

 II

Disclaimer

Visual Basic  Made Easy- A complete tutorial for beginners is an independent

publication and is not affiliated with, nor has it been authorized, sponsored, or

otherwise approved by Microsoft Corporation.

Trademarks

Microsoft, Visual Basic, Excel, Acess and Windows are either registered trademarks

or trademarks of Microsoft Corporation in the United States and/or other countries. All

other trademarks belong to their respective owners.

Liability

The purpose of this book is to provide a basic guide for people interested in Visual

Basic® programming. Although every effort and care has been taken to make the

information as accurate as possible, the author shall not be liable for any error, harm

or damage arising from using the instructions given in this book.

Copyright  2006 Liew Voon Kiong

All rights reserved. No Part of this e-book may be reproduced, in any form or by any

means,without permission in writing from the author.

ISBN: 141962895X

 I

Acknowledgement

I would like to express my sincere gratitude to many people who have made their

contributions in one way or another to the successful publication of this book.

My special thanks go to my children Xiang, Yi and Xun. My daughter Xiang edited

this book while my sons Yi and Xun contributed their ideas and even wrote some of

the sample programs for this book. I would also like to appreciate the support

provided by my beloved wife Kim Huang and my youngest daughter Yuan. I would

also like to thank the million of visitors to my Visual Basic  Tutorial website at

www.vbtutor.net, especially those who contributed their comments, for their support

and encouragement. Finally, I would like to thank my publisher BookSurge for the

guidance and assistance in producing this book.

About the Author

Dr. Liew Voon Kiong holds a bachelor degree in Mathematics, a master degree in

Management and a doctoral degree in Business Administration. He has been

involved in programming for more than 15 years. He created the popular online

Visual Basic Tutorial at www.vbtutor.net in 1996 and since then the web site has

attracted millions of visitors and it is one of the top searched Visual Basic Tutorial

websites in many search engines including Google. In order to provide more support

for the Visual Basic hobbyists, he has written this book based on the Visual Basic

tutorial.

 II

CONTENTS

ACKNOWLEDGEMENT ...I

ABOUT THE AUTHOR ...I

LESSON 1 INTRODUCTION TO VISUAL BASIC ..1

1.1 A Brief Description of Visual Basic ..1
1.2 The Visual Basic Environment ...2

LESSON 2 BUILDING THE VISUAL BASIC APPLICATIONS ..5

2.1 Creating Simple Visual Basic Applications...5
2.2 Steps in Building a Visual Basic Application ..10

LESSON 3 WORKING WITH CONTROLS ...13

3.1 The Properties of the Controls ...14

LESSON 4 WRITING THE CODES...23

LESSON 5 VISUAL BASIC DATA ..27

5.1 Types of Visual Basic Data...27

LESSON 6 MANAGING VISUAL BASIC DATA...31

6.1 Assigning Values to the Variables ...31
6.2 Arithmetic Operators in Visual Basic ...31

LESSON 7 CONTROLLING PROGRAM FLOW – PART I..35

7.1 Conditional Operators ...35
7.2 Logical Operators...35
7.3 Using If.....Then.....Elseif….Else Statements with Operators ..36

LESSON 8 CONTROLLING PROGRAM FLOW – PART II..41

8.1 The Select Case …. End Select Statement ...41

LESSON 9 LOOPING PART I ...46

9.1 Do….. Loop..46
9.2: Exiting the Do Loop ..49
9.3 The While….Wend Loop...50

LESSON 10 LOOPING PART II ...52

10.1 The For....Next Loop ...52
10.2 Exiting the For….Next Loop ...54
10.3 The Nested Loop ...55

LESSON 11 VISUAL BASIC FUNCTIONS- PART I ..58

11.1 Introduction to Visual Basic Functions..58
11.2 The MsgBox () Function ..58
11.3 The InputBox() Function ..62

LESSON 12 VISUAL BASIC FUNCTIONS- PART II ...64

12.1 The Rnd Function ..64
12.2 The Numeric Functions...67
12.3 Trigonometric Functions ...69

LESSON13 VISUAL BASIC FUNCTIONS PART III- FORMATTING OUTPUT 71

13.1 The Tab Function..71
13.2 The Space Function ..73
13.3 The Format Function...74
13.4 Formatting Date and Time..77

LESSON14 VISUAL BASIC FUNCTIONS PART IV- MANIPULATING STRINGS 80

14.1 The Len Function..81
14.2 The Right Function ...82
14.3 The Left Function ...82
14.4 The Ltrim Function...82

 III

14.5 The Rtrim Function ..82
14.6 The Trim function ...82
14.7 The Mid Function ...83
14.8 The InStr function ..83
14.9 The Ucase and the Lcase functions..83
14.10 The Str and Val functions ...83
14.11 The Chr and the Asc functions ..83

LESSON 15 VISUAL BASIC FUNCTIONS PART V- CREATING YOUR OWN FUNCTIONS 81

LESSON 16 CREATING VISUAL BASIC FUNCTIONS FOR MS EXCEL..91

16.1 The Needs to Create User-Defined Functions in MS-Excel ..91
16.2 Using Microsoft Excel Visual Basic Editor...92

LESSON 17 ARRAYS PART I..96

17.1 Introduction to Array ..96
17.2 Declaring Arrays ..96
17.3 The Control Array ..99

LESSON 18 ARRAYS PART II- TWO DIMENSIONAL ARRAYS ...96

LESSON 19 GRAPHICS...104

19.1 The line and Shape controls ..104
19.2 The Image Box and the Picture Box ...107
19.3 PSet, Line and Circle Drawing Methods...109

LESSON 20 CREATING MULTIMEDIA APPLICATIONS ...120

20.1 Creating a CD Player ..120
20.2 Creating an Audio Player..123
20.3 Creating a Multimedia Player ...128

LESSON 21 ANIMATION - PART I ..139

LESSON 22 ANIMATION - PART II ...139

22.1 Animation using a drag and drop procedure..139
22.2 Animation with complete motion ..140

LESSON 23 ANIMATION - PART III ..144

23.1 Animation using timers..144
23.2 Animation using the Move Method ..147

LESSON 24 FUN AND GAMES PROGRAMMING- PART I..170

24.1 Snake Chess ..148

24.2 The Slot Machine ...148

LESSON 25 FUN AND GAMES PROGRAMMING- PART II...170

25.1 Boggle ...170
25.2 Reversi ..172
25.3 Calculator ..180

LESSON 27 WORKING WITH FILES ..212

27.1 Introduction ...212
27.2 Creating a Text File ...212
27.3 Reading a File ..213

LESSON 28 CREATING BASIC DATABASE APPLICATIONS IN VISUAL BASIC219

LESSON 29 CREATING DATABASE APPLICATIONS USING ADO CONTROL223

LESSON 30 INTERNET AND WEB APPLICATIONS ...238

30.1 The Web Browser ..242

30.2 The FTP program ..242

 1

Lesson 1

Introduction to Visual Basic

� A brief description of Visual Basic

� Getting to know the Visual Basic environment

1.1 A brief description of Visual Basic

VISUAL BASIC® is a high level programming language evolved from the earlier DOS

version called BASIC. BASIC stands for Beginners' All-purpose Symbolic Instruction

Code. The program codes in Visual Basic resemble the English language. Different

software companies produce different versions of BASIC, such as Microsoft®

QBASIC, QUICKBASIC, GWBASIC, and IBM BASICA and so on.

Visual Basic is a fairly easy programming language and it is for anybody who is

interested in programming but lacks professional training in software engineering.

Learning VISUAL BASIC will help young children to improve their logical thinking

skills and develop their minds. You can choose to program in VISUAL BASIC purely

for fun and enjoyment or create more advanced applications such as educational

courseware and commercial software.

VISUAL BASIC is a visual and events driven programming Language. These are the

main divergences from the old BASIC. In BASIC, programming is done in a text-

based environment and the program is executed sequentially. In VISUAL BASIC,

programming is done in a graphical environment. In old BASIC, you have to write a

text-based procedure to design the interface, but Visual Basic enables you to design

the interface by dragging and resizing the objects as well as changing their colors,

just like any windows-based programs.

Visual Basic is event-driven because users may click on a certain object randomly,

so each object has to be programmed independently to be able to response to those

actions (events). Examples of events are clicking a command button, entering text

into a text box, selecting an item in a list box etc. Therefore, a VISUAL BASIC

Program is made up of many subprograms, each with its own program code which

 2

can be executed independently and at the same time can be linked together in one

way or another.

1.2 The Visual Basic Environment

Upon start up, Visual Basic 6.0 will display the dialog box as shown in Figure 1.1.

You can choose to start a new project, open an existing project or select a list of

recently opened programs. A project is a collection of files that make up your

application. There are various types of applications that can be created; however, we

shall concentrate on creating Standard EXE programs (EXE means executable

program). Now, click on the Standard EXE icon to go into the VISUAL BASIC

programming environment.

Figure 1.1 The Visual Basic Start-up Dialog Box

 3

Figure 1.2: The Visual Basic Environment

In Figure 1.2, the Visual Basic Environment consists of

• A blank form for you to design your application's interface.

• The project window which displays the files that are created in your application.

• The properties window which displays the properties of various controls and

objects that are created in your application.

It also has a Toolbox that consists of all the controls essential for developing a

VISUAL BASIC Application. The controls include text boxes, command buttons,

labels, combo boxes, picture boxes, image boxes, timers and other objects that can

be dragged to and drawn on the form to perform certain tasks according to the events

assigned to them. You may also add additional objects. First, click on the project item

on the menu, then on the components item on the drop-down list, and lastly select

the controls you want to use in your program. The controls for Standard.EXE window

are shown in Figure 1.3.

 4

Figure 1.3: The controls available for a Standard.exe project

Exercise 1

1. Write down the meaning of BASIC.

2. Briefly explain the difference between VISUAL BASIC and the old BASIC.

3. List out all the controls in a Standard.exe Visual Basic project.

Label

Frame

CheckBox

ComboBox

HScrollBar

Timer

DirListBox

Shape

Image

OLE

PictureBox

TextBox

CommandButton

OptionButton

ListBox

VScrollBar

DriveListBox

FileListBox

Line

Data

 5

Lesson 2

Building the Visual Basic Applications

� Creating simple Visual Basic Applications.

� Getting to know the steps in building a Visual Basic Application.

2.1 Creating Simple Visual Basic Applications

In this section, we are not going into the technical aspects of VISUAL BASIC

programming. The main purpose of this section is to let you get a feel for it. Now, you

can try out a few examples in this lesson. Example 2.1 is a simple program. First of

all, you have to launch Microsoft Visual Basic. Normally, a default form Form1 will be

available for you to start your new project. Double click on Form1, and the source

code window as shown in Figure 2.1 will appear. The top of the source code window

consists of a list of objects (on the left) and their associated events or procedures (on

the right). In Figure 2.1, the object displayed is Form and the associated procedure is

Load.

Figure 2.1 The Source Code Window

 6

When you click on the object box, the drop-down list will display a list of objects you

have inserted into your form as shown in Figure 2.2. Here, you can see the form, the

command button with the name Command1, the Label with the name Label1 and the

PictureBox with the name Picture1. Similarly, when you click on the procedure box, a

list of procedures associated with the object will be displayed as shown in Figure 2.3.

Some of the procedures associated with the object Form are Activate, Click, DblClick

(Double-Click), DragDrop, keyPress etc. Each object has its own set of procedures.

You can select an object and write codes for any of its procedures in order to perform

certain tasks.

Figure 2.2: List of Objects

 7

Figure 2.3: List of Procedures

You do not have to worry about the beginning and the end statements (i.e. Private

Sub Form_Load.......End Sub). Just key in the codes between the above two

statements exactly as shown here. When you run the program, don’t be surprised

that nothing shows up. In order to display the output of the program, you have to add

the Form1.show statement like in Example 2.1 or you can just use the

Form_Activate () event procedure as shown in example 2.2. The command Print

does not mean printing using a printer. Instead, it means displaying the output on the

computer screen. Now, press F5 or click on the run button to run the program and

you will get the output as shown in Figure 2.4.

Example 2.1

Private Sub Form_Load ()

Form1.show

 8

Print “Welcome to Visual Basic tutorial”

End Sub

Figure 2.4 : The output of example 2.1.

You can also perform simple arithmetic calculations as shown in example 2.2.

VISUAL BASIC uses * to denote the multiplication operator and / to denote the

division operator. The output is shown in Figure 2.5, where the results are arranged

vertically.

Example 2.2

Private Sub Form_Activate ()

Print 20 + 10

Print 20 - 10

Print 20 * 10

Print 20 / 10

End Sub

Figure 2.5: The output of example 2.2

 9

Example 2.2 can also be written as

Private Sub Form_Activate ()

Print 20 + 10, 20 – 10, 20 * 10, 20 / 10

End Sub

The numbers will be arranged in a horizontal line separated by spaces as shown in

Figure 2.6:

Figure 2.6: Output in a horizontal line

Example 2.3 is an improved version of example 2.2 as it employs two variables, x

and y, and assigns initial values of 20 and 10 to them respectively. When you need to

change the values of x and y, just change the initial values rather than changing

every individual value which is more time consuming.

Example 2.3

Private Sub Form_Activate ()

x = 20

y = 10

Print x + y

Print x - y

Print x * y

Print x / y

End Sub

 10

You can also use the + or the & operator to join two or more texts (string) together

like in example 2. 4 (a) and (b)

Example 2.4(a)

Private Sub Form_Activate ()

A = "Tom "

B = “likes "

C = “to "

D = “eat "

E = “burgers."

Print A + B + C + D + E

End Sub

The output is as shown in Figure 2.7

Figure 2.7: The Output of Example 2.4(a) &(b)

2.2 Steps in Building a Visual Basic Application

Generally, there are three basic steps in building a VISUAL BASIC application. The

steps are as follows:

Step 1: Design the interface

Step 2: Set the properties of the controls (Objects)

Step 3: Write the events' procedures

Example 2.5

This program is a simple program that calculates the volume of a cylinder.

Example 2. 4(b)

Private Sub Form_Activate ()

A = "Tom "

B = “likes "

C = “to "

D = “eat "

E = “burgers."

Print A & B & C & D & E

End Sub

 11

Figure 2.8 A Program to Calculate the Volume of a Cylinder

First of all, go to the properties window and change the form caption to Volume of

Cylinder, then drag and insert three labels into the form and change their captions to

Base Radius, Height and Volume respectively. After that, insert three text boxes and

clear its text contents so that you get three empty boxes. Name the text boxes as

radius, hght and volume respectively. Lastly, insert a command button and change its

caption to O.K and its name to OK. Now save the project as cylinder.vbp and the

form as cylinder.frm. For now we shall leave out the codes which you will learn in the

following lessons.

Example 2.6

Designing an attractive and user friendly interface is the first step in constructing a

VISUAL BASIC program. To illustrate this point, let's look at the calculator program.

Fig 2.9 Calculator

 12

Follow the steps below to design the calculator interface:

• Resize the form until you get the size you are satisfied with.

• Go to the properties window and change the default caption of the form to the

caption you like, such as Calculator.

• Change the other properties of the form, such as background color,

foreground color, and border style. For this particular program, I recommend

you set the following properties for Form1:

•

BorderStyle Fixed Single

MaxButton False

minButton True

These properties will ensure that the users cannot resize or maximize your

calculator window, but will be able to minimize the window.

• Draw the Display Panel by clicking on the Label button and place your mouse

on the form. Start drawing by pressing down your mouse button and dragging

it.

• Click on the panel and the corresponding properties window will appear. Clear

the default label so that the caption is blank. It is better to set the background

 13

color to a brighter color while the foreground color should be of a darker color

like black (for easy viewing). Change the name to ‘display’ as I am going to

use it later to write codes for the calculator.

• Now draw the command buttons that are necessary to operate a calculator. I

suggest you follow exactly what is shown in the image above.

Now run the project by pressing F5. If you are satisfied with the appearance, go

ahead and save the project.

Exercise 2

1. Write down the list of procedures which are associated with the Form object.

2. Write a program to display the sentence “I like Visual Basic”.

3. Write a program to compute the value of 1500+1000-450x10+300÷5

4. Assigning a value of 9 to X and a value of 13 to y, write a program to compute

the values of 2x+y, (x+y)÷2 and x2y

Lesson 3

Working with Controls

� Setting the properties of the controls

 14

� Learning how to work with the controls

3.1 The Properties of the Controls

Before writing an event procedure for the control to respond to a user's input, you

have to set certain properties for the control to determine its appearance and how it

will work with the event procedure. You can set the properties of the controls in the

properties window or at runtime. Figure 3.1

Figure 3.1 on the right is a typical properties window for

a form. You can rename the form caption to any name

you like. In the properties window, the item which

appears at the top part is the object currently selected

(in Figure 3.1, the object selected is Form1). At the

bottom part, the items listed in the left column represent

the names of various properties associated with the

selected object while the items listed in the right column

represent the states of the properties. Properties can

be set by highlighting the items in the right column and

then changing them by typing or selecting the options

available. For example, in order to change the caption,

just highlight Form1 under the name Caption and

change it to another name. You may also alter the

appearance of the form by setting it to 3D or flat. And

you can do other things like changing the foreground

and background color, changing the font type and font

size, enabling or disabling the minimize and maximize

buttons etc.

You can also change the properties at runtime to

produce special effects such as changing of colors,

shape, animation effects and so on. For example the

following code will change the form color to red every

time the form is loaded. VISUAL BASIC uses the

hexadecimal system to represent colors. You can

check the color codes in the properties window which

are shown under ForeColor and BackColor .

 15

Private Sub Form_Load()

Form1.Show

Form1.BackColor = &H000000FF&

End Sub

Another example is to change the control Shape to a particular shape at runtime by

writing the following code. This code will change the shape to a circle at runtime.

Later you will learn how to change the shapes randomly by using the RND function.

Private Sub Form_Load()

Shape1.Shape = 3

End Sub

I would like to stress that learning how and when to set the objects' properties is very

important as it can help you to write a good program. So, I advise you to spend a lot

of time playing with the objects' properties. I am not going into the details on how to

set the properties, however, I would like to stress a few important points:

• You should set the Caption Property of a control clearly so that the user knows

what to do with that command. For example, in the calculator program, as all

the captions of the command buttons such as +, - , MC, MR are commonly

found in an ordinary calculator, the user should have no problems in

manipulating the buttons.

• A lot of programmers like to use a meaningful name for the Name Property

because it is easier for them to write and read the event procedure and easier

to debug or modify the programs later. However, it is not a must to do that as

long as you label your objects clearly and use comments in the program

whenever you feel necessary.

• One more important property is whether the control is being enabled or not.

• Finally, you must also consider making the control visible or invisible at

runtime, or when should it become visible or invisible.

3.2 Handling some of the common controls

a) The Text Box

 16

The text box is the standard control that is used to receive input from the user as well

as to display the output. It can handle string (text) and numeric data but not images

or pictures. Strings in a text box can be converted to numeric data by using the

function Val(text). The following example illustrates a simple program that processes

input from the user.

Example 3.1

In this program, two text boxes are inserted into the form together with a few labels.

The two text boxes are used to accept input from the user and one of the labels will

be used to display the sum of two numbers that are entered into the two text boxes. A

command button is also programmed to calculate the sum of the two numbers using

the plus operator. The program creates a variable, ‘sum’, to accept the summation of

values from the Text1 textbox and the Text2 textbox.The procedure to calculate and

display the output on the label is shown below. The output is shown in Figure 3.1.

Private Sub Command1_Click()

‘To add the values in The Text1 textbox and the Text2 textbox

Sum = Val(Text1.Text) + Val(Text2.Text)

‘To display the answer on label 1

Label1.Caption = Sum

End Sub

Figure 3.1

b) The Label

 17

The label is a very useful control for Visual Basic, as it is not only used to provide

instructions and guides to the users, it can also be used to display output. One of its

most important properties is Caption. Using the syntax label.Caption, it can display

text and numeric data. You can change its caption in the properties window and also

at runtime. Please refer to Example 3.1 and Figure 3.1 for the usage of labels.

c) The Command Button

The command button is a very important control as it is used to execute commands.

It displays an illusion that the button is pressed when the user clicks on it. The most

common event associated with the command button is the Click event, and the

syntax for the procedure is:

Private Sub Command1_Click ()

Statements

End Sub

d) The Picture Box

The Picture Box is one of the controls that used to handle graphics. You can load a

picture during the designing phase by clicking on the picture item in the properties

window and selecting the picture from the selected folder. You can also load the

picture at runtime using the LoadPicture method. For example, this statement will

load the picture grape.gif into the picture box.

Picture1.Picture=LoadPicture ("C:\VISUAL BASIC program\Images\grape.gif")

You will learn more about the picture box in future lessons. The image in the picture

box is not resizable.

e) The Image Box

The Image Box is another control that handles images and pictures. It functions

almost identically to the picture box. However, there is one major difference. The

image in an Image Box is stretchable, which means it can be resized. This feature is

not available in the Picture Box. Similar to the Picture Box, the LoadPicture method

can also be used. For example, this statement loads the picture grape.gif into the

image box.

Image1.Picture=LoadPicture ("C:\VISUAL BASIC program\Images\grape.gif")

f) The List Box

 18

The function of the List Box is to present a list of items. The user can click and select

items from this list. In order to add items to it, use the AddItem method. For example,

if you wish to add a number of items to List box 1, you can key in the following

statements

Example 3.2

Private Sub Form_Load ()

List1.AddItem “Lesson1”

List1.AddItem “Lesson2”

List1.AddItem “Lesson3”

List1.AddItem “Lesson4”

End Sub

The items in the list box can be identified by the ListIndex property, the value of the

ListIndex for the first item is 0, the second item has a ListIndex 1, and the second

item has a ListIndex 2 and so on.

g) The Combo Box

The function of the Combo Box is also to present a list of items. However, the user

needs to click on the small arrowhead on the right of the combo box to see the items

which are presented in a drop-down list. In order to add items to the list, you can also

use the AddItem method. For example, if you wish to add a number of items to

Combo Box 1, you can key in the following statements

Example 3.3

Private Sub Form_Load ()

Combo1.AddItem “Item1”

Combo1.AddItem “Item2”

Combo1.AddItem “Item3”

Combo1.AddItem “Item4”

End Sub

h) The Check Box

 19

The Check Box control lets the user select or unselect an option. When the Check

Box is checked, its value is set to 1 and when it is unchecked, the value is set to 0.

You can include the statements Check1.Value=1 to mark the Check Box and

Check1.Value=0 to unmark the Check Box, and use them to initiate certain actions.

For example, the program will change the background color of the form to red when

the check box is unchecked and it will change to blue when the check box is checked.

You will learn about the conditional statement If….Then….Elseif in later lessons.

VbRed and vbBlue are color constants and BackColor is the background color

property of the form.

Example 3.4

Private Sub Check1_Click ()

If Check1.Value = 0 Then

Form1.BackColor = vbRed

ElseIf Check1.Value = 1 Then

Form1.BackColor = vbBlue

End If

End Sub

i) The Option Button

The Option Button also lets the user select one of the choices. However, two or more

Option Buttons must work together because if one of the Option Buttons is selected,

the other Option Buttons will be unselected. In fact, only one Option Button can be

selected at one time. When an option button is selected, its value is set to “True”, and

when it is unselected, its value is set to “False”. In the following example, the shape

control is placed in the form together with six Option Buttons. When the user clicks on

different option buttons, different shapes will appear. The values of the shape control

are 0, 1, 2, 3, 4, and 5 which will make it appear as a rectangle, a square, an oval

shape, a rounded rectangle and a rounded square respectively.

Example 3.5

 20

Private Sub Option1_Click ()

Shape1.Shape = 0

End Sub

Private Sub Option2_Click()

Shape1.Shape = 1

End Sub

Private Sub Option3_Click()

Shape1.Shape = 2

End Sub

Private Sub Option4_Click()

Shape1.Shape = 3

End Sub

Private Sub Option5_Click()

Shape1.Shape = 4

End Sub

Private Sub Option6_Click()

Shape1.Shape = 5

End Sub

j) The Drive List Box

The Drive List Box is used to display a list of drives available in your computer. When

you place this control into the form and run the program, you will be able to select

different drives from your computer as shown in Figure 3.2

Figure 3.2 The Drive List Box

k) The Directory List Box

 21

The Directory List Box is used to display the list of directories or folders in a selected

drive. When you place this control into the form and run the program, you will be able

to select different directories from a selected drive in your computer as shown in

Figure 3.3

Figure 3.3 The Directory List Box

l) The File List Box

The File List Box is used to display the list of files in a selected directory or folder.

When you place this control into the form and run the program, you will be able to

see a list of files in a selected directory as shown in Figure 3.4:

Figure 3.4

*You can coordinate the Drive List Box, the Directory List Box and the File List Box to

search for the files you want. This procedure will be discussed in later lessons.

 22

Exercise 3

1. Start a Visual Basic project and set the following properties of the form

a. Appearance=Flat

b. Caption=My First Program

c. Font=Times New Roman, Font Size=10

d. Forecolor=White

e. Backcolor=Blue

2. Insert six shape controls into the form and set their shape properties to

rectangle, square, oval, circle, rounded rectangle, and rounded square.

3. Insert two text boxes, one label and one command button, then write the

program to compute the product of two numbers that are entered into the text

boxes and display the result in the label.

4. Insert a picture control in the form and load a picture from your computer using

the LoadPicture Method.

5. Insert a List Box control into the form and add 5 items into the List Box using

the AddItem Method.

 23

Lesson 4

Writing the Codes

� Learning about the Visual Basic program structure.

� Setting the properties of the controls at runtime.

� Getting to know some basic syntax.

In lesson 2 and lesson 3, you have learned how to enter program code and run

sample VISUAL BASIC programs but without much understanding of the logics of

VISUAL BASIC programming. Therefore in this lesson we will tackle a few basic rules

about writing VISUAL BASIC program codes.

Each control or object in VISUAL BASIC can usually run many kinds of events or

procedures. These events are listed in the dropdown list in the code window which is

displayed when you click on the procedures’ box after double-clicking on an object

(refer to Figure 2.3). Among the events are loading a form, clicking of a command

button, pressing a key on the keyboard or dragging an object etc. For each event,

you need to write an event procedure so that an action or a series of actions can be

performed.

To start writing an event procedure, you need to double-click an object. For example,

when you double-click on the command button, the code window will appear showing

an event procedure:

Private Sub Command1_Click

(Key in your program code here)

End Sub

You then need to key in the procedure in the space between Private Sub

Command1_Click............. End Sub. The program code is made up of a number of

statements that set certain properties or trigger some actions. The syntax of Visual

Basic’s program code is almost like English though not exactly the same, so it is very

easy to learn.

 24

The syntax to set the property of an object or to assign certain values to it where

Object and Property are separated by a period is:

 Object.Property

For example, the statement Form1.Show means to show the form with the name

Form1, Iabel1.Visible=true means Label1 is set to be visible, Text1.text= “VISUAL

BASIC” is to assign the text VISUAL BASIC to the text box with the name Text1,

Text2.text=100 is to assign a value of 100 to the text box with the name Text2,

Timer1.Enabled=False is to disable the timer with the name Timer1 and so on. Let’s

examine a few examples below:

Example 4.1

Private Sub Command1_click

Label1.Visible=False

Label2.Visible=True

Text1.Text=”You are correct!”

End sub

Example 4.2

Private Sub Command1_click

Label1.Caption=” Welcome”

Image1.visible=True

End sub

Example 4.3

Private Sub Command1_click

Pictuire1.Show=true

Timer1.Enabled=True

Lable1.Caption=”Start Counting

End sub

In example 4.1, clicking on the command button will make Label1 become invisible

and Label2 become visible, and the text ”You are correct” will appear in the Text1

textbox. In example 4.2, clicking on the command button will make the caption of

Label1 change to “Welcome” and Image1 will become visible. For example, clicking

 25

on the command button will make Picture1 show up, the timer start running and the

caption of Label1 change to “Start Counting”.

Syntaxes that do not involve the setting of properties are also English-like. Some of

the commands are Print, If…Then….Else….End If, For…Next, Select Case…..End

Select, End and Exit Sub. For example, Print “Visual Basic” is to display the text

Visual Basic on screen and End is to end the program. Other commands will be

explained in details in the coming lessons.

Program codes which involve calculations are very easy to write, as they are similar

to mathematics. However, in order to write an event procedure that involves

calculations, you need to know the basic arithmetic operators in VISUAL BASIC as

they are not exactly the same as the normal operators that we use, except for + and -

 . For multiplication, we use *, for division we use /, for raising a number x to the

power of n, we use x ^n and for square root, we use Sqr(x). There are also more

advanced mathematical functions such as Sin, Cos, Tan, Log etc. Besides that,

there are also two important functions that are related to arithmetic operations, i.e.

the functions Val and Str where Val is to convert text into a numeric and Str is to

convert a numeric into a string. While the function Str is not as vital because VISUAL

BASIC can display numeric values as a string implicitly, failure to use Val will result in

wrong calculation. Let’s examine example 4.4 and example 4.5.

Example 4.4

Private Sub Form_Activate()

 Text3.text=Text1.text+Text2.text

End Sub

Example 4.5

Private Sub Form_Activate()

 Text3.text=val(Text1.text)+val(Text2.text)

End Sub

When you run the program in example 4.4 and enter 12 in the Text1 textbox and 3 in

the Text2 textbox, it will give you a result of 123, which is wrong. It is because

VISUAL BASIC treats the numbers as strings and so it just joins up the two strings.

On the other hand, running example 4.5 will give you the correct result, i.e., 15.

 26

Now we shall write the codes for the cylinder program (the interface is shown in

Figure 2.8). First of all, name the text boxes as radius, hght, and volume. To get the

values of the various text boxes, use Val(radius.text), Val(hght.Text) and assign them

to the variables r and h. In addition, assign the value 22/7 to the variable pi. After that,

write the equation v = pi * (r ^ 2) * h to compute the value of the cylinder’s volume

and then assign it to the variable v. Finally, display the value in the volume textbox

using the function Str.

Private Sub OK_Click()

r = Val(radius.Text)

h = Val(hght.Text)

pi = 22 / 7

v = pi * (r ^ 2) * h

volume.Text= Str(v)

End Sub

When you run the program, you should be able to see the interface as shown in

Figure 2.8. Enter values in the radius box and the height box, and then click OK. The

value of the Volume will be displayed in the volume box.

I shall attempt to explain the above source program to newcomers in Visual Basic (If

you are a veteran, you can skip this part). The program can be explained using

pseudo codes as follows:

• procedure for clicking the OK button to calculate the volume of cylinder

• get the value of r from the radius text box

• get the value of h from the height text box

• assign a constant value 22/7 to pi

• calculate the volume using the formula

• output the results to the Volume text box

• End of Procedure

Exercise 4

1. Write a program to compute the area of a triangle.

2. Write a program to calculate the circumference and area of a circle.

 27

Lesson 5

Visual Basic Data

� Getting to know different types of Visual Basic data.

� Rules in naming the Visual Basic variables.

� Declaring variables using the Dim statements.

There are many types of data that we come across in our daily life. For example, we

need to handle data such as names, addresses, money, date, stock quotes, statistics

etc everyday. Similarly in Visual Basic, we are also going to deal with these kinds of

data. However, to be more systematic, VISUAL BASIC divides data into different

types.

5.1 Types of Visual Basic Data

a) Numeric Data

Numeric data are data that consist of numbers, which can be computed

mathematically with various standard operators such as add, minus, multiply, divide

and so on. In Visual Basic, the numeric data are divided into 7 types, which are

summarized in Table 5.1:

Table 5.1: Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes
-3.402823E+38 to -1.401298E-45 for negative values

1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes

-1.79769313486232e+308 to -4.94065645841247E-324 for

negative values

4.94065645841247E-324 to 1.79769313486232e+308 for positive

values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes
+/- 79,228,162,514,264,337,593,543,950,335 if no decimal is

used

 28

+/- 7.9228162514264337593543950335 (28 decimal places).

b) Non-numeric Data Types

The non-numeric data types are summarized in Table 5.2

Table 5.2: Nonnumeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

c) Suffixes for Literals

Literals are values that you assign to a data. In some cases, we need to add a suffix

behind a literal so that VISUAL BASIC can handle the calculation more accurately.

For example, we can use num=1.3089# for a Double data type. Some of the suffixes

are displayed in Table 5.3.

Table 5.3

Suffix Data Type

% Integer

& Long

! Single

Double

@ Currency

In addition, we need to enclose string literals within two quotations and date and time

literals within two # signs. Strings can contain any type of characters, including

numbers. The following are a few examples:

• memberName$="Turban, John."

 29

• TelNumber$="1800-900-888-777"

• LastDay=#31-Dec-00#

• ExpTime=#12:00 am#

• Mark%=90

• profit@=1000.55

It should be noted that in most cases, it is not necessary to use suffixes as long as

we declare the variables using the Dim statement.

5.2 Managing Variables

Variables are like mail boxes in the post office. The contents of the variables change

every now and then, just like mail boxes. In terms of VISUAL BASIC, variables are

areas allocated by the computer memory to hold data. Like the mail boxes, each

variable must be given a name. To name a variable in Visual Basic, you have to

follow a set of rules.

a) Variable Names

The following are the rules when naming the variables in Visual Basic:

� It must be less than or equal to 255 characters.

� No spacing is allowed.

� It must not begin with a number.

� Periods are not permitted.

Examples of valid and invalid variable names are displayed in Table 5.4

Table 5.4

Valid Name Invalid Name

My_Car My.Car

this year 1NewBoy

Long_Name_Can_beUSE He&HisFather *& is not acceptable

b) Declaring Variables

In Visual Basic, one needs to declare the variables before using them by assigning

names and data types. You can declare the variables implicitly or explicitly. For

example, sum=Text1.text means that the variable sum is declared implicitly and

ready to receive the input in the Text1 textbox. Other examples of implicit declaration

 30

are volume=8 and label=”Welcome”. On the other hand, for explicit declaration,

variables are normally declared in the general section of the codes' window using the

Dim statement.

The format is as follows:

Dim variableName as DataType

Example 5.1

Dim password As String

Dim yourName As String

Dim firstnum As Integer

Dim secondnum As Integer

Dim total As Integer

Dim doDate As Date

You may also combine them in one line, separating each variable with a comma, as

follows:

Dim password As String, yourName As String, firstnum As Integer.

If the data type is not specified, VISUAL BASIC will automatically declare the variable

as a Variant.

For string declaration, there are two possible formats, one for the variable-length

string and another for the fixed-length string. For the variable-length string, just use

the same format as Example 5.1 above. However, for the fixed-length string, you

have to use the format as shown below:

Dim VariableName as String * n, where n defines the number of characters the string

can hold. For example, Dim yourName as String * 10 mean yourName can hold no

more than 10 Characters.

Exercise 5

1. List out all numeric and non-numeric data types.

2. State the rules in naming the variables.

3. Write five examples of valid variable names.

4. Use the Dim statements to declare three numeric variables and three non-

numeric variables.

 31

Lesson 6

Managing Visual Basic Data

� Assigning values to the variables.

� Getting to know various arithmetic operators in Visual Basic.

6.1 Assigning Values to the Variables

After declaring various variables using the Dim statements, we can assign values to

those variables. The general format of an assignment is:

Variable=Expression

The variable can be a declared variable or a control property value. The expression

could be a mathematical expression, a number, a string, a Boolean value (true or

false) and etc. The following are some examples:

firstNumber=100

secondNumber=firstNumber-99

userName="John Lyan"

userpass.Text = password

Label1.Visible = True

Command1.Visible = false

Label4.Caption = Text1 textbox.Text

ThirdNumber = Val(usernum1.Text)

total = firstNumber + secondNumber+ThirdNumber

6.2 Arithmetic Operators in Visual Basic

In order to compute input from users and to generate results, we need to use various

mathematical operators. In Visual Basic, except for + and -, the symbols for the

operators are different from normal mathematical operators, as shown in Table 6.1.

 32

Table 6.1: Arithmetic Operators

Operator Mathematical function Example

^ Exponential 2^4=16

* Multiplication 4*3=12

/ Division 12/4=3

Mod
Modulus (returns the remainder from an

integer division)
15 Mod 4=3

\ Integer Division (discards the decimal places) 19\4=4

+ or & String concatenation
"Visual"&"Basic"="Visual

Basic"

Example 6.1

Dim firstName As String

Dim secondName As String

Dim yourName As String

Private Sub Command1_Click()

firstName = Text1.Text

secondName = Text2.Text

yourName = secondName + " " + firstName

 Label1.Caption = yourName

End Sub

In this example, three variables are declared as string. Variables firstName and

secondName will receive their data from the user’s input into the Text1 textbox and

the Text2 textbox, and the variable yourName will be assigned the data by combining

the first two variables. Finally, yourName is displayed on Label1.

Example 6.2

Dim number1, number2, number3 as Integer

Dim total, average as variant

Private sub Form_Click

 33

number1=val(Text1.Text)

number2=val(Text2.Text)

number3= val(Text3.Text)

 Total=number1+number2+number3

Average=Total/5

Label1.Caption=Total

Label2.Caption=Average

End Sub

In example 6.2, three variables are declared as integers and another two variables

are declared as variants. Variant means the variable can hold any numeric data type.

The program computes the total and average of the three numbers that are entered

into three text boxes.

Example 6.3

Dim sellPrice As Currency

Dim costPrice As Currency

Dim profit As Currency

Private Sub Command1_Click ()

sellPrice = Text1.Text

costPrice = Text2.Text

profit = sellPrice - costPrice

Text3.Text = Format (profit, "Currency")

End Sub

In example 6.3, three variables namely sellprice, costPrice and Profit are formatted

as currency because we are dealing with financial calculations. The output is

formatted using the function Format (profit, “Currency”) which will display Profit in

the Text3 textbox in the currency form, i.e. a $ sign and a number with two decimal

places as shown in Figure 6.1. We will deal with the function Format again in a later

lesson under formatting outputs.

 34

Figure 6.1 Calculation involving currency

In the coming lessons, we will see how to write more complex VISUAL BASIC

programs using mathematical operators and equations.

Exercise 6

1. Write down the arithmetic operators in Visual Basic.

2. Write a program to calculate the values of the following arithmetic operations if

the users input two numbers M and N into two separate text boxes.

a) M^N

b) M/N

c) M\N

d) M Mod N

 35

Lesson 7

Controlling Program Flow – Part I

� Getting to know the conditional operators.

� Getting to know the logical operators.

� Using the If…..Then…Else …Elseif statements.

� Using timers and the Rnd function.

7.1 Conditional Operators

To control the VISUAL BASIC program flow, we can use various conditional

operators. Basically, they resemble mathematical operators. Conditional operators

are very powerful tools which let the VISUAL BASIC program compare data values

and then decide what action to take, whether to execute or terminate the program etc.

These operators are shown in Table 7.1.

Table 7.1: Conditional Operators

Operator Meaning

= Equal to

> More than

< Less than

>= More than and equal to

<= Less than and equal to

<> Not equal to

* You can also compare strings with the above operators. However, there are certain

rules to follow:

a. Upper case letters are lesser than lowercase letters

b. "A"<"B"<"C"<"D".......<"Z"

c. Numbers are lesser than letters.

7.2 Logical Operators

In addition to conditional operators, there are a few logical operators that offer added

power to the VISUAL BASIC programs. They are shown in Table 7.2.

 36

Table 7.2

Operator Meaning

And Both sides must be true

Or One side or other must be true

Xor One side or other must be true but not both

Not Negates truth

7.3 Using If.....Then.....Elseif….Else Statements with Operators

To effectively control the VISUAL BASIC program flow, use the If...Then...Else

statement together with the conditional operators and logical operators.

The general format for the If...Then...Elseif….Else statement is as follows:

If conditions Then

VISUAL BASIC expressions

Elseif

VISUAL BASIC expressions

Else

VISUAL BASIC expressions

End If

* Any If...Then...Else statements must end with End If. Sometime it is not necessary

to use Else.

Example 7.1

 Private Sub Command1_Click ()

firstnum = Val(Text1.Text)

secondnum = Val(Text2.Text)

total = firstnum + secondnum

If total = Val(Text3.Text) And Val(Text3.Text) <> 0 Then

Label1.Caption=”Yes, you are Correct”

Else

Label1.Caption=” Sorry, you’re wrong”

End If

End Sub

 37

In Example 7.1, the program adds the values entered in the Text1 textbox and the

Text2 textbox and compares the answer with the answer entered by the user in the

Text3 textbox. If both values are equal, Label1 will display the caption “Yes, you are

Correct”, otherwise it will show the caption “Sorry, you’re wrong”.

Example 7.2

Dim password As String

Private Sub Command1_Click()

If Text1.Text = password Then

Text1.Visible = False

Label1.Visible = True

Label1.Caption = "Login Successful"

Else

Label1.Visible = True

Label1.Caption = "Login Fail! Please enter your password again"

Text1.Text = ""

End If

End Sub

Private Sub Form_Load()

password = "1234"

End Sub

Private Sub Text1_Click()

Label1.Visible = False

End Sub

In Example 7.2, the program will check whether the password entered by the user

matches the password assigned by the Form_Load procedure. If the two passwords

match, then the textbox will disappear and the label will display “Login Successful”;

otherwise the label will display "Login Fail! Please enter your password again" and

the user has to key in the password again. One more thing that you need to do is set

the PasswordChar of the Text1 textbox to the character you like (I prefer using * as it

is commonly used) in the properties window so that the password entered will be

 38

hidden. This program can be used as a login procedure for a database management

program as the user needs to enter the password to search for the information stored

in a database. The details of how to combine this procedure with the database

management program will be discussed later.

Example 7.3

'Guess a Number

Dim realNumber As Integer

Dim userNumber As Integer

Private Sub Form_Load()

realNumber = 99

End Sub

Private Sub OK_Click()

userNumber = entry.Text

 If userNumber > realNumber Then

hint.Caption = "Your number is too big"

entry.Text = ""

ElseIf userNumber < realNumber Then

hint.Caption = "Your number is too small"

entry.Text = ""

Else

hint.Caption = "Congratulations, your number is correct"

End If

End Sub

Example 7.3 is a ‘Guess a Number’ program. The user enters a number and the

program gives hints whether the number entered is too big or too small. Once the

answer is correct, the program will display a congratulatory message. The program

uses the If…Then…ElseIf and Else statements together with the conditional

operators >, < and = to control the program flow. In this program, the name of the

Text1 textbox is renamed as entry and the caption is renamed to display the hint as

hint. The statement entry.Text=”” is to clear the textbox if the number entered is

incorrect so that the user can key in a number again without having to erase the

 39

number manually. Notice that the condition userNumber=realNumber is not

necessary as the Else statement will handle this condition implicitly.

Example 7.4

This program is a password cracker where it can generate possible passwords and

compare each of them with the actual password; and if the generated password is

found to be equal to the actual password, login will be successful.

In this program, a timer is inserted into the form and it is used to do a repetitive job of

generating the passwords. The password generating procedure is put under the

timer1_Timer () event so that the procedure is repeated after every interval. The

interval of the timer can be set in its properties window where a value of 1 is 1

millisecond, so a value of 1000 is 1 second. The smaller the value, the shorter the

interval. However, do not set the timer to zero because if you do that, the timer will

not start. The Timer1.Enabled property is set to false so that the program will only

start generating the passwords after you click on the command button.

Rnd is a VISUAL BASIC function that generates a random number between 0 and 1.

Multiplying Rnd by 100 will obtain a number between 0 and 100. Int is a VISUAL

BASIC function that returns an integer by ignoring the decimal part of that number.

Therefore, Int(Rnd*100) will produce a number between 0 and 99, and the value of

Int(Rnd*100)+100 will produce a number between 100 and 199. Randomize timer is

an essential statement which ensures that the generated numbers are truly random.

Finally, the program uses If…Then…Else to check whether the generated password

is equal to the actual password or not; and if they are equal, the password generating

process will be terminated by setting the Timer1.Enabled property to false.

The Program

Dim password As Integer

Dim crackpass As Integer

Private Sub Command1_Click()

Timer1.Enabled = True

End Sub

 40

Private Sub Form_Load()

password = 123

End Sub

Private Sub Timer1_Timer()

Randomize Timer

crackpass = Int(Rnd * 100) + 100

If crackpass = password Then

Timer1.Enabled = False

Text1.Text = crackpass

Label1.Visible = True

Label1.Caption = "Password Cracked! Login Successful!"

Else

Text1.Text = crackpass

Label1.Visible = True

Label1.Caption = "Please wait..."

End If

End Sub

Exercise 7

1. Write down all the conditional operators.

2. Write down all the logical operators.

3. Create a simple interactive children word game so that if the answer is correct,

the program will display a congratulatory message and when the answer is

wrong, the program will ask the child to try again.

4. Write a program to display a person’s socio economical status based on his

income. For example, if the person’s income is less than $1000 per month, his

socio economic status may be called poor, if his income is more than $1000

but less than $3000 per month, his socio economic status may be labeled as

low income and so on.

 41

Lesson 8

Controlling Program Flow – Part II

� Using the Select Case …. End Select Statement

� Learning more about the usage of the Select Case …. End Select Statement

through examples.

8.1 The Select Case …. End Select Statement

In lesson 7, you have learned how to use the conditional statements

If…..Then…ElseIf and Else to control the program flow. However, if you have a lot of

conditional statements, using If..Then..Else statements could become very messy.

For multiple conditional statements, it is always better to use the Select Case

statement. The structure is shown as follows:

Select Case expression

 Case value1

 Block of one or more VISUAL BASIC statements

 Case value2

 Block of one or more VISUAL BASIC Statements

 Case value3

 Block of one or more VISUAL BASIC statements

 Case Else

 Block of one or more VISUAL BASIC Statements

End Select

 Example 8.1

‘To compute examination grades

Dim grade As String

Private Sub txtgrade_Change()

grade = txtgrade.Text

Select Case grade

 Case "A"

 result. Caption = "Distinction"

 Case "B"

 42

 result.Caption = "Credit"

 Case "C"

 result.Caption = "Pass"

 Case Else

 result.Caption = "Fail"

 End Select

End Sub

In example 8.1, note that the grade is declared as a string, so all the case values

such as "A" must be of the String data type. Also note that every select case

statement must end with the End Select statement. When the program is run and the

user keys in the grade into the text box named as txtgrade, it will look for the case

value that matches the input and then display the result on the label named as result.

The last statement Case Else means any case other than A, B, C will get the “fail”

result.

However, there are a couple of problems in the above program. If the user enters the

lower case letters a, b or c and the result will be “fail” because the case values are

the uppercase letters A, B, C. In addition, if the user keys in numeric values or other

characters other than A, B, C, D, E, F (assuming these are the designated grades),

the results will also be “fail”.

In order to avoid the above problems, first of all you need to use the function Ucase

to handle the first problem. The format is Ucase (txtgrade.Text). This will convert the

lower case letters to the upper case letters. Secondly, you have to add two additional

statements to handle grades D, E, F that are considered as fail and another

statement to handle other kinds of inputs that are deemed as invalid data. The

statement Case Is= “D”, “E”, “F” will include cases when the grade is D, E or F.

The keyword to use here is Is and the cases are separated by commas. The last

statement which uses the Case Else syntax will deem all other inputs as invalid. It is

important for the cases to be exhaustive; i.e. we should take all possible cases into

consideration so that no ambiguous results will occur. Example 8.1(b) is the

corrected version.

 43

Example 8.2

Dim grade As String

Private Sub txtgrade_Change()

grade = UCase(txtgrade.Text)

Select Case grade

 Case "A"

 result.Caption = "Distinction"

 Case "B"

 result.Caption = "Credit"

 Case "C"

 result.Caption = "Pass"

 Case Is = "D", "E", "F"

 result.Caption = "Fail"

 Case Else

 result.Caption = "invalid data"

 End Select

End Sub

Example 8.3

Dim mark As Single

Private Sub Compute_Click ()

'Examination Marks

 Private Sub mrk_Change()

mark = mrk.Text

 Select Case mark

 Case 85 To 100

 comment.Caption = "Excellent"

Case 70 To 84

 comment.Caption = "Good"

Case 60 To 69

 comment.Caption = "Above Average"

Case 50 To 59

 comment.Caption = "Average"

Case 0 To 49

 44

 comment.Caption = "Needs to work harder"

Case Else

 comment.Caption = "Values out of range"

End Select

End Sub

Example 8.3 is similar to the two preceding examples except that now it handles the

numeric data rather than the string. This program uses the keyword to in order to

specify the range of values. You can also use Case Is>=n or Case is<n to specify the

range of numeric values.

Example 8.4

This example will demonstrate a more complex mathematical application, a simple

calculator that can perform four basic arithmetic calculations. In this program, the

user just needs to enter two numbers and then select one of the four basic operators

from the combo box and obtain the result. The user can perform the four basic

calculations at one go for the same pair of numbers just by changing the operators.

The program uses two text boxes and a combo box. A combo box is a control that

allows the user to select an item from a group of items that are listed in the drop-

down list. In order to add a list of items to the combo box, use the following

statements and place them under the Private Sub Form_Load procedure:

Combo1.AddItem "+"

Combo1.AddItem "-"

Combo1.AddItem "x"

Combo1.AddItem "÷"

Combo1 is the name of the combo box and AddItem is the method that adds items to

the list in the combo box. To identify the items in the list, you can use the ListIndex

property of the combo box. The first item will have a ListIndex of 0, the second item

will have a ListIndex of 1 and so on. By employing the Select Case…. End Select

statements and adding the necessary procedures that perform one of the four basic

calculations under each item, the program fulfills its function as a simple calculator.

Private Sub Combo1_Click ()

Select Case Combo1.ListIndex

Case 0

 45

Label1 = Val(Text1.Text) + Val (Text2.Text)

Case 1

Label1 = Val(Text1.Text) - Val (Text2.Text)

Case 2

Label1 = Val (Text1.Text) * Val(Text2.Text)

Case 3

Label1 = Val (Text1.Text) / Val (Text2.Text)

End Select

End Sub

Private Sub Form_Load ()

Combo1.AddItem "+"

Combo1.AddItem "-"

Combo1.AddItem "x"

Combo1.AddItem "÷"

End Sub

Exercise 8

1. Write a program using the Select Case statement to inform a person about

his/her weight status based on the body mass index (BMI) where BMI=body

weight in kilograms divided by the square of the height in meters. The weight

status is usually shown in the table below:

BMI Weight Status

Below 18.5 Underweight

18.5 – 24.9 Normal

25.0 – 29.9 Overweight

30.0 and Above Obese

2. Write a program to classify people based on the color they like.

 46

Lesson 9

Looping Part I

� Understanding and using the Do…Loop

� Understanding and using the While…Wend Loop

Very often we need to perform a task repeatedly in order to achieve our objective.

This repetitive process is called looping in programming language. Visual Basic

allows a procedure to be repeated many times until a condition is met. There are

three kinds of loops in VISUAL BASIC, which are Do…. Loop , While… Wend and

For…Next.

9.1 Do….. Loop

The structure of a Do Loop command can be written in four different formats as

shown below:

a) Do While condition

 Block of one or more VISUAL BASIC statements

 Loop

b) Do

 Block of one or more VISUAL BASIC statements

 Loop While condition

c) Do Until condition

 Block of one or more VISUAL BASIC statements

 Loop

d) Do

 Block of one or more VISUAL BASIC statements

 Loop Until condition

Example 9.1

Private Sub Form_Activate

Do while counter <10

 counter =counter+1

 Print Counter

 Loop

 47

End Sub

In the above example, the value of counter will increase by 1 after each loop and it

will keep on adding until counter = 10. The values are displayed Figure 9.1

Figure 9.1: Printout of example 9.1

Example 9.2, Example 9.3 and Example 9.4 produce the same result as above.

Example 9.2

Private Sub Form_Activate()

Do

 Counter = Counter + 1

 Print Counter

Loop Until Counter = 10

End Sub

Example 9.3

Private Sub Form_Activate()

Do Until Counter = 10

 Counter = Counter + 1

 Print Counter

Loop

End Sub

Example 9.4

Private Sub Form_Activate()

Do

 Counter = Counter + 1

 Print Counter

Loop While Counter < 10

 48

End Sub

Example 9.4

The following example uses the Do…Loop procedure to find the summation of a

sequence of numbers, or in mathematical terms, the summation of an arithmetic

progression. In this example, we will attempt to find the summation of

1+2+3+4+……+100. In the design stage, you need to insert a list box into the form

for displaying the output, named List1. The program uses the AddItem method to

populate the list box. The statement List1.AddItem "n" & vbTab & "sum" will display

the headings in the list box, where it uses the vbTab function to create a space

between the headings n and sum.

Two variables are declared here, where n acts as a counter and sum is the

summation of the numbers. The mathematical logic is very simple. Initially, n and

sum are set to 0. After the first loop, n=1 and sum=1. After the second loop, n will be

equal to 2 (n=1+1) and sum will be equal to 3(sum=1+2); and the next loop will

produce the result n=3 and sum=6 (sum=1+2+3). Using Do Until n=100, the program

will obtain the summation of 1 to 100. In fact, this program produces the summation

at every stage, where the output is displayed in a table form, as shown in Figure 9.2.

Dim n, sum As Integer

Private Sub Form_Activate()

List1.AddItem "n" & vbTab & "sum"

Do Until n = 100

n = n + 1

 sum = sum + n

 List1.AddItem n & vbTab & sum

 Loop

End Sub

Private Sub Form_Load ()

 n = 0

 sum = 0

End Sub

 49

Figure 9.2: The summation of 1 to 100

9.2: Exiting the Do Loop

In section 9.1, we have seen that how a Do loop is terminated when a certain

condition is met with one of the four structures i.e. Do Until, Loop Until, Do While and

Loop While. Without using the above four controlling statements, the loop will

become infinite and it might cause the computer to hang. However, there is yet

another way to terminate the loop, that is by using the statements If….Then and Exit

Do. This means that when a condition is met, the program will exit from the loop.

To demonstrate, let’s examine example 9.5. You will notice that instead of using the

Do Until statement, I have replaced them with the If….Then… and Exit Do

statements; and it produces the same result as in example 9.4.

Example 9.5

Dim sum, n As Integer

Private Sub Form_Activate()

List1.AddItem "n" & vbTab & "sum"

Do

 n = n + 1

 50

 Sum = Sum + n

 List1.AddItem n & vbTab & Sum

 If n = 100 Then

 Exit Do

 End If

 Loop

End Sub

Private Sub Form_Load ()

 n = 0

 Sum = 0

End Sub

9.3 The While….Wend Loop

The structure of a While….Wend Loop is very similar to the Do Loop. It takes the

following format:

While condition

 Statements

Wend

The above loop means that while the condition is not met, the loop will go on. The

loop will end when the condition is met. Let’s examine the program listed in example

9.6 where it produces the same result as example 9.4 and example 9.5.

Example 9.6

Dim sum, n As Integer

Private Sub Form_Activate ()

List1.AddItem "n" & vbTab & "sum"

While n <> 100

n = n + 1

Sum = Sum + n

 List1.AddItem n & vbTab & Sum

Wend

 51

End Sub

Private Sub Form_Load()

 n = 0

Sum = 0

End Sub

Exercise 9

1. Write a program to add the all the even integers between 101 and 999 using

a. The Do loop

b. The While…… Wend Loop

2. Write a program to generate random integers between 1 and 1000 and if the

integer 8 appears, the looping will stop and the program will prompt the user to

try again.

3. Write a program to print the sentence “I like Visual Basic” twenty times using the

While…Wend loop.

4. Write a program to show the geometrical progression in a list box as shown

below:

 52

Lesson 10

Looping Part II

� Understanding and using the For…Next Loop

� Understanding the nested Loop

10.1 The For....Next Loop

The For….Next loop is a very useful loop if we intend to have a fixed number of

repetitions. It also allows the step increment. If you do not add the step increment,

the default increment is 1. The structure of a For….Next loop is:

For counter=startNumber to endNumber (Step increment)

 One or more VISUAL BASIC statements

Next counter

* You can actually omit the variable counter and just put in the Next command, but it

makes the procedure clearer when you include the variable.

Here are a few examples:

Example 10.1

This program will generate a column of 10 numbers, starting from 1 and ending at 10.

The output is shown in Figure 10.1.

Private Sub Form_Activate()

 For counter = 1 To 10

 Print Counter

 Next counter

End Sub

 53

Figure 10.1

Example 10.2

Private Sub Form_Activate ()

 For counter=0 to 100 step 10

 Print counter

 Next counter

End Sub

This program is similar to the previous example but now the number increases by 10

after every repetition until 100.

Example 10.3

In this example, the number will decrease by 5 after every repetition until it reaches 5.

Private Sub Form_Activate

For counter=1000 to 5 step -5

 Print counter

 Next counter

End Sub

Example 10.4

In this example, the program will print the sentence “Hello, Welcome to VISUAL

BASIC Tutorial” five times. The output is shown in Figure 10.2

 Private Sub Form_Activate

For i=1 to 5

print "Hello, Welcome to VISUAL BASIC Tutorial"

next i

 54

End Sub

Figure 10.2

10.2 Exiting the For….Next Loop

Sometimes the user might want to get out from the loop before the whole repetitive

process is executed. The command to use in this case is Exit For. To exit a

For….Next Loop, you can place the Exit For statement within the loop. This is

normally used together with the If…..Then… statement. Let’s examine the following

example:

Example 10.5

Private Sub Form_Activate ()

For n=1 to 10

If n>6 then

Exit For

End If

Else

Print n

End If

End Sub

When you run the above program, it will produce the output as shown in Figure 10.3.

The procedure will display the number n until 6. It will not print 7, 8, 9, and 10

because it will exit the loop the moment it reaches 7, as 7 has fulfilled the Exit For

condition of n>6. The Exit For command is indeed same as the Exit Do command;

they play the same role for exiting a loop.

 55

Figure 10.3: The output of Example 10.5

10.3 The Nested Loop

When you have a loop within a loop, then you have created a nested loop. You can

actually have as many loops as you want in a nested loop provided the loops are not

the never-ending type. For a nested loop that consists of two loops, the first cycle of

the outer loop will be processed first, then it will process the whole repetitive process

of the inner loop, then the second cycle of the outer loop will be processed and again

the whole repetitive process of the inner loop will be processed. The program will end

when the whole cycle of the outer loop is processed.

The Structure of a nested loop is

For counter1=startNumber to endNumber (Step increment)

For counter2=startNumber to endNumber (Step increment)

 One or more VISUAL BASIC statements

Next counter2

Next counter1

The outer loop is For….Next counter 1 and the inner loop is For….Next counter 2,

and notice that the inner loop must be enclosed within the outer loop. Let’s take a

look at example 10.6:

Example 10.6

Private Sub Form_Activate ()

 For firstCounter= 1to 5

Print “Hello”

 56

For secondCounter=1 to 4

Print “Welcome to the VISUAL BASIC tutorial”

Next secondCounter

Next firstCounter

Print” Thank you”

End Sub

The output of the above program is shown in Figure 10.6. As the outer loop has five

repetitions, it will print the word “Hello” five times. Each time after it prints the word

“Hello”, it will print four lines of the “Welcome to the VISUAL BASIC tutorial”

sentences as the inner loop has four repetitions.

Figure 10.4: The output of example 10.6

 57

Exercise 10

1. Write a program using the For….Next loop to find the sum of all the numbers

from 1 to 100.

2. Write a program using the For….Next loop to find the sum of all the even

numbers between 101 and 999.

3. Write a program using the For….Next loop to display the following sequence

of numbers 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0.

4. Write a program using the For….Next loop to display the following output:

I like

Visual Basic

Visual Basic

Visual Basic

I like

Visual Basic

Visual Basic

Visual Basic

 58

Lesson 11

Visual Basic Functions - Part I

� Understanding the concept of the Visual Basic function

� Learning how to use the MsgBox function

� Learning how to use the InputBox function

11.1 Introduction to Visual Basic Functions

Functions are similar to the normal procedures but the main purpose of the functions

is to accept certain input and return a value which is passed on to the main program

to finish the execution. There are two types of functions, the built-in functions (or

internal functions) and the functions created by the programmers.

The general format of a function is:

 FunctionName (arguments)

 The arguments are values that are passed on to the functions.

In this lesson, we are going to learn two very basic but useful internal functions of

Visual Basic, the MsgBox () and the InputBox () functions.

11.2 The MsgBox () Function

The objective of the MsgBox function is to produce a pop-up message box and

prompt the user to click on a command button before he /she can continue. This

message box format is as follows:

 yourMsg=MsgBox (Prompt, Style Value, Title)

The first argument, Prompt, will display the message in the message box. The Style

Value determines what type of command button will appear in the message box.

Table 10.1 lists the command buttons that can be displayed. The Title argument will

display the title of the message board.

 59

Table 11.1: Style Values and Command Buttons

Style Value Named Constant Button Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

We can use the named constant in place of an integer for the second argument to

make the programs more readable. In fact, VB6 will automatically show a list of

named constants which can be selected. For example, yourMsg=MsgBox (“Click

OK to Proceed", 1, "Startup Menu") and yourMsg=Msg ("Click OK to Proceed",

vbOkCancel,"Startup Menu") are the same. YourMsg is a variable that holds values

that are returned by the MsgBox () function. The values are determined by the type

of buttons being clicked by the users. It has to be declared as Integer data type in the

procedure or in the general declaration section. Table 10.2 shows the values, the

corresponding named constants and the buttons.

Table 11.2: Return Values and Command Buttons

 Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

 60

Example 11.1

In the example, draw three command buttons and a label as shown in Figure 11.1:

Figure 11.1

The procedure for the test button is shown below:

Private Sub Test_Click ()

Dim testmsg As Integer

testmsg = MsgBox ("Click to test", 1, "Test message")

If testmsg = 1 Then

Display.Caption = "Testing successful"

Else

Display.Caption = "Testing fail"

End If

End Sub

Clicking on the test button will make a message box like the one shown in Figure

10.2 appear. As the user clicks on the OK button, the message "Testing successful"

will be displayed and when he/she clicks on the Cancel button, the message "Testing

fail" will be displayed.

Figure 11.2

 61

To make the message box looks more sophisticated, you can add an icon besides

the message. There are four types of icons available in VISUAL BASIC as shown

in Table 11.3

 Table 11.3

Value Named Constant Icon

16 vbCritical

32 vbQuestion

48 vbExclamation

64 vbInformation

Example 11.2

In this example, the following message box will be displayed:

Figure 11.3

You can draw the same Interface as in example 10.1, modifying the codes as

follows:

Private Sub test2_Click ()

Dim testMsg2 As Integer

testMsg2 = MsgBox ("Click to Test", vbYesNoCancel + vbExclamation, "Test

Message")

If testMsg2 = 6 Then

display2.Caption = "Testing successful"

ElseIf testMsg2 = 7 Then

display2.Caption = "Are you sure?"

 62

Else

display2.Caption = "Testing fail"

End If

End Sub

11.3 The InputBox () Function

An InputBox () function will display a message box where the user can enter a value

or a message in the form of text. The format is

 myMessage=InputBox (Prompt, Title, default_text, x-position, y-position)

MyMessage is a variant data type but typically it is declared as a string, which

accepts message input by the users. The arguments are explained as follows:

• Prompt - The message displayed in the input box.

• Title - The title of the input box.

• Default-text - The default text that appears in the input field where users can

use it as his intended input or he may change to another message.

• X-position and y-position - the position or the coordinate of the input box.

Example 11.3

The interface of example 11.3 is shown in Figure 11.4:

Figure 11.4

 63

The procedure for the OK button:

Private Sub OK_Click ()

Dim userMsg As String

userMsg = InputBox ("What is your message?", "Message Entry Form", "Enter

your message here", 500, 700)

If userMsg <> "" Then

message.Caption = userMsg

Else

message.Caption = "No Message"

End If

End Sub

When the user clicks the OK button, the input box as shown in Figure 11.5 will

appear. After the user enters the message and clicks OK, the message will be

displayed on the caption, but if he clicks Cancel, "No message" will be displayed.

Figure 11.5

Exercise 11

1. Write down the four arguments of the MsgBox function.

2. Write down the six named constants of the MsgBox function.

3. Write down the arguments of the InputBox function.

4. Write a program to verify the password entered into an InputBox by the user.

 64

Lesson12

Visual Basic Functions- Part II

� Getting to know all the mathematical functions in Visual Basic

� Learning how to compute the values of the mathematical functions.

Mathematical functions are very useful and important in programming because very

often we need to deal with mathematical concepts in programming such as chance

and probability, variables, mathematical logics, calculations, coordinates, time

intervals etc. The common mathematical functions in Visual Basic are Rnd, Sqr, Int,

Abs, Exp, Log, Sin, Cos, Tan , Atn, Fix and Round.

12.1 The Rnd Function

Rnd is very useful when we deal with the concept of chance and probability. The Rnd

function returns a random value between 0 and 1. In Example 12.1, when you run the

program, you will get an output of 10 random numbers between 0 and 1.

Randomize Timer is a vital statement here as it will randomize the process.

Example 12.1

Private Sub Form_Activate

Randomize Timer

For x=1 to 10

Print Rnd

Next x

End Sub

Figure 12.1: The Random Numbers

 65

Random numbers in their original form are not very useful in programming until we

convert them to integers. For example, if we need to obtain a random output of 6

integers ranging from 1 to 6, which makes the program behave as a virtual die, we

need to convert the random numbers using the format Int(Rnd*6)+1. Let’s study the

following example:

Example 12.2

In this example, Int(Rnd*6) will generate a random integer between 0 and 5 because

the function Int truncates the decimal part of the random number and returns an

integer. After adding 1, you will get a random number between 1 and 6 every time

you click the command button. For example, Let’s say the random number generated

is 0.98. Ater multiplying it by 6, it becomes 5.88, and using the integer function

Int(5.88) will convert the number to 5, and after adding 1 you will get 6.

In this example, you place a command button and change its caption to ‘roll die’. You

also need to insert a label into the form and clear its caption at the designing phase

and make its font bigger and bold. Then set the border value to 1 so that it displays a

border, and after that set the alignment to center. The statement

Label1.Caption=Num means the integer generated will be displayed as the caption of

the label. Now, run the program and then click on the roll die button, you will get an

output like Figure 12.2.

 Dim num as integer

Private Sub Command1_Click ()

Randomize Timer

Num=Int (Rnd*6) +1

Label1.Caption=Num

End Sub

 66

Figure 12.2: A virtual die

Example12.3: A password generator

This is a program that can generate four-digit passwords from 1000 to 9999. The key

statement is crackpass = Int (Rnd * 9000) + 1000. For example, when Rnd returns a

value of 0, the value of crackpass is 1000; and when Rnd returns 0.9999, the value

of Rnd*9000 is 8999.1 and Int (8999.1) will be 8999 and so crackpass will return a

value of 9999.

The program is shown below:

'Password Cracker

Dim password As Integer

Dim crackpass As Integer

Dim x As Integer

Private Sub Command1_Click ()

Timer1.Enabled = True

End Sub

Private Sub Form_Load ()

password = 5689

crackpass = 0

End Sub

Private Sub Timer1_Timer()

x = x + 1

 67

If x < 100 Then

Label1.Visible = True

Label1.Caption = "Please wait..."

Randomize Timer

crackpass = Int (Rnd * 9000) + 1000

Text1.Text = crackpass

Else

generate

End If

End Sub

Private Sub generate ()

While crackpass <> password

Randomize Timer

crackpass = Int(Rnd * 9000) + 1000

Text1.Text = crackpass

Wend

Timer1.Enabled = False

Text1.Text = crackpass

Label1.Visible = True

Label1.Caption = "Password Cracked! Login Successful!"

Timer1.Enabled = False

End Sub

12.2 The Numeric Functions

The numeric functions are Int, Sqr, Abs, Exp, Fix, Round and Log.

a) Int is the function that converts a number into an integer by truncating its decimal

part and the resulting integer is the largest integer that is smaller than the number.

For example, Int(2.4)=2, Int(4.8)=4, Int(-4.6)= -5, Int(0.032)=0 and so on.

b) Sqr is the function that computes the square root of a number. For example, Sqr

(4)=2, Sqr(9)=2 and etc.

c) Abs is the function that returns the absolute value of a number. So Abs (-8) = 8

and Abs (8)= 8.

 68

d) Exp of a number x is the value of ex. For example, Exp (1)=e1 = 2.7182818284590

e) Fix and Int are the same if the number is a positive number as both truncate the

decimal part of the number and return an integer. However, when the number is

negative, it will return the smallest integer that is larger than the number. For example,

Fix (-6.34) = -6 while Int (-6.34) = -7.

f) Round is the function that rounds up a number to a certain number of decimal

places. The Format is Round (n, m) which means to round a number n to m decimal

places. For example, Round (7.2567, 2) =7.26

g) Log is the function that returns the natural Logarithm of a number. For example,

Log 10= 2.302585.

Example 12.4

This example computes the values of Int(x), Fix(x) and Round(x, n) in a table form. It

uses the Do Loop statement and the Rnd function to generate 10 numbers. The

statement x = Round (Rnd * 7, 7) rounds a random number between 0 and 7 to 7

decimal places. Using commas in between items will create spaces between them

and hence a table of values can be created. The program is shown below and

the output is displayed in Figure 12.3.

Private Sub Form_Activate ()

n = 1

Print " n", " x", "Int(x)", "Fix(x)", "Round(x, 4)"

Do While n < 11

Randomize Timer

x = Round (Rnd * 7, 7)

Print n, x, Int(x), Fix(x), Round(x, 4)

n = n + 1

Loop

End Sub

 69

Figure 12.3: The output of Example 12.4

12.3 Trigonometric Functions

The common trigonometric functions are Sin, Cos, Tan and Atn.

a) Sin is the function that computes the value of sine of an angle in radian.

b) Cos is the function that computes the value of cosine of an angle in radian.

c) Tan is the function that computes the value of tangent of an angle in radian.

d) Atn is the function that computes the value of arc tangent of an angle in radian.

An angle in degree has to be converted to radian before it can be calculated by the

above trigonometric functions. From high school mathematics, we know that π radian

is equivalent to 180°; which means 1 radian is equivalent to π divided by 180.

Therefore, in order to convert an angle x from degree to radian, we have to multiply x

by (π/180). However, there is a small problem because it is rather difficult to obtain

the precise value of π, but fortunately, there is a way to do it in VISUAL BASIC. First

of all, we know that an arc tangent of 1 will return the value of 45° which is π/4 radian.

So, to obtain the value of π, just multiply the arc tangent of 1 with 4. Let’s examine

how all the above calculations can be done in the following examples:

Example 12.5

In this example, the program will display the values of sine, cosine and tangent for

various angles in degree between 0° and 360° in a table form. The value of π is

obtained using the equation pi=4*Atn (1). The angle in degree is converted to radian

by multiplying the angle by (π/180). Different angles are obtained through the use of

For...Next Loop. The program is shown below and the output is shown in Figure 12.4.

 70

Private Sub Form_Activate ()

pi = 4 * Atn (1)

Print "angle", "Sin x", "Cos x", "Tan x"

For degree = 0 To 360 Step 30

angle = degree * (pi / 180)

Print degree, Round (Sin (angle), 4), Round (Cos (angle), 4), Round (Tan (angle), 4)

Next degree

End Sub

Figure 12.4

Exercise 12

1. Write a program to produce random integers ranging from 20 to 40.

2. Write a program to compute the logarithm of a number and round it up to three

decimal places.

3. Write a program to compute the values of sin θ, cos θ and tan θ.

4. Design a simple scientific calculator that can handle various mathematical

functions including Log, Abs, Exp, sine, cosine, tangent, Arc tangent, square

root and etc.

 71

Lesson13

Visual Basic Functions Part III

Formatting Output

� Understanding the usage of the Tab function.

� Understanding the usage of the Space function.

� Understanding the usage of the Format function.

Formatting output is a very important part of programming so that the data can be

presented systematically and clearly to the users. Data in Figure 12.3 and Figure

12.4 were presented fairly systematically through the use of commas and some of

the functions like Int, Fix and Round. However, to have better control of the output

format, we can use a number of formatting functions in Visual Basic.

The four important formatting functions in VISUAL BASIC are Tab, Space, and

Format.

13.1 The Tab function

The format of the Tab function is

Tab (n); x

The item x will be displayed at a position that is n spaces from the left border of the

output form. There must be a semicolon in between Tab and the items you intend to

display (VISUAL BASIC will actually do it for you automatically).

Example 13.1

.Private Sub Form_Activate

 Print "I"; Tab (5); "like"; Tab (10); "to"; Tab (15); "learn"; Tab (20); "VISUAL

BASIC"

 Print

 Print Tab (10); "I"; Tab (15); "like"; Tab(20); "to"; Tab(25); "learn"; Tab(20);

"VISUAL BASIC"

 Print

 Print Tab(15); "I"; Tab(20); "like"; Tab(25); "to"; Tab(30); "learn"; Tab(35);

“VISUAL BASIC"

End sub

 72

The output of the above example is shown in Figure 13.1. The extra Print statements

that do not seem to print anything actually create a space between two lines.

Figure 13.1: The output using the Tab function

Example 13.2:

This example will generate a multiplication table.

Private Sub Form_Activate ()

For x = 1 To 10

Print Tab (2); "2" & "x" & Str(x) & "=" & Str (2 * x) _

; Tab (14); "3" & "x" & Str(x) & "=" & Str (3 * x) _

; Tab (26); "4" & "x" & Str(x) & "=" & Str (4 * x) _

; Tab (38); "5" & "x" & Str(x) & "=" & Str (5 * x) _

; Tab (50); "6" & "x" & Str(x) & "=" & Str (6 * x) _

; Tab (62); "7" & "x" & Str (x) & "=" & Str (7 * x) _

; Tab (74); "8" & "x" & Str (x) & "=" & Str (8 * x) _

; Tab (86); "9" & "x" & Str (x) & "=" & Str (9 * x) _

; Tab (98); "10" & "x" & Str (x) & "=" & Str (10 * x) _

Next x

End Sub

In this program, each column in the output form is separated by 12 spaces. Str (n) is

a function that will convert a number to a string (or text), and the sign “&” is used to

join two strings. Str needs to be used here because all the items are taken to be

strings.

Notice that “x” and Str(x) are different as “x” will display the letter x while Str(x) is

considered as a string and displays the number x. The output is shown in Figure 13.2:

 73

Figure 13.2 The multiplication table

13.2 The Space function

The Space function is very closely linked to the Tab function. However, there is a

minor difference. While Tab (n) means the item is placed n spaces from the left

border of the screen, the Space function specifies the number of spaces between two

consecutive items. For example, the procedure

Private Sub Form_Activate ()

Print "Visual"; Space (10); "Basic"

End Sub

means that the words Visual and Basic will be separated by 10 spaces.

Example 13.3

Example 13.3 is the same multiplication table as the previous example but the Tab

function is replaced by the Space function. The output is shown in Figure 13.3. Notice

that the alignments of the columns are totally off. Therefore, it is normally better to

use the Tab function rather than the Spaces function if we want a uniform display of

the items in a table.

Figure 13.3

 74

Private Sub Form_Activate ()

For x = 1 To 10

Print "2" & "x" & Str(x) & "=" & Space (2); Str(2 * x) _

; Space (6); "3" & "x" & Str(x) & "=" & Space (2); Str (3 * x) _

; Space (6); "4" & "x" & Str(x) & "=" & Space (2); Str (4 * x) _

; Space (6); "5" & "x" & Str(x) & "=" & Space (2); Str(5 * x) _

; Space (6); "6" & "x" & Str(x) & "=" & Space (2); Str(6 * x) _

; Space (6); "7" & "x" & Str(x) & "=" & Space (2); Str(7 * x) _

; Space (6); "8" & "x" & Str(x) & "=" & Space (2); Str(8 * x) _

; Space (6); "9" & "x" & Str(x) & "=" & Space (2); Str(9 * x) _

; Space (6); "10" & "x" & Str(x) & "=" & Space (2); Str(10 * x) _

Next x

End Sub

13.3 The Format function

The Format function is a very powerful formatting function which can display the

numeric values in various forms. There are two types of Format functions. One of

them is the built-in or predefined format while another one can be defined by the

users.

(i) The format of the predefined Format function is

Format (n, “style argument”)

where n is a number and the list of style arguments is given in Table 13.1.

Table 13.1 List of style arguments

Style

argument

Explanation Example

General

Number

Displays the number without

having separators between

Format(8972.234, “General Number”)=8972.234

 75

thousands.

Fixed Displays the number without

having separators between

thousands and rounds it up to

two decimal places.

Format(8972.2, “Fixed”)=8972.23

Standard Displays the number with

separators between thousands

and rounds it up to two decimal

places.

Format(6648972.265, “Standard”)= 6,648,972.27

Currency Displays the number with the

dollar sign in front, has

separators between thousands,

and rounds it up to two decimal

places.

Format(6648972.265, “Currency”)= $6,648,972.27

Percent Converts the number to

percentage form, displays a %

sign and rounds it up to two

decimal places.

Format(0.56324, “Percent”)=56.32 %

Example 13.4

Private Sub Form_Activate ()

Print Format (8972.234, "General Number")

Print Format (8972.2, "Fixed")

Print Format (6648972.265, "Standard")

Print Format (6648972.265, "Currency")

Print Format (0.56324, "Percent")

End Sub

Figure 13.4 The output of Example 13.4

(ii) The format of the user-defined Format function is:

Format (n, “user’s format”)

 76

Although it is known as user-defined format, we still need to follow certain formatting

styles. Examples of user-defined formatting style are listed in Table 13.2:

Table13.2: User-Defined format

Example Explanation Output

Format(781234.57,”0”) Rounds to a whole number without

separators between thousands.

781235

Format(781234.57,”0.0”) Rounds to 1 decimal place without

separators between thousands.

781234.6

Format(781234.576,”0.00”) Rounds to 2 decimal places

without separators between

thousands.

781234.58

Format(781234.576,”#,##0.00”) Rounds to 2 decimal places with

separators between thousands.

781,234.58

Format(781234.576,”$#,##0.00”) Shows dollar sign and rounds to 2

decimal places with separators

between thousands.

$781,234.58

Format(0.576,”0%”) Converts to percentage form

without decimal places.

58%

Format(0.5768,”0.00%”) Converts to percentage form with 2

decimal places.

57.68%

Example 13.5

Private Sub Form_Activate ()

Print Format (781234.57, "0")

Print Format (781234.57, "0.0")

Print Format (781234.576, "0.00")

Print Format (781234.576, "#,##0.00")

Print Format (781234.576, "$#,##0.00")

Print Format (0.576, "0 %")

Print Format (0.5768, "0.00 %")

End Sub

Example 13.5 demonstrates some of the user-defined formatting. The output is

shown in Figure 13.4:

 77

Figure 13.5: The output of user-defined formatting

13.4 Formatting date and time

Date and time can be formatted using predefined formats and also user-defined

formats. The predefined formats of date and time are shown in Table 13.3:

Table 13.3 Predefined formats of date and time

Format Explanation

Format (Now, “General date”) Formats the current date and time.

Format (Now, “Long Date”) Displays the current date in long format.

Format (Now, “Medium Date”) Displays the current date in medium format

Format (Now, “Short date”) Displays the current date in short format

Format (Now, “Long Time”) Display the current time in long format.

Format (Now, “Medium Time”) Display the current time in medium format.

Format (Now, “Short Time”) Display the current time in short format.

Example 13.6

This program will create a magic clock that can display the date and time in different

formats. In order to make the clock actually work according to real time, you need to

insert the timer control into the form and enter the formatting procedure in the timer

subprogram. In addition, you must set the time interval in the timer’s properties

 78

window to 1000 so that it is equal to 1 second. You will also need to insert a few

labels to display the date and time in different formats. The general method to display

data or time on a label is Label1.Caption=date and Label1.Caption=Time. However,

in order to format the output, you need to use the formats shown in this example.

Private Sub Timer1_Timer()

Label3.Caption = Format (Now, "General Date")

Label5.Caption = Format (Now, "Long Date")

Label8.Caption = Format (Now, "Medium Date")

Label1.Caption = Format (Now, "Long Time")

Label9.Caption = Format (Now, "Short Time")

Label12.Caption = Format (Now, "Medium Time")

End Sub

The output is displayed in Figure 13.6:

Figure 13.6: Date and Time in different formats

You can also format date and time according to user-defined formats. The user-

defined formats for the date involve the use of the d, m and y letters while time format

use Hh: Nn: Ss AM/PM and “ttttt”. Some of the formats are shown in Table 13.4:

Table 13.4 Date and Time Formats

Format Explanation

 79

Format (Now, “m/d/yy”) Displays a single digit month followed by a single

digit day and two-digit year separated by slashes.

Format(Now, "dd/mm/yyyy") Displays a two-digit day followed by a two-digit

month and four-digit year separated by slashes.

Format(Now, "dd-mmm-yyyy") Displays a two-digit day followed by an

abbreviated month name and a four-digit year

separated by dashes.

Format(Now, "dd-mmmm-yyyy") Displays a two-digit day followed by the month

name and a four-digit year separated by dashes.

Format(Now, "Hh:Nn:Ss

AM/PM")

Displays the current time in a two-digit hour, two-

digit minute and two-digit second. It also includes

the AM/PM indicator.

Format(Now, "ttttt") Displays the current time in a two-digit hour, two-

digit minute and two-digit second. It also includes

the AM/PM indicator.

Format(Now, "dddd") Displays the current day name.

Format(Now, "dddddd") Displays the current day name and date.

Example 13.7

This example displays various formats of Date and Time. The output is shown in

Figure 13.7.

Private Sub Form_Activate ()

Print Format (Now, "m/d/yy")

Print Format (Now, "d/m/yy")

Print Format (Now, "dd-mm-yyyy")

Print Format (Now, "dd-mmm-yyyy")

Print Format (Now, "dd/mmmm/yyyy")

Print Format (Now, "mmm-dd-yyyy")

Print Format (Now, "mmmm/dd//yyyy")

Print Format (Now, "mmmm dd, yyyy")

Print Format (Now, "dddd")

Print Format (Now, "dddddd")

Print Format (Now, "Hh: Nn: Ss AM/PM")

Print Format (Now, "ttttt")

 80

End Sub

Figure 13.7 Date and Time in different formats

Exercise 13

1. Explain the difference between the Tab and the Space functions and write a

program to support your explanation.

2. Write down five style arguments of the Format function and write a program to

illustrate these styles.

3. Create a digital clock in Visual Basic that uses three different time formats.

4. Write a program to compute the percentage of price increment of a certain

goods based on the new price and the old price. Display the answer in

percentage form using the Format function.

 81

Lesson 14

Visual Basic Functions Part IV

Manipulating Strings

� Learning the usage of various strings manipulating functions such as Len,

Right, Left, Mid, Trim, Ltrim, Rtrim, Ucase, Lcase, Instr, Val, Str etc, Chr and

Asc.

14.1 The Len Function

The Len function returns an integer value which is the length of a phrase or a

sentence, including the empty spaces. The format is:

Len (“Phrase”)

For example:

Len (VisualBasic) = 11 and Len (welcome to VISUAL BASIC tutorial) =

22

The Len function can also return the number of digits or memory locations of a

number that is stored in the computer. For example,

Private sub Form_Activate ()

X=sqr (16)

Y=1234

Z#=10#

Print Len(x), Len(y), and Len (z)

 82

End Sub

will produce the output 1, 4, 8. The reason why the last value is 8 is because z# is a

double precision number and so it is allocated more memory spaces.

14.2 The Right Function

The Right function extracts the right portion of a phrase. The format is

Right (“Phrase”, n)

where n is the starting position from the right of the phase where the portion of the

phrase is going to be extracted. For example:

 Right (“Visual Basic”, 4) = asic

14.3 The Left Function

The Left function extracts the left portion of a phrase. The format is

Left (“Phrase”, n)

where n is the starting position from the left of the phase where the portion of the

phrase is going to be extracted. For example:

 Left (“Visual Basic”, 4) = Visu

14.4 The Ltrim Function

The Ltrim function trims the empty spaces of the left portion of the phrase. The format

is

Ltrim(“Phrase”)

.For example:

 Ltrim (“ Visual Basic”, 4) = Visual Basic

14.5 The Rtrim Function

The Rtrim function trims the empty spaces of the right portion of the phrase. The

format is

Rtrim(“Phrase”)

.For example:

Rtrim (“Visual Basic ”, 4) = Visual Basic

14.6 The Trim function

The Ttrim function trims the empty spaces on both sides of the phrase. The format is

Trim (“Phrase”)

.For example:

 83

Trim (“ Visual Basic ”) = Visual Basic

14.7 The Mid Function

The Mid function extracts a substring from the original phrase or string. The format is

Mid (phrase, position, n)

where position is the starting position of the phrase from which the extraction process

will start and n is the number of characters to be extracted. For example:

Mid (“Visual Basic”, 3, 6) = ual Bas

14.8 The InStr function

 The InStr function looks for a phrase that is embedded within the original phrase and

returns the starting position of the embedded phrase. The format is

Instr (n, original phase, embedded phrase)

where n is the position where the Instr function will begin to look for the embedded

phrase. For example

Instr (1, “Visual Basic”,” Basic”) =8

14.9 The Ucase and the Lcase functions

The Ucase function converts all the characters of a string to capital letters. On the

other hand, the Lcase function converts all the characters of a string to small letters.

For example,

Ucase (“Visual Basic”) =Visual Basic

Lcase (“Visual Basic”) =Visual Basic

14.10 The Str and Val functions

The Str is the function that converts a number to a string while the Val function

converts a string to a number. These two functions are important when we need to

perform mathematical operations.

14.11 The Chr and the Asc functions

The Chr function returns the string that corresponds to an ASCII code while the Asc

function converts an ASCII character or symbol to the corresponding ASCII code.

ASCII stands for “American Standard Code for Information Interchange”. Altogether

there are 255 ASCII codes and as many ASCII characters. Some of the characters

 84

may not be displayed as they may represent some actions such as the pressing of a

key or beeping. The format of the Chr function is

Chr(charcode)

and the format of the Asc function is

Asc (Character)

The following are some examples:

Chr(65)=A, Chr(122)=z, Chr(37)=% , Asc(“B”)=66, Asc(“&”)=38

Example 14.1

This is a program that utilizes some of the functions mentioned in this lesson.

The output is shown in Figure 14.1.

Private Sub Form_Activate ()

Print Len ("Visual Basic")

Print Right ("Visual Basic", 4)

Print Left ("Visual Basic", 4)

Print LTrim(" Visual Basic")

Print LTrim("Visual Basic ")

Print Trim(" Visual Basic ")

Print InStr (5, " Visual ", " ")

Print InStr (6, Trim$(" Visual Basic "), " ")

Print Mid ("Visual Basic", 3, 6)

Print InStr (1, "Visual Basic", "Basic")

End Sub

Figure 14.1

 85

Exercise 14

1. List the functions which can be used to manipulate strings and write a program

to illustrate these functions.

2. Write a program to compute the ASCII codes that correspond to the

characters a - z and A - Z using the Chr function.

Lesson15

Visual Basic Functions Part V- Creating Your

Own Functions

� Learning how to create your own functions.

The general format of a function is as follows:

Function functionName (Arg As dataType,..........) As dataType

Statements

End Function

You can place the word Public or Private in front of Function. Public indicates that the

function is applicable to the whole program while private indicates that the function is

only applicable to a certain module or procedure.

Example 15.1

 86

The example shows a function that can be used to calculate the area of a triangle

based on the length of its base and its height. The function is:

Private Function area (base As Variant, height As Variant) As Variant

area = (base * height) / 2

End Function

After you have created the function, you can call it under a procedure such as

Private Sub Command1_Click ()

Label4.Caption = area (Text1.Text, Text2.Text)

End Sub

When the user enters the values into the text boxes and clicks the command button,

the area of the triangle will be displayed in Label4. The output is shown in Figure

15.1:

Figure 15.1

Example 15.2

This example illustrates a function that can be used to calculate the profit margin

based on the formula

Price Selling

Price Cost-Price Selling
Margin Profit =

 87

The function to compute the profit margin and present it in the percentage form is

Private Function PM (SP As Variant, CP As Variant)

PM = Format ((SP - CP) / SP, "Percent")

End Function

and the procedure to call the function is

Private Sub Command1_Click ()

SP = SPTxt

CP = CPTxt

PMLbl = PM (SP, CP)

End Sub

The program will read the values from text boxes and display the result on the label

with the name PMLbl. The output is shown in Figure 15.2:

Figure 15.2 The Profit Margin Calculator

Example 15.3

In this example, a user can calculate the future value of a certain amount of money

he has today based on the interest rate and the number of years from now

(supposing he will invest this amount of money in a bank). The calculation is based

on the compound interest rate.

 88

Figure 15.3 The Future Value Calculator

Public Function FV (PV As Variant, i As Variant, n As Variant) As Variant

'Formula to calculate Future Value (FV)

'PV denotes Present Value

FV = PV * (1 + i / 100) ^ n

End Function

Private Sub compute_Click ()

'This procedure will calculate Future Value

Dim FutureVal As Currency

Dim PresentVal As Currency

Dim interest As Variant

Dim period As Variant

PresentVal = PV.Text

interest = rate.Text

period = years.Text

FutureVal = FV (PresentVal, interest, period)

Label5.Caption = Format (FutureVal, "currency")

End Sub

 89

Example 15.4

The following program will automatically compute examination grades based on the

marks that a student obtained.

Figure 15.4

Private Sub Command1_Click ()

mark = Text1.Text

Label3.Caption = grade (mark)

End Sub

Private Function grade(mark As Variant) As String

Select Case mark

Case Is >= 80

grade = "A"

Case Is >= 70

grade = "B"

Case Is >= 60

grade = "C"

Case Is >= 50

grade = "D"

Case Is >= 40

grade = "E"

Case Else

 90

grade = "F"

End Select

End Function

Example 15.5

This is a program that can calculate the body mass index, or BMI of a person based

the body weight in kilograms and the body height in meters. BMI can be calculated

using the formula

2
height

weight

The program is illustrated below and the output is shown in Figure 15.5:

Private Sub Command1_Click ()

Label4.Caption = BMI (Text1.Text, Text2.Text)

End Sub

Private Function BMI (height, weight)

BMIValue = (weight) / (height ^ 2)

BMI = Format (BMIValue, "0.00")

End Function

Figure 15.5 BMI calculator

 91

Exercise 15

1. Write a program to compute the area of a rectangle using a user-defined

function.

2. Write a program to compute the volume of a cylinder using a user-defined

function.

3. Create a user-defined function to calculate the average speed of a car using

the formula

Taken Time Total

Travelled Distance Total
Speed Average =

4. Create a user-defined function to calculate the present value that needs to be

invested in order to obtain a certain sum of money after a certain number of

years based on a certain interest rate per annum.

Lesson 16

Creating VISUAL BASIC Functions for
Microsoft Excel

� Learning how to create user-defined functions in Microsoft Excel using the

Microsoft Excel Visual Basic Editor.

16.1 The Needs to Create User-Defined Functions in Excel

You can create your own functions to supplement the built-in functions in Microsoft

Excel spreadsheet which are quite limited. These functions could be very useful and

powerful if you know how to program them properly. One of the main reasons we

need to create user-defined functions is to customize the spreadsheet environment

for individual needs. For example, the user might need a function that could calculate

commissions based on the sales volume, which is quite difficult if not impossible by

using the built-in functions alone. Let’s look at the table below:

 92

Table 16.1: Commissions Payment Table

Sales Volume($) Commissions

<500 3%

<1000 6%

<2000 9%

<5000 12%

>5000 15%

In the above table, if a salesman attains a sale volume of $6000, he will be paid

$6000x12%=$720.00. A Visual Basic function to calculate the commissions could be

written as follows:

Function Comm (Sales_V As Variant) as Variant

If Sales_V <500 Then

Comm=Sales_V*0.03

Elseif Sales_V>=500 and Sales_V<1000 Then

Comm=Sales_V*0.06

Elseif Sales_V>=1000 and Sales_V<2000 Then

Comm=Sales_V*0.09

Elseif Sales_V>=200 and Sales_V<5000 Then

Comm=Sales_V*0.12

Elseif Sales_V>=5000 Then

Comm=Sales_V*0.15

End If

End Function

16.2 Using Microsoft Excel Visual Basic Editor

To create User Defined functions in Microsoft Excel, click on tools, select macro and

then click on Visual Basic Editor as shown in Figure 11.1:

 93

Figure 11.1: Inserting Excel Visual Basic Editor

Upon clicking the Visual Basic Editor, the Visual Basic Editor window will appear as

shown in Figure 11.2. To create a function, type in the function as illustrated in

section 11.1 above after typing, save the file and then return to the Excel window.

Figure 16.2: The VISUAL BASIC Editor

 94

 In the Excel window, type in the titles Sales Volume and Commissions in any two

cells. By referring to Figure 16.2, key in the Comm function at cell C4 and by

referencing the value in cell B4, using the format Comm (B4). Any value which

appears in cell B4 will pass the value to the Comm function in cell C4. For the rest of

the rows, just copy the formula by dragging the bottom-right corner of cell C4 to the

required cells and a nice and neat table that shows the commissions will

automatically appear. It can also be updated at any time.

 95

Figure 16.3

 Exercise 16

1. Write a function in Excel that computes the grades of the examination scores.

2. Write a function in Excel to compute the health status of the patients based on

their blood pressures.

3. Write a function in Excel to compute the performance of the staff based the

monthly sales quotas achieved.

 96

Lesson 17

Arrays Part I

� Understanding the concept of an array.

� Learning how to declare an array.

� Learning how to create a control array.

17.1 Introduction to Array

When we work with a single item, we only need to use one variable. However, if we

have a list of items which are of similar type to deal with, we need to declare an array

of variables instead of using a variable for each item. For example, if we need to

enter one hundred names, instead of declaring one hundred different variables, we

need to declare only one array. By definition, an array is a group of variables with the

same data type and name. We differentiate each item in the array by using subscript,

the index value of each item, for example name (1), name (2), name (3)etc.

17.2 Declaring Arrays

We can use Public or Dim statements to declare an array like the way we declare a

single variable. The Public statement declares an array that can be used throughout

an application while the Dim statement declares an array that can be used only in a

local procedure.

The general format to declare an array is as follows:

i) Dim arrayName(subs) as dataType

ii) Public arrayName(subs) as dataType

‘Subs’ indicates the subscript of the last element in the array, instead of the number

of elements in the array. This is because VISUAL BASIC assigns a subscript of 0 to

the first element rather than 1. For example, Dim book (9) will declare an array which

consists of 10 elements, i.e. book(0), book(1), book(2), book(3), book(4), book(5),

book(6), book(7), book(8) and book(9).

 97

In order to assign 1 to the subscript of the first element in an array, you need to

include the statement Option Base 1 in the declaration area. With Option Base 1,

Dim CusName (10) as String will declare an array that consists of 10 elements,

starting from CusName (1) to CusName (10). Otherwise, there will be 11 elements in

the array starting from CusName (0) through to CusName (10). In addition, using Dim

Count (100 to 500) as Integer will declare an array that consists of elements starting

from Count (100) and ending at Count (500).

Example 17.1

Figure 17.1

Dim studentName(10) As String

Dim num As Integer

 Private Sub addName ()

For num = 1 To 10

studentName (num) = InputBox ("Enter the student name", "Enter Name", "",

1500, 4500)

If studentName (num) <> "" Then

Form1.Print studentName (num)

 98

Else

End

End If

 Next

End Sub

Private Sub Start_Click ()

Form1.Cls

addName

End Sub

The above program accepts data entries through an input box and displays the

entries in the form itself. As you can see, this program will only allow a user to enter

10 names each time he clicks on the start button.

Example 17.2

Figure 17.2

Dim studentName (10) As String

Dim num As Integer

Private Sub addName ()

For num = 1 To 10

studentName (num) = InputBox ("Enter the student name")

 99

List1.AddItem studentName (num)

Next

End Sub

Private Sub Start_Click ()

addName

End Sub

The above program accepts data entries through an InputBox and displays the items

in a list box.

17.3 The Control Array

Sometimes we need a group of controls that are of the same type or perform similar

tasks, for example the buttons on a calculator or a group of images boxes. Then we

have to create an array of the controls. These controls will carry the same name but

with different suffixes or indices.

It is very easy to create a control array in Visual Basic. Let’s say you want to create a

control array of a group of image boxes. The first step is to insert an image box in the

form. Secondly, right-click on the image box, then click copy and paste. VISUAL

BASIC will ask you whether you want to create a control array or not. Click Yes to

create a control array. Otherwise, another individual image box will be created. You

can keep on clicking the paste button to obtain the number of controls you desire.

For example, a control array of a group of image boxes will comprise Image1 (0),

Image1 (1), Image1 (2), Image1 (3) and so on, which can be identified by their index

values (or the values of the suffixes).

Exercise 17

1. Write a program to enter the item number and item unit price of 20 products

using an input box.

2. Create an array of 6 shape controls and display them as different shapes.

 100

Lesson 18

Arrays Part II -Two Dimensional Arrays

� Understanding the concept of a two dimensional array.

� Learning how to create a two dimensional array.

Multidimensional arrays are often needed when we are dealing with more complex

programs, especially those that handle large amount of data. Data are usually

organized and arranged in table form, this is where the multidimensional array comes

into play. However, we are dealing only with two dimensional arrays, i.e. a table that

consists of rows and columns.

The format to declare a two dimensional array is

Dim arrayName (num1, num2) as datatype

where num1 is the suffix of the first dimension of the last element and num2 is the

suffix of the second dimension of the last element in the array. The suffixes of the

element in the array will start with (0, 0) unless you set the Option Base to 1. In the

case when the Option Base is set to 1, then the suffixes of the element in the array

will start with (1, 1). For example,

 Dim Score (5, 5) as Integer

will create a two dimension array consists of 36 elements. These elements can be

organized in a table form as shown in Table 18.1:

Table 18.1 A two dimensional array

Score(0,0) Score(0,1) Score(0,2) Score(0,3) Score(0,4) Score(0,5)

Score(1,0) Score(1,1) Score(1,2) Score(1,3) Score(1,4) Score(1,5)

Score(2,0) Score(2,1) Score(2,2) Score(2,3) Score(2,4) Score(2,5)

Score(3,0) Score(3,1) Score(3,2) Score(3,3) Score(3,4) Score(3,5)

Score(4,0) Score(4,1) Score(4,2) Score(4,3) Score(4,4) Score(4,5)

Score(5,0) Score(5,1) Score(5,2) Score(5,3) Score(5,4) Score(5,5)

 101

If you set the Option Base to 1, then the elements will start with (1,1) and end at (6,6)

as shown in the following example.

Dim Score (6, 6) as Integer

Option Base 1

Table 18.2 A two dimensional array with Option Base 1

Score(1,1) Score(1,2) Score(1,3) Score(1,4) Score(1,5) Score(1,6

Score(2,1) Score(2,2) Score(2,3) Score(2,4) Score(2,5) Score(2,6)

Score(3,1) Score(3,2) Score(3,3) Score(3,4 Score(3,5) Score(3,6)

Score(4,1) Score(4,2) Score(4,3) Score(4,4) Score(4,5) Score(4,6)

Score(5,1) Score(5,2) Score(5,3) Score(5,4) Score(5,5) Score(5,6)

Score(6,1) Score(6,2) Score(6,3) Score(6,4) Score(6,5) Score(6,6)

The above concepts are illustrated in a sample program in Example 18.1:

Example 18.1

Option Base 1

Dim score (6, 6) As Integer

Dim x As Integer

Dim sum As Integer

Private Sub Command1_Click ()

x = 0

For i = 1 To 6

For j = 1 To 6

sum = i + j

score (i, j) = sum

Label1(x).Caption = "Score (" & i & "," & j & ")" & "=" & sum

x = x + 1

 102

Next j

Next i

End Sub

In Example 18.1, a two dimensional array that comprises 36 elements is created as

the Option Base is set to 1. In order to display the elements, a nested For…Next loop

is used to assign values which are equal to the sums of the suffixes, i and j, to all of

the elements in the array. The values are displayed through a control array made up

of 36 labels. The index is initially assigned a value of 0 using the variable x, which

then increases by 1 after every loop. In this way the indices will be assigned the

values ranging from 0 to 35, hence every label will be able to display the

corresponding scores of the two dimensional array using the statement (The

ampersand sign ‘&’ is used to combine string and numeric data, and it is very useful

for presenting an output that is easy to understand): Label1(x).Caption = "Score ("

& i & "," & j & ")" & "=" & sum

Figure 18.1

Columns

R
o

w
s

 103

Exercise 18

1. Write a program using a two-dimensional array to display the quarterly sales

target achieved by 10 salesmen in a year. The sample output is shown below:

 Quarter 1 Quarter 2 Quarter 3 Quarter 4

Abraham 100 150 200 180

Ben 50 80 90 100

Chris 150 100 170 200

Dan 200 100 150 190

Elvis 80 80 90 100

Francis 90 70 50 80

Graham 110 120 130 160

Hans 160 170 180 190

Irwin 130 140 150 140

Jenkin 90 80 60 70

2. Write a program to input the marks of five subjects for 10 students and compute

the total and average marks.

 104

Lesson 19

Graphics

� Learning how to manipulate the line and shape controls.

� Learning how to use the image box and the picture box.

� Learning how to use PSet, Line and Circle Drawing methods.

� Learning how to create a picture viewer.

Graphics are a very important part of Visual Basic programming as an attractive

interface will be appealing to the users. In old BASIC, drawing and designing

graphics are considered as difficult jobs, as they have to be programmed line by line

in a text-based environment. However, in Visual Basic, these jobs have been made

easy. There are four basic controls in VISUAL BASIC that you can use to draw

graphics on your form: the line control, the shape control, the image box and the

picture box.

19.1 The line and Shape controls

To draw a straight line, just click on the line control and then use your mouse to draw

the line on the form. After drawing the line, you can then change its color, width and

style using the BorderColor, BorderWidth and BorderStyle properties.

Similarly, to draw a shape, just click on the shape control and draw the shape on the

form. The default shape is a rectangle, with the shape property set at 0. You can

change the shape to square, oval, circle and rounded rectangle by changing the

shape property’s value to 1, 2, 3, 4, and 5 respectively. In addition, you can change

its background color using the BackColor property, its border style using the

BorderStyle property, its border color using the BorderColor property as well its

border width using the BorderWidth property.

Example 19.1

The program in this example allows the user to change the shape by selecting a

particular shape from a list of options from a list box, as well as changing its color

through a common dialog box.

 105

The objects to be inserted in the form are a list box, a command button, a shape

control and a common dialog box. The common dialog box can be inserted by

clicking on ‘project’ on the menu and then selecting the Microsoft Common Dialog

Control 6.0 by clicking the check box. After that, the Microsoft Common Dialog

Control 6.0 will appear in the toolbox and you can drag it into the form.

The list of items can be added to the list box through the AddItem method. The

procedure for the common dialog box to present the standard colors is as follows:

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

Shape1.BackColor = CommonDialog1.Color

The last line will change the background color of the shape by clicking on a particular

color on the common dialog box as shown in Figure 19.2.

Private Sub Form_Load ()

List1.AddItem "Rectangle"

List1.AddItem "Square"

List1.AddItem "Oval"

List1.AddItem "Circle"

List1.AddItem "Rounded Rectangle"

List1.AddItem "Rounded Square"

End Sub

Private Sub List1_Click ()

Select Case List1.ListIndex

Case 0

Shape1.Shape = 0

Case 1

Shape1.Shape = 1

Case 2

Shape1.Shape = 2

Case 3

Shape1.Shape = 3

Case 4

Shape1.Shape = 4

 106

Case 5

Shape1.Shape = 5

End Select

End Sub

Private Sub Command1_Click()

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

Shape1.BackColor = CommonDialog1.Color

End Sub

Figure 19.1 The output of Example 19.1

Figure 19.2 The Standard Colors

 107

19.2 The Image Box and the Picture Box

Using the line and shape controls to draw graphics will only enable you to create a

simple design. In order to improve the look of the interface, you need to put in images

and pictures of your own. Fortunately, there are two very powerful graphics tools you

can use in Visual Basic which are the image box and the picture box.

To load a picture or image into an image box or a picture box, you can click on the

picture property in the properties window and a dialog box will appear which will

prompt the user to select a certain picture file. You can also load a picture at runtime

by using the LoadPictrure () method. The syntax is

Image1.Picture= LoadPicture ("C:\path name\picture file name") or

picture1.Picture= LoadPicture ("C:\path name\picture name")

For example, the following statement will load the grape.gif picture into the image box.

Image1.Picture= LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\grape.gif")

Example 19.2

In this example, each time you click on the ‘change pictures’ button as shown in

Figure 19.2, you will be able to see three images loaded into the image boxes. This

program uses the Rnd function to generate random integers and then uses the

LoadPicture method to load different pictures into the image boxes using the

If…Then…Statements based on the random numbers generated. The output is

shown in Figure 19.2.

Dim a, b, c As Integer

Private Sub Command1_Click ()

Randomize Timer

a = 3 + Int (Rnd * 3)

b = 3 + Int (Rnd * 3)

c = 3 + Int (Rnd * 3)

If a = 3 Then

 108

Image1 (0).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\grape.gif")

End If

If a = 4 Then

Image1 (0).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\cherry.gif")

End If

If a = 5 Then

Image1 (0).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\orange.gif")

End If

If b = 3 Then

Image1 (1).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\grape.gif")

End If

If b = 4 Then

Image1 (1).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\cherry.gif")

End If

If b = 5 Then

Image1 (1).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\orange.gif")

End If

If c = 3 Then

Image1 (2).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\grape.gif")

End If

If c = 4 Then

Image1 (2).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\cherry.gif")

End If

If c = 5 Then

Image1 (2).Picture = LoadPicture ("C:\My Folder\VISUAL BASIC

program\Images\orange.gif")

End If

 109

End Sub

Figure 19.2

19.3 PSet, Line and Circle Drawing Methods

Other than using the line and shape controls to draw graphics on the form, you can

also use the Pset, Line and Circle methods.

(a) The Pset Method

The Pset method draws a dot on the screen. The format is

Pset (x, y), color

(x,y) is the coordinates of the point and color is its color. To specify the color, you can

use the color codes or the standard VISUAL BASIC color constant such as VbRed,

VbBlue, VbGeen etc. For example, Pset (100,200), VbRed will display a red dot at

the (100,200) coordinates.

 110

The Pset method can also be used to draw a straight line on the form. The procedure

is

For x= a to b

Pset(x, x)

Next x

This procedure will draw a line starting from the point (a, a) and to the point (b, b).

For example, the following procedure will draw a magenta line from the point (0, 0) to

the point (1000, 1000).

For x= 0 to 100

Pset(x, x), vbMagenta

Next x

(b) The Line Method

Although the Pset method can be used to draw a straight line on the form, it is a little

slow. It is better to use the Line method if you want to draw a straight line faster. The

format of the Line command is shown below. It draws a line from the point (x1, y1) to

the point (x2, y2) and the color constant will determine the color of the line.

Line (x1, y1)-(x2, y2), color

For example, the following command will draw a red line from the point (0, 0) to the

point (1000, 2000).

Line (0, 0)-(1000, 2000), VbRed

The Line method can also be used to draw a rectangle. The format is

Line (x1-y1)-(x2, y2), color, B

The four corners of the rectangle are (x1-y1), (x2-y1), (x1-y2) and (x2, y2)

Another variation of the Line method is to fill the rectangle with a certain color. The

format is

Line (x1, y1)-(x2, y2), color, BF

If you wish to draw the graphics in a picture box, you can use the following formats

• Picture1.Line (x1, y1)-(x2, y2), color

• Picture1.Line (x1-y1)-(x2, y2), color, B

• Picture1.Line (x1-y1)-(x2, y2), color, BF

• Picture1.Circle (x1, y1), radius, color

(c) The Circle Method

The circle method takes the following format

 111

Circle (x1, y1), radius, color

This draws a circle centered at (x1, y1), with a certain radius and a certain border

color. For example, the procedure

Circle (400, 400), 500, VbRed

draws a circle centered at (400, 400) with a radius of 500 twips and a red border.

Example 19.3

This example is a program that can draw various shapes with different colors in a

picture box. The program uses a common dialog box to select the color for the

graphics. The output is shown in Figure 19.3.

Dim x1 As Integer

Dim y1 As Integer

Dim x2 As Integer

Dim y2 As Integer

Dim x3 As Integer

Dim y3 As Integer

Dim color As String

Dim r As Integer

Private Sub Command1_Click ()

On Error GoTo AddCoordinate

x1 = Text1.Text

y1 = Text2.Text

x2 = Text3.Text

y2 = Text4.Text

On Error GoTo addcolor

Picture1.Line (x1, y1)-(x2, y2), color

Exit Sub

 112

AddCoordinate:

MsgBox ("Please fill in the coordinates")

Exit Sub

addcolor:

MsgBox ("Please choose a color")

Exit Sub

End Sub

Private Sub Command2_Click ()

x1 = Text1.Text

y1 = Text2.Text

x2 = Text3.Text

y2 = Text4.Text

Picture1.Line (x1, y1)-(x2, y2), color, B

End Sub

Private Sub Command3_Click ()

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

color = CommonDialog1.color

End Sub

Private Sub Command4_Click ()

On Error GoTo addvalues

x3 = Text5.Text

y3 = Text6.Text

r = Text7.Text

Picture1.Circle (x3, y3), r, color

Exit Sub

addvalues:

MsgBox ("Please fill in the coordinates, the radius and the color")

End Sub

Private Sub Command5_Click ()

Picture1.Cls

End Sub

 113

Private Sub Command6_Click ()

x1 = Text1.Text

y1 = Text2.Text

x2 = Text3.Text

y2 = Text4.Text

Picture1.Line (x1, y1)-(x2, y2), color, BF

End Sub

Figure 19.3

Example 19.4 The Picture Viewer

 114

Let’s create a program that enables the users to open and choose files from the

folders in their PC. This can be done easily using a picture box and a common dialog

box. In this program, you need to insert a picture box, a common dialog box and an

image. In the image properties window, click on the picture property and select a

picture that resembles an open file icon. The procedure to open the common dialog

box to browse the picture files as well as to load the selected picture into the picture

box is

CommonDialog1.Filter = "Bitmaps (*.BMP)|*.BMP|Metafiles (*.WMF)|*.WMF|Jpeg

Files (*.jpg)|*.jpg|GIF Files (*.gif)|*.gif|Icon Files (*.ico)|*.ico|All Files (*.*)|*.*"

CommonDialog1.ShowOpen

Picture1.Picture = LoadPicture (CommonDialog1.FileName)

The filter property of the common dialog box uses the format as shown below

Bitmaps (*.BMP)|*.BMP

to specify the file type, and uses the pipe line | to separate different file types.

Visual Basic supports most of the picture formats namely bmp, wmf, jpg, gif, ico (icon)

and cur (cursor) files. The command

CommonDialog1.ShowOpen

is to open the common dialog box and the command

 Picture1.Picture = LoadPicture (CommonDialog1.FileName)

is to load the selected picture file into the picture box.

The whole program is shown below and the output is shown in Figure 19.4.

Private Sub Image1_Click ()

CommonDialog1.Filter = "Bitmaps (*.BMP)|*.BMP|Metafiles

(*.WMF)|*.WMF|Jpeg Files (*.jpg)|*.jpg|GIF Files (*.gif)|*.gif|Icon Files

(*.ico)|*.ico|All Files (*.*)|*.*"

CommonDialog1.ShowOpen

Picture1.Picture = LoadPicture (CommonDialog1.FileName)

End Sub

Figure 19.4: The Picture Viewer

 115

Example 19.5 An Advanced Picture Viewer

We will create a picture viewer in such a way that it can search for all types of

graphics in your drives and display them.

Similar to the previous project, in this project, you need to insert a ComboBox, a

DriveListBox, a DirListBox, a TextBox and a FileListBox into your form. I shall briefly

explain again the function of each of the above controls.

a) ComboBox

The ComboBox displays and enables the selection of different types of files.

b) DriveListBox

The DriveListBox allows the selection of different drives available in your PC.

c) DirListBox

The DirListBox displays the directories of a selected drive in your PC.

d) TextBox

The TextBox displays the selected files.

e) FileListBox

 The FileListBox displays files that are available

Relevant codes must be written to coordinate all the above controls so that the

application can work properly. The program should flow in the following logical way:

 116

Step 1: User chooses the type of files he wants to display.

Step2: User selects the drive that might contain the relevant graphic files.

Step 3: User looks into directories and subdirectories for the files specified in step1.

The files should be displayed in the FileListBox.

Step 4: User selects the files from the FileListBox and click the Show button.

Step 5: User clicks on the Exit button to end the application.

Figure 19.5: The Picture Viewer Interface

The Code

Private Sub Form_Load ()

Left = (Screen. Width - Width) \ 2

Top = (Screen. Height - Height) \ 2

 117

Combo1.Text = "All graphic files"

Combo1.AddItem "All graphic files"

Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change ()

If ListIndex = 0 Then

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change ()

File1.Path = Dir1.Path

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

End Sub

Private Sub Drive1_Change ()

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click ()

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

Else

File1.Pattern = ("*.*")

End If

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

 118

End If

Text1.Text = filenam

End Sub

Private Sub show_Click ()

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

picture1.Picture = LoadPicture (filenam)

End Sub

Exercise 19

1. Write down the formats of the Pset method, the Line method and the Circle

method.

2. Write a program to draw a circle which color can be changed using the colors

specified in a list box.

3. Write a program to load pictures of various formats into an image box using

the common dialog box.

4. Write a program that can load a set of pictures randomly into a picture box.

 119

Lesson 20

Creating Multimedia Applications

� Learning how to create a CD player.

� Learning how to create Audio player.

� Learning how to create Multimedia player.

 120

In Visual Basic, you can create various multimedia applications that can play audio

CD, various audio files including mp3, wav and midi files; and different types of video

files such as avi, mpeg files and etc. To be able to play multimedia files or multimedia

devices, you have to insert the Microsoft Multimedia Control into your VISUAL BASIC

applications that you are going to create. However, Microsoft Multimedia Control is

not normally included in the startup toolbox. Therefore, you need to add the Microsoft

Multimedia control by pressing Ctrl+T and checking the box beside the Microsoft

Multimedia control 6.0 from the components that are displayed in the dialog box as

shown in Figure 20.1. Then, press the OK button. When you close the dialog box,

you will notice that the Microsoft Multimedia Control will be available in the toolbox

and you can drag it into the form.

Figure 20.1 The Components Dialog Box

20.1 Creating a CD Player

 121

 Figure 20.2: The Interface of the CD player

In this program, you will insert the Microsoft Multimedia Control and set its properties

to Visible: True as well as Play: Enabled. In addition, insert five command buttons

and name as well as label them as Play, Next, Previous, Stop and Exit. Besides that,

insert a label that can be used to display the current track number of the song being

played. Lastly, enter the program codes.

The most important statement in this program is to set the Microsoft Multimedia

Control’s device type to CDAudio because it will ensure audio CDs can be played.

 MMControl1.DeviceType = "CDAudio"

To display the track number of the current song being played, use the following

statement:

trackNum.Caption = MMControl1.Track

The Play, Next, Previous and Stop commands can be programmed using the

MMControl1.Command = "Play", MMControl1.Command = "Next”,

MMControl1.Command = "Prev", and MMControl1.Command = "Stop" statement.

Lastly, always ensure that the Microsoft Multimedia Control is closed whenever the

user closes the player. This can be achieved by using the statement

MMControl1.Command = "Close"

Under Form1_Unload procedure.

The program:

 122

Private Sub Form_Load ()

'To position the page at the center

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

End Sub

Private Sub Form_Activate ()

'Load the CDPlayer

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.DeviceType = "CDAudio"

MMControl1.Command = "Open"

End Sub

Private Sub MMControl1_StatusUpdate ()

'Update the track number

trackNum.Caption = MMControl1.Track

End Sub

Private Sub Next_Click ()

MMControl1.Command = "Next"

End Sub

Private Sub Play_Click ()

MMControl1.Command = "Play"

End Sub

Private Sub Previous_Click ()

MMControl1.Command = "Prev"

End Sub

Private Sub Stop_Click ()

MMControl1.Command = "Stop"

End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Stop"

 123

MMControl1.Command = "Close"

End

End Sub

Private Sub Form1_unload ()

‘Unload the CDPlayer

MMControl1.Command = "Close"

End Sub

20.2 Creating an Audio Player

In section 20.1, we have programmed a CD player. Now, with some minor

modifications, we will transform the CD player into an audio player. This player will be

created in such a way that it can search for wave and midi files in your drives and

play them. In this project, you need to insert a ComboBox, a DriveListBox, a

DirListBox, a TextBox and a FileListBox into your form. I shall briefly discuss the

function of each of the above controls. Besides that, you must also insert Microsoft

Multimedia Control (MMControl) in your form. You may make it visible or invisible. In

this program, I choose to make it invisible so that I can use the command buttons

created to control the player. The functions of the various controls are explained

below:

a) The ComboBox

Displays and enables the selection of different types of files. To add items to the

Combo Box, you can use the AddItem method. The items here are the extensions of

different audio files.

b) The DriveListBox

The DriveListBox allows the selection of different drives in your computer.

c) The DirListBox

The DirListBox displays different directories that are available in your computer.

d) The Textbox

The Textbox displays the selected files.

e) The FileListBox

The FileListBox displays files that are available in your computer.

Relevant codes must be written to coordinate all the above controls so that the

application can work properly. The program should flow in the following logical steps:

 124

Step 1: User chooses the type of files he wants to play.

Step2: User selects the drive that might contain the relevant audio files.

Step 3: User looks into directories and subdirectories for the files specified in step1.

The files should be displayed in the FileListBox.

Step 4: User selects the files from the FileListBox and clicks the Play button.

Step 5: User clicks on the Stop button to stop playing and the Exit button to end the

application.

To coordinate the DriveListBox and the DirListBox, you can use the statement below,

so that any change of the drives will be reflected in the directory list box.

Dir1.Path = Drive1.Drive

To coordinate the FileListBox and the DirListBox, you can use the statement below

so that any change of the directories will be reflected in the File List Box.

File1.Path = Dir1.Path

To select the target file, you can use the following statements where File1.Path

determines the path of the file and File1.FileName determines the file name. The file

name is then assigned to the variable filename and displayed in the text box.

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Text1.Text = filenam

To select the file types, you can use the statement File1.Pattern = ("*.wav") to choose

the wave audio files and the statement File1.Pattern = ("*.mid") to choose the

sequencer files.

To play the selected file, use the following procedure:

Private Sub play_Click ()

'To play WaveAudio file or Midi File

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

 125

ElseIf Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End Sub

The statement MMControl1.DeviceType = "WaveAudio" enables the Microsoft

Multimedia Control to play Wave Audio files and the statement

MMControl1.DeviceType = "Sequencer" enables the Microsoft Multimedia Control

to play the midi files. In fact, the Microsoft Multimedia Control can play many other

types of multimedia files, including Mpeg, Mp3 and Avi video files.

The statement MMControl1.FileName = Text1.Text plays the multimedia file

displayed in the Text1 textbox. The statement MMControl1.Command = "Open"

initiates the Microsoft Multimedia Control and the statement MMControl1.Command

= "Play” plays the multimedia file. The statement MMControl1.Command = "stop"

stops the Microsoft Multimedia Control from playing and finally the statement

MMControl1.Command = "Close” closes the Microsoft Multimedia Control.

 The Program

Private Sub Form_Load ()

'To center the Audioplayer

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

Combo1.Text = "*.wav"

Combo1.AddItem "*.wav"

Combo1.AddItem "*.mid"

Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change ()

‘To determine file type

 126

If ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change ()

'To change directories and subdirectories (or folders and subfolders)

File1.Path = Dir1.Path

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

File1.Pattern = ("*.*")

End If

End Sub

Private Sub Drive1_Change ()

'To change drives

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click ()

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

File1.Pattern = ("*.*")

End If

 127

If Right(File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Text1.Text = filenam

End Sub

Private Sub play_Click ()

'To play WaveAudio file or Midi file

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

ElseIf Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End Sub

Private Sub stop_Click ()

MMControl1.Command = "Stop"

 End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Close"

End

End Sub

Figure 20.2 The Audio Player

 128

20.3 Creating a Multimedia Player

In section 20.2, we have created an audio player. Now, with some modifications, we

will transform the audio player into a multimedia player that can play all kinds of

movie files besides audio files. This player will be created in such a way that it can

search for all types of media files in your computer drives and play them.

In this project, you need to insert a ComboBox, a DriveListBox, a DirListBox, a

TextBox, a FileListBox, and a picture box (for playing movies) into your form. I shall

briefly discuss the function of each of the above controls. You must also insert

Microsoft Multimedia Control (MMControl) in your form; you may make it visible or

invisible. In my program, I choose to make it invisible so that I can use the command

buttons created to control the player.

The program is almost similar to the audio player, but you need to add a few extra

statements so that you can play the video files and also the mp3 files. First of all, you

have to add two more file types with the statements File1.Pattern = ("*.avi") and

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

so that the Avi and Mpeg movie files as well as the mp3 files will show up in the file

list box . Secondly, you have to add the statement MMControl1.DeviceType =

"AVIVideo" so that the Microsoft Multimedia Control can play the Avi video files and

MMControl1.DeviceType = " " so that the player can play other media files including

the mp3 files.

Figure 21.1: The Multimedia Player

 129

The Program

Private Sub Form_Load ()

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

Combo1.Text = "*.wav"

Combo1.AddItem "*.wav"

Combo1.AddItem "*.mid"

Combo1.AddItem "*.avi"

Combo1.AddItem "*.mpeg;*.mpg;*.mp3"

Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change ()

If ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf ListIndex = 1 Then

 130

File1.Pattern = ("*.mid")

ElseIf ListIndex = 2 Then

File1.Pattern = ("*.avi")

ElseIf ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change ()

File1.Path = Dir1.Path

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

ElseIf Combo1.ListIndex = 2 Then

File1.Pattern = ("*.avi")

ElseIf Combo1.ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

File1.Pattern = ("*.*")

End If

End Sub

Private Sub Drive1_Change ()

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click ()

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

ElseIf Combo1.ListIndex = 2 Then

 131

File1.Pattern = ("*.avi")

ElseIf Combo1.ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

File1.Pattern = ("*.*")

End If

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Text1.Text = filenam

End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Close"

End

End Sub

Private Sub Open_Click ()

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

End If

If Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

If Combo1.ListIndex = 2 Then

MMControl1.DeviceType = "AVIVideo"

End If

If Combo1.ListIndex = 3 Then

MMControl1.DeviceType = ""

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

End Sub

 132

Private Sub play_Click ()

Timer1.Enabled = True

MMControl1.Command = "Play"

MMControl1.hWndDisplay = Picture1.hWnd

End Sub

Private Sub stop_Click ()

If MMControl1.Mode = 524 Then Exit Sub

If MMControl1.Mode <> 525 Then

MMControl1.Wait = True

MMControl1.Command = "Stop"

End If

MMControl1.Wait = True

MMControl1.Command = "Close"

End Sub

Exercise 20

1. Write a program that can play different sound files using a common dialog box.

2. Write a program that can play different video files using a common dialog box.

3. Create a player that can play audio CDs as well as different sound files.

Lesson 21

 133

Animation-Part I

� Learning how to create simple animation in Visual Basic.

Animation is always an interesting and exciting part of programming. Although Visual

Basic is not designed to handle advanced animations, you can still create some

interesting animated effects if you put in some hard thinking. There are many ways to

create animated effects in VB6, but for a start we will focus on the easier methods.

The simplest way to create animation is to set the visible property of a group of

images or pictures or even texts and labels to true or false by triggering a set of

events such as clicking a button. Let's examine the following example:

Example 21.1

This is a program that creates the illusion of moving a jet plane in four directions, that

is, north, south, east, and west. In order to do this, we need to insert five images of

the same picture into the form. Set the visible property of the image in the center to

be true and set the rest to false. On start-up, the user will only be able to see the

image in the center. Next, insert four command buttons into the form and change the

labels to Move North, Move East, Move West and Move South respectively. Double

click on the Move North button and key in the following procedure:

Sub Command1_click ()

Image1.Visible = False

Image3.Visible = True

Image2.Visible = False

Image4.Visible = False

Image5.Visible = False

End Sub

By clicking on the Move North button, Image1 and other images except Image3 will

be displayed. This will give an illusion that the jet plane has moved north. Now,

double click on other command buttons and key in similar procedures. You can also

insert an additional command button and label it as Reset and key in the following

code:

 134

Image1.Visible = True

Image3.Visible = False

Image2.Visible = False

Image4.Visible = False

Image5.Visible = False

Clicking on the reset button will make the image in the center visible again while

other images become invisible, this will give the impression that the jet plane has

moved back to the original position.

Figure 21.1

Example 21.1

You can also issue the commands using a textbox. This idea actually came from my

son Xun (10). His program is shown below:

Figure 21.2

 135

In the textbox, when you key in the letter n, the plane will move north, move west

when you key in w, move south when you key in s and move east when you key in

the letter e. The codes are as follows

Private Sub Command1_Click()

If Text1.Text = "n" Then

Image1.Visible = False

Image3.Visible = True

Image2.Visible = False

Image4.Visible = False

Image5.Visible = False

ElseIf Text1.Text = "e" Then

Image1.Visible = False

Image4.Visible = True

Image2.Visible = False

Image3.Visible = False

Image5.Visible = False

ElseIf Text1.Text = "w" Then

Image1.Visible = False

Image3.Visible = False

Image2.Visible = False

Image4.Visible = False

 136

Image5.Visible = True

ElseIf Text1.Text = "s" Then

Image1.Visible = False

Image3.Visible = False

Image2.Visible = True

Image4.Visible = False

Image5.Visible = False

End If

End Sub

Another simple way to simulate animation in VB6 is by using the Left and Top

properties of an object. Image.Left gives the distance of the image in twips from the

left border of the screen, and Image.Top gives the distance of the image in twips from

the top border of the screen. 1 twip is equivalent to 1/1440 of an inch. Using a

statement such as Image.Left-100 will move the Image100 twips to the left,

Image.Left+100 will move the Image100 twip away from the left (or 100 twips to the

right), Image.Top-100 will move the Image100 twips to the top and Image.Top+100

will move the Image100 twips away from the top border (or 100 twips down).

Example 21.3 illustrates how all the above methods can be used to create animation.

Example 21.3

This is a program that can move an object up, down, left, and right every time you

click on a relevant command button. The codes such as Image1.Top = Image1.Top +

100 are to make the distance increase or decrease every time a user clicks on the

command button. For example, if the initial position of Image1 is 1000 twips from the

top, after one click, the distance from the top will be 1100, and the next distance will

be 1200 and so on. Therefore, by writing similar codes for all the four buttons, you

can move the image in four directions by clicking any of the four buttons.

Figure 21.3

 137

The Program

Private Sub Command1_Click ()

Image1.Top = Image1.Top + 100

End Sub

Private Sub Command2_Click ()

Image1.Top = Image1.Top - 100

End Sub

Private Sub Command3_Click ()

Image1.Left = Image1.Left + 100

End Sub

Private Sub Command4_Click ()

 Image1.Left = Image1.Left – 100

End Sub

Example 21.4

This example lets users magnify or diminish an object by changing the height and

width properties of an object. It is quite similar to the previous example. The

statements Image1.Height = Image1.Height + 100 and Image1.Width =

Image1.Width + 100 will increase the height and the width of an object by 100 twips

each time a user clicks on the relevant command button. On the other hand, the

statements Image1.Height = Image1.Height - 100 and Image1.Width =

 138

Image1.Width -100 will decrease the height and the width of an object by 100 twips

each time a user clicks on the relevant command button.

Figure 21.4

The Program

Private Sub Command1_Click ()

Image1.Height = Image1.Height + 100

Image1.Width = Image1.Width + 100

End Sub

Private Sub Command2_Click ()

Image1.Height = Image1.Height - 100

Image1.Width = Image1.Width - 100

End Sub

You can try to combine both of the programs and make an object move and increase

or decrease in size each time a user clicks a command button.

Exercise 21

1. Create a simple animation by setting the visible property of a group of objects

to false and true.

2. Create an animation program by varying an image’s Left, Top, Width and

Height properties.

 139

Lesson 22

Animation - Part II

� Learning how to create a drag and drop animation.

� Learning how to create an animation with a complete motion.

22.1 Animation using a drag and drop procedure

Drag and drop is a common application where you can drag and drop an object such

as a file into a folder or into a recycle bin. This ability can be easily programmed in

Visual Basic. In the following example, we are going to create a simulation of

dragging the objects into a recycle bin and burning them.

In this program, you need to put 6 images on the form: a recycle bin, a burning

recycle bin, the fire, and three more images which are to be dragged into the recycle

bin. In addition, set all the dragmode of the images (including the fire) to 1(Automatic)

so that dragging is enabled, and set the visible property of the burning recycle bin to

false at start-up. Besides that, label the tag of fire as fire in its properties window. If

you want to have better dragging effects, you need to load an appropriate icon under

the dragIcon properties for those images to be dragged. Preferably the icon should

be the same as the image so that when you drag the image, it is like you are

dragging the image along.

The essential event procedure in this program is as follows:

Private Sub Image4_DragDrop (Source As Control, X As Single, Y As Single)

Source.Visible = False

If Source.Tag = "Fire" Then

Image4.Picture = Image5.Picture

End If

End Sub

Source refers to the image being dragged. Using the code Source.Visible=False

means it will disappear after being dragged into the recycle bin (Image4). If the

source is Fire, then the recycle will change into a burning recycle bin, which is

 140

accomplished by using the code Image4.Picture = Image5.Picture, where Image 5 is

the burning recycle bin.

Figure 22.1

The Program

Private Sub Form_Click ()

Label1.Visible = False

End Sub

Private Sub Image4_DragDrop (Source As Control, X As Single, Y As Single)

Source.Visible = False

If Source.Tag = "Fire" Then

Image4.Picture = Image5.Picture

End If

End Sub

Private Sub instruct_Click ()

Label1.Visible = True

End Sub

22.2 Animation with complete motion

So far the examples of animation shown in Lesson 21 only involve movement of

static images. In this Lesson, you will be able to create true animation where an

action finishes in a complete cycle, for example, a butterfly flapping its wings. In the

 141

following example, you need to use eight picture frames of a butterfly which display a

butterfly flapping its wings at different stages.

You need to put all the above images overlapping one another, make Image1 visible

while all other images invisible at start-up. Next, insert a command button and label it

as Animate. Click on the command button and key in the statements that make the

images appear and disappear successively by using the properties

image.visible=true and image.visible=false. You can use If..... Then and Elseif to

control the program flow. When you run the program, you should be able to get the

following animation.

Figure 22.2

The Program

Private Sub Command1_Click ()

If Image1.Visible = True Then

Image1.Visible = False

 Image2.Visible = True

ElseIf Image2.Visible = True Then

Image2.Visible = False

Image3.Visible = True

ElseIf Image3.Visible = True Then

Image3.Visible = False

 142

Image4.Visible = True

ElseIf Image4.Visible = True Then

Image4.Visible = False

Image5.Visible = True

ElseIf Image5.Visible = True Then

Image5.Visible = False

Image6.Visible = True

ElseIf Image6.Visible = True Then

Image6.Visible = False

Image7.Visible = True

ElseIf Image7.Visible = True Then

Image7.Visible = False

Image8.Visible = True

ElseIf Image8.Visible = True Then

Image8.Visible = False

Image1.Visible = True

End If

End Sub

If you wish to create the effect of the butterfly flapping its wings and flying at the

same time, then you could use the Left and Top properties of an object, such as the

one used in the examples of Lesson 23. Below is an example of a subroutine where

the butterfly will flap its wings and move up at the same time. You can also write

subroutines that move the butterfly to the left, to the right and to the bottom.

Sub move_up ()

If Image1.Visible = True Then

Image1.Visible = False

Image2.Visible = True

Image2.Top = Image2.Top - 100

ElseIf Image2.Visible = True Then

Image2.Visible = False

Image3.Visible = True

Image3.Top = Image3.Top - 100

ElseIf Image3.Visible = True Then

Image3.Visible = False

 143

Image4.Visible = True

Image4.Top = Image4.Top - 100

ElseIf Image4.Visible = True Then

Image4.Visible = False

Image5.Visible = True

Image5.Top = Image5.Top - 100

ElseIf Image5.Visible = True Then

Image5.Visible = False

Image6.Visible = True

Image6.Top = Image6.Top - 100

ElseIf Image6.Visible = True Then

Image6.Visible = False

Image7.Visible = True

Image7.Top = Image7.Top - 100

ElseIf Image7.Visible = True Then

Image7.Visible = False

Image8.Visible = True

Image8.Top = Image8.Top - 100

ElseIf Image8.Visible = True Then

Image8.Visible = False

Image1.Visible = True

Image1.Top = Image1.Top - 100

End If

End Sub

Exercise 22

1. Write a program that drags and drops a group of items into a box and plays a

sound at the same time.

2. Create a program that simulates a running man using the images below or use

your own images, or those downloaded from the Internet.

 144

Lesson 23

Animation - Part III

� Learning how to create animation using timers.

� Learning how to create animation using the Move method.

23.1 Animation using timers

All preceding examples of animation that you have learnt in Lesson 23 and Lesson

24 only involve manual animation, which means you need to keep on clicking a

certain command button or pressing a key to make an object animate. In order to

make it move automatically, you need to use a timer. The first step in creating

automatic animation is to drag the timer from the toolbox into the form and set its

interval to a certain value other than 0. A value of 1 is equivalent to 1 milli-second

which means a value of 1000 represents 1 second. The value of the timer interval will

determine the speed of an animation.

Example 23.1

This program uses a very simple technique to create an animation by setting the

properties Visible=False and Visible=True to show and hide two images alternately.

When you click on the program, you should see the animation that shows Image1

and Image2 interchangeably.

The Program

Private Sub Timer1_Timer ()

If Image1.Visible = True Then

Image1.Visible = False

Image2.Visible = True

ElseIf Image2.Visible = True Then

Image2.Visible = False

Image1.Visible = True

End If

End Sub

 145

Example 23.2

This example shows a complete cycle of a motion such as the butterfly flapping its

wings. Previous examples show only manual animation while this example will

display an automatic animation once you start the program or by clicking a command

button. Similar to the example under Lesson 24.2, you need to insert a group of eight

images of a butterfly flapping its wings at different stages. Next, insert a timer into the

form and set the interval to 10 or any value you like. Remember to make Image1

visible and the other images invisible at start-up. Finally, insert a command button,

rename its caption as Animate, and key in the following statements by double clicking

on this button.

It is important to bear in mind that you should enter the statements for hiding and

showing the images under the timer1_timer subroutine otherwise the animation will

not work. Clicking on the Animate button will make the timer start ticking and the

event will run after every interval of 10 milliseconds or whatever interval you have set.

In future lessons, I will show you how to adjust the interval at runtime by using a

slider bar or a scroll bar.

Figure 23.1

 The Program

Private Sub Form_Load ()

Image1.Visible = True

x = 0

End Sub

 146

Private Sub Command1_Click ()

Timer1.Enabled = True

End Sub

Private Sub Timer1_Timer ()

If Image1.Visible = True Then

Image1.Visible = False

Image2.Visible = True

ElseIf Image2.Visible = True Then

Image2.Visible = False

Image3.Visible = True

ElseIf Image3.Visible = True Then

Image3.Visible = False

Image4.Visible = True

ElseIf Image4.Visible = True Then

Image4.Visible = False

Image5.Visible = True

ElseIf Image5.Visible = True Then

Image5.Visible = False

Image6.Visible = True

ElseIf Image6.Visible = True Then

Image6.Visible = False

Image7.Visible = True

ElseIf Image7.Visible = True Then

Image7.Visible = False

Image8.Visible = True

ElseIf Image8.Visible = True Then

Image8.Visible = False

Image1.Visible = True

End If

End Sub

 147

23.2 Animation using the Move Method

The most powerful method to enable animation in Visual Basic is the Move method.

The syntax is shown below where the object moves to the point (x, y)

Object.Move x, y

where x is the distance from the left border of the screen and y is the distance from

the top border of the screen. For example, the statement Image1.Move 1000, 1000

will move Image1 to the location 1000 twips from the left border and 1000 twips from

the top border.

Example 23.3

This program will move Image1 to the location with coordinates (1000,1000) at the

first click and subsequently every click will move Image1 100 twips away from the left

border and 100 twips from the top border.

Private Sub Image1_Click()

Image1.Move 1000 + x, 1000 + x

x = x + 100

End Sub

Example 24.2

This example uses the timer to initiate a motion that is automatic. In order to do that,

you need to insert a timer and set its interval to a certain value. The procedure is

shown below. When you run this program, the image moves 50 twips closer to the

left and the top of the screen respectively after every interval.

Private Sub Image1_Click ()

Image1.Move Image1.Left-50, Image1.Top-50

End Sub

Exercise 23

1. Write down and explain the syntax of the Move method.

2. Create an animation that shows and hides a group of 5 images

interchangeably.

3. Write a program using the Move method that shows an object moving

vertically up and down.

 148

Lesson 24

Fun and Games Programming –Part I

� Learning how to create simple games.

A lot of people might think that VISUAL BASIC is not a suitable programming

language for games. Actually, though there might be some limitations in VISUAL

BASIC involving game programming and animation, you can actually construct some

good games in VISUAL BASIC if you put in a lot of thought and time. To design a

game, you need to come up with an idea first, and then sit back and think over it.

Ideas can be obtained through the Internet, other media sources, from gamers

themselves etc. After that, you need to write out a draft program and try it out. You

should always start with one small component of the program and if that works, you

can proceed to program other components and then combine them. You should

always have a VISUAL BASIC book in hand for referencing.

Game programming can be very satisfying if your programs work. Furthermore, you

can learn a great deal of programming logics by doing game programming because

the procedures are often very complex, and you need to look up for references every

now and then.

Here are some of the programs that I have thought out myself. These programs

make use of everything you have learnt so far and you need to read through all the

procedures carefully so that you can better understand the programming logics

behind them. Later, you might want to modify the programs or even come out with

your own games.

24.1 Snake Chess

Snake chess is a popular board game for young children. This game usually involves

two or more players and they take turns to move by rolling a die. On the way to the

finishing point, the players will meet with some hurdles in the form of snakes and

some opportunities in the form of ladders. Whenever the player encounters a snake

(or more accurately, the snake’s head), he or she will be thrown back to an earlier

 149

box (which is at the snake’s tail). On the other hand, whenever the player encounters

a ladder, he or she can climb up the ladder to a higher box. The player who reaches

the finishing point first wins the game. Figure 24.1 illustrates the interface.

Figure 24.1 Snake Chess

The first step in creating the game is to design the interface. Here, the labels used to

design the chess board are numbered from 1 to 100. These labels are filled with

different colors to give it a more appealing look. Next, insert various pictures of

snakes using the image box and then draw the ladders using the line tool. In addition,

you need to draw the die with the shape control, and add in the command buttons for

rolling the die, starting a new game as well as exiting the game. Besides that, you

need to insert two images to denote the players and then put in the label for the

declaration of the winner. Lastly, insert two timers for animation purposes.

 150

The initial part of the program is to declare various variables. The two most important

variables are the arrays c (10) and r (10). The array r (10) is used to denote the row

numbers , where r(1)=row 1, r(2)=row 2 until r(10)=row 10. Similarly, c (10) is used

to denote the column numbers, where c (1) =column 1, c (2) =column 2 until c (10)

=column 10. After declaring the variables, you need to assign the coordinates of the

center of all the boxes which can be denoted by (column, row) or (c (i), r (i)), using

the procedure below:

Private Sub Form_Load ()

c (1) = 600

r(1) = 8200

For i = 1 To 9

c (i + 1) = c (i) + 800

Next

For j = 1 To 9

r (j + 1) = r (j) - 800

Next

End Sub

You have to determine the initial position of the center of the first box (label) by

looking at its distance from the left as well as from the top, and also its width, in the

properties window. In this program, the distance of the first box from the left is 400

twips, and its width is 800 twips, therefore its center is 600 twips from the left. Using

the statement c (i + 1) = c (i) + 800 within a For…Next loop, the distance between

successive columns will be fixed at 800 twips. Similarly, the distance between rows

can be determined using the same logic.

The next most important step is to control the movement of the chess pieces. In order

to do this, you have to use the variables totalnum and totalnum1 to denote the

accumulated scores of the die for player 1 and player 2 respectively. For example, if

the first score of the die is 3 and the second score of the die is 6 for player 1, then

totalnum=9. You need to write the procedure for every row individually so that

motion will be in a zigzag manner as shown in Figure 24.2

 151

Figure 24.2 The movement of the chess pieces

 For the first row and for player 1, you can use the following procedure:

If player = 1 Then

totalnum = totalnum + num

If totalnum < 11 Then

Image1 (0).Move c (totalnum), r (1)

End If

Num is the score which appears on the die and the totalnum is added to num to get

the accumulated scores. In the first row, the number on the rightmost square is 10,

which is equal to the number of columns across the first row. The statement

Image1 (0).Move c (totalnum), r (1) uses the Move method to move chess piece 1

(Image1(0)) across the column from left to right . For the movement in the second

row, the direction is from right to left, so we need to use the following procedure:

If totalnum > 10 And totalnum < 21 Then

Image1 (0).Move c (21 - totalnum), r (2)

End If

 152

The statement Image1 (0).Move c(21 - totalnum), r(2) will move Image1(0) from the

position c(10),r(2) to c(1), r(2), i.e. from the square with number 11 to the square with

number 20. The movement of the chess pieces for other positions follows the same

logics. The procedure to move the chess pieces has to be placed under the Private

Sub Timer1_Timer procedure (set the Timer1’s interval to a certain value).

Before the program can work, you will need to program the die, which will determine

how many steps the chess pieces will move. The interface of the die consists of 7

round shapes that are placed in a rounded square as shown in Figure 24.3. The

seven round shapes are inserted as a control array with names starting with shape1

(0) to shape1 (6). The shape in the center is shape1 (3). The appearance of the

round shapes are controlled by a randomization process that produce six random

numbers using the statement num = Int(1 + Rnd * 6). For example, when num=1,

only the round shape in the center appears while other round shapes are made

invisible. Other combinations use the same logic. Putting all the procedures together,

we have created a game of snake chess.

Figure 24.3 The Die

The Program

Option Base 1

Dim c (10) As Variant

Dim r (10) As Variant

 Dim x As Integer

 Dim m As Integer

 Dim n As Integer

 Dim num As Integer

 Dim totalnum As Single

 Dim totalnum1 As Single

 153

 Dim player As Integer

 Dim t As Integer

Private Sub Command2_Click()

'To move the chess pieces to the original position

Image1 (0).Move 10200, 5520

Image1 (1).Move 10200, 6480

Totalnum = 0

totalnum1 = 0

Label2.Caption = ""

MMControl1.Command = "close"

End Sub

Private Sub Command3_Click ()

End

End Sub

Private Sub Form_Load ()

'To assign the column and row coordinates to all the boxes

c (1) = 600

r (1) = 8200

For i = 1 To 9

c (i + 1) = c (i) + 800

Next

For j = 1 To 9

r (j + 1) = r (j) - 800

Next

End Sub

'To roll the die

Private Sub roll ()

x = x + 10

Randomize Timer

num = Int(1 + Rnd * 6)

 154

For i = 0 To 6

 Shape1 (i).Visible = False

Next

If num = 1 Then

 Shape1 (3).Visible = True

 Shape2.FillColor = &HC0C0C0

End If

If num = 2 Then

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape2.FillColor = &H8080FF

End If

If num = 3 Then

 Shape1 (2).Visible = True

 Shape1 (3).Visible = True

 Shape1 (4).Visible = True

 Shape2.FillColor = &H80FF&

 End If

If num = 4 Then

 Shape1 (0).Visible = True

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape1 (6).Visible = True

 Shape2.FillColor = &HFFFF00

 End If

If num = 5 Then

 Shape1 (0).Visible = True

 Shape1 (2).Visible = True

 Shape1 (3).Visible = True

 Shape1 (4).Visible = True

 Shape1 (6).Visible = True

 Shape2.FillColor = &HFFFF&

 End If

 If num = 6 Then

 155

 Shape1 (0).Visible = True

 Shape1 (1).Visible = True

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape1 (5).Visible = True

 Shape1 (6).Visible = True

 Shape2.FillColor = &HFF00FF

 End If

End Sub

Private Sub Command1_Click (Index As Integer)

'To identify which player is clicking the roll die command

If Index = 0 Then

player = 1

End If

If Index = 1 Then

player = 2

End If

Timer1.Enabled = True

x = 0

End Sub

Private Sub Timer1_Timer ()

If x < 100 Then

Call roll

Else

Timer1.Enabled = False

'To move player 1 according to the total score of the die

'Movement across column 1 to column 10 and row 1 to row 10

If player = 1 Then

totalnum = totalnum + num

 156

If totalnum < 11 Then

Image1 (0).Move c (totalnum), r (1)

If totalnum = 10 Then

Image1 (0).Move c (8), r (3)

totalnum = 28

End If

End If

If totalnum > 10 And totalnum < 21 Then

Image1 (0).Move c (21 - totalnum), r (2)

If totalnum = 17 Then

Image1 (0).Move c (4), r (4)

Totalnum = 37

End If

End If

If totalnum > 20 And totalnum < 31 Then

Image1 (0).Move c (totalnum - 20), r(3)

End If

If totalnum > 30 And totalnum < 41 Then

Image1 (0).Move c (41 - totalnum), r(4)

If totalnum = 34 Then

Image1 (0).Move c(5), r(2)

totalnum = 16

End If

If totalnum = 31 Then

Image1 (0).Move c (10), r (7)

totalnum = 70

End If

End If

If totalnum > 40 And totalnum < 51 Then

Image1 (0).Move c (totalnum - 40), r (5)

If totalnum = 45 Then

Image1 (0).Move c (4), r (9)

totalnum = 84

 157

End If

If totalnum = 44 Then

Image1 (0).Move c(1), r(3)

totalnum = 21

End If

End If

If totalnum > 50 And totalnum < 61 Then

Image1 (0).Move c (61 - totalnum), r (6)

End If

If totalnum > 60 And totalnum < 71 Then

Image1 (0).Move c (totalnum - 60), r (7)

If totalnum = 68 Then

Image1 (0).Move c (8), r (5)

totalnum = 48

End If

End If

If totalnum > 70 And totalnum < 81 Then

Image1 (0).Move c (81 - totalnum), r (8)

If totalnum = 79 Then

Image1 (0).Move c (2), r (6)

totalnum = 59

End If

If totalnum = 78 Then

Image1 (0).Move c (4), r (10)

totalnum = 97

End If

End If

If totalnum > 80 And totalnum < 91 Then

Image1 (0).Move c (totalnum - 80), r (9)

End If

If totalnum > 90 And totalnum < 101 Then

Image1 (0).Move c (101 - totalnum), r (10)

 158

If totalnum = 95 Then

Image1 (0).Move c(8), r(8)

totalnum = 73

End If

End If

If totalnum > 100 Or totalnum = 100 Then

Image1 (0).Move c (1), r(10)

End If

End If

'To move player 2 according to the total score of the die

 If player = 2 Then

 totalnum1 = totalnum1 + num

If totalnum1 < 11 Then

Image1 (1).Move c (totalnum1), r(1)

If totalnum1 = 10 Then

Image1 (1).Move c (8), r(3)

totalnum1 = 28

End If

End If

If totalnum1 > 10 And totalnum1 < 21 Then

Image1 (1).Move c (21 - totalnum1), r (2)

If totalnum1 = 17 Then

Image1 (1).Move c (4), r (4)

totalnum1 = 37

End If

End If

If totalnum1 > 20 And totalnum1 < 31 Then

Image1 (1).Move c (totalnum1 - 20), r(3)

End If

If totalnum1 > 30 And totalnum1 < 41 Then

Image1 (1).Move c (41 - totalnum1), r(4)

If totalnum1 = 34 Then

 159

Image1 (1).Move c (5), r(2)

totalnum1 = 16

End If

If totalnum1 = 31 Then

Image1(1).Move c (10), r(7)

totalnum1 = 70

End If

End If

If totalnum1 > 40 And totalnum1 < 51 Then

Image1(1).Move c(totalnum1 - 40), r(5)

If totalnum1 = 45 Then

Image1(1).Move c(4), r(9)

totalnum1 = 84

End If

If totalnum1 = 44 Then

Image1(1).Move c(1), r(3)

totalnum1 = 21

End If

End If

If totalnum1 > 50 And totalnum1 < 61 Then

Image1 (1).Move c (61 - totalnum1), r (6)

End If

If totalnum1 > 60 And totalnum1 < 71 Then

Image1 (1).Move c (totalnum1 - 60), r (7)

If totalnum1 = 68 Then

Image1 (1).Move c (8), r(5)

totalnum1 = 48

End If

End If

If totalnum1 > 70 And totalnum1 < 81 Then

Image1 (1).Move c (81 - totalnum1), r(8)

If totalnum1 = 79 Then

 160

Image1 (1).Move c(2), r(6)

totalnum1 = 59

End If

If totalnum1 = 78 Then

Image1 (1).Move c (4), r (10)

totalnum1 = 97

End If

End If

If totalnum1 > 80 And totalnum1 < 91 Then

Image1 (1).Move c (totalnum1 - 80), r(9)

End If

If totalnum1 > 90 And totalnum1 < 101 Then

Image1 (1).Move c (101 - totalnum1), r (10)

If totalnum1 = 95 Then

Image1 (1).Move c (8), r (8)

totalnum1 = 73

End If

End If

If totalnum1 > 100 Or totalnum1 = 100 Then

Image1 (1).Move c (1), r (10)

End If

End If

'To play the applause sound when any one player reaches 100

If (totalnum > 100 Or totalnum = 100) And totalnum1 < 100 Then

Label2.Caption = "Player 1 Wins"

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

 161

End If

If (totalnum1 > 100 Or totalnum1 = 100) And totalnum < 100 Then

Label2.Caption = "Player 2 Wins"

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End If

End If

End Sub

24.2 Slot Machine

This a professional-looking slot machine which resembles the real machines played

in the casinos in Las Vegas! In this program, the most important part of the program

is inserting three image boxes into the form and programming them so that they will

display a set of three different pictures randomly when the user presses on the spin

button. Therefore, it involves a randomization process. Next, a timer needs to be

incorporated into the procedures so that the programs can produce animated effects.

In addition, you can also insert the Microsoft Multimedia Control so that it can play

sounds in synchronization with the spinning of the slot machine as well as when the

player hits the jackpot.

 162

Figure 24.4 The Slot Machine

The most important part of the program is the spin procedure, which is

a = 1 + Int(Rnd * 3)

b = 1 + Int(Rnd * 3)

c = 1 + Int(Rnd * 3)

If a = 1 Then

Image1 (0).Picture = LoadPicture ("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If a = 2 Then

Image1(0).Picture = LoadPicture("C: \VISUAL BASIC

program\Images\cherry.gif")

 163

End If

If a = 3 Then

Image1(0).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

If b = 1 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If b = 2 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\cherry.gif")

End If

If b = 3 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

If c = 1 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If c = 2 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\cherry.gif")

End If

If c = 3 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

End Sub

The three random variables a, b and c will be randomly assigned the values 1, 2 and

3 through the Rnd function. Based on these three random numbers, three different

pictures will be loaded into the three image boxes randomly using the LoadPicture

 164

method. Animated effects are created by putting the above procedure under the

control of Timer1, which will call the spin procedure after every interval until it fulfills a

certain condition. Sounds are also added using the Microsoft Multimedia Control to

make the game more realistic and interesting. The amount won is controlled by the

If….Then statements. For example, if two grapes appear in any two image boxes,

the amount won is $20. The statements for this are:

If (a = 1 And b = 1 And c <> 1) Or (a = 1 And c = 1 And b <> 1) Or

(b = 1 And c = 1 And a <> 1) Then

Label1.Caption = “You win 20 dollars"

amount = amount + 20

End If

Whenever the value of a, b or c is 1, the picture grape.gif will be loaded under the

spin procedure. The above If….Then statement will check whether two grapes are

loaded in any two of the three image boxes randomly; if so then the program will

declare that the player has won 20 dollars. Besides that, 20 dollars will be added to

the variable amount.

The Program

Dim x As Integer

Dim amount As Variant

Dim balance As Variant

Dim a, b, c As Integer

Private Sub Command2_Click()

End

End Sub

Private Sub betbal_Click()

Label13.Caption = Str(Val(Label6.Caption) + Val(Label13.Caption))

Label6.Caption = ""

End Sub

Private Sub Cashout_Click()

If Val(Label13.Caption) > 0 Then

balance = Val(Label6.Caption) + Val(Label13.Caption)

 165

Label13.Caption = ""

Label6.Caption = Str(balance)

Label1.Caption = "Please bet again"

Else

Label1.Caption = "Sorry, you have no money to cash out."

End If

End Sub

Private Sub Form_Click()

Label3.Visible = False

End Sub

Private Sub Form_Load()

Label1.Caption = " Welcome to Play"

Label3.Visible = False

Image1(0).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\cherry.gif")

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End Sub

Private Sub Image23_Click()

End

End Sub

Private Sub instruct_click()

Label3.Visible = True

End Sub

Private Sub Label12_Click()

Label13.Caption = Str(Val(Label13.Caption) + Val(Text2.Text))

Text2.Text = ""

End Sub

 166

Private Sub spin_Click()

Timer1.Enabled = True

MMControl1.Command = "Close"

MMControl2.Command = "Close"

x = 0

amount = Val(Text1)

balance = Val(Label6)

End Sub

Private Sub spining_Click()

If Val(Label13.Caption) > 0 Then

Timer1.Enabled = True

MMControl1.Command = "Close"

MMControl2.Command = "close"

x = 0

amount = Val(Label13.Caption)

balance = Val(Label6)

Else

Label1.Caption = "Sorry, you have no money to spin, add cash."

End If

End Sub

Private Sub Timer1_Timer()

If x < 500 Then

spin

Else

Timer1.Enabled = False

MMControl1.Command = "Stop"

Label1.Alignment = 2

If (a = 1 And b = 1 And c <> 1) Or (a = 1 And c = 1 And b <> 1) Or (b = 1 And c = 1

And a <> 1) Then

Label1.Caption = " You win 20 dollars"

amount = amount + 20

 167

End If

If (a = 2 And b = 2 And c <> 2) Or (a = 2 And c = 2 And b <> 2) Or (b = 2 And c = 2

And a <> 2) Then

Label1.Caption = “You win 30 dollars"

amount = amount + 30

End If

If (a = 3 And b = 3 And c <> 3) Or (a = 3 And c = 3 And b <> 3) Or (b = 3 And c = 3

And a <> 3) Then

Label1.Caption = " You win 40 dollars"

amount = amount + 40

End If

If (a = 1 And b = 1 And c = 1) Or (a = 2 And b = 2 And c = 2) Or (a = 3 And b = 3 And

c = 3) Then

MMControl2.Notify = False

MMControl2.Wait = True

MMControl2.Shareable = False

MMControl2.DeviceType = "WaveAudio"

MMControl2.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\endgame.wav"

MMControl2.Command = "Open"

MMControl2.Command = "Play"

Label1.Caption = “Congratulation! Jackpot!!! You win 200 dollars!"

amount = amount + 200

End If

If (a = 1 And b = 2 And c = 3) Or (a = 1 And b = 3 And c = 2) Or (a = 2 And b = 1 And

c = 3) Or (a = 2 And b = 3 And c = 1) Or (a = 3 And b = 2 And c = 1) Or (a = 3 And b

= 1 And c = 2) Then

Label1.Caption = “Too bad, you lost 100 dollars"

amount = amount - 100

End If

 168

If amount < 0 Then

Label1.Caption = "Oh! You're bankrupt! Add cash to play!"

End If

Label13.Caption = Str(amount)

End If

End Sub

Private Sub spin()

x = x + 10

Randomize Timer

a = 1 + Int(Rnd * 3)

b = 1 + Int(Rnd * 3)

c = 1 + Int(Rnd * 3)

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\VISUAL BASIC program\audio\slot2.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label1.Caption = "Good Luck!"

Label1.Alignment = a - 1

If a = 1 Then

Image1(0).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If a = 2 Then

Image1(0).Picture = LoadPicture("C: \VISUAL BASIC

program\Images\cherry.gif")

End If

If a = 3 Then

 169

Image1(0).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

If b = 1 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If b = 2 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\cherry.gif")

End If

If b = 3 Then

Image1(1).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

If c = 1 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\grape.gif")

End If

If c = 2 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\cherry.gif")

End If

If c = 3 Then

Image1(2).Picture = LoadPicture("C:\VISUAL BASIC

program\Images\orange.gif")

End If

End Sub

Exercise 24

1. Create a simple version of the popular monopoly game.

2. Create a slot machine that displays two rows of images.

 170

Lesson 25

Fun and Games Programming- Part II

� Learning how to create simple games.

25.1 Boggle

This is a type of word game where players can form as many words as possible from

the characters displayed on an nxn square. Words can be formed in many ways,

from left to right, from right to left, top to bottom, bottom to top, diagonal, in a zigzag

manner etc. as long as the letters are connected. This example is a 5x5 boggle which

means it comprises 5 rows and 5 columns. Each time a player presses the shake

button, a different set of characters will appear. In order to do this, I used the

 171

randomize concept. So, I created an array of characters and displayed them on an

array of 25 labels. Then, I use a For...Next loop to generate the characters.

Figure 25.1

The Program

Dim char(26) As String

Dim I As Integer

Dim J As Integer

Private Sub Command1_Click()

char(0) = "A"

char(1) = "B"

char(2) = "C"

char(3) = "D"

char(4) = "E"

char(5) = "E"

 172

char(6) = "G"

char(7) = "H"

char(8) = "I"

char(9) = "J"

char(10) = "K"

char(11) = "L"

char(12) = "M"

char(13) = "N"

char(14) = "O"

char(15) = "P"

char(16) = "Qu"

char(17) = "R"

char(18) = "S"

char(19) = "T"

char(20) = "U"

char(21) = "V"

char(22) = "W"

char(23) = "X"

char(24) = "Y"

char(25) = "Z"

Randomize Timer

For I = 0 To 24

J = Int((Rnd * 26))

Label1(I).Caption = char(J)

Next

End Sub

25.2 Reversi

This is the mini version of the typical reversi game. The interface is shown in Figure

25.2:

Figure 25.2 Mini Reversi

 173

In this program, first of all I inserted an image box and then used the copy and paste

method to produce a control array of 16 image boxes which represent the squares on

the reversi board as shown in Figure 25.3:

 Figure 25.3

Image1(12) Image1(13) Image1(14) Image1(15)

Image1(8) Image1(9) Image1(10) Image1(11)

Image1(4) Image1(5) Image1(6) Image1(7)

Image1(0) Image1(1) Image1(2) Image1(3)

 174

Secondly, I created two sets of two dimensional arrays and declared them as

Boolean, with one representing the white pieces and the other one representing the

black pieces. If the white piece or the black piece occupies a square, the variable

becomes true or false. Using this concept, the program can check how many white

and black pieces have appeared on the board and which positions they occupy. On

top of that, I inserted two images, one representing the white piece (Image 17) with

its tag set as “white”, and the other one representing the black piece (Image 18) with

its tag set as “black”. On start up, two white pieces and two black pieces are loaded

in the center positions.

In order to check the status of the reversi board, i.e. to know how many white pieces

and how many black pieces are currently occupying the board and which positions

they are occupying, I used a sub procedure which I named as checkstatus. In this

sub procedure, I used the statements

 If Image1 (k).Picture = Image17.Picture Then

 white (row, col) = True

Else

 white (row, col) = False

End If

If Image1 (k).Picture = Image18.Picture Then

 black (row, col) = True

Else

 black (row, col) = False

 End If

to check whether a certain image box is occupied by the white piece or the black

piece. If a particular position is being occupied by the white piece, then the variable

white (row, col) is declared as true or else it is declared as false. The same

commands are used for the black piece. Putting the preceding statements into a

nested For Loop will ensure all the positions are being checked. The positions of the

 175

reversi board can be illustrated in Figure 25.3, where (i, j) means row i and column j.

The whole procedure of checkstatus is shown on the following page.

Figure 25.3

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3) (3,4)

(2,1) (2,2) (2,3) (2,4)

(1,1) (1,2) (1,3) (1,4)

Private Sub checkstatus ()

k = 0

For row = 1 To 4

For col = 1 To 4

If Image1 (k).Picture = Image17.Picture Then

 white (row, col) = True

Else

 white (row, col) = False

End If

If Image1 (k).Picture = Image18.Picture Then

 black (row, col) = True

Else

black (row, col) = False

 End If

k = k + 1

Next col

Next row

For example, let’s say we have the situation as shown in Figure 25.4, then

white(1,1)=true, black(1,1)=false, white(1,2)=true, black(1,2)=false, white(1,3)=true,

black(1,3)=false, white(3,2)=true, black(3,2)=false, black(2,3)=true, white(2,3)=false,

 176

black(3,3)=true, white(3,3)=false, black(4,1)=true, white(4,1)=false, black(4,4)=true

and white(4,4)=false. For the blank squares, both white (i, j) and black (i, j) are false.

 Figure 25.4

The images of the black pieces and the white pieces are loaded using the commands

Image (k).Picture=Image17.Picture and Image (k).Picture=Image18.Picture.

As the reversi game involves dragging the white or black piece into a certain position,

therefore a procedure is needed for the drag and drop event. To write the procedure,

we need to consider a few possibilities for each and every position. For example, let’s

say we want to drag the white piece into square (1, 1). First of all we have to make

sure that square (1, 1) is empty. Secondly we need to check that square (1, 2) is not

empty or occupied by a white piece. On top of that, if square

(1, 2) is occupied by a black piece, then square (1, 3) must be occupied by a white

piece for the move to be legal. Another possibility of a legal move along the first row

is when square (1, 2) and square (1, 3) are occupied by black pieces while square (1,

4) is occupied by a white piece. Besides that, we also need to consider the positions

along the column as well as along the diagonal. This can be figured out using the

same logics.

Under the DragDrop event, I used the indices of the image1 control array to identify

which position the piece is being dragged into. For example, if the index is 0, then the

piece is dropped into square (1,1) and if the index is 1 then the piece is dropped into

square (1,2) and so on. In order to identify whether the white piece or the black piece

is being dragged and dropped, I use the

 177

 imgtag = Source.Tag statement, where Tag is set as “white” for the white piece

(Image 17) and “black” for the black piece (Image18).

In addition, I used If...Then and Select Case.... End Select commands to check

whether a white or black piece can be dragged and dropped into a certain position so

that the pieces trapped in between will change color. The full drag and drop

procedure for position (1, 1) is shown below:

Private Sub Image1_DragDrop (Index As Integer, Source As Control, X As Single, Y

As Single)

imgtag = Source.Tag

checkstatus

‘To check whether position(1,1) is the destination of the DragDrop procedure and to

make sure it is empty

If Index = 0 And black (1, 1) = False And white (1, 1) = False Then

Select Case imgtag

Case "white"

'Check the row positions

If black (1, 2) = True And white(1, 3) = True Then

Image1 (0).Picture = Image17.Picture

Image1 (1).Picture = Image17.Picture

End If

If black (1, 2) = True And black (1, 3) = True And white (1, 4) = True Then

Image1 (0).Picture = Image17.Picture

Image1 (1).Picture = Image17.Picture

Image1 (2).Picture = Image17.Picture

End If

'Check the diagonal posiitons

If black(2, 2) = True And white(3, 3) = True Then

Image1(0).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

End If

If black(2, 2) = True And black(3, 3) = True And white(4, 4) = True Then

 178

Image1(0).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

End If

'Check column positions

If black(2, 1) = True And white(3, 1) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

End If

If black(2, 1) = True And black(3, 1) = True And white(4, 1) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

Case "black"

If white(1, 2) = True And black(1, 3) = True Then

Image1(0).Picture = Image18.Picture

Image1(1).Picture = Image18.Picture

End If

If white(1, 2) = True And white(1, 3) = True And black(1, 4) = True Then

Image1(0).Picture = Image18.Picture

Image1(1).Picture = Image18.Picture

Image1(2).Picture = Image18.Picture

End If

If white(2, 2) = True And black(3, 3) = True Then

Image1(0).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

End If

If white(2, 2) = True And white(3, 3) = True And black(4, 4) = True Then

Image1(0).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

 179

Image1(10).Picture = Image18.Picture

End If

'Check column

If white(2, 1) = True And black(3, 1) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

End If

If white(2, 1) = True And white(3, 1) = True And black(1, 4) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

End Select

End If

End Sub

For other positions, you can use similar logics. In fact, you can put everything into the

above DragDrop procedure instead of writing separate procedures.

Lastly I also added the countcolor sub procedure to display the number of white and

black pieces at any one time and the CheckWinner sub procedure to show who the

winner is. The two sub procedures are shown below:

Private Sub countcolor ()

k = 0

w = 0

b = 0

For row = 1 To 4

For col = 1 To 4

If Image1 (k).Picture = Image17.Picture Then

white (row, col) = True

 w = w + 1

Else

white (row, col) = False

End If

If Image1(k).Picture = Image18.Picture Then

 180

black(row, col) = True

b = b + 1

Else

black(row, col) = False

End If

k = k + 1

Print n

Next col

Next row

Label3.Caption = Str(w)

Label4.Caption = Str(b)

End Sub

Private Sub CheckWinner ()

Call countcolor

If w + b = 16 Or b = 0 Or w = 0 Then

If w > b Then

Label5.Visible = True

Label5.Caption = “White Wins"

Else

Label5.Visible = True

Label5.Caption = "Black Wins"

End If

End If

End Sub

25.3 Calculator

This is a typical calculator that consists of the number buttons, the operator buttons

and some additional buttons such as the memory button and the clear button.

To design the interface, you need to insert 25 command buttons, and one label that

functions as the display panel. The number buttons from 1 to 9 are grouped together

as a control array and named as ButtonNum while 0 is a standalone command and

named as Bzero. The four basic operators are also grouped together as a control

 181

array and named as Operator. Other buttons are named appropriately according to

their functions. The label is named as panel.

Figure 25.3 Calculator

One of the most important procedures in the program is to control the display on the

panel. The procedure is

Private Sub ButtonNum_Click(Index As Integer)

If Num_of_digit > 0 Then

If Num_of_digit < 30 Then

panel. Caption = panel.Caption + Right$(Str(Index), 1)

Num_of_digit = Num_of_digit + 1

End If

Else

panel.Caption = Right$(Str(Index), 1)

Num_of_digit = 1

End If

CheckValue

End Sub

 182

The Num_of_digit is a variable that is used to check the number of digits that appear

on the display panel. The procedure will ensure that if the number of digits is more

than one, the preceding digit will be pushed to the left and the succeeding digit will

remain on the right. However, if the number of digits is zero, the digit clicked will just

appear on the rightmost position of the panel.

Another important procedure is the procedure to perform the calculations. This can

be achieved through the Operator and the Equal sub procedures. The Operator sub

procedure is shown below:

Private Sub Operator_Click(Index As Integer)

CheckValue

If Index = 11 Then

a = displayValue

key = 1

ElseIf Index = 12 Then

b = displayValue

key = 2

ElseIf Index = 13 Then

c = displayValue

key = 3

ElseIf Index = 14 Then

d = displayValue

key = 4

ElseIf Index = 15 Then

f = displayValue

key = 5

End If

Num_of_digit = 0

newNumber = True

End Sub

This procedure ensures that when a particular operator button is pressed, the

variable key is assigned a number so that the program knows which operator is being

 183

pressed. The calculation is then executed using the Equal sub procedure which is

shown below:

Private Sub Equal_Click()

CheckValue

If newNumber = True Then

If key = 1 Then

e = displayValue + a

ElseIf key = 2 Then

e = b - displayValue

ElseIf key = 3 Then

e = displayValue * c

ElseIf key = 5 Then

e = (f * displayValue) / 100

ElseIf key = 4 And displayValue <> 0 Then

e = d / displayValue

Else

GoTo error

End If

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

End If

Else

panel.Caption = displayValue

End If

GoTo finish

error: panel.Caption = "E"

finish:

Num_of_digit = 0

newNumber = False

End Sub

 184

The displayValue is the value that is displayed on the panel and this value is checked

through the CheckValue sub procedure. The statements

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

End If

are to ensure that when the absolute value is less than 0, the zero appears in front of

the decimal point, for example, 0.5 instead of just .5. The whole program is shown

below:

The Program

Option Explicit

Dim Num_of_digit As Integer

Dim key As Integer

Dim displayValue As Variant

Dim a, b, c, d, e, f, g As Variant

Dim memo As Variant

Dim newNumber As Boolean

Private Sub BZero_Click(Index As Integer)

If Num_of_digit > 0 Then

panel.Caption = panel.Caption + "0"

Else

panel.Caption = "0"

Num_of_digit = Num_of_digit + 1

End If

CheckValue

End Sub

Sub CheckValue()

displayValue = Val(panel.Caption)

End Sub

 185

Private Sub ButtonNum_Click(Index As Integer)

If Num_of_digit > 0 Then

If Num_of_digit < 30 Then

panel.Caption = panel.Caption + Right$(Str(Index), 1)

Num_of_digit = Num_of_digit + 1

End If

Else

panel.Caption = Right$(Str(Index), 1)

Num_of_digit = 1

End If

CheckValue

End Sub

Private Sub Clear_Click()

panel.Caption = "0"

displayValue = "0"

Num_of_digit = 0

End Sub

Private Sub ClearAll_Click()

panel.Caption = "0"

displayValue = "0"

memo = 0

End Sub

Private Sub Equal_Click()

CheckValue

If newNumber = True Then

If key = 1 Then

e = displayValue + a

ElseIf key = 2 Then

e = b - displayValue

ElseIf key = 3 Then

e = displayValue * c

ElseIf key = 5 Then

e = (f * displayValue) / 100

 186

ElseIf key = 4 And displayValue <> 0 Then

e = d / displayValue

Else

GoTo error

End If

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

End If

Else

panel.Caption = displayValue

End If

GoTo finish

error: panel.Caption = "E"

finish:

Num_of_digit = 0

newNumber = False

End Sub

Private Sub MemoCancel_Click()

memo = 0

End Sub

Private Sub Memory_Click()

CheckValue

memo = displayValue

Num_of_digit = 0

End Sub

Private Sub Operator_Click(Index As Integer)

CheckValue

If Index = 11 Then

a = displayValue

key = 1

 187

ElseIf Index = 12 Then

b = displayValue

key = 2

ElseIf Index = 13 Then

c = displayValue

key = 3

ElseIf Index = 14 Then

d = displayValue

key = 4

ElseIf Index = 15 Then

f = displayValue

key = 5

End If

Num_of_digit = 0

newNumber = True

End Sub

Private Sub Plus_minus_Click()

CheckValue

g = -1 * displayValue

displayValue = g

panel.Caption = Str(displayValue)

CheckValue

End Sub

Private Sub Poin_Click()

Static point_lock As Integer

If point_lock = 0 And Num_of_digit < 20 Then

panel.Caption = panel.Caption + "."

Num_of_digit = Num_of_digit + 1

End If

CheckValue

End Sub

 188

Private Sub Recall_Click()

panel.Caption = Str(memo)

End Sub

Private Sub SqRoot_Click()

CheckValue

If displayValue >= 0 Then

panel.Caption = Str(Sqr(displayValue))

Else

panel.Caption = "E"

End If

Num_of_digit = 0

End Sub

Private Sub Summation_Click()

CheckValue

memo = memo + displayValue

Num_of_digit = 0

End Sub

Exercise 25

1. Create a calculator that can function as a normal calculator as well as a

scientific calculator.

2. Create an 8x8 reversi game.

Lesson 26

Creating Educational Programs

� Learning how to create educational programs.

26.1 Kid’s Math

 189

This is a simple arithmetic educational game for children. The child who attempts the

test can choose three different levels and perform three different arithmetic

calculations. The performance can be evaluated by three measurements namely the

total of questions attempted, the total of answers that are correct and the total score

which is the percentage of right answers. The design interface is shown in Figure

26.1 and the runtime interface is shown in Figure 26.2:

Figure 26.1 The Design Interface

Figure 26.2 The Runtime Interface

 190

In this program, we need to insert the following controls:

• Three option buttons

• Three text boxes

• A few labels

• Two images

The procedure to choose three different arithmetic calculations is

Private Sub Option1_Click(Index As Integer)

Select Case Index

Case 0

Label4.Caption = "+"

Action = "Plus"

Case 1

Label4.Caption = "-"

Action = "Minus"

Case 2

 191

Label4.Caption = "x"

Action = "Multiply"

End Select

End Sub

The option buttons are grouped together as a control array and can be identified by

their indices. Using the Select Case….End Select statements, the caption of Label4

which displays the operators will change according to the selection. In addition, the

variable Action will be assigned different values namely “Plus”, “Minus” and “Multiply”.

These values will be passed to the OK procedure and appropriate calculations will be

performed.

A menu item “Level” for the user to choose the levels is added using the menu editor.

To start the menu editor, you have to click on the tools item on the menu bar. The

menu editor is shown in Figure 26.3. At the menu editor, you key in the word “Level”

in the caption box and its name “level” (this can be any appropriate name) in the

Name box. This is the first level menu item. To type in the second menu items, you

need to click on the Next button and the right arrow key. Here you key in the words

Beginner, Intermediate and Advanced. The ampersand sign ‘&’ is used in front of all

the captions (it can be in any position) so that the user can use the shortcut key to

access the items. For example, to access the Level item, the user can press Alt+L.

You will notice that all the menu items will appear in the code window and you can

write the event procedure for each of them. The event procedure for each of the

second level menu items is very simple. It simply assigns a value to the variable n,

which is n=1 for beginner, n=2 for intermediate and n=3 for advanced.

The procedure to randomize the process of displaying different numbers after each

click of the command button “Start” or “Next” (The Start button changes to Next after

the first Click) is shown below. The select Case …..End Select statements allow the

generation of numbers for the three different levels.

Randomize Timer

Select Case n

Case 1

num1 = Int(Rnd * 10)

 192

num2 = Int(Rnd * 10)

Case 2

num1 = Int(Rnd * 90) + 10

num2 = Int(Rnd * 90) + 10

Case 3

num1 = Int(Rnd * 900) + 100

num2 = Int(Rnd * 900) + 100

End Select

Figure 26.3

There are some minor things to be considered before the actual calculation is done.

First of all, for subtraction, we need to make sure that the value of the first number is

more than the second number as this is arithmetic for kids. This is taken care of using

the statement

Case "Minus"

If num1 > num2 Then

number1.Caption = num1

number2.Caption = num2

Else

number1.Caption = num2

 193

number2.Caption = num1

End If

The above statements ensure that when the second number is larger than the first

number, the second number will appear in the first text box and the first number will

appear in the second text box. Secondly, to make sure that the multiplication is not

too complicated, the second number will be restricted to values between 0 and 10.

This can be achieved using the Right function as shown in the following statements:

Case "Multiply"

number1.Caption = num1

number2.Caption = Right(num2, 1)

The actual calculation is performed under the OK procedure or the KeyPress

procedure so that the user has a choice to click the OK button or press the enter key

to perform the calculation. The overall program is shown below:

The Program

Dim num1 As Integer

Dim num2 As Integer

Dim intNumber As Integer

Dim totalQ As Integer

Dim n As Integer

Dim Action As String

Dim answer As Integer

Dim done As Boolean

Dim score As Integer

Private Sub beginner_Click()

n = 1

End Sub

Private Sub Inter_Click()

n = 2

End Sub

 194

Private Sub advance_Click()

n = 3

End Sub

Private Sub Command3_Click ()

‘To calculate the score in percentage

Label10.Caption = Format ((intNumber / totalQ), "Percent")

End Sub

Private Sub Command4_Click()

total.Caption = ""

Label8.Caption = ""

intNumber = 0

totalQ = 0

Label10.Caption = ""

Command1.Caption = "Start"

End Sub

Private Sub Form_Load()

Option1(0).Value = True

Label4.Caption = "+"

Image1.Visible = False

Image2.Visible = False

Label6.Visible = False

Label5.Visible = False

End Sub

Private Sub Option1_Click(Index As Integer)

Select Case Index

Case 0

Label4.Caption = "+"

Action = "Plus"

Case 1

Label4.Caption = "-"

 195

Action = "Minus"

Case 2

Label4.Caption = "x"

Action = "Multiply"

End Select

End Sub

Private Sub Text3_keypress(keyAscii As Integer)

Select Case Action

Case "Plus"

answer = Val(number1.Caption) + Val(number2.Caption)

Case "Minus"

answer = Val(number1.Caption) - Val(number2.Caption)

Case "Multiply"

answer = Val(number1.Caption) * Val(number2.Caption)

End Select

If (keyAscii = 13) And answer = Val(Text3.Text) Then

Image1.Visible = True

Image2.Visible = False

Label5.Visible = True

Label6.Visible = False

If done = True Then

intNumber = intNumber + 1

total.Caption = Str(intNumber)

End If

Text3.Enabled = False

ElseIf (keyAscii = 13) And answer <> Val(Text3.Text) Then

Image1.Visible = False

Image2.Visible = True

Label5.Visible = False

Label6.Visible = True

Text3.Enabled = False

End If

End Sub

 196

Private Sub Command1_Click()

Image1.Visible = False

Image2.Visible = False

Label6.Visible = False

Label5.Visible = False

done = True

Text3.Enabled = True

Text3.Text = ""

x = x + 1

If x > 0 Then

Command1.Caption = "Next"

End If

Randomize Timer

Select Case n

Case 1

num1 = Int(Rnd * 10)

num2 = Int(Rnd * 10)

Case 2

num1 = Int(Rnd * 90) + 10

num2 = Int(Rnd * 90) + 10

Case 3

num1 = Int(Rnd * 900) + 100

num2 = Int(Rnd * 900) + 100

End Select

Select Case Action

Case "Plus"

number1.Caption = num1

number2.Caption = num2

Case "Minus"

If num1 > num2 Then

number1.Caption = num1

number2.Caption = num2

Else

 197

number1.Caption = num2

number2.Caption = num1

End If

Case "Multiply"

number1.Caption = num1

number2.Caption = Right(num2, 1)

End Select

Text3.SetFocus

totalQ = totalQ + 1

Label8.Caption = Str(totalQ)

End Sub

Private Sub OK_Click()

Select Case Action

Case "Plus"

answer = Val(number1.Caption) + Val(number2.Caption)

Case "Minus"

answer = Val(number1.Caption) - Val(number2.Caption)

Case "Multiply"

answer = Val(number1.Caption) * Val(number2.Caption)

End Select

If Val(Text3.Text) = answer Then

Image1.Visible = True

Image2.Visible = False

Label5.Visible = True

Label6.Visible = False

If done = True Then

intNumber = intNumber + 1

total.Caption = Str(intNumber)

End If

Else

Image1.Visible = False

Image2.Visible = True

Label5.Visible = False

 198

Label6.Visible = True

End If

Text3.Enabled = False

done = False

End Sub

26.2 The Memory Game

This is a typical memory game for children. The objective of the game is to reveal the

pictures that are hidden under the squares. These pictures exist in pairs. When the

user clicks on the square, the pictures will be revealed. If the user clicks on the

squares with the same pictures successively, the squares together with the pictures

will be removed. When all the squares and the pictures are removed, the background

picture will show up.

Figure 26.4

 199

In this program, I use the images’ tags to pair up the images which are hidden under

the picture boxes, that is, the same images will have the same tags. The pictures and

the images are both set as control arrays so that they can be manipulated using the

For…..Next Loop. To check whether the images are the same or not, you can use the

following procedure:

For i = 0 To 11

If Picture1(i).Visible = False Then

For j = 0 To 11

If Picture1(j).Visible = False Then

If i <> j And Image1(i).Tag = Image1(j).Tag Then

Image1(j).Visible = False

Image1(i).Visible = False

Picture1(j).Visible = False

Picture1(i).Visible = False

End If

The statement If i <> j And Image1 (i).Tag = Image1 (j).Tag checks whether the

images in different positions are the same or not, and if they are the same, they will

be made to disappear using the Image.Visible= False statements. A timer is used to

control the program so that there is a short delay before the images disappear. The

whole program is shown below:

The Program

Sub check()

'Check whether the images are the same or not

For i = 0 To 11

If Picture1(i).Visible = False Then

For j = 0 To 11

If Picture1(j).Visible = False Then

If i <> j And Image1(i).Tag = Image1(j).Tag Then

Image1(j).Visible = False

Image1(i).Visible = False

Picture1(j).Visible = False

Picture1(i).Visible = False

End If

 200

If i <> j And Image1(i).Tag <> Image1(j).Tag And Image1(i).Visible = True And

Image1(j).Visible = True Then

Picture1(j).Visible = True

Picture1(i).Visible = True

End If

End If

Next j

End If

Next i

Timer1.Enabled = False

If Picture1(0).Visible = False _

And Picture1(1).Visible = False _

And Picture1(2).Visible = False _

And Picture1(3).Visible = False _

And Picture1(4).Visible = False _

And Picture1(5).Visible = False _

And Picture1(6).Visible = False _

And Picture1(7).Visible = False _

And Picture1(8).Visible = False _

And Picture1(9).Visible = False _

And Picture1(10).Visible = False _

And Picture1(11).Visible = False _

Then

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End If

End Sub

 201

Private Sub picture1_Click(Index As Integer)

Picture1(Index).Visible = False

Timer1.Enabled = True

End Sub

Private Sub Timer1_Timer()

check

End Sub

26.3 The Star War

This is a program that can demonstrate the principle of projectile in physics. At a

certain angle and a certain launch velocity, the projectile can reach a certain range.

The maximum range is at the angle of 45 degrees. This principle can be applied in

the military field where it can simulate the launching of the missile at a certain velocity

and angle in order to hit a remote target. It can also be applied in the scientific and

technological fields. This game provides a good training for students in their ability to

make estimations.

During the designing phase, you need to insert three images which resemble the

satellites, three explosion images, the labels to display the bonus points, two text

boxes for entering the values of the velocity and the angle, the image of a rocket, two

timers for animation purposes and the Microsoft Multimedia Control for playing the

sound of the explosion.

In this program, you can use the formulae v sin θ-½ gt2 as the vertical component of

the displacement and v cos θ as the horizontal component of the displacement

(where g is the gravitational acceleration, v the launch velocity and θ the launch

angle). To enable the missile to fly, you can use the combination of the Object.Move

method and the object coordinate system, i.e. object. left and object.Top. In Visual

Basic language, the procedure is

y = v * Sin (a * 3.141592654 / 180) * t - 4.9 * (t ^ 2)

x = v * Cos (a * 3.141592654 / 180) * t

Image1.Move Image1.Left + x, Image1.Top – y

 202

The above procedure will move the above missile x unit to the left and y unit to the

top (or down depending on the values of y as it could be negative) after every interval

until it hits the target. You can use the randomization method so that the objects will

appear at different positions randomly at each new game. In addition, you can also

use the randomization method to load different backgrounds at start up and at each

new game.

Figure 26.5 The Design Interface

The initial positions of the satellites are determined using the following procedure

which ensures that they will appear within the designated window. The statements

consist of the randomization process that uses the Rnd function and the use of the

Left and the Top properties to determine the positions of the satellites.

 203

left1 = Int(Rnd * 7000) + 1000

left2 = Int(Rnd * 7000) + 1000

left3 = Int(Rnd * 7000) + 1000

top1 = Int(Rnd * 5000) + 100

top2 = Int(Rnd * 5000) + 100

top3 = Int(Rnd * 5000) + 100

Image2.Left = left1

Image3.Left = left2

Image4.Left = left3

Image2.Top = top1

Image3.Top = top2

Image4.Top = top3

The procedure to show that the rocket hits the target when it moves within 240 twips

right of the leftmost border of Image1(satellite) and 240 twips below the top border of

Image1 (which means the rocket hits the center of Image1) is shown below.

If Image4.Visible = True And (Image1.Left < left3 + 240 And Image1.Left >

left3 - 240) And (Image1.Top < top3 + 240 And Image1.Top > top3 - 240)

Timer1.Enabled = False

Call showfire

The showfire sub procedure is to start timer2 and to show the image of the explosion

momentarily.

Private Sub Timer2_Timer()

'To delay the appearance of fire and the bonus image

w = w + 1

If w < 30 Then

Image5(i).Visible = True

Label4(i).Visible = True

Else

Image5(i).Visible = False

Label4(i).Visible = False

Timer2.Enabled = False

End If

 204

End Sub

Figure 26.5 The Runtime Interface

The Program

Dim x As Variant

Dim a As Variant

Dim t As Variant

Dim y As Variant

Dim w As Variant

Dim i As Variant

 205

Dim score As Integer

Dim left1, left2, left3, top1, top2, top3 As Variant

Dim backgr As Integer

Private Sub showfire()

Timer2.Enabled = True

End Sub

Private Sub Command1_Click()

Timer1.Enabled = True

End Sub

Private Sub Command2_Click()

w = 0

Image1.Visible = True

Timer1.Enabled = False

Label4(0).Visible = False

Label4(1).Visible = False

Label4(2).Visible = False

Label3.Caption = ""

Image1.Move 360, 6360

t = 0

End Sub

Private Sub Form_Click()

Label5.Visible = False

End Sub

Private Sub Form_Load()

Randomize Timer

'To choose different backgrounds at startup

backgr = Int(Rnd * 8) + 1

Select Case backgr

Case 1

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\andromeda.jpg")

 206

Case 2

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\comet.jpg")

Case 3

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\crabnebula.jpg")

Case 4

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\nova.jpg")

Case 5

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\eclipse.jpg")

Case 6

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\horse.jpg")

Case 7

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\orion.jpg")

Case Else

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\milkyway.jpg")

End Select

'To randomly set the initial positions of the objects

left1 = Int(Rnd * 7000) + 1000

left2 = Int(Rnd * 7000) + 1000

left3 = Int(Rnd * 7000) + 1000

top1 = Int(Rnd * 5000) + 100

top2 = Int(Rnd * 5000) + 100

top3 = Int(Rnd * 5000) + 100

Image2.Left = left1

Image3.Left = left2

Image4.Left = left3

Image2.Top = top1

Image3.Top = top2

Image4.Top = top3

w = 0

score = 0

Label7.Caption = Str(score)

End Sub

 207

Private Sub mnuExit_Click()

End

End Sub

Private Sub mnunew_Click()

w = 0

Randomize Timer

'To choose different backgrounds at startup

backgr = Int(Rnd * 8) + 1

Select Case backgr

Case 1

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\andromeda.jpg")

Case 2

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\comet.jpg")

Case 3

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\crabnebula.jpg")

Case 4

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\nova.jpg")

Case 5

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\eclipse.jpg")

Case 6

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\horse.jpg")

Case 7

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\orion.jpg")

Case Else

Image7.Picture = LoadPicture("D:\Liew Folder\Astronomy\milkyway.jpg")

End Select

'To display all the objects again

left1 = Int(Rnd * 7000) + 1000

left2 = Int(Rnd * 7000) + 1000

left3 = Int(Rnd * 7000) + 1000

top1 = Int(Rnd * 5000) + 100

 208

top2 = Int(Rnd * 5000) + 100

top3 = Int(Rnd * 5000) + 100

Image2.Left = left1

Image3.Left = left2

Image4.Left = left3

Image2.Top = top1

Image3.Top = top2

Image4.Top = top3

Image2.Visible = True

Image3.Visible = True

Image4.Visible = True

Image1.Visible = True

Timer1.Enabled = False

Label4(0).Visible = False

Label4(1).Visible = False

Label4(0).Visible = False

Label3.Caption = ""

Image1.Move 360, 6360

t = 0

End Sub

Private Sub Timer1_Timer()

MMControl1.Command = "close"

If Image1.Left < 15000 And Image1.Top < 9000 Then

v = Val(Text1.Text)

a = Val(Text2.Text)

t = t + 1

‘To use the formulae vertical displacement=vsina- (1/2)gt 2 and horizontal

‘displacement=vcosa*t so that it follows a parabolic trajectory

y = v * Sin(a * 3.141592654 / 180) * t - 4.9 * (t ^ 2)

x = v * Cos(a * 3.141592654 / 180) * t

Image1.Move Image1.Left + x, Image1.Top - y

 209

If Image4.Visible = True And (Image1.Left < left3 + 240 And Image1.Left >

left3 - 240) And (Image1.Top < top3 + 240 And Image1.Top > top3 - 240)

Then

i = 2

'To stop the motion of the rocket and show the image of fire and bonus score

Timer1.Enabled = False

Call showfire

Image4.Visible = False

Image1.Visible = False

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\explosion.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label3.Caption = "You strike the satellite!"

Label4(2).Left = left3 + 240

Label4(2).Top = top3 + 240

Label4(2).Visible = True

Image5(2).Left = left3 + 240

Image5(2).Top = top3 + 240

score = score + 50

ElseIf Image3.Visible = True And (Image1.Left < left2 + 240 And Image1.Left >

left2 - 240) And (Image1.Top < top2 + 240 And Image1.Top > top2 - 240)

Then

Timer1.Enabled = False

i = 1

Call showfire

Image3.Visible = False

Image1.Visible = False

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

 210

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\explosion.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label3.Caption = "You strike the rocket!"

Label4(1).Left = left2 + 240

Label4(1).Top = top2 + 240

Label4(1).Visible = True

Image5(1).Left = left2 + 240

Image5(1).Top = top2 + 240

score = score + 100

ElseIf Image2.Visible = True And (Image1.Left < left1 + 240 And Image1.Left >

left1 - 240) And (Image1.Top < top1 + 240 And Image1.Top > top1 - 240)

Then

Timer1.Enabled = False

i = 0

Call showfire

Image2.Visible = False

Image1.Visible = False

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VISUAL BASIC

program\audio\explosion.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label3.Caption = "You strike the Saturn!"

Label4(0).Left = left1 + 240

Label4(0).Top = top1 + 240

Label4(0).Visible = True

Image5(0).Left = left1 + 240

Image5(0).Top = top1 + 240

 211

score = score + 200

End If

Else

Label3.Caption = "You miss the target!"

Timer1.Enabled = False

End If

Label7.Caption = Str(score)

End Sub

Private Sub Timer2_Timer()

'To delay the appearance of fire and the bonus image

w = w + 1

If w < 30 Then

Image5(i).Visible = True

Label4(i).Visible = True

Else

Image5(i).Visible = False

Label4(i).Visible = False

Timer2.Enabled = False

End If

End Sub

Exercise 26

1. Create an educational game that requires the user to add four numbers within

a certain time limit.

2. Create an educational game that requires the user to identify the sound made

by an animal.

3. Create a memory game that loads the hidden images randomly.

4. Create a star war program that requires the rocket to hit randomly moving

targets.

 212

Lesson 27

Working with Files

� Learning how to create a text file.

� Learning how to create a simple database management system.

27.1 Introduction

Up until Lesson 26 the programs created only accept data at runtime. When a

program is terminated, the data also disappears. Is it possible to save data accepted

by a VISUAL BASIC program into a storage device, such as a hard disk or a diskette,

or even a CDRW? The answer is yes. In this Lesson, we will learn how to create files

by writing them into a storage device and then retrieve the data by reading the

contents of the files using customized VISUAL BASIC programs.

27.2 Creating a Text File

To create a text file, you can use the following command:

Open "fileName" For Output As #fileNumber

Each text file created must have a file name and a file number for identification. As

for the file name, you must also specify the path where the file will reside.

For example:

Open "c:\My Documents\sample.txt" For Output As #1

will create a text file by the name of sample.txt in the My Document folder. The

accompanying file number is 1. If you wish to create and save the file in drive A,

simply change the path, as follows"

Open "A:\sample.txt" For Output As #1

If you wish to create a HTML file, simple change the extension to .html

Open "c:\My Documents\sample.html" For Output As # 2

Example 27.1 Creating a text file

Private Sub create_Click ()

 213

Dim intMsg As String

Dim StudentName as String

Open "c:\My Documents\sample.txt" For Output As #1

intMsg = MsgBox ("File sample.txt opened")

StudentName = InputBox ("Enter the student Name")

Print #1, StudentName

intMsg = MsgBox ("Writing a" & StudentName & “to sample.txt ")

Close #1

 intMsg = MsgBox ("File sample.txt closed")

End Sub

The above program will create a file sample.txt in the My Documents' folder which is

ready to receive input from users. Any data input by users will be saved in this text

file. Instead of print, you can also use write to save the file. After opening the file, you

must always close it with the command close.

27.3 Reading a File

To read a file created in section 13.2, you can use the input # statement. The syntax

is shown below:

Open "fileName" For Input As #1

You have to open the file according to its file number and the variable that holds the

data. You also need to declare the variable using the DIM command.

Example 27.2 Reading a text file

Private Sub Reading_Click ()

Dim variable1 As String

Open "c:\My Documents\sample.txt" For Input As #1

Input #1, variable1

Text1.Text = variable1

Close #1

End Sub

This program will open the sample.txt file and display its contents in the Text1 textbox.

Example 27.3 A simple database management system

 214

This is a simple database management system using a text file. First of all, the

program will check whether the text file is open or not and if the file does not exist,

the program prompts the user to create the file by displaying the create button.

However, if the file is already there, the program will change the caption of the create

button to open file. The program uses Append in the place of Output so that new data

will be added to the end of the file instead of overwriting the old data. The program

will also show the input box repeatedly so that the user can enter data continuously

until he or she enters the word “finish”.

The program also introduces the error handler to handle errors while reading the file

or deleting the file because the program cannot read or delete the file when the file

has not been created. The syntax for error handler is

 On Error Goto Label

where the label is an error handling sub procedure. For example, when the program

is trying to read the file when the file does not exist, it will go the label file_error and

the error handling object ‘err’ will display an error message with its description

property which takes the format err.description.

The program uses the vbCrLf constant when reading the data so that the data will

appear line by line instead of a continuous line. The vbCrLf constant is equivalent to

the pressing of the Enter key (or return key) so that the next data will go to the new

line. The program is uses the Do…Loop to read all the data until it reaches the end of

the file by issuing the command Loop While Not EOF(1). Below is the whole program:

Dim studentname As String

Dim intMsg As String

Private Sub Command1_Click()

‘To read the file

Text1.Text = ""

Dim variable1 As String

On Error GoTo file_error

Open "D:\Liew Folder\sample.txt" For Input As #1

Do

 215

Input #1, variable1

Text1.Text = Text1.Text & variable1 & vbCrLf

Loop While Not EOF(1)

Close #1

Exit Sub

file_error:

MsgBox (Err.Description)

End Sub

Private Sub Command2_Click()

‘To delete the file

On Error GoTo delete_error

Kill "D:\Liew Folder\sample.txt"

Exit Sub

delete_error:

MsgBox (Err.Description)

End Sub

Private Sub Command3_Click()

End

End Sub

Private Sub create_Click()

‘To create the file or open the file for new data entry

Open "D:\Liew Folder\sample.txt" For Append As #1

intMsg = MsgBox("File sample.txt opened")

Do

studentname = InputBox("Enter the student Name or type finish to end")

If studentname = "finish" Then

Exit Do

End If

Write #1, studentname & vbCrLf

 intMsg = MsgBox("Writing " & studentname & " to sample.txt ")

Loop

Close #1

 216

intMsg = MsgBox("File sample.txt closed")

End Sub

Private Sub Form_Load()

On Error GoTo Openfile_error

Open "D:\Liew Folder\sample.txt" For Input As #1

Close #1

Exit Sub

Openfile_error:

MsgBox (Err.Description), , "Please create a new file"

create.Caption = "Create File"

End Sub

Figure 27.1 The Interface

Example 27.4

This example uses the common dialog box to create and read the text file, which is

much easier than the previous examples as many operations are handled by the

common dialog box. The following is the program:

 217

Dim linetext As String

Private Sub open_Click()

CommonDialog1.Filter = "Text files{*.txt)|*.txt"

CommonDialog1.ShowOpen

If CommonDialog1.FileName <> "" Then

Open CommonDialog1.FileName For Input As #1

Do

Input #1, linetext

Text1.Text = Text1.Text & linetext

Loop Until EOF(1)

End If

Close #1

End Sub

Private Sub save_Click()

CommonDialog1.Filter = "Text files{*.txt)|*.txt"

CommonDialog1.ShowSave

If CommonDialog1.FileName <> "" Then

Open CommonDialog1.FileName For Output As #1

Print #1, Text1.Text

Close #1

End If

End Sub

The syntax CommonDialog1.Filter = "Text files{*.txt)|*.txt" ensures that only the text

file is read or saved .The statement CommonDialog1.ShowOpen is to display the

open file dialog box and the statement CommonDialog1.ShowSave is to display the

save file dialog box. Text1.Text = Text1.Text & linetext is to read the data and display

them in the Text1 textbox. The interface is shown in Figure 27.2:

 218

Figure 27.2

Exercise 27

1. Create a text file of your own using the commands you have learnt in this

lesson and read the file using a text box.

2. Create a text file of your own using a common dialog box in which you can

update and save the file.

 219

Lesson 28

Creating basic database applications in

VISUAL BASIC

� Learning how to create a basic database application using data control.

Visual Basic allows us to manage databases created with different database

programs such as MS Access, Dbase, Paradox and etc. In this Lesson, we will not

attempt to create database files but we will see how we can access database files in

the VISUAL BASIC environment.

Example 28.1

In this example, you will create a simple database application which enables the user

to browse customers' names. To create this application, insert the data control into

the new form. Place the data control somewhere at the bottom of the form. Name the

data control as data_navigator.To be able to use the data control, you need to

connect it to any database. You can create a database file using any database

application but I suggest you use the database files that come with VB6. Let’s select

NWIND.MDB as the database file. To connect the data control to this database,

double-click the DatabaseName property in the properties window and select the

above file. Next, double-click on the RecordSource property to select the customers’

table from the database. You can also change the caption of the data control to

anything but I use "Click to browse Customers" here. After that, insert a label and

change its caption to Customer Name.

Finally, insert another label and name it as cus_name and leave the label empty as

customers' names will appear here when the user clicks the arrows on the data

control. You need to bind this label to the data control for the application to work. To

do this, open the label's DataSource and select data_navigator, which will appear

automatically. One more thing that you need to do is to bind the label to the correct

field so that data in the field will appear on the label. To do this, open the DataField

 220

property and select ContactName. Now, press F5 and run the program. You should

be able to browse all the customers' names by clicking the arrows on the data control.

Figure 28.1

You can also add other fields using exactly the same method. For example, you can

add address, city and telephone number to the database browser.

Figure 28.2

 221

Example 28.1

Previously, you have learned how to create a simple database application using data

control. In this section, you will work on the same application using slightly more

advanced commands. The data control supports some methods that are useful in

manipulating the database, for example, moving the pointer to a certain location. The

following are some of the commands that you can use to move the pointer around.

data_navigator.RecordSet.MoveFirst ' Move to the first record

data_navigator.RecordSet.MoveLast ' Move to the last record

data_navigator.RecordSet.MoveNext ' Move to the next record

data_navigator.RecordSet.Previous ' Move to the first record

*note: data_navigator is the name of the data control

In the following example, insert four command buttons and label them as First

Record, Next Record, Previous Record and Last Record. They will be used to

 222

navigate around the database without using the data control. You still need to retain

the same data control (from example in lesson 19) but set the property Visible to

False so that users will not see the data control but use the buttons to browse

through the database instead. Now, double-click on the command button and key in

the codes according to the labels.

Private Sub Command2_Click ()

dtaBooks.Recordset.MoveFirst

End Sub

Private Sub Command1_Click ()

 dtaBooks.Recordset.MoveNext

 End Sub

Private Sub Command3_Click ()

dtaBooks.Recordset.MovePrevious

End Sub

Private Sub Command4_Click ()

dtaBooks.Recordset.MoveLast

End Sub

Run the application and you will obtain the interface below and you will be able to

browse the database using the four command buttons.

Figure 28.1

 223

 Exercise 28

1. Create a database system that can store students’ information, including name,

student ID, address, birthday, sex and telephone number.

 Lesson 29

Creating Database Applications

Using ADO Control

� Learning how to create database applications using ADO control.

In Lesson 28, we have learned how to build VISUAL BASIC database applications

using data control. However, data control is not a very flexible tool as it works only

with limited kinds of data and must work strictly in the Visual Basic environment. To

overcome these limitations, we can use a much more powerful data control in

VISUAL BASIC known as ADO control. ADO stands for ActiveX data object. As ADO

is ActiveX-based, it can work in different platforms (different computer systems) and

 224

different programming languages. Moreover, it can access many different kinds of

data such as data displayed in Internet browsers, email text and even graphics other

than the usual relational and non-relational database information. To be able to use

ADO data control, you need to insert it into the toolbox. To do this, simply press

Ctrl+T to open the components dialog box and select Microsoft ActiveX Data Control

6. After this, you can proceed to build your ADO-based VISUAL BASIC database

applications.

Example 29.1

This example will illustrate how to build a relatively powerful database application, a

library management system, using ADO data control. First of all, name the new form

as frmBookTitle and change its caption to Book Titles- ADO Application. Secondly,

insert the ADO data control and name it as adoBooks and change its caption to book.

Next, insert the necessary labels, text boxes and command buttons. The runtime

interface of this program is shown in the diagram below; it allows adding and deleting

as well as updating and browsing of data.

Figure 29.1 A Library Management System

 225

The properties of all the controls are listed in Table 31.1:

Table 29.1

Object Property

Form
Name : FormLibrary

Caption: Book Titles -Library Management System

ADO Name :adoLibrary

Label1
Name : Titlelbl

Caption: Book Title

Label2
Name: Subjectlbl

Caption : Subject :Year Published:

Label3
Name: Yearlbl

Caption : Year Published

Label 4
Name : ISBNlbl

Caption :ISBN

Labe5
Name : PubIDlbl

Caption :Publisher's ID:

Text1

Name : Titletxt

DataField :Title

DataSource :AdoLibrary

Text3
Name: YearTxt

DataField :Year Published

 226

DataSource: AdoLibrary

Text3

Name : ISBNTxt

DataField :ISBN

DataSource : AdoLibrary

Text4

Name: Pubtxt

DataField : PubID

DataSource: AdoLibrary

Text2

Name : Subject Txt

DataField : Subject

DataSource: AdoLibrary

Command Button1
 Name :save

Caption :Save

Command Button2
 Name : add

Caption: Add

Command Button3
Name: delete

Caption: Delete

Command Button4
 Name : cancel

Caption :&Cancel

Command Button5
 Name: exit

Caption :Exit

To be able to access and manage a database, you need to connect the ADO data

control to a database file. We are going to use the access database file BIBLIO.MDB

that comes with VB6. To connect ADO to this database file, follow the steps below:

a) Click on the ADO control on the form and open up the properties window.

b) Click on the ConnectionString property and the following dialog box will appear.

Figure 29.2

 227

When the dialog box appears, select Use Connection String. Next, click build and at

the Data Link dialog box, double-click the option labeled Microsoft Jet 3.51 OLE DB

provider.

Figure 29.3

 228

After that, click the Next button to select the file BIBLO.MDB. You can click on the

Text Connection to ensure proper connection of the database file. Click OK to finish

the connection. Finally, click on the RecordSource property and set the command

type to adCmd Table and Table name to Titles.

Figure 29.4

Now, you need to write codes for all the command buttons, after which you can make

the ADO control invisible.

For the Save button, the procedure is as follows:

Private Sub save_Click()

On Error GoTo errSave

AdoLibrary.Recordset.Fields("Title") = TitleTxt.Text

AdoLibrary.Recordset.Fields("Year Published") = YearTxt.Text

AdoLibrary.Recordset.Fields("ISBN") = ISBNTxt.Text

AdoLibrary.Recordset.Fields("PubID") = PubTxt.Text

AdoLibrary.Recordset.Fields("Subject") = SubjectTxt.Text

AdoLibrary.Recordset.Update

Exit Sub

errSave:

MsgBox (Err.Description)

End Sub

For the Add button, the procedure is as follows:

 229

Private Sub Add_Click()

On Error GoTo addErr

AdoLibrary.Recordset.AddNew

Exit Sub

addErr:

MsgBox (Err.Description)

End Sub

Private Sub delete_Click()

Confirm = MsgBox("Are you sure you want to delete this record?", vbYesNo,

"Deletion Confirmation")

If Confirm = vbYes Then

On Error GoTo deleteErr

AdoLibrary.Recordset.delete

MsgBox "Record Deleted!",, "Message"

Else

MsgBox "Record Not Deleted!", , "Message"

End If

Exit Sub

deleteErr:

MsgBox (Err.Description), , "Empty record, please enter all the info"

End Sub

For the Cancel button, the procedure is as follows:

Private Sub cancel_Click()

TitleTxt.Text = ""

YearTxt.Text = ""

PubTxt.Text = ""

ISBNTxt.Text = ""

SubjectTxt.Text = ""

 230

Example 29.2

In the previous example, you have learned to design a database application using

the ADO control. In this example, you will learn to create a more advanced database

application by adding more features to the previous example. The electronic library

you are going to create will be able to accept users' registrationsas well as handle a

login command that requires the user to enter a password, thus enhancing the

security aspect of the database management system. Basically, the application will

constitute a welcome menu, a registration menu, a login menu and the main

database menu. The sequence of the menus is illustrated in the flowchart below:

Figure 29.1 The Flowchart

In this program, you need insert a form and design it as the Welcome menu as

shown in Figure 29.2. In this form, insert three command buttons and set their

properties as listed in Table 29.1. The interface is shown in Figure 29.2.

Table 29.1

Object Name Caption

Form name main_menu Electronic Library

command button 1 cmdRegister Register

command button 2 cmdLogin Login

command button 3 cmdCancel Cancel

Welcome

Registered

Users

Registration

Login

Database

 231

Figure 29.2 The Welcome Menu

The procedure for the welcome menu is shown below:

Private Sub cmdLogin_Click ()

main_menu.Hide

Login_form.Show

End Sub

Private Sub cmdRegister_Click ()

main_menu.Hide

Register. Show

End Sub

If a new user clicks the Register button, the registration form will appear. This

registration form consists of two text boxes, three command buttons and an ADO

control. Their properties are set as listed in Table 29.2 and the interface is shown in

Figure 29.3. Note that the PasswordChar of the Text2 textbox is set as * which

means users will not be able to see the actual characters they enter, they will only

see the * symbol.

In order to connect the ADO to a database, you must create a database file in

Microsoft Access. The database file must contain at least two fields, one for the user

name and the other one for the password.

 232

Table 29.2

Object Property

Form
Name :Register

Caption: Registration Form

Text1 Name: txtName

Text2 Name: txtpassword

Text2 PasswordChar : *

command button 1
Name :cmdConfirm

Caption: Confirm

command button 2
Name: cmdClear

Caption: Clear

command button 3
Name: cmdCancel

Caption: Cancel

ADO control name Name :UserInfo

Figure 29.3 The Registration Form

The procedure for the registration form is as follows:

Private Sub cmdClear_Click ()

txtName.Text = ""

txtpassword.Text = ""

End Sub

 233

Private Sub cmdConfirm_Click ()

UserInfo.Recordset.Fields ("username") = txtName.Text

UserInfo.Recordset.Fields ("password") = txtpassword.Text

UserInfo.Recordset.Update

Register. Hide

Login_form.Show

End Sub

Private Sub Form_Load ()

UserInfo.Recordset.AddNew

End Sub

The login menu is illustrated in Figure 29.4:

Figure 29.4

There are two text boxes and a command button. Their properties are set as follows:

Table 29.3

Object Property

Text1 Name: txtName

Text2
Name: txtpassword

PasswordChar: *

Command button 1
Name: cmdLogin

Caption: Login

Form name Name: Login form

 234

Caption: Login Menu

The procedure is as follows:

Private Sub cmdLogin_Click()

Dim usrname As String

Dim psword As String

Dim usernam As String

Dim pssword As String

Dim Msg As String

Register.UserInfo.Refresh

usrname = txtName.Text

psword = txtpassword.Text

Do Until Register.UserInfo.Recordset.EOF

If Register.UserInfo.Recordset.Fields ("username").Value = usrname And

Register.UserInfo.Recordset.Fields ("password").Value = psword Then

Login_form.Hide

frmLibrary.Show

Exit Sub

Else

Register.UserInfo.Recordset.MoveNext

End If

Loop

Msg = MsgBox ("Invalid password, try again!", vbOKCancel)

If (Msg = 1) Then

Login_form.Show

txtName.Text = ""

txtpassword = ""

Else

End

 End If

End Sub

 235

The main database interface is illustrated in Figure 29.5. Before you are able to run

the program, you need to create the MS Access database file that contains a number

of fields, i.e. title, author, publisher, year and category and save them as library.mdb.

After that, connect the ADO control to this database file as you have done it in the

previous example. The properties of all the controls for this program are listed in

Table 29.4 and the interface is shown in Example 29.5.

 Table 29.4

Object Property

Form Name : frmLibrary

ADO control
Name : adoLibrary

visible : False

The Text1 textbox Name: txtTitleA

The Text2 textbox Name: txtAuthor

The Text3 textbox Name: txtPublisher

The Text4 textbox Name: txtYear

The Text5 textbox Name: txtCategory

Command button 1
Name: cmdSave

Caption: &Save

Command button 2
Name: cmdNew

Caption: &New

Command button 3
Name: cmdDelete

Caption: &Delete

Command button 4 name
Name: cmdCancel

Caption: &Cancel

Command button 5 name
Name: cmdNext

Caption: N&ext

Command button 6 name
Name: cmdPrevious

Caption: &Previous

Command button 7 name
Name: cmdExit

Caption: E&xit

 236

The procedure is as follows:

Private Sub cmdCancel_Click()

txtTitle.Text = ""

txtAuthor.Text = ""

txtPublisher.Text = ""

txtYear.Text = ""

txtCategory.Text = ""

End Sub

Private Sub cmdDelete_Click ()

Confirm = MsgBox ("Are you sure you want to delete this record?",

vbYesNo, "Deletion Confirmation")

If Confirm = vbYes Then

adoLibrary.Recordset.Delete

MsgBox "Record Deleted!", , "Message"

Else

MsgBox "Record Not Deleted!", , "Message"

End If

End Sub

Private Sub cmdNew_Click ()

adoLibrary.Recordset.AddNew

End Sub

Private Sub cmdNext_Click ()

If Not adoLibrary.Recordset.EOF Then

adoLibrary.Recordset.MoveNext

If adoLibrary.Recordset.EOF Then

adoLibrary.Recordset.MovePrevious

End If

End If

End Sub

Private Sub cmdPrevious_Click ()

 237

If Not adoLibrary.Recordset.BOF Then

adoLibrary.Recordset.MovePrevious

If adoLibrary.Recordset.BOF Then

adoLibrary.Recordset.MoveNext

End If

End If

End Sub

Private Sub cmdSave_Click ()

adoLibrary.Recordset.Fields ("Title").Value = txtTitle.Text

adoLibrary.Recordset.Fields ("Author").Value = txtAuthor.Text

adoLibrary.Recordset.Update

End Sub

Figure 29.5 The Library System

Exercise 29

1. Create an Inventory Management System using the ADO control. Your system

should include information such as product ID, product name, cost per unit, quantity

etc.

 238

Lesson 30

Internet and Web Applications

� Learning how to create a web browser.

� Learning how to create a FTP program.

In Visual Basic, you can create Internet and web applications. For example, you can

create your own customized web browser, FTP as well as an email program. All

these applications are relatively easy to build.

30.1 The Web Browser

In order to create the web browser, you have to press Ctrl+T to open up the

components window and select Microsoft Internet Control. After you have selected

the control, you will see the control appear in the toolbox as a small globe. To insert

the Microsoft Internet Control into the form, just drag the globe into the form and a

white rectangle will appear in the form. You can resize this control as you wish. This

control is given the default name WebBrowser1.

To design the interface, you need to insert one combo box which will be used to

display the URLs. In addition, you need to insert a few images which will function as

command buttons for the user to navigate the Internet; they are the Go command,

the Back command, the Forward command, the Refresh command and the Home

command. You can actually put in the command buttons instead of the images, but

using images will definitely improve the look of the browser.

The procedures for all the commands are relatively easy to write. There are many

methods, events, and properties associated with the web browser but you need to

 239

know just a few of them to come up with a functional Internet browser. They are listed

in Table 30.1:

Table 30.1

Method Description

GoBack To navigate backward one page in the history list.

GoForward To navigate forward one page in the history list.

GoHome To navigate to the default start page.

GoSearch To navigate to the current search page.

Navigate To navigate to the URL or to the file identified by a full path.

Refresh To reload the file that is currently loaded.

Stop To cancel the current web page loading operation.

Properties

Busy To indicate whether the web browser is engaged in navigation or

downloading operations.

LocationName To retrieve the name of the document that Internet Explorer is

currently displaying.

LocationURL To retrieve the URL of the web page that Internet Explorer is

currently displaying.

Event

DocumentComplete Executed when a document has been completely loaded.

DownloadBegin Executed when a navigation operation begins.

DownloadComplete Executed when a navigation operation finishes.

FileDownload Executed to indicate that a file download is about to occur.

NavigateComplete Executed after navigation to a link is completed.

 240

The method navigate is to go the website specified by its Uniform Resource

Locator(URL). The syntax is WebBrowser1.Navigate (“URL”). In this program, I want

to load the www.vbtutor.net web page at start-up, so I type in its URL.

Private Sub Form_Load()

WebBrowser1.Navigate ("http://www.vbtutor.net")

End Sub

In order to show the URL in the combo box and also to display the page title at the

form caption after the page is completely downloaded, I use the following statements:

Private Sub WebBrowser1_DocumentComplete (ByVal pDisp As Object, URL

As Variant)

Combo1.Text = URL

Form1.Caption = WebBrowser1.LocationName

Combo1.AddItem URL

End Sub

The following procedure will tell the user to wait while the page is loading.

Private Sub WebBrowser1_DownloadBegin ()

Combo1.Text = "Page loading, please wait"

End Sub

Figure 30.1 The Web Browser

 241

The program

Private Sub Form_Load ()

WebBrowser1.Navigate ("http://www.vbtutor.net")

End Sub

Private Sub Image1_Click ()

WebBrowser1.GoHome

End Sub

Private Sub Image2_Click ()

On Error Resume Next

WebBrowser1.GoForward

End Sub

Private Sub Image3_Click ()

On Error Resume Next

WebBrowser1.GoBack

 242

End Sub

Private Sub Image4_Click ()

WebBrowser1.Refresh

End Sub

Private Sub Image5_Click ()

WebBrowser1.Stop

End Sub

Private Sub Label2_Click ()

WebBrowser1.Navigate (Combo1.Text)

End Sub

Private Sub Label4_Click ()

WebBrowser1.GoSearch

End Sub

Private Sub WebBrowser1_DocumentComplete(ByVal pDisp As Object, URL As

Variant)

Combo1.Text = URL

Form1.Caption = WebBrowser1.LocationName

Combo1.AddItem URL

End Sub

Private Sub WebBrowser1_DownloadBegin()

Combo1.Text = "Page loading, please wait"

End Sub

30.2 The FTP program

The File Transfer Protocol is a system for transferring files between two computers

over the Internet where one of the computers is normally known as server and the

other one as the client. The FTP program is very useful for website management as

the webmaster can update the web pages by uploading the local files to the web

 243

server easily and normally at a much faster speed than the web browser. For normal

PC users, the FTP program can also be used to download files from many FTP sites

that offer a lot of useful stuffs such as free software, free games, product information,

applications, tools, utilities, drivers, fixes and etc.

The FTP program usually comprises an interface that shows the directories of the

local computer and the remote server. Files can normally be transferred just by

clicking the relevant arrows. To log into the FTP site, we normally have to key in the

user name and the password; however, for public domains, we just need to type the

word anonymous as the user name and you can leave out the password. The FTP

host name takes the form ftp.servername.com, for example, the Microsoft FTP site’s

host name is ftp.microsoft.com while the Netscape FTP site is ftp.netscape.com.

The FTP program usually provides a set of commands such as ChgDir (changing

directory), MkDir (Changing directory), Rename (renaming a file), view (to view a file),

delete (to delete a file) etc.

If you need to use a FTP program, you can purchase one or you can download a

couple of the programs that are available free of charge over the Internet. However,

you can also create your very own FTP program with Visual Basic. Visual Basic

allows you to build a fully functionally FTP program which may be just as good as the

commercial FTP programs. The engine behind it is the Microsoft Internet Transfer

Control 6.0 in which you need to insert your form before you can create the FTP

program. The name of the Microsoft Internet Transfer Control 6.0.is Inet and if you

only put in one control, its name will be Inet1.

Inet1 comprises three important properties namely Inet1.URL which is used to

identify the FTP hostname, Inet1.UserName which is used to accept the username

and the Inet1.Password which is used to accept the user’s passwords. The

statements for the program to read the hostname of the server, the username and

the password entered into the Text1 textbox, the Text2 textbox and the Text3 textbox

by the user are shown below:

Inet1.URL=Text1.Text

Inet1.UserName=Text2.Text

Inet1.Passoword=Text3.Text

 244

After the user enters the above information, the program will attempt to connect to

the server using the following command, where Execute is the method and DIR is the

FTP command that will read the list of files from the specified directory of the remote

computer and you need to use the getChunk method to actually retrieve the

directory’s information.

 Inet1.Execute, "DIR"

After connecting to the server, you can choose the file to download from the remote

computer by using the statement

Inet1.Execute, , "get" & remotefile & localfile

where remotefile is the file of the remote site and localfile is the file of the local

system. However, very often you need to provide the full path of the local file, which

you can do that by modifying the above syntax to the following syntax:

Inet1.Execute , , "get" & remotefile & localpath & remotefile

The above statements will ensure that the remote file will be downloaded to the

location specified by the localpath and the file downloaded will assume the same

name as the remote file. For example, the remote file is readme.txt and the localpath

is C:\temp , so the downloaded file will be saved in C:\temp\readme.txt.

In order to monitor the status of the connection, you can use the StateChanged

event that is associated with Inet1 together with a set of the state constants that are

listed in the Table 30.1:

Table 30.1

Constant Value Description

icHostResolvingHost 1 The control is looking up the IP address of the

specified host computer.

icHostResolved 2 The control successfully found the IP address of

 245

the specified host computer.

icConnecting 3 The control is connecting to the host computer.

icConnected 4 The control successfully connected to the host

computer.

icRequesting 5 The control is sending a request to the host

computer.

icRequestSent 6 The control successfully sent the request.

icReceivingResponse 7 The control is receiving a response from the host

computer.

icResponseReceived 8 The control successfully received a response

from the host computer.

icDisconnecting 9 The control is disconnecting from the host

computer.

icDisconnected 10 The control successfully disconnected from the

host computer.

icError 11 An error occurred in communicating with the host

computer.

icResponseCompleted 12 The request has been completed and all data has

been received.

Under the StateChanged event, you use the Select Case…End Select statements to

notify the users regarding the various states of the connection. The procedure is

shown below:

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResolvingHost

 246

Label6.Caption = "Resolving Host"

Case icHostResolved

Label6.Caption = "Host Resolved"

Case icConnecting

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data1 As String

Dim data2 As String

MsgBox "Download Completed"

End Select

End Sub

The states of the connection will be displayed in Label6.

The FTP program that I have created contains a form and a dialog box. The dialog

box can be added by clicking on the Project item on the menu bar and then selecting

the Add Form item on the drop-down list. You can either choose a normal dialog box

or a login dialog box. The function of the dialog box is to accept the FTP address, the

username and the password and then connect to the server. After a successful login,

the dialog box will be hidden and the main form will be presented for the user to

browse the remote directory and to choose certain files to download.

The interface of the login dialog is shown in Figure 30.2:

 247

Figure 30.2 The FTP Login Form

The states of the connection will be displayed in the label at the bottom. The program

for the login dialog is:

Option Explicit

Private Sub OKButton_Click()

Inet1.URL = Text1.Text

Inet1.UserName = Text2.Text

Inet1.Password = Text3.Text

Inet1.Execute , "DIR"

Form1.Show

Dialog.Hide

End Sub

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResolvingHost

Label6.Caption = "Resolving Host"

Case icHostResolved

Label6.Caption = "Host Resolved"

Case icConnecting

 248

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data As String

Dim data1 As String

MsgBox "Transfer Completed"

 Do

 data1 = Inet1.GetChunk(1024, icString)

 data = data & data1

 Loop While Len(data1) <> 0

 Form1.Text6.Text = data

End Select

End Sub

Private Sub CancelButton_Click()

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

End Sub

The statement data1 = Inet1.GetChunk (1024, icString) is to use the getChunk

method to grab information of the remote directory and then display the files of the

directory in the Text6 textbox.

After logging in, the main form will be presented as shown in Figure 30.3:

 249

Figure 30.3

The program to download the file is:

Dim remotefile As String

Dim mypath As String

Dim cmd As String

Private Sub Command1_Click ()

remotefile = Text4.Text

mypath = Text5.Text

cmd = "GET " & remotefile & " " & mypath & remotefile

Inet1.Execute , cmd

End Sub

Private Sub Command2_Click()

Inet1.Cancel

End

End Sub

 250

Private Sub Form_Load()

Dialog.Show

Form1.Hide

End Sub

Private Sub Inet1_StateChanged (ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResponseCompleted

MsgBox "Download Completed"

End Select

End Sub

Exercise 30

1. Create your own customized web browser.

2. Create your own customized FTP program.

INDEX

A

Abs, 63, 66, 69, 179, 180, 182

Activate, 6-9, 24, 45-49, 51-54, 63, 67, 69-75, 78, 80, 83,

119

ActiveX data object, 219

AddItem method, 17, 47, 103

ADO control, 219, 221, 223, 225-227, 230, 232

Animation, 130, 136, 137, 141, 144

arc tangent, 68

arithmetic operators, 24, 30, 33

array, 94 -95, 97-101, 147, 149, 167, 177, 187

Asc, 80, 82

ASCII, 82, 83

Atn, 63, 68, 69

Audio player, 117

avi, 117, 125-128

B

Back command, 233

 2

BackColor, 13, 18, 102-104

background color, 11-13, 18, 102-103

boggle, 167

Boolean, 27, 30, 170, 180, 189

border style, 11, 102

BorderColor, 102

BorderWidth, 102

Byte, 26

C

calculator, 11-12, 14, 43, 69, 89, 97, 177, 184

caption, 10-13, 16, 23, 36-37, 62, 64, 142, 187, 210, 215,

219, 235

Caption Property, 14

CD player, 117-118, 120

Check Box, 18

Chr, III, 80, 82-83

circle, 14, 21, 25, 102, 108, 116

circle method, 108

Click event, 16

code window, 5, 22, 187

color constants, 18

combo box, 17, 43, 233, 235

Combo Box, 17, 120

command button, 1, 6, 10, 15-16, 21-23, 38, 57, 64, 84,

103, 131, 133, 135, 138, 141-142, 187, 217, 225, 227-

228

comments, 14

common dialog box, 103, 111, 212

components, 3, 117, 145, 219, 233

computer screen, 7

conditional operators, 34, 35, 37, 39

conditional statement, 18

ConnectionString, 221

controls, III, 4, 10, 13, 15-16, 21-22, 97, 102, 105, 107,

113, 120 -121, 125, 186, 220, 230

Cos, 24, 63, 68-69, 197, 204

cosine, 68-69

Currency, 26-27, 32, 74, 87

D

data control, 215, 217, 219, 221

database, 37, 208-209, 215- 219, 221, 223, 225-226, 229-

230

DataField, 215, 220-221

DataSource, 215, 220-221

Date, II, 27, 29, 76-79

Decimal, 26

degree, 68, 69

designing phase, 16, 64, 197

dialog box, 2, 102-103, 105, 109, 111-112, 116-117, 129,

212-214, 219, 221-222, 241

Dim statement, 28, 29, 94, See Dim

Directory List Box, 20

DirListBox, 113, 120 -121, 125

division operator, 7

Do Until, 45-48, 229

Do While, 45, 48, 67

Do…. Loop, 45

DocumentComplete, 234 - 236

Double, 5, 6, 26-27, 130

DownloadBegin, 234 -235, 237

DownloadComplete, 234

DragDrop, 6, 136-137, 173

dragIcon, 136

dragmode, 136

drawing, 12, 102

Drive List Box, 19

DriveListBox, 113, 120-121, 125

dropdown list, 22

E

educational game, 185, 207

End Select, 24, 40-44, 88, 104, 173, 175, 187-188, 191-

193, 202-203, 240, 242, 244

event-driven, 1

Exit For, 53

Exit Sub, 24, 109-110, 129, 211-212, 223-224, 229

Exp, 63, 66, 69

explicit declaration, 28

Exponential, 31

F

File List Box, 20

FileDownload, 234

FileListBox, 113, 120-121, 125

Fix, 63, 66, 67, 70

For…Next, 24, 45, 51, 100, 147

foreground color, 11, 12

form, 3, 5, 6, 10-13, 15, 18-23, 32, 38, 47, 61, 64 - 68, 70,

71, 74 -76, 79, 85, 96-98, 102-103, 107-108, 113, 117,

120, 125, 130, 136, 141-142, 145, 158, 167, 215, 219,

221, 225- 229, 233, 235, 237-238, 241, 243

Format function, 73

Formatting output, 70

Forward command, 233

FTP, 233, 237-238, 241, 244

function, 15, 17, 24, 25, 31-32, 34, 38, 41, 43, 47, 57-58,

61- 64, 66-68, 70-74, 79- 85, 89-93, 105, 113, 120,

125, 160, 184, 189, 198, 233, 241

G

getChunk method, 238, 243

Go command, 233

graphics, 16, 102, 105, 107-108, 109, 113, 219

Graphics, 102

GWBASIC, 1

H

Home command, 233

I

IBM BASICA, 1

icConnected, 239, 240, 242

icConnecting, 239, 240, 242

icDisconnected, 239

icDisconnecting, 239

icError, 239, 240, 242, 244

icHostResolved, 239, 240, 242

icHostResolvingHost, 239

icReceivingResponse, 239, 240, 242

icRequesting, 239

icRequestSent, 239

icResponseCompleted, 240, 242, 244

icResponseReceived, 239, 240, 242

If….Then….Elseif, 18

Image Box, III, 16, 105

implicit declaration, 28

input, 13, 15, 28, 31, 33, 41, 61, 62, 96-97, 101, 209, 210

InputBox (), 57

 3

InStr function, 82

Int, 38, 39, 63-67, 70, 105, 149, 150, 159, 164, 169, 188,

192, 199, 201-204

Integer, 26-27, 29, 31, 37-38, 47-49, 58-60, 65, 95- 96,

98-99, 105, 109, 149, 150, 152, 161, 168, 173, 177,

178, 180-183, 186, 189- 191, 197, 201, 240, 242, 244

Integer Division, 31

interface, 1, 3, 10, 11, 25, 102, 105, 146, 149, 177, 185,

213, 218-219, 225-226, 229-230, 233, 237, 241

K

keyPress, 6

L

Label, 6, 12, 16, 210, 220

Lcase function, 82

Left function, 81

Len function, 80

line control, 102

Line method, 108, 116

list box, 1, 17, 50, 97, 102, 103, 116, 121, 125

List Box, 17, 19- 21, 121

ListIndex, 17, 43, 103, 114 -115, 122-124, 126-128

Literals, 27

LoadPicture, 16, 21, 105-106, 111-112, 115, 159-160,

162, 165-166, 201-203

LoadPicture method, 16, 105, 160

LocationName, 234 -235, 237

LocationURL, 234

Log, 24, 63, 66-67, 69

logical operators, 34, 35, 39

Long, 26

Loop Until, 45-46, 48, 213

Loop While, 45-46, 48, 210, 242

Ltrim function, 81

M

mathematical functions, 24, 63, 69

MaxButton, 11

maximize, 11, 13

memory game, 194, 207

message box, 57, 59-61

Microsoft ActiveX Data Control 6, 219

Microsoft Common Dialog Control 6.0, 103

Microsoft Excel, III, 90, 91

Microsoft Internet Control, 233

Microsoft Internet Transfer Control 6.0, 238

Microsoft Multimedia Control, 117, 118, 120, 122, 125,

158, 160, 197

Mid function, 81

midi files, 117, 120, 122

minButton, 11

minimize, 11, 13

Mod, 31, 33

Modulus, 31

Move Method, 144

mp3, 117, 125-128

mpeg, 117, 125-128

MS Access, 215, 229

MsgBox(), 57

multimedia files, 117, 122

Multimedia player, 117

multiplication operator, 7

N

NavigateComplete, 234

nested loop, 54

numeric data, 15, 16, 26, 29, 32, 43, 100

O

Option Base, 95, 98, 99-100, 149

Option Box, 18

option buttons, 186, 187

output, 7, 8, 9, 15, 25, 32, 47, 51-56, 63, 64, 67-72, 74,

76-78, 80, 83 - 85, 88, 100-101, 104-105, 109, 112

P

password, 29-30, 36, 38-39, 62, 65-66, 225-226, 228,

229, 237, 238, 241

PasswordChar, 36, 226-228

Picture Box, 16, 105

predefined formats, 76

Print, 7-9, 24, 45-46, 51-55, 63, 67, 69, 70-75, 78, 80, 83,

95, 176, 209, 213

project window, 3

properties, 3, 10-14, 16, 21-22, 24, 37-38, 76, 102, 105,

111, 118, 133-136, 138-139, 141, 147, 198, 215, 220,

221, 225-226, 228, 230, 233, 238

properties window, 13, 16

Pset method, 107, 108, 116

Public, 84, 87, 94

Public statement, 94

Q

QBASIC, 1

QUICKBASIC, 1

R

radian, 68

random integer, 64

randomization process, 149, 158, 198

randomize, 63, 167, 187

Reading a text file, 209

RecordSource, 215, 223

Refresh command, 233

reversi, 169, 184

Right function, 80

RND function, 14

Round, 63, 66, 67, 69, 70

rounded rectangle, 18, 21, 102

rounded square, 18, 21, 149

Rtrim function, 81

runtime, 13, 14, 16, 22, 105, 142, 185, 208, 219

S

scroll bar, 142

Select Case, 24, 40, 42- 44, 88, 103, 173, 186, 187,

190-193, 201, 203, 240, 242, 244

Shape, 14, 19, 102-104

shape control, 18, 102-103, 146

Sin, 24, 63, 68-69, 197, 204

sine, 68-69

Single, 11, 26-27, 42, 136-137, 149, 173

slot machine, 158, 166

source code window, 5

Space function, 72

 4

Sqr, 24, 63, 66, 184

Standard EXE, 2

statements, 6, 17, 18, 22, 26, 29, 30, 34, 37, 40-41, 43,

45, 48, 51, 54, 70, 121, 125, 134, 138, 142, 160, 180,

187, 189, 195, 198, 235, 238, 240

step increment, 51

Str, 24-25, 71, 73, 80, 82, 161-162, 164, 176-184, 191,

193, 202, 207

string, 9, 15, 24, 27, 29-31, 41, 43, 61, 71, 81, 82, 100

String concatenation, 31

subroutine, 139, 142

subscript, 94, 95

suffix, 27, 98

summation, 15, 47, 48

syntax, 16, 22-23, 41, 105, 144, 209, 210, 213, 234, 238

T

Tan, 24, 63, 68, 69

tangent, 68, 69

Text Box, 15

text file, 208-209, 212-213, 214

timer, 23, 38, 76, 141-142, 144, 158, 195

Toolbox, 3

trigonometric functions, 68

Ttrim function, 81

twips, 108, 133-134, 144, 147, 199

two dimension array, 98

U

Ucase, III, 41, 80, 82

Uniform Resource Locator, 234

URL, 234 -238, 241

user-defined Format, 74

V

Val, III, 15, 24 -25, 30, 35, 44, 80, 82, 161-163, 181, 191,

193, 204

variables, 8, 25-26, 28-32, 47, 63, 94, 147, 160

Variant, 27, 29, 32, 84-85, 87-88, 90, 149, 161, 180, 200,

201, 235, 236

vbAbort, 58

vbAbortRetryIgnore, 58

vbBlue, 18

vbCancel, 58

vbCritical, 60

vbExclamation, 60

vbIgnore, 58

vbInformation, 60

vbNo, 58

vbOk, 58

vbOkCancel, 58

vbOkOnly, 58

vbQuestion, 60

VbRed, 18, 107, 108

vbRetry, 58

vbRetryCancel, 58

vbTab, 47, 48, 49

vbYes, 58, 224, 231

vbYesNo, 58, 224, 231

vbYesNoCancel, 58, 60

video files, 117, 122, 125, 129

Visual Basic Editor, 90, 91

W

wav, 117, 121-123, 126-127, 157-158, 164-165, 196, 205,

206

wave audio files, 121

web browser, 233-234, 237, 244

While… Wend, 45

