

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Table of Contents

Preface
Chapter 1: Introduction
Chapter 2: Demystifying the Browser
Chapter 3: Learning HTTP
Chapter 4: The Socket Library
Chapter 5: The LWP Library
Chapter 6: Example LWP Programs
Chapter 7: Graphical Examples with Perl/Tk

Appendix A: HTTP Headers
Appendix B: Reference Tables
Appendix C: The Robot Exclusion Standard

Index

Examples

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
ftp://ftp.ora.com/published/oreilly/nutshell/web-client/
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html

International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Table of Contents

Preface

1. Introduction
 Why Write Your Own Clients?
 The Web and HTTP
 The Programming Interface
 A Word of Caution

2. Demystifying the Browser
 Behind the Scenes of a Simple Document
 Retrieving a Document Manually
 Behind the Scenes of an HTML Form
 Behind the Scenes of Publishing a Document
 Structure of HTTP Transactions

3. Learning HTTP
 Structure of an HTTP Transaction
 Client Request Methods
 Versions of HTTP
 Server Response Codes
 HTTP Headers

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

4. The Socket Library
 A Typical Conversation over Sockets
 Using the Socket Calls
 Server Socket Calls
 Client Connection Code
 Your First Web Client
 Parsing a URL
 Hypertext UNIX cat
 Shell Hypertext cat
 Grep out URL References
 Client Design Considerations

5. The LWP Library
 Some Simple Examples
 Listing of LWP Modules
 Using LWP

6. Example LWP Programs
 Simple Clients
 Periodic Clients
 Recursive Clients

7. Graphical Examples with Perl/Tk
 A Brief Introduction to Tk
 A Dictionary Client: xword
 Check on Package Delivery: Track
 Check if Servers Are up: webping

A. HTTP Headers
 General Headers
 Client Request Headers
 Server Response Headers
 Entity Headers
 Summary of Support Across HTTP Versions

B. Reference Tables
 Media Types
 Character Encoding
 Languages
 Character Sets

C. The Robot Exclusion Standard

Index

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly Open
Books Project.

Preface

The World Wide Web has been credited with bringing the Internet to the masses. The Internet was previously the
stomping ground of academics and a small, elite group of computer professionals, mostly UNIX programmers and
other oddball types, running obscure commands like ftp and finger, archie and telnet, and so on.

With the arrival of graphical browsers for the Web, the Internet suddenly exploded. Anyone could find things on the
Web. You didn't need to be "in the know" anymore--you just needed to be properly networked. Equipped with
Netscape Navigator or Internet Explorer or any other browser, everyone can now explore the Internet freely.

But graphical browsers can be limiting. The very interactivity that makes them the ideal interface for the Internet also
makes them cumbersome when you want to automate a task. It's analogous to editing a document by hand when you'd
like to write a script to do the work for you. Graphical browsers require you to navigate the Web manually. In an
effort to diminish the amount of tedious pointing-and-clicking you do with your browser, this book shows you how to
liberate yourself from the confines of your browser.

Web Client Programming with Perl is a behind-the-scenes look at how your web browser interacts with web servers.
Readers of this book will learn how the Web works and how to write software that is more flexible, dynamic, and
powerful than the typical web browser. The goal here is not to rewrite the browser, but to give you the ability to
retrieve, manipulate, and redistribute web-based information in an automated fashion.

Who This Book Is For

I like to think that this book is for everyone. But since that's a bit of an exaggeration, let's try to identify who might
really enjoy this book.

This book is for software developers who want to expand into a new market niche. It provides proof-of-concept
examples and a compilation of web-related technical data.

This book is for web administrators who maintain large amounts of data. Administrators can replace manual
maintenance tasks with web robots to detect and correct problems with web sites. Robots perform tasks more
accurately and quickly than human hands.

But to be honest, the audience that's closest to my heart is that of computer enthusiasts, tinkerers, and motivated
students, who can use this book to satisfy their curiosity about how the Web works and how to make it work for them.
My editor often talks about when she first learned UNIX scripting and how it opened a world of automation for her.
When you learn how to write scripts, you realize that there's very little that you can't do within that universe. With this
book, you can extend that confidence to the Web. If this book is successful, then for almost any web-related task you'll

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/

find yourself thinking, "Hey, I could write a script to do that!"

Unfortunately, we can't teach you everything. There are a few things that we assume that you are already familiar
with:

● The concept of client/server network applications and TCP/IP.

● How the Internet works, and how to access it.

● The Perl language. Perl was chosen as the language for examples in this book due to its ability to hide
complexity. Instead of dealing with C's data structures and low-level system calls, Perl introduces higher-level
functions and a straightforward way of defining and using data. If you aren't already familiar with Perl, I
recommend Learning Perl by Randal Schwartz, and Programming Perl (popularly known as "The Camel
Book") by Larry Wall, Tom Christiansen, and Randal Schwartz. Both of these books are published by O'Reilly
& Associates, Inc. There are other fine Perl books as well. Check out http://www.perl.com for the latest book
critiques.

Is This Book for You?

Some of you already know why you picked up this book. But others may just have a nagging feeling that it's
something useful to know, though you may not be entirely sure why. At the risk of seeming self-serving, let me
suggest some ways in which this book may be helpful:

● Some people just like to know how things tick. If you like to think the Web is magic, fine--but there are many
who don't like to get into a car without knowing what's under the hood. For those of you who desire a better
technical understanding of the Web, this book demystifies the web protocol and the browser/server interaction.

● Some people hate to waste even a minute of time. Given the choice between repeating an action over and over
for an hour, or writing a script to automate it, these people will choose the script every time. Call it
productivity or just stubbornness--the effect is the same. Through web automation, much time can be saved.
Repetitive tasks, like tracking packages or stock prices, can be relegated to a web robot, leaving the user free to
perform more fruitful activities (like eating lunch).

● If you understand your current web environment, you are more likely to recognize areas that can be improved.
Instead of waiting for solutions to show up in the marketplace, you can take an active role in shaping the future
direction of your own web technology. You can develop your own specialized solutions to fit specific
problems.

● In today's frenzied high-tech world, knowledge isn't just power, it's money. A reasonable understanding of
HTTP looks nice on the resume when you're competing for software contracts, consulting work, and jobs.

Organization

This book consists of seven chapters and three appendices, as follows:

Chapter 1, Introduction
Discusses basic terminology and potential uses for customized web clients.

Chapter 2, Demystifying the Browser
Translates common browser tasks into HTTP transactions. By the end of the chapter, the reader will understand
how web clients and servers interact, and will be able to perform these interactions manually.

Chapter 3, Learning HTTP
Teaches the nuances of the HTTP protocol.

Chapter 4, The Socket Library
Introduces the socket library and shows some examples of how to write simple web clients with sockets.

http://www.perl.com/

Chapter 5, The LWP Library
Describes the LWP library that will be used for the examples in Chapters 6 and 7.

Chapter 6, Example LWP Programs
A cookbook-type demonstration of several example applications.

Chapter 7, Graphical Examples with Perl/Tk
A demonstration of how you can use the Tk extention to Perl to add a graphical interface to your programs.

Appendix A, HTTP Headers
Contains a comprehensive listing of the headers specified by HTTP.

Appendix B, Reference Tables
Lists URLs that you can use to learn more about HTTP and LWP.

Appendix C, The Robot Exclusion Standard
Describes the Robot Exclusion Standard, which every good web programmer should know intimately.

Source Code in This Book Is Online

In this book, we include many code examples. While the code is all contained within the text, many people will prefer
to download examples rather than type them in by hand. You can find the complete set of source code used in this
book on ftp.oreilly.com at /published/oreilly/nutshell/web-client.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session follows, with what you should
type shown in boldface.

% ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com:yourname): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: yourname@yourhost (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/nutshell/web-client
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.
ftp> quit
221 Goodbye.
%

The file is a gzipped tar archive; extract the files from the archive by typing:

% gunzip examples.tar.gz
% tar xvf examples.tar

System V systems require the following tar command instead:

% tar xof examples.tar

Conventions Used in This Book

We use the following formatting conventions in this book:

● Italic is used for command names, function names, variables, email addresses, URLs, directory and filenames,
and newsgroup names. It is also used for emphasis and for the first use of a technical term.

● Courier is used for HTTP header names and for code.

● Courier Italic is used within code to show elements that should be replaced with real values.

● Courier Bold is used to show commands entered by the user.

Request for Comments

As a reader of this book, you can help us to improve the next edition. If you find errors, inaccuracies, or typos
anywhere in the book, please let us know about them. Also, if you find any misleading statements or confusing
explanations, let us know. Send your bug reports and comments to:

O'Reilly & Associates, Inc.
101 Morris St.
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)
bookquestions@oreilly.com

Please let us know what we can do to make the book more helpful to you. We take your comments seriously, and will
do whatever we can to make this book as useful as it can be.

Acknowledgments

The idea for this book started in early 1995 when I was a student at Purdue University. It all started when I attended a
class entitled Proficient Use of WWW taught by George Vanecek, Jr. and Buster Dunsmore. It was a wonderful class
that went all over the map, from HTML to HTTP to CGI to Perl programming. Other ideas for the book started when I
worked at Purdue's Online Writing Lab as a web developer.

I'd like to extend a warm "thank you" to everyone who helped review the book, especially on short notice: Tom
Christiansen, Larry Wall, Sean McDermott, Kirsten Klinghammer, Ed Hill, Andy Grignon, Jeff Sedayao, Michael
Pelz-Sherman, and Norman Walsh. Special thanks for Kirsten and Sean for the 24-hour turnaround time, and to Tom,
Larry, and Ed for being critical when someone needed to be critical.

Thanks also to Nancy Walsh for writing the Perl/Tk chapter. And thanks to all the people at O'Reilly & Associates:
production editor Jane Ellin, cover designer Edie Freedman, Chris Reilley (who cleaned up the figures), Mike Sierra
for Tools support, Mary Anne Weeks Mayo and Sheryl Avruch for quality control, and my editor Linda Mui.

Thanks to my parents, Chun and Liang, my sister Ginger, and my girlfriend Cynthia for their support.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Chapter 1.
Introduction

In this chapter:
Why Write Your Own Clients?
The Web and HTTP
The Programming Interface
A Word of Caution

So what does Web client programming mean, and what do you need to learn to do it?

A web client is an application that communicates with a web server, using Hypertext
Transfer Protocol (HTTP). Hypertext Transfer Protocol is the protocol behind the
World Wide Web. With every web transaction, HTTP is invoked. HTTP is behind
every request for a web document or graphic, every click of a hypertext link, and every
submission of a form. The Web is about distributing information over the Internet, and
HTTP is the protocol used to do so.

Most web users never think about HTTP, just as most TV viewers don't think about
how video images get from the studio to their home. But this book is not for the average
web user. This book is for people who want to do something that available web
software won't let them do.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

Why Write Your Own Clients?

With the proliferation of available web browsers, you might wonder why you would
want to write your own client program. The answer is that by writing your own client
programs, you can leap beyond the preprogrammed functionality of a browser. For
example, the following scenarios are all possible:

● An urgent document is sent out via Federal Express, and the sender wants to
know the status of the document the moment it becomes available. He enters the
FedEx airbill tracking number into a program that notifies him of events as the
FedEx server reports them. Since the document is urgent, he configures the
program to contact him if the document is not delivered by the next morning.

● A system administrator would like to verify that all hyperlinks and image
references are valid at her site. She runs a program to verify all documents at the
site and report the results. She then finds some common mistakes in numerous
documents, and runs another program to automatically fix them.

● An investor keeps a stock portfolio online and runs a program to check stock
prices. The online portfolio is updated automatically as prices change, and the
program can notify the investor when there is an unusual jump in a stock price.

● A college student connects his computer to the Internet via an Ethernet
connection in his room. The university distributes custom software that will
allow his computer to wake him up every morning with local news. Audio clips
are downloaded and a web browser is launched. As the sound clips play, the
browser automatically updates to display a new image that corresponds to the
report. A weather map is displayed when the local weather is being announced.
Images of the campus are displayed as local news is announced. National and
international news briefs are presented in this automatic fashion, and the
program can be configured to omit and include certain topics. The student may
flunk biology, but at least he'll be the first to know who won the Bulls game.

And so on. Think about resources that you regularly visit on the Web. Maybe every
morning you check the David Letterman top ten list from last night, and before you
leave the office you check the weather report. Can you automate those visits? Think
about that time you wanted to print an entire document that had been split up into
individual files, and had to select Chapter 1, print, return to the contents page, select
Chapter 2, etc. Is there a way to print the entire thing in one swoop?

Browsers are for browsing. They are wonderful tools for discovery, for traveling to far-
off virtual lands. But once you know what you want, a more specialized client might be
more effective for your needs.

The Web and HTTP

If you don't know what the Web is, you probably picked up the wrong book. But here's
some history and background, just to make sure we're all coming from the same place.

The World Wide Web was developed in 1990 by Tim Berners-Lee at the Conseil
Europeen pour la Recherche Nucleaire (CERN). The inspiration behind it was simply to
find a way to share results of experiments in high-energy particle physics. The central
technology behind the Web was the ability to link from a document on one server to a
document on another, keeping the actual location and access method of the documents
invisible to the user. Certainly not the sort of thing that you'd expect to start a media
circus.

So what did start the media circus? In 1993 a graphical interface to the Web, named
Mosaic, was developed at the University of Illinois at Urbana-Champaign. At first,
Mosaic ran only on UNIX systems running the X Window System, a platform that was
popular with academics but unknown to practically anyone else. Yet anyone who saw
Mosaic in action knew immediately that this was big news. Soon afterwards, Mac and
PC versions came out, and the Web started to become immensely popular. Suddenly the
buzzwords started proliferating: Information Superhighway, Internet, the Web, Mosaic,
etc. (For a while all these words were used interchangeably, much to the chagrin of
anyone who had been using the Internet for years.)

In 1994, a new interface to the Web called Netscape Navigator came on the (free)
market, and quickly became the darling of the Net. Meanwhile, everyone and their Big
Blue Brother started developing their own web sites, with no one quite sure what the
Web was best used for, but convinced that they couldn't be left behind.

Most of the confusion has died down now, but not the excitement. The Web seems to
have permanently captured the imagination of the world. It brings up visions of vast
archives that can now be made globally available from every desktop, images and
multimedia that can be distributed to every home, and... money, money, money. But the
soul of the Web is pure and unchanged. When you get down to it, it's just about sending
data from one machine to another--and that's what HTTP is for.

Browsers and URLs

The most common interface to the World Wide Web is a browser, such as Mosaic,
Netscape Navigator, or Internet Explorer. With a browser, you can download web
documents and view them formatted on your screen.

When you request a document with your browser, you supply a web address, known as
a Universal Resource Locator or URL. The URL identifies the machine that contains
the document you want, and the pathname to that document on the server. The browser

contacts the remote machine and requests the document you specified. After receiving
the document, it formats it as needed and displays it on your browser.

For example, you might click on a hyperlink corresponding to the URL
http://www.oreilly.com/index.html. Your browser contacts the machine called
www.oreilly.com and requests the document called index.html. When the document
arrives, the browser formats it and displays it on the screen. If the document requires
other documents to be retrieved (for example, if it includes a graphic image on the
page), the browser downloads them as well. But as far as you're concerned, you just
clicked on a word and a new page appeared.

Clients and Servers

Your web browser is an example of a web client. The remote machine containing the
document you requested is called a web server. The client and server communicate
using a special language (a "protocol") called HTTP. Figure 1-1 demonstrates the
relationship between web clients and web servers.

Figure 1-1.Client and server relationship

To keep ourselves honest, we should get a little more specific now. Although we
commonly refer to the machine that contains the documents as the "server," the server
isn't the hardware itself, but just a program that runs on that machine. The web server
listens on a port on the network, and waits for client requests using the HTTP protocol.
After the server responds to the request (using HTTP), the network connection is
dropped and the browser processes the relevant data that it received, then displays it on
your screen.

In practice, many clients can be using the same server at the same time, and one client
can also use many servers at the same time (see Figure 1-2).

Figure 1-2.Multiple clients and servers

As you can see, at the core of the Web is HTTP. If you master HTTP, you can request
documents from a server without needing to go through your browser. Similarly, you
can return documents to web browsers without being limited to the functionality of an
existing web server. HTTP programming takes you out of the realm of the everyday
web user and into the world of the web power user.

Chapter 2, Demystifying the Browser, introduces you to simple HTTP as commonly
encountered on the Web. Chapter 3, Learning HTTP, is a more complete reference on
HTTP.

The Programming Interface

Okay, we've told you a little about HTTP. But before your client can actually
communicate with a server, it needs to establish a connection. It's like having a VCR
and a TV, but no cable between them.

TCP/IP is what makes it possible for web clients and servers to speak to each other
using HTTP. TCP/IP is the protocol used to send data packets across the Internet
uncorrupted. Programmers need a TCP/IP programming interface, like Berkeley
sockets, for their web programs to communicate.

Now, this is when we separate our audience into the lucky and the . . . less lucky.

One of the great virtues for which Perl programmers are extolled is laziness. The Perl
community encourages programmers to develop modules and libraries that perform
common tasks, and then to share these developments with the world at large. While you
can write Perl programs that use sockets to contact the web server and then send raw
HTTP requests manually, you can also use a library for Perl 5 called LWP (Library for
WWW access in Perl), which basically does all the hard work for you.

Great news, huh? Only for those of us on UNIX, though. At this writing, LWP has not
been fully ported to Windows 95 or Windows NT, and using Perl's socket library under
NT isn't quite the same. There are some great developments from vendors like
ActiveWare and Softway that might one day make NT's Perl environment look exactly
as it does on UNIX. For now, however, NT users have to cope with what's out there.
But on the brighter side, NT's Perl environment is getting better over time.

Also, some readers may be stuck with Perl 4, in which case LWP is off limits. Many
Internet Service Providers do not support software "extras" like Perl, and thus will not
upgrade the version of Perl 4 that was distributed with their operating system. Perl 4 is
considered unsupported and buggy by most Perl experts, but for many readers, it's all
they have.

Chapter 4, The Socket Library, covers sockets, and Chapter 5, The LWP Library,
introduces you to LWP. Since most Perl programmers have LWP available to them, we
wrote all the examples in Chapters See Example LWP Programs and using LWP.
However, Chapter 4 does show some examples of writing simple clients using Sockets,
for those readers who cannot use LWP (or choose not to).

A Word of Caution

There are some dangers in developing and configuring Web client programs. A buggy
client program may overload a web server. It could cause massive amounts of network
traffic. Or you might receive flame mail or lawsuits from web maintainers. Worst of all,
web clients could cause data integrity problems on servers by feeding bad data to
Common Gateway Interface (CGI) programs that don't bother to check for proper input.
To avoid these disasters, there are a few things you can do:

● Test your code locally. The ideal environment for web development is a machine
running both the web client and the web server. When you use this type of setup,
communication between the client and server doesn't actually go though a
network connection. Instead, communication is done locally by the operating
system. If the computer dramatically slows down shortly after running your
newly written client, you know there's a problem. Such a program would be even
slower over a network.

● Run your own server. Many excellent servers are freely available on the Internet,

and it is far better to accidentally overload your own server than the one used by
your Internet Service Provider (ISP) or company.

● Give yourself options. When you finally decide to run your client program with
someone else's server, leave your "verbose" options on and watch what your
program is doing. Make sure you designed your program so you can stop it if it
is getting out of hand.

● Ask permission. Some servers are not intended to be queried by custom-made
web clients. Ask the maintainers of the server if you can run your client on their
server.

● Most importantly, follow the Robot Exclusion Standard at
http://info.webcrawler.com/mak/projects/robots/norobots. (See Appendix C for
more information on the Robot Exclusion Standard.)

Basically, a home-grown web client is like an uninvited guest, and like all gate crashers,
you should be polite and try not to draw too much attention to yourself. If you guzzle
down all the good liquor and make a nuisance of yourself, you will be asked to leave.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://info.webcrawler.com/mak/projects/robots/norobots
http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with
Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the
O'Reilly Open Books Project.

Chapter 2.
Demystifying the Browser

In this chapter:
Behind the Scenes of a Simple Document
Retrieving a Document Manually
Behind the Scenes of an HTML Form
Behind the Scenes of Publishing a Document
Structure of HTTP Transactions

Before you start writing your own web programs, you have to become comfortable with the fact that
your web browser is just another client. Lots of complex things are happening: user interface
processing, network communication, operating system interaction, and HTML/graphics rendering. But
all of that is gravy; without actually negotiating with web servers and retrieving documents via HTTP,
the browser would be as useless as a TV without a tuner.

HTTP may sound intimidating, but it isn't as bad as you might think. Like most other Internet
protocols, HTTP is text-based. If you were to look at the communication between your web browser
and a web server, you would see text--and lots of it. After a few minutes of sifting through it all, you'd
find out that HTTP isn't too hard to read. By the end of this chapter, you'll be able to read HTTP and
have a fairly good idea of what's going on during typical everyday transactions over the Web.

The best way to understand how HTTP works is to see it in action. You actually see it in action every
day, with every click of a hyperlink--it's just that the gory details are hidden from you. In this chapter,
you'll see some common web transactions: retrieving a page, submitting a form, and publishing a web
page. In each example, the HTTP for each transaction is printed as well. From there, you'll be able to
analyze and understand how your actions with the browser are translated into HTTP. You'll learn a
little bit about how HTTP is spoken between a web client and server.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

After you've seen bits and pieces of HTTP in this chapter, Chapter 3, Learning HTTP, introduces
HTTP in a more thorough manner. In Chapter 3, you'll see all the different ways that a client can
request something, and all the ways a server can reply. In the end, you'll get a feel for what is possible
under HTTP.

Behind the Scenes of a Simple Document

Let's begin by visiting a hypothetical web server at http://hypothetical.ora.com/. Its imaginary (and
intentionally sparse) web page appears in Figure 2-1.

Figure 2-1.A hypothetical web page

This is something you probably do every day--request a URL and then view it in your browser. But
what actually happened in order for this document to appear in your browser?

The Browser's Request

Your browser first takes in a URL and parses it. In this example, the browser is given the following
URL:

http://hypothetical.ora.com/

The browser interprets the URL as follows:

http://
In the first part of the URL, you told the browser to use HTTP, the Hypertext Transfer Protocol.

hypothetical.ora.com
In the next part, you told the browser to contact a computer over the network with the hostname

of hypothetical.ora.com.

/
Anything after the hostname is regarded as a document path. In this example, the document path
is /.

So the browser connects to hypothetical.ora.com using the HTTP protocol. Since no port was specified,
it assumes port 80, the default port for HTTP. The message that the browser sends to the server at port
80 is:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Let's look at what these lines are saying:

1. The first line of this request (GET / HTTP/1.0) requests a document at / from the server.
HTTP/1.0 is given as the version of the HTTP protocol that the browser uses.

2. The second line tells the server to keep the TCP connection open until explicitly told to
disconnect. If this header is not provided, the server has no obligation to stick around under
HTTP 1.0, and disconnects after responding to the client's request. The behavior of the client
and server depend on what version of HTTP is spoken. (See the discussion of persistent
connections in Chapter 3 for the full scoop.)

3. In the third line, beginning with the string User-Agent, the client identifies itself as Mozilla
(Netscape) version 3.0, running on Windows NT.

4. The fourth line tells the server what the client thinks the server's hostname is. Since the server
may have multiple hostnames, the client indicates which hostname was used. In this
environment, a web server can have a different document tree for each hostname it owns. If the
client hasn't specified the server's hostname, the server may be unable to determine which
document tree to use.

5. The fifth line tells the server what kind of documents are accepted by the browser. This is
discussed more in the section "Media Types" in Chapter 3.

Together, these 5 lines constitute a request. Lines 2 through 5 are request headers.

The Server's Response

Given a request like the one previously shown, the server looks for the file associated with "/" and
returns it to the browser, preceding it with some "header information":

HTTP/1.0 200 OK
Date: Fri, 04 Oct 1996 14:31:51 GMT
Server: Apache/1.1.1
Content-type: text/html
Content-length: 327

Last-modified: Fri, 04 Oct 1996 14:06:11 GMT

<title>Sample Homepage</title>

<h1>Welcome</h2>
Hi there, this is a simple web page. Granted, it may not be as elegant
as some other web pages you've seen on the net, but there are
some common qualities:

 An image,
 Text,
 and a hyperlink

If you look at this response, you'll see that it begins with a series of lines that specify information about
the document and about the server itself. Then after a blank line, it returns the document. The series of
lines before the first blank line is called the response header, and the part after the first blank line is
called the body or entity, or entity-body. Let's look at the header information:

1. The first line, HTTP/1.0 200 OK, tells the client what version of the HTTP protocol the server
uses. But more importantly, it says that the document has been found and is going to be
transmitted.

2. The second line indicates the current date on the server. The time is expressed in Greenwich
Mean Time (GMT).

3. The third line tells the client what kind of software the server is running. In this case, the server
is Apache version 1.1.1.

4. The fourth line (Content-type) tells the browser the type of the document. In this case, it is
HTML.

5. The fifth line tells the client how many bytes are in the entity body that follows the headers. In
this case, the entity body is 327 bytes long.

6. The sixth line specifies the most recent modification time of the document requested by the
client. This modification time is often used for caching purposes--so a browser may not need to
request the entire HTML file again if its modification time doesn't change.

After all that, a blank line and the document text follow.

Figure 2-2 shows the transaction.

Figure 2-2.A simple transaction

Parsing the HTML

The document is in HTML (as promised in the Content-type line). The browser retrieves the document
and then formats it as needed--for example, each item between the and is printed as
a bullet and indented, the tag displays a graphic on the screen, etc.

And while we're on the topic of the tag, how did that graphic get on the screen? While parsing
the HTML file, the browser sees:

and figures out that it needs the data for the image as well. Your browser then sends a second request,
such as this one, through its connection to the web server:

GET /images/oreilly_mast.gif HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The server responds with:

HTTP/1.0 200 OK
Date: Fri, 04 Oct 1996 14:32:01 GMT
Server: Apache/1.1.1

Content-type: image/gif
Content-length: 9487
Last-modified: Tue, 31 Oct 1995 00:03:15 GMT

[data of GIF file]

Figure 2-3 shows the complete transaction, with the image requested as well as the original document.

Figure 2-3.Simple transaction with embedded image

There are a few differences between this request/response pair and the previous one. Based on the
 tag, the browser knows where the image is stored on the server. From <img
src="/images/oreilly_mast.gif">, the browser requests a document at a different location
than "/":

GET /images/oreilly_mast.gif HTTP/1.0

The server's response is basically the same, except that the content type is different:

Content-type: image/gif

From the declared content type, the browser knows what kind of image it will receive and can render it
as required. The browser shouldn't guess the content type based on the document path; it is up to the

server to tell the client.

The important thing to note here is that the HTML formatting and image rendering are done at the
browser end. All the server does is return documents; the browser is responsible for how they look to
the user.

Clicking on a Hyperlink

When you click on a hyperlink, the client and server go through something similar to what happened
when we visited http://hypothetical.ora.com/. For example, when you click on the hyperlink from the
previous example, the browser looks at its associated HTML:

 hyperlink

From there, it knows that the next location to retrieve is /example2.html. The browser then sends the
following to hypothetical.ora.com:

GET /example2.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The server responds with:

HTTP/1.0 200 OK
Date: Fri, 04 Oct 1996 14:32:14 GMT
Server: Apache/1.1.1
Content-type: text/html
Content-length: 431
Last-modified: Thu, 03 Oct 1996 08:39:45 GMT

[HTML data]

And the browser displays the new HTML page on the user's screen.

Retrieving a Document Manually

Now that you see what a browser does, it's time for the most empowering statement in this book:
There's nothing in these transactions that you can't do yourself. And you don't need to write a program--
you can just do it by hand, using the standard telnet client and a little knowledge of HTTP.

Telnet to www.ora.com at port 80. From a UNIX shell prompt:[1]

% telnet www.ora.com 80
Trying 198.112.208.23 ...
Connected to www.ora.com.
Escape character is '^]'.

(The second argument for telnet specifies the port number to use. By default, telnet uses port 23. Most

web servers use port 80. If you are behind a firewall, you may have problems accessing www.ora.com
directly from your machine. Replace www.ora.com with the hostname of a web server inside your
firewall for the same effect.)

Now type in a GET command[2] for the document root:

GET / HTTP/1.0

Press ENTER twice, and you receive what a browser would receive:

HTTP/1.0 200 OK
Server: WN/1.15.1
Date: Mon, 30 Sep 1996 14:14:20 GMT
Last-modified: Fri, 20 Sep 1996 17:04:18 GMT
Content-type: text/html
Title: O'Reilly & Associates
Link: <mailto:webmaster@ora.com>; rev="Made"

<HTML>
<HEAD>
<LINK REV=MADE HREF="mailto:webmaster@ora.com">
.
.
.

When the document is finished, your shell prompt should return. The server has closed the connection.

Congratulations! What you've just done is simulate the behavior of a web client.

Behind the Scenes of an HTML Form

You've probably seen fill-out forms on the Web, in which you enter information into your browser and
submit the form. Common uses for forms are guestbooks, accessing databases, or specifying keywords
for a search engine.

When you fill out a form, the browser needs to send that information to the server, along with the name
of the program needed to process it. The program that processes the form information is called a CGI
program. Let's look at how a browser makes a request from a form. Let's direct our browser to contact
our hypothetical server and request the document /search.html:

GET /search.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The server responds with:

HTTP/1.0 200 OK
Date: Fri, 04 Oct 1996 14:33:43 GMT
Server: Apache/1.1.1

Content-type: text/html
Content-length: 547
Last-modified: Tue, 01 Oct 1996 08:48:02 GMT
<title>Library Search</title>
<FORM ACTION="http://hypothetical.ora.com/cgi-bin/query" METHOD=POST>
Enter book title, author, or subject here:<p>
 <INPUT TYPE="radio" NAME="querytype" VALUE="title" CHECKED> Title<p>
 <INPUT TYPE="radio" NAME="querytype" VALUE="author"> Author<p>
 <INPUT TYPE="radio" NAME="querytype" VALUE="subject"> Subject<p>
Keywords:
<input type="text" name="queryconst" value="" size="50,2" ><p>

Press DONE to start your search.
<hr>
<input type="submit" value="Done">
<input type="reset" value="Start over">
</FORM>

The formatted document is shown in Figure 2-4.

Figure 2-4.A HTML form rendered in the browser

Let's fill out the form and submit it, as shown in Figure 2-5.

Figure 2-5.Filling out the form

After hitting the Done button, the browser connects to hypothetical.ora.com at port 80, as specified
with the <FORM> tag in the HTML:

<FORM ACTION="http://hypothetical.ora.com/cgi-bin/query" METHOD=POST>

The browser then sends:

POST /cgi-bin/query HTTP/1.0
Referer: http://hypothetical.ora.com/search.html
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-type: application/x-www-form-urlencoded
Content-length: 47

querytype=subject&queryconst=numerical+analysis

In the previous example retrieving the initial page at hypothetical.ora.com, we showed a series of lines
that the browser output and called it a request header. Calling it a header might not have made any
sense at the time, since there was no content being sent with it--if you're just requesting a document,
you don't have to tell the server anything else. But since in this instance we have to tell the server what
the user typed into the form, we have to use a "body" portion of the message to convey that
information. So there are a few new things to note in this example:

● Instead of GET, the browser started the transaction with the string POST. GET and POST are
two types of request methods recognized by HTTP. The most important thing that POST tells
the server is that there is a body (or "entity") portion of the message to follow.

The browser used the POST method because it was specified in the <FORM> tag:

<FORM ACTION="http://hypothetical.ora.com/cgi-bin/query"
METHOD=POST>

● The browser included an extra line specifying a Content-type. This wasn't necessary in the
previous example because no content was being sent with the request. The Content-type

line tells the server what sort of data is coming so it can determine how best to handle it. In this
case, it tells the server that the data to be sent is going to be encoded using the application/x-
www-form-urlencoded format. This format specifies how to encode special characters, and how
to send multiple variables and values in forms. See Chapter 3 and Appendix B, Reference
Tables, for more information on URL encoding.

● The browser included another line specifying a Content-length. Similarly, this wasn't
necessary earlier because there was no content to the entity body. But there is in this example; it
tells the server how much data to retrieve. In this case, the Content-length is 47 bytes.

● After a blank line, the entity-body is issued, reading
querytype=subject&queryconst=numerical+analysis. (Notice that this string is exactly 47
characters, as specified in the Content-length line.)

Where did this querytype=subject&queryconst=numerical+analysis line come from? In the HTML of
the form, the input field was specified with the following lines:

<INPUT TYPE="radio" NAME="querytype" VALUE="subject"> Subject<p>
<input type="text" name="queryconst" value="" size="50,2" >

The NAME="querytype" and VALUE="subject" part of the first <INPUT> tag was encoded as
"querytype=subject". The NAME="queryconst" part of the second <INPUT> tag specifies
a variable name to use for whatever text is supplied in that field. We filled in that field with the words
"numerical analysis." Thus, for the form data entered by the user, the browser sends:

querytype=subject&queryconst=numerical+analysis

to specify the variable and value pairs used in the form. Two or more variable/value pairs are separated
with an ampersand (&). Notice that the space between "numerical" and "analysis" was replaced by a
plus sign (+). Certain characters with special meaning are translated into a commonly understood
format. The complete rundown of these transformations is covered in Appendix B.

At this point, the server processes the request by forwarding this information on to the CGI program.
The CGI program then returns some data, and the server passes it back to the client as follows:

HTTP/1.0 200 OK
Date: Tue, 01 Oct 1996 14:52:06 GMT
Server: Apache/1.1.1
Content-type: text/html
Content-length: 760
Last-modified: Tue, 01 Oct 1996 12:46:15 GMT

<title>Search Results</title>
<h1>Search criteria too wide.</h2>
<h2>Refer to:</h2>
<hr>
<pre>
 1 ASYMPTOTIC EXPANSIONS
 2 BOUNDARY ELEMENT METHODS
 3 CAUCHY PROBLEM--NUMERICAL SOLUTIONS
 4 CONJUGATE DIRECTION METHODS
 5 COUPLED PROBLEMS COMPLEX SYSTEMS--NUMERICAL SOLUTIONS

 6 CURVE FITTING
 7 DEFECT CORRECTION METHODS NUMERICAL ANALYSIS
 8 DELAY DIFFERENTIAL EQUATIONS--NUMERICAL SOLUTIONS
 9 DIFFERENCE EQUATIONS--NUMERICAL SOLUTIONS
 10 DIFFERENTIAL ALGEBRAIC EQUATIONS--NUMERICAL SOLUTIONS
 11 DIFFERENTIAL EQUATIONS HYPERBOLIC--NUMERICAL SOLUTIONS
 12 DIFFERENTIAL EQUATIONS HYPOELLIPTIC--NUMERICAL SOLUTIONS
 13 DIFFERENTIAL EQUATIONS NONLINEAR--NUMERICAL SOLUTIONS
</pre>
<hr>

Figure 2-6 shows the results as rendered by the browser.

Figure 2-6.Form results

We'll have a more detailed discussion about posting form data and the application/x-www-form-
urlencoded encoding method in Chapter 3, when we discuss the POST method in more detail.

Behind the Scenes of Publishing a Document

If you've ever used a WYSIWYG HTML editor, you might have seen the option to publish your
documents on a web server. Typically, there's an FTP option to upload your document to the server.
But on most modern publishers, there's also an HTTP upload option. How does this work?

Let's create a sample document in Navigator Gold, as in Figure 2-7.

Figure 2-7.Sample document for publishing

After saving this file to C:/temp/example.html, let's publish it to the fictional site
http://publish.ora.com/, using the dialog box shown in Figure 2-8.

Figure 2-8.Dialog box for publishing

After clicking OK, the browser contacts publish.ora.com at port 80 and then sends:

PUT /example.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Pragma: no-cache
Host: publish.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 307

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
 <TITLE></TITLE>
 <META NAME="Author" CONTENT="">
 <META NAME="GENERATOR" CONTENT="Mozilla/3.0Gold (WinNT; I) [Netscape]">
</HEAD>
<BODY>

<H2>This is a header</H2>

<P>This is a simple html document.</P>

</BODY>
</HTML>

The server then responds with:

HTTP/1.0 201 Created
Date: Fri, 04 Oct 1996 14:31:51 GMT
Server: HypotheticalPublish/1.0
Content-type: text/html
Content-length: 30

<h1>The file was created.</h2>

And now the contents of the file C:/temp/example.html has been transferred to the server.[3]

Structure of HTTP Transactions

Now it's time to generalize. All client requests and server responses follow the same general structure,
shown in Figure 2-9.

Figure 2-9.General structure of HTTP requests

Let's look at some queries that are modeled after examples from earlier in this chapter. Figure 2-10
shows the structure of a client request.

Figure 2-10.Structure of a client request

HTTP transactions do not need to use all the headers. In fact, it is possible to perform some HTTP
requests without supplying any header information at all. A request of GET / HTTP/1.0 with an
empty header is sufficient for most servers to understand the client.

HTTP requests have the following general components:

1. The first line tells the client which method to use, which entity (document) to apply it to, and
which version of HTTP the client is using. Possible methods in HTTP 1.0 are GET, POST,
HEAD, PUT, LINK, UNLINK, and DELETE. HTTP 1.1 also supports the OPTIONS and
TRACE methods. Not all methods need be supported by a server.

The URL specifies the location of a document to apply the method to. Each server may have its

own way of translating the URL string into some form of usable resource. For example, the
URL may represent a document to transmit to the client. Or the URL may actually be a
program, the output of which is sent to the client.

Finally, the last entry on the first line specifies the version of HTTP the client is using. More
about this in the next chapter.

2. General message headers are optional headers used in both the client request and server
response. They indicate general information such as the current time or the path through a
network that the client and server are using.

3. Request headers tell the server more information about the client. The client can identify itself
and the user to the server, and specify preferred document formats that it would like to see from
the server.

4. Entity headers are used when an entity (a document) is about to be sent. They specify
information about the entity, such as encoding schemes, length, type, and origin.

Now for server responses. Figure 2-11 maps out the structure of a server response.

Figure 2-11.Structure of a server response

In the server response, the general header and entity headers are the same as those used in the client
request. The entity-body is like the one used in the client request, except that it is used as a response.

The first part of the first line indicates the version of HTTP that the server is using. The server will
make every attempt to conform to the most compatible version of HTTP that the client is using. The
status code indicates the result of the request, and the reason phrase is a human-readable description of
the status-code.

The response header tells the client about the configuration of the server. It can inform the client of
what methods are supported, request authorization, or tell the client to try again later.

In the next chapter, we'll go over all the gory details of possible values and uses for HTTP entries.

1. You can use a telnet client on something other than UNIX, but it might look different. On some non-
UNIX systems, your telnet client may not show you what you're typing if you connect directly to a web

server at port 80.

2. Actually called a method, but command makes more sense for people who are going through this the
first time around. More about this later.

3. You might have noticed that there wasn't a Content-type header sent by the client. There should
be one, but the software used to generate this example didn't include it. Other web publishing programs
do, however. It's generally good practice for the originator of the data to specify what the data is.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly Open Books
Project.

Chapter 3.
Learning HTTP

In this chapter:
Structure of an HTTP Transaction
Client Request Methods
Versions of HTTP
Server Response Codes
HTTP Headers

In the previous chapter, we went through a few examples of HTTP transactions and outlined the structure that all HTTP
follows. For the most part, all web software will use an exchange similar to the HTTP we showed you in Chapter 2,
Demystifying the Browser. But now it's time to teach you more about HTTP. Chapter 2 was like the "Spanish for
Travelers" phrasebook that you got for your trip to Madrid; this chapter is the textbook for Spanish 101, required
reading if you want course credit.

HTTP is defined by the HTTP specification, distributed by the World Wide Web Consortium (W3C) at www.w3.org. If
you are writing commercial-quality HTTP applications, you should go directly to the spec, since it defines which
features need to be supported for HTTP compliance. However, reading the spec is a tedious and often unpleasant
experience, and readers of this book are assumed to be more casual writers of HTTP clients, so we've pared it down a
bit to make HTTP more accessible for the spec-wary. This chapter includes:

● Review of the structure of HTTP transactions. This section also serves as a sort of road map to the rest of the
chapter.

● Discussion of the request methods clients may use. Beyond GET, HEAD, and POST, we also give examples of
the PUT, DELETE, TRACE, and OPTIONS methods.

● Summary of differences between various versions of HTTP. Clients and servers must declare which version of
HTTP they use. For the most part, what you'll see is HTTP 1.0, but at least you'll know what that means. We
also cover HTTP 1.1, the newest version of HTTP to date.

● Listing of server response codes, and discussion of the more common codes. These codes are the first indication
of what to do with the server's response (if any), so robust client programs should be prepared to intercept them
and interpret them properly.

● Coverage of HTTP headers for both clients and servers. Headers give clients the opportunity to declare who they
are and what they want, and they give servers the chance to tell clients what to expect.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/
http://www.w3.org/

This is one of the longest chapters in this book, and no doubt you won't read it all in one sitting. Furthermore, if you use
LWP, then you can go pretty far without knowing more than a superficial amount of HTTP. But it's all information you
should know, so we recommend that you keep coming back to it. Although a few key phrases will help you get around
town, fluency becomes very useful when you find yourself lost in the outskirts of the city.

Structure of an HTTP Transaction

All HTTP transactions follow the same general format, as shown in Figure 3-1.

Figure 3-1.Structure of HTTP transactions

HTTP is a simple stateless protocol, in which the client makes a request, the server responds, and the transaction is then
finished. The client initiates the transaction as follows:

1. First, the client contacts the server at a designated port number (by default, 80). Then it sends a document
request by specifying an HTTP command (called a method), followed by a document address and an HTTP
version number. For example:

GET /index.html HTTP/1.0

Here we use the GET method to request the document /index.html using version 1.0 of HTTP. Although the
most common request method is the GET method, there is also a handful of other methods that are supported by
HTTP, and essentially define the scope and purpose of the transaction. In this chapter, we talk about each of the
commonly used client request methods, and show you examples of their use.

There are three versions of HTTP: 0.9, 1.0, and 1.1. At this writing, most clients and servers conform to HTTP
1.0. But HTTP 1.1 is on the horizon, and, for reasons of backward compatibility, HTTP 0.9 is still honored. We
will discuss each version of HTTP and the major differences between them.

2. Next, the client sends optional header information to inform the server of the client's configuration and
document preference. All header information is given line by line, each line with a header name and value. For
example, a client can send its name and version number, or specify document preferences:[1]

User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*

Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

To end the header section, the client sends a blank line.

There are many headers in HTTP. We will list all the valid headers in this chapter, but give special attention to
several groupings of headers that may come in especially handy. Appendix A contains a more complete listing
of HTTP headers.

3. When applicable, the client sends the data portion of the request. This data is often used by CGI programs via
the POST method, or used to supply document information using the PUT method. These methods are discussed
later in this chapter.

The server responds as follows:

1. The server replies with a status line with the following three fields: the HTTP version, a status code, and
description of the status. For example:

HTTP/1.0 200 OK

This indicates that the server uses version 1.0 of HTTP in its response, and a status code of 200 indicates that the
client's request was successful and the requested data will be supplied after the headers.

We will give a listing of each of the status codes supported by HTTP, along with a more detailed discussion of
the status codes you are most likely to encounter.

2. The server supplies header information to tell the client about itself and the requested document. For example:

Date: Saturday, 20-May-95 03:25:12 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 14-Mar-95 18:15:23 GMT
Content-length: 1029

The header is terminated with a blank line.

3. If the client's request is successful, the requested data is sent. This data may be a copy of a file, or the response
from a CGI program. If the client's request could not be fulfilled, the data may be a human-readable explanation
of why the server couldn't fulfill the request.

Given this structure, a few questions come to mind:

● What request methods can a client use?

● What versions of HTTP are available?

● What headers can a client supply?

● What sort of response codes can you expect from a server, and what do you do with them?

● What headers can you expect the server to return, and what do you do with them?

We'll try to answer each of these questions in the remainder of this chapter, in approximate order. The exception to this
order is client and server headers, which are discussed together, and discussed last. Many headers are shared by both
clients and servers, so it didn't make sense to cover them twice; and the use of headers for both requests and responses
is so closely intertwined in some cases that it seemed best to present it this way.

Client Request Methods

A client request method is a "command" or "request" that a web client issues to a server. You can think of the method
as the declaration of what the client's intentions are. There are exceptions, of course, but here are some generalizations:

● You can think of a GET request as meaning that you just want to retrieve a document.

● A HEAD request means that you just want some information about the document, but don't need the document
itself.

● A POST request says that you're providing some information of your own (generally used for fill-in forms).

● PUT is used to provide a new or replacement document to be stored on the server.

● DELETE is used to remove a document on the server.

● TRACE asks that proxies declare themselves in the headers, so the client can learn the path that the document
took (and thus determine where something might have been garbled or lost).

● OPTIONS is used when the client wants to know what other methods can be used for that document (or for the
server at large).

We'll show some examples of each of these seven methods. Other HTTP methods that you may see (LINK, UNLINK,
and PATCH) are less clearly defined, so we don't discuss them in this chapter. See the HTTP specification for more
information on those methods.

GET: Retrieve a Document

The GET method requests a document from a specific location on the server. This is the main method used for
document retrieval. The response to a GET request can be generated by the server in many ways. For example, the
response could come from:

● A file accessible by the web server

● The output of a CGI script or server language like NSAPI or ISAPI

● The result of a server computation, like real-time decompression of online files

● Information obtained from a hardware device, such as a video camera

In this book, we are more concerned about the data returned by a request than with the way the server generated the
data. From a client's point of view, the server is a black box that takes in a method, URL, headers, and entity-body as
input and generates output that clients process.

After the client uses the GET method in its request, the server responds with a status line, headers, and data requested
by the client. If the server cannot process the request, due to an error or lack of authorization, the server usually sends
an explanation in the entity-body of the response.

Figure 3-2 shows an example of a successful request. The client sends:

GET /index.html HTTP/1.0
User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

The server responds with:

HTTP/1.0 200 OK
Date: Sat, 20-May-95 03:25:12 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wed, 14-Mar-95 18:15:23 GMT
Content-length: 1029

(body of document here)

Figure 3-2.GET transaction

HEAD: Retrieve Header Information

The HEAD method is functionally like GET, except that the server will reply with a response line and headers, but no
entity-body. The headers returned by the server with the HEAD method should be exactly the same as the headers
returned with a GET request. This method is often used by web clients to verify the document's existence or properties
(like Content-length or Content-type), but the client has no intention of retrieving the document in the
transaction. Many applications exist for the HEAD method, which make it possible to retrieve:

● Modification time of a document for caching purposes

● Size of the document, to do page layout, to estimate arrival time, or to skip the document and retrieve a smaller
version of the document

● Type of the document, to allow the client to examine only documents of a certain type

● Type of server, to allow customized server queries

It is important to note that most of the header information provided by a server is optional, and may not be given by all
servers. A good design in web clients is to allow flexibility in the server response and to take default actions when
desired header information is not given by the server.

Figure 3-3 shows an example HTTP transaction using the HEAD method. The client sends:

HEAD /sample.html HTTP/1.0
User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

The server responds with:

HTTP/1.0 200 OK
Date: Sat, 20-May-95 03:25:12 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wed, 14-Mar-95 18:15:23 GMT
Content-length: 1029

(Note that the server does not return any data after the headers.)

Figure 3-3.HEAD transaction

POST: Send Data to the Server

The POST method allows the client to specify data to be sent to some data-handling program that the server can access.
It can be used for many applications. For example, POST could be used to provide input for:

● CGI programs

● Gateways to network services, like an NNTP server

● Command-line interface programs

● Annotation of documents on the server

● Database operations

In practice, POST is used with CGI programs that happen to interface with other resources like network services and
command line programs. In the future, POST may be directly interfaced with a wider variety of server resources.

In a POST request, the data sent to the server is in the entity-body of the client's request. After the server processes the
POST request and headers, it may pass the entity-body to another program (specified by the URL) for processing. In
some cases, a server's custom Application Programming Interface (API) may handle the data, instead of a program
external to the server.

POST requests should be accompanied by a Content-type header, describing the format of the client's entity-body.
The most commonly used format with POST is the URL-encoding scheme used for CGI applications. It allows form
data to be translated into a list of variables and values. Browsers that support forms send the data in URL-encoded
format. For example, given the HTML form of:

<title>Create New Account</title>
<center><hr><h1>Account Creation Form</h2><hr></center>

<form method="post" action="/cgi-bin/create.pl">
<pre>

Enter user name: <INPUT NAME="user" MAXLENGTH="20" SIZE="20">
Password: <INPUT NAME="pass1" TYPE="password"
 MAXLENGTH="20" SIZE="20">
(Type it again to verify) <INPUT NAME="pass2" TYPE="password"
 MAXLENGTH="20" SIZE="20">

</pre>
<INPUT TYPE="submit" VALUE="Create account">
<input type="reset" value="Start over">
</form>

the browser view looks like that in Figure 3-4.

Figure 3-4.A sample form

Let's insert some values and submit the form. As the username, "util-tester" was entered. For the password, "1234" was
entered (twice). Upon submission, the client sends:

POST /cgi-bin/create.pl HTTP/1.0
Referer: file:/tmp/create.html
User-Agent: Mozilla/1.1N (X11; I; SunOS 5.3 sun4m)

Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg
Content-type: application/x-www-form-urlencoded
Content-length: 38

user=util-tester&pass1=1234&pass2=1234

Note that the variables defined in the form have been associated with the values entered by the user. This information is
passed to the server in URL-encoded format, described below.

The server determines that the client used a POST method, processes the URL, executes the program associated with
the URL, and pipes the client's entity-body to a program specified at the address of /cgi-bin/create.pl. The server maps
this "web address" to the location of a program, usually in a designated CGI directory (in this case, /cgi-bin). The CGI
program then interprets the input as CGI data, decodes the entity body, processes it, and returns a response entity-body
to the client:

HTTP/1.0 200 OK
Date: Sat, 20-May-95 03:25:12 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wed, 14-Mar-95 18:15:23 GMT
Content-length: 95

<title>User Created</title>
<h1>The util-tester account has been created</h2>

URL-encoded format

Using the POST method is not the only way that forms send information. Forms can also use the GET method, and
append the URL-encoded data to the URL, following a question mark. If the <FORM> tag had contained the line
method="get" instead of method="post", the request would have looked like this:

GET /cgi-bin/create.pl?user=util-tester&pass1=1234&pass2=1234 HTTP/1.0
Referer: file:/tmp/create.html
User-Agent: Mozilla/1.1N (X11; I; SunOS 5.3 sun4m)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

This is one reason that the data sent by a CGI program is in a special format: since it can be appended to the URL itself,
it cannot contain special characters such as spaces, newlines, etc. For that reason, it is called URL-encoded.

The URL-encoded format, identified with a Content-type of application/x-www-form-urlencoded format by
clients, is composed of a single line with variable names and values concatenated together. The variable and value are
separated by an equal sign (=), and each variable/value pair is separated by an ampersand symbol (&). In the example
given above, there are three variables: user, pass1, and pass2. The values (respectively) are: util-tester, 1234, and 1234.
The encoding looks like this:

user=util-tester&pass1=1234&pass2=1234

When the client wants to send characters that normally have special meanings, like the ampersand and equal sign, the
client replaces the characters with a percent sign (%) followed by an ASCII value in hexadecimal (base 16). This
removes ambiguity when a special character is used. The only exception, however, is the space character (ASCII 32),
which can be encoded as a plus sign (+) as well as %20. Appendix B, Reference Tables, contains a listing of all the
ASCII characters and their CGI representations.

When the server retrieves information from a form, the server passes it to a CGI program, which then decodes it from
URL-encoded format to retrieve the values entered by the user.

File uploads with POST

POST isn't limited to the application/x-www-form-urlencoded content type. For example, consider the following
HTML:

<form method="post" action="post.pl" enctype="multipart/form-data">
Enter a file to upload:

<input name="thefile" type="file">

<input name="done" type="submit">
</form>

This form allows the user to select a file and upload it to the server. Notice that the <form> tag contains an enctype
attribute, specifying an encoding type of multipart/form-data instead of the default, application/x-www-form-
urlencoded. This encoding type will be used by the browser as the content type when the form is submitted. As an
example, suppose I create a file called hi.txt with the contents of "hi there" and put it in c:/temp/. I use the HTML form
to include the file and then hit the submit button. My browser sends this:

POST /cgi-bin/post.pl HTTP/1.0
Referer: http://hypothetical.ora.com/clinton/upload.html
Connection: Keep-Alive
User-Agent: Mozilla/3.01Gold (WinNT; U)
Host: hypothetical.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-type: multipart/form-data; boundary=---------------------------11512135131576
Content-Length: 313

-----------------------------11512135131576
Content-Disposition: form-data; name="done"

Submit Query
-----------------------------11512135131576
Content-Disposition: form-data; name="thefile"; filename="c:\temp\hi.txt"
Content-Type: text/plain

hi there

-----------------------------11512135131576--

The entity-body of the request is a multipart Multipurpose Internet Mail Extensions (MIME) message. See RFC 1867
for more details.

PUT: Store the Entity-Body at the URL

When a client uses the PUT method, it requests that the included entity-body should be stored on the server at the
requested URL. With HTML editors, it is possible to publish documents onto the server with a PUT method. Revisiting
the PUT example in Chapter 2, we see an HTML editor with some sample HTML in the editor (see Figure 3-5).

Figure 3-5.HTML editor

The user saves the document in C:/temp/example.html and publishes it to http://publish.ora.com/ (see Figure 3-6).

Figure 3-6.Publishing the document

When the user presses the OK button, the client contacts publish.ora.com at port 80 and then sends:

PUT /example.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0Gold (WinNT; I)
Pragma: no-cache
Host: publish.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 307

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
 <TITLE></TITLE>
 <META NAME="Author" CONTENT="">
 <META NAME="GENERATOR" CONTENT="Mozilla/3.0Gold (WinNT; I) [Netscape]">
</HEAD>
<BODY>

<H2>This is a header</H2>

<P>This is a simple html document.</P>

</BODY>
</HTML>

The server stores the client's entity-body at /example.html and then responds with:

HTTP/1.0 201 Created
Date: Fri, 04 Oct 1996 14:31:51 GMT
Server: HypotheticalPublish/1.0
Content-type: text/html
Content-length: 30

<h1>The file was created.</h2>

You might have noticed that there isn't a Content-type header sent with the browser's request in this example. It's
bad style to omit the Content-type header. The originator of the information should describe what content type the
information is. Other applications, like AOLpress for example, include a Content-type header when publishing
data with PUT.

In practice, a web server may request authorization from the client. Most webmasters won't allow any arbitrary client to
publish documents on the server. When prompted with an "authorization denied" response code, the browser will
typically ask the user to enter relevant authorization information. After receiving the information from the user, the
browser retransmits the request with additional headers that describe the authorization information.

DELETE: Remove URL

Since PUT creates new URLs on the server, it seems appropriate to have a mechanism to delete URLs as well. The
DELETE method works as you would think it would.

A client request might read:

DELETE /images/logo22.gif HTTP/1.1

The server responds with a success code upon success:

HTTP/1.0 200 OK
Date: Fri, 04 Oct 1996 14:31:51 GMT
Server: HypotheticalPublish/1.0
Content-type: text/html
Content-length: 21

<h1>URL deleted.</h2>

Needless to say, any server that supports the DELETE method is likely to request authorization before carrying through
with the request.

TRACE: View the Client's Message Through the Request Chain

The TRACE method allows a programmer to see how the client's message is modified as it passes through a series of
proxy servers. The recipient of a TRACE method echoes the HTTP request headers back to the client. When the
TRACE method is used with the Max-Forwards and Via headers, a client can determine the chain of intermediate
proxy servers between the original client and web server. The Max-Forwards request header specifies the number of
intermediate proxy servers allowed to pass the request. Each proxy server decrements the Max-Forwards value and
appends its HTTP version number and hostname to the Via header. A proxy server that receives a Max-Forwards
value of 0 returns the client's HTTP headers as an entity-body with the Content-type of message/http. This feature
resembles traceroute, a UNIX program used to identify routers between two machines in an IP-based network. HTTP

clients do not send an entity-body when issuing a TRACE request.

Figure 3-7 shows the progress of a TRACE request. After the client makes the request, the first proxy server receives
the request, decrements the Max-Forwards value by one, adds itself to a Via header, and forwards it to the second
proxy server. The second proxy server receives the request, adds itself to the Via header, and sends the request back,
since Max-Forwards is now 0 (zero).

OPTIONS: Request Other Options Available for the URL

Figure 3-7.A TRACE request

When a client request contains the OPTIONS method, it requests a list of options for a particular resource on the server.
The client can specify a URL for the OPTIONS method, or an asterisk (*) to refer to the entire server. The server then
responds with a list of request methods or other options that are valid for the requested resource, using the Allow
header for an individual resource, or the Public header for the entire server. Figure 3-8 shows an example of the
OPTIONS method in action.

Figure 3-8.An OPTIONS request

Versions of HTTP

On the same line where the client declares its method, it also declares the URL and the version of HTTP that it
conforms to. We've already discussed the available request methods, and we assume that you're already familiar with
the URL. But what about the HTTP version number? For example:

GET /products/toothpaste/index.html HTTP/1.0

In this example, the client uses HTTP version 1.0.

In the server's response, the server also declares the HTTP version:

HTTP/1.0 200 OK

By specifying the version number in both the client request and server response, the client and server can communicate
on a common denominator, or in the worst case scenario, recognize that the transaction is not possible due to version
conflicts. (For example, an HTTP/1.0 client might have a problem communicating with an HTTP/0.9 server.) If a server
is capable of understanding a version of HTTP higher than 1.0, it should still be able to reply with a format that
HTTP/1.0 clients can understand. Likewise, clients that understand a superset of a server's HTTP should send requests
compliant with the server's version of HTTP.

While there are similarities among the different versions of HTTP, there are many differences, both subtle and glaring.
Much of this discussion may not make sense to you if you aren't already familiar with HTTP headers (which are
discussed at the end of this chapter). Still, let's go over some of the highlights.

HTTP 0.9

Version 0.9 is the simplest instance of the HTTP protocol. Under HTTP 0.9, there's only one way a client can request
something, and only one way a server responds. The web client connects to a server at port 80 and specifies a method
and document path, as follows:

GET /hello.html

The server then returns the entity-body for /hello.html and closes the TCP connection. If the document doesn't exist, the
server just sends nothing, and the web browser will just display . . . nothing. There is no way for the server to indicate
whether the document is empty or whether it doesn't exist at all. HTTP 0.9 includes no headers, version numbers, nor
any opportunity for the server to include any information other than the requested entity-body itself. You can't get much
simpler than this.

Since there are no headers, HTTP 0.9 doesn't have any notion of media types, so there's no need for the client or server
to communicate document preferences or properties. Due to the lack of media types, the HTTP 0.9 world was

completely text-based. HTTP 1.0 addressed this limitation with the addition of media types.

In practice, there is no longer any HTTP 0.9 software currently in use. For compatibility reasons, however, web servers
using newer versions of HTTP need to honor requests from HTTP 0.9 clients.

HTTP 1.0

As an upgrade to HTTP 0.9, HTTP 1.0 introduced media types, additional methods, caching mechanisms,
authentication, and persistent connections.

By introducing headers, HTTP 1.0 made it possible for clients and servers to exchange "metainformation" about the
document or about the software itself. For example, a client could now specify what media it could handle with the
Accept header and a server could now declare its entity-body's media type with the Content-type header. This
allowed the client to know what kind of data it was receiving and deal with it accordingly. With the introduction of
media types, graphics could be embedded into text documents.

HTTP 1.0 also introduced simple mechanisms to allow caching of server documents. With the Last-modified and
If-Modified-Since headers, a client could avoid the retransmission of cached documents that didn't change on
the server. This also allowed proxy servers to cache documents, further relieving servers from the burden of
transmitting data when the data is cached.

With the Authorization and WWW-Authenticate headers, server documents could be selectively denied to the
general public and accessed only by those who knew the correct username and password.

Proxies

Instead of sending a request directly to a server, it is often necessary for a client to send everything
through a proxy. Caching proxies are used to keep local copies of documents that would normally be
very expensive to retrieve from distant or overloaded web servers. Proxies are often used with firewalls,
to allow clients inside a firewall to communicate beyond it. In this case, a proxy program runs on a
machine that can be accessed by computers on both the inside and outside of the firewall. Computers on
the inside of a firewall initiate requests with the proxy, and the proxy then communicates to the outside
world and returns the results back to the original computer. This type of proxy is used because there is
no direct path from the original client computer to the server computer, due to imposed restrictions in
the intermediate network between the two systems.

There is little structural difference between the request that a proxy receives and the request that the
proxy server passes on to the target server. Perhaps the only important difference is that in the client's
request, a full URL must be specified, instead of a relative URL. Here is a typical client request that a
client would send to a proxy:

GET http://www.ora.com/index.html HTTP/1.0
User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

The proxy then examines the URL, contacts www.ora.com, forwards the client's request, and then
returns the response from the server to the original client. When forwarding the request to the web
server, the proxy would convert http://www.ora.com/index.html to /index.html.

HTTP 1.1

HTTP 1.1's highlights include a better implementation of persistent connections, multihoming, entity tags, byte ranges,
and digest authentication.

"Multihoming" means that a server responds to multiple hostnames, and serves from different document roots,
depending on which hostname was used. To assist in server multihoming, HTTP 1.1 requires that the client include a
Host header in all transactions.

Entity tags simplify the caching process by representing each server entity with a unique identifier called an entity tag.
The If-match and If-none-match headers are used to compare two entities for equality or inequality. In HTTP
1.0, caching is based on an entity's document path and modification time. Managing the cache becomes difficult when
the same document exists in multiple locations on the server. In HTTP 1.1, the document would have the same entity
tag at each location. When the document changes, its entity tag also changes. In addition to entity tags, HTTP 1.1
includes the Cache-control header for clients and servers to specify caching behavior.

Byte ranges make it possible for HTTP 1.1 clients to retrieve only part of an entity from a server using the Range
header. This is particularly useful when the client already has part of the entity and wishes to retrieve the remaining
portion of the entity. So when a user interrupts a browser and the transfer of an embedded image is interrupted, a
subsequent retrieval of the image starts where the previous transfer left off. Byte ranges also allow the client to
selectively read an index of a document and jump to portions of the document without retrieving the entire document.
In addition to these features, byte ranges also make it possible to have streaming multimedia, which are video or audio
clips that the client reads selectively, in small increments.

In addition to HTTP 1.0's authentication mechanism, HTTP 1.1 includes digest authentication. Instead of sending the
username and password in the clear, the client computes a checksum of the username, password, document location,
and a unique number given by the server. If a checksum is sent, the username and password are not communicated
between the client and server. Since each transaction is given a unique number, the checksum varies from transaction to
transaction, and is less likely to be compromised by "playing back" authorization information captured from a previous
transaction.

Persistent connections

One of the most significant differences between HTTP 1.1 and previous versions of HTTP is that persistent connections
have become the default behavior in HTTP 1.1. In versions previous to HTTP 1.1, the default behavior for HTTP
transactions is for a client to contact a server, send a request, and receive a response, and then both the client and server
disconnect the TCP connection. If the client needs another resource on the server, it has to reestablish another TCP
connection, request the resource, and disconnect.

In practice, a client may need many resources on the same server, especially when many images are embedded within
the same HTML page. By connecting and disconnecting many times, the client wastes time in network overhead. To
remedy this, some HTTP 1.0 clients started to use a Connection header, although this header never appeared in the
official HTTP 1.0 specification. This header, when used with a keep-alive value, specifies that the network
connection should remain after the initial transaction, provided that both the client and server use the Connection
header with the value of keep-alive.

These "keep-alive" connections, or persistent connections, became the default behavior under HTTP 1.1. After a
transaction completes, the network connection remains open for another transaction. When either the client or server
wishes to end the connection, the last transaction includes a Connection header with a close parameter.

Heed the Specifications

While this book gives you a good start on learning how HTTP works, it doesn't have all the details of the full HTTP
specifications. Describing all the caveats and details of HTTP 1.0 and 1.1 is, in itself, the topic of a separate book. With
that in mind, if there are any questions still lingering in your mind after reading this chapter and Appendix A, HTTP
Headers, I strongly recommend that you look at the formal protocol specifications at http://www.w3.org/. The formal
specifications are, well, formal. But after reading this chapter, reading the protocol specs won't be that hard, since you
already have many of the concepts that are talked about in the specs.

Server Response Codes

Now that we've discussed the client's method and version numbers, let's move on to the server's responses. (We'll save
discussion of client headers for last, so we can talk about them in conjunction with the related response headers.)

http://www.w3.org/

The initial line of the server's response indicates the HTTP version, a three-digit status code, and a human-readable
description of the result. Status codes are grouped as follows:

Code Range Response Meaning

100-199 Informational

200-299 Client request successful

300-399 Client request redirected, further action necessary

400-499 Client request incomplete

500-599 Server errors

HTTP defines only a few specific codes in each range, although these ranges will become more populated as HTTP
evolves.

If a client receives a response code that it does not recognize, it should understand its basic meaning from its numerical
range. While most web browsers handle codes in the 100, 200, and 300 ranges silently, some error codes in the 400 and
500 ranges are commonly reported back to the user (e.g., "404 Not Found").

Informational (100 Range)

Previous to HTTP 1.1, the 100 range of status codes was left undefined. In HTTP 1.1, the 100 range was defined for the
server to declare that it is ready for the client to continue with a request, or to declare that it will be switching to another
protocol.

Since HTTP 1.1 is still relatively new, few servers are implementing the 100-level status codes at this writing. The
status codes currently defined are:

Code Meaning

100 Continue:
The initial part of the request has been received, and the client may continue with its
request.

101 Switching Protocols:
The server is complying with a client request to switch protocols to the one specified in the
Upgrade header field.

Client Request Successful (200 Range)

The most common response for a successful HTTP transaction is 200 (OK), indicating that the client's request was
successful, and the server's response contains the request data. If the request was a GET method, the requested
information is returned in the response data section. The HEAD method is honored by returning header information
about the URL. The POST method is honored by executing the POST data handler and returning a resulting entity-
body.

The following is a complete list of successful response codes:

Code Meaning

200 OK
The client's request was successful, and the server's response contains the
requested data.

201 Created
This status code is used whenever a new URL is created. With this result code,
the Location header (described in Appendix A) is given by the server to
specify where the new data was placed.

202 Accepted

The request was accepted but not immediately acted upon. More information
about the transaction may be given in the entity-body of the server's response.
There is no guarantee that the server will actually honor the request, even though
it may seem like a legitimate request at the time of acceptance.

203 Non-Authoritative Information
The information in the entity header is from a local or third-party copy, not from
the original server.

204 No Content

A status code and header are given in the response, but there is no entity-body in
the reply. Browsers should not update their document view upon receiving this
response. This is a useful code for CGI programs to use when they accept data
from a form but want the browser view to stay at the form.

205 Reset Content
The browser should clear the form used for this transaction for additional input.
Appropriate for data-entry CGI applications.

206 Partial Content
The server is returning partial data of the size requested. Used in response to a
request specifying a Range header. The server must specify the range included
in the response with the Content-Range header.

Redirection (300 Range)

When a document has moved, the server might be configured to tell clients where it has been moved to. Clients can
then retrieve the new URL silently, without the user knowing. Presumably the client may want to know whether the
move is a permanent one or not, so there are two common response codes for moved documents: 301 (Moved
Permanently) and 302 (Moved Temporarily).

Ideally, a 301 code would indicate to the client that, from now on, requests for this URL should be sent directly to the
new one, thus avoiding unnecessary transactions in the future. Think of it like a change of address card from a friend;
the post office is nice enough to forward your mail to your friend's new address for the next year, but it's better to get
used to the new address so your mail will get to her faster, and won't start getting returned someday.

A 302 code, on the other hand, just says that the document has moved but will return. If a 301 is a change of address
card, a 302 is a note on your friend's door saying she's gone to the movies. Either way, the client should just silently
make a new request for the new URL specified by the server in the Location header.

The following is a complete list of redirection status codes:

Code Meaning

300 Multiple Choices

The requested URL refers to more than one resource. For example, the URL could refer to a
document that has been translated into many languages. The entity-body returned by the
server could have a list of more specific data about how to choose the correct resource. The
client should allow the user to select from the list of URLs returned by the server, where
appropriate.

301 Moved Permanently
The requested URL is no longer used by the server, and the operation specified in the
request was not performed. The new location for the requested document is specified in the
Location header. All future requests for the document should use the new URL.

302 Moved Temporarily
The requested URL has moved, but only temporarily. The Location header points to the
new location. Immediately after receiving this status code, the client should use the new
URL to resolve the request, but the old URL should be used for all future requests.

303 See Other
The requested URL can be found at a different URL (specified in the Location header)
and should be retrieved by a GET on that resource.

304 Not Modified
This is the response code to an If-Modified-Since header, where the URL has not
been modified since the specified date. The entity-body is not sent, and the client should use
its own local copy.

305 Use Proxy The requested URL must be accessed through the proxy in the Location header.

Client Request Incomplete (400 Range)

Sometimes the server just can't process the request. Either something was wrong with the document, or something was
wrong with the request itself. By far, the server status code that web users are most familiar with is 404 (Not Found),
the code returned when the requested document does not exist. This isn't because it's the most common code that
servers return, but because it's one of the few codes that the client passes to the user rather than intercepting and
handling it in its own way.

For example, when the server sends a 401 (Unauthorized) code, the client does not pass the code directly to the user.
Instead, it triggers the client to prompt the user for a username and password, and then resend the request with that
information supplied. With the 401 status code, the server supplies the WWW-Authenticate header to specify the
authentication scheme and realm it needs authorization for, and the client returns the username and password for that
scheme and realm in the Authorization header.

When testing clients you have written yourself, watch out for code 400 (Bad Request), indicating a syntax error in your
client's request, and code 405 (Method Not Allowed), which declares that the method the client used for the document
is not valid. (Along with the 405 code, the server sends an Allow header, listing the accepted methods for the
document.)

The 408 (Request Time-out) code means that the client's request wasn't completed, and the server gave up waiting for
the client to finish. A client might receive this code if it did not supply the entity-body properly, or (under HTTP 1.1) if
it neglected to supply a Connection: Close header.

The following is a complete listing of status codes implying that the client's request was faulty:

Code Meaning

400 Bad Request
This response code indicates that the server detected a syntax error in the client's
request.

401 Unauthorized

The result code is given along with the WWW-Authenticate header to indicate
that the request lacked proper authorization, and the client should supply proper
authorization when requesting this URL again. See the description of the
Authorization header in this chapter for more information on how
authorization works in HTTP.

402 Payment Required This code is not yet implemented in HTTP.

403 Forbidden
The request was denied for a reason the server does not want to (or has no means
to) indicate to the client.

404 Not Found The document at the specified URL does not exist.

405 Method Not Allowed
This code is given with the Allow header and indicates that the method used by
the client is not supported for this URL.

406 Not Acceptable
The URL specified by the client exists, but not in a format preferred by the client.
Along with this code, the server provides the Content-Language, Content-
Encoding, and Content-type headers.

407 Proxy Authentication Required
The proxy server needs to authorize the request before forwarding it. Used with
the Proxy-Authenticate header.

408 Request Time-out
This response code means the client did not produce a full request within some
predetermined time (usually specified in the server's configuration), and the
server is disconnecting the network connection.

409 Conflict

This code indicates that the request conflicts with another request or with the
server's configuration. Information about the conflict should be returned in the
data portion of the reply. For example, this response code could be given when a
client's request would cause integrity problems in a database.

410 Gone
This code indicates that the requested URL no longer exists and has been
permanently removed from the server.

411 Length Required
The server will not accept the request without a Content-Length header
supplied in the request.

412 Precondition Failed
The condition specified by one or more If... headers in the request evaluated
to false.

413 Request Entity Too Large The server will not process the request because its entity-body is too large.

414 Request Too Long The server will not process the request because its request URL is too large.

415 Unsupported Media Type
The server will not process the request because its entity-body is in an
unsupported format.

Server Error (500 Range)

Occasionally, the error might be with the server itself--or, more commonly, with the CGI portion of the server. CGI
programmers are painfully familiar with the 500 (Internal Server Error) code, which frequently means that their
program crashed. One error that client programmers should pay attention to is 503 (Service Unavailable), which means
that their request cannot be performed right now, but the Retry-After header (if supplied) indicates when the client
might try again.

The following is a complete listing of response codes implying a server error:

Code Meaning

500 Internal Server Error
This code indicates that a part of the server (for example, a CGI program) has
crashed or encountered a configuration error.

501 Not Implemented
This code indicates that the client requested an action that cannot be performed by
the server.

502 Bad Gateway
This code indicates that the server (or proxy) encountered invalid responses from
another server (or proxy).

503 Service Unavailable
This code means that the service is temporarily unavailable, but should be restored
in the future. If the server knows when it will be available again, a Retry-
After header may also be supplied.

504 Gateway Time-out
This response is like 408 (Request Time-out) except that a gateway or proxy has
timed out.

505 HTTP Version Not Supported The server will not support the HTTP protocol version used in the request.

HTTP Headers

Now we're ready for the meat of HTTP: the headers that clients and servers can use to exchange information about the
data, or about the software itself.

If the Web were just a matter of retrieving documents blindly, then HTTP 0.9 would have been sufficient for all our
needs. But as it turns out, there's a whole set of information we'd like to exchange in addition to the documents
themselves. A client might ask the server, "What kind of document are you sending?" Or, "I already have an older copy
of this document--do I need to bother you for a new one?"

A server may want to know, "Who are you?" Or, "Who sent you here?" Or, "How am I supposed to know you're
allowed to be here?"

All this extra ("meta-") information is passed between the client and server using HTTP headers. The headers are
specified immediately after the initial line of the transaction (which is used for the client request or server response
line). Any number of headers can be specified, followed by a blank line and then the entity-body itself (if any).

HTTP makes a distinction between four different types of headers:

● General headers indicate general information such as the date, or whether the connection should be maintained.
They are used by both clients and servers.

● Request headers are used only for client requests. They convey the client's configuration and desired document
format to the server.

● Response headers are used only in server responses. They describe the server's configuration and special
information about the requested URL.

● Entity headers describe the document format of the data being sent between client and server. Although Entity
headers are most commonly used by the server when returning a requested document, they are also used by
clients when using the POST or PUT methods.

Headers from all three categories may be specified in any order. Header names are case-insensitive, so the Content-
Type header is also frequently written as Content-type.

In the remainder of this chapter, we'll list all the headers, and then discuss the ones that are most interesting, in context.
Appendix A contains a full listing of headers, with examples for each and additional information on its syntax and
purpose when applicable.

General Headers

Cache-Control Specifies behavior for caching

Connection Indicates whether network connection should close after this connection

Date Specifies the current date

MIME-Version Specifies the version of MIME used in the HTTP transaction

Pragma Specifies directives to a proxy system

Transfer-Encoding
Indicates what type of transformation has been applied to the message body for safe
transfer

Upgrade Specifies the preferred communication protocols

Via
Used by gateways and proxies to indicate the protocols and hosts that processed the
transaction between client and server

Request Headers

Accept Specifies media formats that the client can accept

Accept-Charset Tells the server the types of character sets that the client can handle

Accept-Encoding Specifies the encoding schemes that the client can accept, such as compress or gzip

Accept-Language Specifies the language in which the client prefers the data

Authorization Used to request restricted documents

Cookie Used to convey name=value pairs stored for the server

From Indicates the email address of the user executing the client

Host
Specifies the host and port number that the client connected to. This header is required
for all clients in HTTP 1.1.

If-Modified-Since Requests the document only if newer than the specified date

If-Match Requests the document only if it matches the given entity tags

If-None-Match Requests the document only if it does not match the given entity tags

If-Range Requests only the portion of the document that is missing, if it has not been changed

If-Unmodified-Since Requests the document only if it has not been changed since the given date

Max-Forwards Limits the number of proxies or gateways that can forward the request

Proxy-Authorization Used to identify client to a proxy requiring authorization

Range Specifies only the specified partial portion of the document

Referer
Specifies the URL of the document that contained the link to this one (i.e., the previous
document)

User-Agent Identifies the client program

Response Headers

Accept-Ranges Declares whether or not the server accepts range requests, and if so, what units

Age Indicates the age of the document in seconds

Proxy-Authenticate Declares the authentication scheme and realm for the proxy

Public
Contains a comma-separated list of supported methods other than those specified in
HTTP/1.0

Retry-After
Specifies either the number of seconds or a date after which the server becomes available
again

Server Specifies the name and version number of the server

Set-Cookie Defines a name=value pair to be associated with this URL

Vary Specifies that the document may vary according to the value of the specified headers

Warning Gives additional information about the response, for use by caching proxies

WWW-Authenticate Specifies the authorization type and the realm of the authorization

Entity Headers

Allow Lists valid methods that can be used with a URL

Content-Base Specifies the base URL for resolving relative URLs

Content-Encoding Specifies the encoding scheme used for the entity

Content-Language Specifies the language used in the document being returned

Content-Length Specifies the length of the entity

Content-Location Contains the URL for the entity, when a document might have several different locations

Content-MD5 Contains a MD5 digest of the data

Content-Range
When a partial document is being sent in response to a Range header, specifies where
the data should be inserted

Content-Transfer-Encoding Identifies the transfer encoding used in the document

Content-Type Specifies the media type of the entity

Etag Gives an entity tag for the document

Expires Gives a date and time that the contents may change

Last-Modified Gives the date and time that the entity last changed

Location Specifies the location of a created or moved document

URI A more generalized version of the Location header

So what do you do with all this? The remainder of the chapter discusses many of the larger topics that are managed by
HTTP headers.

Persistent Connections

As we touched on earlier, one of the big changes in HTTP 1.1 is that persistent connections became the default.
Persistent connections mean that the network connection remains open during multiple transactions between client and
server. Under both HTTP 1.0 and 1.1, the Connection header controls whether or not the network stays open;
however, its use varies according to the version of HTTP.

The Connection header indicates whether the network connection will be maintained after the current transaction
finishes. The close parameter signifies that either the client or server wishes to end the connection (i.e., this is the last
transaction). The keep-alive parameter signifies that the client wishes to keep the connection open. Under HTTP 1.0,
the default is to close connections after each transaction, so the client must use the following header in order to maintain
the connection for an additional request:

Connection: Keep-Alive

Under HTTP 1.1, the default is to keep connections open until they are explicitly closed. The Keep-Alive option is
therefore unnecessary under HTTP 1.1; however, clients must be sure to include the following header in their last
transaction:

Connection: Close

or the connection will remain open until the server times out. How long it takes the server to time out depends on the
server's configuration ... but needless to say, it's more considerate to close the connection explicitly.

Media Types

One of the most important functions of headers is to make it possible for the client to know what kind of data is being

served, and thus be able to process it appropriately. If the client didn't know that the data being sent is a GIF, it wouldn't
know how to render it on the screen. If it didn't know that some other data was an audio snippet, it wouldn't know to
call up an external helper application. For negotiating different data types, HTTP incorporated Internet Media Types,
which look a lot like MIME types but are not exactly MIME types. Appendix B gives a listing of media types used on
the Web.

The way media types work is that the client tells the server which types it can handle, using the Accept header. The
server tries to return information in a preferred media type, and declares the type of the data using the Content-Type
header.

The Accept header is used to specify the client's preference for media formats, or to tell the server that it can accept
unusual document types. If this header is omitted, the server assumes that the client can accept any media type. The
Accept header can have three general forms:

Accept: */*
Accept: type/*
Accept: type/subtype

Using the first form, */*, indicates that the client can accept an entity-body of any media type. The second form,
type/*, communicates that an entity-body of a certain general class is acceptable. For example, a client may issue an
Accept: image/* to accept images, where the type of image (GIF, JPEG, or whatever) is not important. The third
form indicates that an entity-body from a certain type and subtype is acceptable. For example, a browser that can only
accept GIF files may use Accept: image/gif.

The client specifies multiple document types that it can accept by separating the values with commas:

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Some older browsers send the same line as:

Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg
Accept: image/pjpeg
Accept: */*

When developing a new application, it is recommended that it conform to the newer practice of separating multiple
document preferences by commas, with a single Accept header.

In the server's response, the Content-type header describes the type and subtype of the media. If the client specified
an Accept header, the media type should conform to the values used in the Accept header. Clients use this information
to correctly handle the media type and format of the entity-body.

A client might also use a Content-type header with the POST or PUT method. Most commonly, with many CGI
applications, clients use a POST or PUT request with information in the entity-body, and supply a Content-type
header to describe what data can be expected in the entity-body.

Client Caching

If we each went to a single document once in a lifetime, or even once a day, life could be much simpler for web
programmers. But in reality, we tend to return to the same documents over and over again. Simple clients can just keep
retrieving data over and over again, but robust clients will prefer to store local copies of documents to improve
efficiency. This is called caching.

On sites with proxy servers, the proxies can also work as caches. So several users on that site might all share the same
copy of the document, which the proxy stores locally. If you call up a URL that someone else requested earlier this
morning, the proxy can simply give you that copy, meaning that you retrieve the data much faster, help to reduce
network traffic, and prevent overburdening the server containing the document's source. It's sort of like carpooling at
rush hour: caches do their part to make the web a better place for all of us.[2]

A complication with caching, however, is that the client or proxy needs to know when the document has changed on the
server. So for cache management, HTTP provides a whole set of headers. There are two general systems: one based on
the age of the document, and a much newer one based on unique identifiers for each document.

Also, when caching, you should pay attention to the Cache-Control and Pragma headers. Some documents aren't
appropriate for caching, either for security reasons or because they are dynamic documents (e.g., created on the fly by a
CGI script). Under HTTP 1.0, the Pragma header was used with the value no-cache to tell caching proxies and
clients not to cache the document. Under HTTP 1.1, the Cache-Control header supplants Pragma, with several
caching directives in addition to no-cache. See Appendix A for more information.

If-Modified-Since, et al.

To accommodate client-side caching of documents, the client can use the If-Modified-Since header with the GET
method. When using this option, the client requests the server to send the requested information associated with the
URL only if it has been modified since a client-specified time.

If the document was modified, the server will give a status code of 200 and will send the document in the entity-body of
its reply. If the document was not modified, the server will give a response code of 304 (Not Modified).

An example If-Modified-Since header might read:

If-Modified-Since: Fri, 02-Jun-95 02:42:43 GMT

The same formats accepted for the Date header (listed in Appendix A) are used for the If-Modified-Since
header.

If the server returns a code of 304, the document has not been modified since the specified time. The client can use the
cached version of the document. If the document is newer, the server will send it along with a 200 (OK) code. Servers
may also include a Last-Modified header with the document, to let the user know when the last change was made
to the document.[3]

Another related client header is If-Unmodified-Since, which says to only send the document if it hasn't been
changed since the specified date. This is useful for ensuring that the data is exactly the way you wanted it to be. For
example, if you GET a document from a server, make changes in a publishing tool, and PUT it back to the server, you
can use the If-Unmodified-Since header to verify that the changes you made are accepted by the server only if
the previous one you were looking at is still there.

If the server contains an Expires header, the client can take it as an indication that the document will not change
before the specified time. Although there are no guarantees, it means that the client does not have to ask the server
about the last modified date of the document again until after the expiration date.

Entity tags

In HTTP 1.1, a new method of cache management is introduced with entity tags. The problem solved by entity tags is
that there may be several copies of the identical document on the server. The client has no way to know that it's the
same document--so even if it already has an equivalent, it will request it again.

Entity tags are unique identifiers that can be associated with all copies of the document. If the document is changed, the
entity tag is changed--so a more efficient way of cache management is to check for the entity tag, not for the URL and
date.

If the server is using entity tags, it sends the document with the ETag header. When the client wants to verify the cache,
it uses the If-Match or If-None-Match headers to check against the entity tag for that resource.

Retrieving Content

The Content-length header specifies the length of the data (in bytes) that is returned by the client-specified URL.
Due to the dynamic nature of some requests, the Content-length is sometimes unknown, and this header might be

omitted.

There are three common ways that a client can retrieve data from the entity-body of the server's response:

● The first way is to get the size of the document from the Content-length header, and then read in that much
data. Using this method, the client knows the size of the document before retrieving it, and can allocate a buffer
to fit the exact size.

● In other cases, when the size of the document is too dynamic for a server to predict, the Content-length
header is omitted. When this happens, the client reads in the data portion of the server's response until the server
disconnects the network connection.[4] This is the most flexible way to retrieve data, but the client can make no
assumptions about the size until the server disconnects the session.

● Another header could indicate when an entity-body ends, like HTTP 1.1's Transfer-Encoding header with the
chunked parameter.

When a client is involved in a client-pull/server-push operation, it may be possible that there is no end to the entity-
body. For example, a client program may be reading in a continuous feed of news 24 hours a day, or receiving
continuous frames of a video broadcast. In practice, this is rarely done, at least not for long periods of time, since it is an
expensive consumer of network bandwidth and connect time. In the event that an endless entity-body is undesirable, the
client software should have options to configure the maximum time spent (or data received) from a given entity-body.

Byte ranges

In HTTP 1.1, the client does not have to get the entire entity-body at once, but can get it in pieces, if the server allows it
to do so. If the server declares that it supports byte ranges using the Accept-Ranges header:

HTTP/1.1 200 OK
[Other headers here]
Accept-Ranges: bytes

then the client can request the data in pieces, like so:

GET /largefile.html HTTP/1.1
[Other headers here]
Range: 0-65535

When the server returns the specified range, it includes a Content-range header to indicate which portion of the
document is being sent, and also to tell the client how long the file is:

HTTP/1.1 200 OK
[Other headers here]
Content-range: 0-65535/83028576

The client can use this information to give the user some idea of how long she'll have to wait for the document to be
complete.

For caching purposes, a client can use the If-Range header along with Range to request an updated portion of the
document only if the document has been changed. For example:

GET /largefile.html HTTP/1.1
[Other headers here]
If-Range: Mon, 02 May 1996 04:51:00 GMT
Range: 0-65535

The If-Range header can use either a last modified date or an entity tag to verify that the document is still the same.

Referring Documents

The Referer header indicates which document referred to the one currently specified in this request. This helps the
server keep track of documents that refer to malformed or missing locations on the server.

For example, if the client opens a connection to www.ora.com at port 80 and sends:

GET /contact.html HTTP/1.0
Accept: */*

the server may respond with:

HTTP/1.0 200 OK
Date: Sat, 20-May-95 03:32:38 GMT
MIME-version: 1.0
Content-type: text/html

<h1>Contact Information</h2>
 Sales Department

The user clicks on the hyperlink and the client requests "sales.html" from sales.ora.com, specifying that it was sent
there from the /contact.html document on www.ora.com:

GET /sales.html HTTP/1.0
Accept: */*
Referer: http://www.ora.com/contact.html

It is important to design clients that specify only public locations in the Referer header to other public documents.
The client should never specify a private document (i.e., accessible only through proper authentication) when
requesting a public document. Even the name of a sensitive document may be considered a security breach.

Client and Server Identification

Clients and servers like to know whom they're talking to. Servers know that different clients have different capabilities,
and would like to tailor their content for the best effect. For example, sites with JavaScript content would like to know
whether you're a JavaScript-capable client, and serve JavaScript-enhanced HTML when possible. There isn't anything
in HTTP that describes which languages the browsers understand,[5] but a server with a properly updated database of
browser names could make an informed guess.

Similarly, clients sometimes want to know what kind of server is running. It might know that the latest version of
Apache supports byte ranges, or that there's a bug to avoid in a version of some unnamed server. And then there are
times when a proxy server would like to block requests from certain browsers--not for the sake of browser-bashing, but
usually for the sake of security, when there are known security bugs in a certain version of a browser.

Clients can identify themselves with the User-Agent header. The User-Agent header specifies the name of the
client and other optional components, such as version numbers or subcomponents licensed from other companies. The
header may consist of one or more names separated by a space, where each name can contain an optional slash and
version number. Optional components of the User-Agent might be the type of machine, operating system, or plug-in
components of the client program. For example:

User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
User-Agent: HTML-checker/1.0

Beware that there have been well-documented instances in which clients have lied about who they are--not out of
malice (they claim) but because they had implemented all the features of their competitor, and wanted to make sure that
they were served HTML that was tailored for that competitor.

Servers identify themselves using the Server header. The Server header may help clients make inferences about
what types of methods and parameters the server can accept, based on the server name and version number.

Authorization

An Authorization header is used to request restricted documents. Upon first requesting a restricted document, the
web client requests the document without sending an Authorization header. If the server denies access to the
document, the server specifies the authorization method for the client to use with the WWW-Authenticate header,
described later in this chapter. At this point, the client requests the document again, but with an Authorization
header.

The authorization header is of the general form:

Authorization: SCHEME REALM

The authorization scheme generally used in HTTP is BASIC, and under the BASIC scheme the credentials follow the
format username:password encoded in base64. For example, for the username of "webmaster" and a password of
"zrqma4v", the authorization header would look like this:

Authorization: Basic d2VibWFzdGVyOnpycW1hNHY=

When "d2VibWFzdGVyOnpycW1hNHY=" is decoded using base 64, it translates into webmaster:zrqma4v.

Here's a verbose example:

When a client requests information that is secure, the server responds with response code 401 (Unauthorized) and an
appropriate WWW-Authenticate header describing the type of authentication required:

GET /sample.html HTTP/1.0
User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg

The server then declares that further authorization is required to access the URL:

HTTP/1.0 401 Unauthorized
Date: Sat, 20-May-95 03:32:38 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
WWW-Authenticate: BASIC realm="System Administrator"

The client now seeks authentication information. Interactive GUI-based browsers might prompt the user for a user name
and password in a dialog box. Other clients might just get the information from an online file or a hardware device.

The realm of the BASIC authentication scheme indicates the type of authentication requested. Each realm is defined by
the web administrator of the site and indicates a class of users: administrators, CGI programmers, registered users, or
anything else that separates one class of authorization from another. In this case, the realm is for system administrators.
After encoding the data appropriately for the BASIC authorization method, the client resends the request with proper
authorization:

GET /sample.html HTTP/1.0
User-Agent: Mozilla/1.1N (Macintosh; I; 68K)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg
Authorization: BASIC d2VibWFzdGVyOnpycW1hNHY=

The server checks the authorization, and upon successful authentication, sends the requested data:

HTTP/1.0 200 OK
Date: Sat, 20-May-95 03:25:12 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 14-Mar-95 18:15:23 GMT
Content-length: 1029

[Entity-body data]

In HTTP 1.1, there's also something called Digest authentication. See http://www.w3.org/ for details.

Cookies

Persistent state, client-side cookies were introduced by Netscape Navigator to enable a server to store client-specific
information on the client's machine, and use that information when a server or a particular page is accessed again by the
client. The cookie mechanism allows servers to personalize pages for each client, or remember selections the client has
made when browsing through various pages of a site. Cookies are not part of the HTTP specification; however, their
use is so entrenched throughout the Web today that all HTTP programmers should be aware of the Set-Cookie and
Cookie headers, even if they choose not to honor them.

Cookies work in the following way: When a server (or CGI program running on a server) identifies a new user, it adds
the Set-Cookie header to its response, containing an identifier for that user and other information that the server may
glean from the client's input. The client is expected to store the information from the Set-Cookie header on disk,
associated with the URL that assigned that cookie. In subsequent requests to that URL, the client should include the
cookie information using the Cookie header. The server or CGI program uses this information to return a document
tailored to that specific client. The cookies should be stored on the client user's system, so the information remains even
when the client has been terminated and restarted.

For example, the client may fill in a form opening a new account. The request might read:

POST /www.whosis.com/order.pl HTTP/1.0
[Client headers here]

type=new&firstname=Linda&lastname=Mui

The server stores this information along with a new account ID, and sends it back in the response:

HTTP/1.0 200 OK
[Server headers here]
Set-Cookie: acct=04382374

The client saves the cookie information along with the URL. For example, a cookies file might contain the line:

www.whosis.com/order.pl acct=04382374

Days or months later, when the client returns to the site to place another order, the client should recognize the URL and
append the cookie to its headers:

GET /www.whosis.com/order.pl
[Client headers here]
Cookie: acct=04382374

The server retrieves the cookie, grabs the customer's data from an internal database, and the order form the client
receives may already have her ordering information filled in.

http://www.w3.org/

1. More modern clients would just send one Accept header and separate the different values with commas.

2. On the other hand, sometimes it takes longer to pick up everyone in a carpool than it would take to drive to work
alone. This sometimes happens with caching proxy servers, where it takes longer to go through the cache than it takes
to fetch a new copy of the document. Your mileage will vary.

3. Not to be confused with the Age header. If you make a request to a web server, get a response, and wait 20 seconds,
the age of the response is 20 seconds. If you get a document last modified on 02-Jun-95 02:42:43 GMT and has not
been modified since, then the last modified date stays the same, even though those 20 seconds go by.

4. This only works in HTTP 1.0. In HTTP 1.1, both client and server need a clear understanding of the request/response
length, so they can anticipate where the beginning of the next request/response happens.

5. At least not in HTTP 1.0 or 1.1.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly
Open Books Project.

Chapter 4.
The Socket Library

In this chapter:
A Typical Conversation over Sockets
Using the Socket Calls
Server Socket Calls
Client Connection Code
Your First Web Client
Parsing a URL
Hypertext UNIX cat
Shell Hypertext cat
Grep out URL References
Client Design Considerations

The socket library is a low-level programmer's interface that allows clients to set up a TCP/IP connection and
communicate directly to servers. Servers use sockets to listen for incoming connections, and clients use
sockets to initiate transactions on the port that the server is listening on.

Do you really need to know about sockets? Possibly not. In Chapter 5, The LWP Library, we cover LWP, a
library that includes a simple framework for connecting to and communicating over the Web, making
knowledge of the underlying network communication superfluous. If you plan to use LWP you can probably
skip this chapter for now (and maybe forever).

Compared to using something like LWP, working with sockets is a tedious undertaking. While it gives you
the power to say whatever you want through your network connection, you need to be really careful about
what you say; if it's not fully compliant with the HTTP specs, the web server won't understand you! Perhaps
your web client works with one web server but not another. Or maybe your web client works most of the
time, but not in special cases. Writing a fully compliant application could become a real headache. A
programmer's library like LWP will figure out which headers to use, the parameters with each header, and
special cases like dealing with HTTP version differences and URL redirections. With the socket library, you
do all of this on your own. To some degree, writing a raw client with the socket library is like reinventing the
wheel.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/

However, some people may be forced to use sockets because LWP is unavailable, or because they just prefer
to do things by hand (the way some people prefer to make spaghetti sauce from scratch). This chapter covers
the socket calls that you can use to establish HTTP connections independently of LWP. At the end of the
chapter are some extended examples using sockets that you can model your own programs on.

A Typical Conversation over Sockets

The basic idea behind sockets (as with all TCP-based client/server services) is that the server sits and waits
for connections over the network to the port in question. When a client connects to that port, the server
accepts the connection and then converses with the client using whatever protocol they agree on (e.g., HTTP,
NNTP, SMTP, etc.).

Initially, the server uses the socket() system call to create the socket, and the bind() call to assign the socket
to a particular port on the host. The server then uses the listen() and accept() routines to establish
communication on that port.

On the other end, the client also uses the socket() system call to create a socket, and then the connect() call
to initiate a connection associated with that socket on a specified remote host and port.

The server uses the accept() call to intercept the incoming connection and initiate communication with the
client. Now the client and server can each use sysread() and syswrite() calls to speak HTTP, until the
transaction is over.

Instead of using sysread() and syswrite(), you can also just read from and write to the socket as you would
any other file handle (e.g., print <FH>;).

Finally, either the client or server uses the close() or shutdown() routine to end the connection.

Figure 4-1 shows the flow of a sockets transaction.

Figure 4-1.Socket calls

Using the Socket Calls

The socket library is part of the standard Perl distribution. Include the socket module like this:

use Socket;

Table 4-1 lists the socket calls available using the socket library in Perl.

Table 4-1:Socket Calls

Function Usage Purpose

socket() Both client and server Create a generic I/O buffer in the operating system

connect() Client only
Establish a network connection and associate it with the I/O buffer
created by socket()

sysread() Both client and server Read data from the network connection

syswrite() Both client and server Write data to the network connection

close() Both client and server Terminate communication

bind() Server only Associate a socket buffer with a port on the machine

listen() Server only Wait for incoming connection from a client

accept() Server only Accept the incoming connection from client

Conceptually, think of a socket as a "pipe" between the client and server. Data written to one end of the pipe
appears on the other end of the pipe. To create a pipe, call socket(). To write data into one end of the pipe,
call syswrite(). To read on the other end of the pipe, call sysread(). Finally, to dispose of the pipe and cease
communication between the client and server, call close().

Since this book is primarily about client programming, we'll talk about the socket calls used by clients first,
followed by the calls that are only used on the server end. Although we're only writing client programs, we
cover both client and server functions, for the sake of showing how the library fits together.

Initializing the Socket

Both the client and server use the socket() function to create a generic "pipe" or I/O buffer in the operating
system. The socket() call takes several arguments, specifying which file handle to associate with the socket,
what the network protocol is, and whether the socket should be stream-oriented or record-oriented. For HTTP
transactions, sockets are stream-oriented connections running TCP over IP, so HTTP-based applications must
associate these characteristics with a newly created socket.

For example, in the following line, the SH file handle is associated with the newly created socket. PF_INET
indicates the Internet Protocol while getprotobyname('tcp') indicates that the Transmission Control Protocol
(TCP) runs on top of IP. Finally, SOCK_STREAM indicates that the socket is stream-oriented, as opposed to
record-oriented:

socket(SH, PF_INET, SOCK_STREAM, getprotobyname('tcp')) || die $!;

If the socket call fails, the program should die() using the error message found in $!.

Establishing a Network Connection

Calling connect() attempts to contact a server at a desired host and port. The configuration information is
stored in a data structure that is passed to connect().

my $sin = sockaddr_in (80,inet_aton('www.ora.com'));
connect(SH,$sin) || die $!;

The Socket::sockaddr_in() routine accepts a port number as the first parameter and a 32-bit IP address as the
second number. Socket::inet_aton() translates a hostname string or dotted decimal string to a 32-bit IP
address. Socket::sockaddr_in() returns a data structure that is then passed to connect(). From there, connect(
) attempts to establish a network connection to the specified server and port. Upon successful connection, it
returns true. Otherwise, it returns false upon error and assigns $! with an error message. Use die() after
connect() to stop the program and report any errors.

Writing Data to a Network Connection

To write to the file handle associated with the open socket connection, use the syswrite() routine. The first
parameter is the file handle to write the data to. The data to write is specified as the second parameter.
Finally, the third parameter is the length of the data to write. Like this:

$buffer="hello world!";
syswrite(FH, $buffer, length($buffer));

An easier way to communicate is with print. When used with an autoflushed file handle, the result is the
same as calling syswrite(). The print command is more flexible than syswrite() because the programmer can
specify more complex string expressions that are difficult to specify in syswrite(). Using print, the previous
example looks like this:

select(FH);
$|=1; # set $| to non-zero to make selection autoflushed
print FH "hello world!";

Reading Data From a Network Connection

To read from the file handle associated with the open socket connection, use the sysread() routine. In the
first parameter, a file handle is given to specify the connection to read from. The second parameter specifies a
scalar variable to store the data that was read. Finally, the third parameter specifies the maximum number of
bytes you want to read from the connection. The sysread() routine returns the number of bytes actually read:

sysread(FH, $buffer, 200); # read at most 200 bytes from FH

If you want to read a line at a time from the file handle, you can also use the angle operator on it, like so:

$buffer = <FH>;

Closing the Connection

After the network transaction is complete, close() disconnects the network connection.

close(FH);

Server Socket Calls

The following functions set the socket in server mode and map a client's incoming request to a file handle.
After a client request has been accepted, all subsequent communication with the client is referenced through
the file handle with sysread() and syswrite(), as described earlier.

Binding to the Port

A sockets-based server application first creates the socket as follows:

 my $proto = getprotobyname('tcp');
 socket(F, PF_INET, SOCK_STREAM, $proto) || die $!;

Next, the program calls bind() to associate the socket with a port number on the machine. If another program
is already using the port, bind() returns a false (zero) value. Here, we use sockaddr_in() to identify the port
for bind(). (We use port 80, the traditional port for HTTP.)

 my $sin = sockaddr_in(80,INADDR_ANY);
 bind(F,$sin) || die $!;

Waiting for a Connection

The listen() function tells the operating system that the server is ready to accept incoming network
connections on the port. The first parameter is the file handle of the socket to listen to. In the event that
multiple client programs are connecting to the port at the same time, a queue of network connections is
maintained by the operating system. The queue length is specified in the second parameter:

listen(F, $length) || die $!;

Accepting a Connection

The accept() function waits for an incoming request to the server. For parameters, accept() uses two file
handles. The one we've been dealing with so far is a generic file handle associated with the socket. In the
above example code, we've called it F. This is passed in as the second parameter. The first parameter is a file
handle that accept() will associate with a specific network connection.

accept(FH,F) || die $!;

So when a client connects to the server, accept() associates the client's connection with the file handle passed
in as the first parameter. The second parameter, F, still refers to a generic socket that is connected to the
designated port and is not specifically connected to any clients.

You can now read and write to the filehandle to communicate with the client. In this example, the filehandle
is FH. For example:

 print FH "HTTP/1.0 404 Not Found\n";

Client Connection Code

The following Perl function encapsulates all the necessary code needed to establish a network connection to a
server. As input, open_TCP() requires a file handle as a first parameter, a hostname or dotted decimal IP
address as the second parameter, and a port number as the third parameter. Upon successfully connecting to
the server, open_TCP() returns 1. Otherwise, it returns undef upon error.

############
open_TCP
############
#
Given ($file_handle, $dest, $port) return 1 if successful, undef when
unsuccessful.
#
Input: $fileHandle is the name of the filehandle to use
$dest is the name of the destination computer,
either IP address or hostname
$port is the port number
#
Output: successful network connection in file handle
#

use Socket;

sub open_TCP
{
 # get parameters
 my ($FS, $dest, $port) = @_;

 my $proto = getprotobyname('tcp');
 socket($FS, PF_INET, SOCK_STREAM, $proto);
 my $sin = sockaddr_in($port,inet_aton($dest));
 connect($FS,$sin) || return undef;

 my $old_fh = select($FS);
 $| = 1; # don't buffer output
 select($old_fh);
 1;
}
1;

Using the open_TCP() Function

Let's try out the function. In the following code, you will need to include the open_TCP() function. You can
include it in the same file or put it in another file and use the require directive to include it. If you put it in a
separate file and require it, remember to put a "1;" as the last line of the file that is being required. In the
following example, we've placed the open_TCP() routine into another file (tcp.pl, for lack of imagination),
and required it along with the socket library itself:

#!/usr/local/bin/perl
use Socket;
require "tcp.pl";

Once the socket library and open_TCP() routine are included, the example below uses open_TCP() to
establish a connection to port 13 on the local machine:

connect to daytime server on the machine this client is running on
if (open_TCP(F, "localhost", 13) == undef) {
 print "Error connecting to server\n";
 exit(-1);
}

If the local machine is running the daytime server, which most UNIX systems and some NT systems run,
open_TCP() returns successfully. Then, output from the daytime server is printed:

if there is any input, echo it
print $_ while (<F>);

Then we close the connection.

close(F);

After running the program, you should see the local time, for example:

Tue Jun 14 00:03:12 1996

This can also be done by using telnet to connect to port 13:

(intense) /homes/apm> telnet localhost 13
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^'.

Tue Jun 14 00:03:12 1996
Connection closed by foreign host.

Your First Web Client

Let's modify the previous code to work with a web server instead of the daytime server. Also, instead of
embedding the machine name of the server into the source code, let's modify the code to accept a hostname
from the user on the command line. Since port 80 is the standard port that web servers use, we'll use port 80
in the code instead of the daytime server's port:

contact the server
if (open_TCP(F, $ARGV[0], 80) == undef) {
 print "Error connecting to server at $ARGV[0]\n";
 exit(-1);
}

In the interest of making the program a little more user-friendly, let's add some help text:

If no parameters were given, print out help text
if ($#ARGV) {
 print "Usage: $0 Ipaddress\n";
 print "\n Returns the HTTP result code from a server.\n\n";
 exit(-1);
}

Instead of connecting to the port and listening for data, the client needs to send a request before data can be
retrieved from the server:

print F "GET / HTTP/1.0\n\n";

Then the response code is retrieved and printed out:

$ReturnStatus=<F>;
print "The server had a response line of: $ReturnStatus\n";

After all the modifications, the new code looks like this:

#!/usr/local/bin/perl

use Socket;
require "tcp.pl";

If no parameters were given, print out help text
if ($#ARGV) {
 print "Usage: $0 Ipaddress\n";
 print "\n Returns the HTTP result code from a web server.\n\n";
 exit(-1);
}

contact the server
if (open_TCP(F, $ARGV[0], 80) == undef) {
 print "Error connecting to server at $ARGV[0]\n";
 exit(-1);
}

send the GET method with / as a parameter
print F "GET / HTTP/1.0\n\n";

get the response
$return_line=<F>;

print out the response
print "The server had a response line of: $return_line";
close(F);

Let's run the program and see the result:

The server had a response line of: HTTP/1.0 200 OK

Parsing a URL

At the core of every good web client program is the ability to parse a URL into its components. Let's start by
defining such a function. (If you plan to use LWP, there's something like this in the URI::URL class, and you
can skip the example.)

Given a full URL, return the scheme, hostname, port, and path
into ($scheme, $hostname, $port, $path). We'll only deal with
HTTP URLs.

sub parse_URL {

 # put URL into variable
 my ($URL) = @_;

 # attempt to parse. Return undef if it didn't parse.
 (my @parsed =$URL =~ m@(\w+)://([^/:]+)(:\d*)?([^#]*)@) || return undef;

 # remove colon from port number, even if it wasn't specified in the URL
 if (defined $parsed[2]) {
 $parsed[2]=~ s/^://;
 }

 # the path is "/" if one wasn't specified
 $parsed[3]='/' if ($parsed[0]=~/http/i && (length $parsed[3])==0);

 # if port number was specified, we're done
 return @parsed if (defined $parsed[2]);

 # otherwise, assume port 80, and then we're done.
 $parsed[2] = 80;

 @parsed;
}

grab_urls($html_content, %tags) returns an array of links that are
referenced from within html.

sub grab_urls {

 my($data, %tags) = @_;
 my @urls;

 # while there are HTML tags
 skip_others: while ($data =~ s/<([^>]*)>//) {

 my $in_brackets=$1;
 my $key;

 foreach $key (keys %tags) {

 if ($in_brackets =~ /^\s*$key\s+/i) { # if tag matches, try parms
 if ($in_brackets =~ /\s+$tags{$key}\s*=\s*"([^"]*)"/i) {
 my $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push (@urls, $link);
 next skip_others;
 }
 # handle case when url isn't in quotes (ie:)
 elsif ($in_brackets =~ /\s+$tags{$key}\s*=\s*([^\s]+)/i) {
 my $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push (@urls, $link);
 next skip_others;
 }
 } # if tag matches
 } # foreach tag
 } # while there are brackets
 @urls;
}

1;

Given a full URL, parse_URL() will break it up into smaller components. The real work is done with:

attempt to parse. Return undef if it didn't parse.
(my @parsed =$URL =~ m@(\w+)://([^/:]+)(:\d*)?([^#]*)@) || return undef;

After this initial parse some of the components need to be cleaned up:

1. If an optional port was given, remove the colon from $parsed [2].

2. If no document path was given, it becomes "/". For example, "http://www.ora.com" becomes
"http://www.ora.com/".

The function returns an array of the different URL components: ($scheme, $hostname, $port, $path). Or
undef upon error.

Let's try parse_URL() with "http://www.ora.com/index.html" as input:

parse_URL("http://www.ora.com/index.html");

The parse_URL() routine would return the following array: ('http', 'www.ora.com', 80, '/index.html'). We've

saved this routine in a file called web.pl, and we'll use it in examples (with a require 'web.pl') in this chapter.

Hypertext UNIX cat

Now that we have a function that parses URLs, let's use it to create a hypertext version of the UNIX cat
command, called hcat. (There's an LWP version of this in Chapter 6, Example LWP Programs.)

Basically speaking, this program looks at its command-line arguments for URLs. It prints out the full
response for the given URL, including the response code, headers, and entity-body. If the user only wants the
response code, he can use the -r option. Similarly, the -H option specifies that only headers are wanted. A -d
option prints out only the entity body. One can mix these options, too. For example, if the user only wants the
response code and headers, she could use -rH. If no arguments are used, or if the -h option is specified, help
text is printed out.

Let's go over the command-line parsing:

parse command line arguments
getopts('hHrd');

print out usage if needed
if (defined $opt_h || $#ARGV<0) { help(); }

if it wasn't an option, it was a URL
while($_ = shift @ARGV) {
 hcat($_, $opt_r, $opt_H, $opt_d);
}

The call to Getopts() indicates that we're interested in the -h, -H, -r, and -d command-line options. When
Getopts() finds these switches, it sets $opt_* (where * is the switch that was specified), and leaves any
"foreign" text back on @ARGV. If the user didn't enter any valid options or a URL, help text is printed.
Finally, for any remaining command-line parameters, treat them as URLs and pass them to the hcat()
routine.

Examples:

Print out response line only:

% hcat -r http://www.ora.com

Print out response line and entity-body, but not the headers:

% hcat -rd http://www.ora.com

Use multiple URLs:

% hcat http://www.ora.com http://www.ibm.com

Back to the program. Inside of the hcat() function, we do some basic URL processing:

if the URL isn't a full URL, assume that it is a http request
 $full_url="http://$full_url" if ($full_url !~
 m/(\w+):\/\/([^\/:]+)(:\d*)?([^#]*)/);

 # break up URL into meaningful parts

 my @the_url = &parse_URL($full_url);

Then we send an HTTP request to the server.

connect to server specified in 1st parameter
if (!defined open_TCP('F', $the_url[1], $the_url[2])) {
 print "Error connecting to web server: $the_url[1]\n";
 exit(-1);
}

request the path of the document to get
 print F "GET $the_url[3] HTTP/1.0\n";
 print F "Accept: */*\n";
 print F "User-Agent: hcat/1.0\n\n";

Now we wait for a response from the server. We read in the response and selectively echo it out, where we
look at the $response, $header, and $data variables to see if the user is interested in looking at each part of
the reply:

 # get the HTTP response line
 my $the_response=<F>;
 print $the_response if ($all || defined $response);

 # get the header data
 while(<F>=~ m/^(\S+):\s+(.+)/) {
 print "$1: $2\n" if ($all || defined $header);
 }

 # get the entity body
 if ($all || defined $data) {
 print while (<F>);
 }

The full source code looks like this:

#!/usr/local/bin/perl -w

socket based hypertext version of UNIX cat

use strict;
use Socket; # include Socket module
require 'tcp.pl'; # file with Open_TCP routine
require 'web.pl'; # file with parseURL routine
use vars qw($opt_h $opt_H $opt_r $opt_d);
use Getopt::Std;

parse command line arguments
getopts('hHrd');

print out usage if needed
if (defined $opt_h || $#ARGV<0) { help(); }

if it wasn't an option, it was a URL

while($_ = shift @ARGV) {
 hcat($_, $opt_r, $opt_H, $opt_d);
}

Subroutine to print out usage information

sub usage {
 print "usage: $0 -rhHd URL(s)\n";
 print " -h help\n";
 print " -r print out response\n";
 print " -H print out header\n";
 print " -d print out data\n\n";
 exit(-1);
}

Subroutine to print out help text along with usage information

sub help {
 print "Hypertext cat help\n\n";
 print "This program prints out documents on a remote web server.\n";
 print "By default, the response code, header, and data are printed\n";
 print "but can be selectively printed with the -r, -H, and -d options.\n\n";

 usage();
}

Given a URL, print out the data there

sub hcat {

 # grab paramaters
 my ($full_url, $response, $header, $data)=@_;

 # assume that response, header, and data will be printed
 my $all = !($response || $header || $data);

 # if the URL isn't a full URL, assume that it is a http request
 $full_url="http://$full_url" if ($full_url !~
 m/(\w+):\/\/([^\/:]+)(:\d*)?([^#]*)/);

 # break up URL into meaningful parts
 my @the_url = parse_URL($full_url);
 if (!defined @the_url) {
 print "Please use fully qualified valid URL\n";
 exit(-1);
 }

 # we're only interested in HTTP URL's
 return if ($the_url[0] !~ m/http/i);

 # connect to server specified in 1st parameter

 if (!defined open_TCP('F', $the_url[1], $the_url[2])) {
 print "Error connecting to web server: $the_url[1]\n";
 exit(-1);
 }

 # request the path of the document to get
 print F "GET $the_url[3] HTTP/1.0\n";
 print F "Accept: */*\n";
 print F "User-Agent: hcat/1.0\n\n";

 # print out server's response.

 # get the HTTP response line
 my $the_response=<F>;
 print $the_response if ($all || defined $response);

 # get the header data
 while(<F>=~ m/^(\S+):\s+(.+)/) {
 print "$1: $2\n" if ($all || defined $header);
 }

 # get the entity body
 if ($all || defined $data) {
 print while (<F>);
 }

 # close the network connection
 close(F);

}

Shell Hypertext cat

With hcat, one can easily retrieve documents from remote web servers. But there are times when a client
request needs to be more complex than hcat is willing to allow. To give the user more flexibility in sending
client requests, we'll change hcat into shcat, a shell utility that accepts methods, headers, and entity-body data
from standard input. With this program, you can write shell scripts that specify different methods, custom
headers, and submit form data.

All of this can be done by changing a few lines around. In hcat, where you see this:

 # request the path of the document to get
 print F "GET $the_url[3] HTTP/1.0\n";
 print F "Accept: */*\n";
 print F "User-Agent: hcat/1.0\n\n";

Replace it with this:

copy STDIN to network connection
while (<STDIN>) {print F;}

and save it as shcat. Now you can say whatever you want on shcat's STDIN, and it will forward it on to the
web server you specify. This allows you to do things like HTML form postings with POST, or a file upload
with PUT, and selectively look at the results. At this point, it's really all up to you what you want to say, as
long as it's HTTP compliant.

Here's a UNIX shell script example that calls shcat to do a file upload:

#!/bin/ksh
echo "PUT /~apm/hi.txt HTTP/1.0
User-Agent: shcat/1.0
Accept: */*
Content-type: text/plain
Content-length: 2

hi" | shcat http://publish.ora.com/

Grep out URL References

When you need to quickly get a list of all the references in an HTML page, here's a utility you can use to
fetch an HTML page from a server and print out the URLs referenced within the page. We've taken the hcat
code and modified it a little. There's also another function that we added to parse out URLs from the HTML.
Let's go over that first:

sub grab_urls {

 my($data, %tags) = @_;
 my @urls;

 # while there are HTML tags
 skip_others: while ($data =~ s/<([^>]*)>//) {

 my $in_brackets=$1;
 my $key;

 foreach $key (keys %tags) {

 if ($in_brackets =~ /^\s*$key\s+/i) { # if tag matches, try parms
 if ($in_brackets =~ /\s+$tags{$key}\s*=\s*"([^"]*)"/i) {
 my $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push (@urls, $link);
 next skip_others;
 }
 # handle case when url isn't in quotes (ie:)
 elsif ($in_brackets =~ /\s+$tags{$key}\s*=\s*([^\s]+)/i) {
 my $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push (@urls, $link);
 next skip_others;
 }
 } # if tag matches
 } # foreach tag
 } # while there are brackets
 @urls;
}

The grab_urls() function has two parameters. The first argument is a scalar containing the HTML data to go
through. The second argument is a hash of tags and parameters that we're looking for. After going through
the HTML, grab_urls() returns an array of links that matched the regular expression of the form: <tag

parameter="...">. The outer if statement looks for HTML tags, like <A>, , <BODY>, <FRAME>. The
inner if statement looks for parameters to the tags, like SRC and HREF, followed by text. Upon finding a
match, the referenced URL is pushed into an array, which is returned at the end of the function. We've saved
this in web.pl, and will include it in the hgrepurl program with a require 'web.pl'.

The second major change from hcat to hgrepurl is the addition of:

 my $data='';
 # get the entity body
 while (<F>) {$data.=$_};

 # close the network connection
 close(F);

 # fetch images and hyperlinks into arrays, print them out

 if (defined $images || $all) {
 @links=grab_urls($data, ('img', 'src', 'body', 'background'));
 }
 if (defined $hyperlinks || $all) {
 @links2= grab_urls($data, ('a', 'href'));
 }

 my $link;
 for $link (@links, @links2) { print "$link\n"; }

This appends the entity-body into the scalar of $data. From there, we call grab_urls() twice. The first time
looks for image references by recognizing and <body background="..."> in the HTML. The
second time looks for hyperlinks by searching for instances of . Each call to grab_urls() returns
an array of URLs, stored in @links and @links2, respectively. Finally, we print the results out.

Other than that, there are some smaller changes. For example, we look at the response code. If it isn't 200
(OK), we skip it.

if not an "OK" response of 200, skip it
 if ($the_response !~ m@^HTTP/\d+\.\d+\s+200\s@) {return;}

We've retrofitted the reading of the response line, headers, and entity-body to not echo to STDOUT. This
isn't needed anymore in the context of this program. Also, instead of parsing the -r, -H, and -d command-line
arguments, we look for -i for displaying image links only, and -l for displaying only hyperlinks.

So, to see just the image references at www.ora.com, one would do this:

% hgrepurl -i http://www.ora.com

Or just the hyperlinks at www.ora.com:

% hgrepurl -l http://www.ora.com

Or both images and hyperlinks at www.ora.com:

% hgrepurl http://www.ora.com

The complete source code looks like this:

#!/usr/local/bin/perl -w

socket based hypertext grep URLs. Given a URL, this
prints out URLs of hyperlinks and images.

use strict;
use Socket; # include Socket module
require 'tcp.pl'; # file with Open_TCP routine
require 'web.pl'; # file with parseURL routine
use vars qw($opt_h $opt_i $opt_l);
use Getopt::Std;

parse command line arguments
getopts('hil');

print out usage if needed
if (defined $opt_h || $#ARGV<0) { help(); }

if it wasn't an option, it was a URL
while($_ = shift @ARGV) {
 hgu($_, $opt_i, $opt_l);
}

Subroutine to print out usage information

sub usage {
 print "usage: $0 -hil URL(s)\n";
 print " -h help\n";
 print " -i print out image URLs\n";
 print " -l print out hyperlink URLs\n";
 exit(-1);
}

Subroutine to print out help text along with usage information

sub help {
 print "Hypertext grep URL help\n\n";
 print "This program prints out hyperlink and image links that\n";
 print "are referenced by a user supplied URL on a web server.\n\n";

 usage();
}

hypertext grep url

sub hgu {

 # grab parameters
 my($full_url, $images, $hyperlinks)=@_;
 my $all = !($images || $hyperlinks);
 my @links;
 my @links2;

 # if the URL isn't a full URL, assume that it is a http request
 $full_url="http://$full_url" if ($full_url !~
 m/(\w+):\/\/([^\/:]+)(:\d*)?([^#]*)/);

 # break up URL into meaningful parts
 my @the_url = parse_URL($full_url);

 if (!defined @the_url) {
 print "Please use fully qualified valid URL\n";
 exit(-1);
 }

 # we're only interested in HTTP URL's
 return if ($the_url[0] !~ m/http/i);

 # connect to server specified in 1st parameter
 if (!defined open_TCP('F', $the_url[1], $the_url[2])) {
 print "Error connecting to web server: $the_url[1]\n";
 exit(-1);
 }

 # request the path of the document to get
 print F "GET $the_url[3] HTTP/1.0\n";
 print F "Accept: */*\n";
 print F "User-Agent: hgrepurl/1.0\n\n";

 # print out server's response.

 # get the HTTP response line
 my $the_response=<F>;

 # if not an "OK" response of 200, skip it
 if ($the_response !~ m@^HTTP/\d+\.\d+\s+200\s@) {return;}

 # get the header data
 while(<F>=~ m/^(\S+):\s+(.+)/) {
 # skip over the headers
 }

 my $data='';
 # get the entity body
 while (<F>) {$data.=$_};

 # close the network connection
 close(F);

 # fetch images and hyperlinks into arrays, print them out

 if (defined $images || $all) {

 @links=grab_urls($data, ('img', 'src', 'body', 'background'));
 }
 if (defined $hyperlinks || $all) {
 @links2= grab_urls($data, ('a', 'href'));
 }

 my $link;
 for $link (@links, @links2) { print "$link\n"; }

}

Client Design Considerations

Now that we've done a few examples, let's address some issues that arise when developing, testing, and using
web client software. Most of these issues are automatically handled by LWP, but when programming directly
with sockets, you have to take care of them yourself.

How does your client handle tag parameters?
The decision to process or ignore extra tag parameters depends on the application of the web client.
Some tag parameters change the tag's appearance by adjusting colors or sizes. Other tags are
informational, like variable names and hidden variable declarations in HTML forms. Your client may
need to pay close attention to these tags. For example, if your client sends form data, it may want to
check all the parameters. Otherwise, your client may send data that is inconsistent with what the
HTML specified--e.g., an HTML form might specify that a variable's value may not exceed a length
of 20 characters. If the client ignored this parameter, it might send data over 20 characters. As the
HTML standard evolves, your client may require some updating.

What does your client do when the server's expected HTML format changes?
Examine the data coming back from the server. After your client can handle the current data, think
about possible changes that may occur in the data. Some changes won't affect your client's
functionality. For example, textual descriptions in a file listing may be updated. But other changes,
like the general format of the HTML, may cause your current client to interpret important values
incorrectly. Changes in data may be unpredictable. When your client doesn't understand the data, it is
safer for the client not to assume anything, to abort its current operation, and to notify someone to
look into it. The client may need to be updated to handle the changes at the server.

Does the client analyze the response line and headers?
It is not advisable to write clients that skip over the HTTP response line and headers. While it may be
easier to do so, it often comes back to haunt you later. For example, if the URL used by the client
becomes obsolete or is changed, the client may interpret the entity-body incorrectly. Media types for
the URL may change, and could be noticed in the HTTP headers returned by the server. In general,
the client should be equipped to handle variations in metadata as they occur.

Does your client handle URL redirection? Does it need to?
Perhaps the desired data still exists, but not at the location specified by your client. In the event of a
redirection, will your client handle it? Does it examine the Location header? The answers to these
questions depend on the purpose of the client.

Does the client send authorization information when it shouldn't?
Two or more separate organizations may have CGI programs on the same server. It is important for
your client not to send authorization information unless it is requested. Otherwise, the client may
expose its authentication to an outside organization. This opens up the user's account to outsiders.

What does your client do when the server is down?
When the server is down, there are several options. The most obvious option is for the client to

attempt the HTTP request at a later time. Other options are to try an alternate server or abort the
transaction. The programmer should give the user some configuration options about the client's
actions.

What does your client do when the server response time is long?
For simple applications, it may be better to allow the user to interrupt the application. For user-
friendly or unattended batch applications, it is desirable to time out the connection and notify the user.

What does your client do when the server has a higher version of HTTP?
And what happens when the client doesn't understand the response? The most logical thing is to
attempt to talk on a common denominator. Chances are that just about anything will understand
HTTP/1.0, if that's what you feel comfortable using. In most cases, if the client doesn't understand the
response, it would be nice to tell the user--or at least let the user know to get the latest version of
HTTP for the client!

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly
Open Books Project.

Chapter 5.
The LWP Library

In this chapter:
Some Simple Examples
Listing of LWP Modules
Using LWP

As we showed in Chapter 1, the Web works over TCP/IP, in which the client and server establish a
connection and then exchange necessary information over that connection. Chapters See Demystifying the
Browser and See Learning HTTP concentrated on HTTP, the protocol spoken between web clients and
servers. Now we'll fill in the rest of the puzzle: how your program establishes and manages the connection
required for speaking HTTP.

In writing web clients and servers in Perl, there are two approaches. You can establish a connection manually
using sockets, and then use raw HTTP; or you can use the library modules for WWW access in Perl,
otherwise known as LWP. LWP is a set of modules for Perl 5 that encapsulate common functions for a web
client or server. Since LWP is much faster and cleaner than using sockets, this book uses it for all the
examples in Chapters See Example LWP Programs and . If LWP is not available on your platform, see
Chapter 4, which gives more detailed descriptions of the socket calls and examples of simple web programs
using sockets.

The LWP library is available at all CPAN archives. CPAN is a collection of Perl libraries and utilities, freely
available to all. There are many CPAN mirror sites; you should use the one closest to you, or just go to
http://www.perl.com/CPAN/ to have one chosen for you at random. LWP was developed by a cast of
thousands (well, maybe a dozen), but its primary driving force is Gisle Aas. It is based on the libwww library
developed for Perl 4 by Roy Fielding.

Detailed discussion of each of the routines within LWP is beyond the scope of this book. However, we'll
show you how LWP can be used, and give you a taste of it to get you started. This chapter is divided into
three sections:

● First, we'll show you some very simple LWP examples, to give you an idea of what it makes possible.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/

● Next, we'll list most of the useful routines within the LWP library.

● At the end of the chapter, we'll present some examples that glue together the different components of
LWP.

Some Simple Examples

LWP is distributed with a very helpful--but very short--"cookbook" tutorial, designed to get you started. This
section serves much the same function: to show you some simpler applications using LWP.

Retrieving a File

In Chapter 4, we showed how a web client can be written by manually opening a socket to the server and
using I/O routines to send a request and intercept the result. With LWP, however, you can bypass much of
the dirty work. To give you an idea of how simple LWP can make things, here's a program that retrieves the
URL in the command line and prints it to standard output:

#!/bin/perl
use LWP::Simple;

print (get $ARGV[0]);

The first line, starting with #!, is the standard line that calls the Perl interpreter. If you want to try this
example on your own system, it's likely you'll have to change this line to match the location of the Perl 5
interpreter on your system.

The second line, starting with use, declares that the program will use the LWP::Simple class. This class of
routines defines the most basic HTTP commands, such as get.

The third line uses the get() routine from LWP::Simple on the first argument from the command line, and
applies the result to the print() routine.

Can it get much easier than this? Actually, yes. There's also a getprint() routine in LWP::Simple for getting
and printing a document in one fell swoop. The third line of the program could also read:

getprint($ARGV[0]);

That's it. Obviously there's some error checking that you could do, but if you just want to get your feet wet
with a simple web client, this example will do. You can call the program geturl and make it executable; for
example, on UNIX:

% chmod +x geturl

Windows NT users can use the pl2bat program, included with the Perl distribution, to make the geturl.pl
executable from the command line:

C:\your\path\here> pl2bat geturl

You can then call the program to retrieve any URL from the Web:

% geturl http://www.ora.com/
<HTML>

<HEAD>
<LINK REV=MADE HREF="mailto:webmaster@ora.com">
<TITLE>O'Reilly & Associates</TITLE>
</HEAD>
<BODY bgcolor=#ffffff>
...

Parsing HTML

Since HTML is hard to read in text format, instead of printing the raw HTML, you could strip it of HTML
codes for easier reading. You could try to do it manually:

#!/bin/perl

use LWP::Simple;

foreach (get $ARGV[0]) {
 s/<[^>]*>//g;
 print;
}

But this only does a little bit of the job. Why reinvent the wheel? There's something in the LWP library that
does this for you. To parse the HTML, you can use the HTML module:

#!/bin/perl

use LWP::Simple;
use HTML::Parse;

print parse_html(get ($ARGV[0]))->format;

In addition to LWP::Simple, we include the HTML::Parse class. We call the parse_html() routine on the
result of the get(), and then format it for printing.

You can save this version of the program under the name showurl, make it executable, and see what
happens:

% showurl http://www.ora.com/
O'Reilly & Associates

 About O'Reilly -- Feedback -- Writing for O'Reilly

 What's New -- Here's a sampling of our most recent postings...

 * This Week in Web Review: Tracking Ads
 Are you running your Web site like a business? These tools can help.

 * Traveling with your dog? Enter the latest Travelers' Tales
 writing contest and send us a tale.

 New and Upcoming Releases
...

Extracting Links

To find out which hyperlinks are referenced inside an HTML page, you could go to the trouble of writing a
program to search for text within angle brackets (<...>), parse the enclosed text for the <A> or tag,
and extract the hyperlink that appears after the HREF or SRC parameter. LWP simplifies this process down
to two function calls. Let's take the geturl program from before and modify it:

#!/usr/local/bin/perl
use LWP::Simple;
use HTML::Parse;
use HTML::Element;

$html = get $ARGV[0];
$parsed_html = HTML::Parse::parse_html($html);

for (@{ $parsed_html->extract_links() }) {
 $link = $_->[0];
 print "$link\n";
}

The first change to notice is that in addition to LWP::Simple and HTML::Parse, we added the
HTML::Element class.

Then we get the document and pass it to HTML::Parse::parse_html(). Given HTML data, the parse_html()
function parses the document into an internal representation used by LWP.

$parsed_html = HTML::Parse::parse_html($html);

Here, the parse_html() function returns an instance of the HTML::TreeBuilder class that contains the parsed
HTML data. Since the HTML::TreeBuilder class inherits the HTML::Element class, we make use of
HTML::Element::extract_links() to find all the hyperlinks mentioned in the HTML data:

for (@{ $parsed_html->extract_links() }) {

extract_links() returns a list of array references, where each array in the list contains a hyperlink mentioned
in the HTML. Before we can access the hyperlink returned by extract_links(), we dereference the list in the
for loop:

for (@{ $parsed_html->extract_links() }) {

and dereference the array within the list with:

$link = $_->[0];

After the deferencing, we have direct access to the hyperlink's location, and we print it out:

print "$link\n";

Save this program into a file called showlink and run it:

% showlink http://www.ora.com/

You'll see something like this:

graphics/texture.black.gif
/maps/homepage.map
/graphics/headers/homepage-anim.gif
http://www.oreilly.de/o/comsec/satan/index.html
/ads/international/satan.gif
http://www.ora.com/catalog/pperl2
...

Expanding Relative URLs

From the previous example, the links from showlink printed out the hyperlinks exactly as they appear within
the HTML. But in some cases, you want to see the link as an absolute URL, with the full glory of a URL's
scheme, hostname, and path. Let's modify showlink to print out absolute URLs all the time:

#!/usr/local/bin/perl
use LWP::Simple;
use HTML::Parse;
use HTML::Element;
use URI::URL;

$html = get $ARGV[0];
$parsed_html = HTML::Parse::parse_html($html);

for (@{ $parsed_html->extract_links() }) {
 $link=$_->[0];
 $url = new URI::URL $link;
 $full_url = $url->abs($ARGV[0]);
 print "$full_url\n";
}

In this example, we've added URI::URL to our ever-expanding list of classes. To expand each hyperlink, we
first define each hyperlink in terms of the URL class:

$url = new URI::URL $link;

Then we use a method in the URL class to expand the hyperlink's URL, with respect to the location of the
page it was referenced from:

$full_url = $url->abs($ARGV[0]);

Save the program in a file called fulllink, make it executable, and run it:

% fulllink http://www.ora.com/

You should see something like this:

http://www.ora.com/graphics/texture.black.gif
http://www.ora.com/maps/homepage.map
http://www.ora.com/graphics/headers/homepage-anim.gif
http://www.oreilly.de/o/comsec/satan/index.html
http://www.ora.com/ads/international/satan.gif
http://www.ora.com/catalog/pperl2
...

You should now have an idea of how easy LWP can be. There are more examples at the end of this chapter,
and the examples in Chapters See Example LWP Programs and all use LWP. Right now, let's talk a little
more about the more interesting modules, so you know what's possible under LWP and how everything ties
together.

Listing of LWP Modules

There are eight main modules in LWP: File, Font, HTML, HTTP, LWP, MIME, URI, and WWW. Figure 5-
1 sketches out the top-level hierarchy within LWP.

Figure 5-1.The top-level LWP hierarchy

● The File module parses directory listings.

● The Font module handles Adobe Font Metrics.

● In the HTML module, HTML syntax trees can be constructed in a variety of ways. These trees are
used in rendering functions that translate HTML to PostScript or plain text.

● The HTTP module describes client requests, server responses, and dates, and computes a client/server
negotiation.

● The LWP module is the core of all web client programs. It allows the client to communicate over the
network with the server.

● The MIME module converts to/from base 64 and quoted printable text.

● In the URI module, one can escape a URI or specify or translate relative URLs to absolute URLs.

● Finally, in the WWW module, the client can determine if a server's resource is accessible via the
Robot Exclusion Standard.

In the context of web clients, some modules in LWP are more useful than others. In this book, we cover
LWP, HTML, HTTP, and URI. HTTP describes what we're looking for, LWP requests what we're looking

for, and the HTML module is useful for interpreting HTML and converting it to some other form, such as
PostScript or plain text. The URI module is useful for dissecting fully constructed URLs, specifying a URL
for the HTTP or LWP module, or performing operations on URLs, such as escaping or expanding.

In this section, we'll give you an overview of the some of the more useful functions and methods in the LWP,
HTML, HTTP, and URI modules. The other methods, functions, and modules are, as the phrase goes,
beyond the scope of this book. So, let's go over the core modules that are useful for client programming.

The LWP Module

The LWP module, in the context of web clients, performs client requests over the network. There are 10
classes in all within the LWP module, as shown in Figure 5-2, but we're mainly interested in the Simple,
UserAgent, and RobotUA classes, described below.

Figure 5-2.LWP classes

LWP::Simple

When you want to quickly design a web client, but robustness and complex behavior are of secondary
importance, the LWP::Simple class comes in handy. Within it, there are seven functions:

get($url)
Returns the contents of the URL specified by $url. Upon failure, get() returns undef. Other than
returning undef, there is no way of accessing the HTTP status code or headers returned by the
server.

head($url)
Returns header information about the URL specified by $url in the form of: ($content_type,
$document_length, $modified_time, $expires, $server). Upon failure, head() returns an empty list.

getprint($url)

Prints the contents of the URL on standard output, where the URL is specified by $url. The HTTP
status code given by the server is returned by getprint().

getstore($url, $file)
Stores the contents of the URL specified by $url into a file named by $file. The HTTP status code is
returned by getstore().

mirror($url, $file)
Copies the contents of the URL specified by $url into a file named by $file, when the modification
time or length of the online version is different from that of the file.

is_success($rc)
Given a status code from getprint(), getstore(), or mirror(), returns true if the request was successful.

is_error($rc)
Given a status code from getprint(), getstore(), or mirror(), returns true if the request was not
successful.

LWP::UserAgent

Requests over the network are performed with the LWP::UserAgent module. To create an LWP::UserAgent
object, you would do:

$ua = new LWP::UserAgent;

The most useful method in this module is request(), which contacts a server and returns the result of your
query. Other methods in this module change the way request() behaves. You can change the timeout value,
customize the value of the User-Agent header, or use a proxy server. Here's an overview of most of the
useful methods:

$ua->request($request [, $subroutine [, $size]])
Performs a request for the resource specified by $request, which is an HTTP::Request object.
Normally, doing a $result=$ua->request($request) is enough. On the other hand, if you want to
request data as it becomes available, you can specify a reference to a subroutine as the second
argument, and request() will call the subroutine whenever there are data to be processed. In that case,
you can specify an optional third argument that specifies the desired size of the data to be processed.
The subroutine should expect chunks of the entity-body data as a scalar as the first parameter, a
reference to an HTTP::Response object as the second argument, and a reference to an LWP::Protocol
object as the third argument.

$ua->request($request, $file_path)
When invoked with a file path as the second parameter, this method writes the entity-body of the
response to the file, instead of the HTTP::Response object that is returned. However, the
HTTP::Response object can still be queried for its response code.

$ua->credentials($netloc, $realm, $uname, $pass)
Use the supplied username and password for the given network location and realm. To use the
username "webmaster" and password of "yourguess" with the "admin" realm at www.ora.com, you
would do this:

$ua->credentials('www.ora.com', 'admin', 'webmaster', 'yourguess').

$ua->get_basic_credentials($realm, $url)

Returns ($uname, $pass) for the given realm and URL. get_basic_credentials() is usually called by
request(). This method becomes useful when creating a subclass of LWP::UserAgent with its own
version of get_basic_credentials(). From there, you can rewrite get_basic_credentials() to do more
flexible things, like asking the user for the account information, or referring to authentication
information in a file, or whatever. All you need to do is return a list, where the first element is a
username and the second element is a password.

$ua->agent([$product_id])
When invoked with no arguments, this method returns the current value of the identifier used in the
User-Agent HTTP header. If invoked with an argument, the User-Agent header will use that identifier
in the future. (As described in Chapter 3, the User-Agent header tells a web server what kind of client
software is performing the request.)

$ua->from([$email_address])
When invoked with no arguments, this method returns the current value of the email address used in
the From HTTP header. If invoked with an argument, the From header will use that email address in
the future. (The From header tells the web server the email address of the person running the client
software.)

$ua->timeout([$secs])
When invoked with no arguments, the timeout() method returns the timeout value of a request. By
default, this value is three minutes. So if the client software doesn't hear back from the server within
three minutes, it will stop the transaction and indicate that a timeout occurred in the HTTP response
code. If invoked with an argument, the timeout value is redefined to be that value.

$ua->use_alarm([$boolean])
Retrieves or defines the ability to use alarm() for timeouts. By default, timeouts with alarm() are
enabled. If you plan on using alarm() for your own purposes, or alarm() isn't supported on your
system, it is recommended that you disable alarm() by calling this method with a value of 0 (zero).

$ua->is_protocol_supported($scheme)
Given a scheme, this method returns a true or false (nonzero or zero) value. A true value means that
LWP knows how to handle a URL with the specified scheme. If it returns a false value, LWP does not
know how to handle the URL.

$ua->mirror($url, $file)
Given a URL and file path, this method copies the contents of $url into the file when the length or
modification date headers are different. If the file does not exist, it is created. This method returns an
HTTP::Response object, where the response code indicates what happened.

$ua->proxy((@scheme | $scheme), $proxy_url)
Defines a URL to use with the specified schemes. The first parameter can be an array of scheme
names or a scalar that defines a single scheme. The second argument defines the proxy's URL to use
with the scheme.

$ua->env_proxy()
Defines a scheme/proxy URL mapping by looking at environment variables. For example, to define
the HTTP proxy, one would define the http_proxy environment variable with the proxy's URL. To
define a domain to avoid the proxy, one would define the no_proxy environment variable with the
domain that doesn't need a proxy.

$ua->no_proxy($domain,...)
Do not use a proxy server for the domains given as parameters.

LWP::RobotUA

The Robot User Agent (LWP::RobotUA) is a subclass of LWP::UserAgent. User agent applications directly
reflect the actions of the user. For example, in a user agent application, when a user clicks on a hyperlink, he
expects to see the data associated with the hyperlink. On the other hand, a robot application requests
resources in an automated fashion. Robot applications cover such activities as searching, mirroring, and
surveying. Some robots collect statistics, while others wander the Web and summarize their findings for a
search engine. For this type of application, a robot application should use LWP::RobotUA instead of
LWP::UserAgent. The LWP::RobotUA module observes the Robot Exclusion Standards, which web server
administrators can define on their web site to keep robots away from certain (or all) areas of the web site.[1]
To create a new LWP::RobotUA object, one could do:

$ua = LWP::RobotUA->new($agent_name, $from, [$rules])

where the first parameter is the identifier that defines the value of the User-Agent header in the request,
the second parameter is the email address of the person using the robot, and the optional third parameter is a
reference to a WWW::RobotRules object. If you omit the third parameter, the LWP::RobotUA module
requests the robots.txt file from every server it contacts, and generates its own WWW::RobotRules object.

Since LWP::RobotUA is a subclass of LWP::UserAgent, the LWP::UserAgent methods are also available in
LWP::RobotUA. In addition, LWP::RobotUA has the following robot-related methods:

$ua->delay([$minutes])
Returns the number of minutes to wait between requests. If a parameter is given, the time to wait is
redefined to be the time given by the parameter. Upon default, this value is 1 (one). It is generally not
very nice to set a time of zero.

$ua->rules([$rules])
Returns or defines a the WWW:RobotRules object to be used when determining if the module is
allowed access to a particular resource.

$ua->no_visits($netloc)
Returns the number of visits to a given server. $netloc is of the form: user:password@host:port. The
user, password, and port are optional.

$ua->host_wait($netloc)
Returns the number of seconds the robot must wait before it can request another resource from the
server. $netloc is of the form of: user:password@host:port. The user, password, and port are optional.

$ua->as_string()
Returns a human-readable string that describes the robot's status.

The HTTP Module

The HTTP module specifies HTTP requests and responses, plus some helper functions to interpret or convert
data related to HTTP requests and responses. There are eight classes within the HTTP module, as shown in
Figure 5-3, but we're mainly interested in the Request, Response, Header, and Status classes.

Figure 5-3.Structure of the HTTP module

The two main modules that you'll use in the HTTP module are HTTP::Request and HTTP::Response.
HTTP::Request allows one to specify a request method, URL, headers, and entity-body. HTTP::Response
specifies a HTTP response code, headers, and entity-body. Both HTTP::Request and HTTP::Response are
subclasses of HTTP::Message and inherit HTTP::Message's facility to handle headers and an entity-body.

For both HTTP::Request and HTTP::Response, you might want to define the headers in your request or look
at the headers in the response. In this case, you can use HTTP::Headers to poke around with your
HTTP::Request or HTTP::Response object.

In addition to HTTP::Headers for looking at HTTP::Response headers, HTTP::Status includes functions to
classify response codes into the categories of informational, successful, redirection, error, client error, or
server error. It also exports symbolic aliases of HTTP response codes; one could refer to the status code of
200 as RC_OK, and refer to 404 as RC_NOT_FOUND.

The HTTP::Date module converts date strings from and to machine time.

HTTP::Request

This module summarizes a web client's request. For a simple GET or HEAD request, you could define the
GET method and a URL to apply it to, and the headers would be filled in by LWP. For a POST or PUT, you
might want to specify a custom HTTP::Headers object at the third parameter, or the $content parameter for
an entity-body. Since HTTP::Request inherits everything in HTTP::Message, you can use the header and
entity-body manipulation methods from HTTP::Message in HTTP::Request objects.

$r = new HTTP::Request $method, $url, [$header, [$content]]
The first parameter, $method, expects an HTTP method, like GET, HEAD, POST, PUT, etc. The
second parameter, $url, is the URL to apply the method to. This can be a string, like "www.ora.com",
or a reference to a URI::URL object. To specify your own headers, you can specify an optional third
parameter as a reference to an HTTP::Headers object. The fourth parameter, also optional, is a scalar
that specifies the HTTP entity-body of the request. If omitted, the entity-body is empty.

$r->method([$val])
To see what the HTTP::Request object has as its HTTP method, call the object's method() method
without any parameters, and it will return the object's current HTTP method. To define a new HTTP
method for the HTTP::Request object, call the object's method() method with your new HTTP

method.[2]

$r->url([$val])
To see what the HTTP::Request object has as its request URL, call the object's url() method without
any parameters, and it will return the object's current URL. To define a new URL, call url() with your
new URL as a parameter, like $myobject->url('www.ora.com').

$r->header($field [=> $val],...)
When called with just an HTTP header as a parameter, this method returns the current value for the
header. For example, $myobject->('content-type') would return the value for the object's Content-
type header. To define a new header value, invoke header() with an associative array with header
=> value pairs, where the value is a scalar or reference to an array. For example, to define the
Content-type header, you would do this:

$r->header('Content-type' => 'text/plain')

By the way, since HTTP::Request inherits HTTP::Message, and HTTP::Message contains all the
methods of HTTP::Headers, you can use all the HTTP::Headers methods within an HTTP::Request
object. See "HTTP::Headers" later in this section.

$r->content([$content])
To get the entity-body of the request, call the content() method without any parameters, and it will
return the object's current entity-body. To define the entity-body, invoke content() with a scalar as its
first parameter. This method, by the way, is inherited from HTTP::Message.

$r->add_content($data)
Appends $data to the end of the object's current entity-body.

$r->as_string()
This returns a text version of the request, useful for debugging purposes. For example:

use HTTP::Request;

$request = new HTTP::Request 'PUT', 'http://www.ora.com/example/hi.text';
$request->header('content-length' => 2);
$request->header('content-type' => 'text/plain');
$request->content('hi');
print $request->as_string();

would look like this:

--- HTTP::Request=HASH(0x68148) ---
PUT http://www.ora.com/example/hi.text
Content-Length: 2
Content-Type: text/plain

hi

HTTP::Response

Responses from a web server are described by HTTP::Response objects. If LWP has problems fulfilling your

request, it internally generates an HTTP::Response object and fills in an appropriate response code. In the
context of web client programming, you'll usually get an HTTP::Response object from LWP::UserAgent and
LWP::RobotUA. If you plan to write extensions to LWP or a web server or proxy server, you might use
HTTP::Response to generate your own responses.

$r = new HTTP::Response ($rc, [$msg, [$header, [$content]]])
In its simplest form, an HTTP::Response object can contain just a response code. If you would like to
specify a more detailed message than "OK" or "Not found," you can specify a human-readable
description of the response code as the second parameter. As a third parameter, you can pass a
reference to an HTTP::Headers object to specify the response headers. Finally, you can also include
an entity-body in the fourth parameter as a scalar.

$r->code([$code])
When invoked without any parameters, the code() method returns the object's response code. When
invoked with a status code as the first parameter, code() defines the object's response to that value.

$r->is_info()
Returns true when the response code is 100 through 199.

$r->is_success()
Returns true when the response code is 200 through 299.

$r->is_redirect()
Returns true when the response code is 300 through 399.

$r->is_error()
Returns true when the response code is 400 through 599. When an error occurs, you might want to
use error_as_HTML() to generate an HTML explanation of the error.

$r->message([$message])
Not to be confused with the entity-body of the response. This is the human-readable text that a user
would usually see in the first line of an HTTP response from a server. With a response code of 200
(RC_OK), a common response would be a message of "OK" or "Document follows." When invoked
without any parameters, the message() method returns the object's HTTP message. When invoked
with a scalar parameter as the first parameter, message() defines the object's message to the scalar
value.

$r->header($field [=> $val],...)
When called with just an HTTP header as a parameter, this method returns the current value for the
header. For example, $myobject->('content-type') would return the value for the object's Content-
type header. To define a new header value, invoke header() with an associative array of header =>
value pairs, where value is a scalar or reference to an array. For example, to define the Content-type
header, one would do this:

$r->header('content-type' => 'text/plain')

By the way, since HTTP::Response inherits HTTP::Message, and HTTP::Message contains all the
methods of HTTP::Headers, you can use all the HTTP::Headers methods within an HTTP::Response
object. See "HTTP::Headers" later in this section.

$r->content([$content])
To get the entity-body of the request, call the content() method without any parameters, and it will
return the object's current entity-body. To define the entity-body, invoke content() with a scalar as its
first parameter. This method, by the way, is inherited from HTTP::Message.

$r->add_content($data)
Appends $data to the end of the object's current entity-body.

$r->error_as_HTML()
When is_error() is true, this method returns an HTML explanation of what happened. LWP usually
returns a plain text explanation.

$r->base()
Returns the base of the request. If the response was hypertext, any links from the hypertext should be
relative to the location specified by this method. LWP looks for the BASE tag in HTML and
Content-base/Content-location HTTP headers for a base specification. If a base was not
explicitly defined by the server, LWP uses the requesting URL as the base.

$r->as_string()
This returns a text version of the response. Useful for debugging purposes. For example,

use HTTP::Response;
use HTTP::Status;

$response = new HTTP::Response(RC_OK, 'all is fine');
$response->header('content-length' => 2);
$response->header('content-type' => 'text/plain');
$response->content('hi');
print $response->as_string();

would look like this:

--- HTTP::Response=HASH(0xc8548) ---
RC: 200 (OK)
Message: all is fine

Content-Length: 2
Content-Type: text/plain

hi

$r->current_age
Returns the numbers of seconds since the response was generated by the original server. This is the
current_age value as described in section 13.2.3 of the HTTP 1.1 spec 07 draft.

$r->freshness_lifetime
Returns the number of seconds until the response expires. If expiration was not specified by the
server, LWP will make an informed guess based on the Last-modified header of the response.

$r->is_fresh
Returns true if the response has not yet expired. Returns true when (freshness_lifetime >
current_age).

$r->fresh_until
Returns the time when the response expires. The time is based on the number of seconds since
January 1, 1970, UTC.

HTTP::Headers

This module deals with HTTP header definition and manipulation. You can use these methods within
HTTP::Request and HTTP::Response.

$h = new HTTP::Headers([$field => $val],...)
Defines a new HTTP::Headers object. You can pass in an optional associative array of header =>
value pairs.

$h->header($field [=> $val],...)
When called with just an HTTP header as a parameter, this method returns the current value for the
header. For example, $myobject->('content-type') would return the value for the object's Content-type
header. To define a new header value, invoke header() with an associative array of header => value
pairs, where the value is a scalar or reference to an array. For example, to define the Content-type
header, one would do this:

$h->header('content-type' => 'text/plain')

$h->push_header($field, $val)
Appends the second parameter to the header specified by the first parameter. A subsequent call to
header() would return an array. For example:

 $h->push_header(Accept => 'image/jpeg');

$h->remove_header($field,...)
Removes the header specified in the parameter(s) and the header's associated value.

HTTP::Status

This module provides functions to determine the type of a response code. It also exports a list of mnemonics
that can be used by the programmer to refer to a status code.

is_info()
Returns true when the response code is 100 through 199.

is_success()
Returns true when the response code is 200 through 299.

is_redirect()
Returns true when the response code is 300 through 399.

is_client_error()
Returns true when the response code is 400 through 499.

is_server_error()
Returns true when the response code is 500 through 599.

is_error()
Returns true when the response code is 400 through 599. When an error occurs, you might want to
use error_as_HTML() to generate an HTML explanation of the error.

There are some mnemonics exported by this module. You can use them in your programs. For example, you

could do something like:

if ($rc = RC_OK) {....}

Here are the mnemonics:

RC_CONTINUE (100) RC_NOT_FOUND (404)

RC_SWITCHING_PROTOCOLS (101) RC_METHOD_NOT_ALLOWED (405)

RC_OK (200) RC_NOT_ACCEPTABLE (406)

RC_CREATED (201)
RC_PROXY_AUTHENTICATION_REQUIRED
(407)

RC_ACCEPTED (202) RC_REQUEST_TIMEOUT (408)

RC_NON_AUTHORITATIVE_INFORMATION
(203)

RC_CONFLICT (409)

RC_NO_CONTENT (204) RC_GONE (410)

RC_RESET_CONTENT (205) RC_LENGTH_REQUIRED (411)

RC_PARTIAL_CONTENT (206) RC_PRECONDITION_FAILED (412)

RC_MULTIPLE_CHOICES (300) RC_REQUEST_ENTITY_TOO_LARGE (413)

RC_MOVED_PERMANENTLY (301) RC_REQUEST_URI_TOO_LARGE (414)

RC_MOVED_TEMPORARILY (302) RC_UNSUPPORTED_MEDIA_TYPE (415)

RC_SEE_OTHER (303) RC_INTERNAL_SERVER_ERROR (500)

RC_NOT_MODIFIED (304) RC_NOT_IMPLEMENTED (501)

RC_USE_PROXY (305) RC_BAD_GATEWAY (502)

RC_BAD_REQUEST (400) RC_SERVICE_UNAVAILABLE (503)

RC_UNAUTHORIZED (401) RC_GATEWAY_TIMEOUT (504)

RC_PAYMENT_REQUIRED (402) RC_HTTP_VERSION_NOT_SUPPORTED (505)

RC_FORBIDDEN (403)

See the section "Server Response Codes" in Chapter 3 for more information.

HTTP::Date

The HTTP::Date module is useful when you want to process a date string.

time2str([$time])
Given the number of seconds since machine epoch,[3] this function generates the equivalent time as
specified in RFC 1123, which is the recommended time format used in HTTP. When invoked with no
parameter, the current time is used.

str2time($str [, $zone])
Converts the time specified as a string in the first parameter into the number of seconds since epoch.
This function recognizes a wide variety of formats, including RFC 1123 (standard HTTP), RFC 850,
ANSI C asctime(), common log file format, UNIX "ls -l", and Windows "dir", among others. When a
time zone is not implicit in the first parameter, this function will use an optional time zone specified
as the second parameter, such as "-0800" or "+0500" or "GMT". If the second parameter is omitted
and the time zone is ambiguous, the local time zone is used.

The HTML Module

The HTML module provides an interface to parse HTML into an HTML parse tree, traverse the tree, and
convert HTML to other formats. There are eleven classes in the HTML module, as shown in Figure 5-4.

Figure 5-4.Structure of the HTML module

Within the scope of this book, we're mostly interested in parsing the HTML into an HTML syntax tree,
extracting links, and converting the HTML into text or PostScript. As a warning, chances are that you will
need to explicitly do garbage collection when you're done with an HTML parse tree.[4]

HTML::Parse (superceded by HTML::Parser after LWP 5.2.2.)

parse_html($html, [$obj])
Given a scalar variable containing HTML as a first parameter, this function generates an HTML
syntax tree and returns a reference to an object of type HTML::TreeBuilder. When invoked with an
optional second parameter of type HTML::TreeBuilder,[5] the syntax tree is constructed with that
object, instead of a new object. Since HTML::TreeBuilder inherits HTML::Parser and
HTML::Element, methods from those classes can be used with the returned HTML::TreeBuilder
object.

parse_htmlfile($file, [$obj])
Same as parse_html(), except that the first parameter is a scalar containing the location of a file
containing HTML.

With both parse_html() and parse_htmlfile(), you can customize some of the parsing behavior with some
flags:

$HTML::Parse::IMPLICIT_TAGS
Assumes certain elements and end tags when not explicitly mentioned in the HTML. This flag is on
by default.

$HTML::Parse::IGNORE_UNKNOWN
Ignores unknown tags. On by default.

$HTML::Parse::IGNORE_TEXT
Ignores the text content of any element. Off by default.

$HTML::Parse::WARN
Calls warn() when there's a syntax error. Off by default.

HTML::Element

The HTML::Element module provides methods for dealing with nodes in an HTML syntax tree. You can get
or set the contents of each node, traverse the tree, and delete a node. We'll cover delete() and extract_links(
).

$h->delete()
Deallocates any memory used by this HTML element and any children of this element.

$h->extract_links([@wantedTypes])
Returns a list of hyperlinks as a reference to an array, where each element in the array is another
array. The second array contains the hyperlink text and a reference to the HTML::Element that
specifies the hyperlink. If invoked with no parameters, extract_links() will extract any hyperlink it
can find. To specify certain types of hyperlinks, one can pass in an array of scalars, where the scalars
are: body, base, a, img, form, input, link, frame, applet, and area.

For example:

use HTML::Parse; $html=' ';
$tree=HTML::Parse::parse_html($html); $link_ref = $tree->extract_links(
); @link = @$link_ref; # dereference the array reference for ($i=0; $i
<= $#link; $i++) { print "$link[$i][0]\n"; }

prints out:

dot.gif dot2.gif

HTML::FormatText

The HTML::FormatText module converts an HTML parse tree into text.

$formatter = new HTML::FormatText
Creates a new HTML::FormatText object.

$formatter->format($html)
Given an HTML parse tree, as returned by HTML::Parse::parse_html(), this method returns a text
version of the HTML.

HTML::FormatPS

The HTML::FormatPS module converts an HTML parse tree into PostScript.

$formatter = new HTML::FormatPS(parameter, ...)
Creates a new HTML::FormatPS object with parameters of PostScript attributes. Each attribute is an
associative array. One can define the following attributes:

PaperSize
Possible values of 3, A4, A5, B4, B5, Letter, Legal, Executive, Tabloid, Statement, Folio, 10x14, and
Quarto. The default is A4.[6]

PaperWidth
Width of the paper in points.

PaperHeight
Height of the paper in points.

LeftMargin
Left margin in points.

RightMargin
Right margin in points.

HorizontalMargin
Left and right margin. Default is 4 cm.

TopMargin
Top margin in points.

BottomMargin
Bottom margin in points.

VerticalMargin
Top and bottom margin. Default is 2 cm.

PageNo
Boolean value to display page numbers. Default is 0 (off).

FontFamily
Font family to use on the page. Possible values are Courier, Helvetica and Times. Default is Times.

FontScale
Scale factor for the font.

Leading
Space between lines, as a factor of the font size. Default is 0.1.

For example, you could do:

$formatter = new HTML::FormatPS('papersize' => 'Letter');

$formatter->format($html);
Given an HTML syntax tree, returns the HTML representation as a scalar with PostScript content.

The URI Module

The URI module contains functions and modules to specify and convert URIs. (URLs are a type of URI.)
There are only two classes within the URI module, as shown in Figure 5-5.

Figure 5-5.Structure of the URI module

We'll talk about escaping and unescaping URIs, as well as specifying URLs in the URI::URL module.

URI::Escape

uri_escape($uri, [$escape])
Given a URI as the first parameter, returns the equivalent URI with certain characters replaced with
% followed by two hexadecimal digits. The first parameter can be a text string, like
"http://www.ora.com", or an object of type URI::URL. When invoked without a second parameter,
uri_escape() escapes characters specified by RFC 1738. Otherwise, one can pass in a regular
expression (in the context of []) of characters to escape as the second parameter. For example:

$escaped_uri = uri_escape($uri, 'aeiou')

escapes all lowercase vowels in $uri and returns the escaped version. You might wonder why one
would want to escape certain characters in a URI. Here's an example: If a file on the server happens to
contain a question mark, you would want to use this function to escape the question mark in the URI
before sending the request to the server. Otherwise, the question mark would be interpreted by the
server to be a query string separator.

uri_unescape($uri)

Substitutes any instance of % followed by two hexadecimal digits back into its original form and
returns the entire URI in unescaped form.

URI::URL

new URI::URL($url_string [, $base_url])
Creates a new URI::URL object with the URL given as the first parameter. An optional base URL can
be specified as the second parameter and is useful for generating an absolute URL from a relative
URL.

URI::URL::strict($bool)
When set, the URI::URL module calls croak() upon encountering an error. When disabled, the
URI::URL module may behave more gracefully. The function returns the previous value of strict().

$url->base ([$base])
Gets or sets the base URL associated with the URL in this URI::URL object. The base URL is useful
for converting a relative URL into an absolute URL.

$url->abs([$base, [$allow_scheme_in_relative_urls]])
Returns the absolute URL, given a base. If invoked with no parameters, any previous definition of the
base is used. The second parameter is a Boolean that modifies abs()'s behavior. When the second
parameter is nonzero, abs() will accept a relative URL with a scheme but no host, like
"http:index.html". By default, this is off.

$url->rel($base)
Given a base as a first parameter or a previous definition of the base, returns the current object's URL
relative to the base URL.

$url->crack()
Returns an array with the following data:

(scheme, user, password, host, port, epath, eparams, equery, frag)

$url->scheme([$scheme])
When invoked with no parameters, this returns the scheme in the URL defined in the object. When
invoked with a parameter, the object's scheme is assigned to that value.

$url->netloc()
When invoked with no parameters, this returns the network location for the URL defined in the
object. The network location is a string composed of "user:password@host:port", where user,
password, and port may be omitted when not defined. When netloc() is invoked with a parameter, the
object's network location is defined to that value. Changes to the network location are reflected in the
user(), password(), host(), and port() method.

$url->user()
When invoked with no parameters, this returns the user for the URL defined in the object. When
invoked with a parameter, the object's user is assigned to that value.

$url->password()
When invoked with no parameters, this returns the password in the URL defined in the object. When
invoked with a parameter, the object's password is assigned to that value.

$url->host()
When invoked with no parameters, this returns the hostname in the URL defined in the object. When

invoked with a parameter, the object's hostname is assigned to that value.

$url->port()
When invoked with no parameters, this returns the port for the URL defined in the object. If a port
wasn't explicitly defined in the URL, a default port is assumed. When invoked with a parameter, the
object's port is assigned to that value.

$url->default_port()
When invoked with no parameters, this returns the default port for the URL defined in the object. The
default port is based on the scheme used. Even if the port for the URL is explicitly changed by the
user with the port() method, the default port is always the same.

$url->epath()
When invoked with no parameters, this returns the escaped path of the URL defined in the object.
When invoked with a parameter, the object's escaped path is assigned to that value.

$url->path()
Same as epath() except that the path that is set/returned is not escaped.

$url->eparams()
When invoked with no arguments, this returns the escaped parameter of the URL defined in the
object. When invoked with an argument, the object's escaped parameter is assigned to that value.

$url->params()
Same as eparams() except that the parameter that is set/returned is not escaped.

$url->equery()
When invoked with no arguments, this returns the escaped query string of the URL defined in the
object. When invoked with an argument, the object's escaped query string is assigned to that value.

$url->query()
Same as equery() except that the parameter that is set/returned is not escaped.

$url->frag()
When invoked with no arguments, this returns the fragment of the URL defined in the object. When
invoked with an argument, the object's fragment is assigned to that value.

$url->full_path()
Returns a string consisting of the escaped path, escaped parameters, and escaped query string.

$url->eq($other_url)
Returns true when the object's URL is equal to the URL specified by the first parameter.

$url->as_string()
Returns the URL as a scalar string. All defined components of the URL are included in the string.

Using LWP

Let's try out some LWP examples and glue a few functions together to produce something useful. First, let's
revisit a program from the beginning of the chapter:

#!/usr/local/bin/perl
use LWP::Simple;

print (get ($ARGV[0]));

Because this is a short and simple example, there isn't a whole lot of flexibility here. For example, when
LWP::Simple::get() fails, it doesn't give us a status code to use to figure out what went wrong. The program
doesn't identify itself with the User-Agent header, and it doesn't support proxy servers. Let's change a few
things.

Using LWP::UserAgent

LWP::UserAgent has its advantages when compared to LWP::Simple. With only a few more lines of code,
one can follow HTTP redirections, authenticate requests, use the User-Agent and From headers, set a
timeout, and use a proxy server. For the remainder of this chapter, we'll experiment with various aspects of
LWP::UserAgent to show you how everything fits together.

First, let's convert our LWP::Simple program into something that uses LWP::UserAgent:

use LWP::UserAgent;
use HTTP::Request;
use HTTP::Response;

my $ua = new LWP::UserAgent;

my $request = new HTTP::Request('GET', $ARGV[0]);
my $response = $ua->request($request);
if ($response->is_success) {
 print $response->content;
} else {
 print $response->error_as_HTML;
}

Save this program as hcat_plain. Now let's run it:

% hcat_plain http://www.ora.com/

By converting to LWP::UserAgent, we've instantly gained the ability to report error messages and follow a
URL redirection. Let's go through the code line by line, just to make sure you see how the different objects
interact.

First, we include the modules that we plan to use in our program:

use LWP::UserAgent;
use HTTP::Request;
use HTTP::Response;

Then we create a new LWP::UserAgent object:

my $ua = new LWP::UserAgent;

We construct an HTTP request by creating a new HTTP::Request object. Within the constructor, we define
the HTTP GET method and use the first argument ($ARGV[0]) as the URL to get:

my $request = new HTTP::Request('GET', $ARGV[0]);

We pass the HTTP::Request object to $ua's request() method. In other words, we're passing an
HTTP::Request object to the LWP::UserAgent->request() method, where $ua is an instance of
LWP::UserAgent. LWP::UserAgent performs the request and fetches the resource specified by $ARGV [0].
It returns a newly created HTTP::Response object, which we store in $response:

my $response = $ua->request($request);

We examine the HTTP response code with HTTP::Response->is_success() by calling the is_success()
method from the $response object. If the request was successful, we use HTTP::Response::content() by
invoking $response's content() method to retrieve the entity-body of the response and print it out. Upon
error, we use HTTP::Response::error_as_HTML by invoking $response's error_as_HTML() method to print
out an error message as HTML.

In a nutshell, we create a request with an HTTP::Request object. We pass that request to LWP::UserAgent's
request method, which does the actual request. It returns an HTTP::Response object, and we use methods in
HTTP::Response to determine the response code and print out the results.

Adding Proxy Server Support

Let's add some more functionality to the previous example. In this case, we'll add support for a proxy server.
A proxy server is usually used in firewall environments, where the HTTP request is sent to the proxy server,
and the proxy server forwards the request to the real web server. If your network doesn't have a firewall, and
you don't plan to have proxy support in your programs, then you can safely skip over this part now and come
back when you eventually need it.

To show how flexible the LWP library is, we've added only two lines of code to the previous example, and
now the web client knows that it should use the proxy at proxy.ora.com at port 8080 for HTTP requests, but
to avoid using the proxy if the request is for a web server in the ora.com domain:

use LWP::UserAgent;
use HTTP::Request;
use HTTP::Response;

my $ua = new LWP::UserAgent;

$ua->proxy('http', 'http://proxy.ora.com:8080/');
$ua->no_proxy('ora.com');

my $request = new HTTP::Request('GET', $ARGV[0]);
my $response = $ua->request($request);
if ($response->is_success) {
 print $response->content;
} else {
 print $response->error_as_HTML;
}

The invocation of this program is exactly the same as the previous example. If you downloaded this program
from the O'Reilly web site, you could then use it like this:

% hcat_proxy http://www.ora.com/

Adding Robot Exclusion Standard Support

Let's do one more example. This time, let's add support for the Robot Exclusion Standard. As discussed in

the LWP::RobotUA section, the Robot Exclusion Standard gives webmasters the ability to block off certain
areas of the web site from the automated "robot" type of web clients. It is arguable that the programs we've
gone through so far aren't really robots; chances are that the user invoked the program by hand and is waiting
for a reply. But for the sake of example, and to show how easy it is, let's add support for the Robot Exclusion
Standard to our previous example.

use LWP::RobotUA;
use HTTP::Request;
use HTTP::Response;

my $ua = new LWP::RobotUA('hcat_RobotUA', 'examples@ora.com');

$ua->proxy('http', 'http://proxy.ora.com:8080/');
$ua->no_proxy('ora.com');

my $request = new HTTP::Request('GET', $ARGV[0]);
my $response = $ua->request($request);
if ($response->is_success) {
 print $response->content;
} else {
 print $response->error_as_HTML;
}

Since LWP::RobotUA is a subclass of LWP::UserAgent, LWP::RobotUA contains all the methods as
LWP::UserAgent. So we replaced the use LWP::UserAgent line with use LWP::RobotUA. Instead of
declaring a new LWP::UserAgent object, we declare a new LWP::RobotUA object.

LWP::RobotUA's constructor is a little different, though. Since we're programming a web robot, the name of
the robot and the email address of the user are mandatory. So, we pass that information to the
LWP::RobotUA object through the constructor. In practice, one would determine the email address of the
client user in advance. The "examples@ora.com" is provided for illustration purposes only.

See Appendix C for more details about the Robot Exclusion Standard.

1. The Robot Exclusion Standard is currently available as an informational draft by Martijn Koster at
http://info.webcrawler.com/mak/projects/robots/norobots-rfc.txt. Also see Appendix C for more information.

2. Where method() is in the object-oriented sense, like $myobject->method('GET'), and the other method is
an HTTP method, like GET or HEAD.

3. Which is January 1, 1970, UTC on UNIX systems.

4. Since HTML syntax trees use circular references, the Perl garbage collector does not currently dispose of
the memory used by the tree. You'll have to call the delete() method for the root node in an HTML syntax
tree to manually deallocate memory used by the tree. Future versions of Perl or LWP may handle this
automatically. See online documentation at www.perl.com for up-to-date information.

5. Or a subclass of HTML::Parser, which HTML::TreeBuilder happens to be.

6. A4 is the standard paper size in Europe. Americans will probably want to change this to Letter.

Back to: Chapter Index

http://www.perl.com/
http://www.oreilly.com/openbook/webclient/index.html

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly
Open Books Project.

Chapter 6.
Example LWP Programs

In this chapter:
Simple Clients
Periodic Clients
Recursive Clients

This chapter presents LWP programs that are more robust and feature-rich than the examples shown in
previous chapters. While Chapter 5, The LWP Library, focused on teaching LWP and explained how
LWP objects fit together, this chapter shows you some sample LWP programs with more user-friendly
options and features.

We present three broad categories of web client programs:

● Simple clients--programs that perform actions for users in real time, usually with a finite list of
URLs to act upon. In this section, we present LWP versions of the hcat and hgrepurl programs that
were presented in Chapter 4, The Socket Library.

● Periodic clients--robots that perform a request repeatedly, with some delay between each request.
Periodic clients typically request the same resource over and over, or a different resource in a
predictable manner. For example, a client may request 0100.gif at 1 a.m., 0200.gif at 2 a.m, etc. A
periodic client might check some data and perform action when a condition is met. In this section,
we present a program that periodically checks the status of a Federal Express document.

● Recursive clients--robots that follow hyperlinks or other references on an HTML page. In this
section, we present a program that looks for bad links in a web site.

The boundaries between these categories are not set in stone. It is possible to write a periodic client that
also happens to be a recursive client. Or a simple client might become periodic if the document indicates
that the page should be refreshed every 15 minutes. We're not trying to classify all programs into one
category or another; these categories are given as a way to identify distinct behaviors that a client may

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/

exhibit.

The examples in this chapter all use a simple command-line interface. In Chapter 7, Graphical Examples
with Perl/Tk, we have some additional examples with a graphical interface using the Tk extension to Perl.

Simple Clients

Simple clients are programs that perform actions for users in real time, usually with a finite list of URLs to
act upon. In this section, we'll show LWP versions of the socket-based hcat and hgrepurl programs that
were presented in Chapter 4.

Hypertext UNIX cat Revisited

As you might recall, the sockets version of hcat used the open_TCP() function to establish a connection
to a web server, and then issued an HTTP request, like "GET / HTTP/1.0". In LWP, many of the details
are hidden from the programmer. Instead of this:

open_TCP(F, $the_url[1], $the_url[2])
print F "GET $the_url[3] HTTP/1.0\n";
print F "Accept: */*\n";
print F "User-Agent: hcat/1.0\n\n";

in LWP, it can be written like this:

my $ua = new LWP::UserAgent;
$ua->agent("hcat/1.0");
my $request = new HTTP::Request("GET", $path);
my $response = $ua->request($request);

They both do the same thing; they request a document from a user-specified web server and identify
themselves in the User-Agent header. But one looks a lot cleaner than the other. Instead of using the nitty-
gritty socket code that talks directly to the web server, you merely describe to LWP what the action should
be. LWP handles it for you. Many things, like handling URL redirection or handling HTTP version
differences, will be handled automatically by LWP.

Also, the following lines in the sockets version of hcat can be replaced:

print out server's response.

 # get the HTTP response line
 $the_response=<F>;
 print $the_response if ($all || $response);

 # get the header data
 while(<F>=~ m/^(\S+):\s+(.+)/) {
 print "$1: $2\n" if ($all || $header);
 }

 # get the entity body
 if ($all || $data) {
 print while (<F>);
 }

In LWP, these lines can be written as:

my $code=$response->code;
my $desc = HTTP::Status::status_message($code);
my $headers=$response->headers_as_string;
my $body = $response->content;

if ($opt_r || $all) { print "HTTP/1.0 $code $desc\n"; }
if ($opt_H || $all) { print "$headers\n"; }
if ($opt_d || $all) { print $body; }

In addition, we've added proxy support, since it's trivial in LWP:

my $ua = new LWP::UserAgent;
$ua->agent("hcat/1.0");

If proxy server specified, define it in the User Agent object
 if (defined $proxy) {
 my $url = new URI::URL $path;
 my $scheme = $url->scheme;
 $ua->proxy($scheme, $proxy);
 }

The source in its entirety looks like this:

#!/usr/local/bin/perl -w

use strict;
use HTTP::Status;
use HTTP::Response;
use LWP::UserAgent;
use URI::URL;
use vars qw($opt_h $opt_r $opt_H $opt_d $opt_p);
use Getopt::Std;

my $url;
my $goterr;

After calling all the necessary Perl modules and declaring variables, we process command-line arguments:

getopts('hrHdp:');
my $all = !($opt_r || $opt_H || $opt_d); # all=1 when -r -H -d not set

if ($opt_h || $#ARGV==-1) { # print help text when -h or no args
 print_help();
 exit(0);
}

Then, for any string that remains as a command-like parameter, we treat it as a URL, process it, and print
out the result:

my $goterr = 0; # make sure we clear the error flag

while ($url = shift @ARGV) {

 my ($code, $desc, $headers, $body)=simple_get('GET', $url, $opt_p);
 if ($opt_r || $all) { print "HTTP/1.0 $code $desc\n"; }
 if ($opt_H || $all) { print "$headers\n"; }
 if ($opt_d || $all) { print $body; }

 $goterr |= HTTP::Status::is_error($code);
}

exit($goterr);

The print-help() routine just prints out a range line and a list of command-line options:

sub print_help {
 print <<"HELP";
usage: $0 [-hrmbp] [proxy URL] URLs

 -h help
 -r response line only
 -H HTTP header data only
 -d data from entity body
 -p use this proxy server

Example: $0 -p http://proxy:8080/ http://www.ora.com

HELP
}

The actual processing is done in a separate function, called simple_get():

sub simple_get() {

 my ($method, $path, $proxy) = @_;

Create a User Agent object
 my $ua = new LWP::UserAgent;
 $ua->agent("hcat/1.0");

If proxy server specified, define it in the User Agent object
 if (defined $proxy) {
 my $url = new URI::URL $path;
 my $scheme = $url->scheme;
 $ua->proxy($scheme, $proxy);
 }

Ask the User Agent object to request a URL.
Results go into the response object (HTTP::Reponse).

 my $request = new HTTP::Request($method, $path);
 my $response = $ua->request($request);

Parse/convert the response object for "easier reading"

 my $code=$response->code;
 my $desc = HTTP::Status::status_message($code);
 my $headers=$response->headers_as_string;

 my $body = $response->content;
 $body = $response->error_as_HTML if ($response->is_error);

 return ($code, $desc, $headers, $body);
}

Within simple_get(), an LWP::UserAgent object is created, and a proxy server is defined for the object if
one was specified to simple_get(). A new HTTP::Request object is created with the HTTP method and
path that are passed to simple_get(). The request is given to UserAgent's request() method, and an
HTTP::Response object is returned. From there, HTTP::Response::code(),
HTTP::Response::headers_as_string(), and HTTP::Response::content() are used to extract the response
information from the HTTP::Response object.

Hypertext Grep URLs Revisited

The code that does the HTTP request of hgrepurl looks very much like hcat 's. Instead of repeating that
information, let's center on another chunk of code that changed from the sockets version of hgrepurl.

In Chapter 4, the raw sockets version checked the response code and then skipped over the HTTP headers:

if not an "OK" response of 200, skip it
if ($the_response !~ m@^HTTP/\d+\.\d+\s+200\s@) {return;}

get the header data
while(<F>=~ m/^(\S+):\s+(.+)/) {
 # skip over the headers
}

In LWP, this can more easily be said with something like this:

 if ($response->code!= RC_OK) { return; }
 if ($response->content_type !~ m@text/html@) { return; }

In the process of finding URLs without the help of LWP, one would have to do something like this:

$data =~ s/<([^>]*)>//;
$in_brackets=$1;
$key='a';
$tag='href';
if ($in_brackets =~ /^\s*$key\s+/i) { # if tag matches, try parms
 if ($in_brackets =~ /\s+$tag\s*=\s*"([^"]*)"/i) {
 $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 # process the URL here
 }
}

But in LWP, this simplifies to something like this:

my $parsed_html=HTML::Parse::parse_html($data);
for (@{ $parsed_html->extract_links(qw (body img)) }) {
 my ($link) = @$_;
 # process the URL here
}

As you can see, LWP simplified a lot of the code. Let's go over hgrepurl in a little more detail:

#!/usr/local/bin/perl -w

use strict;
use HTTP::Status;
use HTTP::Response;
use LWP::UserAgent;
use URI::URL;
use HTML::Parse;
use vars qw($opt_h $opt_i $opt_l $opt_p);
use Getopt::Std;

my $url;

After calling all the necessary modules and declaring variables, there's the usual command-line processing
with getopts():

getopts('hilp:');
my $all = !($opt_i || $opt_l); # $all=1 when -i -l not set

if ($opt_h || $#ARGV==-1) { # print help text when -h or no args
 print_help();
 exit(0);
}

Any remaining command-line arguments are treated as URLs and passed to get_html():

while ($url = shift @ARGV) {

 my ($code, $type, $data) = get_html($url, $opt_p, $opt_i, $opt_l);
 if (not_good($code, $type)) { next; }
 if ($opt_i || $all) { print_images($data, $url); }
 if ($opt_l || $all) { print_hyperlinks($data, $url); }

} # while there are URLs on the command line

As in hcat, print_help() displays a help message:

sub print_help {
 print << "HELP";
usage: $0 [-hilp] [proxy URL] URLs

 -h help
 -i grep out images references only
 -l grep out hyperlink references only
 -p use this proxy server

Example: $0 -p http://proxy:8080/ http://www.ora.com

HELP
}

The get_html() routine is defined next. The response of get_html() is the response code, content type, and
entity-body of the reply.

sub get_html() {
 my($url, $proxy, $want_image, $want_link) = @_;

Create a User Agent object
 my $ua = new LWP::UserAgent;
 $ua->agent("hgrepurl/1.0");

If proxy server specified, define it in the User Agent object
 if (defined $proxy) {
 my $proxy_url = new URI::URL $url;
 $ua->proxy($proxy_url->scheme, $proxy);
 }

Ask the User Agent object to request a URL.
Results go into the response object (HTTP::Reponse).

 my $request = new HTTP::Request('GET', $url);
 my $response = $ua->request($request);

 return ($response->code, $response->content_type,
 $response->content);
}

The not_good() routine tells us if the document that was returned was HTML, since the program doesn't
really make sense otherwise:

returns 1 if the request was not OK or HTML, else 0

sub not_good {
 my ($code, $type) = @_;

 if ($code != RC_OK) {
 warn("$url had response code of $code");
 return 1;
 }

 if ($type !~ m@text/html@) {
 warn("$url is not HTML.");
 return 1;
 }
 return 0;
}

The print-images() and print-hyperlinks() routines display any links found in the document:

sub print_images {

 my ($data, $model) = @_;

 my $parsed_html=HTML::Parse::parse_html($data);
 for (@{ $parsed_html->extract_links(qw (body img)) }) {
 my ($link) = @$_;
 my ($absolute_link) = globalize_url($link, $model);
 print "$absolute_link\n";
 }
 $parsed_html->delete(); # manually do garbage collection
}

sub print_hyperlinks {

 my ($data, $model) = @_;

 my $parsed_html=HTML::Parse::parse_html($data);
 for (@{ $parsed_html->extract_links(qw (a)) }) {
 my ($link) = @$_;
 my ($absolute_link) = globalize_url($link, $model);
 print "$absolute_link\n";
 }
 $parsed_html->delete(); # manually do garbage collection
}

Finally, the globalize_url() function returns the absolute URL version of a relative URL.

sub globalize_url() {

 my ($partial, $model) = @_;
 my $url = new URI::URL($partial, $model);
 my $globalized = $url->abs->as_string;

 return $globalized;
}

Periodic Clients

The Federal Express checker program, or FedEx, is very much like the previous program, hgrepurl.
They're similar because they both look at the entity-body and attempt to find some useful information in it.
While hgrepurl merely prints out any URLs that it finds, the FedEx program looks for a certain phrase
followed by a colon (:) followed by more text. After shipping out a few documents and watching the
HTML that corresponds to each, we've noticed the following pattern:

1. When a document is delivered, the text "Delivered To : " shows up in the entity-body and is
followed by the name of the recipient of the document.

2. For some reason, when the document is delivered, the "Delivered To : " is sometimes blank, but the
"Delivery Time : " field is filled in.

3. If the tracking information isn't ready, or if the requested information doesn't exist, there isn't a
"Delivered To : " field at all. In this case, there's a descriptive error message between the <!--

BEGIN TRACKING INFORMATION --> and <!-- END TRACKING INFORMATION -->
tags in the response.

4. If "Delivered To : " shows up in the reply (with or without text after the colon), the query was
successful but the document is not at the destination yet.

5. Otherwise, the request resulted in an error.

Given all this, we wrote a FedEx package that connects to the Federal Express web site and does a query
on a periodic basis. The package is implemented as a class, so you can easily transport this to another
program, if you want. In Chapter 7, we'll show a graphical interface to this package.

For now, let's dissect the FedEx class. First, we have a constructor that accepts three parameters from the
programmer: the URL of the CGI program to use, the email address of the person using the program, and
an optional third parameter that specifies a proxy server to use. These settings are stored internally in the
newly created FedEx object as a URI::URL object and LWP::RobotUA object:

package FedEx;
sub new {

 my($class, $cgi_url, $email, $proxy) = @_;
 my $user_agent_name = 'ORA-Check-FedEx/1.0';

 my $self = {};
 bless $self, $class;

 $self->{'url'} = new URI::URL $cgi_url;

 $self->{'robot'} = new LWP::RobotUA $user_agent_name, $email;
 $self->{'robot'}->delay(0); # we'll delay requests by hand

 if ($proxy) {
 $self->{'robot'}->proxy('http', $proxy);
 }

 $self;
}

The check() method accepts a tracking number, country string, and date as parameters. From there, a
properly encoded query string is added to the URI::URL object with a call to $self->{'url'}query(). A new
HTTP::Request() object is made with the URI::URL object as a parameter. The request is issued with the
call to $self->{'robot'}->request() and a HTTP::Response object is returned:

sub check {

 my ($self, $track_num, $country, $date) = @_;

 $self->{'url'}->query("trk_num=$track_num&dest_cntry=" .
 "$country&ship_date=$date");
 my $request = new HTTP::Request 'GET', $self->{'url'};

 my $response = $self->{'robot'}->request($request);
 $self->{'status'} = $response->code();

If the HTTP request was a success, then we can analyze the response. If the FedEx document was
delivered, the "Delivered To : " field is filled out. When this happens, the FedEx package sets a few
internal values to reflect this:

if ($response->content =~ /Delivered To : (\w.*)/) {

 # package delivered
 $self->{'who_got_it'} = $1;
 $self->{'delivered'} = 1;
}

As noted before, sometimes when the document is delivered, the "Delivered To : " field is blank, but the
"Delivery Time : " field is set:

elsif ($response->content =~ /Delivery Time : \w.*/) {

 # package delivered
 $self->{'who_got_it'} = 'left blank by FedEx computer';
 $self->{'delivered'} = 1;
}

If "Delivered To : " shows up in the reply, the query was successful but the document didn't arrive. But if
it didn't show up, there's something wrong with the request. A descriptive error message should show up
between the <!-- BEGIN TRACKING INFORMATION --> and <!-- END TRACKING
INFORMATION --> tags:

if ($response->content !~ /Delivered To : /) {
 $self->{'status'} = RC_BAD_REQUEST;

 # get explanation from HTML response
 my $START = '<!-- BEGIN TRACKING INFORMATION -->';
 my $END = '<!-- END TRACKING INFORMATION -->';

 if ($response->content =~ /$START(.*?)$END/s) {
 $self->{'error_as_HTML'} = $1;
 }
 else {
 # couldn't get explanation, use generic one
 $self->{'error_as_HTML'} = 'Unexpected HTML response from FedEx';
} # couldn't get error explanation

And then there are cases when the HTTP response didn't result in a status code of 200 (OK):

$self->{'error_as_HTML'} = $response->error_as_HTML;

That just about wraps up the FedEx package.

For the sake of being a good Object-Oriented citizen, a public interface to the FedEx object's settings are
available. The retrieve_okay() method returns true when the HTTP response code was 200. The
delivered() method returns true if the document was delivered. The who_got_it() method returns the
name of the recipient of a delivered package. Finally, the error_info() method prints out an HTML error
message.

Now that we've reviewed the important parts of the FedEx package, let's take a look at the complete
example. Note how one creates a FedEx object and calls it. We'll come back to this example and redo it as
a graphical client in Chapter 7:

#!/usr/local/bin/perl -w
use strict;

use HTML::FormatText;
use HTML::Parse;
use vars qw($opt_h $opt_a $opt_e $opt_d $opt_c $opt_p);
use Getopt::Std;

URL that handles our FedEx query
my $cgi = 'http://www.fedex.com/cgi-bin/track_it';

getopts('ha:e:d:c:p:');

print help upon request or when arguments are missing
if ($opt_h || !($opt_a && $opt_e && $opt_d && $opt_c)) {
 print_help();
 exit(0);
}

my $tracker = new FedEx $cgi, $opt_e, $opt_ p;

my $keep_checking = 1;

First, we declare local variables, call all necessary modules, get command-line options, etc.

The body of the program is just a loop that keeps checking the FedEx site until the package is delivered or
an error is found:

while ($keep_checking) {
 $tracker->check($opt_a, $opt_c, $opt_d);

 if ($tracker->retrieve_okay) {

 if ($tracker->delivered) {
 print "Tracking number $opt_a was delivered to: ",
 $tracker->who_got_it, "\n";
 $keep_checking = 0;

 }
 else {

 # request was okay, but not delivered. Let's wait
 sleep (60 * 30); # sleep 30 minutes
 }

 }
 else {

 # request not successful
 my $html_error_message = $tracker->error_info;

 my $parsed = parse_html($html_error_message);
 my $converter = new HTML::FormatText;
 print $converter->format($parsed);

 $keep_checking = 0;
 }
}

The print_help() routine prints a help message, as always:

sub print_help {

 print <<HELP
This program prints a notification when a FedEx shipment is delivered.
fedex -a 1234 -e user\@host.com -d 120396 -c U.S.A. [-p http://host:port/]

h - this help text
a - airbill number
e - your email address
d - date in MMDDYY format that document was sent
c - country of recipient
p - use this proxy server [optional]
HELP
}

Now the code we showed you previously, defining the FedEx package:

package FedEx;

use HTTP::Request;
use HTTP::Response;
use LWP::RobotUA;
use HTTP::Status;

sub new {

 my($class, $cgi_url, $email, $proxy) = @_;
 my $user_agent_name = 'ORA-Check-FedEx/1.0';

 my $self = {};
 bless $self, $class;

 $self->{'url'} = new URI::URL $cgi_url;

 $self->{'robot'} = new LWP::RobotUA $user_agent_name, $email;
 $self->{'robot'}->delay(0); # we'll delay requests by hand

 if ($proxy) {
 $self->{'robot'}->proxy('http', $proxy);
 }

 $self;
}

sub check {

 my ($self, $track_num, $country, $date) = @_;

 $self->{'url'}->query("trk_num=$track_num&dest_cntry=" .
 "$country&ship_date=$date");
 my $request = new HTTP::Request 'GET', $self->{'url'};

 my $response = $self->{'robot'}->request($request);
 $self->{'status'} = $response->code();

 if ($response->code == RC_OK) {

 if ($response->content =~ /Delivered To : (\w.*)/) {

 # package delivered
 $self->{'who_got_it'} = $1;
 $self->{'delivered'} = 1;
 }

 # Odd cases when package is delivered but "Delivered To" is blank.
 # Check for delivery time instead.

 elsif ($response->content =~ /Delivery Time : \w.*/) {

 # package delivered
 $self->{'who_got_it'} = 'left blank by FedEx computer';
 $self->{'delivered'} = 1;
 }
 else {

 # package wasn't delivered
 $self->{'delivered'} = 0;

 # if there isn't a "Delivered To : " field, something's wrong.
 # error messages seen between HTML comments

 if ($response->content !~ /Delivered To : /) {
 $self->{'status'} = RC_BAD_REQUEST;

 # get explanation from HTML response
 my $START = '<!-- BEGIN TRACKING INFORMATION -->';
 my $END = '<!-- END TRACKING INFORMATION -->';

 if ($response->content =~ /$START(.*?)$END/s) {

 $self->{'error_as_HTML'} = $1;

 }
 else {
 # couldn't get explanation, use generic one
 $self->{'error_as_HTML'} = 'Unexpected HTML response from

 FedEx';

 } # couldn't get error explanation
 } # unexpected reply
 } # not delivered yet
 } # if HTTP response of RC_OK (200)
 else {
 $self->{'error_as_HTML'} = $response->error_as_HTML;
 }

}

sub retrieve_okay {

 my $self = shift;
 if ($self->{'status'} != RC_OK) {return 0;}
 1;
}

sub delivered {

 my $self = shift;
 $self->{'delivered'};
}

sub who_got_it {

 my $self = shift;
 $self->{'who_got_it'};
}

sub error_info {

 my $self = shift;
 $self->{'error_as_HTML'};
}

Recursive Clients

Recursive clients are robots that follow hyperlinks or other references on an HTML page. In this section,
we present a program that looks for bad links in a web site. I've created a package called CheckSite that
follows links within HTML and reports various properties of each page. The constructor accepts the email
address, delay time between requests, maximum number of requests, verbose flag, and optional proxy
URL as parameters. As in the FedEx example, this creates an LWP::RobotUA object inside the CheckSite
package.

package CheckSite;
sub new {

 my ($class, $email, $delay, $max, $verbose, $proxy) = @_;
 my $self = {};
 bless $self, $class;

 # Create a User Agent object, give it a name, set delay between requests
 $self->{'ua'} = new LWP::RobotUA 'ORA_checksite/1.0', $email;
 if (defined $delay) {$self->{'ua'}->delay($delay);}

 # If proxy server specified, define it in the User Agent object
 if (defined $proxy) {
 $self->{'ua'}->proxy('http', $proxy);
 }

 $self->{'max'} = $max;
 $self->{'verbose'} = $verbose;

 $self;
}

Then the scan() method does all the real work. The scan() method accepts a URL as a parameter. In a
nutshell, here's what happens:

The scan() method pushes the first URL into a queue. For any URL pulled from the queue, any links on
that page are extracted from that page and pushed on the queue. To keep track of which URLs have
already been visited (and not to push them back onto the queue), we use an associative array called
%touched and associate any URL that has been visited with a value of 1. There are other useful variables
that are also used, to track which document points to what, the content-type of the document, which links
are bad, which links are local, which links are remote, etc.

For a more detailed look at how this works, let's step through it.

First, the initial URL is pushed onto a queue:

push (@urls , $root_url);

The URL is then checked with a HEAD method. If we can determine that the URL is not an HTML
document, we can skip it. Otherwise, we follow that with a GET method to get the HTML:

my $request = new HTTP::Request('HEAD', $url);
my $response = $self->{'ua'}->request($request);

if not HTML, don't bother to search it for URLs
next if ($response->header('Content-Type') !~ m@text/html@);

it is text/html, get the entity-body this time
$request->method('GET');
$response = $self->{'ua'}->request($request);

Then we extract the links from the HTML page. Here, we use our own function to extract the links. There
is a similar function in the LWP library that extracts links, but we opted not to use it, since it is less prone
to find links in slightly malformed HTML:

my @rel_urls = grab_urls($data);

foreach $verbose_link (@rel_urls) {
...
}

With each iteration of the foreach loop, we process one link. If we haven't seen it before, we add it to the
queue:

foreach $verbose_link (@rel_urls) {

 if (! defined $self->{'touched'}{$full_child}) {
 push (@urls, $full_child);
 }

 # remember which url we just pushed, to avoid repushing
 $self->{'touched'}{$full_child} = 1;
}

While all of this is going on, we keep track of which documents don't exist, what their content types are,
which ones are local to the web server, which are not local, and which are not HTTP-based. After scan()
finishes, all of the information is available from CheckSite's public interface. The bad() method returns an
associative array of any URLs that encountered errors. Within the associative array, one uses the URL as a
key, and the key value is a \n delimited error message. For the not_web(), local(), and remote()
methods, a similar associative array is returned, where the URL is a key in the array and denotes that the
URL is not HTTP-based, is local to the web server, or is not local to the web server, in that order. The
type() method returns an associate array of URLs, where the value of each URL hash contains the content-
type for the URL. And finally, the ref() method is an associative array of URLs with values of referring
URLs, delimited by \n. So if the URL hash of "www.ora.com" has a value of "a.ora.com" and
"b.ora.com", that means "a.ora.com" and "b.ora.com" both point to "www.ora.com".

Here's the complete source of the CheckSite package, with some sample code around it to read in
command-line arguments and print out the results:

#!/usr/local/bin/perl -w
use strict;

use vars qw($opt_a $opt_v $opt_l $opt_r $opt_R $opt_n $opt_b
 $opt_h $opt_m $opt_p $opt_e $opt_d);
use Getopt::Std;

Important variables
#----------------------------
@lookat queue of URLs to look at
%local $local{$URL}=1 (local URLs in associative array)
%remote $remote{$URL}=1 (remote URLs in associative array)
%ref $ref{$URL}="URL\nURL\n" (list of URLs separated by \n)
%touched $touched{$URL}=1 (URLs that have been visited)
%notweb $notweb{$URL}=1 if URL is non-HTTP
%badlist $badlist{$URL}="reason" (URLs that failed. Separated with \n)

getopts('avlrRnbhm:p:e:d:');

Display help upon -h, no args, or no e-mail address

if ($opt_h || $#ARGV == -1 || (! $opt_e)) {
 print_help();
 exit(-1);

}

set maximum number of URLs to visit to be unlimited

my ($print_local, $print_remote, $print_ref, $print_not_web,
 $print_bad, $verbose, $max, $proxy,
 $email, $delay, $url);

$max=0;

if ($opt_l) {$print_local=1;}
if ($opt_r) {$print_remote=1;}
if ($opt_R) {$print_ref=1;}
if ($opt_n) {$print_not_web=1;}
if ($opt_b) {$print_bad=1;}
if ($opt_v) {$verbose=1;}
if (defined $opt_m) {$max=$opt_m;}
if ($opt_ p) {$proxy=$opt_p;}
if ($opt_e) {$email=$opt_e;}
if (defined $opt_d) {$delay=$opt_d;}
if ($opt_a) {
 $print_local=$print_remote=$print_ref=$print_not_web=$print_bad = 1;
}

my $root_url=shift @ARGV;

if there's no URL to start with, tell the user
unless ($root_url) {
 print "Error: need URL to start with\n";
 exit(-1);
}

if no "output" options are selected, make "print_bad" the default
if (!($print_local || $print_remote || $print_ref ||
 $print_not_web || $print_bad)) {
 $print_bad=1;
}

create CheckSite object and tell it to scan the site
my $site = new CheckSite($email, $delay, $max, $verbose, $proxy);
$site->scan($root_url);

done with checking URLs. Report results

print out references to local machine
if ($print_local) {
 my %local = $site->local;

 print "\nList of referenced local URLs:\n";
 foreach $url (keys %local) {
 print "local: $url\n";
 }
}

print out references to remote machines
if ($print_remote) {
 my %remote = $site->remote;

 print "\nList of referenced remote URLs:\n";
 foreach $url (keys %remote) {
 print "remote: $url\n";
 }
}

print non-HTTP references
if ($print_not_web) {
 my %notweb = $site->not_web;

 print "\nReferenced non-HTTP links:\n";
 foreach $url (keys %notweb) {
 print "notweb: $url\n";
 }
}

print reference list (what URL points to what)
if ($print_ref) {
 my $refer_by;
 my %ref = $site->ref;

 print "\nReference information:\n";
 while (($url,$refer_by) = each %ref) {
 print "\nref: $url is referenced by:\n";
 $refer_by =~ s/\n/\n /g; # insert two spaces after each \n
 print " $refer_by";
 }
}

print out bad URLs, the server response line, and the Referer
if ($print_bad) {
 my $reason;
 my $refer_by;
 my %bad = $site->bad;
 my %ref = $site->ref;

 print "\nThe following links are bad:\n";
 while (($url,$reason) = each %bad) {
 print "\nbad: $url Reason: $reason";
 print "Referenced by:\n";
 $refer_by = $ref{$url};
 $refer_by =~ s/\n/\n /g; # insert two spaces after each \n
 print " $refer_by";
 } # while there's a bad link
} # if bad links are to be reported

sub print_help() {
 print <<"USAGETEXT";

Usage: $0 URL\n
Options:
 -l Display local URLs
 -r Display remote URLs
 -R Display which HTML pages refers to what
 -n Display non-HTML links
 -b Display bad URLs (default)
 -a Display all of the above
 -v Print out URLs when they are examined
 -e email Mandatory: Specify email address to include
 in HTTP request.
 -m # Examine at most # URLs\n
 -p url Use this proxy server
 -d # Delay # minutes between requests. (default=1)
 Warning: setting # to 0 is not very nice.
 -h This help text

Example: $0 -e me\@host.com -p http://proxy/ http://site_to_check/
USAGETEXT
 }

package CheckSite;

use HTTP::Status;
use HTTP::Request;
use HTTP::Response;
use LWP::RobotUA;
use URI::URL;

sub new {

 my ($class, $email, $delay, $max, $verbose, $proxy) = @_;
 my $self = {};
 bless $self, $class;

 # Create a User Agent object, give it a name, set delay between requests
 $self->{'ua'} = new LWP::RobotUA 'ORA_checksite/1.0', $email;
 if (defined $delay) {$self->{'ua'}->delay($delay);}

 # If proxy server specified, define it in the User Agent object
 if (defined $proxy) {
 $self->{'ua'}->proxy('http', $proxy);
 }

 $self->{'max'} = $max;
 $self->{'verbose'} = $verbose;

 $self;
}

sub scan {

 my ($self, $root_url) = @_;
 my $verbose_link;
 my $num_visited = 0;
 my @urls;

 # clear out variables from any previous call to scan()
 undef %{ $self->{'bad'} };
 undef %{ $self->{'not_web'} };
 undef %{ $self->{'local'} };
 undef %{ $self->{'remote'} };
 undef %{ $self->{'type'} };
 undef %{ $self->{'ref'} };
 undef %{ $self->{'touched'} };

 my $url_strict_state = URI::URL::strict(); # to restore state later
 URI::URL::strict(1);

 my $parsed_root_url = eval { new URI::URL $root_url; };
 push (@urls , $root_url);
 $self->{'ref'}{$root_url} = "Root URL\n";

 while (@urls) { # while URL queue not empty
 my $url=shift @urls; # pop URL from queue & parse it

 # increment number of URLs visited and check if maximum is reached
 $num_visited++;
 last if (($self->{'max'}) && ($num_visited > $self->{'max'}));

 # handle verbose information
 print STDERR "Looking at $url\n" if ($self->{'verbose'});

 my $parsed_url = eval { new URI::URL $url; };

 # if malformed URL (error in eval) , skip it
 if ($@) {
 $self->add_bad($url, "parse error: $@");
 next;
 }

 # if not HTTP, skip it
 if ($parsed_url->scheme !~ /http/i) {
 $self->{'not_web'}{$url}=1;
 next;
 }

 # skip urls that are not on same server as root url
 if (same_server($parsed_url, $parsed_root_url)) {
 $self->{'local'}{$url}=1;
 } else { # remote site
 $self->{'remote'}{$url}=1;
 next; # only interested in local references
 }

 # Ask the User Agent object to get headers for the url
 # Results go into the response object (HTTP::Response).

 my $request = new HTTP::Request('HEAD', $url);
 my $response = $self->{'ua'}->request($request);

 # if response wasn't RC_OK (200), skip it
 if ($response->code != RC_OK) {
 my $desc = status_message($response->code);
 $self->add_bad($url, "${desc}\n");
 next;
 }

 # keep track of every url's content-type
 $self->{'type'}{$url} = $response->header('Content-Type');

 # if not HTML, don't bother to search it for URLs
 next if ($response->header('Content-Type') !~ m@text/html@);

 # it is text/html, get the entity-body this time
 $request->method('GET');
 $response = $self->{'ua'}->request($request);

 # if not OK or text/html... weird, it was a second ago. skip it.
 next if ($response->code != RC_OK);
 next if ($response->header('Content-Type') !~ m@text/html@);

 my $data = $response->content;
 my @rel_urls = grab_urls($data);

 foreach $verbose_link (@rel_urls) {

 my $full_child = eval {
 (new URI::URL $verbose_link, $response->base)->
 abs($response->base,1);
 };

 # if LWP doesn't recognize the child url, treat it as malformed
 if ($@) {

 # update list of bad urls, remember where it happened
 $self->add_bad($verbose_link, "unrecognized format: $@");
 $self->add_ref($verbose_link, $url);

 next;
 }
 else {

 # remove fragment in http urls
 if (($full_child->scheme() =~ /http/i)) {
 $full_child->frag(''));
 }

 # handle reference list and push unvisited links onto queue
 $self->add_ref($full_child, $url);
 if (! defined $self->{'touched'}{$full_child}) {
 push (@urls, $full_child);
 }

 # remember which url we just pushed, to avoid repushing
 $self->{'touched'}{$full_child} = 1;

 } # process valid links on page
 } # foreach url in this page
 } # while url(s) in queue

 URI::URL::strict($url_strict_state); # restore state before exiting

} # scan

sub same_server {
 my ($host1, $host2) = @_;

 my $host2_name = $host2->host;

 if ($host1->host !~ /^$host2_name$/i) {return 0;}
 if ($host1->port != $host2->port) {return 0;}

 1;
}

grab_urls($html_content) returns an array of links that are referenced
from within the html. Covers <body background>, , and <a href>.
This includes a little more functionality than the
HTML::Element::extract_links() method.
sub grab_urls {

 my ($data) = @_;
 my @urls;
 my $key;
 my $link;

 my %tags = (
 'body' => 'background',
 'img' => 'src',
 'a' => 'href'
);

 # while there are HTML tags
 skip_others: while ($data =~ s/<([^>]*)>//) {

 my $in_brackets=$1;

 foreach $key (keys %tags) {

 if ($in_brackets =~ /^\s*$key\s+/i) { # if tag matches, try parms
 if ($in_brackets =~ /\s+$tags{$key}\s*=\s*["']([^"']*)["']/i) {

 $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push @urls, $link;
 next skip_others;
 }
 # handle case when url isn't in quotes (ie:)
 elsif ($in_brackets =~ /\s+$tags{$key}\s*=\s*([^\s]+)/i) {
 $link=$1;
 $link =~ s/[\n\r]//g; # kill newlines,returns anywhere in url
 push @urls, $link;
 next skip_others;
 }
 } # if tag matches
 } # foreach <a|img|body>
 } # while there are brackets
 @urls;
}

public interface to class's internal variables

return associative array of bad urls and their error messages
sub bad {
 my $self = shift;
 %{ $self->{'bad'} };
}

return associative array of encountered urls that are not http based
sub not_web {
 my $self = shift;
 %{ $self->{'not_web'} };
}

return associative array of encountered urls that are local to the
web server that was queried in the latest call to scan()

sub local {
 my $self = shift;
 %{ $self->{'local'} };
}

return associative array of encountered urls that are not local to the
web server that was queried in the latest call to scan()

sub remote {
 my $self = shift;
 %{ $self->{'remote'} };
}

return associative array of encountered urls and their content-type
sub type {
 my $self = shift;
 %{ $self->{'type'} };
}

return associative array of encountered urls and their parent urls,

where parent urls are separated by newlines in one big string

sub ref {
 my $self = shift;
 %{ $self->{'ref'} };
}

return associative array of encountered urls. If we didn't push it
into the queue of urls to visit, it isn't here.

sub touched {
 my $self = shift;
 %{ $self->{'touched'} };
}

add_bad($child, $parent)
This keeps an associative array of urls, where the associated value
of each url is an error message that was encountered when
parsing or accessing the url. If error messages already exist for
the url, any additional error messages are concatenated to existing
messages.

sub add_bad {
 my ($self, $url, $msg) = @_;

 if (! defined $self->{'bad'}{$url}) {
 $self->{'bad'}{$url} = $msg;
 }
 else {
 $self->{'bad'}{$url} .= $msg;
 }
}

add_ref($child, $parent)
This keeps an associative array of urls, where the associated value
of each url is a string of urls that refer to it. So if
url 'a' and 'b' refer to url 'c', then $self->{'ref'}{'c'}
would have a value of 'a\nb\n'. The newline separates parent urls.

sub add_ref {

 my ($self, $child, $parent) = @_;

 if (! defined $self->{'ref'}{$child}) {
 $self->{'ref'}{$child} = "$parent\n";
 }
 elsif ($self->{'ref'}{$child} !~ /$parent\n/) {
 $self->{'ref'}{$child} .= "$parent\n";
 }fo

}

In the following chapter, we'll do a few more examples, this time graphical examples using the Tk
extension to Perl.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online through the O'Reilly Open Books
Project.

Chapter 7.
Graphical Examples with Perl/Tk

In this chapter:
A Brief Introduction to Tk
A Dictionary Client: xword
Check on Package Delivery: Track
Check if Servers Are up: webping

The Tk extension to Perl can be used to create a Graphical User Interface (GUI) to your Perl programs on UNIX. Why
would you want to do this? Several reasons, such as ease of use, or to be able to display HTML nicely. Instead of just
writing a "cool script," you could go as far as writing your own custom browser.

In this chapter, we show a few examples of Tk-based web clients, which go beyond the command-line interface that
we've been using so far in this book:[1]

● xword, a dictionary client

● track, a graphical version of the FedEx example shown in Chapter 6.

● webping, an at-a-glance display of the status of multiple web servers

One caveat about Tk, and it's a serious one. At this writing, the Tk module to Perl (also known as pTk) only runs on
UNIX machines with the X Window System. While the Tk extension to the Tcl language has been successfully ported
to Microsoft Windows, the Perl port is still pending, although it is rumored to be in the works.

Still, even with its limited availability, we think the ability to give your programs an easy-to-use graphical interface is
important enough to devote a chapter to it. And who knows--by the time you're reading this, the pTk port to Windows
might already be completed, and this whole paragraph may be moot.

A Brief Introduction to Tk

Tk was originally developed by John Ousterhout as an extension to his Tcl language, for providing a graphical user
interface for the X Window System. It was ported to Perl soon afterwards; Nick Ing-Simmons did most of the work to
make it functional as a module with Perl. You can get Tk from any CPAN archive (http://www.perl.com/CPAN/).

The Tk extension provides an easy way to draw a window, put widgets into it (such as buttons, check boxes, entry

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://www.oreilly.com/openbooks/
http://www.perl.com/CPAN/

fields, menus, etc.), and have them perform certain actions based on user input. A simple "Hello World" program would
look like this:

1 #!/usr/bin/perl -w
2 use Tk;
3 my $mw = MainWindow->new;
4 $mw->Button(-text => "Hello World!", -command =>sub{exit})->pack;
5 MainLoop;

(The line numbers are not part of the actual code; they are just included for ease in reference.)

When you run it, it would look like Figure 7-1.

Figure 7-1.A simple Tk widget

Pushing the "Hello World" button will exit the program, and your window will then go away. Line 1 tells the shell to
invoke Perl to interpret the rest of the file, and Line 2 then tells Perl that we need to use the Tk module. Line 3 tells the
system that you want it to build you a generic, standard window. Line 4 creates a button, displays it (using the pack
method), and gives the button something to do when pushed.

Line 5 tells the program to "go do it." MainLoop kicks off the event handler for the graphical interface. The most
important concept to understand with Perl/Tk is that the program won't do a single thing until it hits the MainLoop
statement. You won't see any graphical output at all until then. We prepare it by telling it what we want to draw, and
what should happen when certain events happen, such as a mouse click on our button in our "Hello World" program.
The more complex the things you want the GUI to do, the more complex the code looks for setting it up.

Since the purpose of this chapter is to show some examples using Tk and to interact with the WWW, we won't be going
into much more detail about what Tk does and why. Some places you might look for help are the newsgroup
comp.lang.perl.tk for Perk/Tk-specific questions, or the Perl/Tk FAQ at
http://w4.lns.cornell.edu/~pvhp/ptk/ptkFAQ.html. Any search site will point you to at least 30 web sites as well. And of
course the Tk source includes "pod" documentation: run pod2text on Tk.pm to get started.

Before we continue, there a few odd things you need to know about Perl/Tk:

● => is functionally the same as a comma (,). Using => makes it easier to detect "pairs" of items in a list.

● Widgets are always built referencing another part of the GUI, if not the main window (in our examples, $mw),
then another widget or frame. This builds the parent/child hierarchy and allows the packer to know what to pack
where.

● The pack() method essentially displays the widget on the screen, according to any parameters sent to it.
Alternately, it could un-display it as well. If you don't pack() a widget, it won't show up.

Now on to some examples.

A Dictionary Client: xword

For our first example, we want to build a simple application that has only a few types of widgets in it. The xword
program will prompt the user for a word, then use an online dictionary to define it, and return the formatted results.

When you need a quick word definition, instead of running a web browser (which can often have a lengthy startup time

with all those fancy plug-ins), surfing to the site via a bookmark, and then entering the word to get your answer, you
can use this simple program that will just prompt for the word and go look it up without all that extra hassle. Anyone
familiar with the xwebster client for the X Window System will find xword to be vaguely familiar, but our version
doesn't require a local licensed dictionary server; we use one already existing on the Web. Since the program is so
simple, you can probably just iconify it, and then bring it back up whenever you're stumped for the spelling or meaning
of another word.

So in designing our window, we want a place to enter the word, and a place to display the results. We also need to be
able to exit the program (always a must). It seems pretty simple, until we remember that the definition information sent
back to us is going to come back in HTML. I really don't want to have to visually dig through a bunch of HTML codes
to find out the answer I'm looking for, so I want my program to handle that as well when it displays the answer. We
have two options: ignore the HTML codes completely or find a simple way to parse them and make the output look a
little nicer.

Luckily, the HTML module distributed with LWP will do most of the work for us. As described in Chapter 5, The LWP
Library, the HTML package contains a function called parse_html(), which takes a string containing HTML as its
argument, and returns a pointer to a data structure with all the HTML tags and text parsed out and remembered in order.
Now we can use another function called traverse(), which operates on this data structure and lets us specify what
function to call for each piece of information it contains.

Keeping all this in mind, let's look at our program:

#!/usr/bin/perl

use Tk;
require LWP::UserAgent;
use HTML::Parse;

We first use the #! notation to tell the kernel we'll be using Perl. We need the Tk package for the GUI interface, the
LWP::UserAgent to connect to the web site, and HTML::Parse to help us parse the results:

%html_action =
 (
 "</TITLE>", \&end_title,
 "<H1>", \&start_heading,
 "</h2>", \&end_heading,
 "<H2>", \&start_heading,
 "</H2>", \&end_heading,
 "<H3>", \&start_heading,
 "</H3>", \&end_heading,
 "<H4>", \&start_heading,
 "</H4>", \&end_heading,
 "<H5>", \&start_heading,
 "</H5>", \&end_heading,
 "<H6>", \&start_heading,
 "</H6>", \&end_heading,
 "<P>", \¶graph,
 "
", \&line_break,
 "<HR>", \&draw_line,
 "<A>", \&flush_text,
 "", \&end_link,
 "</BODY>", \&line_break,
);

In order for us not to rethink the HTML each time, we build an associative array whose key is the HTML tag we want
to take action on, and the value is a function reference. We'll cover what the functions take as arguments later on. Now,
while we are traversing the document, we can ignore any tags that aren't in our array, and perform actions on ones that
are:

$ua = new LWP::UserAgent;

$dictionary_url = "http://work.ucsd.edu:5141/cgi-bin/http_webster";

We need to set up a few basic globals, the UserAgent object being one of them. We'll use the dictionary server at UC
San Diego as the default. While other dictionary servers would probably work, slight modifications to the code might
be necessary. Now we can get on with building the actual interface:

$mw = MainWindow->new;
$mw->title("xword");
$mw->CmdLine;

So we create our window. $mw->CmdLine allows parsing of any -geometry or
-iconic command line arguments automatically:

$frame1 = $mw->Frame(-borderwidth => 2,
 -relief => 'ridge');
$frame1->pack(-side => 'top',
 -expand => 'n',
 -fill => "x");
$frame2 = $mw->Frame;
$frame2->pack(-side => 'top', -expand => 'yes', -fill => 'both');
$frame3 = $mw->Frame;
$frame3->pack(-side => 'top', -expand => 'no', -fill => 'x');

We create three frames,[2] which essentially divide our window in thirds. The top frame, $frame1, will contain the
place to type a word and the Lookup button. The middle frame, $frame2, will contain the text widget and its associated
scrollbar. $frame3 will contain a text informational display and the exit button. $frame2 is the only one that will expand
itself into any available space, making it the largest section of the window. Now, let's actually create the stuff to go in
our empty frames:

$frame1->Label(-text => "Enter Word: ")->pack(-side => "left",
 -anchor => "w");
$entry = $frame1->Entry(-textvariable => \$word,
 -width => 40);
$entry->pack(-side => "left",
 -anchor => "w",
 -fill => "x",
 -expand => "y");

$bttn = $frame1->Button(-text => "Lookup",
 -command => sub { &do_search(); });
$bttn->pack(-side => "left",
 -anchor => "w");

$entry->bind('<Return>', sub { &do_search(); });

We create a Label so we know what to type in the entry area. We then create the Entry widget where the typing of the
word will take place. We want lots of room to type, so we set it up with a default width of 40. Also note that we are
storing anything that's been entered with the Entry widget in a global variable called $word.

The last item is our Lookup button. We configure it to call the function do_search when the button is clicked. One last
refinement: we want to be able to just hit return after typing in our word, so we bind the key sequence Return to also
call the do_search() function.[3]

$scroll = $frame2->Scrollbar;
$text = $frame2->Text(-yscrollcommand => ['set', $scroll],
 -wrap => 'word',
 -font => 'lucidasans-12',
 -state => 'disabled');
$scroll->configure(-command => ['yview', $text]);
$scroll->pack(-side => 'right', -expand => 'no', -fill => 'y');

$text->pack(-side => 'left', -anchor => 'w',
 -expand => 'yes', -fill => 'both');

Next we set up the middle area of our window to hold a text widget and a scrollbar. I'm making lucidasans-12[4] the
default font for the text, but you can change this to any font you prefer. We also want our text to wrap around
automatically at word boundaries (as opposed to character boundaries). Also note that we "disable" the text widget.
This is done because the standard behavior of the text widget is to allow the user to type things into it. We want to use it
for display purposes only, so we disable it. Most of the other stuff is setting the scrollbar to scroll up and down and
assigning it to the text widget.

$frame3->Label(-textvariable => \$INFORMATION,
 -justify => 'left')->pack(-side => 'left',
 -expand => 'no',
 -fill => 'x');
$frame3->Button(-text => "Exit",
 -command => sub{exit})->pack(-side => 'right',
 -anchor => 'e');

The third portion of our window is just going to contain an information label, and the exit button. We don't have
anything to save when we quit, so we just map it directly to sub{exit}.

$text->tag('configure', '</h2>', -font => 'lucidasans-bold-24');
$text->tag('configure', '</H2>', -font => 'lucidasans-bold-18');
$text->tag('configure', '</H3>', -font => 'lucidasans-bold-14');
$text->tag('configure', '</H4>', -font => 'lucidasans-bold-12');
$text->tag('configure', '</H5>', -font => 'lucidasans-bold-12');
$text->tag('configure', '</H6>', -font => 'lucidasans-bold-12');

Our window is basically set up--but our text widget isn't completely set up yet. We need to create some "tags"
(identifiers that distinguish different portions of the text widget) to change the font when we find certain HTML tags. In
this case, they are all HTML end tags for headers. We don't want to make this too complicated, so we won't handle
many more complicated HTML tags. Note that our tag names are the same as the HTML tag names--this makes it easy
to switch back and forth later on.

$entry->focus;
MainLoop;

Finally, we set our focus on the entry widget so we can start typing a word when the application comes up. Then we call
MainLoop to start the event handler. The rest of the code gets called as certain events happen. (Remember how we told
the Lookup button to call do_search() when pressed?) So let's look at the specifics of what happens in our window.
Let's say we typed in the word "example" and hit Return. The global $word will contain the string "example", and the
do_search() function will be called:

sub do_search {
 my ($url) = @_;

 return if ($word =~ /^\s*$/);

 $url = "$dictionary_url?$word" if (! defined $url);

The do_search() function will take an optional $url argument, to give it an alternative place to connect to. Otherwise it
expects $word to contain something. We just hit Return from the entry widget, so $word contains the string "example",
and $url is undefined. If we accidentally hit Return before typing anything, we don't want to search for a nonstring, so
we return from the subroutine if that's the case:

 $INFORMATION = "Connect: $url";

 $text->configure(-cursor=> 'watch');
 $mw->idletasks;

We give the user some feedback by placing along the bottom of the application a "Connect..." string, and we also
change the cursor to a watch. $mw->idletasks just tells the window to do anything it was waiting to do, so that we can
actually see the watch and information string:

 my $request = new HTTP::Request('GET', $url);

 my $response = $ua->request($request);
 if ($response->is_error) {
 $INFORMATION = "ERROR: Could not retrieve $url";
 } elsif ($response->is_success) {
 my $html = parse_html($response->content);

 ## Clear out text item
 $text->configure(-state => "normal");

 $text->delete('1.0', 'end');
 $html->traverse(\&display_html);
 $text->configure(-state => "disabled");
 $html_text = "";
 $INFORMATION = "Done";
 }

 $text->configure(-cursor => 'top_left_arrow');
}

Next we try to connect to the $url. If we fail, the program should display a simple error message in the information area.
If we succeed, then we want to get the actual document out and parse it. $html will contain the HTML tree object. We
reconfigure the text object to "normal" so that we can place text in it,[5] delete anything that might have been there
previously, and then call traverse for the HTML object (telling traverse to call display_html for each item). After the
entire document has been traversed (we'll see what that does in a minute), we re-disable the text widget, and declare
ourselves done for that particular word lookup.

Our function, display_html, gets called with three arguments: a $node pointer, a $startflag flag, and the $depth we are
into the tree. We only care about the first two arguments, since they will help us decide what action to perform.

sub display_html {
 my ($node, $startflag, $depth) = @_;
 my ($tag, $type, $coderef); ## This tag is the HTML tag...

 if (!ref $node) {
 $html_text .= $node;
 } else {
 if ($startflag) {
 $tag = $node->starttag;
} else {
 $tag = $node->endtag;
}

Gets rid of any 'extra' stuff in the tag, and saves it
if ($tag =~ /^(<\w+)\s(.*)>/) {
 $tag = "$1>";
 $extra = $2;
}

if (exists $html_action{$tag}) {
$html_text =~ s/\s+/ /g;
 &{ $html_action{$tag} }($tag, $html_text);
 $html_text = "";
}
 }
 1;

}

That's the entire function, but it does quite a bit. The $node could either be an object or a simple text string. For the
simple case, when it's just text, we append it to any prior text (remember, we could be ignoring HTML tags, along the
way, that had text before them) and save it for future use. If $node is an object pointer, then we have to determine what
kind it is, and decide if we care about the HTML tag it's telling us about.

HTML tags usually come in pairs, so $startflag tells us when we found the first of a pair. We want to know what that
tag was, so we call the starttag method. Certain tags have other information associated with them (i.e., the <A> tag), and
we want to save that for future use in $extra. Remember that we are trying to get just the plain simple tag to use in our
lookup array.

We do a few more things to clean up, and then we can do our lookup. If we care about this $tag, then we compress all
spaces in the current text string (makes the display a little bit nicer) and call the function specified in our lookup array,
passing it $tag and $html_text. We left $extra as a global because most of our functions won't use it.

All that work was just to figure out what function to call. We could have done a big huge if..then..else statement instead
of utilizing a lookup hash, but that would have been large and unwieldy, and would also have made it more difficult to
add new tag handling functions. The following are those tag handling functions, and most of them are pretty short:

sub end_title {
 $mw->title("xword: ". $_[1]);
}

When we find the end title tag, we change our window title to reflect it (a lot like a standard web browser).

sub start_heading {
 &flush_text(@_);
 $text->insert('end', "\n\n");
}

When we start a heading, we need to delimit it from the prior text (which we insert into our text widget with the
flush_text() function) with a few returns. Note that flush_text() takes the same arguments as any of our tag handlers.
This allows us to specify it explicitly in the lookup hash if we want to:

sub end_heading {
 $text->insert('end', $_[1], $_[0]);
 $text->insert('end', "\n");
}

At the end of the heading, we insert the heading text and another return character. The third argument to the insert
function is our actual HTML tag. (In this case it could be </h2> or </H2> and so on.) This tells the text widget to use
that tag to format the text. For our headings, we set up that text tag to be a font-changing tag:

sub paragraph {
 &flush_text(@_);
 $text->insert('end', "\n\n");
}

A paragraph marker, <P>, just means insert a few returns. We also have to flush out any text prior to it:

sub line_break {
 &flush_text(@_);
 $text->insert('end', "\n");
}

Similar to <P>, the
 also just inserts a return:

sub draw_line {

 &flush_text(@_);
 $text->insert('end', "\n--------------------------------------\n");
}

The <HR> tag inserts a much nicer looking line in our normal web browser, but for our purposes, this set of dashes will
accomplish pretty much the same thing:

sub flush_text {
 $text->insert('end', $_[1]);
}

This function just inserts the text it's handed, as is:

sub end_link {
 ## Don't want to add links to mailto refs.
 if ($extra =~ /HREF\s*=\s*"(.+)"/ && $extra !~ /mailto/) {
 my $site = $1;

 ## The tags must have unique names to allow for a different
 ## binding to each one. (Otherwise we'd just be changing that same
 ## tag binding over and over again.)

 my $newtag = "LINK". $cnt++;

 $text->tag('configure', $newtag, -underline => 'true',
 -foreground => 'blue');
 $text->tag('bind', $newtag, '<Enter>',
 sub { $text->configure(-cursor => 'hand2');
 $INFORMATION = $site; });
 $text->tag('bind', $newtag, '<Leave>',
 sub { $text->configure(-cursor => 'top_left_arrow');
 $INFORMATION = "";});

 $text->tag('bind', $newtag, '<ButtonPress>',
 sub { &do_search($site); });

 $text->insert('end', $_[1], $newtag);
 } else {
 &flush_text(@_);
 }

}

Our end_link() function is the most complicated, simply because we want to handle links. If you look at the output
from our dictionary server on your normal web browser, you'll notice that almost every single piece of text it returns is
a link to look up another word. I thought it would be easier to just click on those words and do the lookup than to type
in the word again and possibly spell it wrong. We accomplish this by utilizing the text widget tags. If you want the
specific word to do something different when you click on it, you have to create a new tag--so we are creating tags on-
the-fly (unlike our heading tags, which remained the same no matter where they were in the document, or what text
they surrounded).

We use a regexp to extract the URL from our $extra variable. We create a new name for our tag. (We never have to
know what the name is again, so it's merely a place holder for the text widget.) We create our tag to change the text to
be underlined and blue, much as a link would look in a full-blown web browser. We also bind that tag to change the
cursor into a little hand when we enter the tag, and to change it back to the standard pointer when we leave that section
of text. This gives the users some good feedback on the fact that they can do something with it. We also do one other
simple thing: we display the URL in our information area so that users will know what will happen when they click.

The last bind we perform is one that tells the application to call our function, do_search(), with the URL we extracted
from the HTML tag. Then we insert the text for the link into the text widget, and associate it with the tag we just built.

Figure 7-2.xword window

There are a few other things that could be added to xword to make it even nicer. A Back button would be useful, so that
after you looked up 10 or so words, you could click on Back to take you backwards through your selections. And how
about a list of optional dictionary web servers, in case one is sometimes slow or doesn't respond? These will be left as
exercises for the reader.

Some limitations of the HTML parsing: We don't worry about nested HTML tags at all, and we don't worry about fancy
things like tables or graphics. Remember, we wanted to keep this simple.

Check on Package Delivery: Track

Web browsers are great at what they do, but what if we want to query the same page for the same information several
times in a row? We could just leave our browser up, and keep hitting "reload" n times, but we'd have to remember to do
it. A better way would be to write a small application that automatically does our query for us every few minutes.

For this example, we'll interact with the Federal Express tracking page. When you ship a package via FedEx, they keep
track of it with a shipping number (also called an airbill number)--and they have been kind enough to make available
via the Web a place for us to check up on our packages. If we look at their web page, they have a place to enter the
airbill number, a place to select the destination country, and then a place to enter the date. In order to mimic their form,
we'll want to have all of these elements in our application.

FedEx has a specific way they want you to specify the country (in all caps, and spelled a particular way), so we just
looked at their document source for the list of countries. We will put them all in a listbox, to make it easier to select
(instead of trying to guess at the spelling and/or punctuation). The tracking number is fairly easy--it's just a bunch of
numbers--so a normal entry widget will do. For the date, another entry widget. Their setup is designed to tell us if we
enter an invalid date, so we'll let them handle the error checking on that one.

Now that we know the inputs, we have to decide what to do with them. Basically we want our program to keep looping
and re-querying the site. We really don't want our program to loop unless we tell it to, and we also want to be able to
stop it from looping at any point. Here's how we accomplish this with Perl/Tk:

#!/usr/bin/perl -w
use strict;

use HTML::FormatText;
use HTML::Parse;
use Tk;

my $query_interval = 30; # in minutes

my $email = "<your email\@address here>";
my $url = "http://www.fedex.com/cgi-bin/track_it";

This is the basic beginning of a Perl/Tk script. We recognize that we want to utilize some of the HTML modules, and of
course, the Tk module. We set up some basic globals in our program. The $query_interval is in minutes--you can
change it to 60 minutes, or 15 minutes. Try not to query too often, though; the status of your package is not likely to
change every five minutes. $email is your email address. You need to put a "\" in front of the @ sign, so that it won't be
interpreted by Perl to be something it's not. This will inform the FedEx web site of who you are. Finally, the $url is the
destination where we'll be sending our request.

For this program, we are setting the amount of time it waits between loops in a variable. In our next example, we'll
show a way to allow the user to change it from the GUI.

my $mw = MainWindow->new;
$mw->title("Package Tracker");
$mw->CmdLine;

We created a window, gave it a title, and allowed the Tk portion to process any command-line options.

my @destinations =
 ("U.S.A.", "ALBANIA", "ALGERIA", "AMERICAN SAMOA ", "ANDORRA",
 "ANGOLA", "ANGUILLA", "ANTIGUA", "ARGENTINA", "ARMENIA", "ARUBA",
 "AUSTRALIA", "AUSTRIA", "AZERBAIJAN", "BAHAMAS", "BAHRAIN",
 "BANGLADESH", "BARBADOS", "BELARUS", "BELGIUM", "BELIZE", "BENIN",
 "BERMUDA", "BHUTAN", "BOLIVIA", "BOTSWANA", "BRAZIL",
 "BRITISH VIRGIN IS.", "BRUNEI", "BULGARIA", "BURKINO FASO",
 "BURUNDI", "CAMBODIA", "CAMEROON", "CANADA", "CAPE VERDE",
 "CAYMAN ISLANDS", "CENTRAL AFRICAN REP.", "CHAD", "CHILE",
 "CHINA", "COLOMBIA", "CONGO", "COOK ISLANDS", "COSTA RICA",
 "COTE D'IVOIRE", "CROATIA", "CYPRUS", "CZECH REPUBLIC", "DENMARK",
 "DJIBOUTI", "DOMINICA", "DOMINICAN REPUBLIC", "ECUADOR", "EGYPT",
 "EL SALVADOR", "EQUATORIAL GUINEA", "ERITREA", "ESTONIA",
 "ETHIOPIA", "FAEROE ISLANDS", "FIJI", "FINLAND", "FRANCE",
 "FRENCH GUIANA", "FRENCH POLYNESIA", "GABON", "GAMBIA",
 "GEORGIA, REPUBLIC OF", "GERMANY", "GHANA", "GIBRALTAR", "GREECE",
 "GREENLAND", "GRENADA", "GUADELOUPE", "GUAM", "GUATEMALA",
 "GUINEA", "GUINEA-BISSAU", "GUYANA", "HAITI", "HONDURAS",
 "HONG KONG", "HUNGARY", "ICELAND", "INDIA", "INDONESIA",
 "IRELAND", "ISRAEL", "ITALY", "JAMAICA", "JAPAN", "JORDAN",
 "KAZAKHSTAN", "KENYA", "KUWAIT", "KYRGYZSTAN", "LATVIA",
 "LEBANON", "LESOTHO", "LIBERIA", "LIECHTENSTEIN", "LITHUANIA",
 "LUXEMBOURG", "MACAU", "MACEDONIA", "MADAGASCAR", "MALAWI",
 "MALAYSIA", "MALDIVES", "MALI", "MALTA", "MARSHALL ISLANDS",
 "MARTINIQUE", "MAURITANIA", "MAURITIUS", "MEXICO", "MICRONESIA",
 "MOLDOVA", "MONACO", "MONGOLIA", "MONTSERRAT", "MOROCCO",
 "MOZAMBIQUE", "NAMIBIA", "NEPAL", "NETHERLANDS", "NEW CALEDONIA",
 "NEW ZEALAND", "NICARAGUA", "NIGER", "NIGERIA",
 "NETHERLANDS ANTILLES", "NORWAY", "OMAN", "PAKISTAN", "PALAU",
 "PANAMA", "PAPUA NEW GUINEA", "PARAGUAY", "PERU", "PHILIPPINES",
 "POLAND", "PORTUGAL", "QATAR", "REUNION ISLAND", "ROMANIA",
 "RUSSIA", "RWANDA", "SAIPAN", "SAN MARINO", "SAUDI ARABIA",
 "SENEGAL", "SEYCHELLES", "SIERRA LEONE", "SINGAPORE",
 "SLOVAK REPUBLIC", "SLOVENIA", "SOUTH AFRICA", "SOUTH KOREA",
 "SPAIN", "SRI LANKA", "ST. KITTS & NEVIS", "ST. LUCIA",
 "ST. VINCENT", "SUDAN", "SURINAME", "SWEDEN", "SWAZILAND",
 "SWITZERLAND", "SYRIA", "TAIWAN", "TANZANIA", "THAILAND", "TOGO",
 "TRINIDAD & TOBAGO", "TUNISIA", "TURKEY",
 "TURKMENISTAN, REPUBLIC OF", "TURKS & CAICOS IS.", "U.A.E.",
 "UGANDA", "UKRAINE", "UNITED KINGDOM", "URUGUAY",

 "U.S. VIRGIN ISLANDS","UZBEKISTAN", "VANUATU", "VATICAN CITY",
 "VENEZUELA", "VIETNAM", "WALLIS & FUTUNA ISLANDS", "YEMEN",
 "ZAIRE", "ZAMBIA", "ZIMBABWE");

Our destinations list is an almost exact copy of the list you'd see on the web page. For ease in using, we placed "U.S.A."
as the first item in the list, and we will select it as our default choice when we build the listbox:

my $entry_f = $mw->Frame;
$entry_f->pack(-expand => 'n', -fill => 'x');
$entry_f->Label(-text => "Airbill #: ")->pack(-side => 'left',
 -anchor => 'w',
 -expand => 'n',
 -fill => 'none');
my $airbill = "";
my $airbill_entry = $entry_f->Entry(-textvariable => \$airbill,
 -width => 10);
$airbill_entry->pack(-side => 'left',
 -anchor => 'w',
 -expand => 'y',
 -fill => 'x');

The entry for the airbill requires a label so that the user knows what sort of input is expected. The default for the $airbill
variable is blank. We save a reference to the entry widget, so that we can set the focus of the application to it right
before we enter the MainLoop :

$entry_f->Label(-text => "Date Shipped: ")->pack(-side => 'left',
 -anchor => 'w',
 -expand => 'n',
 -fill => 'none');

my %months;

my $i = 1;
foreach (qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)) {
 $months{$_} = $i++;
}

my $fulltime = localtime;

my ($month, $day, $year) = $fulltime =~
 /\w+\s(\w+)\s(\d+)\s..:..:..\s..(\d\d)$/;

$month = $months{$month};
$month = "0$month" if (length($month) < 2);
$day = "0$day" if (length($day) < 2);

my $date = "$monthdayyear";
$entry_f->Entry(-textvariable => \$date,
 -width => 6)->pack(-side => 'left',
 -anchor => 'w',
 -expand => 'n',
 -fill => 'none');

We are going to use a default of today for the date field. The FedEx web page expects it in the form of
"DayMonthYear", and digits with only one number require a leading zero. The string returned from localtime() gives
us the correct day, and we strip off the last two digits of the year. For the month we need to translate it to a number
value from 01 - 12. We do this using a %months hash, where the keys are the string of the month, and the value the
number of the month. We add leading zeros to the day and month if necessary.

my $lb_f = $mw->Frame;

$lb_f->pack(-anchor => 'n',
 -expand => 'n',
 -fill => 'x');
$lb_f->Label(-text => "Shipped To:")->pack(-side => 'left',
 -anchor => 'w');

We want a label to tell us what the listbox contains, so we create it first:

my $scroll = $lb_f->Scrollbar;
my $listbox = $lb_f->Listbox(-selectmode => 'single',
 -height => 1,
 -yscrollcommand => ['set', $scroll],
 -exportselection => 0);
$scroll->configure(-command => ['yview', $listbox]);
$scroll->pack(-side => 'right', -fill => 'y');
$listbox->pack(-side => 'left', -expand => 'yes', -fill => 'both');

$listbox->insert('end', @destinations);
$listbox->selection('set',0);

Then we create the scrollbar and the listbox, and put our @destinations in the listbox. Remember, we put the entry
"U.S.A" first in our list, so when we select the 0th element of the listbox, we get that entry selected. This is a pretty
large list, and it takes quite a while to scroll down to Zimbabwe. Although we didn't do it for our example here, you
could set up your listbox so that if you typed a letter, it would scroll to the first entry starting with that letter. Or you
could put an additional entry, and search for any word starting with those characters:

my $response_f = $mw->Frame;
$response_f->pack(-expand => 'y', -fill => 'both');

$response_f->Label(-text => "Response:")->pack(-anchor => 'w',
 -side => 'left');

my $response_txt = "";
$response_f->Label(-justify => 'left', -borderwidth => 2, -relief => 'sunken',
 -textvariable => \$response_txt)->pack(-anchor => 'w',
 -side => 'left',
 -expand => 'y',
 -fill => 'x');

To show users what happened to their package (or any errors), we build a label that displays any text in the
$response_txt variable. To change the text, we simply reset $response_txt to another text string:

my $bttn_f = $mw->Frame;
$bttn_f->pack;

$bttn_f->Button(-text => "Exit", -command => sub{exit})
 ->pack(-side =>'right', -anchor => 'e');

my $loop_bttn = $bttn_f->Button(-text => "Loop",
 -command => \&loop_query);
$loop_bttn->pack(-side => 'left', -anchor => 'w');

$bttn_f->Button(-text => "Query", -command => \&do_query)->
 pack(-side => 'left',
 -anchor => 'w');

The buttons for our track program allow us to exit the program, start the query loop, or manually do a query right now.

my $pkg_tracker = new FedEx $url, $email;
my $loop_id;

$airbill_entry->focus;

MainLoop;

One last thing before we start the MainLoop to handle the GUI interaction. (Remember, this is different from our query
loop.) We have to create a FedEx object and save a reference to it. Now when we do a query, we can utilize this
package to do the hard work for us:

 sub loop_query {
 my $bttn_text = $loop_bttn->cget(-text);
 if ($bttn_text =~ /^Loop/) {
 &do_query;
 $loop_bttn->configure(-text => "Stop");
 $loop_id = $mw->repeat($query_interval * 60000, \&do_query);
 } else {
 $loop_bttn->configure(-text => "Loop");
 $mw->after('cancel', $loop_id);
 }
}

The loop_query() subroutine gets called when the Loop button is pressed. We query the web site with the information
entered, then set up Tk to loop again in $query_interval minutes. To let the user know that a loop has been started, we
change the text on the button to say "Stop." Note that we check this text to determine whether we are starting or
stopping a loop. The $loop_id is a global outside of our sub because we need to remember it in order to cancel a loop.
For another example of this, look at our next example, webping.

sub do_query {
 $mw->configure(-cursor => 'watch');
 $mw->idletasks;

 my $dest = $listbox->get($listbox->curselection);

 $pkg_tracker->check($airbill, $dest, $date);

 if ($pkg_tracker->retrieve_okay) {

 if ($pkg_tracker->delivered) {
 $response_txt = "Tracking number $airbill was delivered to: " .
 $pkg_tracker->who_got_it;
 } else {
 $response_txt = "Package not yet delivered";
 }
 } else {
 my $parsed = parse_html($pkg_tracker->error_info);
 my $converter = new HTML::FormatText;
 $response_txt = $converter->format($parsed);
 chomp($response_txt);
 }

 $response_txt .= "\n[As of " . localtime() . "]";
 $mw->configure(-cursor => 'top_left_arrow');
 $mw->deiconify;
 $mw->bell;
 $mw->update;
}

The subroutine do_query() actually utilizes the FedEx package that we saw earlier in Chapter 6, and takes the
information received and displays it to the user via our $response_txt. We set the cursor to a watch to show the user we
are actually doing something, and change it back to the default arrow when done. $mw->deiconify will bring the
window up if it was iconified during the wait, and the beep will tell the user that she needs to look at the window. We

also avoided doing any error checking here. If we get some sort of error message back from the FedEx package, we
simply display it, and keep going. It's up to the user to check the response and make adjustments in the entered values,
if there was an error.

The rest of the code is repeated from Chapter 6:

Package FedEx Written by Clinton Wong
package FedEx;

use HTTP::Request;
use HTTP::Response;
use LWP::RobotUA;
use HTTP::Status;

sub new {

 my($class, $cgi_url, $email, $proxy) = @_;
 my $user_agent_name = 'ORA-Check-FedEx/1.0';

 my $self = {};
 bless $self, $class;

 $self->{'url'} = new URI::URL $cgi_url;

 $self->{'robot'} = new LWP::RobotUA $user_agent_name, $email;
 $self->{'robot'}->delay(0); # we'll delay requests by hand

 if ($proxy) {
 $self->{'robot'}->proxy('http', $proxy);
 }

 $self;
}

sub check {

 my ($self, $track_num, $country, $date) = @_;

 $self->{'url'}->query("trk_num=$track_num&dest_cntry=" .
 "$country&ship_date=$date");
 my $request = new HTTP::Request 'GET', $self->{'url'};

 my $response = $self->{'robot'}->request($request);
 $self->{'status'} = $response->code();

 if ($response->code == RC_OK) {

 if ($response->content =~ /Delivered To : (\w.*)/) {

 # package delivered
 $self->{'who_got_it'} = $1;
 $self->{'delivered'} = 1;
 }

 # Odd cases when package is delivered but "Delivered To" is blank.
 # Check for delivery time instead.

 elsif ($response->content =~ /Delivery Time : \w.*/) {

 # package delivered
 $self->{'who_got_it'} = 'left blank by FedEx computer';
 $self->{'delivered'} = 1;

 }
 else {

 # package wasn't delivered
 $self->{'delivered'} = 0;

 # if there isn't a "Delivered To : " field, something's wrong.
 # error messages seen between HTML comments

 if ($response->content !~ /Delivered To : /) {
 $self->{'status'} = RC_BAD_REQUEST;

 # get explanation from HTML response
 my $START = '<!-- BEGIN TRACKING INFORMATION -->';
 my $END = '<!-- END TRACKING INFORMATION -->';
 if ($response->content =~ /$START(.*?)$END/s) {
 $self->{'error_as_HTML'} = $1;
 }
 else {
 # couldn't get explanation, use generic one
 $self->{'error_as_HTML'} = 'Unexpected HTML response from FedEx';

 } # couldn't get error explanation
 } # unexpected reply
 } # not delivered yet
 } # if HTTP response of RC_OK (200)
 else {
 $self->{'error_as_HTML'} = $response->error_as_HTML;
 }

}

sub retrieve_okay {
 my $self = shift;
 return 0 if ($self->{'status'} != RC_OK);
 1;
}

sub delivered {
 my $self = shift;
 $self->{'delivered'};
}

sub who_got_it {
 my $self = shift;
 $self->{'who_got_it'};
}

sub error_info {
 my $self = shift;
 $self->{'error_as_HTML'};
}

The final program ends up looking like Figure 7-3.

Figure 7-3.Package tracking client

Check if Servers Are up: webping

For the last example, we'll build a GUI interface that will allow us to check and see if several web sites are running, at
pre-specified intervals. Since this action is very similar to the UNIX ping command, we call it webping. This
application would be useful to a web administrator who had to keep track of many different web sites, and wanted to
know when one was down or not responding. We'll be utilizing the LWP::Simple module to actually ping each site.

The code to check a site's status is as follows, where $site is a string containing a standard URL (like
http://www.ora.com):

$content = head($site);
if ($content) {
 ## Site is UP.
} else {
 ## Site is DOWN.
}

While that's pretty simple, we have to have some way to set $site to a URL. It's not very efficient to have to type a new
site on the command line each time we want to verify the status of a site. In order to make our GUI useful, we want to
add some basic features to it.

A place to manually enter URLs would be nice, and a display of the sites we have checked and their status would be
useful. Having the program automatically perform an update on each of the sites in the list every 30 minutes or so
would be extremely useful. In that same vein, specifying the interval would also be easier than editing the source code
any time we decide to change how often the ping happens. After we build a list of sites, it would be nice for the
program to remember them, and bring them up automatically the next time we start the program.

Here's the final code, with most of the mentioned features represented:

#!/usr/bin/perl -w
###
Webping: A program that will detect and report whether a web site is up.
usage: webping [-a] [-i <minutes>] [-f <filename>] [-- [-geometry...]]
-a : starts prog in "autoping" mode from beginning.
-i : Sets the autoping interval to <int>
-f : Uses <filename> instead of .webping_sites as site list
-- is necessary to separate webping's options from the Window
Manager options. Allows us to utilize GetOptions instead of
parsing them manually (ick).
The standard wm specs are allowed after the --, -geometry and
-iconic being the most useful of them.
###

use Tk;
use LWP::Simple;
use Getopt::Long;

The first section of the code says to use Tk, LWP::Simple, and Getopt::Long. We chose to utilize Getopt::Long so that
we wouldn't have to parse any command-line options ourselves. As you can see from our usage statement, we've got
quite a few to deal with. Automode is the term we use when the program loops and checks each web site every n
minutes.

DEFAULT values -- may be changed by specifing cmd line options.
my $site_file = "$ENV{HOME}/.webping_sites";
$ping_interval = 5;
$auto_mode = 0;
@intervals = (5, 10, 15, 20, 25, 30, 35);

sub numerically { $a <=> $b; }
sub antinumerically { $b <=> $a; }

Parse our specific command line options first
&GetOptions("i=i" => \$ping_interval,
 "f=s" => \$site_file,
 "a" => \$auto_mode);

if (! grep /$ping_interval/, @intervals) {
 push (@intervals, $ping_interval);
}

These segments set up stuff the program should know about. There are default values for everything they might set on
the command line. We've declared two sorting routines to be used later on. We get the options specified by the user (if
any) to put the program in automode, add or set the interval, and determine which file to read our list of web sites from,
if not the default file.

Next comes the meat of the GUI: setting up the window, widgets, and callbacks. webping does more complicated things
than xword, so it will take quite a bit more effort to set it all up. No matter what it does, though, it all looks pretty much
the same: creating buttons, assigning functions for them to call, and placing the widgets in a sensible order via pack. We
won't go into too much detail about how this all happens, but here is the code:

my $mw = MainWindow->new;
$mw->title("Web Ping");
$mw->CmdLine; ## parse -geometry and etc cmd line options.

$frame1 = $mw->Frame;
$frame1->pack(side => "bottom", -anchor => "n",
 -expand => "n", -fill => "x");

Create frame for buttons along the bottom of the window
my $button_f = $frame1->Frame(-borderwidth => 2,
 -relief => "ridge");
$button_f->pack(-side => "top", -anchor => "n",
 -expand => "n", -fill => "x");

$update_bttn = $button_f->Button(-text => "Update",
 -state => 'disabled',
 -command => sub { &end_automode;
 &ping_site });

Notice that when we hit the Update button, we end the current automode (if we can). This is so that the program doesn't
try to do two things at once.

$update_bttn->pack(-side => "left", -anchor => "w", -padx => 5);

$del_bttn = $button_f->Button(-text => "Delete",
 -state => 'disabled',
 -command => sub { &delete_site });

$del_bttn->pack(-side => "left",
 -anchor => 'w',
 -padx => 10);

$automode_bttn = $button_f->Button(-text => "Start Automode",
 -command => \&do_automode);
$automode_bttn->pack(-side => 'left');

$button_f->Label(-text => "Interval: ")->pack(-side => "left");

Create a psuedo pop-up menu using Menubutton
$interval_mb = $button_f->Menubutton(-indicatoron => 1,
 -borderwidth => 2,
 -relief => "raised");
$interval_mb->pack(-side => "left");

$interval_mb->configure(-menu => $interval_mb->Menu(-tearoff => 0),
 -textvariable => \$ping_interval);
map { $interval_mb->radiobutton(-label => $_,
 -variable => \$ping_interval,
 -value => $_,
 -indicatoron => 0) } sort numerically @intervals;

Using a menu button like this is often a good way to get a list of items into a very small space:

$button_f->Button(-text => "Exit",
 -command => \&exit_program)->pack(-side => "right",
 -anchor => "e");

my $entry_f = $mw->Frame;
$entry_f->pack(-side => 'top', -anchor => 'n', -fill => 'x');

$entry_f->Label(-text => "URL: ")->pack(-side => 'left',
 -anchor => 'w');
my $entry = $entry_f->Entry(-textvariable => \$url);
$entry->pack(-side => 'left', -anchor => 'w', -expand => 'y',
 -fill => 'x');

$entry_f->Button(-text => "Ping",
 -command => \&add_site)->pack(-side => 'left',
 -anchor => 'e');
$entry->bind('<Return>', \&add_site);

my $list_f = $mw->Frame;
$list_f->pack(-side => 'top',
 -anchor => 'n',
 -expand => 'yes',
 -fill => 'both');
$history_label = $list_f->Button(-text => "History:",
 -borderwidth => 2,
 -relief => "flat");
$history_label->pack(-side => 'top', -anchor => 'n', -fill => 'x');

my $scroll = $list_f->Scrollbar;
my $list = $list_f->Listbox(-selectmode => 'extended',
 -yscrollcommand => ['set', $scroll]);
$scroll->configure(-command => ['yview', $list]);
$scroll->pack(-side => 'right', -fill => 'y');
$list->pack(-side => 'left', -expand => 'yes', -fill => 'both');

Bind Listbox so that the "Update" button is enabled whenever a user
has an item selected.
$list->bind('<Button-1>', sub {
 my @selected = $list->curselection;
 if ($#selected >= 0) {
 $update_bttn->configure(-state => 'normal');
 $del_bttn->configure(-state => 'normal');
 } else {
 $update_bttn->configure(-state => 'disabled');
 $del_bttn->configure(-state => 'disabled');
 }
});

if (open(FH, "$site_file")) {
 while (<FH>) {
 chomp;
 $url = $_;
 &add_site;
 }
 close FH;
}
$url = "";

Here is where we take advantage of a "remembering" file. When the program exits, we will save the current list of sites
to this file. This way, when the program is started the next time, it looks exactly as it did the last time we ran it--except
that the program will have updated the list of sites with the current status.

$entry->focus;

&do_automode if ($auto_mode);

MainLoop;

Off it goes! Now all that's left in our source code are the functions that we've bound to the buttons and various actions
in the GUI. Remember, this is where the real work comes in; without these functions the GUI would just be a bunch of
flashy buttons and lists.

sub exit_program {
 my @updated = $list->get(0, 'end');
 if (open FH, ">$site_file") {
 map { print FH "$_\n"; } @updated;
 close FH;
 }
 exit;
}

This is how we always save the current state of the site list. The only way to avoid running this function when exiting
the application is to use the Window Manager's close/exit/destroy commands:

sub ping_site {
 ## get list of indexes in listbox of those selected.
 my $site = "";
 my ($content, @down);
 my @selected = $list->curselection;

 $mw->configure(-cursor => 'watch');
 $mw->idletasks;

 foreach $index (@selected) {
 my $site = $list->get($index);
 $site =~ s/\s.+$//; ## Strip off last history record (if any)

 $content = head($site);
 if ($content) {
 $site .= " is UP (" . localtime() .")";
 } else {
 $site .= " is DOWN (" . localtime() .")";
 push (@down, $site);
 }
 $list->delete($index);
 $list->insert($index, $site);
 }

 ## Since we've deleted and inserted into the box -- the sites prev
 ## selected now aren't. Luckily we know which ones those were.
 map { $list->selection('set', $_) } @selected;

 ## Set cursor back to the default value
 $mw->configure(-cursor => 'top_left_arrow');

 if ($#down >= 0) {
 $mw->deiconify;
 $mw->update;

 $old_color = $history_label->cget(-background);

 ## Do some stuff to make the user pay attention to us.
 $history_label->configure(-background => "red");
 $history_label->bell;
 $history_label->flash; $history_label->flash;
 $history_label->configure(-background => $old_color);
 }

}

The function ping_site() is called when a new site is added to update its status. It is also called when in automode. It
checks the sites selected in the listbox. ping_site() is where you could put in other things to happen when a site is
down. For instance, mail the web administrator, page the administrator with a text message, or whatever you'd like!

sub add_site {
 return if ($url eq ""); ## Do nothing, empty string

 ## Validate $url contains correct information (ie a server name)
 $url = "http://$url" if ($url !~ /(\w+):\/\//);

 ## Insert new site name into list, and make sure we can see it.
 $list->insert('end', $url);
 $list->see('end');

 ## Select the item so that ping_site can do all the work
 $list->selection('clear', 0, 'end');
 $list->selection('set', $list->size - 1);

 $url = ""; ## Clear out string for next site

 &ping_site;
}

We've set the default behavior of adding a site to automatically ping that site. You could comment out that line if you
didn't want to wait for the ping to happen and you're adding a large number of sites. Remember, this would also affect
what happened when the programs started up, since this function is called both at the beginning and during the manual
adding of sites.

sub delete_site {
 my @selected = $list->curselection;

 ## Have to delete items out of list backwards so that indexes
 ## we just retrieved remain valid until we're done.
 map { $list->delete($_) } sort antinumerically @selected;

 $update_bttn->configure(-state => 'disabled');
 $del_bttn->configure(-state => 'disabled');
}

The function delete_site() will delete any selected items in the listbox. This allows us to remove ou-of-date sites from
our list without having to edit the .webping_sites file manually.

sub do_automode {
 ## State if the $automode_bttn will tell us which way we are in.
 my $state = $automode_bttn->cget(-text);

 if ($state =~ /^Start/) {
 $automode_bttn->configure(-text => "End Automode");

 $mw->iconify if ($auto_mode);

 $interval_mb->configure(-state => 'disabled');

 ## If the user started up from scratch -- then select all (doesn't
 ## make sense to ping _nothing_.
 @selected = $list->curselection;
 $list->selection('set', 0, 'end') if ($#selected < 0);
 $id = $mw->repeat($ping_interval * 60000, \&ping_site);
 } else {
 &end_automode;
 }
}
end of do_automode

When starting off in automode, do_automode() gets called. It verifies that the list has at least one site selected, and
starts the timed loop. The Tk construct to do the "looping" is in the $mw->repeat() command. The function ping_site()
will be called every $ping_interval minutes until end_autmode() is called.

sub end_automode {
my $state = $automode_bttn->cget(-text);
 $interval_mb->configure(-state => 'normal');
 if ($state =~ /^End/) {
$automode_bttn->configure(-text => "Start Automode");
 $mw->after('cancel', $id);
 }
}

And finally, webping looks like Figure 7-4.

Figure 7-4.webping client

1. I say "we," but I really mean "she"--this chapter was written by Nancy Walsh, who combined her knowledge of Tk
with my knowledge of LWP.

2. Frames are just invisible containers for other widgets. They group things together so the window will look the way
you want it to. You can make them visible by specifying -borderwidth and -relief options.

3. You'll note that it looks like a lot of extra effort to declare sub { do_search() }. Doing it this way prevents any
parameters from being sent to our function when it is called.

4. To check to make sure you have this font family on your system, use xlsfonts. If you don't have it, just pick another
font you do have.

5. One of the annoying things about a text widget is that when you disable it for the user, you also disable it for
yourself. If you want to do anything to it other than destroy it, you need to configure it back to normal.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Appendix A
HTTP Headers

HTTP headers are used to transfer all sorts of information between client and server.
There are four categories of headers:

Type Description

General Information not related to the client, server, or HTTP

Request Preferred document formats and server parameters

Response Information about the server sending the response

Entity Information on the data being sent between the client and server

General headers and entity headers are the same for both the server and client.

All headers in HTTP messages contain the header name followed by a colon (:), then a
space, and the value of the header. Header names are case-insensitive (thus, Content-

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

Type is the same as Content-type). The value of a header can extend over multiple
lines by preceding each extra line with at least one space or tab.

This chapter covers the most recent draft of the HTTP 1.1 specification that was
available at publication time (draft 7), as well as some headers that are not in the spec
but are in common use regardless.

General Headers

General headers are used in both client requests and server responses. Some may be
more specific to either a client or server message.

Cache-Control: directives

The Cache-control header specifies desired behavior from a caching system, as
used in proxy servers. For example:

Cache-control: no-cache

Both clients and servers can use the Cache-control header to specify parameters
for the cache or to request certain kinds of documents from the cache. The caching
directives are specified in a comma-separated list.

Cache request directives are:

Directive Meaning

no-cache

Do not cache. The proxy should not send a cached copy of the
document and should always request and return the newest
copy from the origin-server. The response from the server
must not be cached by a proxy.

no-store

Remove information promptly after forwarding. The cache
should not store anything about the client request or server
response. This option prevents the accidental storing of secure
or sensitive information in the cache.

max-age = seconds

Do not send responses older than seconds. The cache can
send a cached document that has been retrieved within a
certain number of seconds from the time it was sent by the
origin server.

max-stale [= seconds]
The cache can send a cached document that is older than its
expiration date. If seconds are given, it must not be expired
by more than that time.

min-fresh = seconds

Send data only if still fresh after the specified number of
seconds. The cache can send a cached document only if there
are at least a certain number of seconds between now and its
expiration time.

only-if-cached

Do not retrieve new data. The cache can send a document
only if it is in the cache, and should not contact the origin-
server to see if a newer copy exists. This option is useful
when network connectivity from the cache to origin-server is
poor.

Cache response directives are:

Directive Meaning

public The document is cacheable by any cache.

private The document is not cacheable by a shared cache.

no-cache
Do not cache the returning document. This prevents caches from
returning requested documents when they are stale.

no-store
Do not store the returning document. Remove information
promptly after forwarding.

no-transform
Do not convert the entity-body. Useful for applications that
require that the message received is exactly what was sent by the
server.

must-revalidate
The cache must verify the status of stale documents, i.e., the cache
cannot blindly use a document that has expired.

proxy-revalidate
Client must revalidate data except for private client caches. Public
caches must verify the status of stale documents. Like must-
revalidate, excluding private caches.

max-age= seconds
The document should be considered stale in the specified number
of seconds from the time of retrieval.

Connection: options

Specifies options desired for this connection but not for further connections by proxies.
For example:

Connection: close

The close option signifies that either the client or server wishes to end the connection
(i.e., this is the last transaction). The keep-alive option signifies that the client
wishes to keep the connection open. The default behavior of web applications differs
between HTTP 1.0 and 1.1.

By default, HTTP 1.1 uses persistent connections, where the connection does not
automatically close after a transaction. When an HTTP 1.1 web client no longer has any
requests, or the server has reached some preprogrammed limit in spending resources on
the client, a Connection: close header indicates that no more transactions will
proceed, and the connection closes after the current one. An HTTP 1.1 client or server
that doesn't support persistent connections should always use the Connection: close
header.

HTTP 1.0, on the other hand, does not have persistent connections by default. If a 1.0
client wishes to use persistent connections, it uses the keep-alive parameter. A
Connection: keep-alive header is issued by both HTTP 1.0 clients and servers
for each transaction under persistent connections. The last transaction does not have a
Connection: keep-alive header, and behaves like a Connection: close
header under HTTP 1.1. HTTP 1.0 servers that do not support persistent connections
will not have a Connection: keep-alive header in their response, and the client
should disconnect after the first transaction completes.

Use of the keep-alive parameter is known to cause problems with proxy servers
that do not understand persistent connections for HTTP 1.0. If a proxy server blindly
forwards the Connection: keep-alive header, the origin-server and initial client
are using persistent connections while the proxy server is not. The origin server
maintains the network connection when the proxy server expects a disconnect; timing
problems follow.

See Chapter 3, Learning HTTP, for more information on persistent connections.

Date: dateformat

There are three formats that can be used to express the date. The preferred date format
is RFC 1123. For example:

Mon, 06 May 1996 04:57:00 GMT

The preferred RFC 1123 format specifies all dates in a fixed length string in Greenwich
Mean Time (GMT). GMT is always used in HTTP to prevent any misunderstandings
among computers communicating in different time zones. The valid days are: Mon,
Tue, Wed, Thu, Fri, Sat, and Sun. The months are: Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, and Dec. Leading zeros are padded with whitespace.

For backwards compatibility, the RFC 850 and ANSI C asctime() formats are also
acceptable:

Monday, 06-May-96 04:57:00 GMT
Mon May 6 04:57:00 1996

The RFC 1036 format is similar to the one in RFC 1123, except that the string length
varies, depending on the day of the week, and the year is specified in two digits instead
of four. This makes date parsing more difficult. It is recommended that web clients use
the previous format (RFC 1123) instead of this one. The valid days are: Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday. The months are: Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec. Leading zeros are padded with
whitespace.

ANSI C's asctime() format is not encouraged, since there can be misunderstandings
about the time zone used by the computer. The valid days are: Mon, Tue, Wed, Thu,
Fri, Sat, and Sun. The months are: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, and Dec. Leading zeros are padded with whitespace.

Despite a heavy preference for RFC 1123's format, current web clients and servers
should be able to recognize all three formats. However, when designing web programs,
it is desirable to use RFC 1123 when generating dates. Future versions of HTTP may
not support the latter two formats.

MIME-Version: version

The MIME-Version header specifies the version of MIME (Multipurpose Internet
Mail Extensions) used in the HTTP transaction. This header indicates that the entity-
body conforms to a particular version of MIME. If the transaction involves MIME-

encoded data, but this header is omitted, the default value is assumed to be 1.0.

Unfortunately, some servers use this header for all transactions, regardless of the entity-
body's actual format. For this reason, the HTTP/1.0 protocol suggests that this header
should be ignored. If this header is encountered, the entity-body may not have any
MIME messages.

Example:

MIME-version: 1.0

Pragma: no-cache

The Pragma header specifies directives for proxy and gateway systems. Since many
proxy systems may exist between a client and server, Pragma headers must pass
through each proxy. When the Pragma header reaches the server, the header may be
ignored by the server software.

The only directive defined in HTTP/1.0 is the no-cache directive. It is used to tell
caching proxies to contact the server for the requested document, instead of using its
local cache. This allows the client to request the most up-to-date document from the
original web server, without receiving a cached copy from an intermediate proxy server.

The Pragma header is an HTTP 1.0 feature, and is maintained in HTTP 1.1 for
backward compatibility. No new Pragma directives will be defined in the future.

Example:

Pragma: no-cache

Transfer-Encoding: encoding_type

The Transfer-Encoding header specifies that the message is encoded. This is not
the same as content-encoding (an entity-body header, discussed later), since transfer-
encodings are a property of the message, not of the entity-body. For example:

Transfer-Encoding: chunked

In the HTTP 1.1 specification, chunked is the only encoding method supported.

The chunked transfer-encoding encodes the message as a series of chunks followed
by entity-headers, as shown in Figure A-1. The chunks and entity-headers are in a
client's request entity-body or server response entity-body. Each chunk contains a chunk
size specified in base 16, followed by CRLF. After that, the chunk body, whose length

is specified in the chunk size, is presented, followed by a CRLF. Consecutive chunks
are specified one after another, with the last chunk having a length of zero followed by
CRLF. Entity-headers follow the chunks, terminated by a CRLF on a line by itself.

Figure A-1.Chunked transfer encoding

Upgrade: protocol/version

Using the Upgrade header, the client can specify additional protocols that it
understands, and that it would prefer to talk to the server with an alternate protocol. If
the server wishes to use the alternate protocol, it returns a response code of 101 and
indicates which protocol it is upgrading to, with the Upgrade header. After the
terminating CRLF in the server's header response, the protocol switches.

Portion of client request:

Upgrade: HTTP/1.2

Portion of server response:

HTTP/1.1 101 Upgrading Protocols
Upgrade: HTTP/1.2

Via: protocol host

The Via header is updated by proxy servers as messages pass from client to server and
from server to client. Each proxy server appends its protocol and protocol version,
hostname, port number, and comment to a comma-separated list on the Via header. If
the Via header does not exist, the first proxy creates it. This information is useful for
debugging purposes. If the protocol name is HTTP, it can be omitted. For HTTP, a port
number of 80 can be omitted. Comments are optional.

Example:

Via: 1.1 proxy.ora.com, 1.0 proxy.internic.gov

See the discussion of the TRACE method in Chapter 3 for more information.

Client Request Headers

Client header data communicates the client's configuration and preferred document
formats to the server. Request headers are used in a client message to provide
information about the client.

Accept: type/subtype qvalue

Specifies media types that the client prefers to accept. For example:

Accept: text/*, image/gif

Multiple media types can be listed separated by commas. The optional qvalue
represents, on a scale of 0 to 1, an acceptable quality level for accept types. See
Appendix B, Reference Tables, for a listing of some commonly-accepted media types.
See the section "Media Types" in Chapter 3 for more information.

Accept-Charset: character_set qvalue

Specifies the character sets that the client prefers. Multiple character sets can be listed
separated by commas. The optional qvalue represents, on a scale of 0 to 1, an
acceptable quality level for nonpreferred character sets. If this header is not specified,
the server assumes the default of US-ASCII and ISO-8859-1 (a superset of US-ASCII),
which are both specified in RFC 1521. For a list of character sets, refer to Appendix B.
For example:

Accept-charset: ISO-8859-7

Accept-Encoding: encoding_types

Through the Accept-Encoding header, a client may specify what encoding
algorithms it understands. If this header is omitted, the server will send the requested
entity-body without any additional encoding. Encoding mechanisms can be used to
reduce consumption of scarce resources, at the expense of less expensive resources. For
example, large files may be compressed to reduce transmission time over slow network
connections.

In the HTTP/1.0 specification, two encoding mechanisms are defined: x-gzip and x-
compress. Multiple encoding schemes can be listed, separated by commas. For reasons
of compatibility with historical practice, gzip and compress should be considered the
same as x-gzip and x-compress.

Encoding Mechanism Encoded By

x-gzip Jean-Loup Gailly's GNU zip compression scheme

x-compress Modified Lempel-Ziv compression scheme

For example:

Accept-encoding: x-gzip

There is no guarantee that the requested encoding mechanism has been applied to the
entity-body returned by the server. If the client specifies an Accept-encoding
header, it should examine the server's Content-encoding header to see if an
encoding mechanism was applied. If the Content-encoding header has been
omitted, no encoding mechanism was applied.

Accept-Language: language qvalue

Specifies the languages that the client prefers. If a client wants to to specify a
preference for a particular language, it is done in the Accept-Language header. If a
server contains the same document in multiple languages, it will send the document in
the language of the client's preference, when available. For example:

Accept-language: en

Multiple languages can be listed separated by commas. The optional qvalue represents,
on a scale of 0 to 1, an acceptable quality level for nonpreferred languages. Languages
are written with their two-letter abbreviations (e.g., en for English, de for German, fr for
French, etc.). See Appendix B for a listing of languages.

Authorization: scheme credentials

Provides the client's authorization to access data at a URI. When a requested document
requires authorization, the server returns a WWW-Authenticate header describing
the type of authorization required. The client then repeats the request with the proper
authorization information.

The HTTP/1.0 specification defines the BASIC authorization scheme, where the
authorization parameter is the string of username:password encoded in base 64. For
example, for the username of "webmaster" and a password of "zrma4v," the
authorization header would look like this:

Authorization: BASIC d2VibWFzdGVyOnpycW1hNHY=

The value decodes into webmaster:zrma4v.

See Chapter 3 for more information on using the Authorization header.

Cookie: name=value

Contains a name/value pair of information stored for that URL. For example:

Cookie: acct=03847732

Multiple cookies can be specified, separated by semicolons. For browsers supporting
Netscape persistent cookies--not included in the HTTP standard. See Chapter 3 for
more information on cookies.

An issue arises with proxy servers in regard to the headers. Both the Set-Cookie and
Cookie headers should be propagated through the proxy, even if a page is cached or
has not been modified (according to the If-Modified-Since condition). The Set-
Cookie header should also never be cached by the proxy.

From: email_address

Gives the email address of the user executing the client. The From header helps the
server identify the source of malformed requests or excessive resource usage. For
example:

From: webmaster@www.ora.com

This header should be sent when possible, but should not be sent without the user's
consent, in the interest of privacy. However, when running clients that use excessive
network or server resources, it is advisable to include this header, in the event that an
administrator would like to contact the client user.

Host: hostname port

The hostname and port number of the server contacted by the client. Useful for software
multihoming. For example:

Host: www.ora.com 80

Clients must supply this information in HTTP 1.1, so servers with multiple hostnames

can easily differentiate between ambiguous URLs.

If-Modified-Since: date

Specifies that the URI data is to be sent only if it has been modified since the date given
as the value of this header. This is useful for client-side caching. For example:

If-Modified-Since: Mon, 04 May 1996 12:17:34 GMT

If the document has not been modified, the server returns a code of 304, indicating that
the client should use the local copy. The specified date should follow the format
described under the Date header. See the "Client Caching" section in Chapter 3 for
more information.

If-Match: entity_tag

A conditional requesting the entity only if it matches the given entity tags (see the
ETag entity header). An asterisk (*) matches any entity, and the transaction continues
only if the entity exists. See the "Client Caching" section in Chapter 3 for more
information.

If-None-Match: entity_tag

A conditional requesting the entity only if it does not match any of the given entity tags
(see the ETag entity header). An asterisk (*) matches any entity; if the entity doesn't
exist, the transaction continues. See the "Client Caching" section in Chapter 3 for more
information.

If-Range: entity_tag date

A conditional requesting only the portion of the entity that is missing, if it has not been
changed, and the entire entity if it has. Used in conjunction with the Range header to
indicate the entity tag or last modified time of a document on the server. For example:

If-Range: Mon, 04 May 1996 12:17:34 GMT

If the document has not been modified, the server returns the byte range given by the
Range header; otherwise, it returns all of the new document. Either an entity tag or a
date can be used to identify the partial entity already received; see the Date header for
information on the format for dates. See the section "Retrieving Content" in Chapter 3
for more information.

If-Unmodified-Since: date

Specifies that the entity-body should be sent only if the document has not been
modified since a given date. For example:

If-Unmodified-Since: Tue, 05 May 1996 04:03:56 GMT

The specified date should follow the format described under the Date header. See the
"Client Caching" section in Chapter 3 for more information.

Max-Forwards: n

Limits the number of proxies or gateways that can forward the request. Useful for
debugging with the TRACE method, avoiding infinite loops. For example:

Max-Forwards: 3

A proxy server that receives a Max-Forwards value of zero (0) should return the
request headers to the client in its response entity-body. See the discussion of the
TRACE method in Chapter 3 for more information.

Proxy-Authorization: credentials

Used for a client to identify itself to a proxy requiring authorization.

Range: bytes= n-m

Specifies the partial range(s) requested from the document. For example:

Range: 1024-2047,4096-

Multiple ranges can be listed, separated by commas. If the first digit in the comma-
separated byte range(s) is missing, the range is assumed to count from the end of the
document. If the second digit is missing, the range is byte n to the end of the document.
The first byte is byte 0. See Chapter 3 for more information.

Referer: url

Gives the URL of the document that refers to the requested URL (i.e., the source
document of the link). For example:

Referer: http://www.yahoo.com/Internet/

See Chapter 3 for more information.

User-Agent: string

Gives identifying information about the client program. For example:

User-Agent: Mozilla 3.0b

See Chapter 3 for more information.

Server Response Headers

The response headers described here are used in server responses to communicate
information about the server and how it may handle requests.

Accept-Ranges: bytes|none

Indicates the acceptance of range requests for a URI, specifying either the range unit
(e.g., bytes) or none if no range requests are accepted. For example:

Accept-Ranges: bytes

Age: seconds

Indicates the age of the document in seconds. For example:

Age: 3521

Proxy-Authenticate: scheme realm

Indicates the authentication scheme and parameters applicable to the proxy for this URI
and the current connection. Used with response 407 (Proxy Authentication Required).

Public: methods

Indicates methods supported by the server as a comma-separated list. Intended for
declaration of nonstandard methods supported at this site. For example:

Public: GUNZIP-GET, UNCOMPRESS-GET

For methods applicable only to an individual URI, see the Allow header.

Retry-After: date|seconds

Specifies a time when the server can handle requests. Used with response code 503
(Service Unavailable). It contains either an integer number of seconds or a GMT date
and time (as described by the Date header formats). If the value is an integer, it is
interpreted as the number of seconds to wait after the request was issued. For example:

Retry-After: 3600
Retry-After: Sat, 18 May 1996 06:59:37 GMT

Server: string

Contains the name and version number of the server. For example:

Server: NCSA/1.3

If security holes are discovered in a particular server, the Server header information
may be used to indicate a site's vulnerability. For that reason, it's a good idea for servers
to make it easy for administrators to suppress sending this header in the server
configuration, if their server has a well-known bug.

Set-Cookie: name=value options

Contains a name/value pair of information to retain for this URL. For browsers
supporting Netscape persistent cookies--not included in the HTTP standard. For
example:

Set-Cookie: acct=03845324

Options are:

Option Meaning

expires = date The cookie becomes invalid after the specified date.

path = pathname The URL range for which the cookie is valid.

domain = domain_name The domain name range for which the cookie is valid.

secure Return the cookie only under a secure connection.

Vary: headers

Specifies that the entity has multiple sources and may therefore vary according to
specified list of request header(s).

Vary: Accept-Language,Accept-Encoding

Multiple headers can be listed, separated by commas. An asterisk (*) means that
another factor, other than the request headers, may affect the document that is returned.

Warning: code host string

Indicates information additional to that in the status code, for use by caching proxies.
For example:

Warning: Response stale

The host field contains the name or pseudonym of the server host, with an optional port
number. The two-digit warning codes and their recommended descriptive strings are:

Code String Meaning

10 Response stale The response data is known to be stale.

11 Revalidation failed
The response data is known to be stale because the
proxy failed to revalidate the data.

12 Disconnected operation The cache is disconnected from the network.

13 Heuristic expiration
The data is older than 24 hours, and the cache
heuristically chose a freshness lifetime greater than 24
hours.

14 Transformation applied
The proxy has changed the encoding or media type of
the document, as specified by the Content-
Encoding or Content-Type headers.

99 Miscellaneous warning
Arbitrary information to be logged or presented to the
user.

WWW-Authenticate: scheme realm

A request for authentication, used with the 401 (Unauthorized) response code. It
specifies the authorization scheme and realm of authorization required from a client at
the requested URI. Many different authorization realms can exist on a server. A
common authorization scheme is BASIC, which requires a username and password. For
example:

WWW-Authenticate: BASIC realm="Admin"

When returned to the client, this header indicates that the BASIC type of authorization
data in the appropriate realm should be returned in the client's Authorization
header.

Entity Headers

Entity headers are used in both client requests and server responses. They supply
information about the entity body in an HTTP message.

Allow: methods

Contains a comma-separated list of methods that are allowed at a specified URI. In a
server response it is used with code 405 (Method Not Allowed) to inform the client of
valid methods available for the requested information. For example:

Allow: GET, HEAD

Some methods may not apply to a URL, and the server must verify that the methods
supplied by the client makes sense with the given URL.

Content-Base: url

Specifies the base URL for resolving relative URLs. The base URL must be written as
an absolute URL. For example:

Content-Base: http://www.ora.com/products/

Content-Encoding: encoding_schemes

Specifies the encoding scheme(s) used for the transferred entity-body. Values are gzip
(or x-gzip) and compress (or x-compress). If multiple encoding schemes are specified
(in a comma-separated list), they must be listed in the order in which they were applied

to the source data.

The server should attempt to use an encoding scheme used by the client's Accept-
Encoding header. The client may use this information to determine how to decode the
document after it is transferred.

See the description of the Accept-Encoding header earlier in this appendix for a
listing of possible values. For example:

Content-Encoding: x-gzip

Content-Language: languages

Specifies the language(s) that the transferred entity-body is intended for. Languages are
represented by their two-letter abbreviations (e.g., en for English, fr for French). The
server should attempt to use a language specified by the client's Accept-Language
header. (See Appendix B for a listing of possible values.) This header is useful when a
client specifies a preference for one language over another for a given URL. For
example:

Content-Language: fr

Content-Length: n

This header specifies the length of the data (in bytes) of the transferred entity-body. For
example:

Content-Length: 47293

Due to the dynamic nature of some requests, the content length is sometimes unknown
and this header is omitted.

Content-Location: url

Supplies the URL for the entity, in cases where a document has multiple entities with
separately accessible locations. The URL can be either an absolute or relative URL. For
example:

Content-Location: http://www.ora.com/products/

See the section "Retrieving Content" in Chapter 3 for more information.

Content-MD5: digest

Supplies an MD5 digest of the entity, for checking the integrity of the message upon
receipt.

Content-Range: bytes n-n/m

Specifies where the accompanying partial entity-body should be inserted, and the total
size of the full entity-body. For example:

Content-Range: bytes 6143-7166/15339

See the section "Retrieving Content" in Chapter 3 for more information.

Content-Transfer-Encoding: scheme

Specifies any transformations that occurred to the data for transport over the network.
For example:

Content-Transfer-Encoding: base64

Between web servers and clients, this header is usually not needed, since no encoding is
needed. Possible encoding schemes are:

Transfer Encoding Format

7bit Data represented by short lines of US-ASCII data.

8bit
Data represented by short lines, but may contain non-ASCII
data. (High-order bit may be set.)

binary Data may not be in short lines, and can be non-ASCII characters.

base64
Data is encoded in base64 ASCII. (See Section 5.2 of RFC 1521
for details.)

quoted-printable
Special characters replaced with an equal sign (=) followed by
the ASCII value in hex. (See Section 5.1 of RFC 1521 for
complete details.)

Content-Type: type/subtype

Describes the media type and subtype of an entity-body. It uses the same values as the
client's Accept header, and the server should return media types that conform with the
client's preferred formats. For example:

Content-type: text/html

See the discussion of media types in Chapter 3 for more information.

ETag: entity_tag

Defines the entity tag for use with the If-Match and If-None-Match request
headers. See the discussion of client caching in Chapter 3 for more information.

Expires: date

Specifies the time when a document may change, or when its information becomes
invalid. After that time, the document may or may not change or be deleted. The value
is a date and time in a valid format as described for the Date header. For example:

Expires: Sat, 20 May 1995 03:32:38 GMT

This is useful for cache management. The Expires header means that it is unlikely
that the document will change before the given time. This does not imply that the
document will be changed or deleted at that time. It is only an advisory that the
document will not be modified until the specified time.

See the discussion on client caching in Chapter 3 for more information.

Last-Modified: date

Specifies when the specified URL was last modified. The value is a date and time in a
valid format as described for the Date header. If a client has a copy of the URL in its
cache that is older than the last-modified date, it should be refreshed. See the discussion
on client caching in Chapter 3 for more information. For example:

Last-Modified: Sat, 20 May 1995 03:32:38 GMT

Location: url

Specifies the new location of a document, usually with response code 201 (Created),
301 (Moved Permanently), or 302 (Moved Temporarily). The URL given must be
written as an absolute URL. For example:

Location: http://www.ora.com/contacts.html

URI: uri

Specifies the new location of a document, usually with response code 201 (Created),
301 (Moved Permanently), or 302 (Moved Temporarily). For example:

URI: <http://www.ora.com/contacts.html>

An optional vary parameter may also be used in this header, indicating multiple
documents at the URI in the following categories: type, language, version, encoding,
charset, and user-agent. Sending these parameters in a server response prompts the
client to specify its preferences appropriately in the new request. The use of the URI
header is deprecated in HTTP 1.1 in favor of the Location, Content-Location,
and Vary headers.

Summary of Support Across HTTP
Versions

The following is a listing of all HTTP headers supported by each version of HTTP so
far.

HTTP 0.9

Method General Request Entity Response

GET none none none none

HTTP 1.0

Method General Request Entity Response

GET Connection Accept Allow Location

HEAD Date Accept-charset Content-encoding Retry-after

POST MIME-version Accept-encoding Content-language Server

PUT Pragma Accept-language Content-length WWW-Authenticate

DELETE Authorization Content-type

LINK From Expires

UNLINK If-modified-since Last-modified

 Referer Link

 User-agent Title

 URI

HTTP 1.1

Method General Request Entity Response

OPTIONS Cache-control Accept Allow Age

GET Connection Accept-charset Content-base Location

HEAD Date Accept-encoding
Content-
encoding

Proxy-authenticate

POST Pragma Accept-language
Content-
language

Public

PUT
Transfer-
encoding

Authorization
Content-
length

Retry-after

DELETE Upgrade From
Content-
location

Server

TRACE Via Host Content-md5 URI

PATCH If-Modified-Since
Content-
range

Vary

LINK If-match Content-type Warning

UNLINK If-none-match
Content-
version

WWW-
Authenticate

 If-range Derived-from

 If-unmodified-since Etag

 Max-forwards Expires

 Range Last-modified

 Referer Link

 User-agent

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Appendix B
Reference Tables

This appendix contains several tables that will be useful when negotiating HTTP
content. Covered in this appendix are:

Media Types
Whenever an entity-body is sent via HTTP, a media type must be sent using the
Content-type header. Also, web clients can use the Accept header to
define which media types the client can handle.

Character Encoding
In URL-encoded data (as described in Chapter 3, Learning HTTP), any "special"
characters such as spaces and punctuation must be encoded with a % escape
sequence.

Languages
Entity-bodies can be sent with a Content-language header, to declare what
language the entity is written in. Clients can declare which languages they can
handle, using the Accept-language header.

Character Sets
Clients can use the Accept-charset header to declare which character sets

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

they are capable of handling.

Media Types

Listed below are media types that are registered with the Internet Assigned Number
Authority (IANA). According to the HTTP specification, use of nonregistered media
types is discouraged.

The IANA media list is available in RFC 1700. A more readable document describing
the assigned media types is available at ftp://ftp.isi.edu/in-notes/iana/assignments/media-
types/.

A variety of methods is used to identify the media type of a document. The easiest
method, but the least accurate, is to map well-known file extensions with a media type.
For example, a file that ends in ".GIF" would map to "image/gif". However, in usual
practice, there is no verification that the file is in fact a GIF file.

A more accurate method would examine the structure or data format of the file and map
it to a media type. For some media types, magic numbers allow this to happen. For
example, all GIF files begin with the three uppercase letters of GIF, and all JPEG files
begin with 0xFFD8 (hexadecimal notation). This method, however, is more time
consuming.

Under some filesystems, media types may be mapped by examining the file
type/creator attribute of the file. While this is easily achieved under MacOS's HFS,
other filesystems (DOS, NTFS, BSD) do not have these file attributes.

Table B-1:Internet Media Types

Type Subtype

text plain

text richtext

text enriched

text tab-separated-values

text html

text sgml

multipart mixed

multipart alternative

multipart digest

multipart parallel

multipart appledouble

multipart header-set

multipart form-data

multipart related

multipart report

multipart voice-message

message rfc822

message partial

message external-body

message news

message http

application octet-stream

application postscript

application oda

application atomicmail

application andrew-inset

application slate

application wita

application dec-dx

application dca-rft

application activemessage

application rtf

application applefile

application mac-binhex40

application news-message-id

application news-transmission

application wordperfect5.1

application pdf

application zip

application macwriteii

application msword

application remote-printing

application mathematica

application cybercash

application commonground

application iges

application riscos

application eshop

application x400-bp

application sgml

application cals-1840

application vnd.framemaker

application vnd.mif

application vnd.ms-excel

application vnd.ms-powerpoint

application vnd.ms-project

application vnd.ms-works

application vnd.ms-tnef

application vnd.svd

application vnd.music-niff

application vnd.ms-artgalry

application vnd.truedoc

application vnd.koan

image jpeg

image gif

image ief

image g3fax

image tiff

image cgm

image naplps

image vnd.dwg

image vnd.svf

image vnd.dxf

audio basic

audio 32kadpcm

video mpeg

video quicktime

video vnd.vivo

Character Encoding

When the client sends data to a CGI program using the Content-type of
application/x-www-form-urlencoded, certain special characters are encoded to
eliminate ambiguity. Table B-2 shows which characters are transformed and which are
not transformed. For more information on URLs, see RFC 1738.

Table B-2:Character Encoding

ASCII Symbol CGI representation

< 32
always encode with %xx where xx is the hexadecimal
representation of the character

32 + or %20

33 ! %21

34 " %22

35 # %23

36 $ %24

37 % %25

38 & %26

39 ' %27

40 (%28

41) %29

42 * *

43 + %2B

44 , %2C

45 - -

46 . .

47 / %2F

48 0 0

49 1 1

50 2 2

51 3 3

52 4 4

53 5 5

54 6 6

55 7 7

56 8 8

57 9 9

58 : %3A

59 ; %3B

60 < %3C

61 = %3D

62 > %3E

63 ? %3F

64 @ %40

65 A A

66 B B

67 C C

68 D D

69 E E

70 F F

71 G G

72 H H

73 I I

74 J J

75 K K

76 L L

77 M M

78 N N

79 O O

80 P P

81 Q Q

82 R R

83 S S

84 T T

85 U U

86 V V

87 W W

88 X X

89 Y Y

90 Z Z

91 [%5B

92 \ %5C

93] %5D

94 ^ %5E

95 _ _

96 ` %60

97 a a

98 b b

99 c c

100 d d

101 e e

102 f f

103 g g

104 h h

105 i i

106 j j

107 k k

108 l l

109 m m

110 n n

111 o o

112 p p

113 q q

114 r r

115 s s

116 t t

117 u u

118 v v

119 w w

120 x x

121 y y

122 z z

123 { %7B

124 | %7C

125 } %7D

126 ~ %7E

127 %7F

> 127
always encode with %xx where xx is the hexadecimal
representation of the character

Languages

A language tag is of the form of:

<primary-tag> <-subtag>

where zero or more subtags are allowed. The primary-tag specifies the language, and
the subtag specifies parameters to the language, like dialect information, country
identification, or script variations. RFC 1766 contains the complete documentation of
languages and parameter usage. The key values for the primary-tag and subtag are
outlined in Tables B-3 and B-4, respectively.

Examples:

de
(German)

en
(English)

en-us
(English, USA)

Table B-3 lists the primary langauge tags as defined in ISO 639 and RFC 1766.

Table B-3:Primary Language
Types

Primary Tag Language

aa Afar

ab Abkhazian

af Afrikaans

am Amharic

ar Arabic

as Assamese

ay Aymara

az Azerbaijani

ba Bashkir

be Byelorussian

bg Bulgarian

bh Bihari

bi Bislama

bn Bengali; Bangla

bo Tibetan

br Breton

ca Catalan

co Corsican

cs Czech

cy Welsh

da Danish

de German

dz Bhutani

el Greek

en English

eo Esperanto

es Spanish

et Estonian

eu Basque

fa Persian

fi Finnish

fj Fiji

fo Faeroese

fr French

fy Frisian

ga Irish

gd Scots, Gaelic

gl Galician

gn Guarani

gu Gujarati

ha Hausa

he Hebrew

hi Hindi

hr Croatian

hu Hungarian

hy Armenian

ia Interlingua

id Indonesian

ie Interlingue

ik Inupiak

is Icelandic

it Italian

iu Inuktitat

iw Hebrew

ja Japanese

jw Javanese

ka Georgian

kk Kazakh

kl Greenlandic

km Cambodian

kn Kannada

ko Korean

ks Kashmiri

ku Kurdish

ky Kirghiz

la Latin

ln Lingala

lo Laothian

lt Lithuanian

lv Latvian, Lettish

mg Malagasy

mi Maori

mk Macedonian

ml Malayalam

mn Mongolian

mo Moldavian

mr Marathi

ms Malay

mt Maltese

my Burmese

na Nauru

ne Nepali

nl Dutch

no Norwegian

oc Occitan

om (Afan) Oromo

or Oriya

pa Punjabi

pl Polish

ps Pashto, Pushto

pt Portuguese

qu Quechua

rm Rhaeto-Romance

rn Kirundi

ro Romanian

ru Russian

rw Kinyarwanda

sa Sanskrit

sd Sindhi

sg Sangro

sh Serbo-Croatian

si Singhalese

sk Slovak

sl Slovenian

sm Samoan

sn Shona

so Somali

sq Albanian

sr Serbian

ss Siswati

st Sesotho

su Sudanese

sv Swedish

sw Swahili

ta Tamil

te Tegulu

tg Tajik

th Thai

ti Tigrinya

tk Turkmen

tl Tagalog

tn Setswana

to Tonga

tr Turkish

ts Tsonga

tt Tatar

tw Twi

ug Uigar

uk Ukrainian

ur Urdu

uz Uzbek

vi Vietnamese

vo Volapuk

wo Wolof

xh Xhosa

yi Yiddish

yo Yoruba

za Zhuang

zh Chinese

zu Zulu

Table B-4 lists the language subtypes as defined in ISO 3166.

Table B-4:Language Subtypes

Subtype Country

AD Andorra

AE United Arab Emirates

AF Afghanistan

AG Antigua and Barbuda

AI Anguilla

AL Albania

AM Armenia

AN Netherland Antilles

AO Angola

AQ Antarctica

AR Argentina

AS American Samoa

AT Austria

AU Australia

AW Aruba

AZ Azerbaidjan

BA Bosnia-Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BM Bermuda

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Buthan

BV Bouvet Island

BW Botswana

BY Belarus

BZ Belize

CA Canada

CC Cocos (Keeling) Isl.

CF Central African Rep.

CG Congo

CH Switzerland

CI Ivory Coast

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

CR Costa Rica

CS Czechoslovakia

CU Cuba

CV Cape Verde

CX Christmas Island

CY Cyprus

CZ Czech Republic

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EE Estonia

EG Egypt

EH Western Sahara

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Isl. (Malvinas)

FM Micronesia

FO Faroe Islands

FR France

FX France (European Ter.)

GA Gabon

GB Great Britain (UK)

GD Grenada

GE Georgia

GH Ghana

GI Gibraltar

GL Greenland

GP Guadeloupe (Fr.)

GQ Equatorial Guinea

GF Guyana (Fr.)

GM Gambia

GN Guinea

GR Greece

GT Guatemala

GU Guam (US)

GW Guinea Bissau

GY Guyana

HK Hong Kong

HM Heard & McDonald Isl.

HN Honduras

HR Croatia

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IN India

IO British Indian O. Terr.

IQ Iraq

IR Iran

IS Iceland

IT Italy

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kirgistan

KH Cambodia

KI Kiribati

KM Comoros

KN St. Kitts Nevis Anguilla

KP Korea (North)

KR Korea (South)

KW Kuwait

KY Cayman Islands

KZ Kazachstan

LA Laos

LB Lebanon

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

LY Libya

MA Morocco

MC Monaco

MD Moldavia

MG Madagascar

MH Marshall Islands

ML Mali

MM Myanmar

MN Mongolia

MO Macau

MP Northern Mariana Isl.

MQ Martinique (Fr.)

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New Caledonia (Fr.)

NE Niger

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NT Neutral Zone

NU Niue

NZ New Zealand

OM Oman

PA Panama

PE Peru

PF Polynesia (Fr.)

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM St. Pierre & Miquelon

PN Pitcairn

PT Portugal

PR Puerto Rico (US)

PW Palau

PY Paraguay

QA Qatar

RE Reunion (Fr.)

RO Romania

RU Russian Federation

RW Rwanda

SA Saudi Arabia

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH St. Helena

SI Slovenia

SJ Svalbard & Jan Mayen Isl.

SK Slovak Republic

SL Sierra Leone

SM San Marino

SN Senegal

SO Somalia

SR Suriname

ST St. Tome and Principe

SU Soviet Union

SV El Salvador

SY Syria

SZ Swaziland

TC Turks & Caicos Islands

TD Chad

TF French Southern Terr.

TG Togo

TH Thailand

TJ Tadjikistan

TK Tokelau

TM Turkmenistan

TN Tunisia

TO Tonga

TP East Timor

TR Turkey

TT Trinidad & Tobago

TV Tuvalu

TW Taiwan

TZ Tanzania

UA Ukraine

UG Uganda

UK United Kingdom

UM US Minor Outlying Isl.

US United States

UY Uruguay

UZ Uzbekistan

VA Vatican City State

VC St.Vincent & Grenadines

VE Venezuela

VG Virgin Islands (British)

VI Virgin Islands (US)

VN Vietnam

VU Vanuatu

WF Wallis & Futuna Islands

WS Samoa

YE Yemen

YU Yugoslavia

ZA South

ZM Zambia

ZR Zaire

ZW Zimbabwe

Character Sets

Table B-5 lists the character sets that may be used with the Accept-language and
Content-language HTTP headers. This list does not describe all of the possible
character sets of international languages that can appear in the headers. For a
comprehensive list of character sets, their aliases, and pointers to more descriptive
documents, refer to RFC 1700.

Table B-5:Character Sets

Character Sets Language Source

US-ASCII
American Standard Code for Information
Exchange

RFC 1345

ISO-8859-1 Latin Alphabet No. 1 RFC 1345

ISO-8859-2 Latin Alphabet No. 2 RFC 1345

ISO-8859-3 Latin Alphabet No. 3 RFC 1345

ISO-8859-4 Latin Alphabet No. 4 RFC 1345

ISO-8859-5 Latin/Cyrillic Alphabet RFC 1345

ISO-8859-6 Latin/Arabic Alphabet RFC 1345

ISO-8859-7 Latin/Greek Alphabet RFC 1345

ISO-8859-8 Latin/Hebrew Alphabet RFC 1345

ISO-8859-9 Latin Alphabet No. 5 RFC 1345

ISO-2022-JP Japanese RFC 1468

ISO-2022-JP-2 Extension of Japanese in ISO-2022-JP RFC 1554

ISO-2022-KR Korean RFC 1557

UNICODE-1-1 Unicode for MIME RFC 1641

UNICODE-1-1-UTF-7 7-bit UCS Transformation Format RFC 1642

UNICODE-1-1-UTF-8 8-bit UCS Transformation Format N/A

Back to: Chapter Index

http://www.oreilly.com/openbook/webclient/index.html

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Appendix C
The Robot Exclusion Standard

As we've mentioned earlier in this book, automated clients, or robots, might be
considered an invasion of resources by many servers. A robot is defined as a web client
that may retrieve documents in an automated, rapid-fire succession. Examples of robots
are indexers for search engines, content mirroring programs, and link traversal
programs. While many server administrators welcome robots--how else will they be
listed by search engines and attract potential customers?--others would prefer that they
stay out.

The Robot Exclusion Standard was devised in 1994 to give administrators an
opportunity to make their preferences known. It describes how a web server
administrator can designate certain areas of a website as "off limits" for certain (or all)
web robots. The creator of the document, Martijn Koster, maintains this document at
http://info.webcrawler.com/mak/projects/robots/norobots.html and also provides an
informational RFC at http://info.webcrawler.com/mak/projects/robots/norobots-rfc.txt.
The informational RFC adds some additional features to those in the original 1994
document.

The success of the Robot Exclusion Standard depends on web application programmers
being good citizens and heeding it carefully. While it can't serve as a locked door, it can
serve as a clear "Do Not Disturb" sign. You ignore it at the peril of (at best) being called

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/
http://info.webcrawler.com/mak/projects/robots/norobots.html
http://info.webcrawler.com/mak/projects/robots/norobots-rfc.txt

a cad, and (at worst) being explicitly locked out if you persist, and having angry
complaints sent to your boss or system administrator or both. This appendix gives you
the basic idea behind the Robot Exclusion Standard, but you should also check the RFC
itself.

In a nutshell, the Robot Exclusion Standard declares that a web server administrator
should create a document accessible at the relative URL /robots.txt. For example, a
remote client would access a robots.txt file at the server hypothetical.ora.com using the
following URL:

http://hypothetical.ora.com/robots.txt

If the web server returns a status of 200 (OK) for the URL, the client should parse and
interpret the resulting entity-body (described below). In other cases, status codes in the
range of 300-399 indicate URL redirections, which should be followed by the client.
Status codes of 401 (Unauthorized) or 403 (Forbidden) indicate access restrictions and
the client should avoid the entire site. A 404 (Not Found) indicates that the
administrator did not specify any Robot Exclusion Standard and the entire site is okay
to visit.

Here's the good news if you use LWP for your programs: LWP::RobotUA takes care of
all this for you. While it's still good to know about the standard, you can rest easy--yet
another perk of using LWP. See Chapter 5 for an example using LWP::RobotUA.

Syntax for the /robots.txt File

When clients receive the robots.txt file, they need to parse it to determine whether they
are allowed access to the site. There are three basic directives that can be in the
robots.txt file: User-agent, Allow, and Disallow.

The User-agent directive specifies that subsequent Allow and Disallow
statements apply to it. The robot should use a case-insensitive comparison of this value
with its own user agent name. Version numbers are not used in the comparison.

If the robots.txt file specifies a * as a User-Agent, it indicates all robots, not any
particular robot. So if an administrator wants to shut out all robots from an entire site,
the robots.txt file only needs the following two lines:

User-agent: *
Disallow: /

The Allow and Disallow directives indicate areas of the site that the previously-
listed User-agent is allowed or denied access. Instead of listing all the URLs that
the User-Agent is allowed and disallowed, the directive specifies the general prefix

that describes what is allowed or disallowed. For example:

Disallow: /index

would match both /index.html and /index/summary.html, while:

Disallow: /index/

would match only URLs in /index/. In the extreme case,

Disallow: /

specifies the entire web site.

Multiple User-agents can be specified within a robots.txt file. For example,

User-agent: friendly-indexer
User-agent: search-thingy
Disallow: /cgi-bin/
Allow: /

specifies that the allow and disallow statements apply to both the friendly-
indexer and search-thingy robots.

The robots.txt file moves from general to specific; that is, subsequent listings can
override previous ones. For example:

User-agent: *
Disallow: /
User-agent: search-thingy
Allow: /

would specify that all robots should go away, except the search-thingy robot.

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

Web Client Programming
with Perl

Automating Tasks on the Web

By Clinton Wong
1st Edition March 1997

This book is out of print, but it has been made available online
through the O'Reilly Open Books Project.

Index

[Symbols], [Numbers], [A], [B], [C], [D], [E], [F], [G], [H], [I], [K],
[L], [M], [N], [O], [P], [Q], [R], [S], [T], [U], [V], [W], [X],

Symbols[Top]
& (ampersand), 20, 37
= (equal sign), 37
% (percent sign), 37
+ (plus sign), 20

Numbers[Top]
100 range HTTP status codes, 47, 101
200 range HTTP status codes, 48, 101
300 range HTTP status codes, 48, 101
400 range HTTP status codes, 49-51, 102
500 range HTTP status codes, 51, 102

A[Top]
abs(), 111
absolute URLs, 91, 111
accept(), 66-68, 70
Accept header, 56, 177

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/webclient/
http://www.oreilly.com/openbooks/

Accept-Charset header, 177
Accept-Encoding header, 177
Accept-Language header, 178
Accept-Ranges header, 59, 181
add_content(), 100, 102
Age header, 182
agent(), 96
Allow header, 184
ampersand (&), 20, 37
application/x-www-form-urlencoded media type, 19, 35-37, 193-194
as_string(), 98, 100, 103, 113
authorization/authentication, 44, 85
 Authorization header, 62-63, 178
 digest authentication, 46, 185
 LWP functions for, 96
 Proxy-Authenticate header, 182
 Proxy-Authorization header, 181
 WWW-Authenticate header, 62, 184

B[Top]
base(), 102, 111
BASIC authorization, 62, 178
bind(), 66-68
body, response (see entity-body)
BottomMargin attribute, 109
browsers, vii, 3
bugs, 6
byte ranges, 45, 59

C[Top]
Cache-Control header, 57, 172
caching, 57-59, 172
CGI programs, 17-20
 HTTP codes for errors in, 51, 102
character encoding (see encoding)
character sets, 201
 Accept-Language header, 178
 Content-Language header, 185
CheckSite package (example), 131-141
checksums, 46
classes, LWP (see modules, LWP)
client requests, 10, 23-24
 cache directives, 172
 HTTP codes for errors in, 49-51
 HTTP module for (LWP), 98-101
 request header, 11, 24, 53, 177-181

 request methods, 19, 24, 31-41
 robots for (examples), 125-131
 timeouts, 96
 UserAgent module (LWP), 95-97
clients (see web clients)
close(), 66, 69
code (see source code)
code(), 101
connect(), 66-68
Connection header, 46, 55, 173
content(), 100, 102
Content-Base header, 184
Content-Encoding header, 184
Content-Language header, 185
Content-Length header, 19, 59, 185
Content-Location header, 185
Content-MD5 header, 185
Content-Range header, 60, 185
Content-Transfer-Encoding header, 186
Content-Type header, 19, 40, 56, 186
Cookie header, 63, 179
cookies, 63, 179, 182
CPAN archives, 87
crack(), 111
credentials(), 95
current_age(), 103

D[Top]
date (see time and date)
Date header, 174
Date module (LWP), 105
daytime server, 72
default_port(), 112
delay(), 98
delete(), 108
DELETE method, 40
dictionary client (example), 145-154
digest authentication, 46, 185
directives, caching, 172
document path, 11
documentation, HTTP, 46
documents (see files/documents)

E[Top]
Element module (LWP), 90, 107
encoding, 193-194

 Accept-Encoding header, 177
 Content-Encoding header, 184
 Content-Transfer-Encoding header, 186
 Content-Type header, 19, 40, 56, 186, 193
 Transfer-Encoding header, 175
encoding URLs (see URL-encoded format)
entity-body, 12
 storing at URL, 38-40
entity headers, 24, 54, 184-187
entity tags, 44, 58
env_proxy(), 97
eparams(), 112
epath(), 112
eq(), 113
equal sign (=), 37
equery(), 112
error_as_HTML(), 102
errors, HTTP status codes for, 49-51, 102
Escape module (LWP), 110
ETag header, 59, 186
expanding relative URLs, 91
Expires header, 58, 186
extract_links(), 90, 108
extracting links from files, 80-84, 90, 121-124

F[Top]
fedex program (example), 125-131
filehandles (see sockets)
files/documents
 caching, 57-59, 172
 extracting links from, 80-84, 90, 121-124
 publishing on web servers, 20-23
 referring, 60, 181
 retrieving, 31, 88
 with telnet, 16
 (see also GET method)
 storing at URLs, 38-40
 uploading with POST method, 37
FontFamily attribute, 109
FontScale attribute, 109
format(), 108
FormatPS module (LWP), 108
FormatText module (LWP), 108
forms, HTML, 17-20, 36
frag(), 113
fresh_until(), 103

freshness_lifetime(), 103
from(), 96
From header, 179
FTP, obtaining examples by, x
full_path(), 113

G[Top]
gateway systems (see proxy servers)
general headers, 24, 52, 171-176
get(), 88, 94
get_basic_credentials(), 96
GET method, 29, 31
Getopts(), 76
getprint(), 88, 94
getstore(), 94
graphical browsers (see browsers)
Graphical User Interface (GUI), 143
graphical user interface (see Tk extension)
graphics (see images)

H[Top]
hcat program (example), 76-80, 118-121
head(), 94
HEAD method, 33
header(), 100, 102, 104
headers, 52-64, 171-189
 entity headers, 24, 54, 184-187
 general headers, 24, 52, 171-176
 Headers module for (LWP), 103
 identification headers, 61
 retrieving, 33
 (see also under specific header name)
hgrepurl program (example), 81-84, 121-124
HorizontalMargin attribute, 109
host(), 112
Host header, 11, 179
host_wait(), 98
hostnames, 11, 179
 multihoming, 44
HTML (Hypertext Markup Language), 13-15
 converting to PostScript, 109
 documents (see files/documents)
 error explanations in, 102
 forms, 17-20, 36
 HTML module for (LWP), 89, 106-109
 parsing, 89

 tag parameters, 84
HTTP (Hypertext Transfer Protocol), 1, 4, 23-25, 28-30
 headers (see headers)
 HTTP module for (LWP), 98-106
 requests (see client requests)
 responses (see server responses)
 status codes, 30, 47-52, 101, 104
 versions of, 29, 41-47, 86, 187
hyperlinks (see URLs)

I[Top]
IANA (Internet Assigned Number Authority), 191
identification headers, 61
If-Match header, 59, 180
If-Modified-Since header, 57, 179
If-None-Match header, 59, 180
If-Range header, 60, 180
If-Unmodified-Since header, 58, 180
IGNORE_TEXT flag, 107
IGNORE_UNKNOWN flag, 107
images, 13
IMPLICIT_TAGS flag, 107
informational HTTP status codes, 47, 101
initializing sockets, 68
Internet Assigned Number Authority (IANA), 191
Internet media types (see media types)
is_client_error(), 104
is_error(), 95, 102, 104
is_fresh(), 103
is_info(), 101, 104
is_protocol_supported(), 96
is_redirect(), 101
is_server_error(), 104
is_success(), 95, 101, 104

K[Top]
keep-alive connections, 46, 55, 173

L[Top]
languages, 195-200
 Accept-Language header, 178
 Content-Language header, 185
Last-Modified header, 58, 187
Leading attribute, 109
LeftMargin attribute, 109

listen(), 70
Location header, 85, 187
LWP library, 5, 65, 87-116
 modules of, 92-113
 periodic clients (examples), 125-131
 recursive clients (examples), 131-141
 simple clients (examples), 118-124
LWP module, 88, 93-98

M[Top]
Max-Forwards header, 41, 180
media types, 55, 186, 191-193
 MIME-Version header, 174
 (see also encoding)
message(), 102
metainformation, 44, 52, 85
method(), 100
methods (see request methods)
MIME types (see media types)
MIME-Version header, 174
mirror(), 94, 96
mnemonics, Status module (LWP), 105
modification time, 12, 57, 187
modules, LWP, 92-113
Mosaic browser, 3
multihoming, 44

N[Top]
netloc(), 111
Netscape Navigator, 3
 cookies, 63, 179, 182
no_proxy(), 97
no_visits(), 98

O[Top]
obtaining (see retrieving)
options, 6, 41
OPTIONS method, 41

P[Top]
pack(), 68
package delivery programs, 125-131, 154-162
PageNo attribute, 109
PaperHeight attribute, 109
PaperSize attribute, 109

PaperWidth attribute, 109
params(), 112
parse_html(), 90, 107, 146
parse_htmlfile(), 107
parsing
 HTML, 13-15, 89
 Parse module for (LWP), 107
 URLs, 10, 74
password(), 112
path(), 112
paths, document, 11
percent sign (%), 37
periodic clients (examples), 125-131
Perl language
 LWP library, 5, 65, 87-116
 sockets library, 65
 Tk (see Tk extension)
persistent connections, 46, 55, 173
persistent-state cookies, 63, 179, 182
pinging servers, program for, 162-169
pl2bat program, 89
plus sign (+), 20
port(), 112
POST method, 19, 34-38
PostScript, converting HTML into, 109
Pragma header, 57, 175
print command, 69
proxy(), 97
proxy servers, 45, 57-59, 97, 115
 caching and, 57-59, 172
 Pragma header, 57, 175
 TRACE method, 41-42
Proxy-Authenticate header, 182
Proxy-Authorization header, 181
Public header, 182
publishing on web servers, 20-23
push_header(), 104
PUT method, 38-40

Q[Top]
query(), 113

R[Top]
Range header, 45, 60, 181
reading from network connection, 69
recursive clients (examples), 131-141

redirection, 85
 HTTP status codes for, 48, 101
Referer header, 60, 181
rel(), 111
relative URLs, 91, 111
remove_header(), 104
request(), 95
request header, 11, 24, 29, 177-181
request methods, 19, 24, 31-41
Request module (LWP), 98-101
requests (see client requests)
response header, 12, 25, 30, 54, 85, 181-184
Response module (LWP), 98, 101-103
responses (see server responses)
retrieving
 example code, x
 files/documents, 31, 88
 headers, 33
 LWP library, 87
 with telnet, 16
Retry-After header, 182
RightMargin attribute, 109
robots
 periodic clients (examples), 125-131
 Robot Exclusion Standard, 7, 203-205
 RobotUA module for (LWP), 97, 115
robots.txt file, 204-205
rules(), 98

S[Top]
saving (see caching)
scheme(), 111
security (see authorization/authentication)
Server header, 62, 182
server responses, 11, 24
 cache directives, 172
 response header, 12, 25, 30, 54, 85, 181-184
 Response module for (LWP), 101-103
 response time, 86
 status codes (see status codes, HTTP)
servers (see web servers)
Set-Cookie header, 63, 182
shcat program (example), 79
simple clients (examples), 118-124
Simple module (LWP), 88, 93
socket(), 66

socket library, 65
sockets, 65-72
 connecting client and server, 71-74
 socket calls, 66-71
source code
 example, obtaining, x
 testing, 6
space character, 37
specifications, HTTP, 46
status codes, HTTP, 30, 47-52, 101, 104
Status module for (LWP), 104
str2time(), 106
strict(), 111
sysread(), syswrite(), 66-68, 69

T[Top]
tag parameters, 84
TCP/IP, 5
telnet client, 16
testing source code, 6
text, converting HTML to, 108
time and date
 Age header, 182
 Date header, 174
 Date module (LWP), 105
 modification time, 12, 57, 187
 request timeouts, 96
 server response time, 86
time2str(), 105
timeout(), 96
Tk extension, 143-145
 dictionary client example, 145-154
 package tracking client example, 154-162
 pinging servers client example, 162-169
TopMargin attribute, 109
TRACE method, 41-42
tracking packages, example programs for, 125-131, 154-162
Transfer-Encoding header, 175
traverse(), 146
Treebuilder module (LWP), 90

U[Top]
Upgrade header, 176
uploading files, 37
uri_escape(), uri_unescape(), 110
URI header, 187

URI module (LWP), 91, 110-113
url(), 100
URL-encoded format, 19, 35-37, 193-194
URLs (uniform resource locators), 3
 deleting, 40
 extracting links from files, 80-84, 90, 121-124
 following with recursive clients, 131-141
 hyperlinks, 15
 options available for, 41
 parsing, 10, 74
 redirection HTTP status codes, 48, 101
 relative, expanding, 91
 storing entity-bodies at, 38-40
 URL module for (LWP), 91, 111
use_alarm(), 96
user(), 112
User-Agent header, 61, 181
UserAgent module (LWP), 95-97, 113-116

V[Top]
Vary header, 183
versions, HTTP, 29, 41-47, 86, 187
VerticalMargin attribute, 109
Via header, 41

W[Top]
WARN flag, 107
Warning header, 183
web clients, 1, 4, 6
 caching, 57-59, 172
 connecting to server, 71-74
 cookies, 63, 179, 182
 design considerations, 84
 examples
 CheckSite, 131-141
 hcat, 76-80, 118-121
 hgrepurl, 81-84, 121-124
 package tracking, 125-131, 154-162
 periodic clients, 125-131
 recursive clients, 131-141
 shcat, 79
 simple clients, 118-124
 webping, 162-169
 xword, 145-154
 identification headers for, 61
 requests (see client requests)

 sockets and (see sockets)
 tracing messages from, 41-42
web servers, 4, 6
 checking if up (example), 162-169
 connecting clients to, 71-74
 HTTP error codes for, 51, 102
 proxy servers, 41-42, 45, 57-59, 97, 115
 publishing documents on, 20-23
 responses (see server responses)
 sending data to, 34-38
 sockets and (see sockets)
 uploading files to, 37
 when down, 85
webping program (example), 162-169
widgets (see Tk extension)
Windows 95, 5
Windows NT, 5
World Wide Web, 2-4
 browsers (see browsers)
writing
 to network connection, 69
 web clients, 84
WWW-Authenticate header, 44, 62, 184

X[Top]
xword program (example), 145-154

Back to: Chapter Index

Back to: Web Client Programming with Perl

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/openbook/webclient/index.html
http://www.oreilly.com/catalog/webclient/noframes.html
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
mailto:webmaster@oreilly.com

	Web Client Programming with Perl
	Web Client Programming with Perl
	Table of Contents
	Preface
	Chapter 1: Introduction
	Chapter 2: Demystifying the Browser
	Chapter 3: Learning HTTP
	Chapter 4: The Socket Library
	Chapter 5: The LWP Library
	Chapter 6: Example LWP Programs
	Chapter 7: Graphical Examples with Perl/Tk
	Appendix A: HTTP Headers
	Appendix B: Reference Tables
	Appendix C: The Robot Exclusion Standard
	Index

