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Abstract

A new reduction machine for lazy functional languages called the Reduc-
eron is proposed. The Reduceron exploits wide, parallel memories to in-
crease evaluation speed, and is prototyped in programmable hardware. It is
compared with conventional machines by a theoretical analysis and by an
experimental comparison. It is shown that the use of wide, parallel memo-
ries in a graph reduction machine can lead to a factor of five performance
improvement.

Existing approaches to property-based testing are reviewed, and two new
ones – Reach and Lazy SmallCheck – are developed. Reach is a program
analyser that targets evaluation of expressions left uncovered by existing
testing techniques, and Lazy SmallCheck is a lightweight library for a stan-
dard lazy functional language. Both are more effective than existing ap-
proaches at testing properties that have restrictive antecedents.
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Chapter 1

Introduction

The importance of functional languages has for some time remained largely
in academia, where they serve as a strong semantic foundation for studying
new ideas [41] and teaching core programming principles [27]. But now
they are becoming increasingly important in industry too, not only due to
growing commercial use [25], but also because of their influence on other
languages both mainstream [71, 38, 23] and new [24, 1, 74].

One of the most attractive features of functional languages is that they allow
programs to be written at a very high level of abstraction. This feature is
partly due to the fact that functional languages have evolved much more
from the desire to allow humans to express algorithms concisely than from
the architectural constraints of the machines on which programs must run.
The price to pay is that functional programs typically run less efficiently on
conventional computers than their more machine-oriented counterparts.

Functional language researchers have studied many aspects of software tech-
nology, from profilers and tracers to type systems and theorem provers. But,
for some time, there has been one rather notable omission – software test-
ing – even though it accounts for over 50% of the total cost of software
development. Although functional language researchers have recently made
significant progress in this area [20], so much so in fact that they have al-
ready influenced how testing can be done in a number of different languages
[4, 69, 11, 58, 68, 11, 46, 73], there is much scope for further development.
In particular, existing automatic test generators sometimes leave parts of
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programs untested, and in such cases programmers must resort to writing
test generators by hand.

These observations motivate the two main topics of this thesis: (1) the
development of a special-purpose machine to evaluate functional programs
efficiently; and (2) a program analyser that targets evaluation of expressions
left uncovered by existing automatic testing techniques. Both topics are
concerned with evaluation: the former with hardware-assisted evaluation
and the latter with target-directed evaluation.

The lazy functional language Haskell [79] is used as a host for many of the
ideas presented, but only a basic knowledge of pure functional programming
is assumed.

1.1 Hardware-assisted evaluation

Efficient evaluation of high-level functional programs on conventional com-
puters is a big challenge. Sophisticated compilation techniques are needed
to exploit architectural features designed for low-level imperative execution.
Not only do such techniques result in complex compilers, but they can easily
become outdated with architectural advances – some techniques that made
functional languages efficient fifteen years ago are now known to be inefficient
for modern machines [62]. Most serious of all is that conventional computers
have inherent limitations when it comes to running functional programs. In
particular, memory bandwidth is limited to serial communication in small
units – the von Neumann bottleneck [10]. Functional language evaluators
based on graph reduction [78] perform intensive construction and decon-
struction of expressions in memory. Each such operation requires sequential
execution of many machine instructions, not because of any inherent data
dependencies, but because of architectural constraints in conventional com-
puters.

All this motivates the idea of building special-purpose computers to support
functional languages, just as GPUs have been built to support graphics.
This is not a new idea. In the ’80s and ’90s there was a 15-year ACM
conference series Functional Programming and Computer Architecture cov-
ering the topic, and a major computer manufacturer built a graph-reduction
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prototype [85]. But as the process of building exotic new machines was so
expensive and time consuming, “much of this architecturally oriented work
turned out to be a dead end” [42]. In the penultimate chapter of his thesis
about a graph-reduction architecture called TIGRE [53], Koopman gets to
the heart of the problem:

So, it is probably not worthwhile building a special-purpose CPU
to support TIGRE, since current RISC technology will probably
have increased in speed enough by the time a TIGRE chip could
be designed and fabricated to make the exercise pointless. [53]

Nowadays, the situation is quite different. Field programmable gate arrays
(FPGAs) have greatly reduced the effort and expertise needed to develop
special-purpose hardware. They contain thousands of parallel logic blocks
that can be configured at will by software tools. Memory architectures of all
kinds can be constructed from large arrays of independent block RAMs. As
conventional PCs appear to have hit a limit in sequential processing speed
[56], it is now special-purpose computing – through FPGAs – that can be
viewed as the advancing technology. FPGAs can also be viewed as a tool for
prototyping designs before they are converted to efficient application-specific
integrated circuits (ASICs). Both of these views motivate fresh experiments
in the design of special-purpose hardware to support functional languages.

Chapter 2 of this thesis presents one such experiment. The effect of widening
the von Neumann bottleneck for sequential graph reduction is analysed. A
special-purpose reduction machine – the Reduceron – is proposed, featuring
wide, parallel memories. Wide and narrow variants of the Reduceron are
prototyped on an FPGA, and compared with each other and with existing
functional language implementations running on a PC.

To implement the Reduceron prototype, an unconventional approach to cir-
cuit description is taken. Instead of a language supporting both structural
and behavioural description, a pure structural language is used, and be-
haviour is expressed using a small library of higher-order, pure structural
components. In Chapter 3, this library – Recipe – is presented, and the
capabilities and deficiencies of the approach are explored.
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1.2 Target-directed evaluation

To argue that a program is correct is to argue that it satisfies some set
of properties. A property could for example be that one function in the
program computes the inverse of another; or that some function preserves
the invariant of a data structure; or that an efficient-but-complex function
produces the same result as a simple-but-inefficient one. In any case, prop-
erties state relationships between the component functions of a program,
capturing precisely what it means for the program to be correct.

Claessen and Hughes propose an attractive approach to testing properties of
Haskell programs [20], as implemented in their library QuickCheck. Proper-
ties relating the component functions of a program are specified in Haskell
itself. The simplest kind of property is just a boolean-valued function whose
arguments are interpreted as universally quantified variables. QuickCheck
applies the properties to randomly selected inputs of the appropriate type,
and reports any counter-examples found.

Specifying properties in QuickCheck forces programmers to think hard about
what makes their programs correct, and to record their conclusions in a
precise form. Even this preliminary outcome of exact documentation has
value. But the big reward for specifying properties is that they can be
tested automatically, perhaps revealing bugs.

Despite the success of QuickCheck – resulting in ports to many languages
including Erlang [4], Java [69], Lisp [11], ML [58], Perl [68], Python [11],
Ruby [46] and Scala [73] – it has limitations. Claessen and Hughes write:

The major limitation of QuickCheck is that there is no measure-
ment of test coverage. [20]

Gill and Runciman propose the use of Haskell Program Coverage (HPC)
to address this issue [31]. While QuickCheck applies program properties
to randomly chosen inputs, HPC records which expressions in the program
have been evaluated, and which have not. After testing, HPC generates a
marked-up version of the source code in which any unevaluated expressions
are highlighted. Although repeated applications of QuickCheck typically
decreases the number of highlighted expressions, some stubborn ones of-
ten remain. The uncovered expressions might be unreachable, but they
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might also be the result of an insufficient distribution of tests generated by
QuickCheck.

Chapter 4 of this thesis presents a program analysis – Reach – which tar-
gets evaluation of highlighted expressions in functional programs. Reach
is presented as a series of incremental modifications to a basic lazy evalu-
ator, resulting in variants based on both forward and backward analysis.
The benefit offered by each variant is explored on a range of benchmark
properties.

Being a program analyser allows great flexibility as the source code of a
program can be processed in any desired way. But implementing a full-
strength program analyser is a lot of work, comparable to that of writing a
compiler. Chapter 5 presents a more lightweight approach, using the lessons
learned in Chapter 4 to develop a new Haskell library for property-based
testing called Lazy SmallCheck. In-principle and quantitative comparisons
with the existing libraries QuickCheck and SmallCheck are given.

Finally, Chapter 6 concludes the thesis, highlighting the main discoveries
made in the earlier chapters.



Chapter 2

Hardware-Assisted

Evaluation

2.1 Introduction

The processing power of PCs has risen astonishingly over the past few
decades, and this trend looks set to continue with the introduction of multi-
core CPUs. However, increased processing power does not necessarily mean
faster programs! Many programs, particularly memory intensive ones, are
limited by the rate that data can travel between the CPU and the memory,
not by the rate that the CPU can process data. Backus called this limiting
factor the von Neumann bottleneck [10].

A prime example of a memory intensive application is graph reduction [78],
the operational basis of standard lazy functional language implementations.
The core operation of graph reduction is function unfolding, whereby a func-
tion application f a1 · · · an is reduced to a fresh copy of f ’s body with its
variables replaced by the arguments a1 · · · an. On a PC, unfolding a sin-
gle function in this way requires the sequential execution of many machine
instructions. This sequentialisation is merely a consequence of the PC’s
von Neumann architecture, not of any data dependencies in the reduction
process.

This chapter explores the effect of widening the von Neumann bottleneck
for sequential graph reduction. A special-purpose machine – the Reduc-
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eron – is proposed, exploiting wide, parallel memories to increase reduction
speed. The Reduceron is prototyped on a field programmable gate array
(FPGA). Modern FPGAs contain hundreds of independent memory units
called block RAMs, each of which can be accessed in parallel. The Reduceron
cascades these block RAMs to form separate dual-port, quad-word memo-
ries for stack, heap and code storage, meaning that up to eight words can
be transferred between two memories in a single clock-cycle. Together with
vectorised processing logic, the wide, parallel memories allow the Reduceron
to rapidly execute the block read-modify-write memory operations that lie
at the heart of function unfolding.

This chapter is structured as follows. Section 2.2 introduces background
material, including graph reduction and a core functional language. Sec-
tion 2.3 explains the decision to base the Reduceron on a graph reduction
technique called template instantiation. Section 2.4 defines the bytecode
that the Reduceron executes. Section 2.5 presents a small-step operational
semantics of the Reduceron, highlighting the parts of the graph-reduction
process that can be executed in parallel. Sections 2.6 and 2.7 refine the se-
mantics to two clock-accurate models of the Reduceron: Narrow and Wide.
The Wide Reduceron exploits wide, parallel memories and the Narrow Re-
duceron does not. The numbers of clock-cycles consumed by the two models
are precisely stated and justified. Section 2.8 outlines the implementation of
the clock-accurate models on FPGA. In Section 2.9, the Narrow and Wide
Reduceron implementations running on an FPGA are compared with each
other and with several existing Haskell implementations running on a PC.
Section 2.10 suggests possible improvements to the Reduceron and Section
2.11 discusses related work.

2.2 Background

This section reviews a simple core functional language to which Haskell
programs can be compiled, and the technique of graph reduction to evaluate
programs. As running examples of Haskell functions, consider the factorial
function

fact :: Int -> Int
fact n = if n == 1 then 1 else n * fact (n-1)
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p ::= ~d (program)

d ::= c ~v = e (function definition)

e ::= v (variable)

| c (constant)

| e e (application)

| case e of ~a (case expression)

| let ~b in e (let expression)

a ::= c ~v 7→ e (case alternative)

b ::= v = e (let binding)

Figure 2.1: Syntax of Yhc Core.

and the following list-reversing function which uses an accumulator.

data List a = Nil | Cons a (List a)

rev :: List a -> List a -> List a
rev Nil acc = acc
rev (Cons x xs) acc = rev xs (Cons x acc)

2.2.1 A core functional language

One of the first steps performed by most Haskell compilers is to translate
Haskell into a core functional language. The core language is typically much
simpler than Haskell, and makes compilation to low-level machine code a
much easier task.

To illustrate, Figure 2.1 defines the syntax of Yhc Core [32], the core lan-
guage used in the York Haskell Compiler [90]. The meta-variable v ranges
over variable names, c over constants, e over expressions, d over function
definitions, and p over programs. A constant can be a function name, a
constructor name, or a primitive literal such as a character or an integer.
Lists of meta-variables are denoted with an overhead arrow, for example ~v
denotes a list of variable names.

Yhc Core provides fewer constructs than full Haskell. Most notably, it does
not provide lambda expressions. Lambda expressions can be translated to
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function definitions using a technique called lambda-lifting [44, 49].

Furthermore, Yhc Core provides simpler constructs than full Haskell. Pat-
terns in case alternatives are exactly one constructor deep whereas in Haskell
they may be any number of constructors deep. Case expressions are exhaus-
tive whereas in Haskell incomplete matching is allowed. Function argu-
ments and the left-hand-sides of let bindings can only be variables whereas
in Haskell they may be arbitrary patterns. For details on how to translate
Haskell to a core language like Yhc Core, see [78].

In the abstract syntax of Yhc Core, the running examples look as follows.

fact n = case (==) n 1 of
[False 7→ (*) n (fact ((-) n 1)), True 7→ 1]

rev v acc = case v of
[Nil 7→ acc, Cons x xs 7→ rev xs (Cons x acc)]

Note that infix applications have been made prefix, if has been desugared
to a case, and equational pattern matching has been moved to a case

expression.

2.2.2 A simpler core functional language

Recently Jansen has observed that one can use a core language even simpler
than the one defined in Figure 2.1, and still implement an efficient evalu-
ator for the language [48]. This is achieved by encoding data constructors
and case expressions as function definitions and applications respectively.
Jansen’s method comprises two steps. First, for each constructor ci of a
data type with n constructors c1 · · · cn, a function definition

ci v1 · · · v#ci
w1 · · · wn = wi v1 · · · v#ci

is introduced, where #c denotes the number of arguments taken by the con-
structor c. In other words, each original data constructor ci is encoded as
a function that takes as arguments the #ci arguments of ci and n contin-
uations stating how to proceed depending on the constructor’s value. To
illustrate, the False and True constructors of the Bool data type,

data Bool = False | True
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and the Nil and Cons constructors of the List data type are encoded using
the following functions.

False f t = f
True f t = t
Nil n c = n
Cons x xs n c = c x xs

In the second step of Jansen’s method, each case expression of the form

case e of [c1 v1 · · · v#c1 7→ e1, · · · , cn v1 · · · v#cn 7→ en]

is transformed to an application

e (λv1 · · · v#c1 7→ e1) · · · (λv1 · · · v#cn 7→ en)

Note that the resulting application contains lambda abstractions. These
can be removed using a lambda-lifter. To illustrate, after applying Jansen’s
method, the running examples look as follows.

fact n = (==) n 1 ((*) n (fact ((-) n 1))) 1
rev v acc = v acc (rev’ acc)
rev’ acc x xs = rev xs (Cons x acc)

Note that rev’ has been introduced by the lambda-lifter. No data construc-
tors or case expressions remain.

2.2.3 Evaluation

In general, an expression e can be reduced if it contains a sub-expression of
the form f e1 · · · en where f is defined by the equation f v1 · · · vn = rhs. In
such a situation, f e1 · · · en is said to be a reducible expression, or a redex
for short. To reduce e, the redex f e1 · · · en occurring in e is replaced with
the expression obtained by substituting e1 · · · en for v1 · · · vn in rhs.

To illustrate, Figure 2.2 shows a series of reductions of the expression

rev (Cons 0 (Cons 1 Nil)) Nil

When an expression contains no redexes, like the final expression Figure 2.2,
it is said to be in normal form.
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rev (Cons 0 (Cons 1 Nil)) Nil
= (Cons 0 (Cons 1 Nil)) Nil (rev’ Nil)
= rev’ Nil 0 (Cons 1 Nil)
= rev (Cons 1 Nil) (Cons 0 Nil)
= (Cons 1 Nil) (Cons 0 Nil) (rev’ (Cons 0 Nil))
= rev’ (Cons 0 Nil) 1 Nil
= rev Nil (Cons 1 (Cons 0 Nil))
= Nil (Cons 1 (Cons 0 Nil)) (rev’ (Cons 1 (Cons 0 Nil)))
= Cons 1 (Cons 0 Nil)

Figure 2.2: An example series of reductions.

The expression under evaluation may contain more than one redex, and the
order in which redexes are reduced can have a significant impact on the
number of reductions needed to reach a normal form. There are two main
strategies for choosing a redex.

1. Choose the innermost redex, giving strict evaluation.

2. Choose the outermost redex, giving non-strict evaluation.

One of the attractive properties of non-strict evaluation is that it always
yields a normal form if strict evaluation does, and sometimes if strict evalu-
ation does not. Indeed, it is sometimes referred to as normal order reduction
due to this property. To illustrate, suppose that the expression f 0 e is to
be evaluated where e is a computationally expensive redex and f x y = x.
Here, the outermost redex is f 0 e and the innermost redex is e. In non-
strict evaluation, f 0 e is evaluated first to give the normal form 0 in just
one reduction step. In strict evaluation, e must be evaluated before f can
be applied, resulting in many more reduction steps to yield the same normal
form. Or worse, evaluation of e might not terminate.

On the other hand, one of the attractive properties of strict evaluation is
that it never evaluates the same argument more than once. Non-strict eval-
uators do not necessarily have this property. To illustrate, suppose that
the expression double e is to be evaluated where e is a computationally
expensive redex and double is defined by the following equation.

double x = (+) x x

The outermost redex is double e and the innermost redex is e. In non-strict
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evaluation double e is evaluated first, and reduces to (+) e e. Here, there
is the danger that e will be computed twice. In strict evaluation there is
no such danger because e is reduced to normal form before being passed to
double.

Nevertheless, there is a way to perform non-strict evaluation such that no
function argument is evaluated more than once. It is called lazy evaluation,
but how can it be implemented?

2.2.4 Graph reduction

One possible representation of an expression is as a string of symbols, just
as one would write it on paper. Consider an expression containing a redex
f e. In string reduction, this expression is reduced by replacing the redex
with an instance of f . An instance of f is created by

1. creating a copy of the body of f , rearranging it to make gaps for e,

2. copying e into each gap.

If the argument is referred to n times in the body of f , then e is copied n

times.

A more efficient representation of an expression is as a graph. In graph
reduction, an expression is a pointer to a node containing sub-expressions.
Many expressions can point to the same node. Now an instance of f is
created by

1. creating a copy of the body of f ,

2. overwriting each argument with (the pointer) e.

The actual structure pointed to by e is never copied. Furthermore, if e is
ever evaluated, the node it points to can be updated with an indirection
to the result, so that e is never evaluated again. This updating gives lazy
evaluation.
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2.2.5 Implementing graph reduction

In [80], Peyton Jones describes two main approaches to implementing graph-
reduction: an interpreter-based approach called template instantiation, and
a compiler-based approach based on the G-machine (invented by Johnsson
and Augustsson [49, 7]).

In template instantiation, function definitions are stored in template mem-
ory, and the expression being reduced in graph memory. When a function
is applied, the function’s body is read from template memory and an in-
stance of it is created in graph memory. Peyton Jones describes this as “the
simplest possible implementation of a functional language” [80].

In the G-machine, template memory is not used. Before a program is run,
each function definition is translated to a sequence of G-machine instructions
which, when executed, create an instance of the function body directly in
graph memory. Each G-machine instruction can in turn be translated to a
sequence of regular CPU instructions and executed by a PC.

To see the crucial difference between the two approaches, consider the op-
eration of template instantiation from the viewpoint of a conventional PC.

1. Fetch CPU instructions from memory which, when executed,

2. read the function body from template memory, and

3. construct an instance of the function body in graph memory.

The operation of the G-machine is the same except that step 2 is skipped.
As Peyton Jones writes, “there are no instructions required to traverse the
template” [80].

2.3 Template instantiation or the G-machine?

Should the Reduceron be based on template instantiation or the G-machine?
Indeed template instantiation implemented on a conventional PC is not very
efficient due to interpretive overhead: CPU instructions must be fetched
which, when executed, fetch and execute the functions residing in template
memory. But if implemented as a special-purpose machine, this interpretive



28 CHAPTER 2. HARDWARE-ASSISTED EVALUATION

overhead can be removed: a special-purpose machine can read directly from
template memory without having to fetch and execute any CPU instructions.

Taking into account the above observation and that template instantiation
is simpler than the G-machine, the Reduceron is based on template instan-
tiation. This decision is reviewed in Section 2.10.5.

2.4 Syntax

This section introduces a syntax for the Reduceron bytecode. The bytecode
of a program is an encoding of a core functional program as a sequence of
words. The core functional language used is Yhc Core, defined in Figure
2.1, with two transformations applied to it. The first transformation is to
remove case expressions using Jansen’s method (Section 2.2.2). The second
is defined below.

2.4.1 Dealing with strict primitives

As well as user-defined data constructors, the core functional language sup-
ports, as primitives, machine integers and associated arithmetic operators.
Under lazy evaluation, primitive functions, such as integer multiplication,
need special treatment because their arguments must be fully evaluated be-
fore they can be applied. Peyton Jones and Jansen solve this problem by
making their template instantiators recursively evaluate each argument to
a primitive. This is an elegant approach when the template instantiator is
written in a programming language like Miranda or C, where the presence of
an implicit call stack may be assumed. But special-purpose machines have
no such implicit call stack, so an alternative solution must be found.

The solution taken here is to rewrite every two-argument primitive function
application by the rule

p n m → m (n p)

where p is a primitive function name and n and m are the expressions (of
integer type) to which p is applied. After applying this rule, it is clear that
m must be evaluated before n p, but not so clear how a machine integer
can be applied to an argument! The idea is that the application of a fully
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node ::= Start i j (1st node of function body: arity and size)

| Int i (integer literal)

| Ap i (application node: pointer to a node sequence)

| End node (the final node in a node sequence)

| Prim p (primitive function name)

| Fun i (pointer to a function body)

| Var i (variable representing a function argument)

Figure 2.3: The syntax of nodes in Reduceron bytecode.

op (Prim p) = p unEnd (End n) = n

contents (Ap i) = i isEnd (End n) = True

contents (Fun i) = i isEnd n = False

contents (Int i) = i arity (Start i j) = i

contents (Var i) = i size (Start i j) = j

Figure 2.4: Helper functions for bytecode nodes.

evaluated integer i to an arbitrary expression e, that is i e, can be reduced
to e i. Section 2.5.2 will show that an evaluator can, as a result of this
transformation, easily deal with strict primitives. The factorial function is
now:

fact n = 1 (n (==)) (fact (1 (n (-))) (n (*))) 1

The list-reversing function rev is not affected by this transformation, as it
contains no primitives.

2.4.2 Bytecode

The bytecode of a program is defined to be a sequence of nodes, and the
syntax of a node is defined in Figure 2.3. In the syntax definition, the meta-
variables i and j range over integers, and p ranges over primitive function
names. The helper functions defined in Figure 2.4 facilitate deconstruction
of bytecode nodes.

An n-ary application node, Ap i in Reduceron bytecode, is a pointer i to a
sequence of n consecutive nodes in memory whose final node is wrapped in
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a (fact) +1 +2 +3
Start 1 15 Int 1 Ap 7 Ap 5

+4 +5 +6 +7
End (Int 1) Prim (==) End (Var 0) Ap 12

+8 +9 +10 +11
Ap 10 End (Fun a) Ap 14 End (Int 1)

+12 +13 +14 +15
Prim (*) End (Var 0) Prim (-) End (Var 0)

b (rev) +1 +2 +3
Start 2 5 Ap 4 Var 2 End (Var 1)

+4 +5
Var 2 End (Fun c)

c (rev’) +1 +2 +3
Start 3 6 Ap 4 Var 3 End (Fun b)

+4 +5
Var 1 Var 2 End (Fun d)

d (Cons) +1 +2 +3
Start 4 3 Var 2 Var 1 End (Var 4)

Figure 2.5: Bytecode for the example functions.
The bytecode for fact, rev, rev’, and Cons appearing relative to addresses
a, b, c, and d respectively in code memory.
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an End marker. To permit sharing in over-saturated applications, the nodes
in an application sequence are stored in reverse order. For example, f x y is
stored as y x (End f). If f x evaluates to z then the application can simply
be updated to y (End z) without relocating it in memory.

Figure 2.5 shows the bytecode for the running examples. Each application
node in the bytecode is an offset address, relative to the address of the first
node of the function’s bytecode. This first node is always a Start node, and
defines the arity and size (number of words) of the function’s body. The
bytecode for a whole program is simply the concatenation of the bytecodes
for each individual function. Each Fun node is then adjusted to point to the
final address of the function in the bytecode.

2.5 Semantics

In this section, a semantics for the Reduceron is defined. There are two rea-
sons for presenting a semantics: first to define precisely how the Reduceron
works, and second to highlight the parts of the reduction process that can
be assisted by special-purpose hardware. The semantics is given as a binary
small-step state transition relation,⇒, between triples of the form 〈h, s, a〉,
where h is the heap, s is the node stack, and a is the address stack. The
heap is used for both template memory and graph memory.

In the semantics, the heap and stacks are modelled as lists. Reduction rules
are expressed with the help of common list-processing functions defined, for
example, in the Haskell prelude. In addition, #xs is written to denote the
length of the list xs, and xs[i 7→ x] to denote xs with its ith element replaced
by x.

Initially, the heap contains the bytecode of the program, the node stack
contains the node Fun 0, where 0 is the address of the function main ::

Int, and the address stack contains the address 0. The final result of a
program p is defined to be r where

〈p, [Fun 0], [0]〉 ⇒? 〈 , [Int r], 〉

Notice that the main function is a pure (non-monadic) function with no



32 CHAPTER 2. HARDWARE-ASSISTED EVALUATION

arguments. Currently, Reduceron programs take no input. Furthermore,
their output is a single integer (main is of type Int).

2.5.1 A primitive evaluator

The semantics assumes a function P that takes a primitive function name p
and two integers, i and j, and returns a node representing the value of p i j.
For example,

P (+) 5 10 = Int 15

and
P (==) 1 1 = Fun TrueAddr

where TrueAddr is the address of the function True in the bytecode of the
program.

2.5.2 Semantic definition

The small-step transition relation ⇒ is defined in Figure 2.6 and the helper
functions inst and unwind are defined in Figure 2.7. There is one transition
rule for each possible type of node that can appear on top of the stack, as
described by the following paragraphs.

Primitives

Recall from Section 2.4.1 that primitive applications of the form p n m,
where n andm are unevaluated integers, are transformed tom (n p). Clearly,
to evaluate such an application, m must be evaluated first. Hence the value
of m, of the form Int j, appears on top of the stack. To deal with such a
situation, the evaluator simply swaps the top two stack elements, resulting in
(n p) (Int j) on the stack – growing from right to left. Further evaluation
yields (Int i) p (Int j) on top of the stack, where Int i is the result of
evaluating n. Another swap gives p (Int i) (Int j), which can be evaluated
by a straightforward application of P.

Once the result of the primitive application has been computed, it must be
written onto the heap, overwriting the contents of the original application
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〈h, Int i : x : s, a〉 ⇒ 〈h, x : Int i : s, a〉

〈h, Prim p : Int x : Int y : s,
: : r : a〉 ⇒ 〈h[r 7→ End z], z : s, r : a〉

where

z = P p x y

〈h, Ap i : s, : a〉 ⇒ unwind i 〈h, s, a〉

〈h, Fun i : s, a〉 ⇒ unwind #h 〈h′, s′, a′〉
where

Start arity size = h !! i
body = take size (drop (i+ 1) h)
s′ = drop arity s

r : a′ = drop arity a

h′ = h[r 7→ End (Ap #h)]
++ map (inst s #h) body

Figure 2.6: Transition rules for the Reduceron.

inst s b (Var i) = s !! i
inst s b (Ap i) = Ap (b+ i− 1)

inst s b (End n) = End (inst s b n)
inst s b n = n

unwind i 〈h, s, a〉 = 〈h, reverse ap ++ s, reverse as ++ a〉
where

ap = getAp (drop i h)
as = map (i +) [0 . . .#ap− 1]

getAp (End n : ns) = [n]
getAp (n : ns) = n : getAp ns

Figure 2.7: Definitions of inst and unwind.
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node m (n p), so that other references to it do not repeat the computa-
tion. This is possible because, as explained below, a pointer to the original
application is sitting on the address stack.

Applications

When an application node of the form Ap i appears on top of the stack, it is
replaced by the End-terminated sequence of nodes starting at address i on the
heap. Furthermore, the addresses of the nodes in the sequence are pushed on
the address stack, to permit updating the sequence after reduction. Peyton
Jones describes this process as “unwinding the application” [78].

In an implementation of the Reduceron on a standard PC architecture, each
node in an application sequence is read, one at a time, from the heap and
written, one at a time, to the stack. Furthermore, each node address is
computed and written, again one at a time, onto the address stack.

The definition of the unwind function in Figure 2.7 highlights the first main
opportunities for hardware-assisted graph reduction. First, the uses of getAp
and ++ illustrate that the nodes being copied are contiguous, so the copying
can be achieved by block transfers in a machine with a wider data bus.
Second, the use of map to compute the node addresses indicates that they
can be computed in parallel. And third, there is no dependency between
writing to the node and address stacks, so the two can be done at the same
time in a machine with parallel memories.

Functions

When a node of the form Fun i is at the top of the stack, the bytecode
starting at address i+ 1 on the heap is

1. copied onto the end of the heap (say at address base),

2. with the jth argument on the stack substituted for each variable Var

j,

3. and with each application node, Ap k, relocated to an absolute address,
Ap (base+ k − 1), on the heap.
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Subsequently, n nodes are popped off the node and address stacks, where n
is the arity of the function that has just been instantiated. The address r
which is n places from the top of the address stack represents the root of the
redex. The value at address r is overwritten with End (Ap base), so that
the reduction is never repeated. Finally, the node sequence beginning at
the address base is unwound onto the stack. This whole process is termed
function unfolding.

Just as for unwinding, function unfolding on a standard PC architecture
requires execution of many sequential instructions to carry out all the neces-
sary memory manipulations. And again the semantics shows great scope for
parallelism. In particular, the use of ++ to copy a potentially large contigu-
ous block of nodes onto the end of heap, and the use of map to instantiate
each node independently, opens up the possibility for parallelisation on a
machine with wide memory and vectorised processing logic. Since instanti-
ation of a node requires access to the stack, a parallel evaluator would need
to be able to read the stack and heap at the same time. Further, because the
nodes are being copied from one portion of memory to another, sequential-
isation can be reduced by separating template memory and graph memory,
permitting parallel access.

Notice in the semantics that the Fun rule calls unwind. Immediately after a
function body is instantiated on the heap, the spine of that body is unwound
from the heap onto the stack. It is more efficient to instantiate the spine
of the function body on the heap and the stack in parallel. This idea is
related to the spineless G-machine [15], which can in some circumstances
avoid construction of the spine on the heap. Parallel instantiation gives the
speed benefit of the spineless G-machine without introducing complexity,
but not the space benefit.

2.6 The Narrow Reduceron

The Reduceron semantics is now refined to two clock-accurate register-
transfer models, one Narrow and the other Wide. The Wide version exploits
wide, parallel memories to aid performance, and the Narrow version does
not. The models presented are close to final hardware implementations,
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Register Type Description

x, y, z node Temporary
top node Top of stack

hp, sp integer Heap and stack pointer
root integer Address of redex root in the heap
base integer Base address of function instantiation
i integer Temporary
end boolean End of application sequence?
h array of node Heap
c array of node Code
s array of node Stack
a array of integer Address-stack

Figure 2.8: Registers used by the Narrow Reduceron.

but integers, bytecode nodes, and arrays are not encoded at the FPGA-
level until Section 2.8. The motivation for defining two models is to show
exactly what is made possible by widening the von Neumann bottleneck.
First, the Narrow Reduceron is considered (this section), and then the Wide
Reduceron (Section 2.7).

2.6.1 Memory

Figure 2.8 describes the registers used by the Narrow Reduceron. Although
there are four separate arrays for the heap (graph memory), code (template
memory), stack, and address-stack, they all reside in a single RAM. In other
words, only one location of one array can be accessed in a single clock-
cycle. Motivated by implementation concerns (discussed in Section 2.8), it
is assumed that two clock-cycles are required to lookup an array. Writing
to an array requires just one clock-cycle, however.

The following assumptions are made about the initial state of the machine:

• the first location in the heap, h[0], contains the node End (Fun 0),
where 0 is the address of the main function,

• the heap pointer is 1,
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s ::= v ← e (schedules assignment for next clock-cycle)

| v ⇐ e (schedules assignment for next-but-one clock-cycle)

| skip (does nothing)

| tick (consumes a clock-cycle)

| s0 ; s1 (composes two statements)

| if e s (executes a statement if e holds)

| repeat e s (repeats a statement e times)

| while e s (repeats a statement while e holds)

| do s until e (repeats a statement until e holds)

| let v = e (binds a variable to a value)

Figure 2.9: Syntax of register-transfer statements.

• the top of the stack, top, contains the node Ap 0,

• the stack pointer contains StackSize−1 where StackSize is the num-
ber of locations in the array s,

• the top of the address-stack, a[StackSize− 1], contains the address 0,

• and the array c contains bytecode of the program to run.

2.6.2 Register-transfer notation

Clock-accurate models will be expressed using register-transfer statements
whose syntax is described in Figure 2.9. The meta-variable v ranges over
variables, and e over expressions. The semantics of such statements is dis-
cussed informally below. (A precise semantics can be found in Chapter 3.)

A register-transfer statement is quite similar to a statement in an imper-
ative programming language. The main difference is that an assignment
in a register-transfer language is associated with a clock-cycle in which it
executes. The effect of an assignment executed in the nth clock-cycle is
not visible until clock-cycle n + 1. To illustrate, first observe that several
statements can be composed executed in a single clock-cycle using ‘;’.

x ← 1 ; y ← 2 ; z ← 3

To mark the beginning of a new clock-cycle, the keyword tick is used.
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x ← 1 ; tick ; x ← x + 1 ; y ← x ; tick

Here, if the first assignment is executed in clock-cycle n then the second and
third are executed in clock-cycle n + 1. Furthermore, the effect of the first
is not visible until cycle n+ 1, and the effect of the second and third is not
visible until cycle n + 2. So in cycle n + 1, x has the value 1, and in cycle
n+ 2, x has the value 2 but y has the value 1.

As another example, the following statement successfully swaps the values
of x and y, without the need for an intermediate register.

x ← y ; y ← x ; tick

Since array lookups require two clock-cycles to complete, it is convenient to
have a second kind of assignment, ‘⇐’, which if executed in cycle n, has no
effect until cycle n + 2. For example, the following statement increments
element 2 of the array a.

i ⇐ a[2] ; tick ; tick ; a[2] ← i + 1 ; tick

The operator ‘|’ will be used to reduce clutter, highlighting the separation
of clock-cycles.

s0 | s1 = s0 ; tick ; s1

So, an equivalent way to write the statement

x ← 1 ; tick ; x ← x + 1 ; y ← x ; tick

is to write

x ← 1 | x ← x + 1 ; y ← x | skip

By counting the number of ‘|’ operators, one can see that this statement
takes two clock-cycles to complete.

2.6.3 Register-transfer model

The following paragraphs define clock-accurate register-transfer models of
each Reduceron transition rule. As before, the transition rule that fires
depends on the top stack element. The number of clock-cycles required by
each transition is calculated by summing the number of ‘|’ operators seen
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swap = top ⇐ s[sp + 1]
| s[sp + 1] ← top

| skip

prim = x ⇐ s[sp + 1]
| y ⇐ s[sp + 2]
| root ⇐ a[sp + 2]
| top ← P (op top) x y

| sp ← sp + 2 ; h[root] ← End top

| skip

Figure 2.10: Clock-accurate model of primitive evaluation (Narrow).

(and multiplying appropriately to account for loops). No clock-cycles elapse
between individual transitions.

Primitives

Clock-accurate models of the transition rules for primitives (swap and prim)
are given in Figure 2.10. The swap statement swaps the top two stack
elements. A memory-read is scheduled in its first cycle, and a memory-write
in its second. Reading from and writing to memory cannot be parallelised in
the Narrow Reduceron. Note that the effect of the assignment to top is not
visible until the third clock-cycle. In total, two clock-cycles are consumed
by swap.

In its first three clock-cycles, prim schedules three reads from memory: two
for the primitive’s arguments, and one for the address of the redex-root.
In its fourth cycle, the primitive function is applied to the two arguments,
freshly available in the registers x and y, and the result is assigned to top. In
its fifth cycle, the address of the redex-root, freshly available in the register
root, is used to update the heap. In total, five cycles are consumed by prim.
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unwind = x ⇐ h[contents top]
; i ← contents top

| do ( a[sp] ← i

| s[sp] ← unEnd x

; top ← unEnd x

; end ← isEnd x

; i ← i + 1
| if (not end) (x ⇐ h[i] ; sp ← sp− 1 | skip)

) until end

Figure 2.11: Clock-accurate model of unwinding (Narrow).

Unwinding

A clock-accurate model of application-unwinding is shown in Figure 2.11.
An initial read from the heap consumes one cycle. A loop then copies all
nodes in the application sequence onto the stack. Each but the final loop
iteration consumes three cycles: one for writing the address of the node
onto the address-stack, one for writing the node onto the stack, and one for
reading the next node in the application sequence from the heap. The final
iteration consumes only two cycles because the next node need not be read
from the heap. In total, 1 + 3n − 1 cycles are consumed by unwind, where
n is the number of nodes in the application sequence.

Unfolding

A clock-accurate model of function-unfolding is shown in Figure 2.12. In its
first three clock-cycles, it schedules three reads from memory. The Start

node of the function and the first node of the function body are read from
code memory, and the address of the redex-root is read from the address-
stack. A loop then instantiates each node of the function body on the
heap. Typically, each iteration consumes two clock-cycles: one to read the
next node from code memory, and one to write a newly-instantiated node
to the heap. However, instantiation of a Var node requires two additional
clock-cycles, because the argument must be read from the stack. Node
instantiation (inst) is defined separately in Figure 2.13. A further cycle is
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unfold = x ⇐ c[contents top]
; i ← 1 + contents top

; base ← hp

| y ⇐ c[i]
| root ⇐ a[sp + arity x]
| repeat (size x)

( y ⇐ c[i + 1]
; i ← i + 1
| inst id y

| skip

)

; sp ← sp + arity x

; h[root] ← End (Ap base)
; top ← Ap base

| unwind

Figure 2.12: Clock-accurate model of unfolding (Narrow).

inst f (End n) = inst End n

inst f (Ap n) = h[hp] ← f (Ap (s[base + n− 1])) ; hp ← hp + 1
inst f (Var n) = z ⇐ s[sp + n+ 1]

| skip

| h[hp] ← f z ; hp ← hp + 1
inst f n = h[hp] ← f n ; hp ← hp + 1

Figure 2.13: Clock-accurate model of instantiation (Narrow).
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consumed to update the redex-root on the heap. Finally, the spine of the
function body that has just been instantiated on the heap is unwound onto
the stack. In total, unfold consumes

3 + 2s+ 2v + 1 + 3n

clock-cycles, where s is the total number of nodes in the function body, v is
the number of Var nodes in the function body, and n is the number of nodes
in the spine of the function body.

2.6.4 Discussion

Under the memory constraints of the Narrow Reduceron, there is little scope
to reduce the number of clock-cycles consumed by each transition. On almost
every clock-cycle, a necessary memory access is performed. There are only
three situations in which this is not the case.

1. In the fourth cycle of prim, no memory access is made.

2. In the loop body of unfold, the next node to instantiate is read from
the heap, and this is not necessary on the final iteration.

3. In inst, when a function argument is instantiated on the heap, there
is a clock-cycle in which no memory access is made.

However, in each case the Reduceron must wait for an earlier memory re-
quest to complete. Even if memory could be better utilised in these cases,
the savings would be modest, and may not justify the extra complexity in-
troduced. As an aside, it seems reasonable to conclude that the two-cycle
memory-read assumption does not impede performance significantly.

One way to relieve the memory bottleneck would be to store chunks of
memory – e.g. the top few stack elements – locally in registers where they
can be accessed in parallel and read in a single cycle1. Instead however, the
next section takes the simpler and more general approach of widening the
memory bandwidth. In other words, there are designs lying between the
Narrow and Wide extremes, but they are not considered here.

1Indeed, the Narrow Reduceron does store the top stack element in the register top

and not in stack memory.
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Register Type Description

todo integer Number of nodes left to instantiate
rootsp integer Stack pointer to redex-root
sbuf list of node Stack buffer
hbuf list of node Heap buffer
cbuf list of node Code buffer

Figure 2.14: Additional registers used by Wide Reduceron.

2.7 The Wide Reduceron

This section presents a clock-accurate model of the Wide Reduceron at the
register-transfer level. The memory bottleneck is widened in three ways.

1. The heap, code, stack and address-stack arrays are mapped onto sep-
arate memories, each of which can be accessed in parallel.

2. Any eight consecutive locations in a memory, beginning at any address,
can be read or written in parallel. Furthermore, a wide write may
control exactly which of the eight consecutive locations are written to.

3. Memory can be read and written in parallel provided that the same
location is being addressed, with the semantics that data is written to
memory before it is read.

The widening factor of eight is somewhat arbitrary. In fact, the model below
could be parameterised by the width of the memories. The only justification
for eight is that it is a power of two sufficiently large to expose the potential
of the approach yet small enough to permit implementation in the hardware
available.

2.7.1 Memory

In addition to the registers listed in Figure 2.8, five further registers listed
in Figure 2.14 are used. The arrays h, s, c, and a are generalised such
that when read, they yield a list of eight consecutive elements in the array
beginning at the given array index. Similarly, up to eight list elements can be
written contiguously into the arrays beginning at a given array index. The
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read top′ sp′ = top ← top′

; sp ← sp′

; sbuf ⇐ s[sp′]
; hbuf ⇐ h[contents top′]
; cbuf ⇐ c[contents top′]

Figure 2.15: A frequently-used abstraction for reading memory.

sbuf, hbuf, and cbuf registers are used to buffer lists of eight elements that
are read from stack, heap, and code memory respectively. No assumptions
beyond those mentioned in Section 2.6.1 are made about the initial state of
the machine.

2.7.2 Register-transfer model

Clock-accurate models of each transition in the Wide Reduceron are given
below. The numbers of clock-cycles required are compared with those of the
Narrow Reduceron. As before, no clock-cycles are consumed between each
transition.

Reading memory

First, it is convenient to define a frequently-used abstraction. Quite often
the stack pointer and the top of stack are modified, followed by a series of
fresh memory reads. Specifically, stack memory is often read, indexed by the
new stack pointer, and heap and code memories are often read, indexed by
the contents of the new top stack element. An abstraction over this common
behaviour is shown in Figure 2.15.

The following invariant is maintained by each transition rule of the Wide
Reduceron. In the second clock-cycle of any transition, the sbuf, hbuf,
and cbuf registers are up-to-date. That is, sbuf reflects the values in stack
memory at the index specified by the register sp, and hbuf and cbuf reflect
the values in heap and code memory at the index specified by the register
top.
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swap = s[sp] ← top

| read (sbuf !! 0) sp

| skip

prim = skip

| x ← P (op top) (sbuf !! 0) (sbuf !! 1)
; root ← a[sp+1]
| read x (sp+2)
| h[root] ← End x

Figure 2.16: Clock-accurate model of primitive evaluation (Wide).

Primitives

Models of the transition rules for handling primitives are shown in Figure
2.16. Swapping still consumes two clock-cycles, due to maintaining the buffer
invariant, but primitive application now takes three rather than five clock-
cycles. The two-cycle saving is due to fact that both operands are available
on the second cycle rather than the fourth as in the Narrow Reduceron.

Unwinding

A clock-accurate model of unwinding is presented in Figure 2.17. Recall
that the function getAp is defined as part of the semantics given in Figure
2.7. In the second clock-cycle of unwind, the whole application sequence is
available in hbuf and is immediately written onto the stack. Note that the
stack is read from and written to in the same clock-cycle – both the read and
the write access the same address. In parallel, the addresses of the nodes
in the sequence are block-written onto the address-stack. The end result is
that unwinding requires just two clock-cycles.

Here it is assumed that application sequences are limited to a maximum of
eight nodes. This limitation is easily hidden by the compiler by transforming
long applications to nested, smaller ones. For example, f a b c d is equivalent
to (f a b) c d.
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unwind = skip

| let ap = reverse (getAp hbuf)
; let len = length ap− 1
; let addrs = map (+ contents top) [7..0]
; read (head ap) (sp− len)
; s[sp− len] ← tail ap

; a[sp− 8] ← addrs

| skip

Figure 2.17: Clock-accurate model of unwinding (Wide).

Unfolding

Figure 2.18 gives a clock-accurate model of function unfolding. Recall that
the function inst is defined as part of the semantics in Figure 2.7. In the
while loop of unfold, eight nodes are read from code memory, instantiated,
and written to the heap in a single clock-cycle on each iteration. Just b s

8c
clock-cycles, where s is the number of nodes in the function body, are needed
to fully instantiate a function body on the heap. The first block of eight
nodes is processed specially, before the loop is entered, for two reasons.

1. Unlike any other block of eight, it contains the Start node stating the
arity and size of the function.

2. It contains the spine of the function body which must be instantiated
on the stack.

To increase performance, the first block is instantiated on the heap in the
same clock-cycle that the spine is unwound onto the stack. In total, 3 + b s

8c
cycles are consumed by unfold.

Here it is assumed that functions have a maximum of eight parameters. This
is because only eight elements of the stack can be accessed simultaneously
while instantiating a function body. Again, the limitation can be hidden by
the compiler, either by tupling arguments together or by using an abstraction
algorithm [92].
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unfold = cbuf ⇐ c[contents top + 8]
; i ← contents top + 16
; base ← hp

| let numArgs = arity (cbuf !! 0)
; let bodyLen = size (cbuf !! 0)
; let spineLen = length (getAp cbuf)− 1
; let body = map (inst sbuf base) cbuf

; sp ← sp + numArgs− spineLen + 1
; root ← a[sp + numArgs]
; rootsp ← sp + numArgs

; todo ← bodyLen− 7
; top ← unEnd (body !! spineLen)
; hp ← hp + min bodyLen 7
; i ← i + 8
; s[sp + numArgs− 7] ← reverse (map unEnd (tail body))
; h[hp] ← tail body

; cbuf ⇐ c[i]
| let addrs = map (+ base) [7..0]
; a[rootsp− 8] ← addrs

; while (todo > 0)
( h[hp] ← body

; cbuf ⇐ c[i]
; hp ← hp + min todo 8
; todo ← todo− 8
; i ← i + 8
| skip

)

; read top sp

| h[root] ← End (Ap base)

Figure 2.18: Clock-accurate model of unfolding (Wide).
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Transition Narrow Wide

Swap 2 2
Primitive 5 3
Unwind 3n 2
Unfold 4 + 2s+ 2v + 3n 3 + b s

8c

Notes: n is the number of nodes in an application or in the spine of a function
body, s is the number of nodes in a function body, and v is the number of
Var nodes in a function body. No clock-cycles are consumed between each
transition.

Table 2.1: Clock-cycles taken by each Reduceron transition.

2.7.3 Discussion

Section 2.6.4 suggested that the Narrow Reduceron is not significantly im-
peded by the two-cycle array-lookup assumption. In contrast, the unwind

transition of the Wide Reduceron wastes its first cycle waiting for a lookup
to complete. So the speed of unwinding, a potentially common operation,
could be doubled.

The effect of widening the memory bottleneck on the number of clock-cycles
required by a graph reduction machine based on template instantiation, the
Reduceron, is summarised in Table 2.1.

The clock-accurate models of the Narrow and Wide Reducerons have been
simulated on several benchmark programs, but no attempt has been made to
prove that the high-level semantics and the lower-level models are consistent.

2.8 Implementation on FPGA

This section refines the clock-accurate Reduceron models (Narrow and Wide)
to the FPGA-level. In particular, bytecode nodes are encoded at the bit-
level, and arrays of nodes are mapped onto FPGA block RAMs. The mem-
ory layout, garbage collector, and synthesis results are also discussed. The
specific FPGA chip used for the implementations is the Xilinx Virtex-II
XC2V2000-6BF957.
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2.8.1 Word size

Both the Wide and Narrow Reducerons encode bytecode nodes as eighteen-
bit words. The two most significant bits identify the node as an application,
function, integer or variable. The third most significant bit is high if the node
is an End node, and low otherwise. The remaining fifteen bits represent the
contents of the node, i.e. an application pointer, function address, integer
literal, or a variable identifier.

2.8.2 Block RAMs

The Virtex-II contains 56 independent 18 kilobit dual-port block RAMs.
Being “dual-port” means that block RAMs have two address busses, two
data busses and two write enable signals. Thus two different locations can
be accessed in one clock-cycle. Furthermore, each port has separate busses
for data input and data output, so a value may be simultaneously written
to and read from a single location on a single port.

Only the Wide version exploits the dual-port and separate data bus features
of block RAMs. Both versions configure all block RAMs as 1k by 18-bit
RAMs, hence each memory location can store one bytecode node. There are
alternative ways to configure block RAMs, so this decision is re-examined
in Section 2.10.3.

2.8.3 Constructing large memories from small ones

The ability to cascade block RAMs to form larger memories is important
in both Reduceron implementations. This is achieved using a decoder and
a multiplexor as shown in Figure 2.19. In particular, to construct a sin-
gle memory out of m block RAMs the most significant log2 m bits of the
memory’s address are

1. fed to the selector input of the multiplexor, so the output of the ad-
dressed block RAM is passed through to the output, and

2. used to inhibit the write signal, so that only the addressed block RAM
is written to.
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Figure 2.19: Cascading block RAMs to form a larger RAM.
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This is a fairly standard way to cascade memories, but an alternative is
discussed in Section 2.10.3.

When cascading a large number of block RAMs the multiplexor becomes
rather large and its delay becomes significant. To overcome this inefficiency,
a register is placed on the output of the multiplexor. This means that two
clock-cycles are needed between writing an address to the address-bus and
reading the resulting value off the data-bus.

2.8.4 Quad-word memories

To permit wider memory transfers, the Wide Reduceron uses quad-word
memories. A quad-word memory allows any four consecutive locations to
read or written in one clock-cycle. This is not the same as simply qua-
drupling the word size because that would mean that only blocks of words
beginning at a four word boundary could be accessed together. Quad-word
memories make the Wide Reduceron a natural extension of the Narrow Re-
duceron – any location can still be directly addressed, but with the optional
benefit of accessing the subsequent three locations too. Simply quadrupling
the word size would introduce complications, such as word alignment issues,
but would require less FPGA logic to implement than quad-word memory.
This alternative will be discussed further in section 2.10.3.

Quad-word memories are built out of four separate memories. If each inter-
nal memory is numbered i where i is drawn from [0, 1, 2, 3] then memory i is
used to store locations [i, i+4, i+8, . . .] of the quad-word memory. Accessing
four consecutive locations beginning at an address a is straightforward if a
is a multiple of four, but awkward if it is not. However, each of the four
consecutive locations, beginning at any address, must be stored in a differ-
ent internal memory. So the problem is one of rotating the quad-word input
and output data busses so they line up with those of the internal memories.
The solution used is given in Figure 2.20. The rotateLeft and rotateRight
circuits rotate a given list of inputs by a given number of positions. The
increment circuit takes an address a and a number n, and produces four
copies of a, the first n of which are incremented by one.

Finally, the Wide Reduceron uses quad-word memories that are also dual-
port, so in fact up to eight consecutive words can be accessed simultaneously.
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Figure 2.20: Circuit diagram for a quad-word memory.
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Memory Capacity (kilowords)
Code 4
Heap 32
Node stack 4
Address stack 4
Garbage collector scratch-pad 12

Table 2.2: The parallel, dual-port, quad-word memories of Wide Reduceron.

2.8.5 Memory layout

As well as widening memory, the Wide Reduceron accesses the stack, address-
stack, heap and code arrays in parallel. The Reduceron FPGA implementa-
tions also use another array to facilitate garbage collection. Thus, the Wide
Reduceron has five separate memories, each of which is shown in Table 2.2
alongside its capacity.

In contrast, the Narrow Reduceron cascades 32 block RAMs to form a sin-
gle narrow memory, and 16 more to form a temporary storage for garbage
collection.

2.8.6 Garbage collection

For any serious computations to be performed in such a small amount of
memory, a garbage collector is essential. Both versions of the Reduceron use
a simple stop-and-copy two-space garbage collector [26]. In this algorithm,
active nodes in the heap are copied to an empty scratch-pad. The scratch-
pad, which then contains a compacted copy of the heap, is copied back
to the heap again before reduction continues. Although not the cleverest
collector, it has the advantage of simplicity. Furthermore, the algorithm is
easily defined to be iterative so no recursive call stack is needed. The focus
here is on optimising the reduction process rather than exploring advanced
garbage collectors.
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Narrow Wide Maximum

Slices 1516 4874 10752
Block RAMs 48 56 56
Clock frequency 94.7 MHz 91.5 MHz (see text)

Table 2.3: Reduceron synthesis results on the Virtex-II (XC2V2000-6BF957).

2.8.7 Description language

Both versions of the Reduceron are implemented in Haskell using the Lava
library [19]. Lava allows circuits to be described by Haskell functions over
structures of booleans, and can turn such functions into VHDL netlists of
FPGA components that can be synthesised by the Xilinx tool set. Chapter
3 introduces Lava and explains how the Reduceron is described.

2.8.8 Interface to the FPGA

The bytecode of the program to execute is encoded in block RAM initial-
isation parameters in the VHDL netlist of the Reduceron, so the program
is transferred onto the FPGA as part of the configuration bitstream. The
result of the program is displayed on a set of seven-segment-displays. Tim-
ing profiles stating the number of clock-cycles consumed by each machine
transition can be requested using a set of DIP switches and observed on a
set of LEDs.

2.8.9 Resource usage

The results of synthesising each version of the Reduceron on the Virtex-II
using Xilinx ISE 9.1 are shown in Table 2.3. Concerning clock frequency: a
small, carefully optimised 8-bit processor designed by Xilinx (the PicoBlaze)
can be clocked at 173.6 MHz on the same device. For the Reduceron to be
clocking within a factor of two is reasonable, but suggests room for im-
provement. One problem with the existing tool flow is that that there is no
traceability from code written in Lava to the generated netlist, so it is hard
to identify the critical path in the Lava program.
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2.8.10 Minor variations

The implementations of the Narrow and Wide Reducerons follow the clock-
accurate models presented in Sections 2.6 and 2.7 respectively, with only the
following minor differences. These variations are of no great consequence but
are stated anyway for accuracy.

• The Narrow Reduceron consumes three clock-cycles to implement swap
rather than two. The reason is convenience of implementation. Ele-
ments from the stack are always read into a dedicated register, and
the extra clock-cycle is used to transfer the contents of this register
into the top register. In the model, the stack element is read directly
into top.

• For simplicity, the Narrow Reduceron does not avoid the unnecessary
memory access in the final iteration of the unwind loop. As a result,
unwind consumes 3n+ 1 cycles instead of 3n.

• When evaluating a primitive arithmetic application, it is known that
the result is an integer. It is therefore known that the next transition
will be a swap. The Wide Reduceron exploits this fact by doing the
swap inside the prim transition, without consuming any additional
clock-cycles. This is possible because of the wide stack.

2.9 Performance

In this section, the impact of the wide memory optimisations is measured
by comparing the Narrow and Wide Reducerons running a range of Haskell
programs. The clock-accurate models are compared in terms of clock-cycle
consumption using a PC implementation of the Reduceron. The FPGA im-
plementations are compared in terms of absolute runtime speed against the
PC implementation of the Reduceron and against the main Haskell imple-
mentations running on a Pentium-4 2.8GHz PC.

Due to the memory and input/output restrictions of the FPGA implemen-
tations, the Haskell programs used in the experiments must:

1. have a maximum heap residency and stack size less than 32k words
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and 4k words respectively,

2. not take any external input,

3. and produce a single integer as a result.

The programs used are shown in Figure 2.21. The Haskell implementations
used are: Hugs (May 2006), GHCi (version 6.6), Yhc (unversioned), Nhc98
(version 1.20), a C implementation of the Reduceron, and the GHC native
code compiler (version 6.6) with and without optimisations enabled.

2.9.1 Conclusions

Table 2.4 compares the clock-accurate Reduceron models. Table 2.5 gives
absolute run-times of the Reduceron implementations on FPGA and the
other Haskell implementations on PC. Table 2.6 shows time profiles of the
Wide Reduceron.

On average, the Narrow Reduceron consumes 5.6 times as many clock-cycles
as the Wide Reduceron. This difference is reflected by the FPGA implemen-
tations, where the average runtime difference is factor of 5.48. On heavily
arithmetic programs (Queens and MSS), where much time is spent doing
swap and prim transitions, the factor is between three and five, whereas on
heavily applicative programs (Prop and While), where much time is spent
unwinding and unfolding, it is around seven. The improvement offered by
the Wide Reduceron is significant, but one might have hoped for more con-
sidering that eight consecutive locations can be accessed together on each of
the five parallel memories. Some suggestions to utilise the parallel memory
more fully are given in Section 2.10.

On average, the Wide Reduceron (running at 91.5MHz on FPGA) outper-
forms the Reduceron, Yhc, and Nhc98 bytecode interpreters (running at
2.8GHz on PC). All of these implementations share a common frontend, so
each runs the same core Haskell programs. One of the potential advantages
of a bytecode interpreter is that the bytecode can be made sufficiently ab-
stract to have a concise formal semantics, offering hope for a mechanically
verified Haskell implementation. However, there is a tension between defin-
ing a simple, high-level bytecode and one that is similar enough to the target
machine so as to be efficient. The Reduceron appears to relax this tension;
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1. Prop. A program to check the property that insertion into a list
preserves ordering for all lists up to n booleans, applied to n = 11.

2. Perm. A program to find the smallest number in a list of numbers
using a permutation sort, applied to the list containing the numbers 9
down to 1.

3. MSS. A program to compute the maximum segment sum of a list of
integers applied to the list [-150..150].

4. Queens. A function to compute the number of queens that can be
placed on an n-by-n chess board such that no queen attacks any other
queen, applied to n = 10.

5. XO. An adjudicator for noughts and crosses that determines if one side
can force victory given a partially complete board. The adjudicator is
applied to the empty board.

6. Puz. A solver for general cryptarithmetic puzzles. It is applied to
a range of problems and outputs the total number of solutions to all
of them. (Division is not supported on the Reduceron so division is
implemented by repeated subtraction.)

7. While. A structural operational semantics of the While language [72]
applied to a program that naively computes the number of divisors of
1000. (Divisor testing is implemented by repeated subtraction.)

Figure 2.21: Benchmark programs.

Program Narrow Wide Speed-up

Prop 1109 163 6.77
Perm 360 53 6.79
MSS 562 153 3.66
Queens 649 137 4.72
XO 1307 238 5.48
Puz 734 137 5.32
While 1404 187 7.48

Table 2.4: Clock-cycles (in millions) to execute several programs.
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Prop Perm MSS Queens XO Puz While

Narrow 12.46 4.04 7.04 7.69 12.93 8.58 15.62
Hugs 3.68 2.70 3.85 6.50 14.81 4.11 5.49
GHCi 4.26 2.42 3.24 6.35 7.09 3.39 5.36
Yhc 3.59 1.76 1.22 3.06 3.85 2.51 3.81
PC 3.65 1.16 1.96 2.33 5.00 2.77 4.50
Nhc98 3.60 1.46 1.38 2.32 3.12 2.28 3.21
Wide 1.88 0.58 2.01 1.57 2.70 1.67 2.04
GHC 0.71 0.28 0.38 0.66 0.86 0.47 0.41
GHC -O2 0.57 0.19 0.28 0.09 0.30 0.27 0.34

Key: Narrow: Narrow Reduceron
Wide: Wide Reduceron
PC: PC Reduceron

Table 2.5: Timings (in seconds) of several programs running on various
Haskell implementations.

a simple bytecode can be designed without concern for the target machine,
and then a machine can be designed to efficiently execute this bytecode.

The PC version of the Reduceron performs well in comparison to Yhc and
Nhc98, even though it is based on template instantiation and Yhc and Nhc98
are G-machine variants. This is consistent with recent work by Jansen
[48] suggesting that small sets of coarse-grained instructions can compete
with large sets of fine-grained ones for interpreting functional programs on
modern PCs.

The leading native-code compiler GHC performs many advanced optimisa-
tions. For example, GHC spots that the critical safe function in Queens is
strict, so need not be instantiated on the heap. Such optimisation gives GHC
a significant advantage on strict, arithmetic programs. Excluding Queens
and XO, which both involve significant integer operations in a critical loop,
and which GHC’s optimisations speed up by over a factor of two, the Re-
duceron (at 91.5MHz on FPGA) runs, on average, 4.85 times slower than
GHC -O2 (at 2.8GHz on PC).
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Program Unwind Unfold Swap Primitive GC

Prop 31.4% 64.0% 0.0% 0.0% 4.6%
Perm 33.0% 54.7% 4.7% 3.5% 4.1%
MSS 41.7% 24.1% 5.1% 7.6% 21.5%
Queens 32.1% 27.8% 10.8% 12.2% 17.0%
XO 37.7% 37.8% 7.8% 6.8% 9.9%
Puz 36.8% 37.2% 6.0% 5.2% 14.8%
While 28.9% 55.8% 5.8% 4.6% 4.9%

Table 2.6: Profiles of programs running on the Wide Reduceron.

2.10 Limitations and future work

2.10.1 Memory capacity

One of the main limitations of the Reduceron is that it only has 32k words
of heap space. This is enough to make an interesting experiment, but too
small for any serious application. However, the limitation might be over-
come with improved hardware, without affecting the existing design signif-
icantly. For example, the Computer Architecture group at York have built
the PRESENCE-3 FPGA board [75] containing a Virtex-5 FPGA and five
large, fast RAMs. Since these RAMs are all accessible in parallel, a wide
heap could be obtained using off-chip storage. Further, the Virtex-5 would
offer many more block RAMs, permitting larger on-chip stack and code
memories accessed in parallel as in the existing design.

2.10.2 Clock frequency

Another benefit of the Virtex-5 over the Virtex-II is higher performance. The
Xilinx synthesis tool clocks the current Wide Reduceron implementation at
160 MHz on the Virtex-5.

Identifying and reducing the critical path might yield further improvements
in clock rate. The synthesis tool gives useful information about the critical
path, but only at the net-list level. There is currently no facility to trace
the critical components in the Lava description. In future, Lava could be
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extended to allow descriptive labels to be attached to wires. Wires appearing
in the final net-list would then contain information about their origin or
purpose, giving meaning to the critical path reported by the synthesis tool.

2.10.3 Storage efficiency versus logic efficiency

There are alternative ways to configure and cascade block RAMs. For ex-
ample, block RAMs can by configured as 1k by 18-bit, or as 16k by 1-bit.
Instead of making a 16k by 18-bit memory by multiplexing the outputs of
16 1k by 18-bit block RAMs, an alternative would be to use 18 16k by 1-bit
block RAMs without the need for a multiplexor, simply by concatenating
the data busses. The latter approach saves logic at the cost of a few extra
block RAMs.

Another implementation choice is whether to use quad-word memories or to
quadruple the word-size and word-aligned applications. Quad-word memo-
ries have the advantage that nodes can be addressed individually, but they
require extra logic on the address and data busses of block RAMs. Quadru-
pling the word-size requires no such extra logic, but nodes would have to be
appropriately aligned on word-boundaries, probably wasting storage due to
unused nodes inside words.

In each case, the choice is between efficient storage and efficient logic. The
current Reduceron implementations have opted for efficient storage. Aiming
for efficient logic could permit single-cycle memory-reads, and hence faster
reduction.

2.10.4 Indirections

When a redex is reduced, the location of the redex on the heap is overwritten
with an indirection to the result. The main worry when introducing such
indirections is that long chains of indirections may build up. The following
paragraphs consider this issue in more detail.
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Indirection chains

When unfolding a function, the Reduceron instantiates the body of the
function on the heap and immediately unwinds the spine onto the stack. For
simplicity, the spine is unwound in exactly the same way as an application
node of the form Ap i appearing on top of the stack. However, unwinding
a spine is a special-case, and there is information that can be exploited to
make it more efficient.

To illustrate, suppose that a function application f x resides at address a
on the heap, and that Ap a appears on top of the stack. After unwinding
Ap a, the stack, which grows downwards, looks as follows.

Stack Address stack

x a

f a+ 1

(Recall that application sequences are stored in reverse order on the heap,
so indeed x is at address a and f is at address a+ 1.)

Now suppose that f is defined as f x = g e for some unary function g and
expression e. To apply f the spine g e is instantiated on the heap, say at
address b. After unwinding the spine, the stack looks as follows.

Stack Address stack

e b

g b+ 1

To ensure that this reduction is not performed again, the indirection node
End (Ap b) is written to address a on the heap. That is, the value at a is
made to point to b.

Just as reduction of f leads to an indirection, so too could the reduction
of g. That is, b could be made to point to some address c where the spine
of an instantiated body of g is located. In this way, reduction can lead to
a chain of indirections. If the original application node Ap a is evaluated
several times, then a potentially long chain of indirections must be followed
each time.

This particular form of indirection chain is easily solved: when unwinding a
spine, do not overwrite the top element of the address stack. For example,
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after unfolding f the stack should look as follows.

Stack Address stack

e a

g b+ 1

Since the spine at address b has only just been created, no node in the graph
can point to it. So a can be safely be used to point directly to the result of
evaluating the spine, avoiding a chain of indirections.

Implementing this improvement in the PC Reduceron leads to a five percent
speed-up on average across the seven benchmark programs.

More indirection chains

Still, indirection chains can build up. Consider the function f

f n m = if n == 0 then m else f (n-1) m

which is compiled down to the following combinator.

f n m = 0 (n (==)) m (f (n-1) m)

During evaluation, every call to f n m, where n is non-zero, is overwritten
with an indirection to an application f (n-1) m. As a result, an indirection
chain of length n is formed.

In the above example, the indirection chain results from the way in which
case expressions are compiled. When matching against a zero-arity data
constructor, such as False, a case alternative is represented by an expres-
sion which may be a redex. Since a redex may be shared, an indirection is
needed to record that the original case expression reduces to this case al-
ternative. Had the case alternative been represented by a partially-applied
function application (as it would if it matched against a non-zero-arity data
constructor), it would not be a redex, and no such indirection would be
introduced.

Avoiding indirections altogether

The simplest way to avoid creating indirection chains is to avoid introduc-
ing indirections in the first place. This can be done by overwriting a redex
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directly with its result, rather than an indirection to its result. The rea-
son why the Reduceron does not do this is because the amount of space
occupied by the current redex is both variable and unknown (and would be
costly to determine). If the Reduceron used fixed-width, word-aligned ap-
plications (discussed in Section 2.10.3), overwriting a redex directly with its
result would be much easier to do. Another possibility would be to employ
the updating mechanism of the spineless G-machine [15], which evaluates
redexes to normal form before updating them.

2.10.5 Template instantiation versus the G-machine

Section 2.2.5 pointed out that the interpretive overhead of template instan-
tiation can be avoided using the compiler-based approach of the G-machine
when implementing graph reduction on a PC. Section 2.3 pointed out that
this interpretive overhead can also be removed by implementing a special-
purpose machine. As template instantiation is somewhat simpler, it was
chosen as a basis for the Reduceron. However, according to Peyton Jones
the G-machine has another, separate advantage:

it turns out that compilation also opens the door to a whole host
of short-cuts and optimisations which are simply not available to
the template instantiation machine. [80]

To illustrate, consider the following function f.

f x = g (h x) x

Based on compile-time knowledge about g and h, here are three optimisa-
tions that can be performed by a G-machine implementation.

1. Suppose that g is a function of two arguments. Normally, the spine
of the body of f would be instantiated on the heap and its spine
immediately unwound onto the stack. But this is unnecessary: the
spine can be built directly on the stack because the body of f is known
to be a redex. Furthermore, overwriting the root of the redex under
evaluation can be avoided because it is not yet in normal form.

2. Suppose that g is known to be strict in its first argument. Normally,
the application h x would be instantiated on the heap and passed as
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an argument to g. But this is unnecessary: h x can be evaluated
before entering g.

3. Suppose that g and h are both known to be strict in their arguments.
Normally, x would be evaluated twice, and on the second occasion
x would be an indirection to an already-evaluated expression. The
second evaluation is unnecessary, and dereferencing the indirection
can be avoided.

Most of the G-machine optimisations aim to reduce the number of expres-
sions built on the heap. An avenue for future work is therefore to investigate
if such optimisations could be employed in the Reduceron and, if so, how
much benefit they might bring to a machine in which constructing and up-
dating expressions is cheap.

2.10.6 Case expressions

Consider again the treatment of case expressions by Jansen’s method (Sec-
tion 2.2.2). A case expression containing n alternatives is transformed into
an application of the form

e (f1 v1,1 · · · v1,?) · · · (fn vn,1 · · · vn,?)

where e is the case subject, f1 to fn are functions representing each alterna-
tive, and vi,1 to vi,? are the free variables referenced in the case alternative
i (this set of free variables does not include the variables bound by each
case alternative’s pattern). One problem with this approach is that some
nodes are instantiated on the heap for every case alternative even though
only one of them will be chosen. In contrast, the G-machine evaluates the
case subject first and only instantiates the chosen case alternative on the
heap.

For small values of n, for example when scrutinising lists and pairs, this
problem is a minor one. For larger values, the problem is still fairly minor
for the Wide Reduceron since instantiation is cheap. But for the Narrow
Reduceron, the problem is quite serious.

Another way to deal with a case expression of n alternatives would be to
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transform it to an application of the form

e f1 · · · fn v1 · · · vn

where e is the case subject, f1 to fn are functions representing each alterna-
tive, and v1 to vn are the free variables referred to all case alternatives. By
abstracting out free variables in this way, each one is written onto the heap
only once. The function corresponding to each case alternative can simply
ignore the free variables that it does not refer to. Furthermore, since the
sequence of function identifiers f1 to fn is constant, it could be stored in
code memory rather than written to the heap every time the case expression
is to be reduced. So another topic for future work is to explore more efficient
ways to compile case expressions.

2.10.7 Memory utilisation

A major limiting factor for memory utilisation is that application nodes are
typically only one to five words in size. One possible way to widen such
application nodes might be to proceed as follows. Consider the data type
for lists

data List a = Nil | Cons a (List a)

and the following two functions.

fromTo n m = if n > m then Nil else
Cons n (fromTo (n+1) m)

sum Nil = 0
sum (Cons x xs) = x + sum xs

Suppose that the definition of the List data type can be transformed to the
following definition List2.

data List2 a = Nil | Cons1 a (List a) | Cons2 a a (List a)

Such a transformation could be repeated, introducing progressively wider
constructors. Now suppose that the functions fromTo and sum can be trans-
formed, with the help of the law

Cons2 x y z = Cons1 x (Cons1 y z)
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fromTo2 n m = if n > m then Nil else
if n+1 > m then Cons1 n Nil else

Cons2 n (n+1) (fromTo2 (n+1+1) m)
sum2 xs = case xs of

Nil -> 0
Cons1 x0 xs -> x0 + sum2 xs
Cons2 x0 x1 xs -> x0 + x1 + sum2 xs

Figure 2.22: Functions fromTo and sum after a widening transformation.

to fromTo2 and sum2, defined in Figure 2.22. On a special-purpose machine
with wide, parallel memories, the resulting functions should be capable of
generating and consuming multiple list elements at a time.

Another approach to increasing the size of applications would be to represent
applications as 1-level deep trees rather than flat sequences.

2.11 Related work

2.11.1 Hardware reduction machines

In the FPCA series of international conferences held between 1981 and 1995,
several papers presented designs of exotic new machines to execute func-
tional programs efficiently. Some special-purpose, sequential graph reduc-
tion machines were indeed built, including SKIM [88] and NORMA [85].
Unfortunately, at the time, building such machines was a slow and expen-
sive process, and any performance benefit obtained was wiped out by the
next advancement in stock hardware. In contrast, the Reduceron implemen-
tation is extremely cheap thanks to FPGAs, and FPGAs are an advancing
technology in their own right. Another big difference from the Reduceron is
that both SKIM and NORMA were based on Turner’s combinators and did
not attempt to use wide, parallel memories to increase performance.

2.11.2 The Big Word Machine

A piece of work similar in spirit to the Reduceron is Augustsson’s Big Word
Machine (BWM) [8], although the Reduceron was designed without knowl-
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edge of the BWM. The BWM is a graph reduction machine with a wide
word size, specifically four pointers long, allowing wide applications to be
quickly built on, and fetched from, the heap. Augustsson likens the BWM
to a VLIW (very long instruction word) machine [39], designed for func-
tional languages rather than scientific computing. Like the Reduceron, the
BWM has a crossbar switch attached to the stack allowing complex rear-
rangements to be done in a single clock-cycle. The BWM also encodes
constructors and case expressions using functions and applications respec-
tively. Unlike the Reduceron, the BWM works on an explicit, sequential
instruction stream rather than by template instantiation. Features of the
Reduceron not present in the BWM include

• separate code and heap memories,

• machine integer support,

• less memory wastage as applications need not be aligned on four-
pointer boundaries,

• and support for building multiple different function applications on
the heap simultaneously.

The BWM was never actually built. Some simulations were performed but
Augustsson writes “the absolute performance of the machine is hard to de-
termine at this point” [8].

2.11.3 Ward’s work

Ward explores three different ways to implement lazy functional languages
on FPGA [97]. A template-instantiation machine written in Handel-C, a
compiler to Handel-C, and a new parallel reduction machine are all consid-
ered.

To illustrate one of Ward’s main ideas, reconsider the three main steps
performed by a graph reducer running on a standard PC (originally discussed
in Section 2.2.5).

1. Fetch CPU instructions from memory which, when executed,

2. read the function body from template memory, and
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3. construct an instance of the function body in graph memory.

The G-machine eliminates step 2, and a special-purpose template instanti-
ation machine, such as the Reduceron, eliminates step 1. Ward proposes,
in essence, to eliminate both steps 1 and 2 by compiling functions directly
into a hardware which, when executed, instantiates the function body in
graph memory. In other words, instructions are stored directly in registers
on the FPGA. One of the potential problems with this approach is that
every function definition requires its own connection to graph memory. As
the number of functions in a program grows, so too does the number of sites
from which graph memory is accessed. It may prove difficult to implement
this efficiently. Another potential problem is scalability: a lot of logic would
be required to store programs in registers.

Ward writes that “since the testing of the machine was not satisfactorily
finished, no serious attempt was made to implement it in hardware” [97].
Ward does discuss the use of parallel memories in his parallel reduction
machine, but the performance of this machine is not determined.

2.11.4 The statically allocated functional language

A quite different approach to running functional programs on FPGA is taken
by Sharp and Mycroft [70]. They present SAFL, the statically allocated
functional language, and show how it can be compiled to FPGA. “Stati-
cally allocated” means that functions are restricted to be first-order, strict
and tail-recursive (or not recursive at all). The motivation for compiling
functional programs to hardware is that they contain a lot of fine-grained
implicit parallelism. To illustrate, consider the following SAFL program:

fun mult(x, y, acc) =
if (x = 0 or y = 0) then acc
else mult(x<<1, y>>1, if y[0:0] then acc+x else acc)

Here x and y are the inputs to be multiplied, acc is an accumulator, and
the return value is the result of the multiplication. Each parameter in the
recursive call to mult is evaluated in parallel and so too is each side of the
or expression.

The static-allocation restrictions are quite prohibitive for general-purpose
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programming. However, Sharp demonstrates that pure SAFL extended
with channels and mutable arrays is useful by implementing a DES encryp-
tion/decryption circuit [86]. Frankau extends SAFL with similar features,
but in a purely functional manner through lazy lists and linear-typed ar-
rays [29]. Both static allocation and purity are enforced using a linear type
system.



Chapter 3

The Essence of

Circuit Description

The previous chapter detailed how the Reduceron works, but little was said
about the precise method used to implement it on an FPGA. This chapter
presents the functional programming approach used to describe the Reduc-
eron. Indeed, circuit description is a well-studied application of functional
programming [87], but the Reduceron is a somewhat larger, more stateful,
and less regular circuit than many of the examples considered in the litera-
ture. As a result, new issues are encountered that have not been dealt with
in detail before.

3.1 Introduction

There are two quite different yet complementary ways to describe a digital
circuit. One is to say what components are present and how they are con-
nected together (structural description), and the other is to write a program
which is compiled down to a circuit (behavioural description).

Standard hardware description languages (HDLs), such as VHDL [6] and
Verilog [89], support both styles of description. They provide language con-
structs for structural description, such as component instantiation and repli-
cation, and also for behavioural description, such as event-driven processes

70
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and signal assignment. These constructs can be freely mixed, allowing flex-
ible combinations of the two styles.

This chapter explores an alternative approach using the pure structural,
higher-order language Lava [19]. “Pure structural” means that Lava does
not provide any built-in constructs for behavioural description, and “higher-
order” means that Lava components can take components as inputs, and
produce components as outputs. The approach taken here differs from that
taken by standard HDLs in that behavioural constructs are not built in to
the language, but are provided by a small library of pure structural, higher-
order components.

The distinction made by circuit designers between structural and behavioural
descriptions is similar to that made by functional programmers between pure
and impure functions. Just as functional programmers can neatly simulate
a range of impure features using pure abstractions, so circuit designers can
neatly simulate a range of behavioural features using structural abstrac-
tions. Wadler refers to the former capability as “the essence of functional
programming” [94], hence the titling of this chapter to capture the latter
capability.

This chapter is primarily concerned with circuit descriptions that can be
automatically synthesised to digital circuits of primitive components such
as logic gates, flip-flops, and RAMs. All circuit descriptions presented run
on an FPGA. However, no knowledge of FPGAs is assumed.

This chapter is structured as follows. Section 3.2 reviews the standard hard-
ware description language VHDL, and illustrates some of the constructs it
provides for structural and behavioural description. Section 3.3 reviews the
pure structural language Lava, and illustrates some commonly-used Lava
features such as higher-order components. Section 3.4 presents a small Lava
library for behavioural description called Recipe – no language extensions
to a pure structural language are required. Sections 3.5, 3.6 and 3.7 apply
Lava and Recipe to three applications, the third of which is a stack processor
(and associated compiler and abstract machine) that is highly-illustrative of
the Reduceron. Section 3.8 discusses the strengths and weaknesses of the
approach. Section 3.9 discusses related work and Section 3.10 summarises.
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3.2 VHDL

Before exploring an alternative approach to hardware description, it is first
useful to consider existing approaches. In this section, VHDL [6], a standard,
widely-used HDL, is introduced. VHDL supports circuit description at a
variety of abstraction levels, but this section focuses on the register-transfer
level (RTL) subset [6] that can be synthesised by most VHDL tools.

3.2.1 Structural description

VHDL’s unit of abstraction is the component. Every component typically
has both an entity and an architecture. The entity lists the ports of the
component (its inputs and outputs) and their types. For example, the entity
for a 2-input NOR gate can be defined as

entity norGate is
port (o : out std_logic; i1, i2 : in std_logic);

end norGate;

The architecture describes the relation between the input and output ports
of a component, and can be defined structurally or behaviourally. Assuming
a library providing the primitive components inv and or2, the following
structural architecture for norGate can be defined.

architecture structural of norGate is
signal tmp : std_logic;

begin
c0 : or2 port map (tmp, i1, i2);
c1 : inv port map (o, tmp);

end structural;

Here, two components are instantiated using a port map and labelled c0

and c1. Signals are connected to the ports of a component by parameter
passing. The tmp signal represents an intermediate wire, used to connect
the output of or2 to the input of inv.

VHDL also provides constructs for conditional and repetitive instantiation
of components using the if/generate and for/generate statements. Com-
ponent instantiations may even be recursive, as advocated by Ashenden in
[5]. To illustrate, consider describing an OR-tree. A four-input instance of
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inputs

Figure 3.1: Schematic of a four-input OR-tree.

an OR-tree is depicted in Figure 3.1. A suitable entity declaration is

entity orTree is
generic (width : positive);
port (o : out std_logic;

ins : in std_logic_vector(width-1 downto 0));
end entity orTree;

The orTree component takes a generic parameter width – a compile-time
value specifying how many inputs the OR-tree operates on. It also takes
an array of inputs – width elements long – and produces a single output
representing the logical disjunction of all the inputs. Using a combination of
conditional and recursive instantiation, a structural architecture for orTree
is defined in Figure 3.2. Note that the assignment operator <= is used to
connect two wires together.

An important point is that a structural description is essentially a circuit
generator, that is, a program that when executed generates a representa-
tion of a circuit. In other words, the conditional statements and recursion
are expanded out by the VHDL tool at compile time, leaving a netlist of
primitive components and their connections.

3.2.2 Behavioural description

As well as structural architectures, behavioural architectures are also possi-
ble in VHDL. The main behavioural abstraction provided is the process,
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architecture structural of orTree is
signal lout, rout : std_logic;

begin
baseCase: if width = 1 generate

o <= ins(0);
end generate;
recursiveCase: if width > 1 generate

left : entity orTree
generic map (width/2)
port map (lout, ins(width/2-1 downto 0));

right : entity orTree
generic map ((width+1)/2)
port map (rout, ins(width-1 downto width/2));

join : or2
port map (o, lout, rout);

end generate;
end structural;

Figure 3.2: Structural architecture of an OR-tree in VHDL.

which consists of a sequence of statements and a sensitivity list. Whenever
a signal in a process’s sensitivity list changes, that process is marked as
runnable. Behavioural architectures are executed in a step-wise fashion. In
each step, all runnable processes are executed in parallel. Signals which
change during that execution, or as a result of external stimuli, decide the
runnable processes for the next step. Any signal assignments (using the
<= operator) that occur in one step become observable in the next step.
Typically, sensitivity lists contain the clock input, so processes run on every
clock-cycle; assignments become observable in the next clock-cycle.

To illustrate, consider describing a circuit to multiply two numbers together
using an adder, a left-shifter and a right-shifter. The circuit takes two bit-
vectors as input, representing the two numbers to multiply, and produces an
output bit-vector representing the product of the two numbers. In addition,
it takes a start bit signifying when the inputs are ready and that the circuit
should begin computing the result, and it produces a finished bit signifying
when the computation has finished and that the result is ready. The intended
pattern of use is that the user of the multiplier will pulse the start bit (by
setting it high for one clock-cycle), wait a number of clock-cycles until the
finished bit becomes high, and then read the result.
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entity mult is
generic (width : positive);
port (clock : in std_logic;

a, b : in std_logic_vector(width-1 downto 0);
start : in std_logic;
result : out std_logic_vector(width-1 downto 0);
finished : out std_logic);

end mult;

architecture behavioural of mult is
signal regA, regB, acc : std_logic_vector(width-1 downto 0);
signal currentlyRunning : std_logic;

begin
-- Connect a few wires together
finished <= not currentlyRunning;
result <= acc;

-- The following process runs every time the clock changes
shiftAndAdd : process(clock) is begin
if rising_edge(clock) then

if start = ’1’ then -- Initialise!
regA <= a;
regB <= b;
acc <= (others => ’0’);
currentlyRunning <= ’1’;

elsif currentlyRunning = ’1’ then
if regB = 0 then

currentlyRunning <= ’0’; -- Finished!
else

regA <= regA(width-2 downto 0) & ’0’; -- Shift left
regB <= ’0’ & regB(width-1 downto 1); -- Shift right
if regB(0) = ’1’ then acc <= acc + regA; end if;

end if;
end if;

end if;
end process;

end behavioural;

Figure 3.3: Behavioural description of a sequential multiplier in VHDL.
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low :: Bit -- Logic 0
high :: Bit -- Logic 1
inv :: Bit -> Bit -- Inverter
(<&>) :: Bit -> Bit -> Bit -- AND-gate
(<|>) :: Bit -> Bit -> Bit -- OR-gate
(<#>) :: Bit -> Bit -> Bit -- XOR-gate
delay :: Bit -> Bit -> Bit -- Flip-flop

Figure 3.4: Operations of Lava’s Bit ADT.

A VHDL description capturing this circuit’s behaviour is shown in Figure
3.3. The most interesting part of the description is the shiftAndAdd process.
Its sensitivity list contains the clock signal, ensuring that the process runs
every time the clock changes. A conditional statement within the process
additionally ensures that it only runs on the rising edge of the clock, that
is, once per clock-cycle. The process contains a simple state machine. If
it is ‘currently running’, the multiplicand is shifted right, the multiplier is
shifted left, and if the multiplicand is odd the multiplier is added to the
accumulator. When the multiplicand becomes zero, the ‘currently running’
flag is disabled. When not ‘currently running’ and a start signal is received,
the process initialises the shift registers and the accumulator, and enters the
‘currently running’ state.

3.3 Lava: a pure structural language

A rather different approach to circuit description is taken by Lava [19], a
domain-specific language embedded in Haskell. In Lava, components are
modelled as Haskell functions from inputs to outputs. Inputs and outputs
are Haskell data structures containing values of type Bit1. The Bit type is
an abstract data type (ADT) providing the operations shown in Figure 3.4.

In Lava, components are connected together by writing applicative expres-
sions. To illustrate, norGate can be defined as

norGate :: Bit -> Bit -> Bit
norGate a b = inv (a <|> b)

1Actually they have type Signal Bool, but type Bit = Signal Bool is assumed here.
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Figure 3.5: Schematic of a sequential parity checker.

Whereas VHDL provides arrays to represent sequences of bits, Lava provides
inductively-defined lists. For example, in Lava the orTree circuit takes a
list of bits and returns back a single bit.

orTree :: [Bit] -> Bit
orTree xs = tree (<|>) xs

It is defined in terms of tree, which can reduce a given list of bits using any
given binary operator in a tree structure.

tree :: (a -> a -> a) -> [a] -> a
tree f [x] = x
tree f (x:y:ys) = tree f (ys ++ [f x y])

Like in the VHDL version, conditionals (now in the form of pattern match-
ing) and recursion are used, and are expanded out at circuit-generation time
to leave a netlist containing only instances of the primitive components in
Figure 3.4 and their connections.

Unlike in the VHDL version, a higher-order, polymorphic component tree is
defined. It is parameterised by the binary operator applied at each internal
node of the tree, and this operator can take inputs of any type, not just bits.
Such higher-order components are commonly used in Lava descriptions [87].

Another difference between Lava and VHDL is that Lava does not provide
any built-in constructs for behavioural description. This is not to say that
Lava cannot express stateful circuits like the sequential multiplier. For ex-
ample, consider the simpler stateful circuit oddParity, depicted in Figure
3.5, that outputs high if the number times it has received a high input is
odd, and outputs low otherwise.
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oddParity :: Bit -> Bit
oddParity i = o
where o = i <#> delay low o

(Here, delay denotes a D-type flip-flop; its first argument is the initial state
of the flip-flop, and its second is the D-input.)

The problem is that as the numbers of stateful delay components and feed-
back loops increase, it becomes more and more difficult to understand struc-
tural descriptions. So although it would be possible to structurally express
the sequential multiplier, it would be somewhat awkward to do so. Be-
havioural description, such as that provided by VHDL, abstracts away from
flip-flops and feedback loops through mutable assignment and iteratively-
executed processes.

3.4 Recipe: a library for behavioural description

In summary so far, VHDL supports structural and behavioural description,
whereas Lava only supports structural description. On the other hand, Lava
offers powerful abstraction capabilities through higher-order components.
The aim of this section is to show that behavioural constructs can be neatly
captured in a pure structural language by a small set of higher-order Lava
components. This set of components is defined as a Haskell module named
Recipe.

The Recipe library follows the approach to behavioural description taken
by Page and Luk in their hardware variant of Occam [77]. This gives a
behavioural style of description similar to VHDL, but at a slightly higher
level of abstraction.

Before presenting the Recipe library, it is helpful to introduce a few building-
blocks that will later prove useful. Section 3.4.1 defines some useful Lava
components and Section 3.4.2 briefly reviews monads [95], used to structure
the Recipe library.
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Figure 3.6: Lava’s row pattern.

3.4.1 Some useful components

A multiplexor The pick component takes a list of bit/bit-list pairs and
returns the bit-list that is paired with high. It is assumed as a pre-condition
that exactly one bit-list is paired with high in the input list.

pick :: [(Bit, [Bit])] -> [Bit]
pick xs = map (tree (<|>)) (transpose ys)
where ys = [map (b <&>) x | (b, x) <- xs]

To illustrate, the expression

pick [(low, [low, high]), (high, [high, low])]

evaluates to [high, low].

A row A row is an often used Lava description, and indeed is provided by
the Lava prelude. It captures the pattern shown Figure 3.6 and is defined
as follows.

row :: ((a, b) -> (c, a)) -> (a, [b]) -> ([c], a)
row circ (carryIn, []) = ([], carryIn)
row circ (carryIn, x:xs) = (y:ys, carryOut)
where (y, carry) = circ (carryIn, x)

(ys, carryOut) = row circ (carry, xs)

A register with input-enable The delayEn component is like delay,
but takes an input-enable line en that decides whether the D-input should
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Figure 3.7: Delay with input enable (left) and a set-reset latch (right).

be latched into the flip-flop, or whether the flip-flop should retain its current
state.

delayEn :: Bit -> Bit -> Bit -> Bit
delayEn init en inp = out
where out = delay init (mux2 (inv en) inp out)

mux2 :: Bit -> Bit -> Bit -> Bit
mux2 sel a b = (inv sel <&> a) <|> (sel <&> b)

The structure of delayEn is depicted on the left in Figure 3.7. A register
with input-enable can be formed from a series of delayEn components.

regEn :: [Bit] -> Bit -> [Bit] -> [Bit]
regEn [] en inps = []
regEn (x:xs) en inps = delayEn x en y : regEn xs en ys
where y:ys = inps

A set-reset latch The setReset component has an internal state, ini-
tially low, and takes two inputs: set and reset. If the set line is high then
the latch outputs high, otherwise it outputs its internal state. If the set line
is high and the reset line is low then the internal state is set to high on the
next clock cycle. If the reset line is high, then the internal state is set to
low on the next clock-cycle. If neither line is high, the latch does not change
state.
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setReset :: Bit -> Bit -> Bit -> Bit
setReset init s r = out

where q = delay init (out <&> inv r)
out = s <|> q

The structure of setReset is depicted on the right in Figure 3.7.

3.4.2 Monads

In Haskell, a monad [95] is an abstract data type, parametrised by some
other type, that is a member of the following type class.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

An expression of the form return a denotes a computation that simply
returns a without performing any side-effect. And one of the form c >>= f

denotes a computation that sequences the two computations c and f a,
where a is the value returned by c. Sometimes it is useful to ignore the
result of the first computation. This can be done using the >> combinator.

(>>) :: Monad m => m a -> m b -> m b
c0 >> c1 = c0 >>= \_ -> c1

Any implementation of return and >>= must satisfy the following three
monad laws which state that >>= is associative and return is its unit.

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx. f x >>= g)

To be more concrete, the following section considers a specific instance of a
monad that captures the side-effect of state.

The state monad

One kind of side-effect that is useful for some computations to have is state,
whereby a value is implicitly threaded through a sequence of computations,
and each individual computation can read, modify or ignore it. A stateful
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computation can be represented as a transition function from the current
state to a pair containing the next state and the return value of the compu-
tation [95].

data State s a = State (s -> (s, a))

Here, the type state of state contained by a stateful computation is pa-
rameterised by the type variable s. Using a helper function to extract the
transition function from a stateful computation,

run (State f) = f

the type State s can be made a monad, for any s.

instance Monad (State s) where
return a = State (\s -> (s, a))
c >>= f = State (\s -> case run c s of

(s’, a) -> run (f a) s’)

To abstract away from the internal representation of State, the operators
get and set can be used.

get :: State s s
get = State (\s -> (s, s))

set :: s -> State s ()
set s = State (\_ -> (s, ())

To illustrate, Figure 3.8 defines the stateful computation example. The key
point is that the internal state, in this case a value of type Int, is implicit
and need not be passed around manually. This mimics global state as found
in an impure language. The expression run example 0 where 0 is the initial
state, evaluates to (11, False).

3.4.3 The Recipe monad

Like in Page and Luk’s hardware variant of Occam [77], all behavioural
descriptions written using the Recipe library, referred to as recipes, take a
start signal (a single bit) and produce a finish signal (also a single bit). A
single-cycle pulse on the start signal indicates that the recipe should start
executing. Similarly, when a recipe finishes executing, it should produce
a single-cycle pulse on the finish signal. Recall that such start and finish
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example :: State Int Bool example :: State Int Bool
example = example =
set 10 >> do set 10
get >>= \x -> x <- get
set (x+1) >> set (x+1)
get >>= \y -> y <- get
return (y < 10) return (y < 10)

Figure 3.8: An example monadic computation (left) and the same example
written using do-notation (right).

signals were expressed explicitly in the VHDL description of the sequential
shift-and-add multiplier (Figure 3.3). The Recipe library abstracts over
this common setup by making the start and finish signals implicit in every
description. As a result, all recipes can be composed in a variety of useful
ways, including sequential and parallel composition, iteration and choice.

The possibility of representing a recipe as a circuit taking a start signal and
producing a finish signal naturally leads to its view as a stateful computation.

type Recipe a = State (Bit, Env) a

In this type synonym, the Bit represents the start/finish signal. An envi-
ronment, of type Env, also forms part of the implicit state; its purpose is
explained in Section 3.4.8.

Apart from the missing definition of Env, this completes the definition of
the first two behavioural constructs provided by Recipe: the unit recipe
(return) and sequential composition (>>=). The following sections define
further constructs, inspired by Page and Luk [77].

3.4.4 Skip and tick

Sometimes the unit description is referred to as skip.

skip :: Recipe ()
skip = return ()

Another construct, similar to skip but which takes one clock-cycle to exe-
cute, is tick. This is implemented by simply passing the start signal through
a flip-flop to produce the finish signal.
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tick :: Recipe ()
tick = State (\(start, env) -> ((delay low start, env), ()))

New recipes can easily be defined in terms of existing ones. For example, the
following construct is like tick but delays for any number of clock-cycles.

tickN :: Int -> Recipe ()
tickN 0 = skip
tickN n = tick >> tickN (n-1)

3.4.5 Choice

An if-then-else construct over recipes is defined as follows.

cond :: Bit -> Recipe () -> Recipe () -> Recipe ()
cond cond p q = State (\(start, env) ->
let ((fin0, env0), _) = run p (start <&> cond, env)

((fin1, env1), _) = run q (start <&> inv cond, env0)
in ((fin0 <|> fin1, env1), ()))

It takes a condition bit cond, and two recipes, p (the then-branch) and q

(the else-branch). Notice that cond is of type Bit, meaning that a pure
Lava expression can be used to describe the condition. The conjunction of
the start signal and cond is used to trigger p, and the conjunction of the
start signal and the inverse of cond is used to trigger q. The final finish
signal is the disjunction of the finish signals of p and q.

A related construct is the guarded recipe, which executes a recipe only if the
guard holds.

(|>) :: Bit -> Recipe () -> Recipe ()
guard |> p = cond guard p skip

3.4.6 Iteration

A while-loop construct over recipes is defined as follows.

while :: Bit -> Recipe () -> Recipe ()
while cond p = State (\(start, env) ->
let ((fin, env’), _) = run p (cond <&> ready, env)

ready = start <|> fin
in ((inv cond <&> ready, env’), ()))
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The loop body p is said to be ready when the start signal of the loop is
active, or when its own finish signal is active. However, it is only triggered
when it is both ready and the loop-condition holds. If it is ready, and the
loop-condition does not hold, then the overall finish signal is triggered.

Another kind of loop is doUntil which repeatedly executes the loop body
until a condition becomes true. Unlike while, doUntil tests the condition
at the end of each iteration.

doUntil :: Bit -> Recipe () -> Recipe ()
doUntil cond p = State (\(start, env) ->

let ((fin, env’), b) = run p (ready, env)
ready = start <|> (fin <&> inv cond)

in ((fin <&> cond, env’), b))

When using loops, the programmer must take care not to make a loop-body
that takes no clock-cycles to complete – this would result in a combinatorial
loop in the circuit! The tick construct plays an important role here by
allowing the programmer to ensure that loop bodies take at least one clock-
cycle.

Again, other useful constructs can be defined in terms of existing ones.

forever :: Recipe () -> Recipe ()
forever p = while high p

3.4.7 Parallel composition

A list of recipes can be composed in parallel using the par operator, defined
in Figure 3.9. Parallel composition has a fork/join semantics: an expression
of the form par ps starts every recipe in the list ps at the same time, and
finishes only when all recipes in ps have finished. The joining behaviour is
achieved by feeding the finish signal of each recipe into the set-line of a set-
reset latch, and AND-ing the outputs of the latches to produce the overall
finish signal. The overall finish signal is fed back into the reset-line of each
latch, so that the par block is ready to be executed again if, for example, it
occurs in the body of a loop.



86 CHAPTER 3. THE ESSENCE OF CIRCUIT DESCRIPTION

par :: [Recipe ()] -> Recipe ()
par ps = State (\(start, env) ->
let (fins, env’) = row circ (env, ps)

circ (env, p) = fst (run p (start, env))
fin = tree (<&>) (map (\s -> setReset low s fin) fins)

in ((fin, env’), ()))

Figure 3.9: Parallel composition.

3.4.8 Mutable variables

In this section, operations for creating, reading, and writing variables are
defined. Every mutable variable has a unique identifier and outputs a value
of type [Bit], as defined by the following data types.

data Var = Var { varId :: VarId, val :: [Bit] }
type VarId = Int

Variables can be assigned to new values. Such assignments hold two pieces
of information: a single bit that is pulsed on the clock-cycle in which the
assignment should occur, and a list of bits representing the value to be
assigned to the variable.

type Assignment = (Bit, [Bit])

Mutable variables come in two varieties: signals and registers. Each one
attaches a different meaning to assignment.

• When a register variable is assigned a new value on a particular clock-
cycle, its output does not reflect the new value until the next clock-
cycle.

• When a signal variable is assigned a new value on a particular clock-
cycle, its output immediately reflects the new value in that clock-cycle.

• Whereas the effect of the register assignment is visible in subsequent
clock-cycles, the effect of the signal assignment is only visible during
the clock-cycle in which the assignment is made. In clock-cycles where
no assignment is made, a signal variable simply outputs zero.

Given a list of assignments that have been made to a signal variable, the
output of the variable is defined by the following equation.
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assignSig :: [Assignment] -> [Bit]
assignSig = pick

(Recall that pick is defined in Section 3.4.1.) A similar equation defines the
semantics of register assignment.

assignReg :: Int -> [Assignment] -> [Bit]
assignReg width ass = regEn (replicate width low) en (pick ass)

where en = tree (<|>) (map fst ass)

(Recall that regEn is defined in Section 3.4.1.) In this case, the assign-pulses
of each assignment are OR-ed together and fed into the input-enable line of
a register. In addition, the width of the register must be known for reasons
explained in Section 3.4.9.

So far, little has been said about the environment that is implicitly threaded
between recipes. The purpose of the environment is to provide a fresh-name
supply for variables and to record the assignments made to each variable.

data Env = Env { freshId :: VarId
, readEnv :: [(VarId, Assignment)]
, writeEnv :: [(VarId, Assignment)] }

Here, there are two assignment mappings rather than one. The writeEnv

mapping is written to as new assignments are made. The readEnv mapping
is read from to determine the list of assignments made to a given variable. In
Section 3.4.9, the two mappings will be tied together with a recursive knot
[13]. Using this technique, it can be assumed that the readEnv mapping
contains all the assignments made by an entire recipe.

An assignment of the form v <== x adds the pair (varId v,(start,x)) to
the list of assignments held in the writeEnv mapping.

(<==) :: Reg -> [Bit] -> Recipe ()
v <== x = State (\(start, env) ->

let wenv = (varId v, (start, x)) : writeEnv env
in ((start, env { writeEnv = wenv }), ()))

A slight variant, <=|, does the same but consumes a clock-cycle.

(<=|) :: Reg -> [Bit] -> Recipe ()
r <=| x = r <== x >> tick

To create a variable, a fresh name is extracted from the environment, looked
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newSig :: Int -> Recipe Var
newSig width = newVar assignSig

newReg :: Int -> Recipe Var
newReg width = newVar (assignReg width)

newVar :: ([Assignment] -> [Bit]) -> Recipe Var
newVar f = State (\(start, env) ->
let v = freshId env

ass = [i | (w, i) <- readEnv env, v == w]
in ((start, env freshId = v+1 ), Var v (f ass)))

Figure 3.10: Variable creation.

up in the readEnv mapping, and the resulting list of assignments to that
variable is passed to assignSig or assignReg appropriately. This behaviour
is captured by the functions newSig and newReg in Figure 3.10.

3.4.9 Following recipes

All that remains is to define how to turn a start bit and a recipe, of type
Recipe a, into a finish bit and a value of type a. That is, how to follow a
recipe.

follow :: Bit -> Recipe a -> (Bit, a)
follow start r = (fin, a)
where ((fin, env), a) = run r (start, initialEnv)

initialEnv = Env 0 (writeEnv env) []

The crucial connection here is the feedback loop from the writeEnv mapping
of the final environment to the readEnv mapping of the initial environment.
This feedback loop is not surprising considering that a variable (say v) can be
assigned to its own output, e.g. by the statement v <== map inv (val v).
In hardware, this statement corresponds to a circuit with a cycle. The
possibility of such cycles occurring is the reason why register variables must
have a pre-defined width, so that the spine of the list representing the output
of a register does not form an unresolvable mutual dependency.

The following sections present three applications of the Recipe library.
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3.5 Application 1: a sequential multiplier

On some FPGA devices, single-cycle multiplication is an expensive operation
in terms of both critical-path delay and resource usage. It is therefore handy
to have a sequential multiplier available – one that takes several clock-cycles
to complete, but which has a much smaller combinatorial delay and requires
less FPGA resources. This section defines such a multiplier using Recipe.

3.5.1 Numbers in Lava

In Lava, numbers are typically represented as a lists of bits, with the least
significant bit coming first. More formally, a non-negative integer n is en-
coded as a list of m bits by the following function.

ofWidth :: Int -> Int -> [Bit]
0 ‘ofWidth‘ m = replicate m low
n ‘ofWidth‘ m = b : (n ‘div‘ 2) ‘ofWidth‘ (m-1)

where b = if odd n then high else low

Like the earlier VHDL description (Figure 3.3), the multiplier will be im-
plemented using the shift-and-add algorithm. The following ingredients are
needed first: functions for adding two bit-lists together and shifting a bit-list
left and right. The addition function is defined in Figure 3.11. The left and
right shifting operations are defined as follows.

shl :: [Bit] -> Int -> [Bit]
a ‘shl‘ n = drop n a ++ replicate n low

shr :: [Bit] -> Int -> [Bit]
a ‘shr‘ n = reverse (reverse a ‘shl‘ n)

Again it is assumed that non-negative numbers are being manipulated –
numbers are just padded with zeroes rather than doing sign-extension as
would be required in a two’s complement encoding.

3.5.2 Implementation

Quite often descriptions in Recipe contain expressions of the form f (g (h x)),
for some functions f , g, and h. To simplify such expressions, the following
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left-associative operator for reverse function application is used.

(!) :: a -> (a -> b) -> b
x!f = f x

Now such expressions are written x!h!g!f .

Figure 3.12 defines the sequential multiplier in Recipe. The main difference
from the VHDL version is that the start and finish signals are implicit and
the code for initialisation can simply be sequentially composed with the code
for shifting and adding. As a result, no explicit state machine is needed.

The multiplier requires one clock-cycle for initialisation and n clock-cycles
for the loop in the worst case, where n is the length in bits of the second
argument.

3.5.3 Correctness

If the multiplier is correctly defined, the following function should return
true for all argument values

prop_mult :: Int -> Int -> Bool
prop_mult x y = x >= 0 && y >= 0 ==> x*y == multSim n x y
where n = 2 * (1 + log2 (max x y))

where multSim n x y uses Lava to simulate mult (until it asserts its finish
signal) on n-element bit-vectors representing integers x and y, and converts
the resulting bit-vector to an integer. To avoid overflow, the result bit-vector
must contain at least twice the number bits needed to store the maximum
of x and y.

3.6 Application 2: a Lego brick-sorter

In “Reactive Systems Design 2007”, a taught-course module at the Univer-
sity of York2, the students were asked to write a program to control a Lego
brick-sorter. This section presents a solution using Recipe. As programs
were to run on a Lego Mindstorms RCX micro-controller, a C back-end for

2Organised by Gerald Lüttgen and Jan Tobias Mühlberg.
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(/+/) :: [Bit] -> [Bit] -> [Bit]
a /+/ b = sum

where (sum, carryOut) = row fullAdd (low, zip a b)

halfAdd (a, b) = (sum, carry)
where sum = a <#> b

carry = a <&> b

fullAdd (carryIn, (a, b)) = (sum, carryOut)
where (sum1, carry1) = halfAdd (a, b)

(sum, carry2) = halfAdd (carryIn, sum1)
carryOut = carry1 <#> carry2

Figure 3.11: Addition of bit-lists in Lava.

mult :: [Bit] -> [Bit] -> Recipe [Bit]
mult a b =

do regA <- newReg (length a)
regB <- newReg (length b)
acc <- newReg (length a)

regA <== a
regB <== b
acc <== 0 ‘ofWidth‘ length a
tick

while (tree (<|>) (regB!val))
(do regA <== regA!val ‘shr‘ 1

regB <== regB!val ‘shl‘ 1
regB!val!head |> acc <== acc!val /+/ regA!val
tick)

return (acc!val)

Figure 3.12: Sequential multiplier in Recipe.
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Lego Brick

Conveyor Belt

Light Detector
Pusher

Touch Sensor

Figure 3.13: End-elevation view of the brick-sorter (the brick is moving
towards you).

Lava was developed. The solution described below indeed runs correctly on
the RCX.

3.6.1 Structure of the brick-sorter

The brick-sorter is composed of a four main components.

1. A conveyor belt, on which light or dark-coloured bricks may be placed.

2. A pusher arm, capable of pushing a brick off the conveyor belt when
it reaches the push point.

3. A light-sensor sitting at the push point, capable of detecting light-
coloured bricks.

4. A touch-sensor reporting whether or not the pusher arm is in its resting
position or not. The resting position is the position in which the pusher
arm is not blocking possible bricks on the conveyor belt.

Figure 3.13 gives an end-elevation view of the brick-sorter.

The brick-sorter should push all light-coloured bricks off the conveyor belt,
and leave dark-coloured bricks untouched.

3.6.2 Operation of the brick-sorter

The intended operation of the brick-sorter is as follows.

1. Initialise. The pusher arm is moved into its resting position, where it
touches the touch sensor. Note that the pusher arm is either moving or
not moving – there is no notion of direction. Mechanically, the pusher
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sorter :: (Bit, Bit) -> Recipe (Bit, Bit)
sorter (touch, light) =

do belt <- newReg 1
push <- newSig 1

while (inv touch) (push <=| [high])

belt <=| [high]
forever (do while (inv light) tick

while touch (push <=| [high])
while (inv touch) (push <=| [high]))

return (belt!val!head, push!val!head)

Figure 3.14: Controller for a Lego brick-sorter in Recipe.

arm will automatically retract towards the resting position when it
reaches as far as it can stretch.

2. Turn on belt. Once the pusher arm is resting, the conveyor belt is
turned on.

3. Wait and push. When the light-sensor detects a light-coloured brick,
the pusher arm is enabled, pushing the brick off the conveyor belt.
Once it returns to the resting position, the pusher arm is disabled
again. Note that there is no need to stop the conveyor belt when a
light-coloured brick is detected – the pusher arm is fast enough to hit
the brick before it passes the push point.

3.6.3 Implementation

Figure 3.14 describes a controller for the brick-sorter using Recipe. As in-
puts, the description takes active-high bits from the touch and light sensors.
As outputs, it returns active-high bits to drive the conveyor belt and pusher
arm motors. The belt-enable bit is represented by a register variable and
the push-enable bit by a signal variable; whereas the belt is enabled perma-
nently after initialisation, the pusher is only enabled in clock-cycles in which
the push-enable bit is assigned to [high].
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3.7 Application 3: a simple stack processor

The largest application of Recipe is, by some margin, the Reduceron graph
reduction machine described in Chapter 2. This application is slightly too
large to present in detail here. Instead, a simple 8-bit stack processor called
Poly for Xilinx FPGAs is presented. Poly is designed to evaluate polynomial
expressions containing possibly-many references to a single variable, written
in the following language.

data Expr = X | N Int | Expr :+: Expr | Expr :*: Expr

Here, X represents the variable. The semantics of the language is as follows.

eval X n = n
eval (N n) _ = n
eval (e1 :+: e2) n = eval e1 n + eval e2 n
eval (e1 :*: e2) n = eval e1 n * eval e2 n

Poly implements the following six instructions.

data Instr = LIT Int | DUP | REV | ADD | MUL | HALT

The equations in Figure 3.15 define a compiler (compile) from expressions
to instruction sequences and an abstract machine (exec) for executing such
instruction sequences with the help of a stack. These definitions were origi-
nally developed by Colin Runciman as an exercise in proving the following
theorem using a mechanised theorem prover.

∀e, n. exec (compile e) [n] = eval e n

The example was subsequently re-used by Coquand et al. in a tutorial for
a dependently-typed language [22].

The implementation of Poly, presented below, is highly illustrative of the
implementation of the Reduceron.

3.7.1 Bytecode

To implement the six instructions, it is first necessary to define how they
are encoded as sequences of bits. The following, simple encoding is used.
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compile :: Expr -> [Instr]
compile e = comp e ++ [HALT]

where comp X = []
comp (N n) = [LIT n]
comp (e1 :+: e2) = DUP:comp e2++[REV]++comp e1++[ADD]
comp (e1 :*: e2) = DUP:comp e2++[REV]++comp e1++[MUL]

type Stack = [Int]

exec :: [Instr] -> Stack -> Int
exec (LIT m : c) (n:s) = exec c (m:s)
exec (DUP : c) (m:s) = exec c (m:m:s)
exec (REV : c) (m:n:s) = exec c (n:m:s)
exec (ADD : c) (m:n:s) = exec c (m+n:s)
exec (MUL : c) (m:n:s) = exec c (m*n:s)
exec (HALT : c) (n:s) = n

Figure 3.15: Compiler and machine for evaluating polynomial expressions.

encode :: Instr -> Int
encode i = case i of

LIT n -> 1 + 2*n ; ADD -> 8
DUP -> 2 ; MUL -> 16
REV -> 4 ; HALT -> 32

If the least-significant bit of an instruction is high, then it is a LIT n instruc-
tion where n is defined by the remaining bits. Each remaining instruction
is represented by a one-hot bit sequence whose least-significant bit is low.

In Lava, an instruction is represented more directly as a bit-sequence.

type Opcode = [Bit]

The Lava operations defined in Figure 3.16 allow decoding of such op-codes.

3.7.2 Memory

This section presents an abstraction over memories consisting of an abstract
data type Mem with two operations mread and mwrite for reading from and
writing to memory. A Xilinx block RAM is used to implement memory. The
Lava component bram8 represents a block RAM.



96 CHAPTER 3. THE ESSENCE OF CIRCUIT DESCRIPTION

isLIT, isDUP, isREV, isADD, isMUL, isHALT :: Opcode -> Bit
isLIT i = i !! 0
isDUP i = inv (isLIT i) <&> i !! 1
isREV i = inv (isLIT i) <&> i !! 2
isADD i = inv (isLIT i) <&> i !! 3
isMUL i = inv (isLIT i) <&> i !! 4
isHALT i = inv (isLIT i) <&> i !! 5

getLIT :: Opcode -> [Bit]
getLIT i = drop 1 i ++ [low]

Figure 3.16: Routines for decoding op-codes.

data Mem = Mem { addr :: Var, inp :: Var
, we :: Var, out :: [Bit] }

newMem :: [Int] -> Recipe Mem
newMem init =
do addrSig <- newSig 8

inpSig <- newSig 8
weSig <- newSig 1
let out = bram8 init ( val addrSig

, val inpSig
, head (val weSig) )

return (Mem addrSig inpSig weSig out)

Figure 3.17: Interface to memory.

bram8 :: [Int] -> ([Bit], [Bit], Bit) -> [Bit]

As inputs, it takes a list of 256 integers specifying the initial state of the
block RAM, an 8-bit address bus, an 8-bit data-write bus, and a 1-bit write-
enable signal respectively. As output, it produces an 8-bit data-read bus.

The abstract data type Mem is defined in Figure 3.17. The newMem function
creates a value of type Mem containing signal variables that are connected to
the input and output busses of a bram8 instance.

To read the value at address a in memory m, the address a is placed on the
address bus of m.

mread :: Mem -> [Bit] -> Recipe ()
mread m a = m!addr <== a
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data RegFile = RegFile { mem :: Mem
, pc :: Var, sp :: Var
, opcode :: Var, top :: Var }

newRegFile :: [Int] -> Recipe RegFile
newRegFile init =

do m <- newMem init
pcReg <- newReg 8
spReg <- newReg 8
ocReg <- newReg 8
topReg <- newReg 8
return (RegFile m pcReg spReg ocReg topReg)

Figure 3.18: Poly’s register file.

To write a value x to address a in memory m, the address a is placed on the
address bus of m, the value x on the data-write bus of m, and the write-enable
signal of m is set.

mwrite :: (Mem, [Bit]) -> [Bit] -> Recipe ()
mwrite (m, a) x = do m!addr <== a

m!inp <== x
m!we <== [high]

3.7.3 Processor

The processor’s register-file is defined in Figure 3.18. It contains a program
counter (pc), a stack pointer (sp), an op-code register (opcode), and a top-
of-stack register (top). It also contains an interface to memory (mem).

The processor is defined in Figure 3.19. It is parameterised by the initial
state of memory. It reads the program bytcode starting at address 0, and
the stack grows downwards from address 255. At the beginning of execution,
address 255 contains the value of the variable referenced by the polynomial
expression, and at the end of execution, it contains the result of evaluating
the expression. The following two operators are used for incrementing and
decrementing an eight bit list.

inc, dec :: [Bit] -> [Bit]
inc a = a /+/ (1 ‘ofWidth‘ 8)
dec a = a /+/ (255 ‘ofWidth‘ 8)
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cpu :: [Int] -> Int -> Recipe [Bit]
cpu code x =
do s <- newRegFile code

s!top <== x ‘ofWidth‘ 8 -- Initialise top of stack
s!sp <== 255 ‘ofWidth‘ 8 -- Initialise stack ptr
tick

let i = s!opcode!val -- Shorter name
doUntil (isHALT i) (do -- Iterate until HALT
mread (s!mem) (s!pc!val) -- Fetch instruction
s!pc <== s!pc!val!inc -- Increment prog counter
tick

mread (s!mem) (s!sp!val!inc) -- Read top-but-one
s!opcode <== s!mem!out -- Save instruction
tick

-- Execute instruction
par [ isLIT i |> s!top <== getLIT i

, isDUP i |>
do mwrite (s!mem, s!sp!val) (s!top!val)

s!sp <== s!sp!val!dec
, isREV i |>

do mwrite (s!mem, s!sp!val!inc) (s!top!val)
s!top <== s!mem!out

, isADD i |>
do let result = s!top!val /+/ s!mem!out

s!top <== result
s!sp <== s!sp!val!inc

, isMUL i |>
do result <- mult (s!top!val) (s!mem!out)

s!top <== result
s!sp <== s!sp!val!inc

]

tick)

return (s!top!val)

Figure 3.19: Stack processor for evaluating polynomials in Recipe.
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3.7.4 Correctness

If the processor is correctly defined, the following function should return
true for all argument values

prop_cpu :: Expr -> Int -> Bool
prop_cpu e x = eval e x == cpuSim bytecode x

where bytecode = map encode (compile e)

where cpuSim uses Lava to simulate cpu (until it asserts its finish signal),
and converts the resulting bit-vector to an integer.

3.8 Discussion

This section discusses the properties of the Recipe approach to circuit de-
scription presented in this chapter, including strengths, weaknesses, and
areas for further work.

3.8.1 Implementation cost

The approach taken here has a low implementation cost: Recipe is a mere
170-line Lava module, fully-defined in the text of this chapter. Lava is
itself a small Haskell library. Implementation is therefore cheap compared
to building an autonomous language from scratch with support for both
structural and behavioural description.

3.8.2 Testing

The fact that both Lava and Recipe are implemented in Haskell opens up the
possibility of testing low-level circuit descriptions against high-level Haskell
specifications. For example, Sections 3.5.3 and 3.7.4 stated properties relat-
ing circuit-level multiplier and processor descriptions to high-level Haskell
functions. The next two chapters of this thesis are concerned with how such
properties can, in general, be tested automatically. The two abovementioned
properties will be considered again as examples in Section 5.6.5.
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3.8.3 Efficiency

One Recipe construct of questionable efficiency is par. For example, the
cpu description in Figure 3.19 uses par to perform a parallel multi-way case
analysis. Even though only one case can be taken – because the conditions
are non-overlapping – several set-reset latches are constructed, combining
the finish signals to implement the join semantics. An alternative approach
would be to provide a new construct like par but which combines finish
signals with an OR-gate. The problem is that such a construct has con-
fusing behaviour if cases do overlap – multiple finish pulses are potentially
generated.

One possible way to improve efficiency in general would be to make the
Recipe combinators build up an abstract syntax tree. Optimisations could
then be applied to the abstract syntax before compilation to a circuit.

3.8.4 Static versus dynamic typing

Representing bit-sequences as inductively-defined lists is convenient, but the
number of bits in the sequence does not form part of its type. This means
that some circuit descriptions can be written that do not have a sensible
meaning. For example, the assignment operator <== assigns a list of bits to
a register, but the constraint that the width of register must be equal to the
length of the list is not specified.

One possible solution is to use number-parameterised types [52] to repre-
sent bit-sequences as sized-vectors. However, for circuit-generators, a more
lightweight solution is to use dynamic typing. Since the circuit-generator
runs at “compile-time”, before the circuit is actually implemented, a dy-
namic type-error is in many cases just as useful as a static one. Indeed,
Recipe is easily extended to produce size mismatch exceptions for invalid
assignments. Unfortunately, these messages only indicate the presence of
an error and not its whereabouts. This is an instance of a more general
problem faced by Haskell programmers (locating the origin of exceptions),
and a solution would be of great value to Recipe. One promising-looking
solution that has recently been proposed is contract checking [40].
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3.8.5 Flattening

Lava descriptions can be flattened to netlists of primitive components and
used, for example, to configure an FPGA. Unfortunately, after flattening, the
call-graph structure of the original description and all the identifiers used in
it are lost – they are simply evaluated away by the Haskell implementation.
This is problematic for two reasons. Firstly, netlists become large as every
call to a particular function in the description is expanded to a separate list
of gates. Secondly, and more worryingly, synthesis reports typically refer to
names in the netlist, and there is no way to trace these back to names in the
original description. For example, the Xilinx synthesis tool gives the critical
path as a sequence of netlist labels.

These problems appear to be an inevitable consequence of using meta-
programming for circuit description. Yet it is meta-programming that gives
the approach its power in the first place. If call-traces were available during
circuit generation, the name problem could possibly be solved. It is not
clear how to preserve the structure of the description without resorting to
the use of an explicit – and less convenient – component abstraction instead
of plain Haskell functions.

3.8.6 Advanced synthesis

Standard HDLs like VHDL provide a wealth of pre-defined components. In
contrast, Lava does not even provide a subtractor in its arithmetic module!
VHDL synthesis tools are also quite advanced. For example, the efficient
composition of block RAMs to form a larger memory can be inferred simply
from the width and capacity of a VHDL array. Similarly, VHDL tools
look to extract efficient state machines, multiplexors, decoders, and shift
registers from behavioural descriptions. In Lava as it stands, all of these
structures have to be captured explicitly. A Lava module providing a range
of commonly-used circuits would be a great help here.

The downside of advanced synthesis of VHDL descriptions is that it is a
black-box. It is difficult for the programmer to know the hardware generated
for a given description. On this matter, Wakerly writes:

For the foreseeable future, digital designers who use synthesis



102 CHAPTER 3. THE ESSENCE OF CIRCUIT DESCRIPTION

tools will need to pay reasonably close attention to their coding
style in order to obtain good results. And for the moment, the
definition of “good coding style” depends somewhat on both the
synthesis tool and the target technology. [96]

In contrast, Lava and Recipe descriptions have clearly-defined and easy-to-
understand mappings to hardware.

3.9 Related work

3.9.1 Claessen and Pace

In [21], Claessen and Pace introduce two Lava libraries for behavioural de-
scription: one for matching boolean signals using regular expressions and
another capturing a small subset of Esterel [12]. Claessen and Pace advo-
cate Lava as a framework for defining behavioural languages. They show
how to implement a behavioural language by introducing a Haskell data type
capturing the abstract syntax of the language and an evaluation function
assigning a circuit-level meaning to the syntax. In particular, they empha-
sise the possibility of introducing multiple behavioural languages, and the
ability to connect them together so that different languages can be used for
different parts of the description.

This chapter supplements Claessen and Pace’s work in two main ways.
Firstly, from a technical point of view, the language presented here sup-
ports mutable variables. Of the all features provided, this is perhaps the
trickiest to support. Secondly, from a broader perspective, the approach
has been applied to a number of examples, in particular the Reduceron.
Although for reasons of space the full Reduceron description has not been
presented here, the stack processor Poly and its associated compiler and
abstract machine are highly illustrative of it.

3.9.2 Handel-C

Handel-C is a hardware compiler developed by Celoxica [16], and is also in-
spired by Page and Luk’s compilation scheme from Occam to FPGAs [77]. It
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macro proc mult(a, b, acc) {
unsigned (width(a)) regA;
unsigned (width(b)) regB;

par {
regA = a;
regB = b;
acc = 0;

}

while (regB != 0) {
par {

regA = regA << 1;
regB = regB >> 1;
if (regB[0]) acc = acc + regA;

}
}

}

Figure 3.20: Sequential multiplier in Handel-C.

shares several features with Recipe but it is implemented as an autonomous
behavioural language rather than a library for a structural language. Figure
3.20 shows the sequential multiplier example written in Handel-C. Handel-
C’s assignment operator = is like <=| in Recipe, as it consumes a clock-cycle.
As a result, par blocks must be used to make assignments happen in paral-
lel. Another minor difference is that Handel-C variable names can be used
directly in an expression context, such as in the while condition and right-
hand-side of =, whereas in Recipe, the val function must be used to obtain
the value of a variable.

Handel-C provides many features that Recipe does not. Channels, for ex-
ample, support synchronous communication between parallel blocks, and
prialt allows blocking on multiple channels. Arrays are also supported,
and can be implemented using flip-flops, lookup-tables or block RAMs. Each
function in the program is mapped onto a single piece of hardware, and mul-
tiple function calls represent shared access to the hardware. Other features
include a switch statement, pointers, and interfacing to foreign components
and off-chip memories.
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Handel-C provides a higher-order untyped functional language, in the form
of macro expressions, for structural description. However there are two lim-
itations. First, the macro language is call-by-name (not call-by-need) so
named intermediate subexpressions are not shared – not even those bound
by a let expression. Handel-C does allow a shared expression to be declared,
but this serves a different purpose: to share a parameterised expression, not
the result of evaluating an expression. The second limitation is that expres-
sions in Handel-C always execute within a clock-cycle, so only combinatorial
logic can be expressed. The end result of these two limitations is that only
tree-shaped (not graph-shaped) circuits can be expressed using macro ex-
pressions.

3.9.3 SPARK

A different approach to behavioural description is taken by SPARK [34].
SPARK is a high-level synthesis [65, 30] system capable of compiling a subset
of ANSI C to hardware. The restrictions forbid the use of pointers, recursion
and goto statements, and force all function calls to be inlined.

Being a high-level synthesis system means that the SPARK programmer
does not specify the consumption of clock-cycles by statements, like in
Recipe and Handel-C. Instead, a timing model for the program is determined
automatically. Each ANSI-C operator is considered to be a resource, and the
programmer specifies how many of each resource are available. SPARK then
determines which operations should execute in which clock-cycle, attempt-
ing to perform as much work as possible in each clock-cycle without break-
ing the resource constraints. This process is known as resource-constrained
scheduling. The performance of SPARK relies heavily on being able to de-
termine a large number of operations in the program that can be executed
concurrently in hardware. For this, a variety of parallelising code motion
transformations are proposed.

SPARK is a prototype tool. Commercially-sold high-level synthesis systems
are scarcely available, if at all. This situation is perhaps understandable. In
general, an efficient hardware algorithm is often very different to an efficient
software algorithm, and it is perhaps unreasonable to expect a computer
to be able to derive the one from the other [33]. However, it would be
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interesting to see if high-level synthesis techniques could be successfully ap-
plied to the Reduceron to allow an efficient machine to be produced from a
higher-level description.

3.10 Summary

This chapter has explored an alternative approach to hardware description
in which a behavioural language is expressed simply as a library in a pure
structural language. In this case, the structural language is itself a library for
the functional language Haskell. This library-based approach is in contrast
to the conventional approach of implementing an autonomous language with
built-in support for both styles of description. The main advantage of the
library-based approach is that it is extremely simple to implement.

Despite the disadvantages discussed in Sections 3.8 and 3.9, the Recipe
library is already useful. Three example applications were captured by short,
clear descriptions. In particular, implementing the stack processor Poly
reflected the approach taken to implement the Reduceron, a substantial
application. The source code for the Reduceron is available online3.

3http://www.cs.york.ac.uk/fp/reduceron/reduceron-thesis.tar.gz



Chapter 4

Target-Directed Evaluation

The previous chapter was concerned with circuit descriptions written in a
functional language. This chapter is concerned with trying to find errors in
such descriptions and indeed errors in functional programs in general.

4.1 Introduction

A desirable outcome of software testing is that every reachable expression
in a program contributes to at least one correct execution of that pro-
gram. With this goal, Gill and Runciman propose the combination of
QuickCheck [20] and Haskell Program Coverage (HPC) [31] to test Haskell
programs. QuickCheck applies program properties to randomly chosen in-
puts, and HPC marks-up the source code, highlighting any unevaluated
expressions in a suitably prominent colour. Repeated runs of QuickCheck
and HPC typically decrease the number of coloured expressions until only a
handful of stubborn ones remain. This chapter presents Reach, a program
analyser that aims to determine how to cause evaluation of these hard-to-
reach expressions. More precisely, Reach solves the following problem.

GIVEN a program with a top-level function marked as a source
and an expression marked as a target,

FIND applications of the source function that entail evaluation
of the target.

106
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The Reach analyser is conservative: a target-reaching application may exist
even if no solution is returned. The degree of effort with which the analyser
attempts to find a solution is controlled by a bound on the domain of the
source function, or a bound on the depth of function calls. The analyser
operates on programs written in a first-order subset of Haskell. Extending
it to work on higher-order programs is discussed in Section 4.10.1.

4.1.1 A motivating example

Suppose that the deletion operation of a binary search tree data structure
is to be implemented and tested. A binary search tree is either empty or is
a node containing an element and two subtrees.

data Tree a = Empty | Node a (Tree a) (Tree a)

It has the invariant that for every node Node a l r, the elements in l are
no greater than a, and the elements in r are no less than a. This invariant
(ord) is defined in Figure 4.1, along with the deletion function (del). The
deletion function operates as follows.

• If the given tree is empty then del returns an empty tree.

• If the element to be deleted is less than or greater than the value at
the root of the tree, then it is recursively deleted from the tree’s left
or right subtree respectively.

• If the element to be deleted is equal to the value at the root, then the
left subtree is returned, with its rightmost leaf replaced with the right
subtree. This replacement operation is defined by the ext function.

If the implementation of del is correct, it should preserve the ord invariant.
That is, for all trees t and values a, if t is ordered then so is the tree that
results from deleting a from t. This property is captured by the function
prop_ordDel defined in Figure 4.1, where the arguments of prop_ordDel
represent universally quantified variables. The ==> operator denotes impli-
cation.
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Figure 4.1: Partial output of HPC on the motivating example.

4.1.2 Testing with QuickCheck and HPC

A popular method of testing program properties is to use the QuickCheck [20]
library, which applies properties to randomly generated inputs. Compiling
and running the program in Figure 4.1 often yields:

OK, passed 100 tests.

All one hundred of these test cases contain an ordered tree – QuickCheck
does not count randomly-generated inputs that falsify the property’s an-
tecedent as passed tests.

If a program is compiled and run with Haskell Program Coverage (HPC) [31]
enabled then it produces a .hpc file which can be used to generate a marked-
up version of the program’s source code in which unevaluated expressions
are highlighted in yellow. It is common to find the second equation of the
ext function unevaluated, as highlighted on line 29 in Figure 4.1, even after
a dozen batches of a hundred random tests. HPC also highlights boolean
expressions that always evaluate to true in green. The highlighted expression
on line 26 always evaluates to true because for integer values a and b, if a
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is not less than b and a is not greater than b, then a must equal b.

4.1.3 Program coverage with Reach

A suitable place, then, to insert a target is in the second equation of ext.

ext Empty t = t
ext (Node a t0 t1) t = target (Node a t0 (ext t1 t))

The target expression is marked using the primitive unary function target

recognised by Reach. Applying Reach to the modified program, with the
source function set as prop_ordDel, yields several target-reaching applica-
tions. Interestingly, the 90th such application evaluates to False.

prop_ordDel (1, Node 1 (Node 1 Empty (Node 0 Empty Empty))
(Node 1 Empty Empty))

The property does not hold because the programmer forgot to make ord

recursively call itself on each subtree! It is not surprising that one of the
applications returned by Reach refutes the property, because to do so, one
must at least delete an element from a tree containing that element, and
this requires that ext is called.

4.1.4 Direct refutation with Reach

Since a target can be placed anywhere, it is possible to set Reach the goal
of refuting properties directly. For example, with the useful auxiliary

refute True = True
refute False = target False

refutation of prop_ordDel can be attempted as follows.

prop_ordDel (a, t) = refute (ord t ==> ord (del a t))

Passing the problem to Reach yields a series of refutations. The first is:

prop_ordDel (0, (Node 0 Empty (Node 1 Empty
(Node 0 Empty Empty))))



110 CHAPTER 4. TARGET-DIRECTED EVALUATION

4.1.5 Chapter outline

Section 4.2 defines the syntax of the core language that Reach operates on,
and a basic lazy evaluator for the language. Sections 4.3, 4.4 and 4.5 make
a series of incremental modifications to the basic lazy evaluator resulting
in three variants of the Reach analyser: Basic, Forward and Backward.
Section 4.6 discusses implementation details and Section 4.7 applies each
Reach variant to a range of example programs, and compares the results.
Section 4.8 lists the conclusions of the comparison. Section 4.9 discusses
related work and Section 4.10 states a number of limitations of Reach and
suggests how these limitations might be overcome.

4.2 Syntax and semantics

The Reach analyser operates on a core, first-order functional language. Ex-
tension of Reach to a higher-order language is discussed in Section 4.10.1.
Programs written in a first-order subset of Haskell can be transformed to
programs in the core language using the York Haskell Compiler [90]. This
section defines a syntax and a basic lazy evaluator (call-by-need semantics)
for the core language.

4.2.1 Syntax

The syntax is defined in Figure 4.2. The meta-variable v ranges over variable
names, f over function names, c over data constructor names, d over function
definitions and p over programs. Lists of meta-variables are denoted with
an overhead arrow, for example ~e denotes a list of expressions.

Patterns in case alternatives are of the form c v1 · · · vn where n is the arity
of the constructor c. Case expressions are exhaustive, that is, an alternative
is present for every constructor that the case subject can evaluate to.

To help reduce clutter in the definitions presented in this chapter, the core
syntax omits let expressions. Acyclic let bindings in Haskell are desugared
to function applications in the core language by the rewrite rule

let [v1 = e1, · · · , vn = en] in e −→ f ~w e1 · · · en
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p ::= ~d (program)

d ::= f ~v = e (function definition)

e ::= v (variable)

| f ~e (function application)

| c ~e (data construction)

| case e of ~a (case expression)

| • (target)

a ::= c ~v 7→ e (case alternative)

Figure 4.2: Syntax of the core functional language.

where f ~w v1 · · · vn = e and ~w is the list of free variables in e. Cyclic let
bindings are not supported, but are not believed to cause any difficulty.

4.2.2 Semantics

A lazy evaluator for the core language is defined as a big-step binary relation,
→, between initial and final configurations. A configuration is a pair of
the form 〈s, e〉 containing a state s and an expression e. The value of a
variable v in state s is denoted s(v), assuming that v is bound, that is,
v ∈ domain(s). The state s[v := e] is just like s, except with v bound to
e. Similarly, s[~v := ~e ] is just like s, except with each variable in ~v bound to
the expression at the corresponding position in ~e.

The semantics is similar to Launchbury’s A natural semantics for lazy eval-
uation [57] but for a first-order language with explicit data constructors and
case expressions.

The → relation evaluates a given expression to head normal form, that is, a
data constructor applied to unevaluated arguments. The following reduction
rule expresses that data constructions are already in head normal form.

〈s, c ~e 〉 → 〈s, c ~e 〉 (Con)

To evaluate a variable, the expression bound to that variable, s(v), is evalu-
ated. Crucial to lazy evaluation is that once s(v) is evaluated, v is rebound
to the result so that the computation is never repeated.
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〈s, s(v)〉 → 〈s′, e〉
〈s, v〉 → 〈s′[v := e], e〉

if v ∈ domain(s) (Var0)

To evaluate an application, a function fresh(s, f) is used to obtain a new
function definition, just like f ’s except that all variables in it are replaced
with fresh, unbound variables with respect to the state s.

〈s[~v := ~e ], e〉 → 〈s′, e′〉
〈s, f ~e 〉 → 〈s′, e′〉

if (f ~v = e) = fresh(s, f) (App)

To evaluate a case expression, the subject is evaluated, and passed to the
matching relation, →M , which takes a triple of the form 〈s, e,~a〉 where e is
the evaluated case subject and ~a is the list of case alternatives.

〈s, e〉 → 〈s′, e′〉, 〈s′, e′,~a〉 →M 〈s′′, e′′〉
〈s, case e of ~a〉 → 〈s′′, e′′〉

(Case)

If the case subject is a constructor, then the appropriate case alternative is
selected and evaluated.

〈s[~v := ~e ], e〉 → 〈s′, e′〉
〈s, c ~e,~a〉 →M 〈s′, e′〉

if (c ~v 7→ e) ∈ ~a (Match)

This completes the semantics of the core functional language.

4.3 Basic Reach

This section defines Basic Reach, a simple version of Reach that applies the
source function exhaustively to each individual value in a bounded domain,
and detects if the target is evaluated.

4.3.1 Extending the semantics

Basic Reach extends the semantics of Section 4.2.2 with two new rules. First,
a target expression is already in head normal form.

〈s, •〉 → 〈s, •〉 (Targ0)

Second, if a case expression contains a case subject that evaluates to the
target, then the whole case expression also evaluates to the target.
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〈s, •,~a 〉 →M 〈s, •〉 (Targ1)

4.3.2 Full normal form

The→ relation reduces an expression to head normal form, that is, a target
or a constructor with unevaluated arguments. Now it is necessary to recur-
sively apply → to unevaluated constructor arguments, as these expressions
could also lead to evaluation of the target. A new big-step relation, →→,
is defined between configuration pairs of the form 〈s, e〉 and answers. An
answer is either Yes s′, indicating that evaluation of e from state s reaches
the target and results in state s′, or No s′ if it does not. The first rule
defining →→ is as follows.

〈s, •〉 →→ Yes s (Full0)

A data construction reaches the target if any of its arguments does.

〈s,~e 〉 →→? ans

〈s, c ~e 〉 →→ ans
(Full1)

The meta-variable ans represents answers. The auxiliary relation →→? de-
termines whether any of a list of expressions reaches the target. It is defined
as follows, assuming that [] denotes the empty list, and x : ~x denotes the list
with an initial element x and a tail ~x.

〈s, []〉 →→? No s (Any0)

〈s, e : ~e 〉 →→? Yes s′ if 〈s, e〉 →→ Yes s′ (Any1)

〈s′, ~e 〉 →→? ans

〈s, e : ~e 〉 →→? ans
if 〈s, e〉 →→ No s′ (Any2)

Any other expression reaches the target if its head normal form does.

〈s, e〉 → 〈s′, e′〉, 〈s′, e′〉 →→ ans

〈s, e〉 →→ ans
if ¬normal(e) (Full2)

The predicate normal(e) holds if e is in head normal form.
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4.3.3 Enumerating the domain

The source function is applied to all inputs in a bounded domain to deter-
mine if the target is reachable. The domain is bounded by limiting the depth
of data constructions that occur in it, where depth is defined as

depth(c ~e) =

{
0 if ~e = []
1 +maximum([depth(e) | e ∈ ~e]) otherwise

The domain, say of type t, is enumerated with the help of a function
disjuncts(t) that returns the constructors of t, each paired with a list con-
taining the types of the constructor’s arguments. To enumerate the domain,
the type t must of course be monomorphic. To illustrate, if Natural is
defined as

data Natural = Z | S Natural

then disjuncts(Natural) returns [〈Z, []〉, 〈S, [Natural]〉]. Now a relation
enumd is defined such that t enumd e maps the type t to each value e

of type t up to depth d.

t enumd c [] if d = 0 ∧ 〈c, []〉 ∈ disjuncts(t) (Val0)

~t enum?
d−1 ~e

t enumd c ~e
if d > 0 ∧ 〈c,~t 〉 ∈ disjuncts(t) (Val1)

Notice that enumd is non-deterministic, mapping a single type to possi-
bly many values, because a type may have many disjuncts. The auxiliary
relation enum?

d maps lists of types to lists of values.

[] enum?
d [] (Val2)

t enumd e, ~t enum?
d ~e

(t : ~t ) enum?
d (e : ~e)

(Val3)

4.3.4 Bounding recursion

In many cases, bounding the construction depth of values in the domain of
the source function is enough to make Basic Reach terminate. But this is
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not always the case: a program may loop without demanding any external
input at all. For this reason, Basic Reach also allows the depth of function
calls to be bounded.

To bound the depth of function calls, every function symbol f is tagged with
a natural number b. When a function symbol fb is applied, every function
symbol in the body of f is tagged with b− 1, unless b = 0 in which case the
application fails. More formally, the App rule is redefined as

〈s[~v := ~e ], e〉 → 〈s′, e′〉
〈s, fb ~e 〉 → 〈s′, e′〉

if (f ~v = e) = freshb(s, f) (App)

where freshn(s, f) is like fresh(s, f) except that every function symbol
in the body of f is tagged with n − 1, unless n = 0 in which case the
function body returned is ⊥. There are no reduction rules that deal with
⊥; evaluation of ⊥ fails.

4.3.5 Definition of Basic Reach

Basic Reach is defined as

types(f) enum?
d ~e, 〈[], fb ~e 〉 →→ Yes s′

f reach ~e
(Basic Reach)

where f is the source function, types(f) yields the types of the arguments
of f , d is the construction depth bound, and b is the call-depth bound.

4.4 Forward Reach

Forward Reach extends Basic Reach by allowing the source function to be
applied to unbound variables. The intuition for an unbound variable is that it
represents any possible value. If, during evaluation, the value of an unbound
variable is required for evaluation to proceed, then that variable is non-
deterministically bound to a data constructor of the right type applied to
fresh unbound variables. In other words, unbound variables are instantiated
during evaluation, only when required, and only by the amount needed
for evaluation to proceed. Compared to Basic Reach, there are two main
differences.
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1. The bounded domain of the source function need not necessarily be
enumerated in full. If the value of an unbound variable is not de-
manded, due to lazy evaluation, then the portion of the domain rep-
resented by that variable is never enumerated.

2. Some evaluation is shared between different inputs with common sub-
structures. This is not the case in Basic Reach, where the source
function is applied to each possible input in turn, and evaluated from
scratch each time.

These two differences will be illustrated by example in Section 4.4.2. The
idea to evaluate functions on unbound variables is inspired by needed nar-
rowing [2], an evaluation strategy used by some functional-logic languages,
most notably Curry [35].

4.4.1 Extensions to Basic Reach

The possibility of encountering an unbound variable during evaluation gives
rise to a new normal form.

〈s, v〉 → 〈s, v〉 if v /∈ domain(s) (Var1)

The interesting case is when a case subject evaluates to an unbound vari-
able. In this case, a case alternative is picked non-deterministically, and the
unbound variable is bound to that alternative’s pattern.

〈s[v := c ~v ], e〉 → 〈s′, e′〉
〈s, v,~a〉 →M 〈s′, e′〉

if (c ~v 7→ e) ∈ ~a (Narrow)

This rule is non-deterministic because c is not constrained to be a particular
constructor, and thus matches any case alternative.

Considering now full normal form, if an unbound variable occurs in the
result of the source function, then evaluation of that variable cannot lead to
evaluation of the target.

〈s, v〉 →→ No s if v /∈ domain(s) (Full3)
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a0 && b0 = case a0 of [False 7→ False, True 7→ b0]
and xs0 = case xs0 of [[] 7→ True, x0:xs1 7→ x0 && and xs1]
example ys = case and ys of [False 7→ False, True 7→ •]

Figure 4.3: An example program in abstract syntax.

4.4.2 An example derivation

Figure 4.3 contains an example program, in core syntax. Part of the deriva-
tion tree of the modified rules applied to example v is given below, where
v is an unbound fresh variable. The first step in the derivation is

[] 1
example v (App)

Here the elements of the initial configuration pair 〈[], example v〉 have been
written on the left of separate lines. On the right is a step number and the
name of an applicable rule. The derivation proceeds as follows.

[ys := v] 2
case and ys of [False 7→ False, True 7→ •] (Case)

Reduction of the case expression first requires reduction of the case subject.
This sub-derivation is indented.

[ys := v] 2.1
and ys (App)

[ys := v, xs0 := ys] 2.2
case xs0 of [[] 7→ True, x0:xs1 7→ x0 && and xs1] (Case)

[ys := v, xs0 := ys] 2.2.1
xs0 (Var0)

[ys := v, xs0 := ys] 2.2.2
ys (Var0)

[ys := v, xs0 := v] 2.2.3
v (Var1)

The subject of the case expression first considered in step 2.2 is now in nor-
mal form, and is passed to the matching relation →M , which recall takes a
triple containing the state, the evaluated case subject, and the case alterna-
tives.
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[ys := v, xs0 := v] 2.3
v
[[] 7→ True, x0:xs1 7→ x0 && and xs1] (Narrow)

Since the Narrow rule is non-deterministic, the derivation forks at this point.
First, the derivation branch that binds v to [] is considered.

[ys := v, xs0 := v, v := []] 2.4
True (Con)

The subject of the case expression, and ys, first considered in step 2 is now
in normal form.

[ys := v, xs0 := v, v := []] 3
True
[False 7→ False, True 7→ •] (Match)

[ys := v, xs0 := v, v := []] 4
• (Targ0)

A normal form is reached, which also happens to be the target expression, so
it can be inferred that example [] reaches the target. Returning to the fork
point in step 2.3, the derivation continues, this time binding v to x0 : xs1.

[ys := v, v := x0:xs1] 2.4
x0 && and xs1 (App)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1] 2.5
case a0 of [False 7→ False, True 7→ b0] (Case)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1] 2.5.1
a0 (Var0)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1] 2.5.2
x0 (Var1)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1] 2.6
x0

[False 7→ False, True 7→ b0] (Narrow)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1, x0 := False] 2.7
False (Con)

[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1, x0 := False] 3
False
[False 7→ False, True 7→ •] (Match)
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[ys := v, v := x0:xs1, a0 := x0, b0 := and xs1, x0 := False] 4
False (Con)

Now a normal form has been reached which is not the target. It can be
inferred that example (False:xs1) does not reach the target for any value
of xs1. The derivation continues at the fork point in step 2.6, this time
binding the first element of the input list, x0, to True, but details will not
be elaborated here.

The two main differences of Forward Reach compared to Basic Reach stated
in Section 4.4 can now be illustrated. First, all the inputs represented by
False:xs1, for any value xs1, are not enumerated by Forward Reach, be-
cause all such inputs are known not to reach the target. In contrast, Basic
Reach enumerates all input lists, regardless of whether or not they begin
with False. Second, all reductions up to the fork point in step 2.3 are
shared between the two forked sub-derivations elaborated above. In con-
trast, Basic Reach repeats these reductions when reducing, for example,
example [] and example [False].

4.4.3 Enumerating the domain

Due to the presence of unbound variables, it is no longer necessary to ex-
plicitly enumerate the domain of the source function, but it is still desirable
to bound it. This is achieved by extending the evaluation state to associate
each unbound variable with its depth.

An expression of the form s↓(v) denotes a natural number representing the
depth of a variable v in state s, and s[~v :=↓ n] denotes the state s with
the depth of each variable in ~v set to n. When instantiating an unbound
variable v of depth n to a construction c ~v, the variables in ~v are assigned
depth n− 1, provided n > 0 or ~v is empty. More precisely, the Narrow rule
is redefined as follows.

〈s[v := c ~v][~v :=↓ s↓(v)− 1], e〉 → 〈s′, e′〉
〈s, v,~a〉 →M 〈s′, e′〉

(Narrow)

if (c ~v 7→ e) ∈ ~a ∧ (s↓(v) > 0 ∨ ~v = [])
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4.4.4 Definition of Forward Reach

Forward Reach is defined as

〈[~v :=↓ d], fb ~v 〉 →→ Yes s′, ~v deref?s′ ~e
f reach ~e

(Forward Reach)

where f is the source function, ~v is a list of fresh, unbound variables, d is
the construction depth bound and b is the call-depth bound. The auxiliary
deref?s relation determines the values of a list of variables in state s,

[] deref?s [] (Deref?0)

v derefs e, ~v deref?s ~e
v : ~v deref?s e : ~e

(Deref?1)

and derefs finds the value of a single variable in state s.

s(v) derefs e
v derefs e

if v ∈ domain(s) (Deref0)

v derefs v if v /∈ domain(s) (Deref1)

~v deref?s ~e
c ~v derefs c ~e

(Deref2)

Forward Reach may produce applications of the source function which con-
tain unbound variables. Any values of appropriate type can be substituted
for such variables. If totally-instantiated inputs are desired, Deref1 can be
redefined as

type(v) enums↓(v) e

v derefs e
if v /∈ domain(s) (Deref1)

where type(v) represents the type of the variable v.

4.5 Backward Reach

Basic Reach and Forward Reach both begin at the source function and
apply reduction rules that aim to expose the target. It is also reasonable
to proceed in the opposite direction, starting at the function containing the
target and applying reduction rules that aim to expose the source. This is
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what Backward Reach does. Compared to Forward Reach, there are two
main differences.

1. Expressions close to the target are evaluated first. If a restrictive
constraint surrounds the target then evaluating it first will narrow the
search space early in the analysis.

2. Backward Reach does not continue searching for a target when there
is no reference to the target or to a target-reaching function symbol
in the expression graph under evaluation. This is not the case in
Forward Reach, which will reduce the expression to full normal form
even if there are no such references to the target.

These two differences will be illustrated in Section 4.5.6.

4.5.1 Overview

Backward Reach repeatedly applies a set of six rewrite rules to an expression
containing the target (Section 4.5.3). The initial expression is obtained by
inlining function-calls in the body of the source function until the target is
revealed (Section 4.5.7). Each rewrite rule matches the target in a particular
expression context and lifts it one step closer to the source. Notably, one
of the rewrite rules is only applicable if an equational constraint of the
form e0 = e1 can be solved where e0 is contains only constructors and
variables, and e1 is an arbitrary expression. Such constraints are solved
by a combination of unification and lazy symbolic evaluation of e1 (Section
4.5.4).

The following invariant is maintained throughout: the expression under
analysis contains exactly one target.

4.5.2 The target context

Motivated by the six rewrite rules to be presented in Section 4.5.3, a new
syntactic construct for expressions, {e}, called a target context is introduced.
A valid target context is a target context {e} where e is either a target or a
non-zero arity data construction. If it is a non-zero arity data construction
then exactly one of the arguments to the constructor must itself be a valid
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target context. For example, the following are valid target contexts provided
that e1 and e3 are not target contexts.

{•}
{c {•}}

{c e1 {•} e3}
{c0 e1 {c1 {•}} e3}

Note that any valid target context contains exactly one target.

4.5.3 The six rewrite rules

The rewrite rules are defined by a small-step transition relation,⇒, between
state-expression pairs. The purpose of the first rewrite rule is to wrap the
target in a target context.

〈s, •〉 ⇒ 〈s, {•}〉 (Init↑)

Rules are not applicable inside target contexts, so the above rule, for ex-
ample, is not infinitely applicable. At most one rewrite rule is applicable to
any expression, assuming it contains exactly one target context.

The aim of each of the five remaining rewrite rules is to lift the target
context outside the syntactic construct in which it occurs. When the target
context appears at the outermost position in an expression, the analysis is
complete. There is one rewrite rule for each possible position in which the
target context may occur.

Data constructions To lift the target context outside a data construc-
tion, the data construction is simply wrapped in a new target context.

〈s, c e1 · · · {ei} · · · en〉 ⇒ 〈s, {c e1 · · · {ei} · · · en}〉 (Con↑)

Function applications Consider an expression containing a function ap-
plication of the form

f e1 · · · {ei} · · · en
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The aim of Backward Reach here is to apply f to its arguments without
losing the target and without replicating it, to maintain the invariant that
the expression being rewritten contains exactly one target. There are three
cases to consider.

1. If f is defined by f ~v = e and vi does not occur in e then the rewrite
rule fails because the target is no longer referenced.

2. Alternatively, if vi occurs exactly once in e, then {ei} is substituted
for vi in e to give a new expression e′. The variables in ~v are bound
to the arguments in ~e in the usual way. The target is not replicated
because there are no references to vi in e′ – it does not matter what
vi is bound to.

3. Alternatively, if vi occurs more than once in e then {ei} is non-
deterministically substituted for some individual reference to vi to give
a new expression e′. Non-deterministic substitution is defined in Fig-
ure 4.4. To illustrate, if the body of f is g vi (h vi) where g and h are
function symbols then

(g vi (h vi)) [[{ei}/vi]]

reduces to
g {ei} (h vi)

and also, non-deterministically, to

g vi (h {ei})

The variables ~v are bound to the arguments ~e in the usual way. How-
ever, now the target is replicated because there are still references to
vi in e′. This situation is resolved by binding vi to bot(ei) where bot
is defined in Figure 4.5. In particular, bot takes an expression and re-
moves all target contexts and replaces the target with ⊥. To illustrate,
bot applied to the target context

{c0 e1 {c1 {•}} e3}
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reduces to
c0 e1 (c1 ⊥) e3

To summarise: if a function body contains n > 1 occurrences of an ar-
gument v which is to be bound to the target context, then the analyser
splits non-deterministically into to n sub-analysers. Each sub-analyser
substitutes the target context for a different occurrence of v. All re-
maining occurrences of v are replaced by a version of the target context
in which all target sub-contexts are removed and the target is replaced
with ⊥. A sub-analyser fails if it demands the value of ⊥, but such a
failure implies that another sub-analyser, in which this instance of ⊥
is replaced with •, proceeds.

The rewrite rule capturing these three cases is defined below.

〈s, fb e1 · · · {ei} · · · en〉
⇓ if (f ~v = e) = fresh′b(f)

〈s[~v := ~e ][vi := bot(ei)], e[[{ei}/vi]]〉
(App↑)

The function fresh′b(s, f) is like freshb(s, f) except that the body of the
returned function definition has any targets replaced with ⊥. This main-
tains the invariant that exactly one target is present in the expression under
analysis.

Case expressions If a target context containing the target appears in the
subject of a case expression, then it can be lifted out directly.

〈s, case {•} of ~a〉 ⇒ 〈s, {•}〉 (Case↑0)

If a target context containing a data constructor applied to a list of argu-
ments appears in the subject of a case expression, then the argument holding
the sub-context is non-deterministically substituted into the matching case
alternative, much in the same way as the App↑ rule.

〈s, case {c e1 · · · {ei} · · · en} of ~a〉
⇓ if (c ~v 7→ e) ∈ ~a

〈s[~v := ~e ][vi := bot(ei)], e[[{ei}/vi]]〉
(Case↑1)
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v [[e/v]] = e

f ~e [[e/v]] = f (~e [[e/v]]?)
c ~e [[e/v]] = c (~e [[e/v]]?)

case e0 of ~a [[e/v]] = case e0 [[e/v]] of ~a
case e0 of ~a [[e/v]] = case e0 of ~a [[e/v]]A

e0 : ~e [[e/v]]? = e0 [[e/v]] : ~e
e0 : ~e [[e/v]]? = e0 : (~e [[e/v]]?)

c ~v 7→ e0 : ~a [[e/v]]A = c ~v 7→ e0 [[e/v]] : ~a
c ~v 7→ e0 : ~a [[e/v]]A = c ~v 7→ e0 : (~a [[e/v]]A)

Figure 4.4: Non-deterministic substitution.

bot(e) =


⊥ if e = •
bot(e0) if e = {e0}
c [ bot(v) | v ∈ ~v ] if e = c ~v
e otherwise

Figure 4.5: Definition of bot.
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If the target context occurs as the right-hand-side in a case alternative a,
then the target can be lifted outside the case expression provided that the
case subject can be unified with the pattern of a.

〈s, case e of ~a〉
⇓ if (c ~v 7→ {et}) ∈ ~a ∧ 〈s, c ~v, e〉 unify s′

〈s′, {et}〉
(Case↑2)

Unification is defined in the next section.

4.5.4 Unification

The aim of the unify relation is to bind values to variables in order to make
two expressions equal. It relates a triple of the form 〈s, e0, e1〉 to s′, where
e0 and e1 are the expressions to unify, s is the initial mapping of variables
to values and s′ is a mapping in which e0 and e1 are equal. Whereas e1 is an
arbitrary expression representing a case subject, two assumptions are made
about e0.

1. It is assumed that e0 is a partial construction. A partial construction
is either an unbound variable, or a data constructor applied to several
expressions each of which is itself a partial construction, or a variable
which is bound to a partial construction.

2. It is assumed that no unbound variables in the partial construction
e0 occur in e1, eliminating the need for an occurs check [81] to avoid
construction of cyclic terms.

These two assumptions always hold when applying the Case↑2 rule, and are
discharged in Section 4.5.5.

To unify two expressions, it is first convenient to find their roots. The root of
an expression e in state s, denoted roots(e), is e if e is not a bound variable
and roots(s(e)) if it is.

roots(v) =

{
roots(s(v)) if v ∈ domain(s)
v otherwise

roots(e) = e if ¬var(e)
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The unify relation is defined in terms of the helper relation uni, which may
assume that the roots of the expressions to unify are given.

〈s, roots(e0), roots(e1)〉 uni s′

〈s, e0, e1〉 unify s′
(Unify)

The unify? relation is used to unify lists of expressions.

〈s, [], []〉 unify? s (Unify?
0)

〈s, e0, e1〉 unify s′, 〈s′, ~e0, ~e1〉 unify? s′′

〈s, e0 : ~e0, e1 : ~e1〉 unify? s′′
(Unify?

1)

An unbound variable can be unified with an arbitrary expression by a
straightforward binding.

〈s, v, e〉 uni s[v := e] (Uni0)

〈s, c ~e, v〉 uni s[v := c ~e ] (Uni1)

Two data constructions with the same constructor can be unified if each of
their arguments can.

〈s,~e0, ~e1〉 unify? s′

〈s, c ~e0, c ~e1〉 uni s′
(Uni2)

The only remaining case to consider is when the first expression to unify is
a data construction and the second is an arbitrary expression. In this case,
the second expression is evaluated to head normal form, and unification is
attempted again.

〈s, e1〉 → 〈s′, e′1〉, 〈s′, e0, e′1〉 uni s′′

〈s, e0, e1〉 uni s′′
if ¬var(e0) ∧ ¬normal(e1) (Uni3)

Evaluation is performed by the Forward Reach’s → relation.

4.5.5 Unification assumptions

This section discharges the two assumptions made in the previous section
about the inputs to the unify relation. Recall that the Case↑2 rule can only
be applied to an expression of the form

case e of [ · · · , c ~v 7→ {et}, · · · ]
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a0 && b0 = case a0 of [False 7→ False, True 7→ b0]
c0 || d0 = case c0 of [False 7→ d0, True 7→ True]
and ws0 = case ws0 of [[] 7→ True, w0:ws1 7→ w0 && and ws1]
or xs0 = case xs0 of [[] 7→ False, x0:xs1 7→ x0 || or xs1]
example2 ys = case or ys of

[False 7→ e0, True 7→ case and ys of [False 7→ e1, True 7→ •]]

Figure 4.6: Another example program in abstract syntax.

if 〈s, c ~v, e〉 unify s′ succeeds.

It was assumed that c ~v is a partial construction. By definition, c ~v is a
partial construction if all the variables in ~v are also partial constructions.
Before Backward Reach begins, the variables in ~v are unbound. The only
way for Backward Reach to bind variables in ~v to values before application
of Case↑2 is by application of the Uni3 rule, and consequently, the Narrow
rule. The Narrow rule always binds variables to constructors which are
themselves applied to fresh unbound variables. Therefore the variables in ~v
must be partial constructions.

It was also assumed that the variables in ~v do not occur in the case subject
e. Indeed, this is the case because the variables in ~v are not in scope in the
case subject e.

4.5.6 An example derivation

Figure 4.6 contains an example program, in abstract syntax. Part of the
derivation of Backward Reach applied to example2 ys zs is given below,
where ys and zs are unbound variables. The initial state-expression config-
uration pair is

[] 1
case or ys of [False 7→ e0, True 7→
case and ys of [False 7→ e1, True 7→ •]] (Init↑)

As before, the elements of configuration tuples are written on the left of
separate lines. On the right is a step number and the name of an applicable
rule. The derivation proceeds as follows.
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[] 2
case or ys of [False 7→ e0, True 7→
case and ys of [False 7→ e1, True 7→ {•}]] (Case↑2)

To apply Case↑2, True must be unified with and ys. The sub-derivation
representing this unification is indented. Recall that the unify relation
takes a configuration triple.

[] 2.1
True
and ys (Unify, Uni3)

To apply Uni3, and ys must be symbolically evaluated to head normal form.
Some of this derivation is elided as the evaluation rules have already been
illustrated in Section 4.4.2.

[] 2.1.1
and ys (App, · · ·)

[ys := []] 2.1.2
True (Con)

Symbolically evaluating and ys for an unbound ys leads to a number of
results; the first is True with ys bound to []. Unification proceeds:

[ys := []] 2.2
True
True (Uni2)

[ys := []] 3
case or ys of [False 7→ e0, True 7→ {•}] (Case↑2)

[ys := []] 3.1
True
or ys (Unify, Uni3)

[ys := []] 3.1.1
or ys (App, · · ·)

[ys := []] 3.1.2
False (Con)

[ys := []] 3.2
True
False −
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Here, there is no applicable rule in the unify relation since True and False

are not equal. The analyser backtracks to the evaluation of and ys in step
2.1.1, this time resulting in False and binding ys to False:ys1 where ys1

is unbound.

[ys := False:ys1] 2.1.2
False (Con)

[ys := False:ys1] 2.2
True
False −

Again unification fails and the analyser backtracks to step 2.1.1.

[ys := True:[]] 2.1.2
True (Con)

[ys := True:[]] 2.2
True
True (Uni2)

[ys := True:[]] 3
case or ys of [False 7→ e0, True 7→ {•}] (Case↑2)

[ys := True:[]] 3.1
True
or ys (Unify, Uni3)

[ys := True:[]] 3.1.1
or ys (App, · · ·)

[ys := True:[]] 3.1.2
True (Con)

[ys := True:[]] 3.2
True
True (Uni2)

[ys := True:[]] 3.3
{•}

The analyser succeeds when the target context reaches the outermost posi-
tion in the expression being rewritten. Backward Reach infers that example2
applied to [True] causes evaluation of the target, and backtracks to step
2.1.1 to find further solutions.
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The two main differences between Forward and Backward Reach stated in
Section 4.5 can now be illustrated. First, the orders in which constraints are
solved by the two are not necessarily the same: Backward Reach solves
and ys before or ys whereas Forward Reach would solve or ys before
and ys; the latter is of course worse because it will result in many solu-
tions to or ys that do not satisfy and ys. The second difference is that
some unnecessary evaluation is avoided by Backward Reach. In particular,
it never evaluates e0 or e1 (see Figure 4.6). Forward Reach evaluates e0 for
all ys that falsify or ys, and likewise e1 for all ys that satisfy or ys but
falsify and ys; yet evaluation of e0 and e1 is unnecessary to reach the target.

4.5.7 Initial inlining

The six rewrite rules of Backward Reach operate on expressions, not pro-
grams. To apply the rewrite rules to a program, the program is converted to
an initial expression containing exactly one target. This is achieved by inlin-
ing the source function until the target is exposed, as defined by the inline

relation in Figure 4.7. In the definition of inline, the expression holdsT (f)
holds if the body of f contains the target and onT (f) holds if the func-
tion f is on a call-path to a target-containing function. Since many paths
to the target may exist, there are many possible initial expressions. This
is captured by non-determinism in the inline relation. The inline relation
terminates for all finite expressions due to the call-depth bound.

Any expression produced by the inline relation contains exactly one target,
assuming that the original program contains exactly one target. The only
rules that can reveal a target are those which apply a function, namely
Inline0 and Inline1, and as the former produces a normal form and the latter
removes any targets, only an expression containing at most one target can
be produced. Furthermore, since the former rule produces the only normal
form, only an expression containing at least one target can be produced.

4.5.8 Definition of Backward Reach

Backward Reach is defined as
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〈s, fb ~e 〉 inline 〈s[~v := ~e ], e〉 if (f ~v = e) = freshb(f) ∧ holdsT (f) (Inline0)

〈s[~v := ~e ], e〉 inline 〈s′, e′〉
〈s, fb ~e 〉 inline 〈s′, e′〉

if (f ~v = e) = fresh′b(f) ∧ onT (f) (Inline1)

〈s,~e 〉 inline? 〈s′, ~e ′〉
〈s, f ~e 〉 inline 〈s′, f ~e ′〉

(Inline2)

〈s,~e 〉 inline? 〈s′, ~e ′〉
〈s, c ~e 〉 inline 〈s′, c ~e ′〉

(Inline3)

〈s, e〉 inline 〈s′, e′〉
〈s, case e of ~a 〉 inline 〈s′, case e′ of ~a〉

(Inline4)

〈s,~a 〉 inlineA 〈s′,~a ′〉
〈s, case e of ~a 〉 inline 〈s′, case e of ~a ′〉

(Inline5)

〈s,~e 〉 inline? 〈s′, ~e ′〉
〈s, e : ~e 〉 inline? 〈s′, e : ~e ′〉

(Inline?
0)

〈s, e〉 inline 〈s′, e′〉
〈s, e : ~e 〉 inline? 〈s′, e′ : ~e 〉

(Inline?
1)

〈s,~a 〉 inlineA 〈s′,~a ′〉
〈s, a : ~a 〉 inlineA 〈s′, a : ~a ′〉

(InlineA
0 )

〈s, e〉 inline 〈s′, e′〉
〈s, c ~v 7→ e : ~a 〉 inlineA 〈s′, c ~v 7→ e′ : ~a 〉

(InlineA
1 )

Figure 4.7: Inlining to reveal a target.
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fb ~v inline e, 〈s, e〉 ⇒? 〈s′, {e′}〉, ~v deref?s′ ~e
f reach ~e

(Backward Reach)

where f is the source function, ~v is a list of fresh, unbound variables, and b
is the call-depth bound. Backward Reach does not support a construction
depth bound. The ⇒? relation holds between two state-expression pairs if
the first can be rewritten using one or more ⇒ rewrites to the second.

4.6 Implementation

The definitions presented in previous sections are essentially logic programs.
They have been implemented directly in Haskell, using lazy lists to express
non-determinism [93]. The implementations take as input core programs
produced by the York Haskell Compiler [32]. Features of Haskell rejected by
the implementations include higher-order functions and primitive data types
– only algebraic data types are supported. A library for natural numbers
is available and can be imported by any program. This library encodes
natural numbers in unary using an algebraic data type, and provides several
common operations over such numbers.

4.7 Comparison

Tables 4.1 and 4.2 present performance figures for each Reach variant applied
to a range of benchmark properties. In particular, Table 4.1 compares Basic
Reach and Forward Reach using a construction-depth bound, and Table
4.2 compares Forward Reach and Backward Reach using a call-depth bound
(recall that Backward Reach does not support a construction-depth bound).
Each Reach variant returns exactly the same set of solutions when applied
to each problem.

Some of the benchmark problems referred to in Table 4.1 are direct property-
refutation problems. Forward Reach and Backward Reach perform identi-
cally on such problems, so the results are not repeated in Table 4.2.

Graphical comparisons are shown in Figures 4.8 and 4.9 respectively. Each
graph compares the times taken by two Reach variants to solve each problem
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Problem Construction depth
3 4 5 6 7 8

Tree1 Bs 0.02 ?0.18 ?819.1 ×
Fo 0.02 ?0.07 ?15.6 ×

Tree2 Bs ?0.03 ?0.21 ?466.7 ×
Fo ?0.02 ?0.11 ?10.3 ×

RedBlack1 Bs 0.09 10.90 ×
Fo 0.07 0.71 114.4 +215.1

RedBlack2 Bs 0.09 ?9.88 ×
Fo 0.06 ?0.70 ?112.4 ×

Mux1 Bs 0.03 0.09 1.9 718.0 ×
Fo 0.03 0.04 0.1 0.1 0.2 0.5

Mux2 Bs 0.03 0.08 1.6 490.8 ×
Fo 0.03 0.04 0.1 0.1 0.2 0.5

Huffman1 Bs 0.04 0.11 0.7 6.0 66.9 1137.5
Fo 0.05 0.13 0.8 6.8 73.1 1077.6

Huffman2 Bs 0.04 0.10 4.97 ×
Fo 0.04 0.07 0.52 11.9 1538.9 ×

Turner1 Bs 0.04 0.98 ×
Fo 0.03 0.06 1.43 ×

Turner2 Bs 0.05 8.31 ×
Fo 0.03 0.05 ?4.78 ×

Key: Bs Basic Reach ? Solution(s) found
Fo Forward Reach + Time to find 1st solution

× Longer than 40 minutes

Table 4.1: Time taken (seconds) to find all solutions to a range of benchmark
problems using Basic and Forward Reach.
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Figure 4.8: Graphical comparison of Basic and Forward Reach.

Problem Function call-depth
7 8 9 10 11 12

Tree2 Fo ?0.08 ?16.29 ×
Bk ?0.05 ?4.53 ×

RedBlack2 Fo 0.03 0.09 ?23.18 ×
Bk 0.04 0.07 ?20.33 ×

Mux2 Fo 0.03 0.04 0.06 0.10 0.20 0.4
Bk 0.07 0.24 1.24 4.90 57.93 290.9

Turner2 Fo 0.03 0.03 0.03 0.07 0.49 ?34.98
Bk 0.03 0.03 0.03 0.03 0.04 ?1.22

Key: Fo Forward Reach ? Solution(s) found
Bk Backward Reach × Longer than 40 minutes

Table 4.2: Time taken (seconds) to find all solutions to a range of benchmark
problems using Forward and Backward Reach.
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Figure 4.9: Graphical comparison of Forward and Backward Reach.

at one specific depth bound. In particular, the depth bound associated with
each plotted point is the greatest depth bound at which both the Reach
variants terminate within 40 minutes.

The benchmark properties are chosen because testing them using QuickCheck
with a standard generator sometimes leaves some expressions unevaluated
after a standard batch of (at most) a hundred tests. A standard generator is
one of the form described in the section “Generating Recursive Data Types”
of the QuickCheck manual [43].

This section takes the form of 23 explicitly-marked observations about the
performance differences between the three Reach variants. It aims not just
to highlight the differences, but also to account for why these differences
arise. The style of presentation is intended to convey the exploratory nature
of the comparison. This exploration paves the way for some more-general
conclusions to be made in the next section. Unless otherwise stated, the
observations refer to results in Tables 4.1 and 4.2.
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4.7.1 Binary search trees

This section considers the application of Reach to part of the binary search
tree library given in Section 4.1.1. Two benchmark problems – Tree1 and
Tree2 – have prop_ordDel marked as the source. Tree1 targets refuta-
tion of prop_ordDel, and Tree2 targets evaluation of the right-hand-side
of the second equation of ext – an expression sometimes left uncovered by
QuickCheck. Recall that that prop_ordDel is defined as:

prop_ordDel :: (Nat, Tree Nat) -> Bool
prop_ordDel (e, t) = ord t ==> ord (del e t)

Observation 1 On the Tree1 and Tree2 problems, Forward Reach is an
order of magnitude faster than Basic Reach in finding all solutions with a
construction depth bound of five. 2

The explanation is that Forward Reach can determine the result of a function
when applied to partially-instantiated inputs, as demonstrated in Section
4.4.2. For example, Forward Reach can determine that the partial tree

Node 0 (Node 1 t0 t1) t2

falsifies ord for any values of t0, t1 and t2. Consequently, it can determine
that prop_ordDel applied to the input

(e, Node 0 (Node 1 t0 t1) t2)

does not lead to a target for any t0, t1, t2 and e. By not demanding the
variables to be further instantiated, Forward Reach avoids generation of
large portions of the input space. In particular, many trees falsifying ord

are never generated.

Observation 2 Of the 238,145 trees of natural numbers with construction
depth four or less, only 8,544 satisfy ord. This is consistent with the order
of magnitude performance benefit of Forward Reach over Basic Reach when
construction depth is bounded to five. (Note that because the arguments to
prop_ordDel are tupled, checking the property with a depth bound of five
corresponds to generating trees of depth four or less.) 2
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Constraint Time
ord t && member x t 8.63
member x t && ord t 4.57

Table 4.3: How the order of conjuncts affects the time taken (seconds) to
find ordered trees (using the faulty definition of ord) with an unconstrained
member using symbolic evaluation bounded with a call depth of eight.

Observation 3 On the Tree2 problem, Backward Reach is approximately
four times faster than Forward Reach in finding all solutions with a call-
depth bound of eight. 2

To reach the target in the Tree2 problem, both Forward and Backward Reach
must:

1. find an ordered tree t,

2. find an element x such that deletion of x from t causes evaluation of
the target.

Step 2 amounts to finding a node in t containing x and a non-empty left
subtree, as captured by the following predicate.

member x Empty = False
member x (Node y t0 t1)
| x < y = member x t0
| x > y = member x t1
| x == y = case t0 of Node _ _ _ -> True ; _ -> False

The difference between Forward and Backward Reach on the Tree2 problem
can be characterised as follows: the former solves the constraint

ord t && member x t

for unconstrained x and t by symbolic evaluation, whereas the latter solves

member x t && ord t

for unconstrained x and t. That is, the difference is whether ord is solved
before member (Forward Reach), or vice-versa, member before ord (Backward
Reach).
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Observation 4 Table 4.3 shows the times taken to solve each constraint
ordering. The timings suggest that solving member first is better, which is
consistent with the timings in Table 4.1 showing that Backward Reach is
more effective than Forward Reach on the Tree2 problem. 2

One explanation for the difference in performance between the two con-
straint orderings is as follows. First recall that the ord predicate is faulty:
although it holds for all ordered trees, it also holds for some unordered ones.
In solving ord first, trees are first constructed which satisfy an overly-general
ordering constraint. In solving member first, trees are first constructed which
contain the element to be deleted, and in which the elements on the path
from the root to that element are correctly ordered. Therefore, the latter
introduces a correct and more restrictive ordering on part of a candidate
tree earlier during evaluation. An example of an input that satisfies ord but
which falsifies member is

(1, Node 2 (Node 0 (Node 1 Empty Empty)
(Node 0 Empty Empty)) Empty)

Observation 5 The timings in Tables 4.2 and 4.3 show that the constraint
member x t && ord t requires the same amount of time to solve as Backward
Reach does to find all solutions to the Tree2 problem. That is, the constraint
appears to be an accurate characterisation of Backward Reach. However,
the timings also show that the constraint ord t && member x t is solved
in half the time that Forward Reach takes to find all solutions to the Tree2

problem. In this case, the constraint is not such an accurate characterisation
of Forward Reach. 2

There is an explanation why Forward Reach is slower than expected. Con-
sider an x and a t such that ord t holds but member x t does not. Forward
Reach applied to the Tree2 problem must fully evaluate the right-hand-side
of the implication in prop_ordDel, that is, determine the orderedness of
the tree that results from deleting an element from a tree which does not
contain that element. Such evaluation cannot lead to the target.
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insert x s = makeBlack (ins x s)
where makeBlack (T _ a y b) = T B a y b

ins x E = T R E x E
ins x (T col a y b)

| x < y = bal col (ins x a) y b
| x > y = bal col a y (ins x b)
| otherwise = T col a y b

bal B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
bal B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
bal B a x (T R (T R c y b) z d) = T R (T B a x b) y (T B c z d)
bal B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
bal col a x b = T col a x b

Figure 4.10: A faulty insertion function for Red-Black trees.

4.7.2 Red-Black trees

This section considers a more sophisticated tree implementation – balanced
red-black trees – by Okasaki [76]. Okasaki’s tree representation is as follows.

data Colour = R | B
data Tree a = E | T Colour (T a) a (T a)

An ordered red-black tree is one satisfying the following three conditions:
that trees are ordered (the ordered invariant), that no red node has a red
parent (the red invariant), and that every path from the root to an empty
node contains the same number of black nodes (the black invariant).

redBlack t = ordered t && black t && red t

The following property asserts that a faulty version of Okasaki’s insertion
function, defined in Figure 4.10, preserves the redBlack invariant.

prop_insertRB :: (Nat, Tree Nat) -> Bool
prop_insertRB (x, t) = redBlack t ==> redBlack (insert x t)

The fault is located in the left-hand-side of the third equation of the rebal-
ancing function bal; the variables b and c are the wrong way around. Both
the benchmark problems – RedBlack1 and RedBlack2 – mark the property
prop_insertRB as the source. RedBlack1 targets refutation of the property,
and RedBlack2 targets evaluation of the right-hand-side of the first equation
of bal – an expression sometimes left uncovered by QuickCheck.
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Observation 6 When using QuickCheck to try to refute prop_insertRB,
no counter-example was found after 100,000 batches of 1000 random tests
(amounting to over 30 minutes of testing). 2

Observation 7 Using Basic Reach, a solution to RedBlack1 is not found
within the forty-minute cut-off period. However, using Forward Reach, a
solution is found within four minutes. 2

Again the advantage of Forward Reach is its ability to efficiently find trees
satisfying the restrictive antecedent. In this example, trees must not only be
ordered but must also be red-black. This requirement offers increased prun-
ing opportunities compared to the plain ordering constraint. To illustrate,
the partially-instantiated tree

T B (T B (T B E 0 E) 1 E) 2 (T x E 3 E)

satisfies ordered but falsifies black for all x, so the conjunction of ordered
and black allows more input pruning than ordered alone. However, any
tree satisfying black must have a fully instantiated structure with all nodes
coloured, so there is no scope for further pruning from red. If black and
red are swapped, then red has the opportunity to prune the input-space
instead of black, and it might do so more effectively.

Observation 8 Of the 539,889,801 trees of natural numbers with construc-
tion depth four or less, only 3,675 satisfy redBlack. This large difference is
consistent with the difficulty in finding a counter-example at random using
QuickCheck and with the large performance difference between Basic and
Forward Reach. 2

Observation 9 If the red and black conjuncts are swapped in the defi-
nition of redBlack, the time taken to find all solutions to RedBlack1 with
a depth bound of five increases from 114.4 seconds to 724.8 seconds. In the
worst case, if the order

redBlack t = red t && ord t && black t

is chosen, the time taken is longer than 40 minutes (2,400 seconds). 2
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Constraint Time
1. path1 x t && redBlack t 1.42
2. path2 x t && redBlack t 19.72
3. redBlack t && path1 x t 23.38
4. redBlack t && path2 x t 24.27
5. redBlack t 23.04

Table 4.4: Times taken (seconds) to solve the constraints characterising
Forward and Backward Reach on the RedBlack2 problem with a call-depth
bound of nine.

Observation 10 Forward and Backward Reach perform very similarly on
the RedBlack2 problem. 2

Again, it is useful to characterise the behaviour of Forward and Backward
Reach in terms of the constraints that must be solved to reach the target.
With a call-depth bound of nine, there are only two paths from the source
function prop_insertRB to the target: one via the first guarded alternative
to the ins function, and the other via the second. In the former case, an x

and a t must be found such that redBlack t and path1 x t both hold.

path1 x E = False
path1 x (T col a y b) =
case ins x a of

T R (T R t0 x0 t1) x1 t2 -> x < y && isBlack col
_ -> False

In the latter case, an x and a t must be found such that redBlack t and
path2 x t both hold.

path2 x E = False
path2 x (T col a y b) =
case a of

T R (T R t0 x0 t1) x1 t2 -> x > y && isBlack col
_ -> False

Backward Reach is characterised by constraints 1 and 2 in Table 4.4, and
Forward Reach by constraints 3 and 4.

Observation 11 The sum of the times taken to solve constraints 1 and 2
in Table 4.4 is consistent with time taken by Backward Reach to solve the
RedBlack2 problem. This is not surprising since Backward Reach analyses
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the two paths to the target separately. In contrast, Forward Reach shares
much work needed to analyse each path to the target. In particular, the
solving of the redBlack predicate (constraint 5) is shared, and it accounts
for almost all of the time taken to solve constraints 3 and 4. Indeed, the
time taken to solve constraint 5 is very similar to the time taken by Forward
Reach on the RedBlack2 problem. 2

4.7.3 A digital multiplexor

This section considers the circuit description of a multiplexor given in Sec-
tion 3.4.1. To make this description suitable for Reach, it is modified to be
first-order and to work over Bool rather than Lava’s Bit type.

pick :: [(Bool, [Bool])] -> [Bool]

To illustrate, the expression

pick [(False, [False, True]), (True, [True, False])]

evaluates to [True, False]. The pick function returns the list paired with
True; it is assumed that exactly one such list exists. To be correct, pick
should return the same result as the following specification.

pickSpec ((b, xs):ps) = if b then xs else pickSpec ps

More specifically, the following property should hold.

prop_pick ps = oneHot ps && rect ps ==> pick ps == pickSpec ps

The oneHot precondition specifies that exactly one element in ps is a pair
whose first component is True. The rect precondition ensures that all the
second components of the pairs in ps have the same length.

Both the benchmark problems – Mux1 and Mux2 – mark prop_pick as the
source function. Mux1 targets refutation of prop_pick. In Mux2, the target
is an expression often missed by QuickCheck, marked as follows.

[] == ys = null ys
(x:xs) == ys = case ys of

[] -> target False
y:ys -> (x <==> y) && (xs == ys)
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Constraint Time
1. (oneHot x && rect x) && prefix (pick x) (pickSpec x) 0.39
2. prefix (pick x) (pickSpec x) && (oneHot x && rect x) 6.49

Table 4.5: Times taken (seconds) to solve the constraints characterising
Forward and Backward Reach on the Mux2 problem with a call-depth bound
of twelve.

The property prop_pick holds for all inputs, and consequently the call to
== never returns False. So in both problems, the target is unreachable.

Observation 12 Forward Reach takes three orders of magnitude less time
than Basic Reach to find all solutions to the Mux1 and Mux2 problems with
a construction depth bound of six. 2

Again, the performance benefit of Forward Reach can be explained by the
restrictive antecedent. To illustrate, prop_pick is satisfied by

(True, x):(True, y):z

for all x, y and z; in this case, the oneHot precondition is not met. Similarly,
prop_pick is also satisfied by

(True,[]):(False, x:y):[]

for all x and y; this time the rect precondition is not met.

Observation 13 Of the 1,466,766 inputs to prop_pick with a construc-
tion depth of six or less, only 3,120 satisfy the antecedent. This is consistent
with the three orders of magnitude performance difference between Basic
and Forward Reach. 2

Observation 14 Forward Reach takes three orders of magnitude less time
than Backward Reach to find all solutions to the Mux2 problem with a call-
depth bound of twelve. 2

Whereas Forward Reach first solves the restrictive oneHot and rect con-
straints, Backward Reach first finds values returned by pick that are pre-
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fixes of, but smaller in length than, values returned by pickSpec. The two
approaches can be characterised by the constraints 1 and 2 respectively in
Table 4.5, where the prefix function is defined as:

prefix [] _ = False
prefix (x:xs) [] = True
prefix (x:xs) (y:ys) = x == y && prefix xs ys

As illustrated above, the forward approach allows pruning. But so too does
backward approach. For example, Backward Reach can determine that the
input

[(True, False:False:[]), (True, True:x:y)]

does not reach the target for any x and y.

Observation 15 The timings in Table 4.5 suggest that the constraint
ordering introduced by Forward Reach is better than that introduced by
Backward Reach. This is consistent with the fact that Forward Reach is
more efficient on the Mux2 problem. However, the difference in the time
taken to solve constraint 2 and the time taken by Backward Reach to solve
the Mux2 problem is significant. This suggests that constraint 2 is not an
accurate characterisation of Backward Reach’s behaviour. 2

There is an explanation why Backward Reach is not as efficient as one might
expect on the Mux2 problem. With a call-depth bound of twelve, there are
ten progressively deeper paths to the target. Backward Reach considers each
of these paths as entirely separate problems. In doing so, it effectively solves
constraint 2 in Table 4.5 ten times, each time demanding slightly more input
in order to reach a deeper target.

4.7.4 Huffman compression

This section considers a program for Huffman compression implemented by
Bird [14]. It contains functions for both compression and decompression of
strings, along with a function for building Huffman trees. A Huffman tree
is a binary tree with symbols at its leaves, and the path from the root to
any symbol describes the unique, variable-length sequence of zeros and ones
representing that symbol.
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Two properties of Bird’s program are considered. The first states that the
decompresser (decode) is the inverse of the compressor (encode).

prop_decEnc cs =
length ft > 1 ==> decode t (encode t cs) == cs

where ft = collate cs
t = mkHuff ft

Here, collate builds a frequency table (ft) for an input string, and mkHuff

builds a Huffman tree from a frequency table.

The second property asserts that mkHuff produces optimal Huffman trees,
that is, for all binary trees t, if t is a Huffman tree then it has a cost no less
than that produced by mkHuff. A binary tree is only a Huffman tree (as
determined by isHuff) if it contains every symbol in the source text exactly
once. The cost of a Huffman tree is defined as the sum of each symbol’s
frequency multiplied by its depth in the Huffman tree.

prop_optimal cs t =
isHuff t cs ==> cost ft t >= cost ft (mkHuff ft)

where ft = collate cs

The Huffman1 problem targets refutation of prop_decEnc. Huffman2 targets
refutation of prop_optimal. Both properties are correct, and consequently,
in each problem, the target is unreachable.

Observation 16 The times taken by Basic and Forward Reach to solve
the Huffman1 problem are very similar. At construction depths three to
seven, Basic Reach is slightly more efficient than Forward Reach, and at
depth eight, Forward Reach is slightly more efficient than Basic Reach. 2

Observation 17 Of the 109,601 inputs to prop_decEnc at construction
depth 8 or less, 109,564 satisfy the antecedent. 2

There is little scope to satisfy prop_decEnc on a partially-instantiated in-
put. It is a hyper-strict function, fully demanding all inputs that satisfy
the antecedent. And indeed the vast majority of inputs do satisfy the an-
tecedent.

Although the performance difference is very small, it is perhaps surpris-
ing that Basic Reach is occasionally slightly more efficient than Forward
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Reach. Basic Reach freshly evaluates the property from scratch on each
input, whereas Forward Reach shares some evaluation of the property on
different inputs with common sub-structures. Therefore, one might expect
Forward Reach always to be more efficient. However, Basic Reach is a deter-
ministic evaluator and Forward Reach is a non-deterministic one, and there
is some overhead in implementing non-determinism. Using list comprehen-
sions for example, intermediate results are frequently wrapped in lists and
subsequently unwrapped again.

Observation 18 Forward Reach is more efficient than Basic Reach on
the Huffman2 problem, allowing deeper searching within a 40-minute time
bound. 2

Observation 19 Of the 7,142,334 inputs to prop_optimal with construc-
tion depth six or less, only 1,383 satisfy the isHuff antecedent. This is
consistent with the large performance difference between Basic and Forward
Reach. 2

4.7.5 Turner’s abstraction algorithm

This section considers Peyton Jones implementation [78] of Turner’s abstrac-
tion algorithm. The syntax for applicative expressions which may contain
Turner combinators is as follows.

type Var = Nat
type Const = Nat
data Exp = Exp :@ Exp | V Var | F Comb
data Comb = I | K | B | C | S | B’ | C’ | S’ | Fun Const

Expressions contain applications, variables, and combinators. A combinator
is a Turner combinator or a user-defined function name. Variables and func-
tion names are represented by natural numbers. The abstraction algorithm
abstr, defined in Figure 4.11, abstracts a variable from an expression by
introducing combinators. The property of interest here is Turner’s law of
abstraction [92], stating that if a variable is abstracted from an expression,
and the resulting expression is applied to that variable, then one ends up
with the original expression again.
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abstr v (f :@ x) = opt (F S :@ abstr v f :@ abstr v x)
abstr v (V w) | v == w = F I
abstr v e = F K :@ e

opt (F S :@ (F K :@ p) :@ (F K :@ q)) = F K :@ (p :@ q)
opt (F S :@ (F K :@ p) :@ F I) = p
opt (F S :@ (F K :@ p):@(F B :@ q :@ r)) = F B’ :@ p :@ q :@ r
opt (F S :@ (F K :@ p) :@ q) = F B :@ p :@ q
opt (F S :@ (F B :@ p :@ q):@(F K :@ r)) = F C’ :@ p :@ q :@ r
opt (F S :@ p :@ (F K :@ q)) = F C :@ p :@ q
opt (F S :@ (F B :@ p :@ q) :@ r) = F S’ :@ p :@ q :@ r
opt e = e

abstr’ (v, e) = abstr v e

Figure 4.11: Turner’s abstraction algorithm.

prop_abstr (v, e) =
noTurner e ==> reduce (abstr v e :@ V v) == e

Here, noTurner checks that an expression contains no Turner combinators
and reduce applies the reduction rules for Turner combinators to an expres-
sion. Requiring that e does not contain any Turner combinators ensures that
reduce only removes combinators introduced by abstr so that the equality
holds.

The first benchmark problem – Turner1 – targets refutation of prop_abstr.
The second – Turner2 – marks abstr’ (see Figure 4.11) as the source and
targets evaluation of the right-hand-side of the third equation of the opt

function. The Turner2 problem is not motivated by expressions left uncov-
ered by QuickCheck, but simply by the aim of finding a lambda expression
for which Turner’s algorithm introduces a C’ combinator.

Observation 20 Forward Reach is more efficient than Basic Reach on
both the Turner1 and Turner2 problems. 2

Observation 21 Of the 8,477 expressions with depth three or less, only
84 satisfy noTurner. This is consistent with the performance benefit of
Forward Reach. 2
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Although there is no antecedent in the Turner2 problem, there is scope for
Forward Reach to determine that some partially-instantiated inputs cannot
lead to evaluation of the target. For example, the input

(0, V 0 :@ F c)

does not lead to evaluation of the target for any combinator c; a richer
applicative structure is needed for abstr’ to introduce a C’ combinator.

Observation 22 On the Turner2 problem with a call-depth bound of
eleven or twelve, Backward Reach is an order of magnitude more efficient
than Forward Reach. 2

Observation 23 On the Turner2 problem with a call-depth bound of
twelve, there are fifteen separate paths of increasing depth from the source
to the target. All solutions found by Forward and Backward Reach result
from following just one of these paths – in particular the shallowest one.
Backward Reach requires 1.22 seconds to find all solutions that follow the
shallowest path, and 0.04 seconds to find all solutions that follow the other
fourteen paths. 2

Compared to Backward Reach, Forward Reach performs much more work
before hitting the call-depth bound. Working backwards, constraints at
deeper call-depths are solved first, and as they are more likely to fail due to
insufficient remaining call-depth, the search space is cut down, earlier in the
analyser. This explanation is consistent with the observation that Backward
Reach quickly determines that all but the shallowest path have no solutions.

4.8 Conclusions

Forward Reach Compared to Basic Reach, Forward Reach often requires
significantly less time to find all solutions to a reach problem (Observations
1, 7, 12, 18 and 20). It is particularly effective when the result of the source
function can be determined when applied to a partially-instantiated input;
in such cases, a whole class of fully-instantiated inputs can be pruned from
the search space (Section 4.4.2). The smaller the amount of input demanded
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by the source function in order to produce a result, the lazier it is, and the
bigger the benefit of using Forward Reach.

The benefit of Forward Reach is very apparent when the source function is
a property with a restrictive antecedent, and the target can only be reached
by satisfying the antecedent (Observations 2, 8, 13, 19 and 21). But there
can be a benefit even if this is not the case (Observation 20) – it is the
laziness of the source function that is important.

When tested with QuickCheck, some expressions in the benchmark prop-
erties are often left uncovered (Section 4.7). In one case, Forward Reach
can reveal counter examples that are not found after a substantial period of
QuickCheck testing (Observations 6 and 7).

Sometimes properties contain antecedents that are composed of several con-
juncts, and the order in which such conjuncts are placed can have a signif-
icant impact on how long it takes to find a counter example (Observation
9). Ideally, conjuncts which demand the least amount of input to produce a
result – the laziest conjuncts – should come first. However, determining the
laziness of a function is not always easy, and may require some experimen-
tation.

When the source function is hyper-strict – fully demanding all or most of
its input before returning a result – the benefit of Forward Reach is much
smaller (Observations 16 and 17).

Backward Reach On property-refutation problems, Forward and Back-
ward Reach behave identically. But when the target is placed more liberally,
the two often behave and perform quite differently.

One of the big differences is the order of evaluation. Forward Reach begins
by evaluating expressions in the source function, whereas Backward Reach
begins by evaluating expressions around the target expression. Sometimes
more restrictive constraints are introduced earlier in the analysis using For-
ward Reach (Observation 14), and sometimes the same is true using Back-
ward Reach (Observations 3, 4 and 22).

An advantage of Backward Reach is that expressions at deeper call-depths
are evaluated first. Such constraints are more likely to break the call-depth



4.9. RELATED WORK 151

bound, offering increased scope for failure earlier in the analysis (Observation
23). In contrast, Forward Reach may perform much work only to determine
very late that there is insufficient call-depth to reach the target.

Another disadvantage of Forward Reach is that it sometimes continues to
reduce an expression graph to normal form even when there is no reference
to the target or to a function on the call-path to the target (Observation 5).
In Backward Reach, the target is always referenced and when it becomes
unreferenced the current search path is immediately abandoned.

A disadvantage of Backward Reach is that when there are multiple paths to
the target, each path is considered as an entirely separate problem (Obser-
vations 11 and 15). Some evaluation which is common to each path may be
repeated.

4.9 Related work

4.9.1 Functional-logic programming in Curry

Curry [35] is a general-purpose programming language that integrates the
main features of functional and logic programming. From functional pro-
gramming, it takes lazy evaluation, higher-order functions, static typing and
a Haskell-like syntax. From logic programming it takes logical variables,
non-determinism and constraints.

Curry has two main strategies for dealing with logical variables: narrowing
and residuation. When the value of a logical variable is demanded in order
for evaluation to proceed, the narrowing strategy is to “guess” a value for
that variable by non-deterministically instantiating it to each possible con-
structor of the appropriate type. (Implementations of Curry use needed nar-
rowing [2], in which variables are only instantiated by the smallest amount
necessary for evaluation to continue.) In contrast, the residuation strategy is
to suspend evaluation of the current conjunct and evaluate another conjunct.
If evaluation of the latter conjunct instantiates the variable suspended on
by the former, then the former is resumed.

The narrowing strategy supports polymodal functions in Curry in the same
sense that predicates are polymodal in Prolog. That is, further to comput-
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ing an unknown output from known inputs, functions in Curry can also be
used, for example, to compute unknown inputs from a known output. The
residuation strategy supports both constraint programming, whereby con-
straints are suspended until sufficient data becomes available to check them,
and inter-process communication, whereby one process can block (suspend)
on a logical variable until another process instantiates it.

Curry and Reach are similar in that they both perform needed narrowing
of Haskell-like programs – indeed the use of needed narrowing in Reach is
inspired by its use in Curry. The main difference is that Curry provides a
host of logic programming features and aims to facilitate general-purpose
programming, whereas Reach is an analyser for plain functional programs
and aims to facilitate property-based testing. In particular, Reach is con-
cerned with the problem of causing evaluation of marked expressions in a
program, and Curry is not.

4.9.2 Property-directed generation of test-data

Lindblad presents a method that takes predicates written in Haskell and
generates data satisfying the predicate [59]. The primary motivation is to
automatically generate relevant test data for program properties, avoiding
the need to write custom QuickCheck generators. The method can be used
in one of two ways.

1. To generate test data satisfying a particular constraint, such as the
antecedent of a property, which can then be used to test programs
written in any language.

2. To refute a property written in Haskell by finding inputs that satisfy
the negated property.

Lindblad’s method is based on a technique called lazy instantiation. Lazy
instantiation evaluates a predicate step-by-step while instantiating the input
as demanded by the predicate. If the predicate evaluates to false when the
input is not fully instantiated, then a whole class of inputs is pruned from
the generated test-set.

Lazy instantiation is very similar to needed narrowing, but there are also a
number of differences. Most notably, Lindblad introduces a new language
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construct, “select case”, that permits implementation of a new parallel con-
junction operator >&<. The idea is that an expression of the form p x >&< q x

evaluates p x and q x in parallel. If at any stage a partially instantiated
x falsifies p or q then the conjunction immediately evaluates to false. This
is in contrast to standard conjunction, which may further instantiate x as
demanded by p even if x already falsifies q. Lindblad shows that the use
of parallel conjunction over normal conjunction can reduce the size of the
search space, and can reduce the need to “tweak the order of conjuncts in
the property” [59]. That is, Lindblad offers a very attractive solution to the
problem noted in Observation 9, Section 4.7.2.

Lazy instantiation and Reach are similar in that they both use needed nar-
rowing to aid property-based testing, although the two have been developed
independently. In particular, Lindblad compares the performance of lazy in-
stantiation and exhaustive testing on a number of benchmark properties, and
observes that lazy instantiation is especially beneficial when checking prop-
erties with restrictive antecedents. Lindblad also observes that QuickCheck
has difficulty in automatically testing such properties.

One of the main differences between lazy instantiation and Reach, other
than the idea of parallel conjunction, is that Reach tackles a more general
problem. Reach aims to cause evaluation of a marked target expression in
a program and property-refutation is a special case of this problem.

4.9.3 Specification-based testing of Java programs

Khurshid proposes a framework for automated specification-based testing
of Java programs, called TestEra [51]. Specifications take the form of pre
and post-conditions on Java methods, and are expressed in Alloy [47], a
declarative language based on first-order logic. An attractive feature of Alloy
formulae is that they can be compiled by a tool called the Alloy Analyzer
to propositional logic and solved using a SAT solver.

To test a Java method with a pre and post-condition, TestEra proceeds as
follows. First, all values up to some bound satisfying the pre-condition are
determined using the Alloy Analyzer. Second, each of these Alloy values is
converted to a Java value and passed to the Java method. Finally, the result
of the Java method is turned into an Alloy value, and the post-condition is
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checked by the Alloy Analyzer. If the post-condition is not satisfied, TestEra
reports a counter-example.

The idea behind TestEra is to use the pre-conditions on methods to au-
tomatically generate relevant test inputs. Khurshid observes that such in-
puts cannot be feasibly generated by random or even brute-force techniques.
Khurshid points out that one of the major limitations of TestEra is that it
“fails to explore program behaviours that are witnessed by large inputs only”
[51]. However, Khurshid also notes that experiments have been performed
which “show that it is feasible to achieve full statement and branch coverage
for several data-structure benchmarks by testing on all inputs within a small
input size” [51].

To use TestEra, the programmer must master two different languages: Java
and Alloy. In Reach, programs and specifications can both be written in
Haskell. Another difference is that TestEra solves constraints using the
Alloy Analyzer (which in turn uses a SAT solver) as opposed to needed
narrowing. It would be interesting to compare the two approaches, both in
terms of performance and expressiveness of the constraint language.

4.9.4 Static checking and theorem proving

Mitchell proposes a program analyser called Catch [66] to automatically
prove that a given Haskell program is free from pattern-match errors. In
essence, this corresponds to proving that all calls to Haskell’s error function
are unreachable.

Like Reach, the Catch analyser operates on first-order functional programs.
However, Mitchell proposes a transformation from higher-order programs to
first-order ones so that Catch can be applied to full, higher-order, Haskell
programs. Mitchell applies Catch to a range of such programs, and in each
case observes one of three main outcomes.

1. Catch proves that the program is safe from pattern-match errors.

2. Catch warns of a potential crashing behaviour that in fact cannot
occur.

3. Catch warns of genuine crashing behaviour.
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Mitchell reports that in the second case, it is often possible to make a slight
modification to the program so that Catch can prove it safe. In the course
of his experiments, Mitchell discovers and fixes bugs in some existing, open-
source Haskell programs.

By wrapping calls to error in a target, Reach can be used to answer a
similar question to Catch. However, Catch and Reach give quite different
answers; Mitchell sums it up as follows:

the tools are complementary: Reach can be used to find examples
causing non-exhaustive patterns to fail, Catch can be used to
prove there are no such examples. [66]

A piece of work similar in spirit to Catch is Xu’s extended static checker
for Haskell [98] called ESC/Haskell (in homage to ESC/Modula-3 [84] and
ESC/Java [28]). In contrast to Catch which is designed to work on programs
with no additional annotations, ESC/Haskell allows programs to express
contracts – similar to contracts in Meyer’s Eiffel [64]. This allows richer
properties about programs, further to pattern-match safety, to be expressed
and proven.

In ESC/Haskell, contracts are expressed using normal Haskell code: no
special property-language is required. Programs and contracts are together
transformed into Haskell expressions containing BAD constructors which rep-
resent parts of the expression that should be unreachable if the program is
valid. ESC/Haskell applies a range of simplification rules to the expression
with the aim of removing all references to BAD. In particular, ESC/Haskell is
able to use the contracts of all the functions in the program in the simplifi-
cation process. So although writing more contracts increases the amount of
verification to be done, it also increases the amount of knowledge available
to the simplifier and hence the ability of the simplifier to prove theorems.

Xu reports that ESC/Haskell is able to verify a number of sorting algorithms.
For example, insertion sort can be verified provided that the function to
insert an element into an ordered list has a contract stating that it preserves
the orderedness of the list.

The difference between Reach and ESC/Haskell is much the same as the
difference between Reach and Catch: Catch and ESC/Haskell aim to verify
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certain properties about programs whereas Reach aims to refute them.

Both Catch and ESC/Haskell are fully automatic approaches to verifying
properties. These approaches are not always successful, and can leave valid
properties unproven. Traditional theorem provers such as HOL Light [37]
take a more interactive approach. The programmer can define functions
and associated properties and prove that properties are equivalent to true
by manual application of a series of semantics-preserving rewrites. HOL
Light provides libraries of pre-proven theorems and useful proof tactics to
assist the programmer in this task. Interactive proof assistants for functional
languages, such as Starship [82] and Path [91], have been developed, but
none is currently in wide use.

4.10 Limitations and future work

4.10.1 Higher-order functions

Adapting Forward Reach to support higher-order functions raises two sepa-
rate problems.

1. The reduction of expressions containing applications of the more gen-
eral form e0 e1.

2. The synthesis of functional values as inputs to a higher-order source
function.

The first problem can be solved using standard reduction rules [57] and will
not be elaborated here. The second is more difficult, and requires a way to
deal with applications of uninstantiated variables to expressions. Suppose
that an expression of the form v e is to be evaluated. One possible way to
proceed is to bind v to the lambda expression

λx. case x of { c1 ~v1 7→ w1 ~v1 ; · · · ; cn ~vn 7→ wn ~vn }

where c1 to cn are the constructors of the type of the expression e and the
variables in ~v1 to ~vn and ~w are fresh unbound variables with construction
depths equal to one less than that of v, provided that the construction depth
of v is larger than zero. This approach bounds the depth of synthesised func-
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tions by a combination of the depth to which arguments may be evaluated
and the depth of possible results. The types of the fresh variables need to
be carefully inferred from the type of the original variable v. Existing work
on higher-order narrowing [36] is also applicable.

Adapting Backward Reach to support higher-order functions raises an ad-
ditional problem. The backward propagation rules must deal with the more
general form of application e0 e1. That is, one must consider the possibility
of applying a target to an expression, and an expression to a target. One
possible way to proceed is to extend the target context to allow lambda
expressions as well as data constructors. A lambda in a target context can
then be applied to an expression, and the partial application of a function
to a target can introduce a lambda in the target context.

A different approach to supporting higher-order programs is to transform
them to first-order ones. Indeed, Mitchell has recently developed such a
transformation precisely for the purpose of applying a first-order analyser to
higher-order programs [66]. Furthermore, Antoy and Tolmach have proposed
an approach to higher-order narrowing by encoding higher-order terms in a
first-order data type and using standard first-order narrowing strategies [3].

4.10.2 Garbage collecting the target

One of the problems with Forward Reach is that it continues to search for a
target even when there is no reference to the target or to a target-reaching
function in the expression graph being reduced. One possible way to detect
such a situation is to augment Forward Reach with a reference-counting
garbage collector [44]. If the target ever becomes unreferenced, the current
search path can be safely abandoned.

4.10.3 Initial inlining

One of the first tasks performed by Backward Reach is to inline the program
to produce an expression containing exactly one occurrence of the target.
If there are multiple paths to the target, then multiple such expressions are
produced, and each one is analysed separately. An alternative approach is
to modify the analyser to operate directly on programs. This can be done
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by applying the existing rules initially to the right-hand-side of the function
containing the target. After applying the rules, the function will have the
form f ~v = {e} and the analyser can continue by non-deterministically re-
placing every call f ~e in the program with {e} and unifying the variables
in ~v with the expressions in ~e. This alternative approach has the potential
advantage of sharing some evaluation between different paths to the target.

4.10.4 Parallel conjunction

Following Lindblad [59], a parallel conjunction operator can be used to re-
duce the search space explored when properties contain antecedents that
are composed of several conjuncts. In addition, there is much scope for us-
ing parallel conjunction to reduce the search-space explored by Backward
Reach. Consider an expression of the following form.

case e0 of [ · · · , ci ~vi 7→ case e1 of [ · · · , cj ~vj 7→ f {e}, · · · ], · · · ]

To reach the target, there are two constraints that must be solved:

1. e0 = ci ~vi, and

2. e1 = cj ~vj .

Currently Backward Reach will unfold f , solve any constraints that result,
and then solve constraint 2 followed by constraint 1. An alternative approach
is to solve all the constraints together using parallel conjunction.

4.10.5 Arithmetic constraint solvers

One of the major limitations of Reach is that, due to the bounds on construction-
depth and call-depth, it can only find small inputs that reach the target.
This is particularly concerning when programs use data types such as inte-
gers and characters. For example, it only takes an expression such as

if x > 100 then target True else False

to render Reach useless. One way to improve this situation would be to
support primitive data types such as integers and characters, and use spe-
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cialised decision procedures [55] to ensure the satisfiability of constraints
involving values of such types.

4.10.6 Efficiency of implementation

Whereas programs tested by QuickCheck can be compiled using a state-of-
the-art optimising compiler, Reach is only a simple interpreter implemented
at a high level of abstraction. Therefore one can generate and run tests much
more quickly using QuickCheck compared to using Reach. Reach would be
more useful if it were more efficient. It is not unreasonable to expect an order
of magnitude performance improvement by implementing Reach at a lower
level of abstraction, and another order of magnitude by using compilation
techniques instead of interpretation.

4.10.7 Generalisations

Reach has been applied mainly to property refutation and program coverage
problems. It can also be used to aid program understanding by placing the
target in a complex part of the program, or to crash programs by placing the
target in an undefined case alternative or around a call to Haskell’s error

function.

Reach can also be generalised by allowing multiple targets with a reach-
any or a reach-all semantics. In fact, Forward Reach as it stands already
supports multiple targets with a reach-any semantics. More generally, a
reach-any semantics can be achieved by taking several copies of the program,
where each copy contains only one target from the original, and applying
Reach separately to each. A reach-all semantics can be achieved in almost
the same way, but instead of applying Reach separately to each copy, it is
applied sequentially using the final state from one run as the initial state for
the next.



Chapter 5

A Library for

Demand-Driven Testing

Despite the advantages offered by Reach through the use of needed narrow-
ing, it has many limitations. In particular, it only works on a simple subset of
Haskell and the implementation is not very efficient. This chapter captures
some of the strengths of Reach in a small library for a standard lazy func-
tional language, simulating needed narrowing using a plain lazy evaluator.
The library is a lot more efficient than the existing Reach implementation,
and can be imported and used by any Haskell program.

5.1 Introduction

Claessen and Hughes propose an attractive approach to property-based test-
ing of Haskell programs, as implemented in their library QuickCheck [20].
Properties relating the component functions of a program are specified in
Haskell itself. The simplest properties are just boolean-valued functions, in
which the body is interpreted as a predicate universally quantified over the
argument variables, and a small library of operators provides for variations
such as properties that are conditionally true. QuickCheck exploits Haskell’s
type classes to check properties using test-sets of randomly generated val-
ues for the universally-quantified arguments. If a failing case is discovered,
testing stops with a report showing the counter-example.

160
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Although QuickCheck is widely used by Haskell developers, and is often very
effective, it has two main drawbacks:

Drawback 1 If failing cases are rare, none may be tested even though
some of them are very simple; this seems to be an inevitable consequence of
using randomly selected tests.

Drawback 2 When testing properties with restrictive antecedents, the
programmer must typically resort to writing a custom generator in order to
produce a good distribution of relevant test data.

5.1.1 SmallCheck

SmallCheck [83] is variation of QuickCheck which uses a different approach
to the generation of test-data. Instead of random testing, properties are
tested for all the finitely many values up to some depth, progressively in-
creasing the depth used. For data values, depth means depth of construc-
tion. For functional values, it is a measure combining the depth to which
arguments may be evaluated and the depth of possible results.

The principal motivation for SmallCheck is summarised by the following
observations, akin to the small scope hypothesis behind model-checking tools
such as Alloy [47].

1. If a program fails to meet its specification in some cases, it almost
always fails in some simple case. Or in contrapositive form:

2. If a program does not fail in any simple case, it hardly ever fails in
any case.

A successful test-run using SmallCheck can give exactly this assurance: spec-
ified properties do not fail in any simple case. In this way, SmallCheck
addresses the first stated drawback of QuickCheck.
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5.1.2 Lazy SmallCheck

This chapter presents Lazy SmallCheck. Lazy SmallCheck is like Small-
Check, but uses a slightly different approach to the generation of test data.
Instead of fully-defined inputs, partially-defined inputs are generated that
are progressively refined as demanded by the property under test. The gen-
eration of a single partially-defined input can eliminate the need to generate
many fully-defined ones. This allows Lazy SmallCheck to test the same
input-space as SmallCheck, but sometimes using significantly fewer tests.
In particular, tests that falsify antecedents are often avoided, addressing the
second stated drawback of QuickCheck.

5.1.3 Structure of this chapter

The rest of this paper is arranged as follows. Sections 5.2 and 5.3 re-
view QuickCheck and SmallCheck respectively. Section 5.4 introduces Lazy
SmallCheck, and Section 5.5 describes the Lazy SmallCheck implementation.
Section 5.6 is a comparative evaluation. Section 5.7 discusses related work.
Section 5.8 suggests avenues for future work and Section 5.9 concludes.

5.2 QuickCheck: a review

5.2.1 Arbitrary types and testable properties

QuickCheck defines a class of Arbitrary types for which there are ran-
dom value generators. There are predefined instances of this class for most
Prelude types. It also defines a class of Testable property types for which
there is a method mapping properties to test computations. The Testable

instances include:

instance Testable Bool
instance (Arbitrary a, Show a, Testable b)
=> Testable (a -> b)

Any Testable property can be tested automatically for some pre-assigned
number of random values using

quickCheck :: Testable a => a -> IO ()
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a class-polymorphic test-driver. It reports either success in all cases tested,
or else a counterexample for which the property fails.

Example 1 Suppose the program being tested includes a function

isPrefix :: Eq a => [a] -> [a] -> Bool

that checks whether its first argument is a prefix of its second. One expected
property of isPrefix can be specified as follows.

prop_isPrefix :: [Int] -> [Int] -> Bool
prop_isPrefix xs xs’ = isPrefix xs (xs++xs’)

The argument variables xs and xs’ are understood to be universally quanti-
fied : the result of prop_isPrefix should be True for all finite, fully defined
xs and xs’. As prop_isPrefix has a Testable type — its explicitly de-
clared monomorphic type enables appropriate instances to be determined
— it can now be tested.

*Main> quickCheck prop_isPrefix
OK, passed 100 tests.

Alternatively, if isPrefix actually interprets its arguments the other way
round, the output from quickCheck might be

Falsifiable, after 1 tests:

[1]

[2]

as the property then fails for xs=[1], xs’=[2]. 2

5.2.2 Generators for user-defined types

For properties over user-defined types, appropriate Arbitrary instances
must be written to generate random values of these types. QuickCheck
provides various functions that are useful in this task.

Example 2 Consider the following data-type for logical propositions. To
shorten the example, connectives are restricted to negation and disjunction.

data Prop = Var Name | Not Prop | Or Prop Prop
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instance Arbitrary Prop where
arbitrary = sized arbProp

where arbProp 0 = liftM Var arbitrary
arbProp n = frequency
[ (1,liftM Var arbitrary)
, (2,liftM Not (arbProp (n-1)))
, (4,liftM2 Or (arbProp (n ‘div‘ 2))

(arbProp (n ‘div‘ 2))) ]

Figure 5.1: A QuickCheck Arbitrary instance for Prop.

Assuming that an Arbitrary Name instance is defined elsewhere, Figure 5.1
shows how a QuickCheck user might define an Arbitrary Prop instance.
The sized function applies its argument to a random integer. The frequency
function also abstracts over a random source, choosing one of several weighted
alternatives: in the example, the probability of a Var construction is 1/7. 2

As this example shows, defining generators for recursive types requires care-
ful use of controlling numeric parameters.

5.2.3 Conditional properties

Often the body of a property takes the form of an implication, as it is only
expected to hold under some condition. If implication were defined simply
as a boolean operator, then cases where the condition evaluates to False

would count as successful tests. Instead QuickCheck defines an implication
operator ==> with the signature

(==>) :: Testable a => Bool -> a -> Property

where Property is a new Testable type. Test cases where the condition
fails are discarded and do not count as successful tests.

Example 3 Suppose that an abstract data type for sets is to be imple-
mented. One possible representation is an ordered list. Of course, sets
are unordered collections, but an ordered list permits the uniqueness of the
elements to be preserved more efficiently by the various set operations.

type Set a = [a]
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Each set operation may assume that the lists representing the input sets
are ordered, and must ensure that the same is true of any output sets. For
example, the operation to insert an element into a set, of type

insert :: Ord a => a -> Set a -> Set a

should preserve the familiar ordered predicate on lists.

prop_insertSet :: Char -> Set Char -> Property
prop_insertSet c s =

ordered s ==> ordered (insert c s)

Checking this property succeeds with the usual message “OK, passed 100

tests”, but great care must be taken when testing conditional properties
using QuickCheck. For example, if the property is rewritten as

prop_insertSet c s =
ordered s ==> collect (length s) (ordered (insert c s))

then the distribution of the lengths of tested lists can be observed. For
example:

*Main> quickCheck prop_insertSet
OK, passed 100 tests.

43% 0.
34% 1.
17% 2.
5% 3.
1% 4.

The distribution is skewed by the property’s condition: the longer the list,
the more likely it is to be rejected by the condition, and the less likely it
will count as a successful test. What is worrying is that the majority of test
cases generated are trivial, containing empty or singleton lists. 2

Regarding the problem of conditional properties skewing the test distribu-
tion, the QuickCheck authors write:

There is a risk of this kind of problem every time we use condi-
tional laws, so it is always important to investigate the proportion
of trivial cases among those actually tested. The best solution,
though, is to replace the condition with a custom test data gen-
erator. [20]
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However, collecting coverage information and writing custom generators
both mean more work for the programmer. In particular, writing a cus-
tom generator has three big drawbacks.

1. Writing good custom generators can be hard. Indeed, regarding the
kinds of bugs found by QuickCheck, the authors write:

We have observed that the errors we find are divided roughly
evenly between errors in test data generators, errors in the
specification and errors in the program. [20]

2. The property that all and only required values can be produced by
the custom generator may be hard to verify.

3. Properties showing that some invariant condition is preserved (a com-
mon pattern) must express the condition twice, in two different ways:
once as a generator in the pre-condition, and once as a predicate in
the post-condition.

5.2.4 Counter examples

A small counter-example is in general easier to analyse than a large one.
QuickCheck, although beginning each series of tests with a small size pa-
rameter and gradually increasing it, is in many cases unlikely to find a
simplest counter-example. To compensate for this, QuickCheck users may
write type-specific shrinking functions. However, writing shrinking func-
tions requires extra work and the mechanism still does not guarantee that
a reported counter-example is minimal.

5.3 SmallCheck: a review

5.3.1 Small values

SmallCheck re-uses many of the property-based testing ideas in QuickCheck.
It too tests whether properties hold for finite total values, using type-driven
generators of test cases, and reports counter-examples. But instead of gen-
erating test cases at random, it enumerates all small test cases exhaustively.
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Almost all other changes follow as a result of this one. The principle Small-
Check uses to define small values is to bound their depth by some small
natural number.

Small data structures Depth is most easily defined for the values of
algebraic data types. As usual for algebraic terms, the depth of a zero-arity
construction is zero, and the depth of a positive-arity construction is one
greater than the maximum depth of a component argument.

Example 2 (revisited) Recalling the data-type Prop of logical proposi-
tions, suppose the Name type is defined by:

data Name = P | Q | R

Then all Name values have depth 0, and Or (Not (Var P)) (Var Q) of type
Prop has depth 3. 2

Small tuples The rule for tuples is a little different. The depth of the
zero-arity tuple is zero, but the depth of a positive-arity tuple is just the
maximum component depth. Values are still bounded as tuples cannot have
recursive components of the same type.

Small numeric values For primitive numeric types the definition of
depth is with reference to an imaginary representation as a data structure.
So the depth of an integer i is its absolute value, as if it was constructed
algebraically as Succi Zero. The depth of a floating point number s× 2e is
the depth of the integer pair (s,e).

Example 4 The small floating point numbers, of depth no more than 2,
are -4.0, -2.0, -1.0, -0.5, -0.25, 0.0, 0.25, 0.5, 1.0, 2.0 and 4.0. 2

5.3.2 Serial types

Instead of a class Arbitrary of types with a random value generator, Small-
Check defines a class Serial of types that can be enumerated up to a given
depth.
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Serial data For all the Prelude data types, Serial instances are pre-
defined. Writing a new Serial instance for an algebraic datatype is very
straightforward. It can be concisely expressed using a family of combinators
cons<N>, generic across any combination of Serial component types, where
<N> is constructor arity.

Example 2 (revisited) The Prop datatype has constructors Var and Not

of arity one, and Or of arity two. A Serial instance for it can be defined by

instance Serial Prop where
series = cons1 Var \/ cons1 Not \/ cons2 Or

assuming a similar Serial instance for the Name type. 2

A series is just a function from depth to finite lists

type Series a = Int -> [a]

The first few members of the cons<N> family are defined by:

cons0 c = \d -> [c]
cons1 c = \d -> [c a | d > 0, a <- series (d-1)]
cons2 c = \d -> [c a b | d > 0, a <- series (d-1)

, b <- series (d-1)]

Serial functions Further to the series method of the Serial class,
SmallCheck also provides a coseries method for generation of of functions,
analogous to QuickCheck’s coarbitrary.

5.3.3 Test coverage and counter examples

Just as QuickCheck has a top-level function quickCheck so SmallCheck has
depthCheck d and smallCheck d.

depthCheck, smallCheck :: Testable a => Int -> a -> IO ()

The function depthCheck d tests a property for all inputs up to depth d,
and smallCheck d applies depthCheck at increasing depths from 0 to d. If
a property is refuted by smallCheck d then a counter-example of minimal
depth is reported. If a property is not refuted, then a clearly-defined portion
of the input-space on which it holds is reported – namely all inputs up to
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depth d. In each case, the SmallCheck user learns something useful that the
QuickCheck user would not.

5.3.4 Existential properties

SmallCheck supports existential quantifiers. Testing a random sample of
values as in QuickCheck would rarely give useful information about an ex-
istential property: often there is a unique witness and it is most unlikely to
be selected at random. But SmallCheck can exhaustively search for a small
witness. There are several existential variants, but the basic one has the
following signature.

exists :: (Show a, Serial a, Testable b) =>
(a -> b) -> Property

The interpretation of exists f is that for some argument x testing the
result f x succeeds.

Example 1 (revisited) Recall the property of isPrefix specified earlier.

prop_isPrefix xs xs’ = isPrefix xs (xs++xs’)

This property is necessary but not sufficient for a correct isPrefix. For
example, it holds for the erroneous definition

isPrefix [] ys = True
isPrefix (x:xs) [] = False
isPrefix (x:xs) (y:ys) = x==y || isPrefix xs ys

or even for an isPrefix that always returns True! In terms of the following
full specification for isPrefix

∀xs∀ys(isPrefix xs ys⇐⇒ ∃xs’(xs++xs’ = ys))

the partial specification prop_isPrefix captures only the ⇐= direction –
re-expressing the existential implicitly by the introduction of xs’ rather
than ys as the second variable in the property. Viewing isPrefix as a
decision procedure, prop_isPrefix assures its completeness but ignores its
soundness.
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Using SmallCheck, one can test for soundness too. The =⇒ direction of the
specification can be expressed like this:

prop_isPrefixSound xs ys =
isPrefix xs ys ==>

exists $ \xs’ -> xs++xs’ == ys

2

5.3.5 Conditional properties

Like QuickCheck, SmallCheck treats conditional properties as a special case.
Whereas QuickCheck discards tests which do not satisfy the condition,
SmallCheck simply reports how many satisfy the condition and how many
do not.

Example 3 (revisited) The property prop_insertSet can be tested for
all inputs up to a given depth using the depthCheck function.

*Main> depthCheck 7 prop_insertSet
Depth 7:

Completed 109600 test(s) without failure.

But 108576 did not meet ==> condition.

Over 99% of the tests generated by SmallCheck do not satisfy the condition,
yet such tests cannot possibly refute the property. 2

To increase the proportion of relevant tests generated by SmallCheck, a
custom generator can be written. But this means more work for the pro-
grammer and has other drawbacks, as discussed in Section 5.2.3.

5.4 Lazy SmallCheck

A consequence of lazy evaluation in Haskell is that functions can return
results when applied to partially-defined inputs. To illustrate, consider the
following Haskell function ordered.

ordered [] = True
ordered [x] = True
ordered (x:y:zs) = x <= y && ordered (y:zs)
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When applied to 1:0:⊥, where ⊥ is is a call to Haskell’s error function,
ordered returns False. Indeed, ordered (1:0:xs) is False for every xs.
Thus, by applying a function to a single partially-defined input, one can
observe its result over many fully-defined ones.

This ability to see the result of a function on many inputs in one go is
very attractive to property-based testing: if a property holds for a partially-
defined input then it will also hold for all fully-defined refinements of that
input. The aim of Lazy SmallCheck is to avoid generating such fruitless
refinements.

Lazy SmallCheck is a compatible subset of SmallCheck, currently only capa-
ble of checking first-order properties with universal quantifiers. It requires
no extensions to standard Haskell other than the ability to detect evalua-
tion of error, and this facility is already supported by the main Haskell
implementations through imprecise exceptions [50].

5.4.1 Implication

In SmallCheck and QuickCheck the ==> operator returns a value of type
Property, allowing tests falsifying the antecedent to be observed. Lazy
SmallCheck does not treat conditional properties specially, so ==> simply
has the type Bool -> Bool -> Bool.

Example 3 (revisited) In Lazy SmallCheck, the property prop_insertSet

has a different type due to the new type of ==>.

prop_insertSet :: Char -> Set Char -> Bool
prop_insertSet c s =

ordered s ==> ordered (insert c s)

Recall that SmallCheck requires 109,600 tests to check the prop_insertSet

for all inputs up to depth 7. Passing the property to Lazy SmallCheck’s
depthCheck function yields

*Main> depthCheck 7 prop_insertSet
OK, required 1716 tests at depth 7.

Both testing libraries use the same definition of depth, so the input-space
checked by each is identical. The difference is that by generating partially-
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defined inputs, Lazy SmallCheck is able to perform the check with fewer
tests. To see why, observe that prop_insertSet applied to the partially-
defined inputs ⊥ and ’b’:’a’:⊥ is True. 2

Example 3 will be used throughout the next three sections to illustrate
further points about Lazy SmallCheck.

5.4.2 Laziness is delicate

The set invariant in the example can be strengthened. Not only should the
list representing a set be ordered, but it should also contain no duplicates,
as expressed by the function allDiff.

allDiff [] = True
allDiff (x:xs) = x ‘notElem‘ xs && allDiff xs

The stronger invariant is expressed as follows.

isSet s = ordered s && allDiff s

prop_insertSet c s = isSet s ==> isSet (insert c s)

The isSet invariant reduces the number of tests generated by Lazy Small-
Check.

*Main> depthCheck 7 prop_insertSet
OK, required 964 tests at depth 7.

This is because some lists satisfy ordered but not allDiff, so there is
increased scope for falsifying the condition without demanding the value of
the element being inserted.

However, now suppose that the conjuncts of isSet are reversed.

isSet s = allDiff s && ordered s

Checking prop_insertSet now requires some twenty times more tests than
the version with the original conjunct ordering.

*Main> depthCheck 7 prop_insertSet
OK, required 20408 tests at depth 7.

The problem is that && evaluates its left-hand argument first, and allDiff

is less restrictive than ordered in this case.
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5.4.3 Parallel conjunction

When a property is composed of several sub constraints, like isSet, putting
the most restrictive one first helps Lazy SmallCheck reduce the number of
tests. But it is not always clear what the order should be. In fact, the best
order may differ depending on the depth at which the property is checked.

Lazy SmallCheck provides the user with an alternative to normal conjunc-
tion called parallel conjunction and represented by *&*. A parallel conjunc-
tion is falsified if any of its conjuncts is. This is in contrast to a standard
conjunction which returns ⊥ if its first argument is ⊥, even if its second could
be falsified. Replacing && with *&* reduces the need to place conjuncts in a
particular order, and often decreases the number of required tests.

The function *&* is defined in a datatype called Property, extending Bool to
allow the distinction between sequential and parallel conjunction. Boolean
values must be explicitly lifted to properties. After switching to *&* the
example property becomes

isSet :: Ord a => Set a -> Property
isSet s = lift (ordered s) *&* lift (allDiff s)

prop_insertSet :: Char -> Set Char -> Property
prop_insertSet c s =

isSet s *=>* isSet (insert c s)

(Property implication in Lazy SmallCheck is denoted *=>*.)

The parallel variant of isSet reduces the number of tests compared to either
of the non-parallel ones.

*Main> depthCheck 7 prop_insertSet
OK, required 653 tests at depth 7.

This is because some lists falsify ordered but not allDiff, e.g. 1:0:⊥, and
vice-versa, some falsify allDiff but not ordered, e.g. 0:0:⊥. Now suppose
again that the conjuncts are reversed.

isSet s = lift (allDiff s) *&* lift (ordered s)

This time the number of tests does not change, highlighting that parallel
conjunction is not as sensitive to the order of the conjuncts.
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*Main> depthCheck 7 prop_insertSet
OK, required 653 tests at depth 7.

Despite the advantages of parallel conjunction, it must be introduced manu-
ally, with care. An automatic rewrite is not possible, since switching to *&*

may expose intended partiality in the second conjunct. The first conjunct
of && can be used as a guard which assures that the input has a certain
property before evaluating the second one. With *&* such guards disappear
and the property may crash as a result.

Having to lift booleans to properties does introduce an unfortunate nota-
tional burden. Overloaded booleans [9] would be really helpful here.

5.4.4 Strict properties

Not all properties are as lazy as prop_insertSet. To illustrate, consider
the following function that turns a list into a set, throwing away duplicates.

set :: Ord a => [a] -> Set a
set = foldr insert []

One might like to verify that set always returns valid sets.

prop_set :: [Char] -> Bool
prop_set cs = isSet (set cs)

To return True, prop_set demands the entire input, so there is no scope
for the property to be satisfied by a partially-defined input. Checking with
SmallCheck yields

*Main> depthCheck 6 prop_set
Depth 6:

Completed 1957 test(s) without failure.

and with Lazy SmallCheck:

*Main> depthCheck 6 prop_set
OK, required 2378 tests at depth 6.

Not only is Lazy SmallCheck of no benefit in this case, but it is worse than
SmallCheck because it fruitlessly generates some partially-defined inputs as
well as all the totally-defined ones.
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5.4.5 Serial types

Like SmallCheck, Lazy SmallCheck provides a Serial class with a series

method. But now a series has the type

type Series a = Int -> Cons a

From the user’s perspective, Cons a is an abstract type storing instructions
on how to construct values of type a. It has the following operations1.

cons :: a -> Series a
empty :: Series a
(\/) :: Series a -> Series a -> Series a
(><) :: Series (a -> b) -> Series a -> Series b

To illustrate, SmallCheck’s cons<N> family of operators is defined in Lazy
SmallCheck in the following fashion.

cons0 f = cons f
cons1 f = cons f >< series
cons2 f = cons f >< series >< series

So SmallCheck Serial instances defined using the standard pattern are
written identically in Lazy SmallCheck.

Depth customisation The left-associative >< combinator implicitly takes
a depth d, and passes d to its left argument and d-1 to its right argument.
The result is that each child of a constructor is given depth d-1, as in
SmallCheck. If the depth argument to >< is zero, then no values can be
constructed.

Example 9 Suppose a generator for rose trees [14] is to be written.

data Rose a = Node a [Rose a]

The standard list generator might be deemed inappropriate to generate the
children of a node because each child would be generated to a different depth.
Instead, the programmer might write

instance Serial a => Serial (Rose a) where
series = cons Node >< series >< children

1Based on the API of an applicative functor [63].
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where children is a generator for lists in which each element is bounded by
the same depth parameter.

children d = list d
where

list = cons []
\/ cons (:) >< const (series (d-1)) >< list

2

Primitive series Like in SmallCheck, a series can be defined as a finite list
of finite fully-defined candidate values. This is achieved using the drawnFrom
combinator.

drawnFrom :: [a] -> Cons a
drawnFrom xs = foldr (\/) empty (map cons xs) 0

The depth parameter 0 is irrelevant in the above definition, as it is not
inspected by any of the combinators used. (Only the >< combinator inspects
the depth.)

Example 10 Here is the Serial instance for Int.

instance Serial Int where
series d = drawnFrom [-d..d]

Using drawnFrom, primitive values of type Integer, Char, Float and Double

are generated just as they are in SmallCheck. 2

5.5 Implementation

The full implementation of Lazy SmallCheck can be found in Appendix
B. This section presents in full a working but cut-down version of Lazy
SmallCheck. Only code for parallel conjunction, the Testable class, and
for displaying counter-examples and counting tests is omitted.

5.5.1 Partially-defined inputs

The central idea of Lazy SmallCheck is to generate partially-defined inputs,
that is, inputs containing some calls to error. An example of a partially-
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defined input of type Prop is

Or (Or (Var Q) (Not (error "_|_"))) (error "_|_")

Using imprecise exceptions [50], one can apply a property to the above
term and observe whether it evaluates to True, False, or error "_|_".
However, since the input contains several calls to error "_|_", it cannot be
determined which one was demanded by the program. This is the motivation
for tagging each error with its position in the tree-shaped term. A position
is a list of integers, uniquely describing the path from the root of the term
to a particular sub-term.

type Pos = [Int]

For example, the position [1,0] refers to the 0th child of the root construc-
tor’s 1st child. Lazy SmallCheck encodes such positions in the string passed
to error. Using the helper function

hole :: Pos -> a
hole p = error (sentinel : map toEnum p)

the above example term of type Prop is now represented as follows.

Or (Or (Var Q) (Not (hole [0,1,0]))) (hole [1])

Each argument to error is prefixed with a sentinel character, allowing
holes to be distinguished from error-calls occurring in the property.

sentinel :: Char
sentinel = ’\0’

5.5.2 Answers

The data type Answer is used internally to represent the result of a property
applied to a partially-defined input.

data Answer = Known Bool | Unknown Pos

Using imprecise exceptions, the following function converts the boolean re-
sult of a property into an answer.
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answer :: Bool -> IO Answer
answer a =
do res <- try (evaluate a)

case res of
Right b -> return (Known b)
Left (ErrorCall (c:cs)) | c==sentinel ->

return (Unknown (map fromEnum cs))
Left e -> throw e

The functions try, evaluate, and throw are all exported by Haskell’s
Control.Exception library: evaluate forces evaluation of the boolean
value passed to it, before returning it in an IO action; try runs the given IO

action, and returns a Right constructor containing the action’s result if no
exception was raised, otherwise it returns a Left constructor containing the
exception. If the exception represents a hole, then the position of demand
is extracted and returned. Otherwise the exception is re-thrown.

When a property applied to a term yields Unknown pos, Lazy SmallCheck
refines the term by defining it at position pos.

5.5.3 Refinement

The Cons data type is a little more complicated than the simple list it
replaces in SmallCheck. Lazy SmallCheck must not only generate inputs
but also take an existing input and refine it at a particular position.

data Cons a = Type :*: [[Term] -> a]

This data type can be read as follows: to construct a value of type a, one
must have a sum-of-products representation of the type,

data Type = SumOfProd [[Type]]

and a list of conversion functions (one for each constructor) from a list of
universal terms (representing the arguments to the constructor) to an actual
value of type a. A universal term is either a constructor with an identifier
and a list of arguments, or a hole representing an undefined part of the
input.

data Term = Ctr Int [Term] | Hole Pos Type
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Working with universal terms, the refinement operation can be defined
generically, once and for all: it walks down a term following the route spec-
ified by the position of demand,

refine :: Term -> Pos -> [Term]
refine (Ctr c xs) (i:is) =

map (Ctr c) [ls ++ y:rs | y <- refine x is]
where (ls, x:rs) = splitAt i xs

refine (Hole p (SumOfProd sop)) [] = new p sop

and when it reaches the desired position, a constructor of the right type
applied to the correct number of holes is inserted.

new :: Pos -> [[Type]] -> [Term]
new p sop =

[ Ctr c (zipWith (ı -> Hole (p++[i])) [0..] ts)
| (c, ts) <- zip [0..] sop ]

5.5.4 Series combinators

The Series combinators cons, empty, \/ and >< are defined in Figure 5.2,
along with two auxiliary functions. The conv auxiliary allows a conversion
function of type Term -> a to be obtained from the second component of
a Cons a value. The nonEmpty auxiliary is used to ensure that a partially-
defined value is not generated when there is no fully-defined refinement of
that value within the depth limit.

5.5.5 Refutation algorithm

The algorithm to refute a property takes two parameters, the property to
refute and an input term, and behaves as follows.

refute :: (Term -> Bool) -> Term -> IO ()
refute p x = do

ans <- answer (p x)
case ans of
Known True -> return ()
Known False -> putStrLn "Counter example found"

>> exitWith ExitSuccess
Unknown pos -> mapM_ (refute p) (refine x pos)
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cons :: a -> Series a
cons a d = SumOfProd [[]] :*: [const a]

empty :: Series a
empty d = SumOfProd [] :*: []

(\/) :: Series a -> Series a -> Series a
(a \/ b) d = SumOfProd (psa ++ psb) :*: (ca ++ cb)
where SumOfProd psa :*: ca = a d

SumOfProd psb :*: cb = b d

(><) :: Series (a -> b) -> Series a -> Series b
(f >< a) d =

SumOfProd [ta:p | notTooDeep, p <- ps] :*: cs
where SumOfProd ps :*: cfs = f d

ta :*: cas = a (d-1)
cs = [ \(x:xs) -> cf xs (conv cas x)

| notTooDeep, cf <- cfs ]
notTooDeep = d > 0 && nonEmpty ta

nonEmpty :: Type -> Bool
nonEmpty (SumOfProd ps) = not (null ps)

conv :: [[Term] -> a] -> Term -> a
conv cs (Hole p _) = hole p
conv cs (Ctr i xs) = (cs !! i) xs

Figure 5.2: Lazy SmallCheck’s Series combinators.
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A variant of Lazy SmallCheck’s depthCheck function can be now be defined.

check :: Serial a => Int -> (a -> Bool) -> IO ()
check d p = refute (p . conv cs) (Var [] t)

where t :*: cs = series d

For simplicity of presentation, these two definitions do not attempt to print
counter examples, count the number of tests performed, or support checking
of multi-argument properties.

5.5.6 Parallel conjunction

Parallel conjunction is a straightforward extension to the refutation algo-
rithm. The main difference is that answers contain values of type Property

rather than Bool. Internally, a Property is just a representation of a logical
formula. To evaluate a Property of the form p *&* q, p is evaluated. If it is
unknown, then q is also evaluated, without refining the input as demanded
by p. If either p or q evaluates to False then the value of the whole conjunc-
tion is taken to be False. If both p and q are unknown, then the input is
refined at the position demanded by p. This means that the number of tests
generated can decrease when switching from && to *&*, but never increase.
There is however an evaluation overhead when p is unknown, because *&*

will evaluate q in this case and && will not.

5.5.7 Variations

Two alternative implementations of Lazy SmallCheck have been explored,
both avoiding repeated conversion of universal terms to Haskell values of a
particular type. One uses Data.Generics and only works in GHC, while the
other requires an extra method in the Serial class so that refinement can be
defined on a per-type basis. These variants are more efficient, but typically
by no more than a factor of three. The implementation presented here has
the advantage of giving depth and generation control to the programmer in
a simple manner that is largely compatible with the core SmallCheck subset.
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5.6 Comparative evaluation

Previous sections have included some in-principle comparisons between the
three libraries. This section presents some quantitative results. Table 5.1
shows the runtimes of several example properties tested to varying depths
with SmallCheck and Lazy SmallCheck. QuickCheck is not represented in
this table because it does not have the same notion of a depth bound. How-
ever, the time taken by QuickCheck to refute an invalid property can be
meaningfully compared with that taken by SmallCheck and Lazy Small-
Check; such timings are noted in the discussion.

All the example properties are first-order and universally-quantified. All
SmallCheck generators are written using the simple standard pattern. All
QuickCheck generators are written in the simple manner described in the
section “Generating Recursive Data Types” of the QuickCheck manual [43].
The following paragraphs discuss the results, focusing on some of the more
interesting examples.

5.6.1 RedBlack

The RedBlack program is an implementation of sets using ordered Red-
Black trees by Okasaki [76], but with a fault injected. This is the same
program as that described in Section 4.7.2. Recall the predicate redBlack

defining ordered Red-Black trees

redBlack t = ord t && black t && red t

and the insert function which should preserve the redBlack invariant.

prop_insertRB :: Int -> Tree Int -> Bool
prop_insertRB x t =
redBlack t ==> redBlack (insert x t)

No counter example was found within 20 minutes of testing at depth 4 using
SmallCheck. QuickCheck, with simple random generation of trees, did not
find a counter example after 100,000 batches of 1000 tests (amounting to
32 minutes of testing). Testing with Lazy SmallCheck revealed the fault in
a fraction of a second at depth 4, and with the fault removed, verified the
property at depth 4 within 7 seconds.
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Property Depth
3 4 5 6 7

RedBlack L 0.03 ?0.15
S 0.20 ×

Turner L 0.01 0.47 ×
S 0.01 0.07 ×

SumPuz L 0.05 3.68 421.80 ×
S 0.05 4.48 682.86 ×

Huffman2 L 0 0 0.63 22.9 ×
S 0 0.01 7.65 ×

Countdown1 L 0.01 0.14 2.27 39.3 800.4
S 0.05 17.43 ×

Countdown2 L 0.01 1.23 666.95 ×
S 0.01 1.44 737.10 ×

Circuits2 L 0 0.01 0.01 0.03 0.06
S 0 0.01 0.52 63.80 ×

Circuits3 L 0.06 13.28 ×
S 0.02 5.08 ×

Catch L 0.07 6.22 830.02 ×
S 0.02 88.23 ×

Mate L 0 0.37 ?29.87
S 0.06 ×

Property Depth
7 8 9 10 11

ListSet L 0.01 0.02 0.03 0.06 0.13
S 0.05 0.39 4.06 694.10 ×

Huffman1 L 0.27 2.76 27.57 315.81 ×
S 0.08 0.73 7.69 90.38 ×

Circuits1 L 0.06 0.29 1.62 10.06 70.44
S 0.04 0.20 1.21 8.38 65.88

Multiplier L 0.16 0.24 0.28 0.38 0.44
S 0.16 0.21 0.30 0.34 0.42

Instantiator L 3.71 30.03 243.82 ×
S 3.67 29.55 241.63 ×

Key: ? Counter example found L Lazy SmallCheck
× Longer than 20 minutes S SmallCheck

Table 5.1: Times to check benchmark properties using SmallCheck and Lazy
SmallCheck at various depths.
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The number of tests is a few times lower when using parallel conjunction
inside the redBlack invariant. However, in this case the evaluation overhead
of using *&* is substantial and cancels the benefit of fewer tests.

5.6.2 Huffman

The Huffman program is an implementation of Huffman compression by Bird
[14]. This is the same program as that described in Section 4.7.4. Recall
that the two properties of interest are (1) that the decompresser (decode)
is the inverse of the compressor (encode)

prop_decEnc cs =
length ft > 1 ==> decode t (encode t cs) == cs

where ft = collate cs
t = mkHuff ft

and (2) that mkHuff produces optimal Huffman trees. That is, for all binary
trees t, if t is a Huffman tree then it has a cost no less than that produced by
mkHuff. Also recall that a binary tree is only a Huffman tree (as determined
by isHuff) if it contains every symbol in the source text exactly once.

prop_optimal cs t =
isHuff t cs ==> cost ft t >= cost ft (mkHuff ft)
where ft = collate cs

In checking prop_decEnc, SmallCheck was more efficient than Lazy Small-
Check by a constant factor of 3. This property is hyper-strict for most
inputs. In checking prop_optimal, due to the condition that input trees
must be Huffman trees, Lazy SmallCheck allowed testing to one level deeper
within the 20 minute cut-off.

5.6.3 Mate

The Mate program solves mate-in-N chess problems. It represents a chess
board as two lists, the first containing white’s piece-position pairs and the
second containing black’s.
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data Board = Board [(Kind,Square)] [(Kind,Square)]
data Kind = King | Queen | Rook

| Bishop | Knight | Pawn
type Square = (Int,Int)
data Colour = Black | White

It includes a function checkmate returning whether or not a given colour
is checkmated on a given board. Now consider the conjecture that for all
chess boards b, if b is a valid board and white has only a king and a pawn,
then black cannot be in checkmate.

prop_checkmate b@(Board ws bs) =
( length ws == 2
&& Pawn ‘elem‘ map fst ws
&& validBoard b
) ==> not (checkmate Black b)

A valid board is one satisfying a number of healthiness criteria, such as each
side has exactly one king, kings cannot be placed on touching squares, and
no two pieces can occur on the same square.

Neither SmallCheck at depth 4 after 20 minutes, nor QuickCheck with a
100,000 batches of 1000 random tests after 18 minutes, revealed a counter
example. Lazy SmallCheck within 30 seconds at depth 5 produces

Counter example found:
Board [(King,(3,2)),(Pawn,(2,1))]

[(Queen,(1,3)),(King,(1,2)),(Bishop,(1,1))]

The order of conjuncts in the property has a significant impact on perfor-
mance, and a lot of experimentation was required to find the best order. The
time taken to find a counterexample was more than 20 minutes if the order
was unfortunately chosen. However, using parallel conjunction, no ordering
required more than 22 seconds to find a counter example.

5.6.4 Reduceron instantiator

The instantiator is taken from the source code of the Reduceron, and is
shown in Figure 5.3. The functions isArg, isAp, isFun, isInt, and isEnd

all inspect the tag of a Reduceron bytecode node encoded as an 18-element
bit-vector. The functions getArg and getAp strip off the tag of argument
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instantiate :: [[Bit]] -> [Bit] -> [Bit] -> [Bit]
instantiate args base node =
pick [ isArg node --> markEnd (isEnd node) arg

, isAp node --> markEnd (isEnd node) (mkApNode app)
, (isFun node <|> isInt node) --> node
]

where
argHot = decode (getArg node)
arg = pick (zip argHot args)
app = decrement (base /+/ getAp node)

Figure 5.3: Template instantiation function, from the Reduceron.

and application nodes respectively, and mkApNode prefixes an Ap tag to a
node. The function markEnd sets or resets the end-bit of a node, as specified
by the first argument. The function decode returns a one-hot representation
of a binary-encoded number. The operator --> simply constructs a pair from
its two arguments.

The property of interest is that instantiate is a circuit-level equivalent of
the inst function defined in the Reduceron semantics in Figure 2.7, but for
the fact that instantiate works on bit-level representations of bytecode
nodes. The property’s pre-condition asserts that

• all arguments are non-End nodes,

• the node to instantiate is wrapped in at most one End marker (the
syntax defined in Figure 2.3 permits nodes to be wrapped in multiple
End markers),

• the base address is larger than or equal to zero,

• all nodes (the argument nodes and the node to instantiate) contain
integer fields that are larger than or equal to zero and are small enough
to be encoded in the 18-element bit-vector representation of a bytecode
node,

• and all application nodes have an integer field strictly larger than zero.

Despite the pre-condition, Lazy SmallCheck and SmallCheck perform simi-
larly on this property. Although the pre-condition does permit pruning, it
is not restrictive enough to give Lazy SmallCheck a significant advantage.
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5.6.5 Other examples

The remaining examples follow a similar pattern. SmallCheck is more ef-
fective on strict properties and Lazy SmallCheck more so on lazy ones. Of
these examples, ListSet is the set implementation using ordered lists (along
with the insertion property) given earlier, Countdown is a solver for a pop-
ular numbers game (along with a lemma and a refinement theorem) taken
from [45], SumPuz is a cryptarithmetic solver (with a soundness property)
from [18], Turner is Peyton Jones’s implementation of Turner’s abstraction
algorithm [78] (with Turner’s law of abstraction [92]), Circuits is part of a
library from the Reduceron (Circuits2 is the multiplexor example described
in Section 4.7.3), Catch is a specification (with a soundness property) for
part of the Catch tool [67], and Multiplier is the property defined in Section
3.5.3 capturing the correctness of a circuit-level sequential multiplier writ-
ten using the Recipe library. Unfortunately, the other property defined in
Chapter 3, capturing the correctness of the stack processor Poly, could not
be tested as that would require simulation support for block RAMs in Lava,
which is currently unavailable.

5.6.6 Summary of results

In two of the fifteen example properties, Lazy SmallCheck found a counter
example in good time, and SmallCheck and QuickCheck did not. In five
others, Lazy SmallCheck permitted deeper checking than SmallCheck, and
in another seven, SmallCheck had a constant factor advantage over Lazy
SmallCheck, ranging from a negligible factor of just over 1, to just over to
a more significant factor of 7.

Five of the example properties have an implication where the condition
is composed of several conjuncts, and could potentially be improved by
using parallel conjunction. In two of these, parallel conjunction had no
impact on the number of tests, but neither did it introduce a significant
evaluation overhead. In another, the number of tests was reduced, but
this was cancelled out by the evaluation overhead. And in another, parallel
conjunction reduced the runtime by up to a factor of three for some conjunct
orderings, but had no effect on others. In the remaining example, the use of
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parallel conjunction eliminated the need to put a long series of conjuncts in
a particular order for a counter example to be found.

5.7 Related work

5.7.1 Needed narrowing

Lazy SmallCheck’s refutation algorithm is closely related to needed nar-
rowing [2], an evaluation strategy used by some functional-logic languages,
including Curry [35], and some Haskell analysers (see Chapter 4). Needed
narrowing allows functions to be applied to partially-defined inputs, but
this is achieved using logical variables rather than calls to error as in Lazy
SmallCheck. As needed narrowing is designed for functional-logic programs,
it also deals with non-deterministic functions.

A typical implementation of needed narrowing stores the partially evaluated
result after each test, and resumes the evaluation after refining the input.
Lazy SmallCheck instead evaluates the property from scratch every time an
undefined part of the input is demanded. This means that needed narrowing
is more efficient. For small inputs, it would be interesting to explore just
how big (or small) this benefit is.

5.7.2 Residuation

Parallel conjunction is related to residuation, another evaluation strategy
used by some functional-logic languages including Curry [35] and Escher
[60]. Under residuation, if the value of a logical variable is demanded by
some logical conjunct in the system, then that conjunct suspends on the
variable, and another conjunct is evaluated. If evaluation of this second
conjunct happens to instantiate the variable suspended on by the first, then
the first conjunct is resumed.

In parallel conjunction, when evaluation of the first conjunct calls error, the
second conjunct is immediately evaluated on the same input. If the second
conjunct also calls error then the input is refined. Therefore, a parallel
conjunction of the form p *&* q is similar to evaluating p by residuation
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and q by narrowing. The end result in both cases is that if either conjunct is
falsified, then so is the whole conjunction. There is no need for resumption
and suspension mechanisms in Lazy SmallCheck because it evaluates the
conjunction from scratch every time a refinement is made.

5.7.3 Gast

Gast [54] is a library for property-based testing in Clean. It exploits Clean’s
generic programming features to offer a default test-generator for all user-
defined types. Like SmallCheck, it generates fully-defined and finite values.
Unlike SmallCheck, it employs a blend of random and systematic generation.
Constructors of an algebraic data type are selected at random, and duplicate
tests are avoided by keeping a record of which inputs have been tried already.

5.7.4 EasyCheck

EasyCheck [17] is another testing library, written in the functional-logic
language Curry. It can also exploit narrowing to achieve demand-driven
generation of test data, making use of the data refinement and narrow-
ing mechanisms built into Curry, although this possibility is not discussed
much. EasyCheck provides a number of combinators for expressing proper-
ties about non-deterministic functions. Apart from this, the main difference
is that EasyCheck uses level diagonalisation, which has the advantage that
it allows systematic generation of deep and shallow inputs in a fair order.
There are also some disadvantages of level diagonalisation: any counter ex-
amples produced are not necessarily minimal, and it is not clear to the
programmer which inputs have been tested and which have not.

5.8 Limitations and future work

Currently Lazy SmallCheck is limited to checking universally-quantified,
first-order properties. In future it would be interesting to try adding support
for higher-order functions and existential quantifiers. A possible approach
to generating functions as test data, on demand, has been discussed in Sec-
tion 4.10.1. Just as Lazy SmallCheck allows pruning when a universally-
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quantified expression evaluates to true on a partially-defined input, so it
should also allow pruning when an existentially-quantified expression eval-
uates to false.

It would also be interesting to compare Lazy SmallCheck with a full-strength
narrowing implementation, such as the Münster Curry Compiler [61]. This
comparison would help establish whether it is worth adding narrowing to
an existing Haskell compiler to aid property-based testing, or whether lazy
evaluation and imprecise exceptions already provide most of the benefit.

Another avenue for investigation would be the ability to import QuickCheck,
SmallCheck, and Lazy SmallCheck in a program and test the same properties
using any tool.

5.9 Conclusions

If a property is refuted by SmallCheck then a simplest counter example is
reported, and such a counter example is usually the easiest to investigate.
Alternatively, if a property is not refuted then a clearly-defined portion of
the input space on which it holds is reported, and this knowledge is valuable
in judging the effectiveness of testing. In each case the SmallCheck user
learns something useful that the QuickCheck user would not. Furthermore,
the SmallCheck user can write data generators easily using a simple standard
pattern, and can enjoy a richer specification language supporting existential
quantification.

Lazy SmallCheck is a variation of SmallCheck which generates partially-
defined inputs that are progressively refined as demanded by the property
under test. Even though the programmer specifies conditional properties
as simple logical implications, typically a plentiful supply of condition-
satisfying inputs are generated automatically. This outcome is thanks not
just to Haskell’s lazy evaluation strategy, which can compute well-defined
outputs for partially-defined inputs, but also to parallel conjunction. Parallel
conjunction reduces the need for programmers to tweak conjunct orderings
in properties in order to obtain the maximum benefit of Lazy SmallCheck.
Of course, it is very difficult to say how often conditional properties occur
in general, but they arose quite readily in the fifteen benchmark properties
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considered here, the majority of which were taken from existing programs
described in the literature. In seven of the fifteen properties, Lazy Small-
Check allowed deeper testing than SmallCheck, and in two of these, counter
examples were revealed that were simply infeasible to find using QuickCheck
and SmallCheck, at least without writing a custom generator.

Although SmallCheck and Lazy SmallCheck are sometimes more effective
than QuickCheck, the reverse is also true. For example, as part of his
ICFP’07 invited talk, Hughes tested an SMS message-packing program us-
ing QuickCheck. QuickCheck uncovered a bug when packing messages of
multiple-of-eight length. Such large, strictly-demanded messages would be
outside the reach of SmallCheck and Lazy SmallCheck.

Put simply: QuickCheck, SmallCheck, and Lazy SmallCheck are comple-
mentary approaches to property-based testing in Haskell.



Chapter 6

Conclusions

The first conclusion of this thesis is that lazy functional language implemen-
tations based can usefully exploit wide, parallel memories. This has been
demonstrated by a theoretical analysis of the number of clock-cycles con-
sumed by the Wide and Narrow Reducerons (Sections 2.6 and 2.7), and by
an experimental comparison between FPGA prototypes of the two (Section
2.9). The FPGA prototype of the Wide Reduceron is on average five-and-a-
half times faster than the narrow one across a range of benchmark programs.

The FPGA prototype of the Wide Reduceron has also been compared with
existing Haskell implementations running on a PC (Section 2.9). Despite
being clocked some thirty times slower than the PC, the FPGA prototype
performs better than mature bytecode interpreters and within a factor of
five (on non arithmetic-intensive programs) of an advanced optimising com-
piler. Advances in FPGA technology and further development of the Wide
Reduceron should reduce this gap (Section 2.10). One attractive goal for
future research is to utilise the wide, parallel memories to process many
nodes of a pure functional data structure simultaneously (Section 2.10.7).

Following standard practice in circuit design, the FPGA prototypes of the
Wide and Narrow Reducerons have been described using a combination of
structural and behavioural description. However, this has been done using
a hardware description language without built-in support for behavioural
description. This thesis has shown that behavioural description can actually
be done conveniently in a pure structural language with the help of a small
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library of higher-order, pure structural components (Chapter 3). Although
the library is simple and useful (Section 3.10), it needs to be improved with
respect to producing helpful error messages and obtaining understandable
feedback from low-level synthesis tools (Section 3.8).

The second conclusion of this thesis is that needed narrowing facilitates au-
tomatic property-based testing. This is supported by the observed ability
of Forward Reach, which is based on needed narrowing, to often generate
target-reaching inputs much more rapidly than Basic Reach, which is based
on exhaustive testing (Section 4.8). It is also supported by the observa-
tion that Forward Reach can sometimes find counter-examples to program
properties which cannot be found feasibly using automatic random testing
(Section 4.8). The benefit of needed narrowing is most apparent when the
source function is lazy, and this is often the case for program properties with
restrictive antecedents – a common pattern in property-based testing.

Although Forward and Backward Reach are both based on needed narrow-
ing, they often operate quite differently. One of the main differences is the
order in which they evaluate expressions, and this can have a big impact
on the sizes of the search spaces explored. Despite observing some advan-
tages and disadvantages of Forward and Backward Reach (Section 4.8), this
thesis is unable to make a general recommendation of one over the other;
sometimes the evaluation order introduced by Forward Reach is better than
that introduced by Backward Reach, and sometimes the reverse is true. A
promising avenue for future work is to adapt Backward Reach to solve mul-
tiple constraints simultaneously using Lindblad’s parallel conjunction tech-
nique (Section 4.10.4). This has the potential to yield a version of Reach
which is always better than any of the existing versions.

The final conclusion of this thesis is that needed narrowing can be usefully
simulated using a standard lazy evaluator. As a result, the ability of needed
narrowing to effectively test program properties can be captured in a library
for a standard lazy functional language. This has been demonstrated in
the development of Lazy SmallCheck (Section 5.4). Compared to Reach,
Lazy SmallCheck is much simpler to implement. Compared to the existing
testing libraries QuickCheck and SmallCheck, Lazy SmallCheck can avoid
the need to write custom generators in order to produce a good distribution
of relevant test data in a short amount of time (Section 5.9).



Appendix A

Implementation of Recipe

module Recipe
( Bit -- type Bit = Signal Bool
, Recipe -- instance Monad Recipe
, Var -- type Var
, val -- :: Var -> [Bit]
, newSig -- :: Int -> Recipe Var
, newReg -- :: Int -> Recipe Var
, skip -- :: Recipe ()
, tick -- :: Recipe ()
, tickN -- :: Int -> Recipe ()
, (<==) -- :: Var -> [Bit] -> Recipe ()
, (<=|) -- :: Var -> [Bit] -> Recipe ()
, cond -- :: Bit -> Recipe () -> Recipe () -> Recipe ()
, (|>) -- :: Bit -> Recipe () -> Recipe ()
, while -- :: Bit -> Recipe () -> Recipe ()
, doUntil -- :: Bit -> Recipe () -> Recipe ()
, forever -- :: Recipe () -> Recipe ()
, waitWhile -- :: Bit -> Recipe ()
, waitUntil -- :: Bit -> Recipe ()
, par -- :: [Recipe ()] -> Recipe ()
, follow -- :: Bit -> Recipe a -> (Bit, a)
) where

import Lava
import List

-- A shorter name for Lava’s boolean signals
type Bit = Signal Bool

-- Auxiliary functions
tree :: (a -> a -> a) -> [a] -> a
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tree f [x] = x
tree f (x:y:ys) = tree f (ys ++ [f x y])

pick :: [(Bit, [Bit])] -> [Bit]
pick xs = map (tree (<|>)) (transpose ys)
where ys = [map (b <&>) x | (b, x) <- xs]

mux2 :: Bit -> Bit -> Bit -> Bit
mux2 sel a b = (inv sel <&> a) <|> (sel <&> b)

row :: ((a, b) -> (c, a)) -> (a, [b]) -> ([c], a)
row circ (carryIn, []) = ([], carryIn)
row circ (carryIn, x:xs) = (y:ys, carryOut)
where (y, carry) = circ (carryIn, x)

(ys, carryOut) = row circ (carry, xs)

delayEn :: Bit -> Bit -> Bit -> Bit
delayEn init en inp = out
where out = delay init (mux2 (inv en) inp out)

regEn :: [Bit] -> Bit -> [Bit] -> [Bit]
regEn [] en inps = []
regEn (x:xs) en inps = delayEn x en y : regEn xs en ys
where y:ys = inps

setReset :: Bit -> Bit -> Bit -> Bit
setReset init s r = out
where q = delay init (out <&> inv r)

out = s <|> q

-- State monad
data State s a = State (s -> (s, a))

run :: State s a -> s -> (s, a)
run (State f) = f

instance Monad (State s) where
return a = State (\s -> (s, a))
c >>= f = State (\s -> case run c s of

(s’, a) -> run (f a) s’)

-- Recipe monad
type Recipe a = State (Bit, Env) a

skip :: Recipe ()
skip = return ()

tick :: Recipe ()
tick = State (\(start, env) -> ((delay low start, env), ()))
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tickN :: Int -> Recipe ()
tickN 0 = skip
tickN n = tick >> tickN (n-1)

cond :: Bit -> Recipe () -> Recipe () -> Recipe ()
cond cond p q = State (\(start, env) ->
let ((fin0, env0), _) = run p (start <&> cond, env)

((fin1, env1), _) = run q (start <&> inv cond, env0)
in ((fin0 <|> fin1, env1), ()))

infixr 4 |>
(|>) :: Bit -> Recipe () -> Recipe ()
guard |> p = cond guard p skip

while :: Bit -> Recipe () -> Recipe ()
while cond p = State (\(start, env) ->
let ((fin, env’), a) = run p (cond <&> ready, env)

ready = start <|> fin
in ((inv cond <&> ready, env’), a))

doUntil :: Bit -> Recipe () -> Recipe ()
doUntil cond p = State (\(start, env) ->
let ((fin, env’), b) = run p (ready, env)

ready = start <|> (fin <&> inv cond)
in ((fin <&> cond, env’), b))

forever :: Recipe () -> Recipe ()
forever p = while high p

waitWhile :: Bit -> Recipe ()
waitWhile cond = while cond tick

waitUntil :: Bit -> Recipe ()
waitUntil cond = while (inv cond) tick

par :: [Recipe ()] -> Recipe ()
par ps = State (\(start, env) ->
let (fins, env’) = row circ (env, ps)

circ (env, p) = fst (run p (start, env))
fin = tree (<&>) (map (\s -> setReset low s fin) fins)

in ((fin, env’), ()))

-- Environment
type VarId = Int

type Input = (Bit, [Bit])

data Env = Env { freshId :: VarId
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, readEnv :: [(VarId, Input)]
, writeEnv :: [(VarId, Input)] }

-- Mutable variables
data Var = Var { varId :: VarId, val :: [Bit] }

newVar :: ([Input] -> [Bit]) -> Recipe Var
newVar f = State (\(start, env) ->
let v = freshId env

inps = [i | (w, i) <- readEnv env, v == w]
in ((start, env { freshId = v+1 }), Var v (f inps)))

newReg :: Int -> Recipe Var
newReg width = newVar reg
where reg inps = regEn (replicate width low) en (pick inps)

where en = tree (<|>) (map fst inps)

newSig :: Int -> Recipe Var
newSig width = newVar pick

-- Assignment
infix 5 <==
(<==) :: Var -> [Bit] -> Recipe ()
r <== x = State (\(start, env) ->
let wenv = (varId r, (start, x)) : writeEnv env
in ((start, env { writeEnv = wenv }), ()))

infix 5 <=|
(<=|) :: Var -> [Bit] -> Recipe ()
r <=| x = (r <== x) >> tick

-- Top-level
follow :: Bit -> Recipe a -> (Bit, a)
follow start r = (fin, a)
where ((fin, env), a) = run r (start, initialEnv)

initialEnv = Env 0 (writeEnv env) []
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Implementation of

Lazy SmallCheck

module LazySmallCheck
( Serial(..) -- :: class
, Series -- :: type Series a = Int -> Cons a
, Cons -- :: *
, cons -- :: a -> Series a
, (><) -- :: Series (a -> b) -> Series a -> Series b
, empty -- :: Series a
, (\/) -- :: Series a -> Series a -> Series a
, drawnFrom -- :: [a] -> Cons a
, cons0 -- :: a -> Series a
, cons1 -- :: Serial a => (a -> b) -> Series b
, cons2 -- :: (Serial a, Serial b) =>

-- (a -> b -> c) -> Series c
, cons3 -- :: ...
, cons4 -- :: ...
, Testable -- :: class
, depthCheck -- :: Testable a => Int -> a -> IO ()
, smallCheck -- :: Testable a => Int -> a -> IO ()
, (==>) -- :: Bool -> Bool -> Bool
, Property -- :: *
, lift -- :: Bool -> Property
, neg -- :: Property -> Property
, (*&*) -- :: Property -> Property -> Property
, (*|*) -- :: Property -> Property -> Property
, (*=>*) -- :: Property -> Property -> Property
, (*=*) -- :: Property -> Property -> Property
) where
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import Control.Monad
import Control.Exception
import System.Exit

infixr 0 ==>, *=>*
infixr 3 \/, *|*
infixl 4 ><, *&*

type Pos = [Int]
data Term = Var Pos Type | Ctr Int [Term]
data Type = SumOfProd [[Type]]
type Series a = Int -> Cons a
data Cons a = Type :*: ([[Term] -> a])

class Serial a where
series :: Series a

-- Series combinators
cons :: a -> Series a
cons a d = SumOfProd [[]] :*: [const a]

empty :: Series a
empty d = SumOfProd [] :*: []

(><) :: Series (a -> b) -> Series a -> Series b
(f >< a) d = SumOfProd [ta:p | shallow, p <- ps] :*: cs
where
SumOfProd ps :*: cfs = f d
ta :*: cas = a (d-1)
cs = [\(x:xs) -> cf xs (conv cas x) | shallow, cf <- cfs]
shallow = d > 0 && nonEmpty ta

nonEmpty :: Type -> Bool
nonEmpty (SumOfProd ps) = not (null ps)

(\/) :: Series a -> Series a -> Series a
(a \/ b) d = SumOfProd (ssa ++ ssb) :*: (ca ++ cb)
where
SumOfProd ssa :*: ca = a d
SumOfProd ssb :*: cb = b d

conv :: [[Term] -> a] -> Term -> a
conv cs (Var p _) = error (’\0’:map toEnum p)
conv cs (Ctr i xs) = (cs !! i) xs

drawnFrom :: [a] -> Cons a
drawnFrom xs = SumOfProd (map (const []) xs) :*: map const xs
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-- Helpers, a la SmallCheck
cons0 f = cons f
cons1 f = cons f >< series
cons2 f = cons f >< series >< series
cons3 f = cons f >< series >< series >< series
cons4 f = cons f >< series >< series >< series >< series

-- Standard instances
instance Serial () where
series = cons0 ()

instance Serial Bool where
series = cons0 False \/ cons0 True

instance Serial a => Serial (Maybe a) where
series = cons0 Nothing \/ cons1 Just

instance (Serial a, Serial b) => Serial (Either a b) where
series = cons1 Left \/ cons1 Right

instance Serial a => Serial [a] where
series = cons0 [] \/ cons2 (:)

instance (Serial a, Serial b) => Serial (a, b) where
series = cons2 (,) . (+1)

instance (Serial a, Serial b, Serial c) =>
Serial (a, b, c) where

series = cons3 (,,) . (+1)

instance (Serial a, Serial b, Serial c, Serial d) =>
Serial (a, b, c, d) where

series = cons4 (,,,) . (+1)

instance Serial Int where
series d = drawnFrom [-d..d]

instance Serial Integer where
series d = drawnFrom (map toInteger [-d..d])

instance Serial Char where
series d = drawnFrom (take (d+1) [’a’..])

instance Serial Float where
series d = drawnFrom (floats d)

instance Serial Double where
series d = drawnFrom (floats d)
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floats :: RealFloat a => Int -> [a]
floats d = [ encodeFloat sig exp

| sig <- map toInteger [-d..d]
, exp <- [-d..d]
, odd sig || sig == 0 && exp == 0
]

-- Term refinement
refine :: Term -> Pos -> [Term]
refine (Var p (SumOfProd ss)) [] = new p ss
refine (Ctr c xs) p = map (Ctr c) (refineList xs p)

refineList :: [Term] -> Pos -> [[Term]]
refineList xs (i:is) = [ls ++ y:rs | y <- refine x is]
where (ls, x:rs) = splitAt i xs

new :: Pos -> [[Type]] -> [Term]
new p ps = [ Ctr c (zipWith (\i t -> Var (p++[i]) t) [0..] ts)

| (c, ts) <- zip [0..] ps ]

-- Find total instantiations of a partial value
total :: Term -> [Term]
total val = tot val where
tot (Ctr c xs) = [Ctr c ys | ys <- mapM tot xs]
tot (Var p (SumOfProd ss)) = [y | x <- new p ss, y <- tot x]

-- Answers
answer :: a -> (a -> IO b) -> (Pos -> IO b) -> IO b
answer a known unknown =
do res <- try (evaluate a)

case res of
Right b -> known b
Left (ErrorCall (’\0’:p)) -> unknown (map fromEnum p)
Left e -> throw e

-- Refute
refute :: Result -> IO Int
refute r = ref (args r)
where
ref xs = eval (apply r xs) known unknown
where
known True = return 1
known False = report
unknown p = sumMapM ref 1 (refineList xs p)

report =
do putStrLn "Counter example found:"

mapM_ putStrLn $ zipWith ($) (showArgs r)
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$ head [ys | ys <- mapM total xs]
exitWith ExitSuccess

sumMapM :: (a -> IO Int) -> Int -> [a] -> IO Int
sumMapM f n [] = return n
sumMapM f n (a:as) = seq n (do m <- f a ; sumMapM f (n+m) as)

-- Properties with parallel conjunction
data Property =

Bool Bool
| Neg Property
| And Property Property
| ParAnd Property Property
| Eq Property Property

eval :: Property -> (Bool -> IO a) -> (Pos -> IO a) -> IO a
eval p k u = answer p (\p -> eval’ p k u) u

eval’ (Bool b) k u = answer b k u
eval’ (Neg p) k u = eval p (k . not) u
eval’ (And p q) k u =
eval p (\b-> if b then eval q k u else k b) u

eval’ (Eq p q) k u =
eval p (\b-> if b then eval q k u else eval (Neg q) k u) u

eval’ (ParAnd p q) k u =
eval p (\b-> if b then eval q k u else k b) unknown

where
unknown pos = eval q (\b-> if b then u pos else k b)

(\_-> u pos)

lift b = Bool b
neg p = Neg p
p *&* q = ParAnd p q
p *|* q = neg (neg p *&* neg q)
p *=>* q = neg (p *&* neg q)
p *=* q = Eq p q

-- Boolean implication
(==>) :: Bool -> Bool -> Bool
False ==> _ = True
True ==> x = x

-- Testable properties
data Result =
Result { args :: [Term]

, showArgs :: [Term -> String]
, apply :: [Term] -> Property
}
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data P = P (Int -> Int -> Result)

run :: Testable a => ([Term] -> a) -> Int -> Int -> Result
run a = f where P f = property a

class Testable a where
property :: ([Term] -> a) -> P

instance Testable Bool where
property apply = P $ \n d ->
Result [] [] (Bool . apply . reverse)

instance Testable Property where
property apply = P $ \n d -> Result [] [] (apply . reverse)

instance (Show a, Serial a, Testable b) =>
Testable (a -> b) where

property f = P $ \n d ->
let t :*: c = series d

c’ = conv c
r = run (\(x:xs) -> f xs (c’ x)) (n+1) d

in r { args = Var [n] t : args r
, showArgs = (show . c’) : showArgs r }

-- Top-level interface
depthCheck :: Testable a => Int -> a -> IO ()
depthCheck d p =
do n <- refute $ run (const p) 0 d

putStrLn $ "OK, required " ++ show n ++
" tests at depth " ++ show d ++ "."

smallCheck :: Testable a => Int -> a -> IO ()
smallCheck d p = mapM_ (‘depthCheck‘ p) [0..d]
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