApplet, 141
in GZIPFilter, 359
in HelloWorldFilter, 338
in LinkTrackerFilter, 343
in MCTemplateFilter, 560
in Servlet, 34
in SimpleI18nFilter, 528

init-param element, 47
Initialization

for custom tags, 271
of JavaBeans, 225
in Servlet life cycle, 34
of session resources, 406–407

InnerTag class, 311–315
Inquiry in language detection, 524
INSERT statement, 597–600
Installing

hsqldb, 595
J2SE 1.4

on Linux, 7–8
on Windows, 7

JSTL, 237–238
multi-client tags, 566
Struts framework, 491
Tomcat

on Linux and OS X, 15–17
on Windows, 9–15

Instance data scope, thread safety with, 415
Integrity

in databases, 598
in security, 425

Internationalization, 33, 513
in book support site, 663, 703–711
content abstraction for, 531–533

JSTL I18N message tags, 537–539
resource bundles for, 533–537

content encoding in, 514
ISO-8859-1, 514–517
non-ISO-8859-1, 518–523
UCS-2, 518
Unicode, 517–518

custom tags for, 263
implementation techniques for, 523–524

language detection in, 524–526
of messages, 544–550
multiple pages for, 527–531
numbers and dates, 539

DateFormat and NumberFormat for,
543–544

JSTL tags for, 549
at runtime, 540–543

InternationalizedHelloWorld.java Servlet, 48–50
InternationalizedHelloWorld.jsp JSP, 157–159
Internet Protocol (IP), 390
Introspector class, 216
invalidate method, 410–411
IOException exceptions, 182
IP (Internet Protocol), 390
IP addresses, 390–391
is-xml element, 134–135
isELEnabled attribute, 129
isELIgnored attribute, 292
isErrorPage attribute, 128, 176–178
isNew method

in HttpSession, 411
for session resources, 406

ISO 639-2, 659
ISO-8859-1 encoding, 514–517
ISO-8891-1 characters, 516
isScriptingEnabled attribute, 129, 227
isSecure method, 442, 451
isThreadSafe attribute, 128
isUserInRole method, 441–442
items attribute

in forEach, 245
in forTokens, 246

Iteration.jsp JSP, 119–120
Iteration tags, 315–316

coding, 316–321
custom, 264, 285–287
in JSTL, 236, 243–247

IterationTag Interface, 316

J
J2EE (Java 2 Enterprise Edition), 32
J2SE 1.4 (Java 2 Standard Edition 1.4)

compiling, 9
downloading, 6–7
installing

on Linux, 7–8
on Windows, 7

JAI (Java API for Advanced Imaging), 53–54, 56
Jakarta Commons Pool project, 634
Jakarta Mailing List page, 19
Jakarta Struts. See Struts framework
Japanese content, 709–711
JAR (Java Archive) files, 25, 270, 290

746 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 746

Java 2 Enterprise Edition (J2EE), 32
Java 2 Standard Edition 1.4 (J2SE 1.4), 6–7

compiling, 9
downloading, 6–7
installing

on Linux, 7–8
on Windows, 7

Java API for Advanced Imaging (JAI), 53–54, 56
Java Archive (JAR) files, 25, 270, 290
java.beans.BeanInfo class, 216
java.beans.Introspector class, 216
java.beans.PropertyDescriptor class, 216
Java Community Process (JCP), 32, 235
JAVA_HOME environment variable, 15–16
java.io.File class, 101
java.io.OutputStream class, 53
java.io.PrintWriter class, 52, 145, 519
java.io.Serializable interface, 214, 412–413
java.io.Serialization interface, 408
java.lang.Character class, 517
java.lang.Throwable class, 168–172
Java Naming Directory Interface (JNDI), 613–614
java.net.URL class, 370, 631
java.net.URLConnection class, 631
Java Server Pages. See JSP (Java Server Pages)
Java Specification Request (JSR), 235
java.sql.Connection class, 614–617
java.sql.DatabaseMetaData class, 617
java.sql.ResultSet interface, 617–624
java.sql.Statement class, 614–615
java.text.DateFormat class, 539, 543–544
java.text.Format class, 539
java.text.MessageFormat class, 539, 544–550
java.text.NumberFormat class, 539, 543–544
java.util.Date class, 276–277, 542–543
java.util.Locale class, 534, 544
java.util.logging package, 193–196
java.util.logging.Level class, 200–201
java.util.Properties class, 232–234, 480
java.util.ResourceBundle class, 533, 536
Java Virtual Machines (JVMs), 10, 12–13
JavaBeans, 110, 213–214

actions in, 144–145, 216
jsp:getProperty, 221–223
jsp:setProperty, 223–224
jsp:useBean, 217–221

design patterns for, 226
expression language for, 232–234
get and set methods for, 214–216
initializing, 225
specification for, 216
uses for, 225–226

JavaServer Pages Standard Tag Library. See JSTL
(JavaServer Pages Standard Tag Library)

javax.servlet.error.exception attribute, 186
javax.servlet.error.exception_type attribute, 186

javax.servlet.error.message attribute, 186
javax.servlet.error.request_uri attribute, 186–187
javax.servlet.error.servlet_name attribute, 187
javax.servlet.error.status_code attribute, 186
javax.servlet.Filter interface, 336–337
javax.servlet.http.HttpServlet class, 35, 41–43
javax.servlet.http.HttpSession class, 392–394,

410–411, 421
javax.servlet.http.HttpSessionListener interface,

103–104, 406–407, 413–414
javax.servlet.jsp.JspWriter class, 154–156, 586
javax.servlet.jsp.PageContext class, 153–154
javax.servlet.jsp.tagext.SimpleTag interface,

271–275
javax.servlet.jsp.tagext.tagLibraryValidator class,

329
javax.servlet.jsp.tagtext.DynamicAttributes interface,

279–280
javax.servlet.jsp.tagtext.VariableInfo class, 327
javax.servlet.Servlet interface, 34
javax.servlet.ServletContext interface. See

ServletContext interface
javax.servlet.ServletOutputStream class, 53, 380
javax.servlet.ServletRequest class, 34, 339–340
javax.servlet.ServletResponse class, 34, 339–340
javax.servlet.SingleThreadModel interface, 420–421
javax.sql.DataSource interface, 606–614
JCP (Java Community Process), 32, 235
JDBC API, 605–606

for connection pooling, 633–634
for connections, 614–615
design patterns in, 638–649
java.sql.Connection and java.sql.Statement,

614–617
java.sql.ResultSet, 617–624
javax.sql.DataSource, 606–614
for meta-data, 617
optimal use of, 632–633
optimized statements in, 634–635
prepared statements in, 635–637
sample application, 624–626
for SQL transactions, 615–617
stored procedures in, 637–638

JNDI (Java Naming Directory Interface), 613–614
joining tables, 626
jreversion attribute, 140
JSESSIONID id, 396
JSP (Java Server Pages), 109

actions in, 136
JavaBean, 144–145
jsp:fallback, jsp:params, and jsp:param,

139–143
jsp:forward, 143–144
jsp:include, 136–139, 144
tag file, 145

attributes in, 147

INDEX 747

falkner.BM.qxd 8/21/03 7:34 PM Page 747

JSP continued
comments in, 147–149
configuring, 133–135
declarations in, 120–125, 162–163
directives in, 126–133
elements and template data in, 116
error handling in, 176–179
expression language in. See Expression

Language (EL)
expressions in, 119–120
forwarding in, 156
good coding practice in, 125–126
headers and footers in, 135–136, 156
implicit objects for, 150–153

out, 154–155
page, 159
pageContext, 153–154

JSP 2.0 Specification, 110–111
life cycle, 111–112
quoting and escape characters in, 149–150
response committed exceptions in, 155–156
scriptlets in, 117–118
Servlet exceptions in, 174–176
vs. Servlets, 112–115
syntax types in, 116–117
tag handlers and TLDs with, 306–308
for Web Applications, 20
web.xml for, 157–159
whitespace in, 145–147
in XML syntax, 159–165, 271

jsp-config element, 133
jsp:doBody action, 299
jsp-file element, 157
jsp:forward, 143–144
jsp:getProperty action, 144, 220–223, 226
jsp:include action, 136–139, 144, 147
jsp:include directive, 129–132
_jsp_init method, 114
jsp-page element, 157
jsp:param action, 139–143
jsp:params action, 139–143
jsp:plugin action, 139–143
jsp-property-group element, 133–135
JSP-replacing functionality, filters for, 387–388
jsp:setProperty action, 144, 220, 223–224, 226
jsp:useBean action, 217–221, 225–226
jsp-version element, 267
jspbook_site.xml file, 660–661
jspbook Web Application, 21–22
JSPComment.jsp JSP, 147–148
jspDestroy method, 111
JSPDirectives.jsp JSP, 165
JSPDocument.jsp JSP, 160–161
JSPDocumentDirectives.jsp JSP, 164
JspException exceptions, 182
JspFragment type, 285

jspInit method, 111
_jspService method

in HelloWorld$jsp, 114
in JSP life cycle, 111
for thread safety, 126

JspWriter class, 154–156, 586
_jspx_init method, 122
_jspx_service method, 122–125
JSR (Java Specification Request), 235
JSTL (JavaServer Pages Standard Tag Library), 235

benefits of, 237
expression language in, 236, 238–239
installing, 237–238
specification for, 235–237
tags in

conditional, 247–250
core, 239
general-purpose, 239–243
I18N message, 537–539
iteration, 243–247
message tags with parameters, 549–550
number and date, 549
SQL, 256–258
URL, 250–254
XML, 255–256

jstl_messageformat.jsp JSP, 550
jstl_welcome.jsp JSP, 538
JSTLchoose.jsp JSP, 249–250
JSTLforTokens.jsp JSP, 247
JSTLif.jsp JSP, 248
JSTLimport.jsp JSP, 252
JSTLIteration.jsp JSP, 245
JSTLIterationComplex.jsp JSP, 245–246
JSTLout.jsp JSP, 240
JVMs (Java Virtual Machines), 10, 12–13

K
Key encryption, 443–445
keyboards for languages, 514–515
Keys

in databases, 593, 625
in security, 444–446, 453

.keystore files, 450
keytool utility, 450–451

L
Labor division, 657
language attribute

in page, 127
in tag, 292

Languages. See Internationalization

748 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 748

large-icon attribute, 292
last method, 618
Latin-1 encoding, 514–517
Layered functionality in Model 2, 488–490
Less than signs (<)

in expression language, 230
for scriptlets, 117
in SELECT, 603

Level class, 200–201
Levels of logged information, 200–201
lib folder, 238
lib/struts.jar file, 491
lib/struts*.tld files, 492
Libraries, tag

custom. See Custom tags
JSTL. See JSTL (JavaServer Pages Standard Tag

Library)
Licenses for Tomcat, 10
Licensing terms, 8
Life cycles

containers for, 5
custom tags, 271–272, 300–303
filters, 335–336
HttpServlets, 41–42
JSP, 111–112
Servlets, 33–35

LIKE operator, 603
Link.java Servlet, 347–348
link tag, 567
LinkBean.java Servlet, 642–643
LinkChecker.jsp JSP, 629–631
LinkComparator.java Servlet, 348
LinkFactory.java Servlet, 543, 643–647
LinkIterationTag.java Servlet, 318–319
LinkIterationTag.jsp JSP, 319–320
LinkIterationTagVariable.jsp JSP, 326
LinkIterationTEI class, 327
Links

in book support site, 717–721
in databases, 628–632
in HTML, 61–62

links.jsp JSP, 583–584
LinkTracker.java Servlet, 59–62, 584, 719
linktracker.jsp JSP, 349–350, 718–720
LinkTrackerFilter.java Servlet, 341–348,

717–718
Linux distributions

installing J2SE 1.4 on, 7–8
installing Tomcat on, 15–17

listener element, 104, 407
listener-class element, 104, 407
Listeners, 102–106, 328
listFiles method, 98–99
Literals, 229–230
Load balancing, 411–414

Loading sessions, 407–409
Local loopback, 391
Local variable scope, thread safety with, 414–415
Locale class, 534, 544
Locale information for resource bundles, 534
Localized content. See Internationalization
location element, 182–183
Location field, 58
log method

in Logger, 201
in ServletContext, 100, 192

Log4j API, 193
Logger class, 194–195, 199–201
Logger.jsp JSP, 194–195
Logging, 191

application-wide, 100–101
in book support site, 713–715
for filters, 345–346
handlers for, 196–199
java.util.logging package for, 193–196
JDK 1.4 vs. Log4j, 193
loggers for, 199–207
performance with, 208–210
philosophy for, 208–210
with println, 192–193
in Web Applications, 202–207

Logic. See Business logic
Logic operators, 230
login-config element, 428, 438–439
LogRecord class, 196
Long literals, 229
Loop.jsp JSP, 118
lt operator, 230
lte operator, 230

M
MAC (Message authentication code), 447
Macintosh OS X, installing Tomcat on, 15–17
Macro-managing exceptions, 181
Mailing lists for Tomcat, 19
Maintenance, design patterns for, 458
Many-to-many relationships, 594
Map class, 229
Mapping

paths, 45
Struts actions, 505–506

MCexampleHTML.jsp JSP, 561
MCexampleXHTML.jsp JSP, 561
MCT framework

for headers and footers, 689–692
for URL rewriting, 583–586

MCTemplateFilter.java Servlet, 558–560
MemoryHandler class, 196

INDEX 749

falkner.BM.qxd 8/21/03 7:34 PM Page 749

message attribute, 186
Message authentication code (MAC), 447
message tag, 538
MessageFormat class, 539, 544–550
messageformat_fr.properties file, 547
messageformat.jsp JSP, 545, 547–549
messageformat.properties file, 547
Messages, internationalization of, 544–550
Meta-data

database, 617
ResultSet, 622–623

Method parameters scope, thread safety with, 415
Micro-managing exceptions, 176, 181
MIME types, 73

with cached responses, 377
for multi-client support, 581

Minus signs (-) in expression language, 230
Mixing new tags with classic, 313–315
MockError.java Servlet, 94–96
Model 1 design pattern, 459

characteristics of, 467–468
in JDBC, 639
weaknesses of, 468–472
Web site, 459–467

Model 1-1/2 design pattern, 507–510
Model 2 design pattern, 472–474

for book support site, 662–665
abstract logic component, 665–668
adding news, 670–674
editing news, 675–681
FAQ, 682–687
faq.jsp, 682
feedback and errata pages, 687
index.jsp, 668–670
overly complex components, 687

characteristics of, 484–485
custom tags for, 262–263
implementation of, 487–490
in JDBC, 639
presentation JSP in, 555–557
strengths of, 485–486
weaknesses of, 486–487
Web site, 474–484

Model component in Model 2, 473
Model View Controller (MVC). See Model 2 design

pattern
Mouse events, 295–296
mt:classicTag tag, 314
mt:simpleTag tag, 314
Multi-client support, 553–555

client type detection in, 578–581
custom tags for, 263–264
implementing, 557–558
interface for, 566–569
non-text formats for, 586–588

printer-friendly formats for, 581–582
for separating format from content, 555–557
templates for, 558–563
transformations for, 563–566, 569–577
URL rewriting for, 582–586

Multi-Client Tags framework, 565–567
multipartform.html file, 74–76
Multiple authentication schemes, 437
Multiple pages for internationalization, 527–531
Multiple results in JDBC, 623–624
Mutual authentication, 446
MVC (Model View Controller). See Model 2 design

pattern
MySQL, 594, 638

N
name attribute

in attribute directive, 293
in getProperty, 221, 223
in jsp:plugin, 140
in param, 253
in setProperty, 223

name element
in attribute, 277
in tag, 267

name-from-attribute element, 325
name-given attribute, 296
name-given element, 325
Name-value pairs for cookies, 395
Namespaces, XML, 271
NAT (Network Address Translation), 390
Nested body tags, 324
Network Address Translation (NAT), 390
News

adding, 670–674
editing, 675–681
suggested by user, 695–696

News.java Servlet, 640–642
next method, 618
NoJavaBean.jsp bean, 232–233
Non-ISO-8859-1 encoding, 518–523
Non-text formats for multi-client support, 586–588
nonce parameter, 435
Normal syntax type in JSP, 116–117
not logic operator, 230
NotThreadSafe.java Servlet, 417–418
Null literals, 230
Number formatting, 539

DateFormat and NumberFormat for, 543–544
JSTL tags for, 549
at runtime, 540–543

Number signs (#), 517
NumberFormat class, 539, 543–544

750 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 750

O
OFF log level, 200
One-to-many relationships, 594
One-to-one relationships, 594
Operators

in expression language, 230
in SELECT, 603

OPTIONS method, 40
OR operator

in expression language, 230
in SELECT, 601

org.apache.struts.action.Action class, 496, 499
org.apache.struts.action.ActionForm class,

496–497
org.apache.struts.action.ActionMapping class, 496
OS X, installing Tomcat on, 15–17
otherwise tag, 249
out action, 239–240
out implicit object, 154–155
“Out of environment space” error, 14–15
OutputStream class, 53

P
p tag, 567
Packages, 20
page directive, 127–128
page-encoding element, 134
page implicit object, 159
Page scope, 154
page tag, 567
page value in scope, 217
PageContext class, 153–154
pageContext implicit object, 153–154
PageCounter$jsp.java Servlet, 121–125
PageCounter.jsp JSP, 120–121
PageCounter2.jsp JSP, 298
PageData class, 330
pageEncoding attribute

in page, 129, 519–521
in tag, 292

pageScope implicit object, 228
paragraph tag, 567
param action, 139–143
param implicit object, 228–229
param-name element, 47, 50
param tag, 252–253, 538
param-value element, 47, 50
Parameters

in functions, 231
for HttpServletRequest forms, 67–72

params action, 139–143
paramValues implicit object, 229

Parentheses () in expression language, 231
parseRequest method, 87
Passivated sessions, 408
Passwords

in digest authentication, 436
in role-based security, 429–430

Path mapping, 45
PDF format

FOP framework for, 587–588
for HelloWorld.jsp, 568–569

Percent signs (%) for scriptlets, 117
perform method

in Action, 496
in ActionForward, 500
in AddNewsAction, 503–504
in BlankAction, 497
in IndexAction, 498–499, 502

Performance with logging, 208–210
Persistent state, 411–412

databases for, 413–414
session smearing for, 412–413

Persisting language information, 526
Persisting sessions, 407–409
plugin action, 139–143
Plus signs (+) in expression language, 230
Pooling

in CGI, 3
connections, 633–634

Populating request-scope variables, 665
Portability, custom tags for, 260
Ports for Tomcat, 17–18
POST requests, 39–40, 428
PostgreSQL, 594
Pound signs (#), 517
Pragma field, 58
Pre-built Control component, 507
prefix attribute, 537–538
prelude_fr.properties file, 707–708
prelude_ja.properties file, 710
prelude.jsp JSP

for headers and footers, 689–691
image.tag with, 732
updated, 705–707

Premaster keys, 446
Prepared statements, 635–637
PreparedStatement interface, 635–637
prepareStatement method, 635–636
Presentation

for book support site, 687–688
about page, 697–699
Cascading Style Sheets for, 693–695
code page, 699
errata page, 700–701
errata suggested by users, 701–702
FAQ pages and feedback pages, 702–703

INDEX 751

falkner.BM.qxd 8/21/03 7:34 PM Page 751

Presentation continued
free chapters page, 699
localized content, 703–711
MCT headers and footers for, 689–692
news suggested by user, 695–696
page for, 688–689

in Model 2, 473, 485–488, 555–557
previous method, 618
Primary keys, 593
Principals, security, 424
print method, 52
Printer-friendly formats, 581–582
println method

logging with, 192–193
in PrintWriter, 52

PrintWriter class, 52, 145, 519
Priorities for exception handling, 191
Private keys, 444
Programmatic security, 440–443
Properties class, 232–234, 480
property attribute

in set, 241
in setProperty, 223

PropertyDescriptor class, 216
Public keys, 444–445

Q
Quantum Computers, 452
query strings, 39
Quoting in JSP, 149–150

R
Read action in CRUD, 597
read method

in LinkFactory, 644, 646
in News, 641–642

README file for JSTL, 238
readObject method

in Serializable, 412
in Serialization, 408

Realms, 430–432
Reason phrase, 40–41
redirect tag, 254
Redirection, response, 57–63
Redundancy, multi-client support for, 557
Referers, 58
Relational databases, 592
Relationships in databases, 594
Relative URIs, 268–269
release method

in custom tags, 300–301, 310
in Tag, 302

remove action, 242
removeAttribute method

in HttpSession, 394
in PageContext, 154

Replay attacks, 434
request implicit object, 151
Request scope, 89–92
Request-scope variables, populating, 665
request_uri attribute, 186–187
request value in scope, 217
RequestDispatcher class, 88, 351–352
Requests

in client/server servlet programming, 51
delegation of, 87–89, 154
dispatching with filters, 351–352
in HTTP, 36–37, 39–40. See also

HttpServletRequest class
wrapping, 353–357

requestScope implicit object, 228
required attribute, 293
required element, 277
Reserved Words, 230
reset method

in CacheResponseStream, 381
in GZIPResponseStream.java, 363

Resource bundles, 533–537
ResourceBundle class, 533, 536
Response codes, 38, 40–41
Response headers

auto-refresh and wait pages for, 63–64
for HttpServletResponse, 56–57
redirection with, 57–63

response implicit object, 151
Responses

in client/server servlet programming, 51
committed exceptions with, 155–156
in HTTP, 37–41. See also HttpServletResponse

class
wrapping

cache filters, 371–385
compression filters, 357–371

ResultSet interface, 617–624
Retry-After field, 58
Reusable filters, 489–490
Reusable layered functionality, 488
Reusing tags, 308–309
rewrite method, 585
Rewriting, URLs, 392

for multi-client support, 582–586
operation of, 403–406

Role-based security, 426–431, 441
role-link element, 442
role-name element, 428, 442
rollback method, 616
rollover.html file, 294

752 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 752

rollover.jsp JSP, 296
rollover.tag file, 295–296, 511–512
Rollovers, image, 295–296, 511–512
Rows in databases, 592–593

deleting, 605
inserting, 597–600
selecting, 600–603
updating, 603–604

rtexprvalue attribute, 293
rtexprvalue element, 277
Rules in XML syntax, 162
Runtime

attribute values at, 282–285
includes at, 138
number and date formatting at, 540–543

RuntimeException class, 168–169
runtimeInclude.jsp JSP, 137–138

S
SAXParser class, 577
Scope

application, 95–96, 218
attribute, 228
page, 154
request, 89–92
session, 393–395

scope attribute
in if, 248
in import, 251
in remove, 242
in set, 241
in url, 254
in useBean, 217–218
in variable, 297

scope element, 325
Scripting elements

declarations, 120–125
directives, 126–133
expressions, 119–120
good coding practice in, 125–126
scriptlets, 117–118
tag variables, 324–328
from XML, 163–164

scripting-enabled element, 134, 227
ScriptletIteration.jsp JSP, 243
Scriptlets, 117–118
Security, 423–425

for book support site, 715–717
declarative. See Declarative security
encryption in, 443–448

compression and caching with, 453–455
effectiveness of, 452–453
HTTPS, 448–452

programmatic, 440–443
in servlets, 33

security-constraint element, 427, 432
Security Principals, 424
security-role element, 443
security-role-ref element, 442–443
SELECT statement, 600–603
semi-colons (;) for ISO-8891-1 characters, 516
sendRedirect method, 59, 62–63
Separating content

from format, 555–557
from logic, 260–261

Serializable interface, 214, 412–413
Serialization interface, 408
Server authentication, 446
Server field, 58
Server-side includes, 130
server.xml file, 21, 608–609
service method

in HttpServlet, 41
in Servlet, 34

Service phase in Servlet life cycle, 34
servlet element, 43–44
servlet-class element, 44
Servlet interface, 34
servlet-mapping element, 43–44, 46, 158
servlet_name attribute, 187
servlet-name element, 44, 420
Servlet2Servlet.java Servlet, 90
Servlet2Servlet2.java Servlet, 91–93
ServletConfig class, 47, 93
ServletContext interface, 92

for application scope, 95–96
for application-wide logging, 100–101
for distributed environments, 101
for logging, 192
for shared objects, 421
for temporary directory, 101–102
for virtual directory translation, 96–99
for Web Application parameters, 92–95

ServletException exceptions, 182
ServletOutputStream class, 53, 380
ServletRequest class, 34, 229, 339–340
ServletRequestListener class, 413–414
ServletRequestWrapper class, 353
ServletResponse class, 34, 339–340
ServletResponseWrapper class, 357
Servlets

caching responses in, 385–386
configuring, 47–51
deploying, 43–47
error handling in, 179–181
exceptions in, 174–176
filters in, 33
HTTP, 32

INDEX 753

falkner.BM.qxd 8/21/03 7:34 PM Page 753

Servlets continued
for internationalization, 33
vs. JSP, 112–115
life cycle of, 33–35
purpose of, 4, 31
security in, 33
for Web Applications, 32

session attribute, 127–128
Session backup, 411
session-config element, 410
Session-ids, 439
session implicit object, 151
Session state, 390–391

bound objects in, 409–410
client IDs for, 391
cookies for, 395–403
HttpSession for, 392–393
persisting and loading sessions in, 407–409
resource initialization in, 406–407
scope in, 393–395
in thread safety, 415, 421
timeouts in, 410–411
URL rewriting for, 403–406

session-timeout element, 410
session value, 217
sessionCreated method

in ConcurrentUserTracker, 104
in HttpSessionListener, 103, 407

sessionDestroyed method
in ConcurrentUserTracker, 104
in HttpSessionListener, 103, 407

sessionDidActivate method, 408
Sessions

keys for, 445
resource initializations for, 406–407
smearing, 412–413
state in. See Session state
for URLs, 253–254

sessionScope implicit object, 228
sessionWillPassivate method, 408
set action, 241–242
Set-Cookie header, 395
set methods for JavaBeans, 214–216
setAttribute method

in HttpSession, 394
in PageContext, 154

setAutoCommit method, 616
setBodyContent method, 321–322
setComment method, 397
setContentLength method, 361
setContentType method, 519
setDateHeader method, 56–57
setDomain method, 397
setDynamicAttribute method

in DynamicAttributes, 279–280
in DynamicAttributeTag, 280–281

setFormat method
in FormatDateTag, 276
in FormattedDateTag, 309

setFormatter method, 197
setHeader method, 56
setHref method, 582
setInitParameters method, 330
setIntHeader method, 56
setJspBody method, 273, 285
setJspContext method, 273
setLevel method, 201
setLocale method, 519
setMaxAge method, 397
setMaxInactiveInterval method, 411
setName method, 222
setPageContext method, 303
setParent method, 314

in SimpleTag, 273
in Tag, 303

setPassword method, 222
setPath method, 397
setProperty action, 144, 220, 223–224, 226
setProperty.jsp JSP, 224
setSecure method, 397
setStatus method, 57
setString method, 636
setTitle method, 535
setValue method

in Cookie, 397
in ExampleBean, 215

setVersion method, 397
setWelcome method, 535
SEVERE log level, 200
SGMLs (Standard Generalized Markup Languages),

275
Sharing state information, 411–412

databases for, 413–414
session smearing for, 412–413

ShowCookies.jsp JSP, 398
ShowForm.java Servlet, 73–74
ShowHeaders.java Servlet, 66–67, 579
ShowHeaders.jsp JSP, 152–153
ShowIPAddress.jsp JSP, 391–392
ShowLinks.jsp JSP, 627–629
ShowParameters.java Servlet, 69–70
ShowSession.jsp JSP, 392–393
ShowSource.java Servlet, 97–99
ShowTables.jsp JSP, 619–621
shutdown.bat script, 14–15
shutdown.sh script, 17
SimpleFormatter class, 198
SimpleI18nFilter.java Servlet, 528–530
SimpleTag interface, 271–275
simpleTag tag, 314
Single-quotes (‘) in JSP, 149

754 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 754

SingleThreadModel interface, 420–421
SiteLogger.java Servlet, 202–203, 714
SiteLogger.jsp JSP, 205–207
SiteLoggerAdmin.jsp JSP, 204–205
Slashes (/)

in expression language, 230
for URIs, 268

small-icon attribute, 292
SocketHandler class, 197
Source files, 24
Spaghetti code, 657
SQL (Structured Query Language), 594

CRUD acronym in, 597
for database creation, 595–597, 659–661
DELETE statement, 605
INSERT statement, 597–600
installing, 595
JDBC for, 615–617
in JSTL, 256–258
SELECT statement, 600–603
UPDATE statement, 603–604

SSL security, 446–449, 452
standard-docs.war file, 238
standard-examples.war file, 238
Standard Generalized Markup Languages (SGMLs),

275
startLink method, 572–573
startTag method, 571–572, 574–575
startup.bat script, 14–15
startup.sh script, 17
State maintenance, 389–390

persistent state in, 411–414
session state in. See Session state
thread safety in, 414–415

Servlet state in, 416–420
session and application state in, 421
SingleThreadModel for, 420–421
synchronization in, 416

Statement class, 614–615
Static attributes, 275–279
Static files

in Model 1, 467
for Web Applications, 20

Statics scope, thread safety with, 415
status_code attribute, 186
step attribute, 245
Stored procedures, 637–638
StreamHandler class, 196
String class, 282
String literals, 230
Structured Query Language. See SQL (Structured

Query Language)
struts-blank.war file, 492–494
struts-config.xml file, 501–502, 505–506
struts-documentation.war file, 492

struts-example.war file, 492
struts-exercise-taglib.war file, 492
Struts framework, 51, 490–491

actions in, 496–507
contents of, 491–492
Control Servlet, 494–495, 500
installing, 491
for Model 2 design patterns, 472–473
for Web Applications, 492–494
working with, 507

struts.jar file, 491
struts-template.war file, 492
struts-upload.war file, 492
style.css file, 693–695
Style sheets

for book support site, 693–695
for multi-client support, 568

Success mappings in Struts, 505
Support sites, 19
Symmetric key encryption, 443–445
Synchronization in thread safety, 416
synchronized keyword, 416
SynchronizedNotThreadSafe.java Servlet, 419–420
Syntax types in JSP, 116–117
System.err, 195
System.out.println method, 192–193

T
Tables in databases, 592–593
tag-class element, 267
tag directive, 291–292
Tag Extra Information (TEI) classes, 324, 327–328
.tag files, 265, 288–299
Tag interface, 302
Tag Library Descriptors. See TLDs (Tag Library

Descriptors)
tagdir attribute, 289
tagExtraInfo class, 327
taglib directive, 132–133, 291
taglib element, 133, 267–270
taglib-location element, 269
taglib-uri element, 269
TagLibraryExample.jsp JSP, 307
TagLibraryValidator (TLV) classes, 324, 329
Tags and tag libraries

custom. See Custom tags
for internationalization, 537–539
in JSTL. See JSTL (JavaServer Pages Standard

Tag Library)
TagSupport class, 305–306
target attribute, 241
tc tag, 567
TCP as connected protocol, 390

INDEX 755

falkner.BM.qxd 8/21/03 7:34 PM Page 755

tedious_messageformat.jsp JSP, 545–546
TEI (Tag Extra Information) classes, 324, 327–328
teiclass element, 327
Templates and template text

encapsulating, 165
in JSP, 116
for multi-client support, 558–563

Temporary directory, 101–102
test attribute, 247, 249
TestAuditFilter.jsp JSP, 356
TestCache.jsp JSP, 383–385
Thread safety, 124–126, 414–415

Servlet state in, 416–420
session and application state in, 421
SingleThreadModel for, 420–421
synchronization in, 416

ThreadSafe.java Servlet, 418
throw Keyword, 169–170
Throwable class, 168–172
throwCustomException method, 172
ThrowException.jsp JSP, 175
throwException method, 172
ThrowExceptionToErrorPage.jsp JSP, 177
Throwing exceptions, 155, 169–172
Thrown errors, 168
Thrown exceptions, consolidating, 209
throws clause, 169
timemonger.jsp JSP, 382–383
Timeouts, session, 410–411
/tld folder, 238
TLDs (Tag Library Descriptors), 261–262, 265–267,

492
declarations in

for scripting variables, 325–326
for static attributes, 275–279

with JSP, 306–308
for relative URIs, 268–269
for Web Application defined URIs, 269–270
working with, 267–268
for XML namespaces, 271

tlib-version element, 267
TLV (TagLibraryValidator) classes, 324
tokens, parsing, 246–247
Tomcat, 9

configuring, 17–19
DataSource in, 608–610
exceptions in, 175
installing

on Linux and OS X, 15–17
on Windows, 9–15

JSP directory in, 113
Realms in, 430–432
roles in, 426–427
translation-time includes in, 132

TOMCAT_HOME environment variable, 15–16
Tomcat User’s Guide, 19
tomcat-users.xml file, 426–427, 430
toString method, 284
tr tag, 567
TRACE method, 40
Tracking

links, 59–62, 349–350, 584, 717–721
users, 402–404

Transformations
for multi-client support, 563–566, 569–577
XML tags for, 256

Translation
in response redirection, 62–63
virtual directory, 96–99

Translation phase in JSP, 113
Translation-time includes, 129–130, 132
transport-guarantee element, 448
try statement, 172–174
TryCatchFinally interface, 310–311
type attribute

in attribute directive, 293
in jsp:plugin, 139
in useBean, 218

type element, 277

U
UCS-2 (Universal Character Set 2-byte form), 518
UCS Transform Format, 8-bit form (UTF-8), 518
UDP as connection-less protocols, 390
Unicode

escapes in, 520–523
support for, 517–518

Universal Character Set 2-byte form (UCS-2), 518
Update action in CRUD, 597
update.java Servlet, 679–681
update.jsp JSP, 681
update method

in LinkFactory, 644–645
in News, 641–642

UPDATE statement, 603–604
upload.java Servlet, 728–730
upload.jsp JSP, 728, 730
uploads, file, 72–87
URIs

relative, 268–269
Web Application defined, 269–270

url attribute
in import, 250
in redirect, 254

URL class, 370, 631
url-pattern element, 44, 428

756 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 756

URL rewriting, 392
for multi-client support, 582–586
operation of, 403–406

url tag, 253–254, 582
URLConnection class, 631
URLs

with filters, 346
for JDBC, 607
in JSTL, 236, 250–254
in language detection, 526
for multi-client support, 578

useBean action, 217–221, 225–226
useBeanScriptlet.jsp JSP, 220
useBeanScriptletCheck.jsp JSP, 220–221
user-agent header, 68, 562, 578–580
User class, 222
user-data-constraint element, 432, 448
User names in security, 429–430
UserException.java file, 171
UserListener class, 409–410
UTF-8 (UCS Transform Format, 8-bit form), 518

V
validate method, 330
Validating custom tags, 329–330
ValidationMessage class, 330
value attribute

in out, 239
in param, 253
in set, 241
in setProperty, 224
in url, 253

valueBound method
in HttpSessionBindingListener, 409
in UserListener, 409

valueUnbound method
in HttpSessionBindingListener, 409
in UserListener, 409–410

var attribute
in catch, 242
in forEach, 245
in if, 247
in import, 251
in remove, 242
in set, 241
in url, 254

variable-class attribute, 297
variable-class element, 325
variable directive, 291, 296–299
variable element, 325
VariableInfo class, 327
Variables

populating, 665

for tags, 324–328
varReader attribute, 251
varStatus attribute, 245
Vertical bars (|)

in expression language, 230
in SELECT, 601

View component, 473
Virtual directory translation, 96–99
vspace attribute, 140

W
Wait pages, 63–64
WAR (Web Application Resource) files, 25–26
WARNING log level, 200
Web Applications, 19–22, 651–652

book support site. See Book support site appli-
cation

Deployment Descriptor structure for, 46–47
designing, 652–654
error pages for, 210
exception handling. See Exception handling
implementing, 654–655
logging in, 202–207
parameters for, 92–95
Servlets for, 32
state maintenance in. See State maintenance
Struts for, 492–494
for URI definitions, 269–270

Web development history, 1–2
CGI, 2–3
servlets, 4

/WEB-INF directory, 22–24
Web-resource-collection element, 432
web-resource-name element, 427
web.xml file, 20–22

for book support site, 663–664, 691, 710,
714–716

for cache filters, 382
configuration files for, 50–51
for email, 189–191
for error pages, 183–184, 189–191
for exceptions, 182–183
for filters, 339, 481
for GZIPFilter, 365
initial parameters in, 47
for InternationalizedHelloWorld, 48–50
for JSP, 157–159
for listener element, 407
for security, 427, 442–443
for Servlet deployment, 43–44
for Struts, 494–495
for URI definitions, 269–270
for welcome file, 23–24

INDEX 757

falkner.BM.qxd 8/21/03 7:34 PM Page 757

webapps directory, 492
webapps/struts-documentation.war file, 492
welcome file, 23–24
welcome_en.properties file, 535
welcome-file-list element, 46
welcome.fr.properties file, 536–537
welcome-fra.html file, 527–528
welcome.html file, 527–528, 530–532
Welcome.java Servlet, 535
welcome.jsp JSP, 532–534, 536–537
when tag, 249
WHERE clause, 601–602
Whitespace

in directives, 126
in JSP, 145–147

Widgets, actions for, 511–512
width attribute, 140
Windows

installing J2SE 1.4 on, 7
installing Tomcat on, 9

Windows Installation Wizard, 9–14
work directory, 113
Workload distribution, 656–657
Wrappers, 352

request, 353–357
response

cache filters, 371–387
compression filters, 357–371

write method
in CacheResponseStream, 381
in GZIPResponseStream, 363–364
in PrintWriter, 52

writeObject method
in Serializable, 412
in Serialization, 408

writeOut method, 323
WWW-Authenticate headers, 434–437

X
X.509 certificates, 446
X509Certificate class, 451
XHTML

HelloWorld.jsp in, 568
Model 2 presentation in, 556–557

XML manipulation in JSTL, 236, 255–256
XML namespaces, 271
XML syntax

directives in, 164–165
and JSP, 116–117, 159–165, 271
rules in, 162
scripting elements in, 163–164
template text encapsulation in, 165

XMLComment.jsp JSP, 148–149
XMLFormatter class, 198
XSLT (Extensible Stylesheet Language

Transformations), 387–388

Z
zip utility, 26

758 INDEX

falkner.BM.qxd 8/21/03 7:34 PM Page 758

falkner.BM.qxd 8/21/03 7:34 PM Page 759

falkner.BM.qxd 8/21/03 7:34 PM Page 760

