BV THON

- R
T |

e
i e

. Table of
Contents

Text Processing in Python
ByDavid Mertz
Start Reading »
Publisher: Addison Wesley
Pub Date: June 06, 2003
ISBN: 0-321-11254-7
Pages: 544

Text Processing in Python is an example-driven, hands-on tutorial that
carefully teaches programmers how to accomplish numerous text
processing tasks using the Python language. Filled with concrete
examples, this book provides efficient and effective solutions to specific
text processing problems and practical strategies for dealing with all types
of text processing challenges.

Text Processing in Python begins with an introduction to text processing
and contains a quick Python tutorial to get you up to speed. It then delves
into essential text processing subject areas, including string operations,
regular expressions, parsers and state machines, and Internet tools and
techniques. Appendixes cover such important topics as data compression
and Unicode. A comprehensive index and plentiful cross-referencing offer
easy access to available information. In addition, exercises throughout the
book provide readers with further opportunity to hone their skills either on
their own or in the classroom. A companion Web site
(http://gnosis.cx/TPiP) contains source code and examples from the book.

Here is some of what you will find in thie book:
¢ When do I use formal parsers to process structured and semi-
structured data? Page 257
e How do | work with full text indexing? Page 199

¢ What patterns in text can be expressed using regular expressions?
Page 204

e How do I find a URL or an email address in text? Page 228
e How do I process a report with a concrete state machine? Page 274
e How do | parse, create, and manipulate internet formats? Page 345
e How do | handle lossless and lossy compression? Page 454

e How do I find codepoints in Unicode? Page 465

Text Processing in Python

Tl PROLEssinG in
PYT HGH ByDavid Mertz
= Publisher: Addison Wesley
Pub Date: June 06, 2003
ISBN: 0-321-11254-7

. Table of Pages: 544
Contents

Copyright

Preface
Section 0.1. What Is Text Processing?
Section 0.2. The Philosophy of Text Processing
Section 0.3. What You'll Need to Use This Book
Section 0.4. Conventions Used in This Book
Section 0.5. A Word on Source Code Examples
Section 0.6. External Resources

Acknowledgments
Chapter 1. Python Basics
Section 1.1. Techniques and Patterns
Section 1.2. Standard Modules
Section 1.3. Other Modules in the Standard Library

Chapter 2. Basic String Operations
Section 2.1. Some Common Tasks
Section 2.2. Standard Modules
Section 2.3. Solving Problems

Chapter 3. Regular Expressions
Section 3.1. A Regular Expression Tutorial
Section 3.2. Some Common Tasks
Section 3.3. Standard Modules

Chapter 4. Parsers and State Machines
Section 4.1. An Introduction to Parsers
Section 4.2. An Introduction to State Machines
Section 4.3. Parser Libraries for Python

Chapter 5. Internet Tools and Techniques
Section 5.1. Working with Email and Newsgroups
Section 5.2. World Wide Web Applications
Section 5.3. Synopses of Other Internet Modules
Section 5.4. Understanding XML

Appendix A. A Selective and Impressionistic Short Review of Python
Section A.1. What Kind of Language Is Python?
Section A.2. Namespaces and Bindings
Section A.3. Datatypes
Section A.4. Flow Control
Section A.5. Functional Programming

Start Reading »

Appendix B. A Data Compression Primer
Section B.1. Introduction
Section B.2. Lossless and Lossy Compression
Section B.3. A Data Set Example
Section B.4. Whitespace Compression
Section B.5. Run-Length Encoding
Section B.6. Huffman Encoding
Section B.7. Lempel Ziv-Compression
Section B.8. Solving the Right Problem
Section B.9. A Custom Text Compressor
Section B.10. References

Appendix C. Understanding Unicode
Section C.1. Some Background on Characters
Section C.2. What Is Unicode?
Section C.3. Encodings
Section C.4. Declarations
Section C.5. Finding Codepoints
Section C.6. Resources

Appendix D. A State Machine for Adding Markup to Text
Appendix E. Glossary

Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designators appear in this book, and Addison-Wesley
was aware of the trademark claim, the designations have been printed in initial capital
letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and
special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data

Mertz, David.
Text processing in Python / David Mertz.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-11254-7 (alk. Paper)
1. Text processing (Computer science) 2. Python (Computer program language) 1.
Title.

QA76.9.T48M47 2003
005.13'-dc21
2003043686

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

123456789 10-CRS-0706050403

First printing, June 2003

~ 4 Prewvious MNext b
Team-Fly o
Top

4 Prawious MNext b

N
Team-Fly a

Text Processing in Python
By David Mertz

By o

ee=_==4 Table of Contents

(7 T -!' ks

L F

Preface

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—Ilet's do more of those!

—Tim Peters, "The Zen of Python"

- 4 Prewious MNext b
Team-Fly -
Top

4 Prawious MNext b

o
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Preface

0.1 What Is Text Processing?

At the broadest level text processing is simply taking textual information and doing
something with it. This doing might be restructuring or reformatting it, extracting smaller
bits of information from it, algorithmically modifying the content of the information, or
performing calculations that depend on the textual information. The lines between "text" and
the even more general term "data" are extremely fuzzy; at an approximation, "text" is just
data that lives in forms that people can themselves read—at least in principle, and maybe
with a bit of effort. Most typically computer "text" is composed of sequences of bits that
have a "natural” representation as letters, numerals, and symbols; most often such text is
delimited (if delimited at all) by symbols and formatting that can be easily pronounced as
"next datum."

The lines are fuzzy, but the data that seems least like text—and that, therefore, this
particular book is least concerned with—is the data that makes up "multimedia” (pictures,
sounds, video, animation, etc.) and data that makes up Ul "events" (draw a window, move
the mouse, open an application, etc.). Like I said, the lines are fuzzy, and some
representations of the most nontextual data are themselves pretty textual. But in general,
the subject of this book is all the stuff on the near side of that fuzzy line.

Text processing is arguably what most programmers spend most of their time doing. The
information that lives in business software systems mostly comes down to collections of
words about the application domain—maybe with a few special symbols mixed in. Internet
communications protocols consist mostly of a few special words used as headers, a little bit
of constrained formatting, and message bodies consisting of additional wordish texts.
Configuration files, log files, CSV and fixed-length data files, error files, documentation, and
source code itself are all just sequences of words with bits of constraint and formatting
applied.

Programmers and developers spend so much time with text processing that it is easy to
forget that that is what we are doing. The most common text processing application is
probably your favorite text editor. Beyond simple entry of new characters, text editors
perform such text processing tasks as search/replace and copy/paste, which—given guided
interaction with the user—accomplish sophisticated manipulation of textual sources. Many
text editors go farther than these simple capabilities and include their own complete
programming systems (usually called "macro processing™); in those cases where editors
include "Turing-complete"” macro languages, text editors suffice, in principle, to accomplish
anything that the examples in this book can.

After text editors, a variety of text processing tools are widely used by developers. Tools like
"File Find" under Windows, or "grep" on Unix (and other platforms), perform the basic chore
oflocating text patterns. "Little languages" like sed and awk perform basic text manipulation
(or even nonbasic). A large number of utilities—especially in Unix-like

environments—perform small custom text processing tasks: wc, sort, tr, md5sum, uniq,
split, strings, and many others.

At the top of the text processing food chain are general-purpose programming languages,
such as Python. | wrote this book on Python in large part because Python is such a clear,
expressive, and general-purpose language. But for all Python's virtues, text editors and
"little™ utilities will always have an important place for developers "getting the job done.” As
simple as Python is, it is still more complicated than you need to achieve many basic tasks.
But once you get past the very simple, Python is a perfect language for making the difficult
things possible (and it is also good at making the easy things simple).

- 4 Prawious MNext b
Team-Fly a
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Preface

0.2 The Philosophy of Text Processing

Hang around any Python discussion groups for a little while, and you will certainly be dazzled
by the contributions of the Python developer, Tim Peters (and by a number of other
Pythonistas). His "Zen of Python" captures much of the reason that | choose Python as the
language in which to solve most programming tasks that are presented to me. But to
understand what is most special about text processing as a programming task, it is worth
turning to Perl creator Larry Wall's cardinal virtues of programming: laziness, impatience,
hubris.

What sets text processing most clearly apart from other tasks computer programmers
accomplish is the frequency with which we perform text processing on an ad hoc or "one-
shot" basis. One rarely bothers to create a one-shot GUI interface for a program. You even
less frequently perform a one-shot normalization of a relational database. But every
programmer with a little experience has had numerous occasions where she has received a
trickle of textual information (or maybe a deluge of it) from another department, from a
client, from a developer working on a different project, or from data dumped out of a DBMS;
the problem in such cases is always to "process” the text so that it is usable for your own
project, program, database, or work unit. Text processing to the rescue. This is where the
virtue of impatience first appears—we just want the stuff processed, right now!

But text processing tasks that were obviously one-shot tasks that we knew we would never
need again have a habit of coming back like restless ghosts. It turns out that that client
needs to update the one-time data they sent last month. Or the boss decides that she would
really like a feature of that text summarized in a slightly different way. The virtue of laziness
is our friend here—with our foresight not to actually delete those one-shot scripts, we have
them available for easy reuse and/or modification when the need arises.

Enough is not enough, however. That script you reluctantly used a second time turns out to
be quite similar to a more general task you will need to perform frequently, perhaps even
automatically. You imagine that with only a slight amount of extra work you can generalize
and expand the script, maybe add a little error checking and some runtime options while you
are at it; and do it all in time and under budget (or even as a side project, off the budget).
Obviously, this is the voice of that greatest of programmers’ virtues: hubris.

The goal of this book is to make its readers a little lazier, a smidgeon more impatient, and a
whole bunch more hubristic. Python just happens to be the language best suited to the
study of virtue.

4 Prewvious MNext b
Team-Fly - 5
Top

4 Pravious MNext b

o
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Preface

0.3 What You'll Need to Use This Book

This book is ideally suited for programmers who are a little bit familiar with Python, and
whose daily tasks involve a fair amount of text processing chores. Programmers who have
some background in other programming languages—especially with other "scripting"
languages—should be able to pick up enough Python to get going by reading Appendix A.

While Python is a rather simple language at heart, this book is not intended as a tutorial on
Python for nonprogrammers. Instead, this book is about two other things: getting the job
done, pragmatically and efficiently; and understanding why what works works and what
doesn't work doesn't work, theoretically and conceptually. As such, we hope this book can
be useful both to working programmers and to students of programming at a level just past
the introductory.

Many sections of this book are accompanied by problems and exercises, and these in turn
often pose questions for users. In most cases, the answers to the listed questions are
somewhat open-ended—there are no simple right answers. | believe that working through
the provided questions will help both self-directed and instructor-guided learners; the
questions can typically be answered at several levels and often have an underlying subtlety.
Instructors who wish to use this text are encouraged to contact the author for assistance in
structuring a curriculum involving it. All readers are encouraged to consult the book's Web
site to see possible answers provided by both the author and other readers; additional
related questions will be added to the Web site over time, along with other resources.

The Python language itself is conservative. Almost every Python script written ten years ago
for Python 1.0 will run fine in Python 2.3+. However, as versions improve, a certain number
of new features have been added. The most significant changes have matched the version
number changes—Python 2.0 introduced list comprehensions, augmented assignments,
Unicode support, and a standard XML package. Many scripts written in the most natural and
efficient manner using Python 2.0+ will not run without changes in earlier versions of
Python.

The general target of this book will be users of Python 2.1+, but some 2.2+ specific features
will be utilized in examples. Maybe half the examples in this book will run fine on Python
1.5.1+ (and slightly fewer on older versions), but examples will not necessarily indicate their
requirement for Python 2.0+ (where it exists). On the other hand, new features introduced
with Python 2.1 and above will only be utilized where they make a task significantly easier,
or where the feature itself is being illustrated. In any case, examples requiring versions past
Python 2.0 will usually indicate this explicitly.

In the case of modules and packages—whether in the standard library or third-party—we
will explicitly indicate what Python version is required and, where relevant, which version
added the module or package to the standard library. In some cases, it will be possible to

use later standard library modules with earlier Python versions. In important cases, this
possibility will be noted.

- 4 Previous MNext b
Team-Fly o
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Preface

0.4 Conventions Used in This Book

Several typographic conventions are used in main text to guide the readers eye. Both block
and inline literals are presented in a fixed font, including names of utilities, URLs, variable
names, and code samples. Names of objects in the standard library, however, are presented
in italics. Names of modules and packages are printed in a sans serif typeface. Heading
come in several different fonts, depending on their level and purpose.

All constants, functions, and classes in discussions and cross-references will be explicitly
prepended with their namespace (module). Methods will additionally be prepended with their
class. In some cases, code examples will use the local namespace, but a preference for
explicit namespace identification will be present in sample code also. For example, a
reference might read:

See Atso: email.Generator.DecodedGenerator.flatten() 351; raw_input() 446;
tempfile.mktemp()71;

The first is a class method in the email.Generator module; the second, a built-in function;
the last, a function in the tempfile module.

In the special case of built-in methods on types, the expression for an empty type object will
be used in the style of a namespace modifier. For example:

Methods of built-in types include [].sort(), " ".islower(), {}.keys(), and
(lambda:1).func_code.

The file object type will be indicated by the name FILE in capitals. A reference to a file object
method will appear as, for example:

See Atso: FILE.flush() 16;

Brief inline illustrations of Python concepts and usage will be taken from the Python
interactive shell. This approach allows readers to see the immediate evaluation of
constructs, much as they might explore Python themselves. Moreover, examples presented
in this manner will be self-sufficient (not requiring external data), and may be entered—with
variations—by readers trying to get a grasp on a concept. For example:

>>> 13/ 7 # integer division
1

>>> 13/7. # float division
1.8571428571428572

In documentation of module functions, where named arguments are available, they are
listed with their default value. Optional arguments are listed in square brackets. These
conventions are also used in the Python Library Reference. For example:

foobar. span(s, val =23 [,taste="spicy"])

The function foobar.spam() uses the argument s to ...

If a named argument does not have a specifiable default value, the argument is listed
followed by an equal sign and ellipsis. For example:

foobar. baz(string=..., maxlen=...)

Thefoobar.baz() function ...

With the introduction of Unicode support to Python, an equivalence between a character and
a byte no longer holds in all cases. Where an operation takes a numeric argument affecting
a string-like object, the documentation will specify whether characters or bytes are being
counted. For example:

Operation A reads num bytes from the buffer. Operation B reads num characters from
the buffer.

The first operation indicates a number of actual 8-bit bytes affected. The second operation
indicates an indefinite number of bytes are affected, but that they compose a number of
(maybe multibyte) characters.

~— 4 Prewious Next Pk
Team-Fly 3

Top

4 Pravious MNext b

N
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Preface

0.5 A Word on Source Code Examples

First things first. All the source code in this book is hereby released to the public domain.
You can use it however you like, without restriction. You can include it in free software, or in
commercial/proprietary projects. Change it to your heart's content, and in any manner you
want. If you feel like giving credit to the author (or sending him large checks) for code you
find useful, that is fine—but no obligation to do so exists.

All the source code in this book, and various other public domain examples, can be found at
the book's Web site. If such an electronic form is more convenient for you, we hope this
helps you. In fact, if you are able, you might benefit from visiting this location, where you
might find updated versions of examples or other useful utilities not mentioned in the book.

First things out of the way, let us turn to second things. Little of the source code in this book
is intended as a final say on how to perform a given task. Many of the examples are easy
enough to copy directly into your own program, or to use as standalone utilities. But the real
goal in presenting the examples is educational. We really hope you will think about what the
examples do, and why they do it the way they do. In fact, we hope readers will think of
better, faster, and more general ways of performing the same tasks. If the examples work
their best, they should be better as inspirations than as instructions.

- 4 Pravious MNext b
Team-Fly - 5
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
H’ By David Mertz

PYTHO
i 2= ..-:':"i.h' Table of Contents
S

Preface

0.6 External Resources

0.6.1 General Resources

A good clearinghouse for resources and links related to this book is the book's Web site.
Over time, | will add errata and additional examples, questions, answers, utilities, and so on
to the site, so check it from time to time:

<http://gnosis.cx/TPiP>

The first place you should probably turn for any question on Python programming (after this
book), is:

<http://www.python.org/>

The Python newsgroup <comp.lang.python> is an amazingly useful resource, with
discussion that is generally both friendly and erudite. You may also post to and follow the
newsgroup via a mirrored mailing list:

<http://mail.python.org/mailman/listinfo/python-list>

0.6.2 Books

This book generally aims at an intermediate reader. Other Python books are better
introductory texts (especially for those fairly new to programming generally). Some good
introductory texts are:

Core Python Programming , Wesley J. Chun, Prentice Hall, 2001. ISBN: 0-130-26036-3.
Learning Python , Mark Lutz & David Ascher, O'Reilly, 1999. ISBN: 1-56592-464-9.

The Quick Python Book , Daryl Harms & Kenneth McDonald, Manning, 2000. ISBN: 1-
884777-74-0.

As introductions, | would generally recommend these books in the order listed, but learning
styles vary between readers.

Two texts that overlap this book somewhat, but focus more narrowly on referencing the
standard library, are:

Python Essential Reference, Second Edition , David M. Beazley, New Riders, 2001.

ISBN: 0-7357-1091-0.
Python Standard Library , Fredrik Lundh, O'Reilly, 2001. ISBN: 0-596-00096-0.

For coverage of XML, at a far more detailed level than this book has room for, is the
excellent text:

Python & XML , Christopher A. Jones & Fred L. Drake, Jr., O'Reilly, 2002. ISBN: 0-596-
00128-2.

0.6.3 Software Directories

Currently, the best Python-specific directory for software is the Vaults of Parnassus:
<http://www.vex.net/parnassus/>

SourceForge is a general open source software resource. Many projects—Python and
otherwise—are hosted at that site, and the site provides search capabilities, keywords,
category browsing, and the like:

<http://sourceforge.net/>

Freshmeat is another widely used directory of software projects (mostly open source). Like
the Vaults of Parnassus, Freshmeat does not directly host project files, but simply acts as an
information clearinghouse for finding relevant projects:

<http://freshmeat.net/>

0.6.4 Specific Software

A number of Python projects are discussed in this book. Most of those are listed in one or
more of the software directories mentioned above. A general search engine like Google,
<http://google.com>, is also useful in locating project home pages. Below are a number of
project URLs that are current at the time of this writing. If any of these fall out of date by
the time you read this book, try searching in a search engine or software directory for an
updated URL.

The author's Gnosis Utilities contains a number of Python packages mentioned in this book,
includinggnosis.indexer, gnosis.xml.indexer, gnosis.xml.pickle, and others. You can
download the most current version from:

<http://gnosis.cx/download/Gnosis_Utils-current.tar.gz>

eGenix.com provides a number of useful Python extensions, some of which are documented
in this book. These include mx.TextTools, mx.DateTime, severeral new datatypes, and other
facilities:

<http://egenix.com/files/python/eGenix-mx-Extensions.htmi>
SimpleParse is hosted by SourceForge, at:
<http://simpleparse.sourceforge.net/>
ThePLY parsers has a home page at:

<http://systems.cs.uchicago.edu/ply/ply.htmi>

4 Prawious MNext b
Team-Fly -
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

By o

ee=_==4 Table of Contents

(7 T -!' ks

I o

Acknowledgments

Portions of this book are adapted from my column Charming Python and other writing first
published by IBM developerWorks , <http://ibm.com/developerWorks/>. | wish to thank IBM
for publishing me, for granting permission to use this material, and most especially for
maintaining such a general and useful resource for programmers.

The Python community is a wonderfully friendly place. | made drafts of this book, while in
progress, available on the Internet. | received numerous helpful and kind responses, many
that helped make the book better than it would otherwise have been.

In particular, the following folks made suggestions and contributions to the book while in
draft form. | apologize to any correspondents | may have omitted from the list; your advice
was appreciated even if momentarily lost in the bulk of my saved email.

Sam Penrose <sam@ddmweb.com>
UserDict string substitution hacks.
Roman Suzi <rnd@onego.ru>
More on string substitution hacks.
Samuel S. Chessman <chessman@tux.org=>
Helpful observations of various typos.
John W. Krahn <krahnj@acm.org>
Helpful observations of various typos.
Terry J. Reedy <tjreedy@udel.edu>
Found lots of typos and made good organizational suggestions.
Amund Tveit <amund.tveit@idi.ntnu.no>
Pointers to word-based Huffman compression for Appendix B.
Pascal Oberndoerfer <oberndoerfer@mac.com=>
Suggestions about focus of parser discussion.
Bob Weiner <bob@deepware.com=>

Suggestions about focus of parser discussion.

Max M <maxm@mxm.dk>

Thought provocation about XML and Unicode entities.
John Machin <sjmachin@lexicon.net>

Nudging to improve sample regular expression functions.
Magnus Lie Hetland <magnus@hetland.org>

Called use of default "static" arguments "spooky code" and failed to appreciate the
clarity of the <> operator.

Tim Andrews <Tim.Andrews@adpro.com.au=
Found lots of typos in Chapters 3 and 2.
Marc-Andre Lemburg <mal@lemburg.com=>

Wrotemx.TextTools in the first place and made helpful comments on my coverage of
it.

Mike C. Fletcher <mcfletch@users.sourceforge.net>

WroteSimpleParse in the first place and made helpful comments on my coverage of it.
Lorenzo M. Catucci <lorenzo@sancho.ccd.uniroma?Z2.it>

Suggested glossary entries for CRC and hash.
David LeBlanc <whisper@oz.net>

Various organizational ideas while in draft. Then he wound up acting as one of my
technical reviewers and provided a huge amount of helpful advice on both content and
organization.

Mike Dussault <dussault@valvesoftware.com=>
Found an error in combinatorial HOFs and made good suggestions on Appendix A.
Guillermo Fernandez <guillermo.fernandez@epfl.ch>
Advice on clarifying explanations of compression techniques.
Roland Gerlach <roland@rkga.com.au=>
Typos are boundless, but a bit less for his email.
Antonio Cuni <cuni@programmazione.it>

Found error in original Schwartzian sort example and another in map()/zip()
discussion.

Michele Simionato <mis6+@pitt.edu=>

Acted as a nice sounding board for deciding on final organization of the appendices.
Jesper Hertel <jh@magnus.dk>

Was frustrated that | refused to take his well-reasoned advice for code conventions.

Andrew Maclntyre <andymac@bullseye.apana.org.au=>

Did not comment on this book, but has maintained the OS/2 port of Python for several
versions. This made my life easier by letting me test and write examples on my
favorite machine.

Tim Churches <tchur@optushome.com.au>

A great deal of subversive entertainment, despite not actually fixing anything in this
book.

Moshe Zadka <moshez@twistedmatrix.com>

Served as technical reviewer of this book in manuscript and brought both erudition and
an eye for detail to the job.

Sergey Konozenko <sergey_konozenko@ieee.org=>

Boosted my confidence in final preparation with the enthusiasm he brought to his
technical review—and even more so with the acuity with which he "got" my attempts to
impose mental challenge on my readers.

- 4 Prawious MNext b
Team-Fly a
Top

4 Prawious MNext b

N
Team-Fly a

Text Processing in Python
By David Mertz

By o

ee=_==4 Table of Contents

e ——

Chapter 1. Python Basics

This chapter discusses Python capabilities that are likely to be used in text processing
applications. For an introduction to Python syntax and semantics per se, readers might want
to skip ahead to Appendix A (A Selective and Impressionistic Short Review of Python); Guido
van Rossum's Python Tutorial at <http://python.org/doc/current/tut/tut.html> is also quite
excellent. The focus here occupies a somewhat higher level: not the Python language
narrowly, but also not yet specific to text processing.

InSection 1.1, I look at some programming techniques that flow out of the Python language
itself, but that are usually not obvious to Python beginners—and are sometimes not obvious
even to intermediate Python programmers. The programming techniques that are discussed
are ones that tend to be applicable to text processing contexts—other programming tasks

are likely to have their own tricks and idioms that are not explicitly documented in this book.

InSection 1.2, | document modules in the Python standard library that you will probably use
in your text processing application, or at the very least want to keep in the back of your
mind. A number of other Python standard library modules are far enough afield of text
processing that you are unlikely to use them in this type of application. Such remaining
modules are documented very briefly with one- or two-line descriptions. More details on
each module can be found with Python's standard documentation.

- 4 Prewious MNext b
Team-Fly -

Top

~— 4 Pravious MNeaxt b
Team-Fly a

ey Text Processing in Python
"PY'.THOH By David Mertz
| EE

==H Table of Contents

Chapter 1. Python Basics

1.1 Techniques and Patterns

1.1.1 Utilizing Higher-Order Functions in Text Processing

This first topic merits a warning. It jumps feet-first into higher-order functions (HOFs) at a fairly
sophisticated level and may be unfamiliar even to experienced Python programmers. Do not be
too frightened by this first topic—you can understand the rest of the book without it. If the
functional programming (FP) concepts in this topic seem unfamiliar to you, | recommend you
jump ahead to Appendix A, especially its final section on FP concepts.

In text processing, one frequently acts upon a series of chunks of text that are, in a sense,
homogeneous. Most often, these chunks are lines, delimited by newline characters—but
sometimes other sorts of fields and blocks are relevant. Moreover, Python has standard
functions and syntax for reading in lines from a file (sensitive to platform differences).
Obviously, these chunks are not entirely homogeneous—they can contain varying data. But at
the level we worry about during processing, each chunk contains a natural parcel of instruction
or information.

As an example, consider an imperative style code fragment that selects only those lines of text
that match a criterion isCond():

selected = [] # tenmp list to hold matches
fp = open(fil enane):
for line in fp.readlines(): # Py2.2 -> "for line in fp:"
if isCond(line): # (2.2 version reads lazily)
sel ect ed. append(Iline)
del line # Cl eanup transient variable

There is nothing wrong with these few lines (see xreadlines on efficiency issues). But it does
take a few seconds to read through them. In my opinion, even this small block of lines does not
parse as a single thought , even though its operation really is such. Also the variable line is
slightly superfluous (and it retains a value as a side effect after the loop and also could
conceivably step on a previously defined value). In FP style, we could write the simpler:

selected = filter(isCond, open(filenane).readlines())
Py2.2 -> filter(isCond, open(filenane))

In the concrete, a textual source that one frequently wants to process as a list of lines is a log
file. All sorts of applications produce log files, most typically either ones that cause system

changes that might need to be examined or long-running applications that perform actions
intermittently. For example, the PythonLabs Windows installer for Python 2.2 produces a file
called INSTALL.LOG that contains a list of actions taken during the install. Below is a highly
abridged copy of this file from one of my computers:

INSTALL.LOG sample data file

Title: Python 2.2

Source: C:\ DOANLOAD\ PYTHON- 2. 2. EXE | 02-23-2002 | 01:40:54 | 7074248
Made Dir: D:\Python22

File Copy: D:\Python22\ UNW SE. EXE | 05-24-2001 | 12:59:30 | |

RegDB Key: Software\M crosoft\ W ndows\ Current Version\ Uninstal [\Py. ..
RegDB Val : Python 2.2

File Copy: D:\Python22\wixpopen.exe | 12-21-2001 | 12:22:34 | |

Made Dir: D\ PYTHON22\ DLLs

File Overwite: C\WNDOAS\ SYSTEM MSVCRT.DLL | | | | 295000 | 770c8856
RegDB Root: 2

RegDB Key: Software\ M crosoft\W ndows\ Current Ver si on\ App Pat hs\ Py. ..
RegDB Val : D:\ PYTHON22\ Pyt hon. exe

Shel | Link: C\WNDOAS\ Start Menu\ Prograns\ Pyt hon 2.2\ Uninstall Py...
Link Info: D:\Python22\UNWSE.EXE | D\PYTHON22 | | O] 1| O |

Shel | Link: C\WNDOMS\ Start Menu\ Prograns\ Pyt hon 2.2\ Python ...

Link Info: D:\Python22\python.exe | D:\PYTHON22 | D:\ PYTHON22\. ..

You can see that each action recorded belongs to one of several types. A processing application
would presumably handle each type of action differently (especially since each action has
different data fields associated with it). It is easy enough to write Boolean functions that identify
line types, for example:

def isFileCopy(line):

return line[:10]=="File Copy:' # or line.startswith(...)
def isFileOverwite(line):

return line[:15]=="File Overwite:"’

The string method "".startswith() is less error prone than an initial slice for recent Python
versions, but these examples are compatible with Python 1.5. In a slightly more compact
functional programming style, you can also write these like:

i SRegDBRoot = [anbda [ine: line[:11] ==" RegDB Root :"'
i SRegDBKey = | anbda line: line[:10]=="RegDB Key:'
i sRegDBVal = lanbda line: line[:10]=="RegDB Val :'

Selecting lines of a certain type is done exactly as above:

lines = open(r'd:\python22\install.log').readlines()
regroot lines = filter(isRegDBRoot, |ines)

But if you want to select upon multiple criteria, an FP style can initially become cumbersome.
For example, suppose you are interested in all the "RegDB" lines; you could write a new custom
function for this filter:

def i sAnyRegDB(li ne):
i f [ine[:11]=="RegDB Root:': return 1

elif line[:10]=="RegDB Key:': return 1

elif line[:10]=="RegDB Val:': return 1
el se: return O
For recent Pythons, line.startswith(...) is better

Programming a custom function for each combined condition can produce a glut of named
functions. More importantly, each such custom function requires a modicum of work to write
and has a nonzero chance of introducing a bug. For conditions that should be jointly satisfied,
you can either write custom functions or nest several filters within each other. For example:

shortline = lanbda line: len(line) < 25
short regvals = filter(shortline, filter(isRegDBval, |ines))

In this example, we rely on previously defined functions for the filter. Any error in the filters will
be in either shortline() or isRegDBVal(), but not independently in some third function
isShortRegVal(). Such nested filters, however, are difficult to read—especially if more than two
are involved.

Calls to map() are sometimes similarly nested if several operations are to be performed on the
same string. For a fairly trivial example, suppose you wished to reverse, capitalize, and
normalize whitespace in lines of text. Creating the support functions is straightforward, and
they could be nested in map() calls:

fromstring inport upper, join, split
def flip(s):
a =1list(s)
a.reverse()
return join(a,'")
normal i ze = lanbda s: join(split(s),' ")
cap_flip_norns = map(upper, map(flip, map(normalize, lines)))

This type of map() or filter() nest is difficult to read, and should be avoided. Moreover, one can
sometimes be drawn into nesting alternating map() and filter() calls, making matters still
worse. For example, suppose you want to perform several operations on each of the lines that
meet several criteria. To avoid this trap, many programmers fall back to a more verbose
imperative coding style that simply wraps the lists in a few loops and creates some temporary
variables for intermediate results.

Within a functional programming style, it is nonetheless possible to avoid the pitfall of excessive
call nesting. The key to doing this is an intelligent selection of a few combinatorial higher-order
functions. In general, a higher-order function is one that takes as argument or returns as result
a function object. First-order functions just take some data as arguments and produce a datum
as an answer (perhaps a data-structure like a list or dictionary). In contrast, the "inputs" and
"outputs" of a HOF are more function objects—ones generally intended to be eventually called
somewhere later in the program flow.

One example of a higher-order function is a function factory: a function (or class) that returns a
function, or collection of functions, that are somehow "configured" at the time of their creation.
The "Hello World" of function factories is an "adder" factory. Like "Hello World," an adder
factory exists just to show what can be done; it doesn't really do anything useful by itself.
Pretty much every explanation of function factories uses an example such as:

>>> def adder_factory(n):
return anbda m n=n: mn

S>> add10 = adder _factory(10)

>>> addl10

<function <l anbda> at O0x00FB0020>
>>> add10(4)

14

>>> add10(20)

30

>>> add5 = adder_factory(5)

>>> add5(4)

9

For text processing tasks, simple function factories are of less interest than are combinatorial
HOFs. The idea of a combinatorial higher-order function is to take several (usually first-order)
functions as arguments and return a new function that somehow synthesizes the operations of
the argument functions. Below is a simple library of combinatorial higher-order functions that
achieve surprisingly much in a small number of lines:

combinatorial.py

fromoperator inport nul, add, truth
apply_each = lanbda fns, args=[]: map(apply, fns, [args]*len(fns))
bools = |l anbda 1st: map(truth, 1st)

bool each = | anbda fns, args=[]: bool s(apply_each(fns, args))
conjoin = |anbda fns, args=[]: reduce(rul, bool each(fns, args))
all = lanbda fns: lanbda arg, fns=fns: conjoin(fns, (arg,))

both = lanbda f,qg: all((f,qg))

all3 = lanbda f,g,h: all((f,qg,h))

and_ = lanbda f,g: lanbda x, f=f, g=g: f(x) and g(x)

disjoin = |lanbda fns, args=[]: reduce(add, bool _each(fns, args))
some = | anbda fns: |anbda arg, fns=fns: disjoin(fns, (arg,))
either = lanbda f,g: sonme((f,Qq))

anyof 3 = | anbda f, g, h: some((f, g, h))

conpose = lanbda f,g: lanbda x, f=f, g=g: f(g(x))
conpose3d = | anbda f, g, h: lanbda x, f=f, g=g, h=h: f(g(h(x)))
ident = |lanmbda x: X

Even with just over a dozen lines, many of these combinatorial functions are merely
convenience functions that wrap other more general ones. Let us take a look at how we can use
these HOFs to simplify some of the earlier examples. The same names are used for results, so
look above for comparisons:

Some examples using higher-order functions

Don't nest filters, just produce func that does both
short regvals = filter(both(shortline, isRegVal), |ines)

Don't multiply ad hoc functions, just describe need
regroot _lines =\
filter(sone([i sRegDBRoot, isRegDBKey, isRegDBVal]), lines)

Don't nest transformations, nake one conbi ned transform
capFl i pNor m = conpose3(upper, flip, nornalize)
cap_flip_nornms = map(capFli pNorm |I|ines)

In the example, we bind the composed function capFlipNorm for readability. The corresponding
map() line expresses just the single thought of applying a common operation to all the lines.

But the binding also illustrates some of the flexibility of combinatorial functions. By condensing
the several operations previously nested in several map() calls, we can save the combined
operation for reuse elsewhere in the program.

As a rule of thumb, I recommend not using more than one filter() and one map() in any given
line of code. If these "list application” functions need to nest more deeply than this, readability
is preserved by saving results to intermediate names. Successive lines of such functional
programming style calls themselves revert to a more imperative style—but a wonderful thing
about Python is the degree to which it allows seamless combinations of different programming
styles. For example:

intermed = filter(niceProperty, map(soneTransform |[|ines))
final = map(otherTransform internmed)

Any nesting of successive filter () or map() calls, however, can be reduced to single functions
using the proper combinatorial HOFs. Therefore, the number of procedural steps needed is
pretty much always quite small. However, the reduction in total lines-of-code is offset by the
lines used for giving names to combinatorial functions. Overall, FP style code is usually about
one-half the length of imperative style equivalents (fewer lines generally mean correspondingly
fewer bugs).

A nice feature of combinatorial functions is that they can provide a complete Boolean algebra
for functions that have not been called yet (the use of operator.add and operator.mul in
combinatorial.py is more than accidental, in that sense). For example, with a collection of
simple values, you might express a (complex) relation of multiple truth values as:

satisfied = (this or that) and (foo or bar)

In the case of text processing on chunks of text, these truth values are often the results of
predicative functions applied to a chunk:

satisfied = (thisP(s) or thatP(s)) and (fooP(s) or barP(s))

In an expression like the above one, several predicative functions are applied to the same string
(or other object), and a set of logical relations on the results are evaluated. But this expression
is itself a logical predicate of the string. For naming clarity—and especially if you wish to
evaluate the same predicate more than once—it is convenient to create an actual function
expressing the predicate:

sati sfiedP = both(either(thisP,thatP), either(fooP, barP))

Using a predicative function created with combinatorial techniques is the same as using any
other function:

selected = filter(satisfiedP, |ines)

1.1.2 Exercise: More on combinatorial functions

The module combinatorial.py presented above provides some of the most commonly useful
combinatorial higher-order functions. But there is room for enhancement in the brief example.
Creating a personal or organization library of useful HOFs is a way to improve the reusability of
your current text processing libraries.

QUESTIONS

1: Some of the functions defined in combinatorial.py are not, strictly speaking,
combinatorial. In a precise sense, a combinatorial function should take one or several
functions as arguments and return one or more function objects that "combine" the
input arguments. Identify which functions are not "strictly” combinatorial, and
determine exactly what type of thing each one does return.

2: The functions both() and and_() do almost the same thing. But they differ in an
important, albeit subtle, way. and_(), like the Python operator and, uses shortcutting
in its evaluation. Consider these lines:

>>> f = lanbda n: n**2 > 10

>>> g = |anbda n: 100/n > 10

>>> and_(f, g) (5)

1

>>> bot h(f, g) (5)

1

>>> and_(f, g) (0)

0

>>> pot h(f, g) (0)

Traceback (nost recent call last):

The shortcutting and_ () can potentially allow the first function to act as a "guard" for
the second one. The second function never gets called if the first function returns a
false value on a given argument.

a. Create a similarly shortcutting combinatorial or_() function for your library.

b. Create general shortcutting functions shortcut_all() and shortcut_some() that
behave similarly to the functions all() and some(), respectively.

c. Describe some situations where nonshortcutting combinatorial functions like
both(), all(), or anyof3() are more desirable than similar shortcutting functions.

3: The function ident() would appear to be pointless, since it simply returns whatever
value is passed to it. In truth, ident() is an almost indispensable function for a
combinatorial collection. Explain the significance of ident().

Hint: Suppose you have a list of lines of text, where some of the lines may be empty
strings. What filter can you apply to find all the lines that start with a #?

4: The function not_() might make a nice addition to a combinatorial library. We could
define this function as:

>>> not _ = lanbda f: lanbda x, f=f: not f(x)

Explore some situations where a not_() function would aid combinatoric programming.

5: The function apply_each() is used in combinatorial.py to build some other functions.
But the utility of apply_each() is more general than its supporting role might suggest.
A trivial usage of apply_each() might look something like:

>>> appl y_each(map(adder _factory, range(5)), (10,))
[10, 11, 12, 13, 14]

Explore some situations where apply_each() simplifies applying multiple operations to
a chunk of text.

6: Unlike the functions all() and some(), the functions compose() and compose3() take a
fixed number of input functions as arguments. Create a generalized composition
function that takes a list of input functions, of any length, as an argument.

7: What other combinatorial higher-order functions that have not been discussed here
are likely to prove useful in text processing? Consider other ways of combining first-
order functions into useful operations, and add these to your library. What are good
names for these enhanced HOFs?

1.1.3 Specializing Python Datatypes

Python comes with an excellent collection of standard datatypes—Appendix A discusses each
built-in type. At the same time, an important principle of Python programming makes types less
important than programmers coming from other languages tend to expect. According to
Python's "principle of pervasive polymorphism" (my own coinage), it is more important what an
objectdoes than what it is. Another common way of putting the principle is: if it walks like a
duck and quacks like a duck, treat it like a duck.

Broadly, the idea behind polymorphism is letting the same function or operator work on things
of different types. In C++ or Java, for example, you might use signature-based method
overloading to let an operation apply to several types of things (acting differently as needed).
For example:

C++ signature-based polymorphism

#i ncl ude <stdi o. h>

class Print {

publ i c:

void print(int i) { printf("int %d\n", i); }
void print(double d) { printf("double %\n", d); }
void print(float f) { printf("float %\n", f); }

1
mai n() {
Print *p = new Print();
p->print(37); [* -->"int 37" */
p->print(37.0); /* --> "doubl e 37.000000" */
}

The most direct Python translation of signature-based overloading is a function that performs
type checks on its argument(s). It is simple to write such functions:

Python "signature-based" polymorphism

def Print(x):
fromtypes inport *
if type(x) is FloatType: print "float", X
elif type(x) is IntType: print "int", x
elif type(x) is LongType: print "long", X

Writing signature-based functions, however, is extremely un-Pythonic. If you find yourself
performing these sorts of explicit type checks, you have probably not understood the problem
you want to solve correctly! What you should (usually) be interested in is not what type x is,
but rather whether x can perform the action you need it to perform (regardless of what type of
thing it is strictly).

PYTHONIC POLYMORPHISM

Probably the single most common case where pervasive polymorphism is useful is in identifying
"file-like" objects. There are many objects that can do things that files can do, such as those
created with urllib, cStringlO, zipfile , and by other means. Various objects can perform only
subsets of what actual files can: some can read, others can write, still others can seek, and so
on. But for many purposes, you have no need to exercise every "file-like" capability—it is good
enough to make sure that a specified object has those capabilities you actually need.

Here is a typical example. | have a module that uses DOM to work with XML documents; |
would like users to be able to specify an XML source in any of several ways: using the name of
an XML file, passing a file-like object that contains XML, or indicating an already-built DOM
object to work with (built with any of several XML libraries). Moreover, future users of my
module may get their XML from novel places | have not even thought of (an RDBMS, over
sockets, etc.). By looking at what a candidate object can do, | can just utilize whichever
capabilities that object has:

Python capability-based polymorphism

def toDOM xm _src=None):
fromxm .dominport m nidom
if hasattr(xm _src, 'docunentEl enent'):
return xm _src # it is already a DOM obj ect
elif hasattr(xm _src,'read):
it is sonething that knows how to read data
return mni dom parseString(xm _src.read())
elif type(xm _src) in (StringType, UnicodeType):
it is a filenanme of an XM. docunent
xm = open(xm _src).read()
return mni dom parseString(xm)
el se:
rai se ValueError, "Must be initialized with " +\
"filename, file-like object, or DOM object"

Even simple-seeming numeric types have varying capabilities. As with other objects, you should
not usually care about the internal representation of an object, but rather about what it can do.
Of course, as one way to assure that an object has a capability, it is often appropriate to coerce
it to a type using the built-in functions complex(), dict(), float(), int(), list(), long(), str(),

tuple(), andunicode() . All of these functions make a good effort to transform anything that

looks a little bit like the type of thing they name into a true instance of it. It is usually not
necessary, however, actually to transform values to prescribed types; again we can just check
capabilities.

For example, suppose that you want to remove the "least significant” portion of any

number—perhaps because they represent measurements of limited accuracy. For whole
numbers—ints or longs—you might mask out some low-order bits; for fractional values you
might round to a given precision. Rather than testing value types explicitly, you can look for
numeric capabilities. One common way to test a capability in Python is to try to do something,
and catch any exceptions that occur (then try something else). Below is a simple example:

Checking what numbers can do

def approx(x): #int attributes require 2.2+
if hasattr(x,' __and__'): # supports bitw se-and
return x & “OxOFL
try: # supports real/inmag

return (round(x.real,2)+round(x.inmag, 2)*1j)
except AttributeError:
return round(x, 2)

ENHANCED OBJECTS

The reason that the principle of pervasive polymorphism matters is because Python makes it
easy to create new objects that behave mostly—but not exactly—like basic datatypes. File-like
objects were already mentioned as examples; you may or may not think of a file object as a
datatype precisely. But even basic datatypes like numbers, strings, lists, and dictionaries can be
easily specialized and/or emulated.

There are two details to pay attention to when emulating basic datatypes. The most important
matter to understand is that the capabilities of an object—even those utilized with syntactic
constructs—are generally implemented by its "magic" methods, each named with leading and
trailing double underscores. Any object that has the right magic methods can act like a basic
datatype in those contexts that use the supplied methods. At heart, a basic datatype is just an
object with some well-optimized versions of the right collection of magic methods.

The second detail concerns exactly how you get at the magic methods—or rather, how best to
make use of existing implementations. There is nothing stopping you from writing your own
version of any basic datatype, except for the piddling details of doing so. However, there are
quite a few such details, and the easiest way to get the functionality you want is to specialize an
existing class. Under all non-ancient versions of Python, the standard library provides the pure-
Python modules UserDict, UserList , and UserString as starting points for custom datatypes. You
can inherit from an appropriate parent class and specialize (magic) methods as needed. No
sample parents are provided for tuples, ints, floats, and the rest, however.

Under Python 2.2 and above, a better option is available. "New-style" Python classes let you
inherit from the underlying C implementations of all the Python basic datatypes. Moreover,
these parent classes have become the self-same callable objects that are used to coerce types
and construct objects: int(), list(), unicode() , and so on. There is a lot of arcana and subtle
profundities that accompany new-style classes, but you generally do not need to worry about
these. All you need to know is that a class that inherits from string is faster than one that
inherits from UserString; likewise for list versus UserList and dict versus UserDict (assuming
your scripts all run on a recent enough version of Python).

Custom datatypes, however, need not specialize full-fledged implementations. You are free to
create classes that implement "just enough” of the interface of a basic datatype to be used for a
given purpose. Of course, in practice, the reason you would create such custom datatypes is
either because you want them to contain non-magic methods of their own or because you want
them to implement the magic methods associated with multiple basic datatypes. For example,
below is a custom datatype that can be passed to the prior approx() function, and that also
provides a (slightly) useful custom method:

>>> class |: # "Fuzzy" integer datatype

def __init_ (self, i): self.i =i
def __and__(self, i): return self.i &
def err_range(self):
| bound = approx(self.i)
return "Value: [%, %l)" % (| bound, | bound+0x0F)

>>> i1, 12 =1(29), 1(20)
>>> approx(il), approx(i?2)
(16L, 16L)

>>> | 2. err_range()

"Val ue: [16, 31)'

Despite supporting an extra method and being able to get passed into the approx() function, I
is not a very versatile datatype. If you try to add, or divide, or multiply using "fuzzy integers,"
you will raise a TypeError. Since there is no module called Userint, under an older Python
version you would need to implement every needed magic method yourself.

Using new-style classes in Python 2.2+, you could derive a "fuzzy integer" from the underlying
int datatype. A partial implementation could look like:

>>> class |2(int): # New style fuzzy integer

def _add_ (self, j):
vals = map(int, [approx(self), approx(j)])
k =int. add_(*vals)
return 12(int._ _add__(k, OxO0F))

def err_range(sel f):
| bound = approx(self)
return "Value: [%, %)" % bound, | bound+0x0F)

>>> 1, 12 =12(29), 12(20)

>>> print "il =", il.err_range(),": i2 =", i2.err_range()
il = Value: [16, 31) : i2 = Value: [16, 31)

>>> (3 = i1 +i2

>>> print i3, type(i3)

47 <class ' _ _main__ .12'>

Since the new-style class int already supports bitwise-and, there is no need to implement it
again. With new-style classes, you refer to data values directly with self, rather than as an
attribute that holds the data (e.g., self.i in class I). As well, it is generally unsafe to use
syntactic operators within magic methods that define their operation; for example, | utilize the
.__add__ () method of the parent int rather than the + operator in the 12.__add__ () method.

In practice, you are less likely to want to create number-like datatypes than you are to emulate
container types. But it is worth understanding just how and why even plain integers are a fuzzy
concept in Python (the fuzziness of the concepts is of a different sort than the fuzziness of 12
integers, though). Even a function that operates on whole numbers need not operate on objects
of IntType or LongType—just on an object that satisfies the desired protocols.

1.1.4 Base Classes for Datatypes

There are several magic methods that are often useful to define for any custom datatype. In
fact, these methods are useful even for classes that do not really define datatypes (in some
sense, every object is a datatype since it can contain attribute values, but not every object
supports special syntax such as arithmetic operators and indexing). Not quite every magic
method that you can define is documented in this book, but most are under the parent datatype
each is most relevant to. Moreover, each new version of Python has introduced a few additional

magic methods; those covered either have been around for a few versions or are particularly
important.

In documenting class methods of base classes, the same general conventions are used as for
documenting module functions. The one special convention for these base class methods is the
use of self as the first argument to all methods. Since the name self is purely arbitrary, this
convention is less special than it might appear. For example, both of the following uses of self
are equally legal:

>>> jnport string

>>> sel f = ' spani

>>> object.__repr__(self)
'<str object at 0x12c0a0>'
>>> string. upper(self)

' SPAM

However, there is usually little reason to use class methods in place of perfectly good built-in
and module functions with the same purpose. Normally, these methods of datatype classes are
used only in child classes that override the base classes, as in:

>>> cl ass Upper Obj ect (obj ect):
def _ repr__ (self):
return object. _repr__(self).upper()

>>> uo = Upper Obj ect ()
>>> print uo
<__MAIN__. UPPEROBJECT OBJECT AT 0X1C2C6C>

objecteAncestor class for new-style datatypes

Under Python 2.2+, object has become a base for new-style classes. Inheriting from object
enables a custom class to use a few new capabilities, such as slots and properties. But usually if
you are interested in creating a custom datatype, it is better to inherit from a child of object,
such as list, float, or dict.

METHODS

object.__eq__(self, other)

Return a Boolean comparison between self and other. Determines how a datatype responds to
the == operator. The parent class object does not implement . __eq__ () since by default object
equality means the same thing as identity (the is operator). A child is free to implement this in
order to affect comparisons.

object.__ne__ (self, other)

Return a Boolean comparison between self and other. Determines how a datatype responds to
the 1= and <> operators. The parent class object does not implement .__ne__ () since by
default object inequality means the same thing as nonidentity (the is not operator). Although it
might seem that equality and inequality always return opposite values, the methods are not
explicitly defined in terms of each other. You could force the relationship with:

>>> cl ass EQ obj ect):
Abstract parent class for equality classes
def __eq__(self, 0): return not self <> o0
def __ne_ (self, 0): return not self ==

>>> cl ass Conparabl e(EQ) :
By def'ing inequlty, get equlty (or vice versa)
def __ne_ (self, other):
return soneConpl exConpari son(sel f, other)

object.__nonzero__(self)

Return a Boolean value for an object. Determines how a datatype responds to the Boolean
comparisons or, and, and not, and to if and filter(None,...) tests. An object whose
.__nonzero__ () method returns a true value is itself treated as a true value.

object.__len__ (self)
len(object)

Return an integer representing the "length" of the object. For collection types, this is fairly
straightforward—how many objects are in the collection? Custom types may change the
behavior to some other meaningful value.

object.__repr__(self)
repr(object)
object.__str__(self)
str(object)

Return a string representation of the object self. Determines how a datatype responds to the
repr() and str() built-in functions, to the print keyword, and to the back-tick operator.

Where feasible, it is desirable to have the .___repr__ () method return a representation with
sufficient information in it to reconstruct an identical object. The goal here is to fulfill the
equality obj==eval(repr(obj)). In many cases, however, you cannot encode sufficient
information in a string, and the repr() of an object is either identical to, or slightly more detailed
than, the str() representation of the same object.

See ALso: repr 96; operator 47;

file « New-style base class for file objects

Under Python 2.2+, it is possible to create a custom file-like object by inheriting from the built-
in class file. In older Python versions you may only create file-like objects by defining the
methods that define an object as "file-like." However, even in recent versions of Python,
inheritance from file buys you little—if the data contents come from somewhere other than a
native filesystem, you will have to reimplement every method you wish to support.

Even more than for other object types, what makes an object file-like is a fuzzy concept.
Depending on your purpose you may be happy with an object that can only read, or one that
can only write. You may need to seek within the object, or you may be happy with a linear
stream. In general, however, file-like objects are expected to read and write strings. Custom
classes only need implement those methods that are meaningful to them and should only be
used in contexts where their capabilities are sufficient.

In documenting the methods of file-like objects, | adopt a slightly different convention than for
other built-in types. Since actually inheriting from file is unusual, | use the capitalized name

FILE to indicate a general file-like object. Instances of the actual file class are examples (and
implement all the methods named), but other types of objects can be equally good FILE
instances.

BUILT-IN FUNCTIONS

open(fname [,mode [,buffering]])
file(fname [,mode [,buffering]])

Return a file object that attaches to the filename fname. The optional argument mode describes
the capabilities and access style of the object. An r mode is for reading; w for writing
(truncating any existing content); a for appending (writing to the end). Each of these modes
may also have the binary flag b for platforms like Windows that distinguish text and binary files.
The flag + may be used to allow both reading and writing. The argument buffering may be O for
none, 1 for line-oriented, a larger integer for number of bytes.

>>> open('tnmp',"'W).wite('spamand eggs\n')
>>> print open('tnp','r").read(),

spam and eggs

>>> open('tnmp','W).wite('this and that\n')
>>> print open('tnp','r').read(),

this and that

>>> open('tnp',"a). wite(' sonething else\n')
>>> print open('tnmp','r").read(),

this and that

somet hi ng el se

METHODS AND ATTRIBUTES

FILE.close()

Close a file object. Reading and writing are disallowed after a file is closed.

FILE.closed

Return a Boolean value indicating whether the file has been closed.

FILE.fileno()

Return a file descriptor number for the file. File-like objects that do not attach to actual files
should not implement this method.

FILE.flush()

Write any pending data to the underlying file. File-like objects that do not cache data can still
implement this method as pass.

FILE.isatty()

Return a Boolean value indicating whether the file is a TTY-like device. The standard
documentation says that file-like objects that do not attach to actual files should not implement
this method, but implementing it to always return O is probably a better approach.

FILE.mode

Attribute containing the mode of the file, normally identical to the mode argument passed to the
object's initializer.

FILE.name

The name of the file. For file-like objects without a filesystem name, some string identifying the
object should be put into this attribute.

FILE.read ([size=sys.maxint])

Return a string containing up to size bytes of content from the file. Stop the read if an EOF is
encountered or upon another condition that makes sense for the object type. Move the file
position forward immediately past the read in bytes. A negative size argument is treated as the
default value.

FILE.readline([size=sys.maxint])

Return a string containing one line from the file, including the trailing newline, if any. A
maximum of size bytes are read. The file position is moved forward past the read. A negative
size argument is treated as the default value.

FILE.readlines([size=sys.maxint])

Return a list of lines from the file, each line including its trailing newline. If the argument size is
given, limit the read to approximately size bytes worth of lines. The file position is moved
forward past the read in bytes. A negative size argument is treated as the default value.

FILE.seek(offset [, whence=0])

Move the file position by offset bytes (positive or negative). The argument whence specifies
where the initial file position is prior to the move: O for BOF; 1 for current position; 2 for EOF.

FILE.tell()

Return the current file position.

FILE.truncate([size=0])

Truncate the file contents (it becomes size length).

FILE.write(s)

Write the string s to the file, starting at the current file position. The file position is moved

forward past the written bytes.

FILE.writelines(lines)

Write the lines in the sequence lines to the file. No newlines are added during the write. The file
position is moved forward past the written bytes.

FILE.xreadlines()

Memory-efficient iterator over lines in a file. In Python 2.2+, you might implement this as a
generator that returns one line per each yield.

See ALso: xreadlines 72;

‘int-New—ster base class for integer objects ‘

‘Iong-New—ster base class for long integers ‘

In Python, there are two standard datatypes for representing integers. Objects of type IntType
have a fixed range that depends on the underlying platform—usually between plus and minus
2**31. Objects of type LongType are unbounded in size. In Python 2.2+, operations on integers
that exceed the range of an int object results in automatic promotion to long objects. However,
no operation on a long will demote the result back to an int object (even if the result is of small
magnitude)—with the exception of the int() function, of course.

From a user point of view ints and longs provide exactly the same interface. The difference
between them is only in underlying implementation, with ints typically being significantly faster
to operate on (since they use raw CPU instructions fairly directly). Most of the magic methods
integers have are shared by floating point numbers as well and are discussed below. For
example, consult the discussion of float._ _mul__ () for information on the corresponding
int.__mul__ () method. The special capability that integers have over floating point numbers is
their ability to perform bitwise operations.

Under Python 2.2+, you may create a custom datatype that inherits from int or long; under
earlier versions, you would need to manually define all the magic methods you wished to utilize
(generally a lot of work, and probably not worth it).

Each binary bit operation has a left-associative and a right-associative version. If you define
both versions and perform an operation on two custom objects, the left-associative version is
chosen. However, if you perform an operation with a basic int and a custom object, the custom
right-associative method will be chosen over the basic operation. For example:

>>> class I(int):
def _ xor__(self, other):
return " XOR'
def _ rxor__(self, other):
return "RXOR"

>>> OxFF N OxFF

0

>>> OXFF ™ | (OXFF)
" RXOR

>>> | (OxFF) ~ OxFF
" XOR

>>> | (OxFF) ™ | (OxFF)

' XOR

METHODS
int.__and__ (self, other)
int.__rand__ (self, other)

Return a bitwise-and between self and other. Determines how a datatype responds to the &
operator.

int.__hex__(self)

Return a hex string representing self. Determines how a datatype responds to the built-in hex()
function.

int.__invert__(self)

Return a bitwise inversion of self. Determines how a datatype responds to the — operator.

int.__Ishift__(self, other)
int.__rlshift__(self, other)

Return the result of bit-shifting self to the left by other bits. The right-associative version shifts
other by self bits. Determines how a datatype responds to the << operator.

int.__oct__(self)

Return an octal string representing self. Determines how a datatype responds to the built-in
oct() function.

int.__or__(self, other)
int.__ror__(self, other)

Return a bitwise-or between self and other. Determines how a datatype responds to the |
operator.

int.__rshift__ (self, other)
int.__rrshift__(self, other)

Return the result of bit-shifting self to the right by other bits. The right-associative version shifts
other by self bits. Determines how a datatype responds to the >> operator.

int.__xor__(self, other)
int.__rxor__(self, other)

Return a bitwise-xor between self and other. Determines how a datatype responds to the ™
operator.

See Auso: float 19; int 421; long 422; sys.maxint 50; operator 47;

float « New-style base class for floating point numbers

Python floating point numbers are mostly implemented using the underlying C floating point
library of your platform; that is, to a greater or lesser degree based on the IEEE 754 standard.
A complex number is just a Python object that wraps a pair of floats with a few extra operations
on these pairs.

DIGRESSION

Although the details are far outside the scope of this book, a general warning is in order.
Floating point math is harder than you think! If you think you understand just how complex
IEEE 754 math is, you are not yet aware of all of the subtleties. By way of indication, Python
luminary and erstwhile professor of numeric computing Alex Martelli commented in 2001 (on
<comp.lang.python>):

Anybody who thinks he knows what he's doing when floating point is involved IS either
naive, or Tim Peters (well, it COULD be W. Kahan I guess, but | don't think he writes
here).

Fellow Python guru Tim Peters observed:

| find it's possible to be both (wink). But nothing about fp comes easily to anyone, and
even Kahan works his butt off to come up with the amazing things that he does.

Peters illustrated further by way of Donald Knuth (The Art of Computer Programming, Third
Edition, Addison-Wesley, 1997; ISBN: 0201896842, vol. 2, p. 229):

Many serious mathematicians have attempted to analyze a sequence of floating point
operations rigorously, but found the task so formidable that they have tried to be content
with plausibility arguments instead.

The trick about floating point numbers is that although they are extremely useful for
representing real-life (fractional) quantities, operations on them do not obey the arithmetic
rules we learned in middle school: associativity, transitivity, commutativity; moreover, many
very ordinary-seeming numbers can be represented only approximately with floating point
numbers. For example:

>>> 1./3

0. 33333333333333331
>>> 3

0. 29999999999999999
>>> 7 == 7./25 * 25

0

>>> 7 == 7./24 * 24
1

CAPABILITIES

In the hierarchy of Python numeric types, floating point numbers are higher up the scale than
integers, and complex numbers higher than floats. That is, operations on mixed types get
promoted upwards. However, the magic methods that make a datatype "float-like" are strictly a
subset of those associated with integers. All of the magic methods listed below for floats apply
equally to ints and longs (or integer-like custom datatypes). Complex numbers support a few
addition methods.

Under Python 2.2+, you may create a custom datatype that inherits from float or complex;

under earlier versions, you would need to manually define all the magic methods you wished to
utilize (generally a lot of work, and probably not worth it).

Each binary operation has a left-associative and a right-associative version. If you define both
versions and perform an operation on two custom objects, the left-associative version is
chosen. However, if you perform an operation with a basic datatype and a custom object, the
custom right-associative method will be chosen over the basic operation. See the example
underint.

METHODS

float.__abs__ (self)

Return the absolute value of self. Determines how a datatype responds to the built-in function
abs().

float.__add__(self, other)
float.__radd__(self, other)

Return the sum of self and other. Determines how a datatype responds to the + operator.

float.__cmp__(self, other)

Return a value indicating the order of self and other. Determines how a datatype responds to
the numeric comparison operators <, >, <=, >=, ==, <>, and !=. Also determines the
behavior of the built-in cmp() function. Should return -1 for self<other, O for self==other, and 1
for self=other. If other comparison methods are defined, they take precedence over

—cmp_QO:._ge_O,._gt _O,._le _(OQ,and.__ 1t 0.

float.__div__(self, other)
float.__rdiv__ (self, other)

Return the ratio of self and other. Determines how a datatype responds to the / operator. In
Python 2.3+, this method will instead determine how a datatype responds to the floor division
operator //.

float.__divmod__(self, other)
float.__rdivmod__ (self, other)

Return the pair (div, remainder). Determines how a datatype responds to the built-in divmod()
function.

float.__floordiv__ (self, other)
float.__rfloordiv__ (self, other)

Return the number of whole times self goes into other. Determines how a datatype responds to
the Python 2.2+ floor division operator //.

float.__mod__ (self, other)
float.__rmod__(self, other)

Return the modulo division of self into other. Determines how a datatype responds to the %
operator.

float.__mul__(self, other)
float.__rmul__(self, other)

Return the product of self and other. Determines how a datatype responds to the * operator.

float.__neg__(self)

Return the negative of self. Determines how a datatype responds to the unary - operator.

float._ _pow__(self, other)
float.__rpow__(self, other)

Return self raised to the other power. Determines how a datatype responds to the ™ operator.

float.__sub__(self, other)
float.__rsub__(self, other)

Return the difference between self and other. Determines how a datatype responds to the
binary - operator.

float._ truediv__(self, other)
float.__rtruediv__ (self, other)

Return the ratio of self and other. Determines how a datatype responds to the Python 2.3+ true
division operator /.

See Aiso: complex 22; int 18; float 422; operator 47;

complexsNew-style base class for complex numbers

Complex numbers implement all the above documented methods of floating point numbers, and
a few additional ones.

Inequality operations on complex numbers are not supported in recent versions of Python, even
though they were previously. In Python 2.1+, the methods complex.__ge (),
complex. gt (),complex.__le () , and complex. It () all raise TypeError rather than
return Boolean values indicating the order. There is a certain logic to this change inasmuch as
complex numbers do not have a "natural™ ordering. But there is also significant breakage with
this change—this is one of the few changes in Python, since version 1.4 when | started using it,
that | feel was a real mistake. The important breakage comes when you want to sort a list of
various things, some of which might be complex numbers:

>>> |st = ["string", 1.0, 1, 1L, ('"t',"u , 'p')]
>>> | st.sort()
>>> 1st

[1.0, 1, 1L, 'string', ('t', 'u, "p')]
>>> | st. append(1j)

>>> | st.sort()

Traceback (nost recent call last):

File "<stdin>, line 1, in ?
TypeError: cannot conpare conpl ex nunbers using <, <=, >, >=

It is true that there is no obvious correct ordering between a complex number and another
number (complex or otherwise), but there is also no natural ordering between a string, a tuple,
and a number. Nonetheless, it is frequently useful to sort a heterogeneous list in order to create
a canonical (even if meaningless) order. In Python 2.2+, you can remedy this shortcoming of
recent Python versions in the style below (under 2.1 you are largely out of luck):

>>> cl ass C(conpl ex):
def It _(self, 0):

if hasattr(o, '"img'):
return (self.real,self.inmag) < (o.real, 0.img)
el se:
return self.real <o
def le (self, 0): return self < o or self==

def gt (self, o): return not (self==0 or self < 0)
def _ge (self, 0): return self > o or self==

>>> 1st = ["str", 1.0, 1, 1L, (1,2,3), C(1+1j), C(2-2j)]

>>> | st.sort()
>>> st

[1.0, 1, 1L, (1+1)), (2-2j), 'str', (1, 2, 3)]

Of course, if you adopt this strategy, you have to create all of your complex values using the
custom datatype C. And unfortunately, unless you override arithmetic operations also, a binary
operation between a C object and another number reverts to a basic complex datatype. The
reader can work out the details of this solution if she needs it.

METHODS

complex.conjugate(self)

Return the complex conjugate of self. A quick refresher here: If self is n+myj its conjugate is n-
mj.

complex.imag

Imaginary component of a complex number.

complex.real

Real component of a complex number.

See Auso: float 19; complex 422;

‘UserDict e Custom wrapper around dictionary objects ‘

‘dict * New-style base class for dictionary objects ‘

Dictionaries in Python provide a well-optimized mapping between immutable objects and other
Python objects (see Glossary entry on "immutable™). You may create custom datatypes that
respond to various dictionary operations. There are a few syntactic operations associated with
dictionaries, all involving indexing with square braces. But unlike with numeric datatypes, there
are several regular methods that are reasonable to consider as part of the general interface for
dictionary-like objects.

If you create a dictionary-like datatype by subclassing from UserDict.UserDict , all the special
methods defined by the parent are proxies to the true dictionary stored in the object’s .data
member. If, under Python 2.2+, you subclass from dict itself, the object itself inherits dictionary
behaviors. In either case, you may customize whichever methods you wish. Below is an
example of the two styles for subclassing a dictionary-like datatype:

>>> fromsys inport stderr
>>> from UserDi ct inport UserDict
>>> cl ass LogDictd d(UserDict):
def setitem_ (self, key, val):
stderr.wite("Set: "+str(key)+"->"+str(val)+"\n")
sel f. dat a[key] = val

>>> | do = LogDi ct Ol d()
>>> | do['this'] = "that'
Set: this->that
>>> cl ass LogDi ct New(di ct):
def _ setitem_ (self, key, val):
stderr.wite("Set: "+str(key)+"->"+str(val)+"\n")
dict. setitem (self, key, val)

>>> | dn = LogDi ct Ol d()
>>> | dn['this'] = "that'
Set: this->that

METHODS

dict.__cmp__ (self, other)
UserDict.UserDict.__cmp__(self, other)

Return a value indicating the order of self and other. Determines how a datatype responds to
the numeric comparison operators <, >, <=, >=, ==, <>, and !=. Also determines the
behavior of the built-in cmp() function. Should return -1 for self<other, O for self==other, and 1
for self>other. If other comparison methods are defined, they take precedence over

—cmp_QO:._ge _O,._gt _O,._le _(OQ,and.__ It (.

dict.__contains__ (self, x)
UserDict.UserDict.__contains__ (self, x)

Return a Boolean value indicating whether self "contains" the value x. By default, being
contained in a dictionary means matching one of its keys, but you can change this behavior by
overriding it (e.g., check whether x is in a value rather than a key). Determines how a datatype
responds to the in operator.

dict.__delitem__ (self, x)
UserDict.UserDict.__delitem__ (self, x)

Remove an item from a dictionary-like datatype. By default, removing an item means removing
the pair whose key equals x. Determines how a datatype responds to the del statement, as in:
del self [x].

dict.__getitem__(self, x)
UserDict.UserDict.__getitem__(self, x)

By default, return the value associated with the key x. Determines how a datatype responds to
indexing with square braces. You may override this method to either search differently or return
special values. For example:

>>> cl| ass BagOf Pai rs(dict):
def _ getitem (self, x):
if self.has_key(x):
return (x, dict.__getitem_ (self,x))
el se:
tmp = dict([(v,k) for k,v in self.itens()])
return (dict. getitem (tnp,x), X)

>>> pop = BagOFPairs({'this':"that', 'span:'eggs'})
>>> bop['this']

("this', "that')

>>> bop[' eggs’]

("spam, "eggs')

>>> pop[' bacon'] = 'sausage'
>>> bop
{*this': "that', 'bacon': 'sausage', 'spam: 'eggs'}
>>> pbop [' nowhere']
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "<stdin>", line 7, in __getitem _

KeyError: nowhere

dict.__len__(self)
UserDict.UserDict.__len__ (self)

Return the length of the dictionary. By default this is simply a count of the key/val pairs, but
you could perform a different calculation if you wished (e.g, perhaps you would cache the size
of a record set returned from a database query that emulated a dictionary). Determines how a
datatype responds to the built-in len() function.

dict.__setitem__ (self, key, val)
UserDict.UserDict.__setitem__(self, key, val)

Set the dictionary key key to value val. Determines how a datatype responds to indexed
assignment; that is, self[key]=val. A custom version might actually perform some calculation
based on val and/or key before adding an item.

dict.clear(self)
UserDict.UserDict.clear(self)

Remove all items from self.

dict.copy(self)
UserDict.UserDict.copy(self)

Return a copy of the dictionary self (i.e., a distinct object with the same items).

dict.get(self, key [,default=None])
UserDict.UserDict.get(self, key [,default=None])

Return the value associated with the key key. If no item with the key exists, return default
instead of raising a KeyError.

dict.has_key(self, key)
UserDict.UserDict.has_key(self, key)

Return a Boolean value indicating whether self has the key key.

dict.items(self)
UserDict.UserDict.items(self)
dict.iteritems(self)
UserDict.UserDict.iteritems(self)

Return the items in a dictionary, in an unspecified order. The .items() method returns a true list
of (key,val) pairs, while the .iteritems() method (in Python 2.2+) returns a generator object
that successively yields items. The latter method is useful if your dictionary is not a true in-
memory structure, but rather some sort of incremental query or calculation. Either method
responds externally similarly to a for loop:

>>> d = {1:2, 3:4}
>>> for k,vind.iteritens(): print k,v,":",

.1”2:34:
>>> for k,vind.itens(): print k,v,"':",

i.é 3 4

dict.keys(self)
UserDict.UserDict.keys(self)
dict.iterkeys(self)
UserDict.UserDict.iterkeys(self)

Return the keys in a dictionary, in an unspecified order. The .keys() method returns a true list
of keys, while the .iterkeys() method (in Python 2.2+) returns a generator object.

See Aiso: dict.items() 26;

dict.popitem(self)
UserDict.UserDict.popitem(self)

Return a (key,val) pair for the dictionary, or raise as KeyError if the dictionary is empty.
Removes the returned item from the dictionary. As with other dictionary methods, the order in
which items are popped is unspecified (and can vary between versions and platforms).

dict.setdefault(self, key [,default=None])
UserDict.UserDict.setdefault(self, key [,default=None])

If key is currently in the dictionary, return the corresponding value. If key is not currently in the
dictionary, set self[key]=default, then return default.

See Auso: dict.get() 26;

dict.update(self, other)
UserDict.UserDict.update(self, other)

Update the dictionary self using the dictionary other. If a key in other already exists in self, the
corresponding value from other is used in self. If a (key,val) pair in other is not in self, it is
added.

dict.values(self)
UserDict.UserDict.values(self)
dict.itervalues(self)
UserDict.UserDict.itervalues(self)

Return the values in a dictionary, in an unspecified order. The .values() method returns a true
list of keys, while the .itervalues() method (in Python 2.2+) returns a generator object.

See Auso: dict.items() 26;

See Auso: dict 428; list 28; operator 47;

‘UserList-Custom wrapper around list objects ‘

‘Iist-New—ster base class for list objects ‘

‘tuple-New-ster base class for tuple objects ‘

A Python list is a (possibly) heterogeneous mutable sequence of Python objects. A tuple is a
similar immutable sequence (see Glossary entry on "immutable™). Most of the magic methods of
lists and tuples are the same, but a tuple does not have those methods associated with internal
transformation.

If you create a list-like datatype by subclassing from UserList.UserList , all the special methods
defined by the parent are proxies to the true list stored in the object's .data member. If, under
Python 2.2+, you subclass from list (or tuple) itself, the object itself inherits list (tuple)
behaviors. In either case, you may customize whichever methods you wish. The discussion of
dict and UserDict shows an example of the different styles of specialization.

The difference between a list-like object and a tuple-like object runs less deep than you might
think. Mutability is only really important for using objects as dictionary keys, but dictionaries
only check the mutability of an object by examining the return value of an object's .__hash__ ()
method. If this method fails to return an integer, an object is considered mutable (and ineligible
to serve as a dictionary key). The reason that tuples are useful as keys is because every tuple
composed of the same items has the same hash; two lists (or dictionaries), by contrast, may
also have the same items, but only as a passing matter (since either can be changed).

You can easily give a hash value to a list-like datatype. However, there is an obvious and wrong
way to do so:

>>> class L(list):
__hash__ = |l anbda sel f: hash(tupl e(self))

>>> 1st = L([1, 2,3])

>>> dct = {lst:33, 7:8}

>>> print dct

{[1, 2, 3]: 33, 7: 8}

>>> dct [1st]

33

>>> | st . append(4)

>>> print dct

{[1, 2, 3, 4]: 33, 7: 8}

>>> dct[1st]

Traceback (nost recent call |ast):
File "<stdin>, line 1, in ?

KeyError: [1, 2, 3, 4]

As soon as 1st changes, its hash changes, and you cannot reach the dictionary item keyed to it.
What you need is something that does not change as the object changes:

>>> class L(list):
__hash__ = lanbda self: id(self)

>>> 1st = L([1, 2,3])

>>> dct = {Ist:33, 7:8}
>>> dct[1st]

33

>>> 1st. append(4)

>>> dct

{[1, 2, 3, 4]: 33, 7: 8}
>>> dct[1st]

33

As with most everything about Python datatypes and operations, mutability is merely a protocol
that you can choose to support or not support in your custom datatypes.

Sequence datatypes may choose to support order comparisons—in fact they probably should.
The methods.__cmp__ (), ._ge_ (,._gt (O,._le (,and._ It () have the same
meanings for sequences that they do for other datatypes; see operator, float , and dict for
details.

METHODS

list.__add__(self, other)
UserList.UserList._ _add__(self, other)
tuple.__add__(self, other)
list.__iadd__(self, other)
UserList.UserList.__iadd__(self, other)

Determine how a datatype responds to the + and += operators. Augmented assignments ("in-
place add™) are supported in Python 2.0+. For list-like datatypes, normally the statements
1st+=other and 1lst=1st+other have the same effect, but the augmented version might be
more efficient.

Under standard meaning, addition of the two sequence objects produces a new (distinct)
sequence object with all the items in both self and other. An in-place add (.__iadd__) mutates
the left-hand object without creating a new object. A custom datatype might choose to give a
special meaning to addition, perhaps depending on the datatype of the object added in. For
example:

>>> class XList(list):
def __iadd_(self, other):
if issubclass(other. class_, list):
return list.__iadd__(self, other)
el se:
from operator inport add
return map(add, self, [other]*len(self))

>>> x| = XList([1,2,3])
>>> x| +=[4,5, 6]

>>> x|

[1, 2, 3, 4, 5, 6]

>>> x| += 10

>>> x|

[11, 12, 13, 14, 15, 16]

list.__contains__ (self, x)
UserList.UserList.__contains__(self, x)
tuple.__contains__(self, x)

Return a Boolean value indicating whether self contains the value x. Determines how a datatype
responds to the in operator.

list.__delitem__(self, x)
UserList.UserList.__delitem__(self, x)

Remove an item from a list-like datatype. Determines how a datatype responds to the del
statement, as in del self[x].

list.__delslice__(self, start, end)
UserList.UserList.__delslice__(self, start, end)

Remove a range of items from a list-like datatype. Determines how a datatype responds to the
del statement applied to a slice, as in del self[start:end].

list.__getitem__ (self, pos)
UserList.UserList.__getitem__(self, pos)
tuple.__getitem__ (self, pos)

Return the value at offset pos in the list. Determines how a datatype responds to indexing with
square braces. The default behavior on list indices is to raise an IndexError for nonexistent
offsets.

list. _getslice__ (self, start, end)
UserList.UserList.__getslice__ (self, start, end)
tuple.__getslice__(self, start, end)

Return a subsequence of the sequence self. Determines how a datatype responds to indexing
with a slice parameter, as in self[start:end].

list.__hash__(self)
UserList.UserList.__hash__(self)
tuple.__hash__(self)

Return an integer that distinctly identifies an object. Determines how a datatype responds to
the built-in hash() function—and probably more importantly the hash is used internally in
dictionaries. By default, tuples (and other immutable types) will return hash values but lists will
raise a TypeError. Dictionaries will handle hash collisions gracefully, but it is best to try to make
hashes unique per object.

>>> hash(219750523), hash((1,2))
(219750523, 219750523)

>>> dct = {219750523:1, (1,2):2}
>>> dct [219750523]

1

list. _len__ (self
UserList.UserList.__len__ (self
tuple.__len__(self

Return the length of a sequence. Determines how a datatype responds to the built-in len()
function.

list.__mul__(self, num)
UserList.UserList.__mul__(self,num)
tuple.__mul__(self, num)
list.__rmul__(self, num)
UserList.UserList.__rmul__(self, num)
tuple.__rmul__(self, num)
list.__imul__(self, num)
UserList.UserList.__imul__(self, num)

Determine how a datatype responds to the * and *= operators. Augmented assignments ("'in-
place add") are supported in Python 2.0+. For list-like datatypes, normally the statements
Ist*=other and Ist=Ist*other have the same effect, but the augmented version might be more
efficient.

The right-associative version .__rmul__ () determines the value of num*self, the left-associative
.__mul__ () determines the value of self*num. Under standard meaning, the product of a
sequence and a number produces a new (distinct) sequence object with the items in self
duplicated num times:

>>>[1,2,3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

list.__setitem__(self, pos, val)
UserList.UserList.__setitem__(self, pos, val)

Set the value at offset pos to value value. Determines how a datatype responds to indexed
assignment; that is, self[pos]=val. A custom version might actually perform some calculation
based on val and/or key before adding an item.

list.__setslice__(self, start, end, other)
UserList.UserList.__setslice__(self, start, end, other)

Replace the subsequence self[start:end] with the sequence other. The replaced and new
sequences are not necessarily the same length, and the resulting sequence might be longer or
shorter than self. Determines how a datatype responds to assignment to a slice, as in
self[start:end]=other.

list.append(self, item)
UserList.UserList.append(self, item)

Add the object item to the end of the sequence self. Increases the length of self by one.

list.count(self, item)
UserList.UserList.count(self, item)

Return the integer number of occurrences of item in self.

list.extend(self, seq)
UserList.UserList.extend (self, seq)

Add each item in seq to the end of the sequence self. Increases the length of self by len(seq).

list.index(self, item)
UserList.UserList.index(self, item)

Return the offset index of the first occurrence of item in self.

list.insert(self, pos, item)
UserList.UserList.insert(self, pos, item)

Add the object item to the sequence self before the offset pos. Increases the length of self by
one.

list.pop(self [,pos=-1])
UserList.UserList.pop(self [,pos=-1])

Return the item at offset pos of the sequence self, and remove the returned item from the
sequence. By default, remove the last item, which lets a list act like a stack using the .pop()
and .append() operations.

list.remove(self, item)
UserList.UserList.remove(self, item)

Remove the first occurrence of item in self. Decreases the length of self by one.

list.reverse(self)
UserList.UserList.reverse(self)

Reverse the list self in place.

list.sort(self [cmpfunc])
UserList.UserList.sort(self [,cmpfunc])

Sort the list self in place. If a comparison function cmpfunc is given, perform comparisons using
that function.

See Auso: list 427; tuple 427; dict 24; operator 47;

‘UserString-Custom wrapper around string objects ‘

‘str-New—ster base class for string objects ‘

A string in Python is an immutable sequence of characters (see Glossary entry on "immutable™).
There is special syntax for creating strings—single and triple quoting, character escaping, and
so on—but in terms of object behaviors and magic methods, most of what a string does a tuple
does, too. Both may be sliced and indexed, and both respond to pseudo-arithmetic operators +
and *.

For the str and UserString magic methods that are strictly a matter of the sequence quality of
strings, see the corresponding tuple documentation. These include str.__add__ (),
str.__getitem__ (), str.__getslice__(),str.__hash__ (), str.__len__(),str.__mul__() , and
str.__rmul__ (). Each of these methods is also defined in UserString . The UserString module
also includes a few explicit definitions of magic methods that are not in the new-style str class:
UserString.__iadd__ (), UserString.__imul__ () , and UserString.__radd__ () . However, you may
define your own implementations of these methods, even if you inherit from str (in Python
2.2+). In any case, internally, in-place operations are still performed on all strings.

Strings have quite a number of nonmagic methods as well. If you wish to create a custom
datatype that can be utilized in the same functions that expect strings, you may want to
specialize some of these common string methods. The behavior of string methods is
documented in the discussion of the string module, even for the few string methods that are not
also defined in the string module. However, inheriting from either str or UserString provides
very reasonable default behaviors for all these methods.

See Auso: "".capitalize() 132; "".title() 133; "".center() 133; "".count() 134; "".endswith() 134;
"' .expandtabs()134; "".find() 135; "".index() 135; "".isalpha() 136; "".isalnum() 136;
".isdigit()136; ".islower() 136; "".isspace() 136; "".istitle() 136; "".isupper() 136; "".join()
137; "ljust() 138; "".lower() 138; "".Istrip() 139; "".replace() 139; " .rfind() 140; "".rindex()
141; "".rjust() 141; " .rstrip() 142; "".split() 142; "".splitlines() 144; "".startswith() 144;
".strip()144; "".swapcase() 145; "".translate() 145; "".upper() 146; "".encode() 188;

METHODS

str.__contains__(self, x)
UserString.UserString.__contains__ (self, x)

Return a Boolean value indicating whether self contains the character x. Determines how a
datatype responds to the in operator.

In Python versions through 2.2, the in operator applied to strings has a semantics that tends to
trip me up. Fortunately, Python 2.3+ has the behavior that | expect. In older Python versions,
in can only be used to determine the presence of a single character in a string—this makes
sense if you think of a string as a sequence of characters, but | nonetheless intuitively want

something like the code below to work:

>>> s = "The cat in the hat"
>>> if "the" ins: print "Has definite article"

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
TypeError: 'in <string> requires character as |left operand

It is easy to get the "expected” behavior in a custom string-like datatype (while still always
producing the same result whenever X is indeed a character):

>>> class S(str):
def _ contains__ (self, x):
for i in range(len(self)):
if self.startswith(x,i): return 1

>>> s = S("The cat in the hat")
>>> "the" in s

1

>>> "an" in s

0

Python 2.3 strings behave the same way as my datatype S.

See ALso: string 422; string 129; operator 47; tuple 28;

1.1.5 Exercise: Filling out the forms (or deciding not to)

DISCUSSION

A particular little task that was quite frequent and general before the advent of Web servers has
become absolutely ubiquitous for slightly dynamic Web pages. The pattern one encounters is
that one has a certain general format that is desired for a document or file, but miscellaneous
little details differ from instance to instance. Form letters are another common case where one
comes across this pattern, but thematically related collections of Web pages rule the roost of
templating techniques.

It turns out that everyone and her sister has developed her own little templating system.
Creating a templating system is a very appealing task for users of most scripting languages,
just a little while after they have gotten a firm grasp of "Hello World!" Some of these are
discussed in Chapter 5, but many others are not addressed. Often, these templating systems
will be HTML/CGI oriented and will often include some degree of dynamic calculation of fill-in
values—the inspiration in these cases comes from systems like Allaire's ColdFusion, Java Server
Pages, Active Server Pages, and PHP, in which some program code gets sprinkled around in
documents that are primarily made of HTML.

At the very simplest, Python provides interpolation of special characters in strings, in a style
similar to the C sprintf() function. So a simple example might appear like:

>>> formletter="""Dear % %,

You owe us $% for account (#%). Please Pay.

... The Conpany
>>> fname = ' David'

>>> | npame = 'Mertz
>>> due = 500
>>> gcct = ' 123-T745'

>>> print formletter % (fnane, | nane, due, acct)
Dear David Mert z,

You owe us $500 for account (#123-T745). Pl ease Pay.
The Conpany

This approach does the basic templating, but it would be easy to make an error in composing
the tuple of insertion values. And moreover, a slight change to the form_letter template—such
as the addition or subtraction of a field—would produce wrong results.

A bit more robust approach is to use Python's dictionary-based string interpolation. For
example:

>>> formletter="""Dear %fnane)s %I nane)s,

You owe us $% due)s for account (#%acct)s). Please Pay.

... The Conpany"""

>>> fields = {'Iname':" " Mertz', 'fnane':'David'}
>>> fields['acct'] = '123-T745

>>> fields['due'] = 500

>>> fields['last_letter'] ="'01/02/2001

>>> print formletter %fields
Dear David Mertz,

You owe us $500 for account (#123-T745). Pl ease Pay.
The Conpany

With this approach, the fields need not be listed in a particular order for the insertion.
Furthermore, if the order of fields is rearranged in the template, or if the same fields are used
for a different template, the fields dictionary may still be used for insertion values. If fields has
unused dictionary keys, it doesn't hurt the interpolation, either.

The dictionary interpolation approach is still subject to failure if dictionary keys are missing. Two
improvements using the UserDict module can improve matters, in two different (and
incompatible) ways. In Python 2.2+ the built-in dict type can be a parent for a "new-style
class"; if available everywhere you need it to run, dict is a better parent than is
UserDict.UserDict . One approach is to avoid all key misses during dictionary interpolation:

>>> formletter="""%salutation)s % fnanme)s %I nane) s,

You owe us $% due)s for account (#%acct)s). Please Pay.

% cl osi ng)s The Conpany"""

>>> from UserDict inport UserDict

>>> cl ass AutoFillingDict(UserDict):
def __init_ (self,dict={}): UserDict. init__(self,dict)
def _ getitem (self, key):

. return UserDict.get(self, key, '")

>>> fields = AutoFillingDict()

>>> fields['salutation'] = 'Dear’
>>> fields

{"salutation': 'Dear'}

>>> fields['fnane'] = 'David

>>> fields['due'] = 500

>>> fields ['closing'] = "Sincerely,’
>>> print formletter %fields

Dear David ,

You owe us $500 for account (#). Please Pay.

Si ncerely, The Conpany

Even though the fields Iname and acct are not specified, the interpolation has managed to
produce a basically sensible letter (instead of crashing with a KeyError).

Another approach is to create a custom dictionary-like object that will allow for "partial
interpolation.” This approach is particularly useful to gather bits of the information needed for
the final string over the course of the program run (rather than all at once):

>>> formletter="""%salutation)s % fnane)s %I nane) s,

You owe us $% due)s for account (#%acct)s). Please Pay.
% cl osi ng) s The Conmpany"""
>>> from UserDict inport UserDict
>>> cl ass ClosureDict(UserDict):
def __init_ (self,dict={}): UserDict. init__(self,dict)
def _getitem (self, key):
return UserDict.get(self, key, '"%' +key+')s')
>>> name_dict = CosureDict({ fnane':'David','Inane':'Mertz'})
>>> print formletter % nane_dict
% sal utation)s David Mertz,

You owe us $% due)s for account (#%acct)s). Please Pay.

% cl osi ng) s The Conpany

Interpolating using a ClosureDict simply fills in whatever portion of the information it knows,
then returns a new string that is closer to being filled in.

See Aiso: dict 24; UserDict 24; UserList 28; UserString 33;

QUESTIONS

1: What are some other ways to provide "smart" string interpolation? Can you think of
ways that the UserList or UserString modules might be used to implement a similar
enhanced interpolation?

2: Consider other "magic" methods that you might add to classes inheriting from
UserDict.UserDict . How might these additional behaviors make templating techniques
more powerful?

3: How far do you think you can go in using Python's string interpolation as a templating
technique? At what point would you decide you had to apply other techniques, such as
regular expression substitutions or a parser? Why?

4: What sorts of error checking might you implement for customized interpolation? The
simple list or dictionary interpolation could fail fairly easily, but at least those were
trappable errors (they let the application know something is amiss). How would you
create a system with both flexible interpolation and good guards on the quality and
completeness of the final result?

1.1.6 Problem: Working with lines from a large file

At its simplest, reading a file in a line-oriented style is just a matter of using the .readline(),
.readlines(), and .xreadlines() methods of a file object. Python 2.2+ provides a simplified syntax
for this frequent operation by letting the file object itself efficiently iterate over lines (strictly in
forward sequence). To read in an entire file, you may use the .read() method and possibly split
it into lines or other chunks using the string.split() function. Some examples:

>>> for line in open('chapl.txt'): # Python 2.2+
process each line in sone manner
pass

>>> |inelist = open('chapl.txt').readlines()
>>> print linelist[1849],
EXERCI SE: Working with lines froma large file
>>> txt = open(' chapl.txt').read()
>>> fromos inport |inesep
>>> |inelist2 = txt.split(linesep)

For moderately sized files, reading the entire contents is not a big issue. But large files make
time and memory issues more important. Complex documents or active log files, for example,
might be multiple megabytes, or even gigabytes, in size—even if the contents of such files do
not strictly exceed the size of available memory, reading them can still be time consuming. A
related technique to those discussed here is discussed in the "Problem: Reading a file backwards
by record, line, or paragraph" section of Chapter 2.

Obviously, if you need to process every line in a file, you have to read the whole file; xreadlines
does so in a memory-friendly way, assuming you are able to process them sequentially. But for
applications that only need a subset of lines in a large file, it is not hard to make improvements.
The most important module to look to for support here is linecache .

A CACHED LINE LIST

It is straightforward to read a particular line from a file using linecache:

>>> jnport |inecache

>>> print |linecache.getline('chapl.txt', 1850),
PROBLEM Wbrking with lines froma large file

Notice that linecache.getline() uses one-based counting, in contrast to the zero-based list
indexing in the prior example. While there is not much to this, it would be even nicer to have an
object that combined the efficiency of linecache with the interfaces we expect in lists. Existing
code might exist to process lists of lines, or you might want to write a function that is agnostic
about the source of a list of lines. In addition to being able to enumerate and index, it would be
useful to be able to slice linecache -based objects, just as we might do to real lists (including
with extended slices, which were added to lists in Python 2.3).

cachedlinelist.py

i mport |inecache, types
cl ass CachedLi nelLi st:
Note: in Python 2.2+, it is probably worth including:

_slots__ = (' _fnane')
...and inheriting from"' object’
def __init__ (self, fnanme):

self._fnanme = fname
def _ getitem (self, x):
if type(x) is types. SliceType:
return [linecache.getline(self._fnanme, n+l)
for nin range(x.start, x.stop, X.step)]
el se:
return |linecache.getline(self. _fname, x+1)
def _ getslice_ (self, beg, end):
pass to __getitem which does extended slices al so
return sel f[beg: end: 1]

Using these new objects is almost identical to using a list created by open(fname).readlines(),
but more efficient (especially in memory usage):

>>> from cachedlinelist inport CachedLi neLi st

>>> cl| = CachedLineList('../chapl.txt")

>>> cl | [1849]

' PROBLEM Working with lines froma large file\r\n'
>>> for line in cll[1849:1851]: print |ine,

PROBLEM Wbrking with lines froma large file

>>> for line in cl1[1853:1857:2]: print line,

..é matter of using the '.readline()', '.readlines()' and
sinmplified syntax for this frequent operation by letting the

A RANDOM LINE

Occasionally—especially for testing purposes—you might want to check "typical” lines in a line-
oriented file. It is easy to fall into the trap of making sure that a process works for the first few
lines of a file, and maybe for the last few, then assuming it works everywhere. Unfortunately,
the first and last few lines of many files tend to be atypical: sometimes headers or footers are
used; sometimes a log file's first lines were logged during development rather than usage; and
so on. Then again, exhaustive testing of entire files might provide more data than you want to
worry about. Depending on the nature of the processing, complete testing could be time

consuming as well.

On most systems, seeking to a particular position in a file is far quicker than reading all the
bytes up to that position. Even using linecache , you need to read a file byte-by-byte up to the
point of a cached line. A fast approach to finding random lines from a large file is to seek to a
random position within a file, then read comparatively few bytes before and after that position,
identifying a line within that chunk.

randline.py

#! [usr/ bi n/ pyt hon
"""Iterate over randomlines in a file (req Python 2.2+)
From conmand- | i ne use: %randline. py <fname> <num i nes>

i mport sys

fromos inport stat, |inesep
fromstat inmport ST_SIZE
fromrandom i nport randrange
MAX_LI NE_LEN = 4096

#_ _lterable class
cl ass randline(object):
__slots___ = (" _fp'," size'," |limt")
def __init_ (self, fnane, limt=sys. naxint):

self. size = stat(fnane)[ST_SI ZE]
self. fp = open(fnane,'rb")
self. Iimt =1limt
def __iter_(self):
return self
def next(self):

if self. limt <= 0:
rai se Stoplteration
self. limt -=1

pos = randrange(self._size)

priorlen = m n(pos, MAX LI NE_LEN) # maybe near start
sel f. _fp.seek(pos-priorlen)

Add extra |inesep at beg/end in case pos at beg/end
prior = linesep + self._fp.read(priorlen)

post = self._fp.read(MAX_LINE_LEN) + |inesep

begl n prior.rfind(linesep) + len(linesep)

endl n post . find(linesep)

return prior[begln:]+post[:endln]

#-- Use as command-line too
if _name_ ==" nmain_
fname, numines = sys.argv[1l], int(sys.argv[2])
for line in randline(fname, numines):
print |ine

The presented randline module may be used either imported into another application or as a
command-line tool. In the latter case, you could pipe a collection of random lines to another
application, as in:

%randline.py reallybig.log 1000 | testapp

A couple details should be noted in my implementation. (1) The same line can be chosen more

than once in a line iteration. If you choose a small number of lines from a large file, this
probably will not happen (but the so-called "birthday paradox" makes an occasional collision
more likely than you might expect; see the Glossary). (2) What is selected is "the line that
contains a random position in the file," which means that short lines are less likely to be chosen
than long lines. That distribution could be a bug or feature, depending on your needs. In

practical terms, for testing "enough" typical cases, the precise distribution is not all that
important.

See ALso: xreadlines 72; linecache 64; random 82;

. — 4 Previous Mext #
Team-Fly x

Top

- 4 Pravious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Chapter 1. Python Basics

1.2 Standard Modules

There are a variety of tasks that many or most text processing applications will perform, but
that are not themselves text processing tasks. For example, texts typically live inside files,
so for a concrete application you might want to check whether files exist, whether you have
access to them, and whether they have certain attributes; you might also want to read their
contents. The text processing per se does not happen until the text makes it into a Python
value, but getting the text into local memory is a necessary step.

Another task is making Python objects persistent so that final or intermediate processing
results can be saved in computer-usable forms. Or again, Python applications often benefit
from being able to call external processes and possibly work with the results of those calls.

Yet another class of modules helps you deal with Python internals in ways that go beyond
what the inherent syntax does. | have made a judgment call in this book as to which such
"Python internal” modules are sufficiently general and frequently used in text processing
applications; a number of "internal" modules are given only one-line descriptions under the
"Other Modules" topic.

1.2.1 Working with the Python Interpreter

Some of the modules in the standard library contain functionality that is nearly as important
to Python as the basic syntax. Such modularity is an important strength of Python's design,
but users of other languages may be surprised to find capabilities for reading command-line
arguments, catching exceptions, copying objects, or the like in external modules.

copy=Generic copying operations

Names in Python programs are merely bindings to underlying objects; many of these objects
are mutable. This point is simple, but it winds up biting almost every beginning Python
programmer—and even a few experienced Pythoners get caught, too. The problem is that
binding another name (including a sequence position, dictionary entry, or attribute) to an
object leaves you with two names bound to the same object. If you change the underlying
object using one name, the other name also points to a changed object. Sometimes you
want that, sometimes you do not.

One variant of the binding trap is a particularly frequent pitfall. Say you want a 2D table of
values, initialized as zeros. Later on, you would like to be able to refer to a row/column
position as, for example, table[2][3] (as in many programming languages). Here is what
you would probably try first, along with its failure:

>>> row = [0] *4

>>> print row

[0, O, O, O]

>>> table = [row*4 # or '"table = [[0]*4]*4
>>> for rowin table: print row

[0, O
[O! Oa
[0, O
[0, O
>>> tab
>>> for

[2][3] =7

ow in table: print row
[0, O, O, 7]
[0, O, O, 7]
[0, O, O, 7]
[0, O, O, 7
>>> jd(table[2]), id(table[3])
(6207968, 6207968)

The problem with the example is that table is a list of four positional bindings to the exact
same list object. You cannot change just one row, since all four point to just one object.
What you need instead is a copy of row to put in each row of table.

Python provides a number of ways to create copies of objects (and bind them to names).
Such a copy is a "snapshot" of the state of the object that can be modified independently of
changes to the original. A few ways to correct the table problem are:

>>> tablel = map(list, [(0,)*4]*4)
>>> jd(tablel[2]), id(tablel[3])
(6361712, 6361808)

>>> table2 = [1st[:] for 1st in [[0]*4]*4]
>>> jd(table2[2]), id(table2[3])
(6356720, 6356800)

>>> from copy inport copy

>>> row = [0] *4

>>> tabl e3 = map(copy, [row] *4)
>>> jd(table3[2]), id(table3[3])
(6498640, 6498720)

In general, slices always create new lists. In Python 2.2+, the constructors list() and dict()
likewise construct new/copied lists/dicts (possibly using other sequence or association types
as arguments).

But the most general way to make a new copy of whatever object you might need is with
thecopy module. If you use the copy module you do not need to worry about issues of

whether a given sequence is a list, or merely list-like, which the list() coercion forces into a
list.

FUNCTIONS

copy.copy(obj)

Return a shallow copy of a Python object. Most (but not quite all) types of Python objects

can be copied. A shallow copy binds its elements/members to the same objects as bound in
the original—but the object itself is distinct.

>>> j nport copy
>>> class C. pass

>>> o0l = ()
>>> ol.lst = [1,2,3]
>>> ol.str = "spant

>>> 02 = copy. copy(ol)
>>> 0l. | st. append(17)
>>> 02.] st

[1, 2, 3, 17]

>>> ol.str = 'eggs
>>> 02.str

" spani

copy.deepcopy(obj)

Return a deep copy of a Python object. Each element or member in an object is itself
recursively copied. For nested containers, it is usually more desirable to perform a deep
copy—otherwise you can run into problems like the 2D table example above.

>>> 0l = ()

>>> ol.Ist =11, 2, 3]

>>> 03 = copy. deepcopy(0l)
>>> 0l.| st. append(17)

>>> 03. | st

[1, 2, 3]

>>> 0l. | st

[1, 2, 3, 17]

\exceptions-Standard exception class hierarchy

Various actions in Python raise exceptions, and these exceptions can be caught using an
except clause. Although strings can serve as exceptions for backwards-compatibility
reasons, it is greatly preferable to use class-based exceptions.

When you catch an exception in using an except clause, you also catch any descendent
exceptions. By utilizing a hierarchy of standard and user-defined exception classes, you can
tailor exception handling to meet your specific code requirements.

>>> cl ass MyException(StandardError): pass
>>> try:
rai se MyException
except StandardError
print "Caught parent”
except MyExcepti on:
print "Caught specific class"
except :
print "Caught generic |eftover

Céﬁght par ent

In general, if you need to raise exceptions manually, you should either use a built-in
exception close to your situation, or inherit from that built-in exception. The outline in Figure
1.1 shows the exception classes defined in exceptions .

Figure 1.1. Standard exceptions

Exception Root class for all built-in exceptions
StandardError Base for "normal” exceptions
ArithmeticError Baze for arithmetic exceptions
Overllow Error Mumber too large to represant
ZeroDivisionError Dividing by zero
FloatingPointError Problem in floating point operation
LookupError Problem accessing & value in a collection
IndexError Problem accessing 2 value in a sequence
KevError Problem accessing & value in 2@ mapping
NameError Problem accessing local or global name
UnboundLocalError Reference to non-existent name
AttributeError Problem accessing or setting an attribute
TypeError Operation or function applied to wrang type
ValueError Operation or funclion on unusable value
UnicodeError Problem encoding or decoding
EnvironmeniError Problem outside of Pytheon itsalf
10Error Problem performing 1/0
OSError Error passed from the operating system
WindowsError Windows-spacific OS problem
AssertionError Failure of an assert statemeant
EOFError End-of-file without a2 read
ImpartError Problem importing a module
ReferenceError Problem accessing collzcted weakref
KevboardInterrupt User pressed interrupt (ctrl-c) key
MemoryError Operation runs out of memory (try cel'ing)
SyntaxError Problem parsing Python code
SystemError Intzrnal (recoverzble) arror in Python
RuntimeError Error not falling under any other category
NotlmplementedError Functionality not yet availzble
Stoplteration Iterztor has no more items available
SvstemExit Raised by sys.exit ()

getopteParser for command line options ‘

Utility applications—whether for text processing or otherwise—frequently accept a variety of
command-line switches to configure their behavior. In principle, and frequently in practice,
all that you need to do to process command-line options is read through the list sys.argv[1:]
and handle each element of the option line. | have certainly written my own small "sys.argv
parser" more than once; it is not hard if you do not expect too much.

Thegetopt module provides some automation and error handling for option parsing. It takes
just a few lines of code to tell getopt what options it should handle, and which switch
prefixes and parameter styles to use. However, getopt is not necessarily the final word in
parsing command lines. Python 2.3 includes Greg Ward's optik module
<http://optik.sourceforge.net/> renamed as optparse , and the Twisted Matrix library
containstwisted.python.usage <http://www.twistedmatrix.com/documents/howto/options>.
These modules, and other third-party tools, were written because of perceived limitations in
getopt.

For most purposes, getopt is a perfectly good tool. Moreover, even if some enhanced module
is included in later Python versions, either this enhancement will be backwards compatible or

getopt will remain in the distribution to support existing scripts.

See ALso: sys.argv 49;

FUNCTIONS

getopt.getopt(args, options [,long_options]])

The argument args is the actual list of options being parsed, most commonly sys.argv[1:].
The argument options and the optional argument long_options contain formats for
acceptable options. If any options specified in args do not match any acceptable format, a
getopt.GetoptError exception is raised. All options must begin with either a single dash for
single-letter options or a double dash for long options (DOS-style leading slashes are not
usable, unfortunately).

The return value of getopt.getopt() is a pair containing an option list and a list of additional
arguments. The latter is typically a list of filenames the utility will operate on. The option list
is a list of pairs of the form (option, value). Under recent versions of Python, you can
convert an option list to a dictionary with dict(optlist), which is likely to be useful.

The options format string is a sequence of letters, each optionally followed by a colon. Any
option letter followed by a colon takes a (mandatory) value after the option.

The format for long_options is a list of strings indicating the option names (excluding the
leading dashes). If an option name ends with an equal sign, it requires a value after the
option.

It is easiest to see getopt in action:

>>> jnport getopt

>>> opts='-al -b -c 2 --foo=bar --baz filel file2 .split()

>>> optlist, args = getopt.getopt(opts, ' a:bc:',['foo="," baz'])
>>> optli st

[('-a", "1), ("-b", "), ('-c', "2"), ('--fo0', "bar'),
('--baz', "")]

>>> args

["filel", "file2"]

>>> nodash = |l anbda s: \

. s.translate('"'.join(map(chr,range(256))),"'-")
>>> todict = lanbda 1: \

C di ct ([(nodash(opt),val) for opt,val in 1])
>>> optdict = todict(optlist)

>>> opt di ct

{ta': "1, 'c: 2, '"b: """, "baz': "', 'foo': 'bar'}

You can examine options given either by looping through optlist or by performing
optdict.get(key, default) type tests as needed in your program flow.

operatoreStandard operations as functions

All of the standard Python syntactic operators are available in functional form using the
operator module. In most cases, it is more clear to use the actual operators, but in a few
cases functions are useful. The most common usage for operator is in conjunction with
functional programming constructs. For example:

>>> | nport operator
>>> 1st =1, 0, (), "', "abc']
>>> map(operator.not_, 1st) # fp-style negated bool vals
[0, 1, 1, 1, O]
>>> tnplst =[] # inperative style
>>> for itemin 1st:
t npl st. append(not item

>>> t npl st

[0, 1, 1, 1, 0]
>>> del tnpl st # nmust cl eanup stray nane

As well as being shorter, | find the FP style more clear. The source code below provides
sample implementations of the functions in the operator module. The actual
implementations are faster and are written directly in C, but the samples illustrate what
each function does.

operator2.py

Conparison functions
It = It = lanbda a,b: a < b
le = le =lanbda a,b: a<=b
eq = __eq__ = lanbda a,b: a ==>b
ne = ne_ = lanbda a,b: al!=Db
ge = __ge__ = lanbda a,b: a >=0b
gt = gt =lanbda a,b: a > b
Bool ean functions
not = not_ = lanbda o: not o
truth = [anbda o: not not o
Arithnetic functions
abs = __abs__ = abs # same as built-in function
add = _add__ = lanbda a,b: a + b
and_ = and__ = lanbda a,b: a & b # bitw se, not bool ean
div=_div__ =\
| anbda a, b: a/b # depends on _ future__.division
floordiv = __floordiv__ = lanbda a,b: a/b # Only for 2.2+
inv =invert = __inv__ = invert__ = lanbda o: 0
Ishift = Ishift__ = lanbda a,b: a << b
rshift = rshift__ = lanbda a,b: a << b
nmod = nmod = lanbda a,b: a %b
mul = mul = lanbda a,b: a * b
neg = neg = lanbda o: -0
or_ = __or__ =lanbda a,b: a | b # bitwi se, not bool ean
pos = pos__ = lanbda o: +o # identity for nunbers
sub = sub__ = lanbda a,b: a - b
truediv = truediv__ = lanbda a,b: 1.0*a/b # New in 2.2+
xor = _xor__ = lanbda a,b: a " b

Sequence functions (note overl oaded syntactic operators)
concat = concat = add

contains = _contains___ = lanbda a,b: bin a

countO = |l anmbda seq,a: len([x for x in seq if x==a])
def deliten(seq,a): del seq[a]

__delitem = delitem

def delslice(seq, b,e): del seq[b:e]

__delslice__ = delslice

getitem= __getitem = |lanbda seq,i: seq[i]

getslice = getslice = lanbda seq, b, e: seq[b: €]

i ndexOf = | anbda seq, o: seq. i ndex(0)
repeat = _ _repeat__ = mul

def setiten(seq,i,v): seq[i] =V
__setitem = setitem

def setslice(seq,b,e,v): seq[b:e] =v
__setslice_ = setslice

Functionality functions (not inplenmented here)
The precise interfaces required to pass the bel ow tests

are ill-defined, and m ght vary at limt-cases between
Pyt hon versions and custom data types.

i mport operat or

isCallable = callable # just use built-in 'callable()

i sMappi ngType = operator.isMappi ngType
i sNunber Type = operat or.i sNunber Type
i sSequenceType = operator.isSequenceType

‘sySOInformation about current Python interpreter

As with the Python "userland" objects you create within your applications, the Python
interpreter itself is very open to introspection. Using the sys module, you can examine and
modify many aspects of the Python runtime environment. However, as with much of the
functionality in the os module, some of what sys provides is too esoteric to address in this
book about text processing. Consult the Python Library Reference for information on those
attributes and functions not covered here.

The module attributes sys.exc_type, sys.exc_value , and sys.exc_traceback have been
deprecated in favor of the function sys.exc_info() . All of these, and also sys.last-type,
sys.last-value, sys.last_traceback , and sys.tracebacklimit , let you poke into exceptions and
stack frames to a finer degree than the basic try and except statements do. sys.exec_prefix
andsys.executable provide information on installed paths for Python.

The functions sys.displayhook() and sys.excepthook() control where program output goes,
andsys.__displayhook__ and sys. _excepthook _ retain their original values (e.g., STDOUT
and STDERR). sys.exitfunc affects interpreter cleanup. The attributes sys.psl and sys.ps2
control prompts in the Python interactive shell.

Other attributes and methods simply provide more detail than you almost ever need to know
for text processing applications. The attributes sys.dllhandle and sys.winver are Windows
specific;sys.setdlopenf lags () , and sys.getdlopenflags() are Unix only. Methods like
sys.builtin_module_names, sys._getframe(), sys.prefix, sys.getrecursionlimit(),

sys.setprofile(), sys.settrace(), sys.setcheckinterval(), sys.setrecursionlimit(), sys.modules ,
and also sys.warnoptions concern Python internals. Unicode behavior is affected by the
sys.setdefaultencoding() method, but is overridable with arguments anyway.

ATTRIBUTES

sys.argv

A list of command-line arguments passed to a Python script. The first item, argv[0], is the
script name itself, so you are normally interested in argv[1:] when parsing arguments.

See ALso: getopt 44; sys.stdin 51; sys.stdout 51;

sys.byteorder

The native byte order (endianness) of the current platform. Possible values are big and little.
Available in Python 2.0+.
sys.copyright

A string with copyright information for the current Python interpreter.

sys.hexversion

The version number of the current Python interpreter as an integer. This number increases
with every version, even nonproduction releases. This attribute is not very human-readable;
sys.version or sys.version_info is generally easier to work with.

See Atso: sys.version 51; sys.version_info 52;

sys.maxint

The largest positive integer supported by Python's regular integer type, on most platforms,
2**31-1. The largest negative integer is -sys.maxint-1.

sys.maxunicode

The integer of the largest supported code point for a Unicode character under the current
configuration. Unicode characters are stored as UCS-2 or UCS-4.

sys.path

A list of the pathnames searched for modules. You may modify this path to control module
loading.

sys.platform

A string identifying the OS platform.

See Aiso: os.uname() 81;

sys.stderr
sys. stderr__

File object for standard error stream (STDERR). sys.__stderr__ retains the original value in
casesys.stderr is modified during program execution. Error messages and warnings from
the Python interpreter are written to sys.stderr . The most typical use of sys.stderr is for
application messages that indicate "abnormal” conditions. For example:

% cat cap_file.py
#!/usr/ bi n/ env python
i mport sys, string
if len(sys.argv) < 2:
sys.stderr.wite("No filenane specified\n")

el se:
fname = sys.argv[1]
try:
i nput = open(fnane).read()
sys. stdout.wite(string. upper(input))
except:
sys.stderr.wite("Could not read '%'\n" % f nane)
% ./cap_file.py this > CAPS
% ./cap_file.py nosuchfile > CAPS
Coul d not read 'nosuchfile’
% ./cap_file.py > CAPS
No fil enane specified

See Atso: sys.argv 49; sys.stdin 51; sys.stdout 51;

sys.stdin
sys. stdin__

File object for standard input stream (STDIN). sys.__stdin__ retains the original value in
casesys.stdin is modified during program execution. input() and raw-input() are read from
sys.stdin, but the most typical use of sys.stdin is for piped and redirected streams on the
command line. For example:

% cat cap_stdin. py

#!/ usr/ bi n/ env python

i mport sys, string

i nput = sys.stdin.read()

print string.upper(input)

% echo "this and that" | ./cap_stdin.py
THI S AND THAT

See ALso: sys.argv 49; sys.stderr 50; sys.stdout 51;

sys.stdout
sys. stdout_

File object for standard output stream (STDOUT). sys.__stdout__ retains the original value
in case sys.stdout is modified during program execution. The formatted output of the print
statement goes to sys.stdout, and you may also use regular file methods, such as
sys.stdout.write() .

See Auso: sys.argv 49; sys.stderr 50; sys.stdin 51;

sys.version

A string containing version information on the current Python interpreter. The form of the
string is version (#build_num, build_date, build_time) [compiler]. For example:

>>> print sSys.version
1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

Or:

>>> print sys.version
2.2 (#1, Apr 17 2002, 16:11:12)
[GCC 2.95.2 19991024 (rel ease)]

This version-independent way to find the major, minor, and micro version components
should work for 1.5-2.3.x (at least):

>>> fromstring inmport split
>>> from sys inport version
>>> ver _tup = map(int, split(split(version)[0],"'."))+[0]
>>> mgjor, mnor, point = ver_tup[:3]
>>> if (major, mnor) >= (1, 6):

print "New Way"

el se:
print "Ad Way"

New W\ay
sys.version_info

A 5-tuple containing five components of the version number of the current Python
interpreter: (major, minor, micro, releaselevel, serial). releaselevel is a descriptive phrase;
the other are integers.

>>> sys.version_info
(2, 2, 0, 'final', 0)

Unfortunately, this attribute was added to Python 2.0, so its items are not entirely useful in
requiring a minimal version for some desired functionality.

See ALso: sys.version 51;

FUNCTIONS

sys.exit ([code=0])

Exit Python with exit code code. Cleanup actions specified by finally clauses of try
statements are honored, and it is possible to intercept the exit attempt by catching the
SystemEXxit exception. You may specify a numeric exit code for those systems that codify
them; you may also specify a string exit code, which is printed to STDERR (with the actual
exit code set to 1).

sys.getdefaultencoding()

Return the name of the default Unicode string encoding in Python 2.0+.

sys.getrefcount(obj)

Return the number of references to the object obj. The value returned is one higher than
you might expect, because it includes the (temporary) reference passed as the argument.

>>> x =y = "hi there"
>>> jnport sSys
>>> sys. getrefcount (Xx)

3

>>> 1st =[x, X, X]
>>> sys. getref count (x)
6

SeE ALso: 0s 74;

typeseStandard Python object types ‘

Every object in Python has a type; you can find it by using the built-in function type() . Often
Python functions use a sort of ad hoc overloading, which is implemented by checking
features of objects passed as arguments. Programmers coming from languages like C or
Java are sometimes surprised by this style, since they are accustomed to seeing multiple
"type signatures" for each set of argument types the function can accept. But that is not the
Python way.

Experienced Python programmers try not to rely on the precise types of objects, not even in
an inheritance sense. This attitude is also sometimes surprising to programmers of other
languages (especially statically typed). What is usually important to a Python program is
what an object can do, not what it is. In fact, it has become much more complicated to
describe what many objects are with the "type/class unification” in Python 2.2 and above
(the details are outside the scope of this book).

For example, you might be inclined to write an overloaded function in the following manner:

Naive overloading of argument

i mport types, exceptions
def overl oaded_get text(0):
if type(o) is types. FileType:
text = o.read()
elif type(o) is types. StringType:
text = o
elif type(o) in (types.IntType, types.Fl oat Type,
types. LongType, types. Conpl exType):
text = repr(0)
el se:
rai se exceptions. TypeError
return text

The problem with this rigidly typed code is that it is far more fragile than is necessary.
Something need not be an actual FileType to read its text, it just needs to be sufficiently
"file-like" (e.g., a urllib.urlopen() or cStringlO.StringlO() object is file-like enough for this
purpose). Similarly, a new-style object that descends from types.StringType or a
UserString.UserString() object is "string-like" enough to return as such, and similarly for
other numeric types.

A better implementation of the function above is:

"Quacks like a duck" overloading of argument

def overl oaded get text(0):
if hasattr(o, ' read):
return o.read()

try:
return ""+o
except TypeError:
pass
try:

return repr(0+0)
except TypeError:
pass
rai se

At times, nonetheless, it is useful to have symbolic names available to name specific object
types. In many such cases, an empty or minimal version of the type of object may be used
in conjunction with the type() function equally well—the choice is mostly stylistic:

>>> type('"') == types. StringType
1
>>> type(0.0) == types. Fl oat Type
1

>>> type(None) == types. NoneType
1

>>> type([]) == types.ListType

1

BUILT-IN

type(o)

Return the datatype of any object o. The return value of this function is itself an object of
the type types.TypeType . TypeType objects implement . str__ () and .___repr__ () methods
to create readable descriptions of object types.

>>> print type(1)

<type 'int'>

>>> print type(type(1))
<type 'type'>

>>> type(l) is type(0)
1

CONSTANTS

types.BuiltinFunctionType
types.BuiltinMethodType

The type for built-in functions like abs(), len() , and dir(), and for functions in "standard" C
extensions like sys and os. However, extensions like string and re are actually Python
wrappers for C extensions, so their functions are of type types.FuntionType . A general
Python programmer need not worry about these fussy details.

types.BufferType

The type for objects created by the built-in buffer() function.

types.Class Type

The type for user-defined classes.

>>> from operator inport eq
>>> fromtypes inport *

>>> map(eq, [type(C), type(C()), type(C().foo)],
C [A assType, |InstanceType, MethodType])
[1, 1, 1]

See Atso: types.InstanceType 56; types.MethodType 56;

types.CodeType

The type for code objects such as returned by compile().

types.ComplexType

Same as type(0+0j).

types.DictType
types.DictionaryType

Same as type({}).

types.EllipsisType

The type for built-in Ellipsis object.

types.FileType

The type for open file objects.

>>> from sys inport stdout

>>> fp = open('tst',"'wW)

>>> [type(stdout), type(fp)] == [types. FileType] *2
1

types.FloatType

Same as type (0.0).

types.FrameType

The type for frame objects such as tb.tb_frame in which tb has the type

types.TracebackType .

types.FunctionType
types.LambdaType

Same as type(lambda:0).

types.GeneratorType

The type for generator-iterator objects in Python 2.2+.

>>> from __future__

i nport generators

>>> def foo(): yield O

S>> type(foo) == types. Functi onType
1
>>> type(foo()) == types. Cenerator Type

See Atso: types.FunctionType 56;

types.InstanceType

The type for instances of user-defined classes.

See Auso: types.ClassType 55; types.MethodType 56;

types.IntType

Same as type(0).

types.ListType

Same as type().

types.LongType

Same as type(OL).

types.MethodType
types.Unbound MethodType

The type for methods of user-defined class instances.

See Atso: types.ClassType 55; types.InstanceType 56;

types.ModuleType

The type for modules.

>>> jnport 0s, re, sys
>>> [type(o0s), type(re), type(sys)] == [types. Modul eType] *3
1

types.NoneType

Same as type(None).

types.StringType

Same as type(').

types.TracebackType

The type for traceback objects found in sys.exc_traceback .

types.TupleType

Same as type(()).

types.UnicodeType

Same as type(u™).

types.SliceType

The type for objects returned by slice().

types.StringTypes

Same as (types.StringType,types.UnicodeType).

See Auso: types.StringType 57; types.UnicodeType 57;

types.TypeType

Same as type (type (obj)) (for any obj).

types.XRangeType

Same as type(xrange(1)).

1.2.2 Working with the Local Filesystem

dircache = Read and cache directory listings

Thedircache module is an enhanced version of the os.listdir() function. Unlike the os
function,dircache keeps prior directory listings in memory to avoid the need for a new call to
the filesystem. Since dircache is smart enough to check whether a directory has been
touched since last caching, dircache is a complete replacement for os.listdir() (with possible
minor speed gains).

FUNCTIONS

dircache.listdir(path)

Return a directory listing of path path. Uses a list cached in memory where possible.

dircache.opendir(path)

Identical to dircache.listdir() . Legacy function to support old scripts.

dircache.annotate(path, Ist)

Modify the list Ist in place to indicate which items are directories, and which are plain files.
The string path should indicate the path to reach the listed files.

>>> | = dircache.listdir('/tnmp')
>>> |

['501", 'nd10834. db']

>>> di rcache. annotate('/tnp', 1)
>>> |

['501/', 'md10834. db']

‘filecmp-Compare files and directories

Thefilecmp module lets you check whether two files are identical, and whether two
directories contain some identical files. You have several options in determining how
thorough of a comparison is performed.

FUNCTIONS

filecmp.cmp(fnamel, fname2 [,shallow=1 [,use_statcache=0]])

Compare the file named by the string fnamel with the file named by the string fname2. If
the default true value of shallow is used, the comparison is based only on the mode, size,
and modification time of the two files. If shallow is a false value, the files are compared byte
by byte. Unless you are concerned that someone will deliberately falsify timestamps on files
(as in a cryptography context), a shallow comparison is quite reliable. However, tar and
untar can also change timestamps.

>>> jnport filecnp
>>> filecnp.cnmp('dirl/filel', "dir2/filel")

0
>>> filecnp.cnp('dirl/file2', "dir2/file2', shall ow=0)
1

The use_statcache argument is not relevant for Python 2.2+. In older Python versions, the
statcache module provided (slightly) more efficient cached access to file stats, but its use is
no longer needed.

filecmp.cmpfiles(dirnamel, dirname2, fnamelist [,shallow=1 [,use_statcache=0]])

Compare those filenames listed in fnamelist if they occur in both the directory dirnamel and
the directory dirname2. filecmp.cmpfiles() returns a tuple of three lists (some of the lists
may be empty): (matches, mismatches, errors). matches are identical files in both
directories, mismatches are nonidentical files in both directories. errors will contain names if
a file exists in neither, or in only one, of the two directories, or if either file cannot be read
for any reason (permissions, disk problems, etc.).

>>> jnport filecnp, os
>>> filecnp.cnpfiles('dirl', "dir2" ,["this', " that', ' other'])
(["this"], ['that'], ['other'])

>>> print os.popen('ls -1 dirl").read()

- T WXT - XT - X 1 quilty staff 169 Sep 27 00:13 this

- T WXT - XT - X 1 quilty staf f 687 Sep 27 00: 13 t hat

- T WXT - XTI - X 1 quilty st af f 737 Sep 27 00: 16 ot her
- T WXT - XT - X 1 quilty st af f 518 Sep 12 11:57 spam
>>> print os.popen('ls -1 dir2').read()

- T WXT - XT - X 1 quilty st af f 169 Sep 27 00:13 this

- T WXT - XTI - X 1 quilty st af f 692 Sep 27 00: 32 t hat

The shallow and use_statcache arguments are the same as those to filecmp.cmp() .

CLASSES

filecmp.dircmp(dirnamel, dirname2 [,ignore=...[,hide=...])

Create a directory comparison object. dirnamel and dirname2 are two directories to
compare. The optional argument ignore is a sequence of pathnames to ignore and defaults
to ["RCS","CVS","tags"]; hide is a sequence of pathnames to hide and defaults to
[os.curdir,os.pardir] (i.e., [".",".."]).

METHODS AND ATTRIBUTES

The attributes of filecmp.dircmp are read-only. Do not attempt to modify them.

filecmp.dircmp.report()

Print a comparison report on the two directories.

>>> nycnp = filecnp.dircnp('dirl , 'dir2")
>>> nycnp. report ()
diff dirl dir2

Only indirl : ["other', 'spanm]
Identical files : ['"this']
Differing files : ["that']

filecmp.dircmp.report_partial_closure()

Print a comparison report on the two directories, including immediate subdirectories. The
method name has nothing to do with the theoretical term "closure" from functional
programming.

filecmp.dircmp.report_partial_closure()

Print a comparison report on the two directories, recursively including all nested
subdirectories.

filecmp.dircmp.left_list

Pathnames in the dirnamel directory, filtering out the hide and ignore lists.

filecmp.dircmp.right_list

Pathnames in the dirname2 directory, filtering out the hide and ignore lists.

filecmp.dircmp.common

Pathnames in both directories.

filecmp.dircmp.left_only

Pathnames in dirname 1 but not dirname?2.

filecmp.dircmp.right_only

Pathnames in dirname2 but not dirnamel.

filecmp.dircmp.common_dirs

Subdirectories in both directories.

filecmp.dircmp.common_files

Filenames in both directories.

filecmp.dircmp.common_funny

Pathnames in both directories, but of different types.

filecmp.dircmp.same_files

Filenames of identical files in both directories.

filecmp.dircmp.diff_files

Filenames of nonidentical files whose name occurs in both directories.

filecmp.dircmp.funny_files

Filenames in both directories where something goes wrong during comparison.

filecmp.dircmp.subdirs

A dictionary mapping filecmp.dircmp.common_dirs strings to corresponding filecmp.dircmp
objects; for example:

>>> usercnp = filecnmp.dircnp('/Users/quilty','/Users/dgm)
>>> usercnp. subdi rs[' Public'].comon
["Drop Box']

See Atso: os.stat() 79; os.listdir() 76;

flleinput « Read multiple files or STDIN

Many utilities, especially on Unix-like systems, operate line-by-line on one or more files
and/or on redirected input. A flexibility in treating input sources in a homogeneous fashion is
part of the "Unix philosophy." The fileinput module allows you to write a Python application
that uses these common conventions with almost no special programming to adjust to input
sources.

A common, minimal, but extremely useful Unix utility is cat, which simply writes its input to
STDOUT (allowing redirection of STDOUT as needed). Below are a few simple examples of
cat:

% cat a
AAAAA

%cat a b
AAAAA

BBBBB

%cat - b < a
AAAAA

BBBBB

%cat < b
BBBBB

%cat a < b
AAAAA

% echo "XXX' | cat a -
AAAAA

XXX

Notice that STDIN is read only if either "-" is given as an argument, or no arguments are

given at all. We can implement a Python version of cat using the fileinput module as follows:

cat.py

#! /usr/ bi n/ env pyt hon

i mport fileinput

for line in fileinput.input():
print |ine,

FUNCTIONS

fileinput.input([files=sys.argv[1:] [,inplace=0 [,backup=".bak"]]])

Most commonly, this function will be used without any of its optional arguments, as in the
introductory example of cat.py. However, behavior may be customized for special cases.

The argument files is a sequence of filenames to process. By default, it consists of all the
arguments given on the command line. Commonly, however, you might want to treat some
of these arguments as flags rather than filenames (e.g., if they start with - or /). Any list of
filenames you like may be used as the files argument, whether or not it is built from
sys.argv.

If you specify a true value for inplace, output will go into each file specified rather than to
STDOUT. Input taken from STDIN, however, will still go to STDOUT. For in-place operation,
a temporary backup file is created as the actual input source and is given the extension
indicated by the backup argument. For example:

%cat a b

AAAAA

BBBBB

% cat nodify. py

#! /usr/ bi n/ env pyt hon
i nport fileinput, sys

for line in fileinput.input(sys.argv[l:], inplace=1):
print "MODI FIED', |ine,

% echo "XXX" | ./nodify.py a b -

MODI FI ED XXX

%cat a b

MCDI FI ED AAAAA
MCDI FI ED BBBBB

fileinput.close()

Close the input sequence.

fileinput.nextfile()

Close the current file, and proceed to the next one. Any unread lines in the current file will
not be counted towards the line total.

There are several functions in the fileinput module that provide information about the
current input state. These tests can be used to process the current line in a context-
dependent way.

fileinput.filelineno()

The number of lines read from the current file.

fileinput.filename()

The name of the file from which the last line was read. Before a line is read, the function
returns None.

fileinput.isfirstline()

Same as fileinput.filelineno()==1.

fileinput.isstdin()

True if the last line read was from STDIN.

fileinput.lineno()

The number of lines read during the input loop, cumulative between files.

CLASSES

fileinput.Filelnput([files [,inplace=0 [,backup=".bak"]]])

The methods of fileinput.Filelnput are the same as the module-level functions, plus an
additional .readline() method that matches that of file objects. fileinput.Filelnput objects
also have a .___getitem__ () method to support sequential access.

The arguments to initialize a fileinput.Filelnput object are the same as those passed to the
fileinput.input () function. The class exists primarily in order to allow subclassing. For normal
usage, it is best to just use the fileinput functions.

See Aiso: multifile 285; xreadlines 72;

globeFilename globing utility

Theglob module provides a list of pathnames matching a glob-style pattern. The fnmatch
module is used internally to determine whether a path matches.

FUNCTIONS

glob.glob(pat)

Both directories and plain files are returned, so if you are only interested in one type of path,
useos.path.isdir() or os.path.isfile() ; other functions in os.path also support other filters.

Pathnames returned by glob.glob() contain as much absolute or relative path information as

the pattern pat gives. For example:

>>> jnport gl ob, os.path

>>> gl ob. gl ob('/ Users/ quilty/ Book/chap[3-4].txt")
['/Users/quilty/Book/chap3.txt', '/Users/quilty/Book/chap4.txt']
>>> gl ob. gl ob(' chap[3-6].txt")

['chap3.txt', 'chap4.txt', 'chap5.txt', 'chap6.txt']

>>> filter(os.path.isdir, glob.glob('/Users/quilty/Book/[A-Z]*"))
['/Users/quilty/Book/ SCRIPTS , '/ Users/quilty/Book/ XM.']

See Awso: fnmatch 232; os.path 65;

linecacheeCache lines from files

The module linecache can be used to simulate relatively efficient random access to the lines
in a file. Lines that are read are cached for later access.

FUNCTIONS

linecache.getline(fname, linenum)

Read line linenum from the file named fname. If an error occurs reading the line, the
function will catch the error and return an empty string. sys.path is also searched for the
filename if it is not found in the current directory.

>>> jnport |inecache
>>> | i necache. getline('/etc/hosts', 15)
'192.168.1.108 hernes hernes.gnosis.lan\n'

linecache.clearcache()

Clear the cache of read lines.

linecache.checkcache()

Check whether files in the cache have been modified since they were cached.

os.patheCommon pathname manipulations

Theos.path module provides a variety of functions to analyze and manipulate filesystem
paths in a cross-platform fashion.

FUNCTIONS

os.path.abspath(pathname)

Return an absolute path for a (relative) pathname.

>>> 0s. pat h. abspat h(' SCRI PTS/ nk_book")
"/ Users/quilty/Book/ SCRI PTS/ nk_book’

os.path.basename(pathname)

Same as os.path.split(pathname)[1].

os .path.commonprefix(pathlist)

Return the path to the most nested parent directory shared by all elements of the sequence
pathlist.

>>> 0s. pat h. commonprefi x(['/usr/ X11R6/ bi n/twni ,

"/ usr/sbin/ bash',
"/usr/local/bin/dada'])
"lusr/’

os.path.dirname(pathname)

Same as os.path.split(pathname)[0].

os.path.exists(pathname)

Return true if the pathname pathname exists.

os.path.expanduser(pathname)

Expand pathnames that include the tilde character: ~. Under standard Unix shells, an initial
tilde refers to a user's home directory, and a tilde followed by a name refers to the named
user's home directory. This function emulates that behavior on other platforms.

>>> 0s. pat h. expanduser (' ~dqm)
"/ User s/ dgm

>>> 0s. pat h. expanduser (' ~/ Book')
"/ Users/quilty/ Book'

os.path.expandvars(pathname)

Expand pathname by replacing environment variables in a Unix shell style. While this
function is in the os.path module, you could equally use it for bash-like scripting in Python,
generally (this is not necessarily a good idea, but it is possible).

>>> 0s. pat h. expandvar s(' $HOVE/ Book')

"/ Users/quilty/ Book'

>>> from os. path i nport expandvars as ev # Python 2.0+

>>> jf ev(' $HOSTTYPE') ==' maci ntosh' and ev(' $OSTYPE)=="darwi n':
print ev("The vendor is $VENDOR, the CPU is $MACHTYPE")

The vendor is apple, the CPU is powerpc

os.path.getatime(pathname)

Return the last access time of pathname (or raise os.error if checking is not possible).

os.path.getmtime(pathname)

Return the modification time of pathname (or raise os.error if checking is not possible).

os.path.getsize(pathname)

Return the size of pathname in bytes (or raise os.error if checking is not possible).

os.path.isabs(pathname)

Return true if pathname is an absolute path.

os.path.isdir(pathname)

Return true if pathname is a directory.

os.path.isfile(pathname)

Return true if pathname is a regular file (including symbolic links).

os.path.islink(pathname)

Return true if pathname is a symbolic link.

os.path.ismount(pathname)

Return true if pathname is a mount point (on POSIX systems).

os.path.join(pathl [,path2[...]])

Join multiple path components intelligently.

>>> os.path.join('/Users/quilty/'," ' Book',"'SCRIPTS/',"' nk_book')
"/ Users/quilty/Book/ SCRI PTS/ nk_book'

os.path.normcase(pathname)

Convert pathname to canonical lowercase on case-insensitive filesystems. Also convert
slashes on Windows systems.

os.path.normpath(pathname)

Remove redundant path information.

>>> 0s. pat h. nornpat h(' /usr/local/bin/../include/./slang.h")
"/usr/local/includel/slang.h'

os.path.realpath(pathname)

Return the "real" path to pathname after de-aliasing any symbolic links. New in Python
2.2+.

>>> os. pat h.real path('/usr/bin/ newal i ases"')
"/ usr/sbin/sendmail"’

os.path.samefile(pathnamel, pathname2)

Return true if pathnamel and pathname2 are the same file.

See Acso: filecmp 58;

os.path.sameopenfile(fpl, fp2)

Return true if the file handles fpl and fp2 refer to the same file. Not available on Windows.

os.path.split(pathname)

Return a tuple containing the path leading up to the named pathname and the named
directory or filename in isolation.

>>> os. path.split('/Users/quilty/Book/ SCRI PTS)
('/Users/quilty/Book', 'SCRIPTS)

os.path.splitdrive(pathname)

Return a tuple containing the drive letter and the rest of the path. On systems that do not
use a drive letter, the drive letter is empty (as it is where none is specified on Windows-like
systems).

os.path.walk(pathname, visitfunc, arg)

For every directory recursively contained in pathname, call visitfunc (arg, dirname,
pathnames) for each path.

>>> def big files(minsize, dirnane, files):
for file in files:
full name = os. path.join(dirnane, file)
if os.path.isfile(fullname):
if os.path.getsize(fullnane) >= m nsize:
print full nanme

S>> os.path.wal k(' /usr/', big files, 5e6)
/fusr/lib/llibSystem B debug.dylib
lusr/lib/libSystem B profile.dylib

shutileCopy files and directory trees

The functions in the shutil module make working with files a bit easier. There is nothing in
this module that you could not do using basic file objects and os.path functions, but shutil
often provides a more direct means and handles minor details for you. The functions in shutil
match fairly closely the capabilities you would find in Unix filesystem utilities like cp and rm.

FUNCTIONS

shutil.copy(src, dst)

Copy the file named src to the pathname dst. If dst is a directory, the created file is given
the name os.path.join(dst+os.path.basename(src)).

See Atso: os.path.join() 66; os.path.basename() 65;

shutil.copy2(src, dst)

Same as shutil.copy() except that the access and creation time of dst are set to the values
in src.

shutil.copyfile(src, dst)

Copy the file named src to the filename dst (overwriting dst if present). Basically, this has
the same effect as open(dst,"wb").write(open(src,"rb™).read()).

shutil.copyfileobj(fpsrc, fpdst [,buffer=-1])

Copy the file-like object fpsrc to the file-like object fpdst. If the optional argument buffer is
given, only the specified number of bytes are read into memory at a time; this allows
copying very large files.

shutil.copymode(src, dst)

Copy the permission bits from the file named src to the filename dst.

shutil.copystat(src, dst)

Copy the permission and timestamp data from the file named src to the filename dst.

shutil.copytree(src, dst [,symlinks=0])

Copy the directory src to the destination dst recursively. If the optional argument symlinks is
a true value, copy symbolic links as links rather than the default behavior of copying the
content of the link target. This function may not be entirely reliable on every platform and
filesystem.

shutil.rmtree(dirname [ignore [,errorhandler]])

Remove an entire directory tree rooted at dirname. If optional argument ignore is a true
value, errors will be silently ignored. If errorhandler is given, a custom error handler is used
to catch errors. This function may not be entirely reliable on every platform and filesystem.

See Atso: open() 15; os.path 65;

‘stat * Constants/functions for os.stat() ‘

Thestat module provides two types of support for analyzing the results of os.stat(),
os.Istat() , and os.fstat() calls.

Several functions exist to allow you to perform tests on a file. If you simply wish to check
one predicate of a file, it is more direct to use one of the os.path.is*() functions, but for
performing several such tests, it is faster to read the mode once and perform several
stat.S_*() tests.

As well as helper functions, stat defines symbolic constants to access the fields of the 10-
tuple returned by os.stat() and friends. For example:

>>> fromstat inport *

>>> jnport os

>>> fileinfo = os.stat (' chapl.txt')
>>> fil einfo[ST_SI ZE]

68666L

>>> node = fileinfo [ST_MODE]

>>> S | SSOCK(node)

0

>>> S | SDI R(npde)
0

>>> S | SREG node)
1

FUNCTIONS

stat.S_ISDIR(mode)

Mode indicates a directory.

stat.S_ISCHR(mode)

Mode indicates a character special device file.

stat.S_ISBLK(mode)

Mode indicates a block special device file.

stat.S_ISREG(mode)

Mode indicates a regular file.

stat.S_ISFIFO(mode)

Mode indicates a FIFO (named pipe).

stat.S_ISLNK(mode)

Mode indicates a symbolic link.

stat.S_ISSOCK(mode)

Mode indicates a socket.

CONSTANTS

stat.ST_MODE

I-node protection mode.

stat.ST_INO

I-node number.

stat.ST_DEV

Device.

stat.ST_NLINK

Number of links to this i-node.

stat.ST_UID

User id of file owner.

stat.ST_GID

Group id of file owner.

stat.ST_SIZE

Size of file.

stat.ST_ATIME

Last access time.

stat.ST_MTIME

Modification time.

stat.ST_CTIME

Time of last status change.

tempfileeTemporary files and filenames

Thetempfile module is useful when you need to store transient data using a file-like
interface. In contrast to the file-like interface of StringlO, tempfile uses the actual filesystem
for storage rather than simulating the interface to a file in memory. In memory-constrained
contexts, therefore, tempfile is preferable.

The temporary files created by tempfile are as secure against external modification as is
supported by the underlying platform. You can be fairly confident that your temporary data
will not be read or changed either while your program is running or afterwards (temporary
files are deleted when closed). While you should not count on tempfile to provide you with
cryptographic-level security, it is good enough to prevent accidents and casual inspection.

FUNCTIONS

tempfile.mktemp([suffix=""1)

Return an absolute path to a unique temporary filename. If optional argument suffix is
specified, the name will end with the suffix string.

tempfile. TemporaryFile((mode="w+b" [,buffsize=-1 [suffix=""1]])

Return a temporary file object. In general, there is little reason to change the default mode
argument of w+b; there is no existing file to append to before the creation, and it does little
good to write temporary data you cannot read. Likewise, the optional suffix argument
generally will not ever be visible, since the file is deleted when closed. The default buffsize
uses the platform defaults, but may be modified if needed.

>>> tnmpfp = tenpfil e. TemporaryFil e()
>>> tnpfp.wite('this and that\n')

>>> tnpfp.wite(' something el se\n')
>>> tnpfp.tell ()

29L

>>> t npf p. seek(0)

>>> t npf p. read()

"this and that\nsonething el se\n'

See Aiso: StringlO 153; ¢StringlO 153;

xreadlineseEfficient iteration over a file

Reading over the lines of a file had some pitfalls in older versions of Python: There was a

memory-friendly way, and there was a fast way, but never the twain shall meet. These
techniques were:

>>> fp = open(' bigfile')

>>> |ine = fp.readline()

>>> while |ine:
Menory-friendly but slow
...do stuff...
i

ne = fp.readline()

>>> for line in open('bigfile').readlines():
Fast but nenory-hungry
...do stuff...

Fortunately, with Python 2.1 a more efficient technique was provided. In Python 2.2+, this
efficient technique was also wrapped into a more elegant syntactic form (in keeping with the
new iterator). With Python 2.3+, xreadlines is officially deprecated in favor of the idiom "for
line in file:".

FUNCTIONS

xreadlines.xreadlines(fp)

Iterate over the lines of file object fp in an efficient way (both speed-wise and in memory
usage).

>>> for line in xreadlines.xreadlines(open('tnp')):
Efficient all around
...do stuff...

Corresponding to this xreadlines module function is the .xreadlines() method of file objects.

>>> for line in open('tnp').xreadlines():

I
As a file object nethod
...do stuff...

If you use Python 2.2 or above, an even nicer version is available:

>>> for line in open('tnp'):
...do stuff...

See Auso: linecache 64; FILE.xreadlines() 17; os.tmpfile() 80;

1.2.3 Running External Commands and Accessing OS Features

‘commands-Quick access to external commands ‘

Thecommands module exists primarily as a convenience wrapper for calls to os.popen*()
functions on Unix-like systems. STDERR is combined with STDOUT in the results.

FUNCTIONS

commands.getoutput(cmd)

Return the output from running cmd. This function could also be implemented as:

>>> def getoutput (cnd):
i mport os
return os.popen('{ '+cnd+' ; } 2>&1').read()

commands.getstatusoutput(cmd)

Return a tuple containing the exit status and output from running cmd. This function could
also be implemented as:

>>> def get statusout put (cnd):
i mport os
fp = os.popen('{ '+crmd+'; } 2>&1")
out put = fp.read()
status = fp.close()
if not status: status=0 # Want zero rather than None
return (status, output)

>>> get statusoutput('ls nosuchfile')

(256, 'Is: nosuchfile: No such file or directory\n')
>>> getstatusoutput('ls c*[1-3].txt")

(0, 'chapl. txt\nchap2.txt\nchap3.txt\n')

commands.getstatus(filename)

Same as commands.getoutput('ls -1d '+filename).

See Aiso: os.popen() 77; os.popen2() 77; os.popen3() 78; os.popend() 78;

os = Portable operating system services

Theos module contains a large number of functions, attributes, and constants for calling on
or determining features of the operating system that Python runs on. In many cases,
functions in os are internally implemented using modules like posix, 0s2 ,riscos, or mac, but
for portability it is better to use the os module.

Not everything in the os module is documented in this book. You can read about those
features that are unlikely to be used in text processing applications in the Python Library
Reference that accompanies Python distributions.

Functions and constants not documented here fall into several categories. The functions and
attributesos.confstr(), os.confstr_names, os.sysconf() , and os.sysconf_names let you probe
system configuration. As well, 1 skip some functions specific to process permissions on Unix-
like systems: os.ctermid(), os.getegid(), os.geteuid(), os.getgid(), os.getgroups(),
os.getlogin(), os.getpgrp(), os.getppid(), os.getuid(), os.setegid(), os.seteuid(), os.setgid(),
os.setgroups(), os.setpgrp(), os.setpgid(), os.setreuid(), os.setregid(), os.setsid() , and
os.setuid(uid) .

The functions os.abort(), os.exec*(), os._exit(), os.fork(), os.forkpty (), os.plock(),
os.spawn*(), os.times(), os.wait(), os.waitpid(), os.WIF*(), 0s. WEXITSTATUS() ,
0s.WSTOPSIG()', and 0s.WTERMSIG() and the constants 0s.P_* and 0s.WNOHANG all deal
with process creation and management. These are not documented in this book, since
creating and managing multiple processes is not typically central to text processing tasks.
However, | briefly document the basic capabilities in os.kill(), os.nice(), os.startfile() , and
os.system() and in the os.popen() family. Some of the omitted functionality can also be
found in the commands and sys modules.

A number of functions in the os module allow you to perform low-level 1/0 using file
descriptors. In general, it is simpler to perform 1/0 using file objects created with the built-in
open() function or the os.popen*() family. These file objects provide methods like
FILE.readline(), FILE.write(), FILE.seek() , and FILE.close() . Information about files can be
determined using the os.stat() function or functions in the os.path and shutil modules.
Therefore, the functions os.close(), os.dup(), os.dup2(), os.fpathconf(), os.fstat(),

os.fstatvfs(), os.ftruncate(), os.isatty(), os.Iseek(), os.open(), os.openpty(), os.pathconf(),
os.pipe(), os.read(), os.statvfs(), os.tcgetpgrp(), os.tcsetpgrp(), os.ttyname(), os.umask() ,
andos.write() are not covered here. As well, the supporting constants 0s.0_* and
os.pathconf_names are omitted.

See Atso: commands 73; os.path 65; shutil 68; sys 49;

FUNCTIONS

os.access(pathname, operation)

Check the permission for the file or directory pathname. If the type of operation specified is
allowed, return a true value. The argument operation is a number between O and 7,
inclusive, and encodes four features: exists, executable, writable, and readable. These
features have symbolic names:

>>> jnport oS
>>> 0s. F_OK, 0s. X OK, 0s.WOK, o0s.R XK
(0, 1, 2, 4)

To query a specific combination of features, you may add or bitwise-or the individual
features.

>>> os.access('nyfile', 0os. WOK | 0s. R OK)

1

>>> os.access('nyfile', 0s. X OK + 0s. R_OK)
0

>>> 0s.access('nyfile', 6)

1

os.chdir(pathname)

Change the current working directory to the path pathname.

See Atso: os.getcwd() 75;

os.chmod(pathname, mode)

Change the mode of file or directory pathname to numeric mode mode. See the man page
for the chmod utility for more information on modes.

os.chown(pathname, uid, gid)

Change the owner and group of file or directory pathname to uid and gid respectively. See
the man page for the chown utility for more information.

os.chroot(pathname)

Change the root directory under Unix-like systems (on Python 2.2+). See the man page for
the chroot utility for more information.

os.getcwd()

Return the current working directory as a string.

>>> 0s. get cwd()
"/ Users/quilty/ Book'

See Aiso: os.chdir() 75;

os.getenv(var[,value=None])

Return the value of environment variable var. If the environment variable is not defined,
return value. An equivalent call is os. environ.get(var, value).

See Atso: 0s.environ 81; os.putenv() 78;

os.getpid()

Return the current process id. Possibly useful for calls to external utilities that use process
id's.

See Atso: os.kill() 76;

os.kill(pid, sig)

Kill an external process on Unix-like systems. You will need to determine values for the pid
argument by some means, such as a call to the ps utility. Values for the signal sig sent to
the process may be found in the signal module or with man signal. For example:

>>> from signal inport *

>>> S| GHUP, SIGNT, SIGQU T, SIAOr, SI&KILL

(1, 2, 3, 6, 9

>>> def kill _by_ nane(prognane):
pi dstr = os.popen(' ps|grep '+prognane+' |sort').read()
pid = int(pidstr.split()[0])
os.kill(pid, 9)

>>> ki |l _by_name(’ myprog')

os.link(src, dst)

Create a hard link from path src to path dst on Unix-like systems. See the man page on the
In utility for more information.

See Atso: os.symlink() 80;

os.listdir(pathname)

Return a list of the names of files and directories at path pathname. The special entries for

the current and parent directories (typically "." and "..") are excluded from the list.

os.Istat(pathname)

Information on file or directory pathname. See os.stat() for details. os.Istat() does not follow
symbolic links.

See Atso: os.stat() 79; stat 69;

os.mkdir(pathname [,mode=0777])

Create a directory named pathname with the numeric mode mode. On some operating
systems, mode is ignored. See the man page for the chmod utility for more information on
modes.

See Aiso: os.chmod() 75; os.mkdirs() 77;

os.mkdirs(pathname [,mode=0777])

Create a directory named pathname with the numeric mode mode. Unlike os.mkdir() , this
function will create any intermediate directories needed for a nested directory.

See Acso: os.mkdir() 76;

os.mkfifo(pathname [,mode=0666])

Create a named pipe on Unix-like systems.

os.nice(increment)

Decrease the process priority of the current application under Unix-like systems. This is
useful if you do not wish for your application to hog system CPU resources.

The four functions in the os.popen*() family allow you to run external processes and capture
their STDOUT and STDERR and/or set their STDIN. The members of the family differ
somewhat in how these three pipes are handled.

os.popen(cmd [,mode="r" [,bufsize]])

Open a pipe to or from the external command cmd. The return value of the function is an

open file object connected to the pipe. The mode may be r for read (the default) or w for
write. The exit status of the command is returned when the file object is closed. An optional
buffer size bufsize may be specified.

>>> jnport os
>>> def |s(pat):
st dout 0s. popen('ls ' +pat)
result st dout . read()
status = stdout.close()
if status: print "Error status", status
el se: print result

>>> | s(' nosuchfile")

I s: nosuchfile: No such file or directory
Error status 256

>>> | s('chap[7-9].txt")

chap7.t xt

os.popen2(cmd [,mode [,bufsize]])

Open both STDIN and STDOUT pipes to the external command cmd. The return value is a
pair of file objects connecting to the two respective pipes. mode and bufsize work as with
os.popen() .

See Aiso: os.popen3() 78; os.popen() 77;

os.popen3(cmd [,mode [,bufsize]])

Open STDIN, STDOUT, and STDERR pipes to the external command cmd. The return value is
a 3-tuple of file objects connecting to the three respective pipes. mode and bufsize work as
withos.popen() .

>>> jnport o0s

>>> stdin, stdout, stderr = os.popen3('sed s/line/LINE")
>>> print >>stdin, 'line one

>>> print >>stdin, 'line two

>>> stdin.wite('line three\n)'

>>> stdin. cl ose()

>>> stdout.read()

"LI NE one\ nLI NE two\ nLI NE t hree\n’

>>> stderr.read()

os.popen4(cmd [,mode [,bufsize]])

Open STDIN, STDOUT, and STDERR pipes to the external command cmd. In contrast to
0s.popen3(), os.popend() combines STDOUT and STDERR on the same pipe. The return
value is a pipe of file objects connecting to the two respective pipes. mode and bufsize work
as with os.popen() .

See Aiso: 0s.popen3() 78; os.popen() 77;

os.putenv(var, value)

Set the environment variable var to the value value. Changes to the current environment
only affect subprocesses of the current process, such as those launched with os.system() or
os.popen() , not the whole OS.

Calls to os.putenv() will update the environment, but not the os.environ variable. Therefore,
it is better to update os.environ directly (which also changes the external environment).

See Atso: os.environ 81; os.getenv() 75; os.popen() 77; os.system() 80;

os.readlink(linkname)

Return a string containing the path symbolic link linkname points to. Works on Unix-like
systems.

See Atso: os.symlink() 80;

os.remove(filename)

Remove the file named filename. This function is identical to os.unlink() . If the file cannot be
removed, an OSError is raised.

See Atso: os.unlink() 81;

os.removedirs(pathname)

Remove the directory named pathname and any subdirectories of pathname. This function
will not remove directories with files, and will raise an OSError if you attempt to do so.

See Aiso: os.rmdir() 79;

os.rename(src, dst)

Rename the file or directory src as dst. Depending on the operating system, the operation
may raise an OSError if dst already exists.

See Atso: os.renames() 79;

os.renames(src, dst)

Rename the file or directory src as dst. Unlike os.rename() , this function will create any
intermediate directories needed for a nested directory.

See Aiso: os.rename() 79;

os.rmdir(pathname)

Remove the directory named pathname. This function will not remove nonempty directories
and will raise an OSError if you attempt to do so.

See Atso: os.removedirs() 79;

os.startfile(path)

Launch an application under Windows system. The behavior is the same as if path was
double-clicked in a Drives window or as if you typed start <path> at a command line. Using
Windows associations, a data file can be launched in the same manner as an actual
executable application.

See Auso: os.system() 80;

os.stat(pathname)

Create a stat_result object that contains information on the file or directory pathname. A
stat_result object has a number of attributes and also behaves like a tuple of numeric
values. Before Python 2.2, only the tuple was provided. The attributes of a stat_result object
are named the same as the constants in the stat module, but in lowercase.

>>> jnport os, stat

>>> file info = os.stat(' chapl.txt')
>>> file_info.st_size

87735L

>>> file info [stat. ST_SI ZE]

87735L

On some platforms, additional attributes are available. For example, Unix-like systems
usually have .st_blocks, .st_blksize, and .st_rdev attributes; MacOS has .st_rsize,
.st_creator, and .st_type; RISCOS has .st_ftype, .st_attrs, and .st_obtype.

See Atso: stat 69; os.Istat() 76;

os.strerror(code)

Give a description for a numeric error code code, such as that returned by
os.popen(bad_cmd).close().

See Atso: os.popen() 77;

os.symlink(src, dst)

Create a soft link from path src to path dst on Unix-like systems. See the man page on the
In utility for more information.

See Atso: 0s.link() 76; os.readlink() 78;

0s.system(cmd)

Execute the command cmd in a subshell. Unlike execution using os.popen() the output of
the executed process is not captured (but it may still echo to the same terminal as the
current Python application). In some cases, you can use o0s.system() on non-Windows
systems to detach an application in a manner similar to os.startfile() . For example, under
MacOSX, you could launch the TextEdit application with:

>>> i nport 0s

>>> cnd="/ Appl i cati ons/ Text Edi t . app/ Cont ent s/ MacOS/ Text Edit &"
>>> 0s. syst en(cnd)

0

See Auso: os.popen() 77; os.startfile() 79; commands 73;

os.tempnam([dir [,prefix]])

Return a unique filename for a temporary file. If optional argument dir is specified, that
directory will be used in the path; if prefix is specified, the file will have the indicated prefix.
For most purposes, it is more secure to use os.tmpfile() to directly obtain a file object rather
than first generating a name.

See Aiso: tempfile 71; os.tmpfile() 80;

os.tmpfile()

Return an "invisible" file object in update mode. This file does not create a directory entry,
but simply acts as a transient buffer for data on the filesystem.

See Atso: tempfile 71; StringlO 153; cStringlO 153;

os.uname()

Return detailed information about the current operating system on recent Unix-like systems.
The returned 5-tuple contains sysname, nodename, release, version, and machine, each as
descriptive strings.

os.unlink(filename)

Remove the file named filename. This function is identical to os.remove() . If the file cannot
be removed, an OSError is raised.

See Atso: os.remove() 78;

os.utime(pathname, times)

Set the access and modification timestamps of file pathname to the tuple (atime, mtime)
specified in times. Alternately, if times is None, set both timestamps to the current time.

See Atso: time 86; os.chmod() 75; os.chown() 75; os.stat() 79;

CONSTANTSAND ATTRIBUTES

os.altsep

Usually None, but an alternative path delimiter (/") under Windows.

os.curdir

The string the operating system uses to refer to the current directory; for example, "." on
Unix or ":" on Macintosh (before MacOSX).

os.defpath

The search path used by exec*p*() and spawn*p*() absent a PATH environment variable.

o0s.environ

A dictionary-like object containing the current environment.

>>> 0s. environ[' TERM]

'vt 100’

>>> os.environ[' TERM] = "vt 220
>>> 0s. getenv(' TERM)

'vt 220

See Atso: os.getenv() 75; os.putenv() 78;

os.linesep

The string that delimits lines in a file; for example "\n" on Unix, "\r" on Macintosh, "\r\n" on
Windows.

0s.name

A string identifying the operating system the current Python interpreter is running on.
Possible strings include posix, nt, dos, mac, 0s2, ce, java, and riscos.

os.pardir

The string the operating system uses to refer to the parent directory; for example, ".." on
Unix or "::" on Macintosh (before MacOSX).

os.pathsep

The string that delimits search paths; for example, ";" on Windows or ":" on Unix.

0s.sep

The string the operating system uses to refer to path delimiters; for example "/" on Unix, "\"
on Windows, ":" on Macintosh.

See ALso: sys 49; os.path 65;

1.2.4 Special Data Values and Formats

‘random-Pseudo—random value generator

Python provides better pseudo-random number generation than do most C libraries with a
rand() function, but not good enough for cryptographic purposes. The period of Python's
Wichmann-Hill generator is about 7 trillion (7el13), but that merely indicates how long it will

take a particular seeded generator to cycle; a different seed will produce a different
sequence of numbers. Python 2.3 uses the superior Mersenne Twister generator, which has
a longer period and has been better analyzed. For practical purposes, pseudorandom
numbers generated by Python are more than adequate for random-seeming behavior in
applications.

The underlying pseudo-random numbers generated by the random module can be mapped
into a variety of nonuniform patterns and distributions. Moreover, you can capture and
tinker with the state of a pseudo-random generator; you can even subclass the
random.Random class that operates behind the scenes. However, this latter sort of
specialization is outside the scope of this book, and the class random.Random and functions
random.getstate(), random.jumpahead() , and random.setstate() are omitted from this
discussion. The functions random.whseed() and random.randint() are deprecated.

FUNCTIONS

random.betavariate(alpha, beta)

Return a floating point value in the range [0.0, 1.0) with a beta distribution.

random.choice(seq)

Select a random element from the nonempty sequence seq.

random.cunifvariate(mean, arc)

Return a floating point value in the range [mean-arc/2, mean+arc/2) with a circular uniform
distribution. Arguments and result are expressed in radians.

random.expovariate(lambda_)

Return a floating point value in the range [0.0, +inf) with an exponential distribution. The
argument lambda__ gives the inverse of the mean of the distribution.

>>> jnport random

>>>t1,t2 = 0,0

>>> for x in range(100):
t1 += random expovariate(1./20)
t2 += random expovari at e(20.)

>>> print t1/100, t2/100
18. 4021962198 0. 0558234063338

random.gamma(alpha, beta)

Return a floating point value with a gamma distribution (not the gamma function).

random.gauss(mu, sigma)

Return a floating point value with a Gaussian distribution; the mean is mu and the sigma is
sigma.random.gauss() is slightly faster than random.normalvariate() .

random.lognormvariate(mu, sigma)

Return a floating point value with a log normal distribution; the natural logarithm of this
distribution is Gaussian with mean mu and sigma sigma.

random.normalvariate(mu, sigma)

Return a floating point value with a Gaussian distribution; the mean is mu and the sigma is
sigma.

random.paretovariate(alpha)

Return a floating point value with a Pareto distribution. alpha specifies the shape parameter.

random.random()

Return a floating point value in the range [0.0, 1.0).

random.randrange([start=0,] stop [,step=1])

Return a random element from the specified range. Functionally equivalent to the expression
random.choice(range(start,stop,step)), but it does not build the actual range object. Use
random.randrange() in place of the deprecated random.randint() .

random.seed([x=time.time()])

Initialize the Wichmann-Hill generator. You do not necessarily need to call random.seed() ,
since the current system time is used to initialize the generator upon module import. But if
you wish to provide more entropy in the initial state, you may pass any hashable object as
argument X. Your best choice for x is a positive long integer less than 27814431486575L,
whose value is selected at random by independent means.

random.shuffle(seq [,random=random.random])

Permute the mutable sequence seq in place. An optional argument random may be specified
to use an alternate random generator, but it is unlikely you will want to use one. Possible
permutations get very big very quickly, so even for moderately sized sequences, not every
permutation will occur.

random.uniform(min, max)

Return a random floating point value in the range [min, max).

random.vonmisesvariate(mu, kappa)

Return a floating point value with a von Mises distribution. mu is the mean angle expressed
in radians, and kappa is the concentration parameter.

random.weibullvariate(alpha, beta)

Return a floating point value with a Weibull distribution. alpha is the scale parameter, and
beta is the shape parameter.

struct = Create and read packed binary strings

Thestruct module allows you to encode compactly Python numeric values. This module may
also be used to read C structs that use the same formats; some formatting codes are only
useful for reading C structs. The exception struct.error is raised if a format does not match
its string or values.

A format string consists of a sequence of alphabetic formatting codes. Each code is
represented by zero or more bytes in the encoded packed binary string. Each formatting
code may be preceded by a number indicating a number of occurrences. The entire format
string may be preceded by a global flag. If the flag @ is used, platform-native data sizes and
endianness are used. In all other cases, standard data sizes are used. The flag = explicitly
indicates platform endianness; < indicates little-endian representations; > or ! indicates big-
endian representations.

The available formatting codes are listed below. The standard sizes are given (check your
platform for its sizes if platform-native sizes are needed).

Formatting codes for struct module

X pad byte 0 bytes
c char 1 bytes
b si gned char 1 bytes
B unsi gned char 1 bytes
h short int 2 bytes
H unsi gned short 2 bytes
[i nt 4 bytes
I unsi gned int 4 bytes
I | ong int 4 bytes
L unsi gned | ong 4 bytes
q long long int 8 bytes
Q unsi gned | ong | ong 8 bytes
f fl oat 4 bytes
d doubl e 8 bytes
s string padded to size
p Pascal string padded to size
P char pointer 4 bytes

Some usage examples clarify the encoding:

>>> jnport struct

>>> struct. pack(' 5s5p2c', 'sss','ppp','c','c")
' sss\ x00\ x00\ x03ppp\ x00cc

>>> struct. pack('h', 1)

"\ x00\ x01'

>>> struct. pack('Il"', 1)
"\ x00\ x00\ x00\ x01'

>>> struct. pack('l', 1)

"\ x00\ x00\ x00\ x01'
>>> struct. pack('<l', 1)

"\ x01\ x00\ x00\ x00

>>> struct. pack('f', 1)

" 2\ x80\ x00\ x00'

>>> struct. pack('hil"', 1,2,3)

"\ x00\ xO01\ x00\ x00\ x00\ x0O0\ x00\ x02\ x0O0\ x00\ x00\ x03

FUNCTIONS

struct.calcsize(fmt)

Return the length of the string that corresponds to the format fmt.

struct.pack(fmt, v1 [,v2 [...]])

Return a string with values v1, et alia, packed according to the format fmt.

struct.unpack(fmt, s)

Return a tuple of values represented by string s packed according to the format fmt.

timeeFunctions to manipulate date/time values

Thetime module is useful both for computing and displaying dates and time increments, and
for simple benchmarking of applications and functions. For some purposes, eGenix.com's
mx.Date module is more useful for manipulating datetimes than is time. You may obtain
mx.Date from:

<http://egenix.com/files/python/eGenix-mx-Extensions.htmi>

Time tuples—used by several functions—consist of year, month, day, hour, minute, second,
weekday, Julian day, and Daylight Savings flag. All values are integers. Month, day, and
Julian day (day of year) are one-based; hour, minute, second, and weekday are zero-based
(Monday is 0). The Daylight Savings flag uses 1 for DST, O for Standard Time, and -1 for
"best guess."

CONSTANTS ANDATTRIBUTES

time.accept2dyear

Boolean to allow two-digit years in date tuples. Default is true value, in which case the first
matching date since time.gmtime(0) is extrapolated.

>>> jnport tine

>>> time. accept 2dyear

1

>>> tinme.localtime(tinme.nktine((99,1,1,0,0,0,0,0,0)))
(1999, 1, 1, 0, 0, O, 4, 1, 0)

>>> time.gntine(0)

(1970, 1, 1, 0, 0, O, 3, 1, 0)

time.altzone
time.daylight
time.timezone
time.tzname

These several constants show information on the current timezone. Different locations use
Daylight Savings adjustments during different portions of the year, usually but not always a
one-hour adjustment. time.daylight indicates only whether such an adjustment is available
intime.altzone. time.timezone indicates how many seconds west of UTC the current zone is;
time.altzone adjusts that for Daylight Savings if possible. time.tzname gives a tuple of
strings describing the current zone.

>>> tinme.daylight, tinme.tznane
(1, ('EST', '"EDT"))

>>> tinme.altzone, tine.tinmezone
(14400, 18000)

FUNCTIONS

time.asctime([tuple=time.localtime()])

Return a string description of a time tuple.

>>> tine.asctinme((2002, 10, 25, 1, 51, 48, 4, 298, 1))
"Fri Cct 25 01:51:48 2002

See Auso: time.ctime() 87; time.strftime() 88;

time.clock()

Return the processor time for the current process. The raw value returned has little inherent
meaning, but the value is guaranteed to increase roughly in proportion to the amount of
CPU time used by the process. This makes time.clock() useful for comparative
benchmarking of various operations or approaches. The values returned should not be
compared between different CPUs, OSs, and so on, but are meaningful on one machine. For
example:

I mport time
startl = tine.clock()
appr oach_one()
timel = tinme.clock()-startl
start2 = tine.clock()
appr oach_two()
tinme2 = tine.clock()-start2
if timel > tinme2:
print "The second approach seens better"
el se:
print "The first approach seens better”

Always use time.clock() for benchmarking rather than time.time() . The latter is a low-
resolution "wall clock" only.

time.ctime([seconds=time.time()])

Return a string description of seconds since epoch.

>>> time. ctine(1035526125)
"Fri Cct 25 02:08:45 2002

See Atso: time.asctime() 87;

time.gmtime([seconds=time.time()])

Return a time tuple of seconds since epoch, giving Greenwich Mean Time.

>>> time. gnti me(1035526125)
(2002, 10, 25, 6, 8, 45, 4, 298, 0)

See Atso: time.localtime() 88;

time.localtime([seconds=time.time()])

Return a time tuple of seconds since epoch, giving the local time.

>>> tinme.localtine(1035526125)
(2002, 10, 25, 2, 8, 45, 4, 298, 1)

See Atso: time.gmtime() 88; time.mktime() 88;

time.mktime(tuple)

Return a number of seconds since epoch corresponding to a time tuple.

>>> time. nktinme((2002, 10, 25, 2, 8, 45, 4, 298, 1))
1035526125. 0

See Atso: time.localtime() 88;

time.sleep(seconds)

Suspend execution for approximately seconds measured in "wall clock" time (not CPU time).
The argument seconds is a floating point value (precision subject to system timer) and is
fully thread safe.

time.strftime(format [,tuple=time.localtime()])

Return a custom string description of a time tuple. The format given in the string format
may contain the following fields: %a/%A/%w for abbreviated/full/decimal weekday name;
%b/%B/%m for abbreviated/full/decimal month; %y/%Y for abbreviated/full year; %d for
day-of-month; %H/%I for 24/12 clock hour; %;j for day-of-year; %M for minute; %p for
AM/PM; %S for seconds; %U/%W for week-of-year (Sunday/Monday start); %c/%x/%X for

locale-appropriate datetime/date/time; %Z for timezone name. Other characters may occur
in the format also and will appear as literals (a literal % can be escaped).

>>> jnport tine

>>> tuple = (2002, 10, 25, 2, 8, 45, 4, 298, 1)

>>> tinme.strftinme("%, 9B % ' % (week %) ", tuple)
"Friday, Cctober 25 '02 (week 42)"

See Auso: time.asctime() 87; time.ctime() 87; time.strptime() 89;

time.strptime(s [,format="%a %b %d %H:%M: %S %Y"])

Return a time tuple based on a string description of a time. The format given in the string
format follows the same rules as in time.strftime() . Not available on most platforms.

See Atso: time.strftime() 88;

time.time()

Return the number of seconds since the epoch for the current time. You can specifically
determine the epoch using time.ctime(0), but normally you will use other functions in the
time module to generate useful values. Even though time.time() is also generally
nondecreasing in its return values, you should use time.clock() for benchmarking purposes.

>>> time.ctinme(0)

"Wed Dec 31 19:00: 00 1969
>>> time.tinme()
1035585490. 484154

>>> tinme.ctine(1035585437)
"Fri Cct 25 18:37:17 2002

See Atso: time.clock() 87; time.ctime() 87;

See ALso: calendar 100;

. 4 Pravious | Hesxt |
Team-Fly x
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Chapter 1. Python Basics

1.3 Other Modules in the Standard Library

If your application performs other types of tasks besides text processing, a skim of this
module list can suggest where to look for relevant functionality. As well, readers who find
themselves maintaining code written by other developers may find that unfamiliar modules
are imported by the existing code. If an imported module is not summarized in the list
below, nor documented elsewhere, it is probably an in-house or third-party module. For
standard library modules, the summaries here will at least give you a sense of the general
purpose of a given module.

__builtin_

Access to built-in functions, exceptions, and other objects. Python does a great job of
exposing its own internals, but "normal” developers do not need to worry about this.

1.3.1 Serializing and Storing Python Objects

In object-oriented programming (OOP) languages like Python, compound data and
structured data is frequently represented at runtime as native objects. At times these
objects belong to basic datatypes—Ilists, tuples, and dictionaries—but more often, once you
reach a certain degree of complexity, hierarchies of instances containing attributes become
more likely.

For simple objects, especially sequences, serialization and storage is rather straightforward.
For example, lists can easily be represented in delimited or fixed-length strings. Lists-of-lists
can be saved in line-oriented files, each line containing delimited fields, or in rows of RDBMS
tables. But once the dimension of nested sequences goes past two, and even more so for
heterogeneous data structures, traditional table-oriented storage is a less-obvious fit.

While it is possible to create "object/relational adaptors" that write OOP instances to flat
tables, that usually requires custom programming. A number of more general solutions
exist, both in the Python standard library and in third-party tools. There are actually two
separate issues involved in storing Python objects. The first issue is how to convert them
into strings in the first place; the second issue is how to create a general persistence
mechanism for such serialized objects. At a minimal level, of course, it is simple enough to
store (and retrieve) a serialization string the same way you would any other string—to a file,
a database, and so on. The various *dbm modules create a "dictionary on disk," while the
shelve module automatically utilizes cPickle serialization to write arbitrary objects as values
(keys are still strings).

Several third-party modules support object serialization with special features. If you need an
XML dialect for your object representation, the modules gnosis.xml.pickle and xmlrpclib are
useful. The YAML format is both human-readable/editable and has support libraries for
Python, Perl, Ruby, and Java; using these various libraries, you can exchange objects
between these several programming languages.

See Aiso: gnosis.xml.pickle 410; yaml 415; xmlrpclib 407;

DBMeInterfaces to dbm-style databases

A dbm-style database is a "dictionary on disk." Using a database of this sort allows you to
store a set of key/val pairs to a file, or files, on the local filesystem, and to access and set
them as if they were an in-memory dictionary. A dbm-style database, unlike a standard
dictionary, always maps strings to strings. If you need to store other types of objects, you
will need to convert them to strings (or use the shelve module as a wrapper).

Depending on your platform, and on which external libraries are installed, different dbm
modules might be available. The performance characteristics of the various modules vary
significantly. As well, some DBM modules support some special functionality. Most of the
time, however, your best approach is to access the locally supported DBM module using the
wrapper module anydbm . Calls to this module will select the best available DBM for the
current environment without a programmer or user having to worry about the underlying
support mechanism.

Functions and methods are documents using the nonspecific capitalized formm DBM. In real
usage, you would use the name of a specific module. Most of the time, you will get or set
DBM values using standard named indexing; for example, db["key"]. A few methods
characteristic of dictionaries are also supported, as well as a few methods special to DBM
databases.

See ALso: shelve 98; dict 24; UserDict 24;

FUNCTIONS

DBM.open(fname [,flag="r" [,mode=0666]])

Open the filename fname for dbm access. The optional argument flag specifies how the
database is accessed. A value of r is for read-only access (on an existing dbm file); w opens
an already existing file for read/write access; c will create a database or use an existing one,
with read/write access; the option n will always create a new database, erasing the one
named in fname if it already existed. The optional mode argument specifies the Unix mode
of the file(s) created.

METHODS

DBM.close()

Close the database and flush any pending writes.

DBM.first()

Return the first key/val pair in the DBM. The order is arbitrary but stable. You may use the
DBM.first() method, combined with repeated calls to DBM.next() , to process every item in

the dictionary.

In Python 2.2+, you can implement an items() function to emulate the behavior of the
.items() method of dictionaries for DBMs:

>>> from __future__ inport generators
>>> def itens(db):
try:
yield db.first()
while 1:

yi el d db. next ()
except KeyError:
raise Stoplteration

S>> for k,vinitens(d): # typical usage
print k,v

DBM.has_key(key)

Return a true value if the DBM has the key key.

DBM.keys()

Return a list of string keys in the DBM.

DBM.last()

Return the last key/val pair in the DBM. The order is arbitrary but stable. You may use the
DBM.last() method, combined with repeated calls to DBM.previous() , to process every item
in the dictionary in reverse order.

DBM.next()

Return the next key/val pair in the DBM. A pointer to the current position is always
maintained, so the methods DBM.next() and DBM.previous() can be used to access relative
items.

DBM.previous()

Return the previous key/val pair in the DBM. A pointer to the current position is always
maintained, so the methods DBM.next() and DBM.previous() can be used to access relative
items.

DBM.sync()

Force any pending data to be written to disk.

See Aiso: FILE.flush() 16;

MODULES

anydbm

Generic interface to underlying DBM support. Calls to this module use the functionality of the
"best available” DBM module. If you open an existing database file, its type is guessed and
used—assuming the current machine supports that style.

See Aiso: whichdb 93;

bsddb

Interface to the Berkeley DB library.

dbhash

Interface to the BSD DB library.

dbm

Interface to the Unix (n)dbm library.

dumbdbm

Interface to slow, but portable pure Python DBM.

gdbm

Interface to the GNU DBM (GDBM) library.

whichdb

Guess which db package to use to open a db file. This module contains the single function
whichdb.whichdb() . If you open an existing DBM file with anydbm, this function is called
automatically behind the scenes.

See ALso: shelve 98;

‘cPickIe-Fast Python object serialization ‘

\pickle-Standard Python object serialization ‘

The module cPickle is a comparatively fast C implementation of the pure Python pickle
module. The streams produced and read by cPickle and pickle are interchangeable. The only
time you should prefer pickle is in the uncommon case where you wish to subclass the
pickling base class; cPickle is many times faster to use. The class pickle.Pickler is not
documented here.

ThecPickle and pickle modules support a both binary and an ASCII format. Neither is
designed for human readability, but it is not hugely difficult to read an ASCII pickle.
Nonetheless, if readability is a goal, yaml or gnosis.xml.pickle are better choices. Binary
format produces smaller pickles that are faster to write or load.

It is possible to fine-tune the pickling behavior of objects by defining the methods
.__Qgetstate_ (), .__setstate__ (), and .__getinitargs__ (). The particular black magic
invocations involved in defining these methods, however, are not addressed in this book and
are rarely necessary for "normal” objects (i.e., those that represent data structures).

Use of the cPickle or pickle module is quite simple:

>>> jnport cPickle

>>> from sonewhere i nport mny_conpl ex_obj ect
>>> s = cPi ckl e. dunps(ny_conpl ex_obj ect)
>>> new_obj = cPickle.l oads(s)

FUNCTIONS
pickle.dump(o, file [,bin=0])
cPickle.dump(o, file [,bin=0])

Write a serialized form of the object o to the file-like object file. If the optional argument bin
is given a true value, use binary format.

pickle.dumps(o [,bin=0])
cPickle.dumps(o [,bin=0])

Return a serialized form of the object o as a string. If the optional argument bin is given a
true value, use binary format.

pickle.load(file)
cPickle.load(file)

Return an object that was serialized as the contents of the file-like object file.

pickle.loads(s)
cPickle.load(s)

Return an object that was serialized in the string s.

See ALso: gnosis.xml.pickle 410; yaml 415;

marshal

Internal Python object serialization. For more general object serialization, use pickle, cPickle ,
orgnosis.xml.pickle , or the YAML tools at <http://yaml.org>;marshal is a limited-purpose
serialization to the pseudo-compiled byte-code format used by Python .pyc files.

pprintePretty-print basic datatypes

The module pprint is similar to the built-in function repr() and the module repr. The purpose
ofpprint is to represent objects of basic datatypes in a more readable fashion, especially in
cases where collection types nest inside each other. In simple cases pprint.pformat and
repr() produce the same result; for more complex objects, pprint uses newlines and
indentation to illustrate the structure of a collection. Where possible, the string

representation produced by pprint functions can be used to re-create objects with the built-
ineval() .

I find the module pprint somewhat limited in that it does not produce a particularly helpful
representation of objects of custom types, which might themselves represent compound
data. Instance attributes are very frequently used in a manner similar to dictionary keys. For
example:

>>> jnport pprint

>>> det = {1.7:2.5, ("t',"u,'p)", st]
>>> dct2 = {'this':"that', 'num:38, 'dct':dct}

>>> cl ass Container: pass

>>> jnst = Container()

>>> jnst.this, inst.num inst.dct = "that', 38, dct

>>> pprint. pprint(dct?2)

{"det': {('t", "u, "p): ("0, i, s, "t'], 1.7. 2.5},
"num : 38,

"this': "that'}
>>> pprint.pprint(inst)
< _main__.Container instance at 0x415770>

In the example, dct2 and inst have the same structure, and either might plausibly be chosen
in an application as a data container. But the latter pprint representation only tells us the
barest information about what an object is, not what data it contains. The mini-module
below enhances pretty-printing:

pprint2.py

frompprint inport pformt
i mport string, sys
def pformat2(o0):
if hasattr(o,' _dict__"):

lines =[]

klass = 0. _class_ . nane__

nmodul e = o. __nodule__

desc = '<%.% instance at Ox%>' % (nodul e, klass, id(o))
i nes. append(desc)

for k,vino. __dict__.itens():

i nes. append('instance. %=%" % (k, pformat(v)))
return string.join(lines,"\n")
el se:
return pprint.pformt(0)

def pprint2(o, streanrsys.stdout):
streamwite(pformat2(o)+ \n')

Continuing the session above, we get a more useful report:

>>> jnport pprint2

>>> pprint2.pprint2(inst)

< _main__.Container instance at 0x415770>
i nstance. thi s='that'
instance.dct={("t",
i nstance. num=38

u, o tpt):s [, i, sty "t], 1.7 2.5}

FUNCTIONS

pprint.isreadable(o)

Return a true value if the equality below holds:

o == eval (pprint.pfornat(o))

pprint.isrecursive(o)

Return a true value if the object o contains recursive containers. Objects that contain
themselves at any nested level cannot be restored with eval() .

pprint.pformat(o)

Return a formatted string representation of the object o.

pprint.pprint(o [,stream=sys.stdout])

Print the formatted representation of the object o to the file-like object stream.

CLASSES

pprint.PrettyPrinter(width=80, depth=..., indent=1, stream=sys.stdout)

Return a pretty-printing object that will format using a width of width, will limit recursion to
depth depth, and will indent each new level by indent spaces. The method
pprint.PrettyPrinter.pprint() will write to the file-like object stream.

>>> pp = pprint.PrettyPrinter(w dt h=30)

>>> pp. pprint (dct 2)

{*dct': {1.7: 2.5,
(Cttotu) [

"nuni : 38,
"this': "that'}

METHODS

The class pprint.PrettyPrinter has the same methods as the module level functions. The only
difference is that the stream used for pprint.PrettyPrinter.pprint() is configured when an
instance is initialized rather than passed as an optional argument.

See Auso: gnosis.xml.pickle 410; yaml 415;

repreAlternative object representation

The module repr contains code for customizing the string representation of objects. In its
default behavior the function repr.repr() provides a length-limited string representation of
objects—in the case of large collections, displaying the entire collection can be unwieldy, and
unnecessary for merely distinguishing objects. For example:

>>> dct = dict([(n,str(n)) for nin range(6)])

>>> repr(dct # much worse for, e.g., 1000 itemdict
“{0: '0", 2. *1*, 2. '2", 3: '3, 4. "4, 5 '5}"

>>> fromrepr inport repr

>>> repr (dct

“{0: '0", 2. "1, 2: 2", 3: '3, ... }"

>>> "dct'

“{0: '0", 2. '1", 2. '2", 3: '3, 4. "4, 5 '5}"

The back-tick operator does not change behavior if the built-in repr() function is replaced.

You can change the behavior of the repr.repr() by modifying attributes of the instance object
repr.aRepr .

>>> dct = dict([(n,str(n)) for nin range(6)])

>>> repr(dct)

“{0: 'o0", 2. '1*, 2: '2", 3: '3, 4. "4, 5 '5}"
>>> jnport repr

>>> repr.repr(dct)

“{0: ‘0", 2. "1, 2: 2", 3: '3, ... }"

>>> repr.aRepr.maxdict = 5

>>> repr.repr(dct)

“{0: 0", 2. "1, 2: "2, 3: '3, 4. "4, ... }"

In my opinion, the choice of the name for this module is unfortunate, since it is identical to
that of the built-in function. You can avoid some of the collision by using the as form of
importing, as in:

>>> jnport repr as _repr
>>> fromrepr inport repr as new epr

For fine-tuned control of object representation, you may subclass the class repr.Repr.
Potentially, you could use substitutable repr() functions to change the behavior of application
output, but if you anticipate such a need, it is better practice to give a name that indicates
this; for example, overridable_repr().

CLASSES

repr.Repr()

Base for customized object representations. The instance repr.aRepr automatically exists in
the module namespace, so this class is useful primarily as a parent class. To change an
attribute, it is simplest just to set it in an instance.

ATTRIBUTES

repr.maxlevel

Depth of recursive objects to follow.

repr.maxdict
repr.maxlist
repr.maxtuple

Number of items in a collection of the indicated type to include in the representation.
Sequences default to 6, dicts to 4.

repr.maxlong

Number of digits of a long integer to stringify. Default is 40.

repr.maxstring

Length of string representation (e.g., s[:N]). Default is 30.

repr.maxother

"Catch-all" maximum length of other representations.

FUNCTIONS

repr.repr(o)

Behaves like built-in repr(), but potentially with a different string representation created.

repr.repr_TYPE(o, level)

Represent an object of the type TYPE, where the names used are the standard type names.
The argument level indicates the level of recursion when this method is called (you might
want to decide what to print based on how deep within the representation the object is). The
Python Library Reference gives the example:

cl ass MyRepr (repr. Repr):
def repr _file(self, obj, level):

if obj.nanme in ['<stdin>, '<stdout>', '<stderr>']:
return obj.nane
el se:
return 'obj’
aRepr = MyRepr ()
print aRepr.repr(sys.stdin) # prints '<stdin>

‘shelve < General persistent dictionary

The module shelve builds on the capabilities of the DBM modules, but takes things a step
forward. Unlike with the DBM modules, you may write arbitrary Python objects as values in
ashelve database. The keys in shelve databases, however, must still be strings.

The methods of shelve databases are generally the same as those for their underlying
DBMs. However, shelves do not have the .first(), .last(), .next(), or .previous () methods;
nor do they have the .items () method that actual dictionaries do. Most of the time you will
simply use name-indexed assignment and access. But from time to time, the available
shelve.get(), shelve.keys(), shelve.sync(), shelve.has_key() , and shelve.close() methods
are useful.

Usage of a shelve consists of a few simple steps like the ones below:

>>> jnport shel ve

>>> sh = shel ve. open('test _shel ve')

>>> sh. keys()

["this']

>>> sh['new key'] = {21:2, 3:4, ("t',"u ,'p"):["I","i","s","t"']}
>>> sh. keys()

["this', '"new key']

>>> sh[' new_key']

{1: 2, 34, ("t', "u, "p) ["I, i, sty "t]}
>>> del sh['this']

>>> sh. keys()

[new_key']

>>> sh. cl ose()

In the example, | opened an existing shelve, and the previously existing key/value pair was
available. Deleting a key/value pair is the same as doing so from a standard dictionary.
Opening a new shelve automatically creates the necessary file(s).

Althoughshelve only allows strings to be used as keys, in a pinch it is not difficult to
generate strings that characterize other types of immutable objects. For the same reasons
that you do not generally want to use mutable objects as dictionary keys, it is also a bad
idea to use mutable objects as shelve keys. Using the built-in hash() method is a good way
to generate strings—but keep in mind that this technique does not strictly guarantee
uniqueness, so it is possible (but unlikely) to accidentally overwrite entries using this hack:

>>> " Ux' % hash((1,2,3,4,5))

' 866123f 4"

>>> " Ux' % hash(3.1415)
' 6aad0902

>>> ' U' % hash(38)

' 06"

>>> ' U' % hash(' 38")

' 92bb58e3"

Integers, notice, are their own hash, and strings of digits are common. Therefore, if you
adopted this approach, you would want to hash strings as well, before using them as keys.
There is no real problem with doing so, merely an extra indirection step that you need to
remember to use consistently:

>>> sh[' %' % hash(' another_key')] = 'another val ue
>>> sh. keys()

[' new key', '8f9efOca']

>>> sh[' %' % hash(' anot her _key')]

"anot her val ue'
>>> sh[' anot her _key']

Traceback (nost recent call |ast):
File "<stdin>, line 1, in ?
File "/sw lib/python2.2/shelve.py", line 70, in _ getitem _

f = Stringl Q(sel f.dict[key])
KeyError: another_key

If you want to go beyond the capabilities of shelve in several ways, you might want to
investigate the third-party library Zope Object Database (ZODB). ZODB allows arbitrary
objects to be persistent, not only dictionary-like objects. Moreover, ZODB lets you store data
in ways other than in local files, and also has adaptors for multiuser simultaneous access.
Look for details at:

<http://www.zope.org/Wikis/ZODB/StandaloneZODB=>
See Atso: DBM 90; dict 24;

Q ++ Q s D o+ O s Qe L i Qe e D ose) ea [e e Qe s D s Q)

The rest of the listed modules are comparatively unlikely to be needed in text processing
applications. Some modules are specific to a particular platform; if so, this is indicated
parenthetically. Recent distributions of Python have taken a "batteries included”
approach—much more is included in a base Python distribution than is with other free
programming languages (but other popular languages still have a range of existing libraries
that can be downloaded separately).

1.3.2 Platform-Specific Operations

_winreg

Access to the Windows registry (Windows).

AE

AppleEvents (Macintosh; replaced by Carbon.AE).

aepack

Conversion between Python variables and AppleEvent data containers (Macintosh).

aetypes

AppleEvent objects (Macintosh).

applesingle

Rudimentary decoder for AppleSingle format files (Macintosh).

buildtools

Build MacOS applets (Macintosh).

calendar

Print calendars, much like the Unix cal utility. A variety of functions allow you to print or
stringify calendars for various time frames. For example,

>>> print cal endar. nont h(2002, 11)
Novenber 2002
Mo Tu W Th Fr Sa Su
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Carbon.AE, Carbon.App, Carbon.CF, Carbon.Cm, Carbon.Ctl, Carbon.Dlg, Carbon.Evt, Carbon.Fm,
Carbon.Help, Carbon.List, Carbon.Menu, Carbon.Mlte, Carbon.Qd, Carbon.Qdoffs, Carbon.Qt,
Carbon.Res, Carbon.Scrap, Carbon.Snd, Carbon.TE, Carbon.Win

Interfaces to Carbon APl (Macintosh).

cd

CD-ROM access on SGI systems (IRIX).

cfmfile

Code Fragment Resource module (Macintosh).

ColorPicker

Interface to the standard color selection dialog (Macintosh).

cth

Interface to the Communications Tool Box (Macintosh).

dl

Call C functions in shared objects (Unix).

EasyDialogs

Basic Macintosh dialogs (Macintosh).

fentl

Access to Unix fcntl() and iocntl() system functions (Unix).

findertools

AppleEvents interface to MacOS finder (Macintosh).

fl, FL, flp

Functions and constants for working with the FORMS library (IRIX).

fm, FM

Functions and constants for working with the Font Manager library (IR1X).

fpectl

Floating point exception control (Unix).

FrameWork, MiniAEFrame

Structured development of MacOS applications (Macintosh).

gettext

The module gettext eases the development of multilingual applications. While actual
translations must be performed manually, this module aids in identifying strings for
translation and runtime substitutions of language-specific strings.

grp

Information on Unix groups (Unix).

locale

Control the language and regional settings for an application. The locale setting affects the
behavior of several functions, such as time.strftime() and string.lower() . The locale module
is also useful for creating strings such as number with grouped digits and currency strings
for specific nations.

mac, macerrors, macpath

Macintosh implementation of os module functionality. It is generally better to use os directly
and let it call mac where needed (Macintosh).

macfs, macfsn, macostools

Filesystem services (Macintosh).

MacOS

Access to MacOS Python interpreter (Macintosh).

macresource

Locate script resources (Macintosh).

macspeech

Interface to Speech Manager (Macintosh).

mactty

Easy access serial to line connections (Macintosh).

mkcwproject

Create CodeWarrior projects (Macintosh).

msvcrt

Miscellaneous Windows-specific functions provided in Microsoft's Visual C++ Runtime
libraries (Windows).

Nac

Interface to Navigation Services (Macintosh).

nis

Access to Sun's NIS Yellow Pages (Unix).

pipes

Manage pipes at a finer level than done by os.popen() and its relatives. Reliability varies
between platforms (Unix).

PixMapWrapper

Wrap PixMap objects (Macintosh).

posix, posixfile

Access to operating system functionality under Unix. The os module provides more portable
version of the same functionality and should be used instead (Unix).

preferences

Application preferences manager (Macintosh).

pty

Pseudo terminal utilities (IRIX, Linux).

pwd

Access to Unix password database (Unix).

pythonprefs

Preferences manager for Python (Macintosh).

py_resource

Helper to create PYC resources for compiled applications (Macintosh).

quietconsole

Buffered, nonvisible STDOUT output (Macintosh).

resource

Examine resource usage (Unix).

syslog

Interface to Unix syslog library (Unix).

tty, termios, TERMIOS

POSIX tty control (Unix).

w

Widgets for the Mac (Macintosh).

waste

Interface to the WorldScript-Aware Styled Text Engine (Macintosh).

winsound

Interface to audio hardware under Windows (Windows).

xdrlib

Implements (a subset of) Sun eXternal Data Representation (XDR). In concept, xdrlib is
similar to the struct module, but the format is less widely used.

1.3.3 Working with Multimedia Formats

aifc

Read and write AIFC and AIFF audio files. The interface to aifc is the same as for the sunau
andwave modules.

al, AL

Audio functions for SGI (IRIX).

audioop

Manipulate raw audio data.

chunk

Read chunks of IFF audio data.

colorsys

Convert between RGB color model and YIQ, HLS, and HSV color spaces.

gl, DEVICE, GL

Functions and constants for working with Silicon Graphics' Graphics Library (IRIX).

imageop

Manipulate image data stored as Python strings. For most operations on image files, the
third-partyPython Imaging Library (usually called "PIL"; see
<http://www.pythonware.com/products/pil/>) is a versatile and powerful tool.

imgfile

Support for imglib files (IRIX).

jpeg

Read and write JPEG files on SGI (IRIX). The Python Imaging Library
(<http://www.pythonware.com/products/pil/>) provides a cross-platform means of working
with a large number of image formats and is preferable for most purposes.

rghimg

Read and write SGI RGB files (IRIX).

sunau

Read and write Sun AU audio files. The interface to sunau is the same as for the aifc and
wave modules.

sunaudiodev, SUNAUDIODEV

Interface to Sun audio hardware (SunOS/Solaris).

videoreader

Read QuickTime movies frame by frame (Macintosh).

wave

Read and write WAV audio files. The interface to wave is the same as for the aifc and sunau
modules.

1.3.4 Miscellaneous Other Modules

array

Typed arrays of numeric values. More efficient than standard Python lists, where applicable.

atexit

Exit handlers. Same functionality as sys.exitfunc , but different interface.

BaseHTTPServer, SimpleHTTPServer, SimpleXMLRPCServer, CGIHTTPServer

HTTP server classes. BaseHTTPServer should usually be treated as an abstract class. The
other modules provide sufficient customization for usage in the specific context indicated by
their names. All may be customized for your application's needs.

Bastion

Restricted object access. Used in conjunction with rexec.

bisect

List insertion maintaining sort order.

cmath

Mathematical functions over complex numbers.

cmd

Build line-oriented command interpreters.

code

Utilities to emulate Python's interactive interpreter.

codeop

Compile possibly incomplete Python source code.

compileall

Module/script to compile .py files to cached byte-code files.

compile, compile.ast, compile.visitor

Analyze Python source code and generate Python byte-codes.

copy_reg

Helper to provide extensibility for pickle/cPickle.

curses, curses.ascii, curses.panel, curses.textpad, curses.wrapper

Full-screen terminal handling with the (n)curses library.

dircache

Cached directory listing. This module enhances the functionality of os.listdir() .

dis

Disassembler of Python byte-code into mnemonics.

distutils

Build and install Python modules and packages. distutils provides a standard mechanism for
creating distribution packages of Python tools and libraries, and also for installing them on
target machines. Although distutils is likely to be useful for text processing applications that
are distributed to users, a discussion of the details of working with distutils is outside the
scope of this book. Useful information can be found in the Python standard documentation,
especially Greg Ward's Distributing Python Modules and Installing Python Modules .

doctest

Check the accuracy of _doc__ strings.

errno

Standard errno system symbols.

fpformat

General floating point formatting functions. Duplicates string interpolation functionality.

gc

Control Python's (optional) cyclic garbage collection.

getpass

Utilities to collect a password without echoing to screen.

imp

Access the internals of the import statement.

inspect

Get useful information from live Python objects for Python 2.1+.

keyword

Check whether string is a Python keyword.

math

Various trigonometric and algebraic functions and constants. These functions generally
operate on floating point numbers—use cmath for calculations on complex numbers.

mutex

Work with mutual exclusion locks, typically for threaded applications.

new

Create special Python objects in customizable ways. For example, Python hackers can create
a module object without using a file of the same name or create an instance while bypassing
the normal .__init__ () call. "Normal" techniques generally suffice for text processing
applications.

pdb

A Python debugger.

popen2

Functions to spawn commands with pipes to STDIN, STDOUT, and optionally STDERR. In
Python 2.0+, this functionality is copied to the os module in slightly improved form.
Generally you should use the os module (unless you are running Python 1.52 or earlier).

profile

Profile the performance characteristics of Python code. If speed becomes an issue in your
application, your first step in solving any problem issues should be profiling the code. But
details of using profile are outside the scope of this book. Moreover, it is usually a bad idea
toassume speed is a problem until it is actually found to be so.

pstats

Print reports on profiled Python code.

pyclbr

Python class browser; useful for implementing code development environments for editing
Python.

pydoc

Extremely useful script and module for examining Python documentation. pydoc is included
with Python 2.1+, but is compatible with earlier versions if downloaded. pydoc can provide
help similar to Unix man pages, help in the interactive shell, and also a Web browser
interface to documentation. This tool is worth using frequently while developing Python
applications, but its details are outside the scope of this book.

py_compile

"Compile" a .py file to a .pyc (or .pyo) file.

Queue

A multiproducer, multiconsumer queue, especially for threaded programming.

readline, rlcompleter

Interface to GNU readline (Unix).

rexec

Restricted execution facilities.

sched

General event scheduler.

signal

Handlers for asynchronous events.

site, user

Customizable startup module that can be modified to change the behavior of the local
Python installation.

statcache

Maintain a cache of os.stat() information on files. Deprecated in Python 2.2+.

statvfs

Constants for interpreting the results of os.statvfs() and os.fstatvfs() .

thread, threading

Create multithreaded applications with Python. Although text processing applications—like
other applications—might use a threaded approach, this topic is outside the scope of this
book. Most, but not all, Python platforms support threaded applications.

Tkinter, ScrolledText, Tix, turtle

Python interface to TCL/TK and higher-level widgets for TK. Supported on many platforms,
but not on all Python installations.

traceback

Extract, format, and print information about Python stack traces. Useful for debugging
applications.

unittest

Unit testing framework. Like a number of other documenting, testing, and debugging
modules,unittest is a useful facility—and its usage is recommended for Python applications
in general. But this module is not specific enough to text processing applications to be
addressed in this book.

warnings

Python 2.1 added a set of warning messages for conditions a user should be aware of, but
that fall below the threshold for raising exceptions. By default, such messages are printed to
STDERR, but the warning module can be used to modify the behavior of warning messages.

weakref

Create references to objects that do not limit garbage collection. At first brush, weak
references seem strange, and the strangeness does not really go away quickly. If you do not
know why you would want to use these, do not worry about it—you do not need to.

whrandom

Wichmann-Hill random number generator. Deprecated since Python 2.1, and not necessary
to use directly before that—use the module random to create pseudorandom values.

- 4 Prawious MNext b
Team-Fly T
Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Chapter 2. Basic String Operations

The cheapest, fastest and most reliable components of a computer system are those
that aren't there.

—Gordon Bell, Encore Computer Corporation

If you are writing programs in Python to accomplish text processing tasks, most of what you
need to know is in this chapter. Sure, you will probably need to know how to do some basic
things with pipes, files, and arguments to get your text to process (covered in Chapter 1);
but for actually processing the text you have gotten, the string module and string
methods—and Python's basic data structures—do most all of what you need done, almost all
the time. To a lesser extent, the various custom modules to perform encodings, encryptions,
and compressions are handy to have around (and you certainly do not want the work of
implementing them yourself). But at the heart of text processing are basic transformations
of bits of text. That's what string functions and string methods do.

There are a lot of interesting techniques elsewhere in this book. | wouldn't have written
about them if I did not find them important. But be cautious before doing interesting things.
Specifically, given a fixed task in mind, before cracking this book open to any of the other
chapters, consider very carefully whether your problem can be solved using the techniques
in this chapter. If you can answer this question affirmatively, you should usually eschew the
complications of using the higher-level modules and techniques that other chapters discuss.
By all means read all of this book for the insight and edification that | hope it provides; but
still focus on the "Zen of Python," and prefer simple to complex when simple is enough.

This chapter does several things. Section 2.1 looks at a number of common problems in text
processing that can (and should) be solved using (predominantly) the techniques
documented in this chapter. Each of these "Problems" presents working solutions that can
often be adopted with little change to real-life jobs. But a larger goal is to provide readers
with a starting point for adaptation of the examples. It is not my goal to provide mere
collections of packaged utilities and modules—plenty of those exist on the Web, and
resources like the Vaults of Parnassus <http://www.vex.net/parnassus/> and the Python
Cookbook <http://aspn.activestate.com/ASPN/Python/Cookbook/> are worth investigating
as part of any project/task (and new and better utilities will be written between the time |
write this and when you read it). It is better for readers to receive a solid foundation and
starting point from which to develop the functionality they need for their own projects and
tasks. And even better than spurring adaptation, these examples aim to encourage
contemplation. In presenting examples, this book tries to embody a way of thinking about
problems and an attitude towards solving them. More than any individual technique, such
ideas are what | would most like to share with readers.

Section 2.2 is a "reference with commentary" on the Python standard library modules for
doing basic text manipulations. The discussions interspersed with each module try to give

some guidance on why you would want to use a given module or function, and the reference
documentation tries to contain more examples of actual typical usage than does a plain
reference. In many cases, the examples and discussion of individual functions addresses
common and productive design patterns in Python. The cross-references are intended to
contextualize a given function (or other thing) in terms of related ones (and to help you
decide which is right for you). The actual listing of functions, constants, classes, and the like
is in alphabetical order within type of thing.

Section 2.3 in many ways continues Section 2.1, but also provides some aids for using this
book in a learning context. The problems and solutions presented in Section 2.3 are
somewhat more open-ended than those in Section 2.1. As well, each section labeled as
"Discussion” is followed by one labeled "Questions."” These questions are ones that could be
assigned by a teacher to students; but they are also intended to be issues that general
readers will enjoy and benefit from contemplating. In many cases, the questions point to
limitations of the approaches initially presented, and ask readers to think about ways to
address or move beyond these limitations—exactly what readers need to do when writing
their own custom code to accomplish outside tasks. However, each Discussion in Section 2.3
should stand on its own, even if the Questions are skipped over by the reader.

~ 4 Prewvious MNext b
Team-Fly o
Top

4 Previous Next b

o
Team-Fly o

Text Processing in Python
By David Mertz

Table of Contents

Chapter 2. Basic String Operations

2.1 Some Common Tasks

2.1.1 Problem: Quickly sorting lines on custom criteria

Sorting is one of the real meat-and-potatoes algorithms of text processing and, in fact, of most
programming. Fortunately for Python developers, the native [].sort method is extraordinarily
fast. Moreover, Python lists with almost any heterogeneous objects as elements can be
sorted—Python cannot rely on the uniform arrays of a language like C (an unfortunate exception
to this general power was introduced in recent Python versions where comparisons of complex
numbers raise a TypeError; and [1+1],2+2j].sort() dies for the same reason; Unicode strings in
lists can cause similar problems).

See Atso: complex 22;

The list sort method is wonderful when you want to sort items in their "natural” order—or in the
order that Python considers natural, in the case of items of varying types. Unfortunately, a lot of
times, you want to sort things in "unnatural” orders. For lines of text, in particular, any order that
is not simple alphabetization of the lines is "unnatural.” But often text lines contain meaningful
bits of information in positions other than the first character position: A last name may occur as
the second word of a list of people (for example, with first name as the first word); an IP address
may occur several fields into a server log file; a money total may occur at position 70 of each
line; and so on. What if you want to sort lines based on this style of meaningful order that Python
doesn't quite understand?

The list sort method [].sort() supports an optional custom comparison function argument. The
job this function has is to return -1 if the first thing should come first, return O if the two things
are equal order-wise, and return 1 if the first thing should come second. The built-in function
cmp() does this in a manner identical to the default [].sort() (except in terms of speed, 1st.sort()
is much faster than 1st.sort(cmp)). For short lists and quick solutions, a custom comparison
function is probably the best thing. In a lot of cases, you can even get by with an in-line lambda
function as the custom comparison function, which is a pleasant and handy idiom.

When it comes to speed, however, use of custom comparison functions is fairly awful. Part of the
problem is Python's function call overhead, but a lot of other factors contribute to the slowness.
Fortunately, a technique called "Schwartzian Transforms" can make for much faster custom
sorts. Schwartzian Transforms are named after Randal Schwartz, who proposed the technique for
working with Perl; but the technique is equally applicable to Python.

The pattern involved in the Schwartzian Transform technique consists of three steps (these can
more precisely be called the Guttman-Rosler Transform, which is based on the Schwartzian
Transform):

1. Transform the list in a reversible way into one that sorts "naturally.”
2. Call Python's native [].sort() method.
3. Reverse the transformation in (1) to restore the original list items (in new sorted order).

The reason this technique works is that, for a list of size N, it only requires O(2N) transformation
operations, which is easy to amortize over the necessary O(N log N) compare/flip operations for
large lists. The sort dominates computational time, so anything that makes the sort more
efficient is a win in the limit case (this limit is reached quickly).

Below is an example of a simple, but plausible, custom sorting algorithm. The sort is on the
fourth and subsequent words of a list of input lines. Lines that are shorter than four words sort to
the bottom. Running the test against a file with about 20,000 lines—about 1
megabyte—performed the Schwartzian Transform sort in less than 2 seconds, while taking over
12 seconds for the custom comparison function sort (outputs were verified as identical). Any
number of factors will change the exact relative timings, but a better than six times gain can
generally be expected.

schwartzian_sort.py

Timng test for "sort on fourth word"

Specifically, two lines >= 4 words will be sorted

lexographically on the 4th, 5th, etc.. words.

Any line with fewer than four words will be sorted to
the end, and will occur in "natural" order.

i nport sys, string, tine
wrerr = sys.stderr.wite

nai ve custom sort
def fourth_word(Inl,|n2):
Istl = string.split(lnl)
I st2 = string.split(ln2)
#-- Conpare "long" l|ines
if len(lstl) >= 4 and len(lst2) >= 4:
return cnp(lstl[3:],1st2[3:])
#-- Long lines before short |ines
elif len(lstl) >= 4 and len(lst2) < 4:
return -1
#-- Short lines after long lines
elif len(lstl) < 4 and len(lst2) >= 4:
return 1
el se: # Natural order
return cnp(lnl, | n2)

Don't count the read itself in the tinme
lines = open(sys.argv[1]).readlines()

Time the custom conparison sort
start = tine.tine()
lines.sort(fourth word)

end = tinme.tinme()
wrerr (" Custom conparison func in %3.2f secs\n" % (end-start))
open('tnp.custom ,"wW).witelines(lines)

Don't count the read itself in the tine

lines = open(sys.argv[1]).readlines()

Time the Schwartzi an sort
start = tinme.tinme()

for nin range(len(lines)): # Create the transform
1st = string.split(lines[n])
if len(lst) >= 4: # Tuple w sort info first
lines[n] = (1st[3:], lines[n])
el se: # Short lines to end
lines[n] = (['\377"], lines[n])
lines.sort() # Native sort
for nin range(len(lines)): # Restore original l|ines
lines[n] = lines[n] [1]

end = tinme.tinme()
wrerr("Schwartzian transformsort in %3.2f secs\n" % (end-start))
open('tnp.schwartzian',"w).witelines(lines)

Only one particular example is presented, but readers should be able to generalize this technique
to any sort they need to perform frequently or on large files.

2.1.2 Problem: Reformatting paragraphs of text

While I mourn the decline of plaintext ASCII as a communication format—and its eclipse by
unnecessarily complicated and large (and often proprietary) formats—there is still plenty of life
left in text files full of prose. READMEs, HOWTOs, email, Usenet posts, and this book itself are
written in plaintext (or at least something close enough to plaintext that generic processing

techniques are valuable). Moreover, many formats like HTML and ETEX are frequently enough
hand-edited that their plaintext appearance is important.

One task that is extremely common when working with prose text files is reformatting
paragraphs to conform to desired margins. Python 2.3 adds the module textwrap , which
performs more limited reformatting than the code below. Most of the time, this task gets done
within text editors, which are indeed quite capable of performing the task. However, sometimes it
would be nice to automate the formatting process. The task is simple enough that it is slightly
surprising that Python has no standard module function to do this. There is the class
formatter.DumbWriter , or the possibility of inheriting from and customizing
formatter.AbstractWriter . These classes are discussed in Chapter 5; but frankly, the amount of
customization and sophistication needed to use these classes and their many methods is way out
of proportion for the task at hand.

Below is a simple solution that can be used either as a command-line tool (reading from STDIN
and writing to STDOUT) or by import to a larger application.

reformat_para.py

Sinpl e paragraph reformatter. Allows specification
of left and right margins, and of justification style
(using constants defined in nodul e).

LEFT, RI GHT, CENTER = ' LEFT' ,' RI GHT' , ' CENTER

def reformat_para(para=""',left=0,right=72,just=LEFT):
words = para.split()
lines = []

i ne

word = 0
end _words = 0
whi l e not end _words:
if len(words[word]) > right-left: # Handle very | ong words
i ne = words[word]
word +=1
if word >= | en(words):
end words = 1
el se: # Conpose |line of words
while len(line)+l en(words[word]) <= right-left:
i ne += words[word] +'
word += 1
if word >= | en(words):
end words =1
br eak
I'i nes. append(Iline)
line ="'
i f just==CENTER
r, 1 =right, left
return ‘\n' .join(['" '"*left+ln.center(r-1) for In in lines])
elif just==RlI GHT:
return "\n'.join([line.rjust(right) for line in lines])
else: # left justify
return "\n'.join([' "*left+line for line in lines])

if _name__=="_ main__":
i mport sys
if len(sys.argv) <> 4:
print "Please specify left_margin, right _marg, justification

el se:
left = int(sys.argv[1])
right = int(sys.argv[2])
just = sys.argv[3].upper()

Sinplistic approach to finding initial paragraphs
for pin sys.stdin.read().split('\n\n"):
print reformat _para(p,left,right,just),"\n'

A number of enhancements are left to readers, if needed. You might want to allow hanging
indents or indented first lines, for example. Or paragraphs meeting certain criteria might not be
appropriate for wrapping (e.g., headers). A custom application might also determine the input
paragraphs differently, either by a different parsing of an input file, or by generating paragraphs
internally in some manner.

2.1.3 Problem: Column statistics for delimited or flat-record files

Data feeds, DBMS dumps, log files, and flat-file databases all tend to contain ontologically similar
records—one per line—with a collection of fields in each record. Usually such fields are separated
either by a specified delimiter or by specific column positions where fields are to occur.

Parsing these structured text records is quite easy, and performing computations on fields is
equally straightforward. But in working with a variety of such "structured text databases," it is
easy to keep writing almost the same code over again for each variation in format and
computation.

The example below provides a generic framework for every similar computation on a structured
text database.

fields_stats.py

Performcal cul ati ons on one or nore of the
fields in a structured text database.

i mport operator
fromtypes inmport *
fromxreadlines inport xreadlines # req 2.1, but is nuch faster...
could use .readline() neth < 2.1
#-- Synbolic Constants
DELIMTED = 1
FLATFILE = 2

#-- Some sanple "statistical"™ func (in functional progranm ng style)
nillFunc = | anbda 1st: None

toFl oat = | anbda 1st: map(float, 1st)

avg_1lst = | anbda 1st: reduce(operator.add, toFloat(lst))/len(lst)
sum 1st = | anbda 1st: reduce(operator.add, toFloat(lst))

max_1st = | anbda 1st: reduce(mnmax, toFloat(lst))

class FieldStats:

"""CGather statistics about structured text database fields
text _db may be either string (incl. Unicode) or file-like object
style may be in (DELIM TED, FLATFI LE)
delimter specifies the field separator in DELIMTED style text_db
columm_positions lists all field positions for FLATFILE style,

usi ng one-based indexing (first colum is 1).
E.g.: (1, 7, 40) would take fields one, two, three
fromcolums 1, 7, 40 respectively.
field _funcs is a dictionary with columm positions as keys,
and functions on |ists as val ues.

E.g.: {l:avg_1st, 4:sumlst, 5:max_Ist} would specify the
average of columm one, the sumof colum 4, and the
max of colum 5. Al other cols--incl 2,3, >=6--
are ignored.

def __init__(self,
text _db="",
styl e=DELI M TED,
delimter=",",
col um_positions=(1,),
field_funcs={}):
self.text _db = text _db
self.style = style
self.delimter = delimter
sel f.colum_positions = colum_positions
self.field funcs = field funcs

def cal c(self):
"""Cal cul ate the columm statistics
#-- 1st, create a list of lists for data (incl. unused flds)
used cols = self.field funcs. keys()
used _col s.sort ()
one-based col unmm naming: colum|[O0] is always unused
colums = []

for n in range(l+used_cols[-1]):
hint: "[[]]*num creates refs to same |i st
col ums. append([])

#-- 2nd, fill lists used for calculated fields
mght use a string directly for text_db
if type(self.text_db) in (StringType, Uni codeType):
for line in self.text_db.split('\n"):
fields = self.splitter(line)
for col in used cols:
field = fields[col-1] # zero-based i ndex
colums][col]. append(fi el d)
el se: # Sonething file-like for text _db
for Iine in xreadlines(self.text db):
fields = self.splitter(line)
for col in used cols:
field = fields[col -1] # zero-based i ndex
col ums[col]. append(fi el d)

#-- 3rd, apply the field funcs to colum lists
results = [None] * (1l+used_cols[-1])
for col in used_cols:
results[col] =\
appl y(self.field_funcs[col], (colums[col],))

#-- Finally, return the result |ist
return results

def splitter(self, line):
"""Split aline into fields according to curr inst specs"""
if self.style == DELIM TED:
return line.split(self.delimter)
elif self.style == FLATFILE
fields =[]
Adjust offsets to Python zero-based indexing,
and al so add final position after the |ine
num positions = |l en(sel f.colum_positions)
of fsets = [(pos-1) for pos in self.colum_positions]
of fsets. append(l en(line))
for pos in range(num positions):
start = of fsets[pos]
end = of f set s[pos+1]
fields.append(line[start:end])
return fields
el se:
rai se ValueError, \
"Text database nmust be DELIM TED or FLATFI LE"

#-- Test data

First Nane, Last Nane, Salary, Years Seniority, Departnment
delim="""

Kevi n, Sm t h, 50000, 5, Medi a Rel ati ons

Tom Wbo, 30000, 7, Accounti ng

Sal | y, Jones, 62000, 10, Managenent

trostrip() # no leading/trailing newines

Comment Fi rst Last Sal ary Years Dept
flat = """
tech note Kevi n Smth 50000 5 Medi a Rel ati ons

nore filler Tom Wo 30000 7 Accounti ng
yet nore... Sally Jones 62000 10 Managenent
trostrip() # no leading/trailing newines

#-- Run self-test code

if _name__ =="__main__":
getdelim= FieldStats(delim field funcs={3:avg |st,4:max _|st})
print 'Delimted Cal cul ations:'
results = getdelimcalc()
print ' Average salary -', results[3]

print ' Mx years worked -', results[4]

getflat = FieldStats(flat, field funcs={3:avg_|st, 4: max_|st},
st yl e=FLATFI LE,
col um_posi tions=(15, 25, 35, 45, 52))
print 'Flat Cal cul ations:'
results = getflat.cal c()
print ' Average salary -', results[3]

print ' Max years worked -', results[4]

The example above includes some efficiency considerations that make it a good model for
working with large data sets. In the first place, class FieldStats can (optionally) deal with a file-
like object, rather than keeping the whole structured text database in memory. The generator
xreadlines.xreadlines() is an extremely fast and efficient file reader, but it requires Python
2.1+—otherwise use FILE.readline() or FILE.readlines() (for either memory or speed efficiency,
respectively). Moreover, only the data that is actually of interest is collected into lists, in order to
save memory. However, rather than require multiple passes to collect statistics on multiple fields,
as many field columns and summary functions as wanted can be used in one pass.

One possible improvement would be to allow multiple summary functions against the same field
during a pass. But that is left as an exercise to the reader, if she desires to do it.

2.1.4 Problem: Counting characters, words, lines, and paragraphs

There is a wonderful utility under Unix-like systems called wc. What it does is so basic, and so
obvious, that it is hard to imagine working without it. wc simply counts the characters, words,
and lines of files (or STDIN). A few command-line options control which results are displayed, but
I rarely use them.

In writing this chapter, 1 found myself on a system without wc, and felt a remedy was in order.
The example below is actually an "enhanced" wc since it also counts paragraphs (but it lacks the
command-line switches). Unlike the external wc, it is easy to use the technique directly within
Python and is available anywhere Python is. The main trick—inasmuch as there is one—is a
compact use of the ".join() and "".split() methods (string.join() and string.split() could also be
used, for example, to be compatible with Python 1.5.2 or below).

wc.py

Report the chars, words, |ines, paragraphs
on STDIN or in wldcard fil enane patterns
i nport sys, glob
if len(sys.argv) > 1:

c, w1, p=0, 0, 0, O

for pat in sys.argv[1l:]:

for file in glob.glob(pat):
s = open(file).read()

we = len(s), len(s.split()), \
len(s.split('\n")), len(s.split('\n\n"))

print "\t'.join(map(str, wc)), ' \t"'+file
c, w, 1, p=c+twe[O0], wwc[1l], |+wc[2], p+twc[3]

w = (c,w|,p)

print "\t'.join(map(str, wc)), "\t TOTAL

el se:
s = sys.stdin.read()
we = len(s), len(s.split()), len(s.split("\n")), \
len(s.split("\n\n"))
print "\t'.join(map(str, w)), "\tSTD N

This little functionality could be wrapped up in a function, but it is almost too compact to bother
with doing so. Most of the work is in the interaction with the shell environment, with the counting
basically taking only two lines.

The solution above is quite likely the "one obvious way to do it," and therefore Pythonic. On the
other hand a slightly more adventurous reader might consider this assignment (if only for fun):

>>> we = map(len,[s]+map(s.split,(None,"\n',"\n\n")))

A real daredevil might be able to reduce the entire program to a single print statement.

2.1.5 Problem: Transmitting binary data as ASCII

Many channels require that the information that travels over them is 7-bit ASCII. Any bytes with
a high-order first bit of one will be handled unpredictably when transmitting data over protocols
like Simple Mail Transport Protocol (SMTP), Network News Transport Protocol (NNTP), or HTTP
(depending on content encoding), or even just when displaying them in many standard tools like
editors. In order to encode 8-bit binary data as ASCII, a number of techniques have been
invented over time.

An obvious, but obese, encoding technique is to translate each binary byte into its hexadecimal
digits. UUencoding is an older standard that developed around the need to transmit binary files
over the Usenet and on BBSs. Binhex is a similar technique from the MacOS world. In recent
years, base64—which is specified by RFC1521—has edged out the other styles of encoding. All of
the techniques are basically 4/3 encodings—that is, four ASCII bytes are used to represent three
binary bytes—but they differ somewhat in line ending and header conventions (as well as in the
encoding as such). Quoted printable is yet another format, but of variable encoding length. In
quoted printable encoding, most plain ASCII bytes are left unchanged, but a few special
characters and all high-bit bytes are escaped.

Python provides modules for all the encoding styles mentioned. The high-level wrappers uu,
binhex, base64 , and quopri all operate on input and output file-like objects, encoding the data
therein. They also each have slightly different method names and arguments. binhex, for
example, closes its output file after encoding, which makes it unusable in conjunction with a
cStringlO file-like object. All of the high-level encoders utilize the services of the low-level C
modulebinascii. binascii , in turn, implements the actual low-level block conversions, but assumes
that it will be passed the right size blocks for a given encoding.

The standard library, therefore, does not contain quite the right intermediate-level functionality

for when the goal is just encoding the binary data in arbitrary strings. It is easy to wrap that up,
though:

encode_binary.py

Provi de encoders for arbitrary binary data

in Python strings. Handles block size issues
transparently, and returns a string.

Preconpression of the input string can reduce
or elimnate any size penalty for encoding.

i mport sys
import zlib
i mport binascii

UJ = 45
BASEG4
Bl NHEX

57
Sys. maxi nt

def ASCl|encode(s=""', type=BASE64, conpress=1):
"""ASCI| encode a binary string"""
First, decide the encoding style
if type == BASE64: encode = binascii.b2a_base64
elif type == UU encode = binascii.b2a_uu
elif type == BINHEX: encode = binascii.b2a_hqgx
el se: raise Val ueError, "Encoding nust be in UU, BASE64, Bl NHEX"
Second, conpress the source if specified
if conpress: s = zlib.conpress(s)
Third, encode the string, block-by-Dblock
of f set 0
[

bl ocks =
while 1:
bl ocks. append(encode(s[of fset: of fset+type]))
of fset += type
if offset > len(s):

br eak
Fourth, return the concatenated bl ocks
return ''.join(blocks)
def ASCI | decode(s=""', type=BASE64, conpress=1):

"""Decode ASCII to a binary string"""
First, decide the encoding style
if type == BASE64: s = binascii.a2b_base64(s)
elif type == BINHEX: s bi nascii.a2b_hgx(s)
elif type == WU
s ='".join([binascii.a2b _uu(line) for line in s.split('\n")])
Second, deconpress the source if specified
if conpress: s = zlib.deconpress(s)
Third, return the decoded binary string
return s

Encode/ decode STDIN for self-test
if _nanme__ =="'_min__":
decode, TYPE = 0, BASE64
for arg in sys.argv:
i f arg.lower()=="-d': decode =1
elif arg.upper()=="UU: TYPE=UU
elif arg.upper()=="BINHEX : TYPE=BI NHEX
elif arg.upper()=="BASE64' : TYPE=BASE64
i f decode:
print ASCl | decode(sys. stdin.read(),type=TYPE)
el se:

print ASClIencode(sys.stdin.read(),type=TYPE)

The example above does not attach any headers or delimit the encoded block (by design); for
that, a wrapper like uu, mimify , or MimeWriter is a better choice. Or a custom wrapper around
encode_binary.py.

2.1.6 Problem: Creating word or letter histograms

A histogram is an analysis of the relative occurrence frequency of each of a number of possible
values. In terms of text processing, the occurrences in question are almost always either words
or byte values. Creating histograms is quite simple using Python dictionaries, but the technique is
not always immediately obvious to people thinking about it. The example below has a good
generality, provides several utility functions associated with histograms, and can be used in a
command-line operation mode.

histogram.py

Create occurrence counts of words or characters
Afewutility functions for presenting results
Avoi ds requirenent of recent Python features

fromstring inport split, maketrans, translate, punctuation, digits
i mport sys

fromtypes inport *

i mport types

def word_hi stogranm(source):
"""Create histogram of normalized words (no punct or digits)"""
hist = {}
trans = maketrans('',"'")
if type(source) in (StringType, Uni codeType): # String-like src
for word in split(source):
word = transl ate(word, trans, punctuation+digits)
if len(word) > O:
hi st[word] = hist.get(word,0) + 1
elif hasattr(source, ' read'): # File-like src
try:
from xreadlines inport xreadlines # Check for nodul e
for line in xreadlines(source):
for word in split(line):
word = transl ate(word, trans, punctuation+digits)
if len(word) > O:
hi st[word] = hist.get(word,0) + 1

except | nportError: # O der Python ver
line = source.readline() # Slow but memfriendly
while line:

for word in split(line):
word = transl ate(word, trans, punctuation+digits)
if len(word) > O:
hi st[word] = hist.get(word,0) + 1
line = source.readline()
el se:
rai se TypeError, \
"source nust be a string-like or file-like object”
return hist

def char _hi st ogran(source, sizehint=1024*1024):
hist = {}

if type(source) in (StringType, Uni codeType): # String-like src
for char in source:
hist[char] = hist.get(char,0) + 1

elif hasattr(source, ' read'): # File-like src
chunk = source.read(sizehint)
whi | e chunk:

for char in chunk:
hist[char] = hist.get(char,0) + 1
chunk = source.read(sizehint)
el se:
rai se TypeError, \
"source nust be a string-like or file-like object”
return hist

def nost_comon(hist, nunel):
pairs =[]
for pair in hist.itens():
pairs. append((pair[1],pair[0]))
pairs.sort()
pairs.reverse()
return pairs[:nun

def first_things(hist, numFl):
pairs =[]
things = hist. keys()
t hi ngs. sort ()
for thing in things:
pai rs. append((thing, hist[thing]))
pairs.sort()
return pairs[:nun

if nane_ =='"_ nmain__':
if len(sys.argv) > 1:
hi st = word_hi st ogranm(open(sys.argv[1]))
el se:
hi st = word_hi st ogran(sys. stdin)

print "Ten nost conmmon words: "
for pair in nost_common(hist, 10):
print '"\t', pair[1l], pair[0]

print "First ten words al phabetically:"
for pair in first_things(hist, 10):
print "\t', pair[0], pair[1]

a nore practical comrand-1ine version mght use:
for pair in nost_comon(hist,len(hist)):
print pair[1],"'\t"',pair[0]

Several of the design choices are somewhat arbitrary. Words have all their punctuation stripped
to identify "real” words. But on the other hand, words are still case-sensitive, which may not be
what is desired. The sorting functions first_things() and most_common() only return an initial
sublist. Perhaps it would be better to return the whole list, and let the user slice the result. It is
simple to customize around these sorts of issues, though.

2.1.7 Problem: Reading a file backwards by record, line, or paragraph

Reading a file line by line is a common task in Python, or in most any language. Files like server
logs, configuration files, structured text databases, and others frequently arrange information
into logical records, one per line. Very often, the job of a program is to perform some calculation
on each record in turn.

Python provides a number of convenient methods on file-like objects for such line-by-line
reading.FILE.readlines() reads a whole file at once and returns a list of lines. The technique is
very fast, but requires the whole contents of the file be kept in memory. For very large files, this
can be a problem. FILE.readline() is memory-friendly—it just reads a line at a time and can be
called repeatedly until the EOF is reached—but it is also much slower. The best solution for recent
Python versions is xreadlines.xreadlines() or FILE.xreadlines() in Python 2.1+. These techniques
are memory-friendly, while still being fast and presenting a "virtual list" of lines (by way of
Python's new generator/iterator interface).

The above techniques work nicely for reading a file in its natural order, but what if you want to
start at the end of a file and work backwards from there? This need is frequently encountered
when you want to read log files that have records appended over time (and when you want to
look at the most recent records first). It comes up in other situations also. There is a very easy
technique if memory usage is not an issue:

>>> open('lines',"wW).wite('\n".join(['n" for nin range(100)]))

>>> fp = open('lines")

>>> | ines = fp.readlines()

>>> | ines.reverse()

>>> for line in lines [1:5]:
Processing suite here
print |ine,

98

97

96

95

For large input files, however, this technique is not feasible. It would be nice to have something
analogous to xreadlines here. The example below provides a good starting point (the example
works equally well for file-like objects).

read_backwards.py

Read bl ocks of a file fromend to begi nning.

Bl ocks may be defined by any delimter, but the
constants LI NE and PARA are useful ones.

Wirks much like the file object nmethod '.readline()
repeated calls continue to get "next" part, and
function returns enpty string once BOF is reached.

HHEHFHHH

Define constants
fromos inport |inesep
LINE = |i nesep

PARA = | i nesep*2
READSI ZE = 1000

d obal vari abl es
buffer ="'

def read_backwards(fp, node=LINE, sizehint=READSIZE, _init=[0]):
"""Read bl ocks of file backwards (return enpty string when done)

Trick of nutable default argument to hold state between calls
if not _init[0]:
fp. seek(0, 2)
_init[0] =1
Find a block (using global buffer)
gl obal buffer
while 1:
first check for block in buffer
delim = buffer.rfind(node)
if delim<> -1: # block is in buffer, return it
bl ock = buffer[delimtl en(node):]
buf fer = buffer[:delini
return bl ock+node
#-- BOF reached, return renmainder (or enpty string)
elif fp.tell()==0:
bl ock = buffer
buffer ="'
return bl ock
el se: # Read sone nore data into the buffer
readsi ze = mn(fp.tell (), sizehint)
fp. seek(-readsize, 1)
buffer = fp.read(readsize) + buffer
fp. seek(-readsize, 1)
#-- Self test of read backwards()
if nanme_ =='"_nmain__':
Let's create a test file to read in backwards
fp = open('lines', ' wh')
fp.wite(LINE.join(['--- % ---"% for n in range(15)]))
Now open for readi ng backwards
fp = open('lines','rb")

Read the blocks in, one per call (block==line by default)
bl ock = read_backwar ds(fp)
whi | e bl ock:

print bl ock,

bl ock = read_backwar ds(fp)

Notice that anything could serve as a block delimiter. The constants provided just happened to
work for lines and block paragraphs (and block paragraphs only with the current OS's style of line
breaks). But other delimiters could be used. It would not be immediately possible to read
backwards word-by-word—a space delimiter would come close, but would not be quite right for
other whitespace. However, reading a line (and maybe reversing its words) is generally good
enough.

Another enhancement is possible with Python 2.2+. Using the new yield keyword,
read_backwards() could be programmed as an iterator rather than as a multi-call function. The
performance will not differ significantly, but the function might be expressed more clearly (and a
"list-like" interface like FILE.readlines() makes the application's loop simpler).

QUESTIONS

Write a generator-based version of read_backwards() that uses the yield keyword.
Modify the self-test code to utilize the generator instead.

2: Explore and explain some pitfalls with the use of a mutable default value as a function
argument. Explain also how the style allows functions to encapsulate data and contrast
with the encapsulation of class instances.

- . 4 Frevious Mext
Team-Fly &

Top

- 4 Previous Next b
Team-Fly " 4

Text Processing in Python
H’ By David Mertz

____:...-q;..'.'," Table of Contents

| 5

Chapter 2. Basic String Operations

2.2 Standard Modules

2.2.1 Basic String Transformations

The module string forms the core of Python's text manipulation libraries. That module is certainly
the place to look before other modules. Most of the methods in the string module, you should
note, have been copied to methods of string objects from Python 1.6+. Moreover, methods of
string objects are a little bit faster to use than are the corresponding module functions. A few
new methods of string objects do not have equivalents in the string module, but are still
documented here.

See Atso: str 33; UserString 33;

string = A collection of string operations ‘

There are a number of general things to notice about the functions in the string module (which is
composed entirely of functions and constants; no classes).

1. Strings are immutable (as discussed in Chapter 1). This means that there is no such thing
as changing a string "in place" (as we might do in many other languages, such as C, by
changing the bytes at certain offsets within the string). Whenever a string module function
takes a string object as an argument, it returns a brand-new string object and leaves the
original one as is. However, the very common pattern of binding the same name on the left
of an assignment as was passed on the right side within the string module function
somewhat conceals this fact. For example:

>>> jnport string

>>> str = "Mary had a little | amb”
>>> gstr = string.replace(str, 'had', 'ate')
>>> str

"Mary ate a little | anb'

The first string object never gets modified per se; but since the first string object is no
longer bound to any name after the example runs, the object is subject to garbage
collection and will disappear from memory. In short, calling a string module function will not
change any existing strings, but rebinding a name can make it look like they changed.

2. Manystring module functions are now also available as string object methods. To use these

string object methods, there is no need to import the string module, and the expression is
usually slightly more concise. Moreover, using a string object method is usually slightly
faster than the corresponding string module function. However, the most thorough
documentation of each function/method that exists as both a string module function and a
string object method is contained in this reference to the string module.

The form string.join(string.split (...)) is a frequent Python idiom. A more thorough
discussion is contained in the reference items for string.join() and string.split() , but in
general, combining these two functions is very often a useful way of breaking down a text,
processing the parts, then putting together the pieces.

Think about clever string.replace() patterns. By combining multiple string.replace() calls
with use of "place holder" string patterns, a surprising range of results can be achieved
(especially when also manipulating the intermediate strings with other techniques). See the
reference item for string.replace() for some discussion and examples.

. A mutable string of sorts can be obtained by using built-in lists, or the array module. Lists

can contain a collection of substrings, each one of which may be replaced or modified
individually. The array module can define arrays of individual characters, each position
modifiable, included with slice notation. The function string.join() or the method "".join()
may be used to re-create true strings; for example:

>>> 1st = ['spam,'and','eggs']

>>> 1st[2] = 'toast'
>>> print ''.join(lst)
spanmandt oast

>>> print ' ".join(lst)

spam and t oast
Or:

>>> jnport array

>>> g = array.array('c',' spamand eggs')
>>> print "' .join(a)

spam and eggs

>>> g[0] ="'S

>>> print ''.join(a)

Spam and eggs

>>> a[-4:] = array.array('c', 'toast")
>>> print "' .join(a)

Spam and t oast

CONSTANTS

Thestring module contains constants for a number of frequently used collections of characters.
Each of these constants is itself simply a string (rather than a list, tuple, or other collection). As
such, it is easy to define constants alongside those provided by the string module, should you
need them. For example:

>>> jnport string
>>> string. brackets = "[]1{}()<>"
>>> print string.brackets

[1{}() <>

string.digits

The decimal numerals ("'0123456789").

string.hexdigits

The hexadecimal numerals ('0123456789abcdefABCDEF").

string.octdigits

The octal numerals ("01234567").

string.lowercase

The lowercase letters; can vary by language. In English versions of Python (most systems):

>>> jnport string
>>> string. | owercase
" abcdef ghi j kI mopqgr st uvwxyz'

You should not modify string.lowercase for a source text language, but rather define a new
attribute, such as string.spanish_lowercase with an appropriate string (some methods depend on
this constant).

string.uppercase

The uppercase letters; can vary by language. In English versions of Python (most systems):

>>> jnmport string
>>> string. uppercase
" ABCDEFGHI JKLMNOPQRSTUWWKYZ'

You should not modify string.uppercase for a source text language, but rather define a new
attribute, such as string.spanish_uppercase with an appropriate string (some methods depend on
this constant).

string.letters

All the letters (string.lowercase-+string.uppercase).

string.punctuation

The characters normally considered as punctuation; can vary by language. In English versions of
Python (most systems):

>>> jnmport string
>>> string. punctuation
PETHSORN T ()4, - <=>2@\\ A {]

string.whitespace

The "empty" characters. Normally these consist of tab, linefeed, vertical tab, formfeed, carriage
return, and space (in that order):

>>> jnport string
>>> string. whitespace
"\ 011\ 012\ 013\ 014\ 015 '

You should not modify string.whitespace (some methods depend on this constant).

string.printable

All the characters that can be printed to any device; can vary by language
(string.digits+string.letters+string.punctuation+string.whitespace).

FUNCTIONS

string.atof(s=...)

Deprecated. Use float() .
Converts a string to a floating point value.

See Aiso: eval() 445; float() 422;

string.atoi(s=...[,base=10])

Deprecated with Python 2.0. Use int() if no custom base is needed or if using Python 2.0+.

Converts a string to an integer value (if the string should be assumed to be in a base other than
10, the base may be specified as the second argument).

See Aiso: eval() 445; int() 421; long() 422;

string.atol(s=...[,base=10])

Deprecated with Python 2.0. Use long() if no custom base is needed or if using Python 2.0+.

Converts a string to an unlimited length integer value (if the string should be assumed to be in a
base other than 10, the base may be specified as the second argument).

See Awso: eval() 445; long() 422; int() 421;

string.capitalize(s=...)
"".capitalize()

Return a string consisting of the initial character converted to uppercase (if applicable), and all
other characters converted to lowercase (if applicable):

>>> jnport string
>>> string.capitalize("mary had a little [anmb!")

"Mary had a little | anb!"’

>>> string.capitalize("Mary had a Little Lanb!")
"Mary had a little |anmb!"’

>>> string.capitalize("2 Lanbs had Mary!")

"2 lanmbs had mary!’

For Python 1.6+, use of a string object method is marginally faster and is stylistically preferred in
most cases:

>>> "mary had a little lanmb".capitalize()
"Mary had a little |anmb

See Aiso: string.capwords() 133; string.lower() 138;

string.capwords(s=...)
" title()

Return a string consisting of the capitalized words. An equivalent expression is:
string.join(map(string.capitalize,string.split(s))

Butstring.capwords() is a clearer way of writing it. An effect of this implementation is that
whitespace is "normalized" by the process:

>>> jnport string

>>> string. capwords("mary HAD a little [anmb!")

"Mary Had A Little Lanb!’

>>> string. capwords("Mary had a Little Lanb! ")
"Mary Had A Little Lanmb!’

With the creation of string methods in Python 1.6, the module function string.capwords() was
renamed as a string method to "".title() .

See Atso: string.capitalize() 132; string.lower() 138; "".istitle() 136;

string.center(s=. . ., width=...)
"".center(width)

Return a string with s padded with symmetrical leading and trailing spaces (but not truncated) to
occupy length width (or more).

>>> jnport string

>>> string. center(w dth=30,s="Mary had a little |lanb")
' Mary had a little [anb '

>>> string.center("Mary had a little | anmb", 5)

"Mary had a little | anb’

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a little |anb". center(25)
" Mary had a little lanb '

See Aiso: string.ljust() 138; string.rjust() 141;

string.count(s, sub [,start [,end]])
"".count(sub [,start [,end]])

Return the number of nonoverlapping occurrences of sub in s. If the optional third or fourth
arguments are specified, only the corresponding slice of s is examined.

>>> jnport string

>>> string.count("mary had a little [anb", "a")

4

>>> string.count("mary had a little [anb", "a", 3, 10)
2

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> 'mary had a little lanb'.count("a"
4

"" endswith(suffix [,start [,end]])

This string method does not have an equivalent in the string module. Return a Boolean value
indicating whether the string ends with the suffix suffix. If the optional second argument start is
specified, only consider the terminal substring after offset start. If the optional third argument
end is given, only consider the slice [start:end].

See Atso: ".startswith() 144 ; string.find() 135;

string.expandtabs(s=...[,tabsize=8])
"".expandtabs([,tabsize=8])

Return a string with tabs replaced by a variable number of spaces. The replacement causes text
blocks to line up at "tab stops.” If no second argument is given, the new string will line up at
multiples of 8 spaces. A newline implies a new set of tab stops.

>>> jnmport string

>>> s = 'mary\Ollhad a little | anb'
>>> print s

mary had a little | anb

>>> string. expandt abs(s, 16)

"mary had a little | anb
>>> string. expandt abs(tabsi ze=l, s=s)
"mary had a little | anb’'

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "mary\0llhad a little | anb' . expandt abs(25)
"mary had a little | anb’

string.find(s, sub [,start [,end]])

"".find(sub [,start [,end]])

Return the index position of the first occurrence of sub in s. If the optional third or fourth
arguments are specified, only the corresponding slice of s is examined (but result is position in s
as a whole). Return -1 if no occurrence is found. Position is zero-based, as with Python list
indexing:

>>> jnport string

>>> string.find("mary had a little [anmb", "a")

i>> string.find("mary had a little lanmb", "a", 3, 10)
S>> string.find("mary had a little [anb", "b")

§%> string.find("mary had a little [anb", "b", 3, 10)

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> 'mary had a little lanb' . find("ad")
6

See Auso: string.index() 135; string.rfind() 140;

string.index(s, sub [,start [,end]])
"".index(sub [,start [,end]])

Return the same value as does string.find() with same arguments, except raise ValueError
instead of returning -1 when sub does not occur in s.

>>> jnmport string

>>> string.index("mary had a little [anb", "b")
21
>>> string.index("mary had a little [anb", "b", 3, 10)
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "d:/py20sl/lib/string.py", line 139, in index

return s.index(*args)
Val ueError: substring not found in string.index

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "mary had a little lanb'.index("ad")
6

See Auso: string.find() 135; string.rindex() 141;

Several string methods that return Boolean values indicating whether a string has a certain
property. None of the .is*() methods, however, have equivalents in the string module:

"".isalpha()

Return a true value if all the characters are alphabetic.

isalnum()

Return a true value if all the characters are alphanumeric.

" isdigit()

Return a true value if all the characters are digits.

islower()

Return a true value if all the characters are lowercase and there is at least one cased character:

>>> "abl23".islower(), '123' .islower(), 'Abl23" .islower()
(1, 0, 0)

See Aiso: "".lower() 138;

.isspace()

Return a true value if all the characters are whitespace.

""istitle()

Return a true value if all the string has title casing (each word capitalized).

See Atso: "".title() 133;

isupper()
Return a true value if all the characters are uppercase and there is at least one cased character.

See Atso: "".upper() 146;

string.join(words=...[,sep=""])
"" join (words)

Return a string that results from concatenating the elements of the list words together, with sep
between each. The function string.join() differs from all other string module functions in that it
takes a list (of strings) as a primary argument, rather than a string.

It is worth noting string.join() and string.split() are inverse functions if sep is specified to both; in
other words, string.join(string.split(s,sep),sep)==s for all s and sep.

Typically,string.join() is used in contexts where it is natural to generate lists of strings. For

example, here is a small program to output the list of all-capital words from STDIN to STDOUT,
one per line:

list_capwords.py

i nport string, sys
capwords = []

for line in sys.stdin.readlines():
for word in line.split():
if word == word. upper() and word. i sal pha():
capwor ds. append(wor d)
print string.join(capwords, '\n")

The technique in the sample list_capwords.py script can be considerably more efficient than
building up a string by direct concatenation. However, Python 2.0's augmented assignment
reduces the performance difference:

>>> jnmport string

>>> s = "Mary had a little | anb”

>>> 1t = "its fleece was white as snow'

>>> s = s +" "+t # relatively "expensive" for big strings
>>> s += " "+t # "cheaper"” than Python 1.x style

>>> 1st = [s]

>>> | st. append(t) # "cheapest” way of building long string

>>> s = string.join(lst)

For Python 1.6+, use of a string object method is stylistically preferred in some cases. However,
just as string.join() is special in taking a list as a first argument, the string object method

".join() is unusual in being an operation on the (optional) sep string, not on the (required) words
list (this surprises many new Python programmers).

See Atso: string.split() 142;

string.joinfields(...)

Identical to string.join().

string.ljust(s=..., width=...)
"" ljust(width)

Return a string with s padded with trailing spaces (but not truncated) to occupy length width (or
more).

>>> jnport string

>>> string.ljust(w dt h=30,s="Mary had a little | anb")
"Mary had a little | anb '

>>> string.ljust("Mary had a little |lanb", 5)

"Mary had a little | anb'

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a little lanmb".|just(25)
"Mary had a little |anb '

See Atso: string.rjust() 141; string.center() 133;

string.lower(s=...)
"".lower()

Return a string with any uppercase letters converted to lowercase.

>>> jnmport string

>>> string.lower("mary HAD a little |anb!™)
"mary had a little | anb!"’

>>> string.lower("Mary had a Little Lanb!")
"mary had a little | anb!"’

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a Little Lanb!". | ower ()
"mary had a little | anb!"’

See Auso: string.upper() 146;

string.Istrip(s=...)
"" Istrip([chars=string.whitespace])

Return a string with leading whitespace characters removed. For Python 1.6+, use of a string
object method is stylistically preferred in many cases:

>>> jnport string

>>> g = """

: Mary had a little | anb \o11"""
>>> string.lstrip(s)

"Mary had a little |anb \011'

>>> s, |strip()

"Mary had a little | anb \011

Python 2.3+ accepts the optional argument chars to the string object method. All characters in
the string chars will be removed.

See Atso: string.rstrip() 142; string.strip() 144;

string.maketrans(from, to)

Return a translation table string for use with string.translate() . The strings from and to must be
the same length. A translation table is a string of 256 successive byte values, where each
position defines a translation from the chr() value of the index to the character contained at that
index position.

>>> jnport string

>>> ord(' A")

65

>>> ord('z")

122

>>> string. maketrans(' ABC , ' abc')[65: 123]

" abc DEFGHI JKLMNOPQRSTUVWKYZ[\\] ~_' abcdef ghi j kI mopqr st uvwxyz
>>> string. maketrans(' ABCxyz', ' abcXYZ')[65: 123]

" abc DEFGHI JKLMNOPQRSTUVWKYZ[\\]~ " abcdef ghi j kI mopqgr st uvwXYZ

See ALso: string.translate() 145;

string.replace(s=..., old=..., new=...[,maxsplit=...])
"".replace(old, new [,maxsplit])

Return a string based on s with occurrences of old replaced by new. If the fourth argument
maxsplit is specified, only replace maxsplit initial occurrences.

>>> jnport string
>>> string.replace("Mary had a little lanb", "a little", "sone")
"Mary had sone | anb'

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a little lanb".replace("a little", "sone")
"Mary had sone | anb'’

A common "trick" involving string.replace() is to use it multiple times to achieve a goal.
Obviously, simply to replace several different substrings in a string, multiple string.replace()
operations are almost inevitable. But there is another class of cases where string.replace() can
be used to create an intermediate string with "placeholders" for an original substring in a
particular context. The same goal can always be achieved with regular expressions, but
sometimes staged string.replace() operations are both faster and easier to program:

>>> jnport string

>>> | ine = 'variable = val # see comments #3 and #4

>>> # we'd like "#3'" and '#4' spelled out within conmment

>>> string.replace(line,'# ,'nunber ') # doesn't work

"vari abl e = val nunber see conments nunber 3 and number 4'

>>> pl ace_hol der=string.replace(line," #'," Il ") # insrt plchol der
>>> pl ace_hol der

"vari abl e = val Il see comrents #3 and #4

>>> pl ace_hol der =pl ace_hol der.replace(' # ,' nunber ') # al nost there
>>> pl ace_hol der

"vari abl e = val Il see coments nunber 3 and nunber 4

>>> |ine = string.replace(place_holder,"!!'!" "#) # restore orig
>>> | ine

"vari abl e = val # see comments number 3 and nunber 4

Obviously, for jobs like this, a placeholder must be chosen so as not ever to occur within the
strings undergoing "staged transformation"; but that should be possible generally since
placeholders may be as long as needed.

See Aiso: string.translate() 145; mx.TextTools.replace() 314.

string.rfind(s, sub [,start [,end]])
"".rfind(sub [,start [,end]])

Return the index position of the last occurrence of sub in s. If the optional third or fourth
arguments are specified, only the corresponding slice of s is examined (but result is position in s
as a whole). Return -1 if no occurrence is found. Position is zero-based, as with Python list

indexing:

>>> jnport string

>>> string.rfind("mary had a little lanb", "a")

i2> string.rfind("mary had a little lanb", "a", 3, 10)
2>> string.rfind("mary had a little lanmb", "b")

§%> string.rfind("mary had a little lanmb", "b", 3, 10)

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> 'mary had a little lanmb' .rfind("ad")
6

See Auso: string.rindex() 141; string.find() 135;

string.rindex(s, sub [,start [,end]])
"".rindex(sub [,start [,end]])

Return the same value as does string.rfind() with same arguments, except raise ValueError
instead of returning -1 when sub does not occur in s.

>>> jnmport string

>>> string.rindex("mary had a little |lanmb", "b")
21
>>> string.rindex("mary had a little lanmb”, "b", 3, 10)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "d:/py20sl/lib/string.py", line 148, in rindex

return s.rindex(*args)
Val ueError: substring not found in string.rindex

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "mary had a little lanb'.index("ad")
6

See Auso: string.rfind() 140; string.index() 135;

string.rjust(s=..., width=...)
"".rjust(width)

Return a string with s padded with leading spaces (but not truncated) to occupy length width (or
more).

>>> jnport string
>>> string.rjust(w dth=30,s="Mary had a little [anb")
' Mary had a little | anb’

>>> string.rjust("Mary had a little lanb", 5)
"Mary had a little |anb’

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a little lanmb".rjust(25)
' Mary had a little | anb

See Acso: string.ljust() 138; string.center() 133;

string.rstrip(s=...)
"" rstrip([chars=string.whitespace])

Return a string with trailing whitespace characters removed. For Python 1.6+, use of a string
object method is stylistically preferred in many cases:

>>> jnport string

>>> g = """

. Mary had a little | anb \o11"""
>>> string.rstrip(s)

"\ 012 Mary had a little [anb

>>> gs.rstrip()

"\ 012 Mary had a little | anb’

Python 2.3+ accepts the optional argument chars to the string object method. All characters in
the string chars will be removed.

See Auso: string.lstrip() 139; string.strip() 144;

string.split(s=...[,sep=...[,maxsplit=...]])
" split([,sep [,maxsplit]])

Return a list of nonoverlapping substrings of s. If the second argument sep is specified, the
substrings are divided around the occurrences of sep. If sep is not specified, the substrings are
divided around any whitespace characters. The dividing strings do not appear in the resultant list.
If the third argument maxsplit is specified, everything "left over" after splitting maxsplit parts is
appended to the list, giving the list length 'maxsplit'+1.

>>> jnport string

>>> s = 'mary had a little lanb ...with a glass of sherry’
>>> string.split(s, ' a')
["mary had', 'little lanb ...with'", "glass of sherry']

>>> string.split(s)
["mary', '"had', '
"of ', "sherry']
>>> string.split(s, maxsplit=5)

['mary', "had', "a', 'little', "lamb', '...with a glass of sherry']

a', 'tittle', "lanb', "...with', "a', 'glass',

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a Little Lanmb!".split()
["Mary', "had', "a', 'Little, 'Lanb!']

Thestring.split() function (and corresponding string object method) is surprisingly versatile for
working with texts, especially ones that resemble prose. Its default behavior of treating all
whitespace as a single divider allows string.split() to act as a quick-and-dirty word parser:

>>> we = lanmbda s: len(s.split())
>>> we("Mary had a Little Lanmb")
5
>>> s = """Mary had a Little Lanb
its fleece as white as snow.
And everywhere that Mary went ... the lanb was sure to go.
>>> print s
Mary had a Little Lamb
its fleece as white as snow.
And everywhere that Mary went ... the lanb was sure to go.
>>> we('s)
23

The function string.split() is very often used in conjunction with string.join() . The pattern
involved is "pull the string apart, modify the parts, put it back together.” Often the parts will be
words, but this also works with lines (dividing on \n) or other chunks. For example:

>>> jnmport string
>>> s = """Mary had a Little Lanb
its fleece as white as snow.
And everywhere that Mary went ... the lanb was sure to go.
>>> string.join(string.split(s))
"Mary had a Little Lanb its fleece as white as snow. And everywhere
that Mary went the |lanb was sure to go.'

A Python 1.6+ idiom for string object methods expresses this technique compactly:

>>> "-"_ join(s.split())
"Mary-had-a-Littl e-Lanb-its-fl eece-as-white-as-snow - And- ever ywhere
...-that-Mary-went--the-I| anb-was-sure-to-go."'

See Auso: string.join() 137; mx.TextTools.setsplit() 314; mx.TextTools.charsplit() 311;
mx.TextTools.splitat()315; mx.TextTools.splitlines() 315;

string.splitfields(...)

Identical to string.split() .

.splitlines([keepends=0])

This string method does not have an equivalent in the string module. Return a list of lines in the
string. The optional argument keepends determines whether line break character(s) are included
in the line strings.

.startswith(prefix [,start [,end]])

This string method does not have an equivalent in the string module. Return a Boolean value

indicating whether the string begins with the prefix prefix. If the optional second argument start
is specified, only consider the terminal substring after the offset start. If the optional third
argument end is given, only consider the slice [start: end].

See Atso: ".endswith() 134; string.find() 135;

string.strip(s=...)
"" strip([chars=string.whitespace])

Return a string with leading and trailing whitespace characters removed. For Python 1.6+, use of
a string object method is stylistically preferred in many cases:

>>> jnport string

>>> g = """

. Mary had a little |anb \o11"""
>>> string.strip(s)

"Mary had a little | anb’'

>>> s.strip()

"Mary had a little |anb'

Python 2.3+ accepts the optional argument chars to the string object method. All characters in
the string chars will be removed.

>>> s = "MARY had a LI TTLE | anb STEW
>>> 5. strip(" ABCDEFGH JKLMNOPQRSTUWIKYZ") # strip caps
' had a LITTLE lanb '

See Aiso: string.rstrip() 142; string.Istrip() 139;

string.swapcase(s=...)
"".swapcase()

Return a string with any uppercase letters converted to lowercase and any lowercase letters
converted to uppercase.

>>> jnport string
>>> string.swapcase("mary HAD a little |anb!")
" MARY had A LITTLE LAMVB!'

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a Little Lanb!". swapcase()
" MARY had A LITTLE LAMVB!'

See Auso: string.upper() 146; string.lower() 138;

string.translate(s=..., table=...[,deletechars=""])
"" translate(table [,deletechars=""])

Return a string, based on s, with deletechars deleted (if the third argument is specified) and with
any remaining characters translated according to the translation table.

>>> jnport string

>>> tab = string. naketrans(' ABC , ' abc')

>>> string.translate(' MARY HAD a |ittle LAVMB', tab, '"Atl")
"MRY HD a ie LM

For Python 1.6+, use of a string object method is stylistically preferred in many cases. However,
ifstring.maketrans() is used to create the translation table, one will need to import the string
module anyway:

>>> "MARY HAD a |ittle LAVB .translate(tab, 'Atl")
"MRY HD a ie LM

Thestring.translate() function is a very fast way to modify a string. Setting up the translation
table takes some getting used to, but the resultant transformation is much faster than a
procedural technique such as:

>>> (new, frmto,dlt) = ("","ABC ,"abc',"Alt")
>>> for cin '"MARY HAD a |ittle LAMB :
if ¢ not indlt:

pos = frmfind(c)

if pos == -1: new += ¢

el se: new += t o[pos]
>>> new
"MRY HD a ie LM

See Atso: string.maketrans() 139;

string.upper(s=...)
"".upper()

Return a string with any lowercase letters converted to uppercase.

>>> jnport string

>>> string.upper("mary HAD a little [anb!")
" MARY HAD A LI TTLE LAMB!'

>>> string.upper("Mary had a Little Lanb!")
" MARY HAD A LI TTLE LAMB!'

For Python 1.6+, use of a string object method is stylistically preferred in many cases:

>>> "Mary had a Little Lanb!". upper ()
" MARY HAD A LI TTLE LAMB!'

See Atso: string.lower() 138;

string.zfill(s=..., width=...)

Return a string with s padded with leading zeros (but not truncated) to occupy length width (or
more). If a leading sign is present, it "floats" to the beginning of the return value. In general,

string.zfill() is designed for alignment of numeric values, but no checking is done to see if a string
looks number-like.

>>> jnport string

>>> string. zfill ("this", 20)
' 0000000000000000t hi s'

>>> string. zfill ("-37", 20)
' -0000000000000000037

>>> string. zfill ("+3.7", 20)
' +00000000000000003. 7'

Based on the example of string.rjust() , one might expect a string object method "".zfill() ;
however, no such method exists.

See Atso: string.rjust() 141;

2.2.2 Strings as Files, and Files as Strings

In many ways, strings and files do a similar job. Both provide a storage container for an
unlimited amount of (textual) information that is directly structured only by linear position of the
bytes. A first inclination is to suppose that the difference between files and strings is one of
persistence—files hang around when the current program is no longer running. But that
distinction is not really tenable. On the one hand, standard Python modules like shelve, pickle ,
andmarshal—and third-party modules like xml_pickle and ZODB—provide simple ways of making
strings persist (but not thereby correspond in any direct way to a filesystem). On the other hand,
many files are not particularly persistent: Special files like STDIN and STDOUT under Unix-like
systems exist only for program life; other peculiar files like /dev/cua0 and similar "device files"
are really just streams; and even files that live on transient memory disks, or get deleted with
program cleanup, are not very persistent.

The real difference between files and strings in Python is no more or less than the set of
techniques available to operate on them. File objects can do things like .read() and .seek() on
themselves. Notably, file objects have a concept of a "current position" that emulates an
imaginary "read-head" passing over the physical storage media. Strings, on the other hand, can
be sliced and indexed—for example, str[4:10] or for c in str:—and can be processed with string
object methods and by functions of modules like string and re. Moreover, a number of special-
purpose Python objects act "file-like" without quite being files; for example, gzip.open() and
urllib.urlopen() . Of course, Python itself does not impose any strict condition for just how "file-
like" something has to be to work in a file-like context. A programmer has to figure that out for
each type of object she wishes to apply techniques to (but most of the time things "just work"
right).

Happily, Python provides some standard modules to make files and strings easily interoperable.

mmap = Memory-mapped file support

Themmap module allows a programmer to create "memory-mapped" file objects. These special
mmap objects enable most of the techniques you might apply to "true” file objects and
simultaneously most of the techniques you might apply to "true" strings. Keep in mind the hinted
caveat about "most," however: Many string module functions are implemented using the
corresponding string object methods. Since a mmap object is only somewhat "string-like," it
basically only implements the .find() method and those "magic" methods associated with slicing
and indexing. This is enough to support most string object idioms.

When a string-like change is made to a mmap object, that change is propagated to the
underlying file, and the change is persistent (assuming the underlying file is persistent, and that
the object called .flush() before destruction). mmap thereby provides an efficient route to

"persistent strings."

Some examples of working with memory-mapped file objects are worth looking at:

>>> # Create a file with sone test data

>>> open('test',"wW).wite(' # .join(map(str, range(1000))))
>>> fp = open('test','r+")

>>> | nport nmap

>>> mm = mmap. nmap(fp.fileno(), 1000)

>>> | en(M)
1000
>>> mmf - 20:]

1218 #219 #220 #221 #
>>> jnport string # apply a string nodul e et hod
>>> mm seek(string.find(mm '21"))
>>> mm r ead(10)
'21 #22 #23'
>>> nmm r ead(10) # next ten bytes
" #24 #25 #
>>> npm find('21") # object nmethod to find next occurrence
402
>>> try: string.rfind(mm '21")
except AttributeError: print "Unsupported string function”

Unsupported string function
>>> " [" join(re.findall('..21..", M) # regex's work nicely
" O#21 #/ 121 #/ #210 | #212 | #214 | #216 | #218 /221 #

It is worth emphasizing that the bytes in a file on disk are in fixed positions. You may use the
mmap.mmap.resize() method to write into different portions of a file, but you cannot expand the
file from the middle, only by adding to the end.

CLASSES

mmap.mmap(fileno, length [,tagname]) (Windows)
mmap.mmap(fileno, length [,flags=MAP_SHARED, prot=PROT_READ|PROT_WRITE])

Create a new memory-mapped file object. fileno is the numeric file handle to base the mapping
on. Generally this number should be obtained using the .fileno() method of a file object. length
specifies the length of the mapping. Under Windows, the value O may be given for length to
specify the current length of the file. If length smaller than the current file is specified, only the
initial portion of the file will be mapped. If length larger than the current file is specified, the file
can be extended with additional string content.

The underlying file for a memory-mapped file object must be opened for updating, using the "+"
mode modifier.

According to the official Python documentation for Python 2.1, a third argument tagname may be
specified. If it is, multiple memory-maps against the same file are created. In practice, however,
each instance of mmap.mmap() creates a new memory-map whether or not a tagname is
specified. In any case, this allows multiple file-like updates to the same underlying file, generally
at different positions in the file.

>>> open('test','"wW).wite(' # .join([str(n) for n in range(1000)]))
>>> fp = open('test','r+")

>>> | nport nmmap

>>> mml = mmap. map(fp. fileno(), 1000)
>>> mR = mmap. map(fp.fileno(), 1000)
>>> mmil. seek(500)

>>> mml. r ead(10)

'122 #123 #'

>>> mR. r ead(10)

"0 #1 #2 #3'

Under Unix, the third argument flags may be MAP_PRIVATE or MAP_SHARED. If MAP_SHARED is
specified for flags, all processes mapping the file will see the changes made to a mmap object.
Otherwise, the changes are restricted to the current process. The fourth argument, prot, may be
used to disallow certain types of access by other processes to the mapped file regions.

METHODS

mmap.mmap.close()

Close the memory-mapped file object. Subsequent calls to the other methods of the mmap
object will raise an exception. Under Windows, the behavior of a mmap object after . close() is
somewhat erratic, however. Note that closing the memory-mapped file object is not the same as
closing the underlying file object. Closing the underlying file will make the contents inaccessible,
but closing the memory-mapped file object will not affect the underlying file object.

See Atso: FILE.close() 16;

mmap.mmap.find(sub [,pos])

Similar to string.find() . Return the index position of the first occurrence of sub in the mmap
object. If the optional second argument pos is specified, the result is the offset returned relative
to pos. Return -1 if no occurrence is found:

>>> open('test',"W).wite('" # .join([str(n) for nin range(1000)]))
>>> fp = open('test','r+")

>>> | nport nmap

>>> mm = nmmap. map(fp.fileno(), 0)

>>> mmfind('21")

74

>>> mm find(' 21, 100)
-26

>>> mmtell ()

0

See Atso: mmap.mmap.seek() 152; string.find() 135;

mmap.mmap.flush([offset, size])

Writes changes made in memory to mmap object back to disk. The first argument offset and
second argument size must either both be specified or both be omitted. If offset and size are
specified, only the position starting at offset or length size will be written back to disk.

mmap.mmap.flush() is necessary to guarantee that changes are written to disk; however, no
guarantee is given that changes will not be written to disk as part of normal Python interpreter

housekeeping.mmap should not be used for systems with "cancelable" changes (since changes
may not be cancelable).

See Aiso: FILE.flush() 16;

mmap.mmap.move(target, source, length)

Copy a substring within a memory-mapped file object. The length of the substring is the third
argument length. The target location is the first argument target. The substring is copied from
the position source. It is allowable to have the substring's original position overlap its target
range, but it must not go past the last position of the mmap object.

>>> open('test',"W).wite('"".join([c*10 for c in "ABCDE]))
>>> fp = open('test','r+")

>>> jnport mmap

>>> mm = mmap. map(fp.fileno(), 0)

>>> mmq ;]

' BBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE!

>>> nm nove(40, 0, 5)

>>> i :]

" AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDAAAAAEEEEE

mmap.mmap.read(num)

Return a string containing num bytes, starting at the current file position. The file position is
moved to the end of the read string. In contrast to the .read() method of file objects,
mmap.mmap.read() always requires that a byte count be specified, which makes a memory-map
file object not fully substitutable for a file object when data is read. However, the following is safe
for both true file objects and memory-mapped file objects:

>>> open('test','"W).wite(' # .join([str (n) for n in range(1000)]))
>>> fp = open('test','r+")
>>> jnport mrap
>>> mm = mmap. nmap(fp.fileno(), 0)
>>> def safe_readall (file):
try:
length = len(file)
return file.read(length)
except TypeError:
return file.read()

S>> sl = safe_readal |l (fp)
(

>>> s2 = safe _readal | (nm
>>> s]1 == s2
1

See Atso: mmap.mmap.read_byte() 151; mmap.mmap.readline() 151; mmap.mmap.write() 153;
FILE.read()17;

mmap.mmap.read_byte()

Return a one-byte string from the current file position and advance the current position by one.
Same as mmap.mmap.read (1).

See Atso: mmap.mmap.read() 150; mmap.mmap.readline() 151;

mmap.mmap.readline()

Return a string from the memory-mapped file object, starting from the current file position and
going to the next newline character. Advance the current file position by the amount read.

See Atso: mmap.mmap.read() 150; mmap.mmap.read_byte() 151; FILE.readline() 17;

mmap.mmap.resize(newsize)

Change the size of a memory-mapped file object. This may be used to expand the size of an
underlying file or merely to expand the area of a file that is memory-mapped. An expanded file is
padded with null bytes (A\OOO) unless otherwise filled with content. As with other operations on
mmap objects, changes to the underlying file system may not occur until a .flush() is performed.

See Atso: mmap.mmap.flush() 150;

mmap.mmap.seek(offset [mode])

Change the current file position. If a second argument mode is given, a different seek mode can
be selected. The default is 0, absolute file positioning. Mode 1 seeks relative to the current file
position. Mode 2 is relative to the end of the memory-mapped file (which may be smaller than
the whole size of the underlying file). The first argument offset specifies the distance to move the
current file position—in mode 0 it should be positive, in mode 2 it should be negative, in mode 1
the current position can be moved either forward or backward.

See Aiso: FILE.seek() 17;

mmap.mmap.size()

Return the length of the underlying file. The size of the actual memory-map may be smaller if
less than the whole file is mapped:

>>> open('test','wW).wite(' X *100)
>>> fp = open('test','r+")

>>> jnport mrap

>>> mm = mmap. mep(fp.fileno(), 50)
>>> mm si ze()

100

>>> | en(m)
50

See Aiso: len() 14; mmap.mmap.seek() 152; mmap.mmap.tell() 152;

mmap.mmap.tell()

Return the current file position.

>>> open('test','wW).wite('X *100)
>>> fp = open('test','r+")
>>> jnport mmap

>>> mm = mmap. map(fp.fileno(), 0)
>>> mmtell ()

0

>>> mm seek(20)

>>> mmtell ()

20

>>> mm r ead(20)

D9, 0.0.9.0,.0.9,0.:0.0.9.0.0.9,0,0.9.0.0.4

>>> mmtell ()

40

See Aiso: FILE.tell() 17; mmap.mmap.seek() 152;

mmap.mmap.write(s)

Write s into the memory-mapped file object at the current file position. The current file position is
updated to the position following the write. The method mmap.mmap.write() is useful for
functions that expect to be passed a file-like object with a .write() method. However, for new
code, it is generally more natural to use the string-like index and slice operations to write
contents. For example:

>>> open('test','wW).wite(' X *50)
>>> fp = open('test','r+")

>>> jmport mrap

>>> mm = nmap. mmap(fp.fileno(), 0)
>>> mmwite(’ AAAAA)

>>> mm seek(10)

>>> mmwite(' BBBBB')

>>> i 30: 35] = ' SSSSS

>>> mmq ;]

" AAAAAXXXXXBBBBBXX XXX AKXXS SSS SXIOXOXKKXHXAKKXX
>>> mmtell ()

15

See Atso: FILE.write() 17; mmap.mmap.read() 150;

mmap.mmap.write_byte(c)

Write a one-byte string to the current file position, and advance the current position by one.
Same as mmap.mmap.write(c) where c is a one-byte string.

See ALso: mmap.mmap.write() 153;

‘Stringlo = File-like objects that read from or write to a string buffer ‘

‘cStringlO = Fast, but incomplete, StringlO replacement ‘

TheStringlO and cStringlO modules allow a programmer to create "memory files," that is,
"string buffers." These special StringlO objects enable most of the techniques you might apply to
"true" file objects, but without any connection to a filesystem.

The most common use of string buffer objects is when some existing techniques for working with
byte-streams in files are to be applied to strings that do not come from files. A string buffer

object behaves in a file-like manner and can "drop in" to most functions that want file objects.

cStringlO is much faster than StringlO and should be used in most cases. Both modules provide
a StringlO class whose instances are the string buffer objects. cStringl0.Stringl0 cannot be
subclassed (and therefore cannot provide additional methods), and it cannot handle Unicode
strings. One rarely needs to subclass StringlO, but the absence of Unicode support in cStringlO
could be a problem for many developers. As well, cStringlO does not support write operations,
which makes its string buffers less general (the effect of a write against an in-memory file can be
accomplished by normal string operations).

A string buffer object may be initialized with a string (or Unicode for StringlO) argument. If so,
that is the initial content of the buffer. Below are examples of usage (including Unicode
handling):

>>> fromcStringl Oinport StringlOas CSIO
>>> from StringlOinport StringlOas SIO
>>> al ef, omega = unichr(1488), unichr(969)
>>> sentence = "In set theory, the G eek "+onega+" represents the \n"+\
"ordinal limt of the integers, while the Hebrew \n"+\
C al ef+" represents their cardinality."
>>> sj0 = Sl Q(sentence)
>>> try:
csio = CSI (O sent ence)
print "New string buffer fromraw string"
except TypeError:
csio = CSI (sentence. encode(' utf-8"))
print "New string buffer from ENCODED string"

New string buffer from ENCODED string

>>> sj 0. getval ue() == unicode(csio.getvalue(), utf-8")
1
>>> try:

si 0. getval ue() == csio.getval ue()

except Uni codeError:
print "Cannot even conpare Unicode with string, in general”

Cannot even conpare Unicode with string, in genera
>>> | ines = csio.readlines()

>>> | en(lines)

3

>>> si 0. seek(0)

>>> print sio.readline().encode('utf-8"),

In set theory, the G eek represents the ordinal
>>> sjo.tell (), csio.tell()

(51, 124)

CONSTANTS

cStringlO.InputType

The type of a cStringlO.StringlO instance that has been opened in "read" mode. All
StringlO.StringlO instances are simply InstanceType.

See Aiso: ¢StringlO.StringlO 155;

cStringlO.OutputType

The type of cStringlO.StringlO instance that has been opened in "write” mode (actually
read/write). All StringlO.StringlO instances are simply InstanceType.

See Atso: ¢StringlO.StringlO 155;

CLASSES

StringlO.StringlO ([buf=...])
cStringlO.StringlO([buf])

Create a new string buffer. If the first argument buf is specified, the buffer is initialized with a
string content. If the cStringlO module is used, the presence of the buf argument determines
whether write access to the buffer is enabled. A cStringlO.StringlO buffer with write access must
be initialized with no argument, otherwise it becomes read-only. A StringlO.StringlO buffer,
however, is always read/write.

METHODS

StringlO.StringlO.close()
cStringlO.StringlO.close()

Close the string buffer. No access is permitted after close.

See Atso: FILE.close() 16;

StringlO.StringlO.flush()
cStringlO.StringlO.flush()

Compatibility method for file-like behavior. Data in a string buffer is already in memory, so there
is no need to finalize a write to disk.

See Aiso: FILE.close() 16;

StringlO.StringlO.getvalue()
cStringlO.StringlO.getvalue()

Return the entire string held by the string buffer. Does not affect the current file position.
Basically, this is the way you convert back from a string buffer to a string.

StringlO.StringlO.isatty()
cStringlO.StringlO.isatty()

Return 0. Compatibility method for file-like behavior.

See Atso: FILE.isatty() 16;

StringlO.StringlO.read ([num])
cStringlO.StringlO.read ([num])

If the first argument num is specified, return a string containing the next num characters. If num
characters are not available, return as many as possible. If num is not specified, return all the
characters from current file position to end of string buffer. Advance the current file position by
the amount read.

See Atso: FILE.read() 17; mmap.mmap.read() 150; StringlO.StringlO.readline() 156;

StringlO.StringlO.readline([length=...])
cStringlO.StringlO.readline([length])

Return a string from the string buffer, starting from the current file position and going to the next
newline character. Advance the current file position by the amount read.

See Aso: mmap.mmap.readline() 151; StringlO.StringlO.read() 156;
StringlO.StringlO.readlines()156; FILE.readline() 17;

StringlO.StringlO.readlines([sizehint=...])
cStringlO.StringlO.readlines([sizehint]

Return a list of strings from the string buffer. Each list element consists of a single line, including
the trailing newline character(s). If an argument sizehint is specified, only read approximately
sizehint characters worth of lines (full lines will always be read).

See Atso: StringlO.StringlO.readline() 156; FILE.readlines() 17;

cStringlO.StringlO.reset()

Sets the current file position to the beginning of the string buffer. Same as
cStringlO.StringlO.seek(0).

See Acso: StringlO.StringlO.seek() 156;

StringlO.StringlO.seek(offset [,mode=0])
cStringlO.StringlO.seek(offset [,mode])

Change the current file position. If the second argument mode is given, a different seek mode
can be selected. The default is O, absolute file positioning. Mode 1 seeks relative to the current
file position. Mode 2 is relative to the end of the string buffer. The first argument offset specifies
the distance to move the current file position—in mode 0 it should be positive, in mode 2 it
should be negative, in mode 1 the current position can be moved either forward or backward.

See Atso: FILE.seek() 17; mmap.mmap.seek() 152;

StringlO.StringlO.tell()
cStringlO.StringlO.tell()

Return the current file position in the string buffer.

See Acso: StringlO.StringlO.seek() 156;

StringlO.StringlO.truncate([len=0])
cStringlO.StringlO.truncate ([len])

Reduce the length of the string buffer to the first argument len characters. Truncation can only
reduce characters later than the current file position (an initial cStringlO.StringlO.reset() can be
used to assure truncation from the beginning).

See Atso: StringlO.StringlO.seek() 156; cStringlO.StringlO.reset() 156; StringlO.StringlO.close()
155;

StringlO.StringlO.write(s=...)
cStringlO.StringlO.write(s)

Write the first argument s into the string buffer at the current file position. The current file
position is updated to the position following the write.

See Atso: StringlO.StringlO.writelines() 157; mmap.mmap.write() 153; StringlO.StringlO.read()
156; FILE.write() 17;

StringlO.StringlO.writelines(list=...)
cStringlO.String 10.writelines(list)

Write each element of list into the string buffer at the current file position. The current file
position is updated to the position following the write. For the cStringlO method, list must be an
actual list. For the StringlO method, other sequence types are allowed. To be safe, it is best to
coerce an argument into an actual list first. In either case, list must contain only strings, or a
TypeError will occur.

Contrary to what might be expected from the method name, StringlO.StringlO.writelines() never
inserts newline characters. For the list elements actually to occupy separate lines in the string
buffer, each element string must already have a newline terminator. Consider the following
variants on writing a list to a string buffer:

>>> fromStringl Oinport StringlO
>>> sio = Stringl)

>>> 1st = [c*5 for ¢ in 'ABC]

>>> sio.witelines(lst)

>>> sio.wite(''.join(lst))

>>> sio.wite('\n' .join(lst))

>>> print sio.getval ue()
AAAAABBBBBCCCCCAAAAABBBBBCCCCCAAAAA
BBBBB

Cccce

See Aiso: FILE.writelines() 17; StringlO.StringlO.write() 157;

2.2.3 Converting Between Binary and ASCII

The Python standard library provides several modules for converting between binary data and 7-
bit ASCII. At the low level, binascii is a C extension to produce fast string conversions. At a high
level,base64, binhex, quopri , and uu provide file-oriented wrappers to the facilities in binascii .

‘base64 « Convert to/from base64 encoding (RFC1521)

Thebase64 module is a wrapper around the functions binascii.a2b-base64() and binascii.b2a-
base64() . As well as providing a file-based interface on top of the underlying string conversions,
base64 handles the chunking of binary files into base64 line blocks and provides for the direct

encoding of arbitrary input strings. Unlike uu, base64 adds no content headers to encoded data;
MIME standards for headers and message-wrapping are handled by other modules that utilize
base64 . Base64 encoding is specified in RFC 1521.

FUNCTIONS

base64.encode(input=..., output=...)

Encode the contents of the first argument input to the second argument output. Arguments input
and output should be file-like objects; input must be readable and output must be writable.

base64.encodestring(s=...)

Return the base64 encoding of the string passed in the first argument s.

base64.decode(input=..., output=...)

Decode the contents of the first argument input to the second argument output. Arguments input
and output should be file-like objects; input must be readable and output must be writable.

base64.decodestring(s=...)

Return the decoding of the base64-encoded string passed in the first argument s.

See Atso: email 345; rfc822 397 ; mimetools 396; mimetypes 374 . MimeWriter 396 ; mimify 396;
binasciil59; quopri 162;

binascii = Convert between binary data and ASCI I

Thebinascii module is a C implementation of a number of styles of ASCII encoding of binary
data. Each function in the binascii module takes either encoded ASCII or raw binary strings as an
argument, and returns the string result of converting back or forth. Some restrictions apply to
the length of strings passed to some functions in the module (for encodings that operate on
specific block sizes).

FUNCTIONS

binascii.a2b_base64(s)

Return the decoded version of a base64-encoded string. A string consisting of one or more
encoding blocks should be passed as the argument s.

binascii.a2b_hex(s)
Return the decoded version of a hexadecimal-encoded string. A string consisting of an even

number of hexadecimals digits should be passed as the argument s.

binascii.a2b_hqgx(s)

Return the decoded version of a binhex-encoded string. A string containing a complete number of
encoded binary bytes should be passed as the argument s.

binascii.a2b_qgp(s [,header=0])

Return the decoded version of a quoted printable string. A string containing a complete number
of encoded binary bytes should be passed as the argument s. If the optional argument header is
specified, underscores will be decoded as spaces. New to Python 2.2.

binascii.a2b_uu(s)

Return the decoded version of a UUencoded string. A string consisting of exactly one encoding
block should be passed as the argument s (for a full block, 62 bytes input, 45 bytes returned).

binascii.b2a_base64(s)

Return the based64 encoding of a binary string (including the newline after block). A binary string
no longer than 57 bytes should be passed as the argument s.

binascii.b2a_hex(s)

Return the hexadecimal encoding of a binary string. A binary string of any length should be
passed as the argument s.

binascii.b2a_hqgx(s)

Return the binhex4 encoding of a binary string. A binary string of any length should be passed as
the argument s. Run-length compression of s is not performed by this function (use
binascii.rlecode_hqgx() first, if needed).

binascii.b2a_qp(s [,quotetabs=0 [,istext=1 [header=0]]])

Return the quoted printable encoding of a binary string. A binary string of any length should be
passed as the argument s. The optional argument quotetabs specified whether to escape spaces
and tabs; istext specifies not to newlines; header specifies whether to encode spaces as
underscores (and escape underscores). New to Python 2.2.

binascii.b2a_uu(s)

Return the UUencoding of a binary string (including the initial block specifier—"M" for full
blocks—and newline after block). A binary string no longer than 45 bytes should be passed as the
argument s.

binascii.crc32(s [,crc])

Return the CRC32 checksum of the first argument s. If the second argument crc is specified, it
will be used as an initial checksum. This allows partial computation of a checksum and
continuation. For example:

>>> jnport binascii

>>> crc = binascii.crc32(' spam)

>>> binascii.crc32(' and eggs', crc)
739139840

>>> bi nascii.crc32(' spamand eggs')
739139840

binascii.crc_hqgx(s, crc)

Return the binhex4 checksum of the first argument s, using initial checksum value in second
argument. This allows partial computation of a checksum and continuation. For example:

>>> | nport binasci

>>> binascii.crc_hgx('spamand eggs', 0)
17918

>>> crc = binascii.crc_hgx('spam, 0)
>>> pinascii.crc_hgx(' and eggs', crc)
17918

See ALso: binascii.crc32 160;

binascii.hexlify(s)

Identical to binascii.b2a_hex() .

binascii.rlecode_hgx(s)

Return the binhex4 run-length encoding (RLE) of first argument s. Under this RLE technique,
0x90 is used as an indicator byte. Independent of the binhex4 standard, this is a poor choice of
precompression for encoded strings.

See Atso: zlib.compress() 182;

binascii.rledecode_hgx(s)

Return the expansion of a binhex4 run-length encoded string.

binascii.unhexlify(s)

Identical to binascii.a2b_hex()

EXCEPTIONS

binascii.Error

Generic exception that should only result from programming errors.

binascii.lncomplete

Exception raised when a data block is incomplete. Usually this results from programming errors
in reading blocks, but it could indicate data or channel corruption.

See ALso: base64 158; binhex 161; uu 163;

binhex « Encode and decode binhex4 files

Thebinhex module is a wrapper around the functions binascii.a2b_hgx(), binascii.b2a_hgx(),
binascii.rlecode_hqgx(), binascii.rledecode_hgx() , and binascii.crc_hgx() . As well as providing a
file-based interface on top of the underlying string conversions, binhex handles run-length
encoding of encoded files and attaches the needed header and footer information. Under MacOS,
the resource fork of a file is encoded along with the data fork (not applicable under other
platforms).

FUNCTIONS

binhex.binhex(inp=..., out=...)

Encode the contents of the first argument inp to the second argument out. Argument inp is a
filename; out may be either a filename or a file-like object. However, a cStringlO.StringlO object
is not "file-like" enough since it will be closed after the conversion—and therefore, its value lost.
You could override the . close() method in a subclass of StringlO.StringlO to solve this limitation.

binhex.hexbin(inp=...[,out=...])
Decode the contents of the first argument to an output file. If the second argument out is

specified, it will be used as the output filename, otherwise the filename will be taken from the
binhex header. The argument inp may be either a filename or a file-like object.

CLASSES

A number of internal classes are used by binhex. They are not documented here, but can be
examined in $PYTHONHOME/lib/binhex.py if desired (it is unlikely readers will need to do this).

See ALso: binascii 159;

qguopri = Convert to/from quoted printable encoding (RFC1521) ‘

Thequopri module is a wrapper around the functions binascii.a2b_qp() and binascii.b2a_gp() .
The module quopri has the same methods as base64 . Unlike uu, base64 adds no content headers
to encoded data; MIME standards for headers and message wrapping are handled by other
modules that utilize quopri. Quoted printable encoding is specified in RFC 1521.

FUNCTIONS

quopri.encode(input, output, quotetabs)

Encode the contents of the first argument input to the second argument output. Arguments input
and output should be file-like objects; input must be readable and output must be writable. If
quotetabs is a true value, escape tabs and spaces.

quopri.encodestring(s [,quotetabs=0])

Return the quoted printable encoding of the string passed in the first argument s. If quotetabs is
a true value, escape tabs and spaces.

quopri.decode(input=..., output=...[,header=0])
Decode the contents of the first argument input to the second argument output. Arguments input

and output should be file-like objects; input must be readable and output must be writable. If
header is a true value, encode spaces as underscores and escape underscores.

quopri.decodestring(s [,header=0])

Return the decoding of the quoted printable string passed in the first argument s. If header is a
true value, decode underscores as spaces.

See Atso: email 345; rfc822 397 ; mimetools 396; mimetypes 374 ; MimeWriter 396 ; mimify 396;
binasciil59; base64 158;

uu = UUencode and UUdecode files ‘

Theuu module is a wrapper around the functions binascii.a2b_uu() and binascii.b2a_uu() . As
well as providing a file-based interface on top of the underlying string conversions, uu handles
the chunking of binary files into UUencoded line blocks and attaches the needed header and
footer.

FUNCTIONS

uu.encode(in, out, [name=...[,mode=0666]])

Encode the contents of the first argument in to the second argument out. Arguments in and out
should be file objects, but filenames are also accepted (the latter is deprecated). The special
filename "-" can be used to specify STDIN or STDOUT, as appropriate. When file objects are
passed as arguments, in must be readable and out must be writable. The third argument name
can be used to specify the filename that appears in the UUencoding header; by default it is the
name of in. The fourth argument mode is the octal filemode to store in the UUencoding header.

uu.decode(in, [,out_file=...[, mode=...])

Decode the contents of the first argument in to an output file. If the second argument out_file is
specified, it will be used as the output file; otherwise, the filename will be taken from the
UUencoding header. Arguments in and out_file should be file objects, but filenames are also
accepted (the latter is deprecated). If the third argument mode is specified (and if out_file is
either unspecified or is a filename), open the created file in mode mode.

See ALso: binascii 159;

2.2.4 Cryptography

Python does not come with any standard and general cryptography modules. The few included
capabilities are fairly narrow in purpose and limited in scope. The capabilities in the standard

library consist of several cryptographic hashes and one weak symmetrical encryption algorithm.
A quick survey of cryptographic techniques shows what capabilities are absent from the standard
library:

Symmetrical Encryption: Any technique by which a plaintext message M is "encrypted" with a
key K to produce a cyphertext C. Application of K—or some K' easily derivable from K—to C is
called "decryption” and produces as output M. The standard module rotor provides a form of
symmetrical encryption.

Cryptographic Hash: Any technique by which a short "hash" H is produced from a plaintext
message M that has several additional properties: (1) Given only H, it is difficult to obtain any M’
such that the cryptographic hash of M' is H; (2) Given two plaintext messages M and M', there is
a very low probability that the cryptographic hashes of M and M' are the same. Sometimes a
third property is included: (3) Given M, its cryptographic hash H, and another hash H', examining
the relationship between H and H' does not make it easier to find an M' whose hash is H'. The
standard modules crypt, md5, and sha provide forms of cryptographic hashes.

Asymmetrical Encryption: Also called "public-key cryptography.” Any technique by which a
pair of keys K,up and Ky can be generated that have several properties. The algorithm for an
asymmetrical encryption technique will be called "P(M,K)" in the following. (1) For any plaintext
message M, M equals P(Kpriv,P(M,Kpub)). (2) Given only a public-key Ky, it is difficult to obtain a
private-keyK .y that assures the equality in (1). (3) Given only P(M,Kpub), it is difficult to obtain
M. In general, in an asymmetrical encryption system, a user generates Ky, and Kgiy, then
releasesK pp to other users but retains Ky, as a secret. There is no support for asymmetrical
encryption in the standard library.

Digital Signatures: Digital signatures are really just "public-keys in reverse." In many cases,
the same underlying algorithm is used for each. A digital signature is any technique by which a
pair of keys Kyer and Ksig can be generated that have several properties. The algorithm for a
digital signature will be called S(M,K) in the following. (1) For any message M, M equals
P(Kver,P(M,Ksig)). (2) Given only a verification key Ky, it is difficult to obtain a signature key Kgig
that assures the equality in (1). (3) Given only P(M,Ksig), it is difficult to find any C' such that
P(Kver,C) is a plausible message (in other words, the signature shows it is not a forgery). In
general, in a digital signature system, a user generates K, and Kgig, then releases Ky to other
users but retains Ksg as a secret. There is no support for digital signatures in the standard
library.

O e @ ss D e @ s 0 s o+ @ e Do @ oss D oes 0 s 0 s o+ D

Those outlined are the most important cryptographic techniques. More detailed general
introductions to cryptology and cryptography can be found at the author's Web site. A first
tutorial is Introduction to Cryptology Concepts I:

<http://gnosis.cx/publish/programming/cryptologyl.pdf>

Further material is in Introduction to Cryptology Concepts I1:
<http://gnosis.cx/publish/programming/cryptology?2.pdf>

And more advanced material is in Intermediate Cryptology: Specialized Protocols:
<http://gnosis.cx/publish/programming/cryptology3.pdf=>

A number of third-party modules have been created to handle cryptographic tasks; a good guide
to these third-party tools is the Vaults of Parnassus Encryption/Encoding index at
<http://www.vex.net/parnassus/apyllo.py?i=94738404>. Only the tools in the standard library
will be covered here specifically, since all the third-party tools are somewhat far afield of the topic
of text processing as such. Moreover, third-party tools often rely on additional non-Python
libraries, which will not be present on most platforms, and these tools will not necessarily be
maintained as new Python versions introduce changes.

The most important third-party modules are listed below. These are modules that the author

believes are likely to be maintained and that provide access to a wide range of cryptographic
algorithms.

mxCrypto
amkCrypto

Marc-Andre Lemburg and Andrew Kuchling—both valuable contributors of many Python
modules—have played a game of leapfrog with each other by releasing mxCrypto and

amkCrypto , respectively. Each release of either module builds on the work of the other, providing
compatible interfaces and overlapping source code. Whatever is newest at the time you read this
is the best bet. Current information on both should be obtainable from:

<http://www.amk.ca/python/code/crypto.html>

Python Cryptography

Andrew Kuchling, who has provided a great deal of excellent Python documentation, documents
these cryptography modules at:

<http://www.amk.ca/python/writing/pycrypt/>

M2Crypto

ThemxCrypto and amkCrypto modules are most readily available for Unix-like platforms. A
similar range of cryptographic capabilities for a Windows platform is available in Ng Pheng Siong's
M2Crypto . Information and documentation can be found at:

<http://www.postl.com/home/ngps/m2/>

fcrypt

Carey Evans has created fcrypt, which is a pure-Python, single-module replacement for the
standard library's crypt module. While probably orders-of-magnitude slower than a C
implementation,fcrypt will run anywhere that Python does (and speed is rarely an issue for this
functionality).fcrypt may be obtained at:

<http://home.clear.net.nz/pages/c.evans/sw/>

crypt = Create and verify Unix-style passwords

The crypt() function is a frequently used, but somewhat antiquated, password
creation/verification tool. Under Unix-like systems, crypt() is contained in system libraries and
may be called from wrapper functions in languages like Python. crypt() is a form of cryptographic
hash based on the Data Encryption Standard (DES). The hash produced by crypt() is based on an
8-byte key and a 2-byte "salt." The output of crypt() is produced by repeated encryption of a
constant string, using the user key as a DES key and the salt to perturb the encryption in one of
4,096 ways. Both the key and the salt are restricted to alphanumerics plus dot and slash.

By using a cryptographic hash, passwords may be stored in a relatively insecure location. An
imposter cannot easily produce a false password that will hash to the same value as the one
stored in the password file, even given access to the password file. The salt is used to make
"dictionary attacks"” more difficult. If an imposter has access to the password file, she might try
applying crypt() to a candidate password and compare the result to every entry in the password
file. Without a salt, the chances of matching some encrypted password would be higher. The salt
(a random value should be used) decreases the chance of such a random guess by 4,096 times.

Thecrypt module is only installed on some Python systems (even only some Unix systems).
Moreover, the module, if installed, relies on an underlying system library. For a portable
approach to password creation, the third-party fcrypt module provides a portable, pure-Python
reimplementation.

FUNCTIONS

crypt.crypt(passwd, salt)

Return an ASCII 13-byte encrypted password. The first argument passwd must be a string up to
eight characters in length (extra characters are truncated and do not affect the result). The
second argument salt must be a string up to two characters in length (extra characters are
truncated). The value of salt forms the first two characters of the result.

>>> fromcrypt inport crypt
>>> crypt (' mypassword', ' XY")

" XY5XuULXk4pcs

>>> crypt (' mypasswo', "' XY")

" XY5XuULXk4pcs

>>> crypt (' nypassword. .. nore.characters',' XY")
" XY5XuULXk4pcs

>>> crypt (' nypasswo' ,"' AB')
" ABO61nf YXW Kg'
>>> crypt (' diffpass',' AB)
' AB105BopaFYNs'

See Auso: ferypt 165; md5 167; sha 170;

‘md5 = Create MD5 message digests

RSA Data Security, Inc.'s MD5 cryptographic hash is a popular algorithm that is codified by
RFC1321. Like sha, and unlike crypt, md5 allows one to find the cryptographic hash of arbitrary
strings (Unicode strings may not be hashed, however). Absent any other considerations—such as
compatibility with other programs—Secure Hash Algorithm (SHA) is currently considered a better
algorithm than MD5, and the sha module should be used for cryptographic hashes. The operation
ofmd5 objects is similar to binascii.crc32() hashes in that the final hash value may be built
progressively from partial concatenated strings. The MD5 algorithm produces a 128-bit hash.

CONSTANTS

md5.MD5Type

The type of an md5.new instance.

CLASSES

md5.new([s])

Create an md5 object. If the first argument s is specified, initialize the MD5 digest buffer with the

initial string s. An MD5 hash can be computed in a single line with:

>>> jnport nd5
>>> md5. new(' Mary had a little |anb'). hexdi gest ()
' e946adb45d4299def 2071880d30136d4

md5.md5([s])

Identical to md5.new .

METHODS

md5.copy()

Return a new md5 object that is identical to the current state of the current object. Different
terminal strings can be concatenated to the clone objects after they are copied. For example:

>>> jnport nmd5

>>> m = nmd5. new(' spam and eggs')

>>> m di gest ()

"\ xb5\ x81f\ xCOc\ xf f\ x17\ xe7\ x8c\ x84\ xc3\ xa8J\ xdO. g\ x85
>>> n2 = mcopy()

>>> nR. di gest ()

"\ xb5\ x81f\ xCOc\ xf f\ x17\ xe7\ x8c\ x84\ xc3\ xa8J\ xdO. g\ x85
>>> mupdate(' are tasty')

>>> nR. update(' are wetched')

>>> m di gest ()

" *\ x94\ xa2\ xc5\ xceq\ x96\ xef & xl1la\ xc9. ht m#\ xac98\ x16'
>>> nR. di gest ()

"' h\ x8c\ xf am xe3\ xbO x90\ xe8\ xCe\ xcb\ xbf \ xb3\ xa7MN xeb\ xbc

md>5.digest()

Return the 128-bit digest of the current state of the md5 object as a 16-byte string. Each byte
will contain a full 8-bit range of possible values.

>>> jnport nd5 # Python 2.1+

>>> m = nmd5. new(' spam and eggs')

>>> m di gest ()

"\ xb5\ x81f\ xOc\ xf f\x17\ xe7\ x8c\ x84\ xc3\ xa8J\ xdO. g\ x85

>>> jnport nd5 # Python <= 2.0

>>> m = nmd5. new(' spam and eggs')

>>> m di gest ()

"\ 265\ 201f\ 014\ 377\ 027\ 347\ 214\ 204\ 303\ 250J\ 320. g\ 205"

md5.hexdigest()

Return the 128-bit digest of the current state of the md5 object as a 32-byte hexadecimal-
encoded string. Each byte will contain only values in string.hexdigits . Each pair of bytes
represents 8-bits of hash, and this format may be transmitted over 7-bit ASCII channels like
email.

>>> jnport nd5

>>> m = nmd5. new(' spam and eggs')
>>> m hexdi gest ()

' b581660cff 17e78c84c3a84ad02e6785

md5.update(s)

Concatenate additional strings to the md5 object. Current hash state is adjusted accordingly. The
number of concatenation steps that go into an MD5 hash does not affect the final hash, only the
actual string that would result from concatenating each part in a single string. However, for large
strings that are determined incrementally, it may be more practical to call md5.update()
numerous times. For example:

>>> jnport nd5
>>> m = nmd5. new(' spam and eggs')

>>> 2 = nd5. new(' spani)
>>> nR. update(' and eggs')
>>> B = nd5. new(' spani)
>>> nB. update(' and ')

>>> nB. updat e(' eggs')

>>> mil. hexdi gest ()

' b581660cff17e78c84c3a84ad02e6785
>>> nR. hexdi gest ()
' b581660cff17e78c84c3a84ad02e6785
>>> nB. hexdi gest ()
' b581660cff17e78c84c3a84ad02e6785

See Atso: sha 170; crypt 166; binascii.crc32() 160;

rotor = Perform Enigma-like encryption and decryption

Therotor module is a bit of a curiosity in the Python standard library. The symmetric encryption
performed by rotor is similar to that performed by the extremely historically interesting and
important Enigma algorithm. Given Alan Turing's famous role not just in inventing the theory of
computability, but also in cracking German encryption during WWII, there is a nice literary
quality to the inclusion of rotor in Python. However, rotor should not be mistaken for a robust
modern encryption algorithm. Bruce Schneier has commented that there are two types of
encryption algorithms: those that will stop your little sister from reading your messages, and
those that will stop major governments and powerful organization from reading your messages.
rotor is in the first category—albeit allowing for rather bright little sisters. But rotor will not help
much against TLAs (three letter agencies). On the other hand, there is nothing else in the Python
standard library that performs actual military-grade encryption, either.

CLASSES

rotor.newrotor(key [,numrotors])

Return a rotor object with rotor permutations and positions based on the first argument key. If
the second argument numrotors is specified, a number of rotors other than the default of 6 can
be used (more is stronger). A rotor encryption can be computed in a single line with:

>>> rotor.newotor (' nypassword').encrypt('Mary had a | anb')
"\ x10\ xef \ xf 1\ x1le\ xeaor \ xe9\ xf 7\ xe5\ xad, r\ xc6\ x9of '

Object style encryption and decryption is performed like the following:

>>> jnmport rotor

>>> C = rotor.newotor('pass2').encrypt('Mary had a little lanb')
>>> r1 = rotor.newotor (' mypassword')

>>> C2 =rl.encrypt('Mary had a little [anb')

>>> r 1. decrypt (C2)

"Mary had a little |anmb

>>> r1. decrypt (O # Let's try it

"\ 217R$\ 217/ sE\ 311\ 330~#\ 310\ 342\ 200\ 025F\ 221\ 245\ 263\ 036\ 2200
>>> rl. setkey(' pass2')

>>> r 1. decrypt (O # Let's try it

"Mary had a little | anb’'

METHODS

rotor.decrypt(s)

Return a decrypted version of cyphertext string s. Prior to decryption, rotors are set to their
initial positions.

rotor.decryptmore(s)

Return a decrypted version of cyphertext string s. Prior to decryption, rotors are left in their
current positions.

rotor.encrypt(s)

Return an encrypted version of plaintext string s. Prior to encryption, rotors are set to their initial
positions.

rotor.encryptmore(s)

Return an encrypted version of plaintext string s. Prior to encryption, rotors are left in their
current positions.

rotor.setkey (key)

Set a new key for a rotor object.

sha = Create SHAmMessage digests ‘

The National Institute of Standards and Technology's (NIST's) Secure Hash Algorithm is the best
well-known cryptographic hash for most purposes. Like md5, and unlike crypt, sha allows one to
find the cryptographic hash of arbitrary strings (Unicode strings may not be hashed, however).
Absent any other considerations—such as compatibility with other programs—SHA is currently
considered a better algorithm than MD5, and the sha module should be used for cryptographic

hashes. The operation of sha objects is similar to binascii.crc32() hashes in that the final hash
value may be built progressively from partial concatenated strings. The SHA algorithm produces
a 160-bit hash.

CLASSES

sha.new([s])

Create an sha object. If the first argument s is specified, initialize the SHA digest buffer with the
initial string s. An SHA hash can be computed in a single line with:

>>> i nport sha
>>> sha.newm' Mary had a little |lanmb'). hexdi gest ()
' bac9388d0498f b378e528d35abd05792291af 182

sha.sha ([s])

Identical to sha.new.

METHODS

sha.copy()

Return a new sha object that is identical to the current state of the current object. Different
terminal strings can be concatenated to the clone objects after they are copied. For example:

>>> jnport sha

>>> s = sha. new(' spam and eggs')

>>> s, di gest ()

"\ 276\ 207\ 224\ 213\ 255\ 375x\ 024\ 245b\ 036C\ 322\ 017\ 2528 @ 017\ 246’
>>> s2 = s.copy()

>>> s2. di gest()

"\ 276\ 207\ 224\ 213\ 255\ 375x\ 024\ 245b\ 036C\ 322\ 017\ 2528 @ 017\ 246’
>>> s, update(' are tasty')

>>> s2. update(' are wetched')

>>> s, di gest()

"\ 013"C\ 366\ 25371\ 323\ 206nt \ 2443\ 251\ 227\ 204- kr 6'

>>> s2. di gest ()

"\ 013\ 210\ 237\ 216\ 014\ 3337X\ 333\ 221h&+c\ 345\ 007\ 367\ 326\ 274\ 321"

sha.digest()

Return the 160-bit digest of the current state of the sha object as a 20-byte string. Each byte will
contain a full 8-bit range of possible values.

>>> jnport sha # Python 2.1+

>>> s = sha. new(' spam and eggs')

>>> s, di gest ()

"\ xbe\ x87\ x94\ x8b\ xad\ xf dx\ x14\ xa5b\ x| eC\ xd2\ xOf \ xaa8 @ xOf \ xa6'

>>> jnmport sha # Python <= 2.0

>>> s = sha.new(' spam and eggs')

>>> s. di gest ()

"\ 276\ 207\ 224\ 213\ 255\ 375x\ 024\ 245b\ 036C\ 322\ 017\ 2528 @ 017\ 246

sha.hexdigest()

Return the 160-bit digest of the current state of the sha object as a 40-byte hexadecimal-
encoded string. Each byte will contain only values in string.hexdigits . Each pair of bytes
represents 8-bits of hash, and this format may be transmitted over 7-bit ASCII channels like
email.

>>> inport sha

>>> s = sha. new(' spam and eggs')

>>> s, hexdi gest ()

' be87948badf d7814a5621e43d20f aa3820400f a6’

sha.update(s)

Concatenate additional strings to the sha object. Current hash state is adjusted accordingly. The
number of concatenation steps that go into an SHA hash does not affect the final hash, only the
actual string that would result from concatenating each part in a single string. However, for large
strings that are determined incrementally, it may be more practical to call sha.update()
numerous times. For example:

>>> i nmport sha

>>> s]1 = sha. sha(' spam and eggs')

>>> s2 = sha. sha(' spam)

>>> s2. update(' and eggs')

>>> s3 = sha. sha(' spami)

>>> s3. update(' and ')

>>> s3. updat e(' eggs')

>>> s1. hexdi gest ()

' be87948badf d7814a5621e43d20f aa3820400f a6’
>>> s2. hexdi gest ()

' be87948badf d7814a5621e43d20f aa3820400f a6’
>>> s3. hexdi gest ()

' be87948badf d7814a5621e43d20f aa3820400f a6’

See Atso: md5 167; crypt 166; binascii.crc32() 160;

2.2.5 Compression

Over the history of computers, a large number of data compression formats have been invented,
mostly as variants on Lempel-Ziv and Huffman techniques. Compression is useful for all sorts of
data streams, but file-level archive formats have been the most widely used and known
application. Under MS-DOS and Windows we have seen ARC, PAK, ZOO, LHA, ARJ, CAB, RAR,
and other formats—but the ZIP format has become the most widespread variant. Under Unix-like
systems, compress (.Z) mostly gave way to gzip (GZ); gzip is still the most popular format on
these systems, but bzip (BZ2) generally obtains better compression rates. Under MacOS, the
most popular format is SIT. Other platforms have additional variants on archive formats, but
ZIP—and to a lesser extent GZ—are widely supported on a number of platforms.

The Python standard library includes support for several styles of compression. The zlib module

performs low-level compression of raw string data and has no concept of a file. zlib is itself called
by the high-level modules below for its compression services.

The modules gzip and zipfile provide file-level interfaces to compressed archives. However, a
notable difference in the operation of gzip and zipfile arises out of a difference in the underlying
GZ and ZIP formats. gzip (GZ) operates exclusively on single files—leaving the work of
concatenating collections of files to tools like tar. One frequently encounters (especially on Unix-
like systems) files like foo.tar.gz or foo.tgz that are produced by first applying tar to a collection
of files, then applying gzip to the result. ZIP, however, handles both the compression and
archiving aspects in a single tool and format. As a consequence, gzip is able to create file-like
objects based directly on the compressed contents of a GZ file. ziplib needs to provide more
specialized methods for navigating archive contents and for working with individual compressed
file images therein.

Also see Appendix B (A Data Compression Primer).

gzip = Functions that read and write gzipped files

Thegzip module allows the treatment of the compressed data inside gzip compressed files
directly in a file-like manner. Uncompressed data can be read out, and compressed data written
back in, all without a caller knowing or caring that the file is a GZ-compressed file. A simple
example illustrates this:

gzip_file.py

Treat a &Z as "just another file"
i mport gzip, glob

print "Size of data in files:"

for fname in glob.glob("*"):

try:
i f fname[-3:] == "'.9z":
S = gzi p.open(fnane).read()
el se:
s = open(fnane).read()
print ' ', fname,'-",len(s), " bytes'

except | CError:
print 'Skipping ,file

The module gzip is a wrapper around zlib, with the latter performing the actual compression and
decompression tasks. In many respects, gzip is similar to mmap and StringlO in emulating
and/or wrapping a file object.

See Atso: mmap 147; StringlO 153; cStringlO 153;

CLASSES

gzip.GzipFile([filename=...[mode="rb" [,compresslevel=9 [,fileobj=...]]1])

Create a gzip file-like object. Such an object supports most file object operations, with the
exception of .seek() and .tell(). Either the first argument filename or the fourth argument fileobj
should be specified (likely by argument name, especially if fourth argument fileobj).

The second argument mode takes the mode of fileobj if specified, otherwise it defaults to rb (r,
rb, a, ab, w, or wb may be specified with the same meaning as with FILE.open() objects). The
third argument compresslevel specifies the level of compression. The default is the highest level,

9; an integer down to 1 may be selected for less compression but faster operation (compression
level of a read file comes from the file itself, however).

gzip.open(filename=...[mode='"rb [,compresslevel=9]])

Same as gzip.GzipFile but with extra arguments omitted. A GZ file object opened with gzip.open
is always opened by name, not by underlying file object.

METHODS AND ATTRIBUTES

gzip.close()

Close the gzip object. No access is permitted after close. If the object was opened by file object,
the underlying file object is not closed, only the gzip interface to the file.

See Atso: FILE.close() 16;

gzip.flush()

Write outstanding data from memory to disk.

See Atso: FILE.close() 16;

gzip.isatty()

Return 0. Compatibility method for file-like behavior.

See Aiso: FILE.isatty() 16;

gzip.myfileobj

Attribute holding the underlying file object.

gzip.read([num])

If the first argument num is specified, return a string containing the next num characters. If num
characters are not available, return as many as possible. If num is not specified, return all the
characters from current file position to end of string buffer. Advance the current file position by
the amount read.

See Atso: FILE.read() 17;

gzip.readline([length])

Return a string from the gzip object, starting from the current file position and going to the next
newline character. The argument length limits the read if specified. Advance the current file
position by the amount read.

See Aiso: FILE.readline() 17;

gzip.readlines([sizehint=...])

Return a list of strings from the gzip object. Each list element consists of a single line, including
the trailing newline character(s). If an argument sizehint is specified, read only approximately
sizehint characters worth of lines (full lines will always be read).

See Atso: FILE.readlines() 17;

gzip.write(s)

Write the first argument s into the gzip object at the current file position. The current file position
is updated to the position following the write.

See Aiso: FILE.write() 17;

gzip.writelines(list)

Write each element of list into the gzip object at the current file position. The current file position
is updated to the position following the write. Most sequence types are allowed, but list must
contain only strings, or a TypeError will occur.

Contrary to what might be expected from the method name, gzip.writelines() never inserts
newline characters. For the list elements actually to occupy separate lines in the string buffer,
each element string must already have a newline terminator. See StringlO.StringlO.writelines()
for an example.

See Aiso: FILE.writelines() 17; StringlO.StringlO.writelines() 157 ;

See Atso: zlib 181; zipfile 176;

zipfile = Read and write ZIP files

Thezipfile module enables a variety of operations on ZIP files and is compatible with archives
created by applications such as PKZip, Info-Zip, and WinZip. Since the ZIP format allows inclusion
of multiple file images within a single archive, the zipfile does not behave in a directly file-like
manner as gzip does. Nonetheless, it is possible to view the contents of an archive, add new file
images to one, create a new ZIP archive, or manipulate the contents and directory information of
a ZIP file.

An initial example of working with the zipfile module gives a feel for its usage.

>>> for name in 'ABC :
open(nane,'w).wite(nane*1000)
>>> jnport zipfile
>>> z = zipfile.ZipFile('new zip','wW,zipfile.Zl P_DEFLATED) # new archv

>>> z.wite('A) # wite files to archive

>>>z. wite('B ,'B.newnane', zi pfil e. ZI P_STORED)

>>> z.wite('C,'C newnane')

>>> z.cl ose() # close the witten archive
>>> z = zipfile.Zi pFile(' new zip') # reopen archive in read node
>>> z.testzip() # ' None' returned nmeans K
>>> z. nanelist() # What's in it?

['A, "B.newnane', 'C. newnane']

>>> z.printdir() # details

Fil e Nane Modi fi ed Si ze

A 2001-07-18 21:39: 36 1000

B. newnane 2001-07-18 21:39: 36 1000
C. newnane 2001-07-18 21:39: 36 1000
>>> A = z.getinfo('A) # bind Ziplnfo object

>>> B = z.getinfo(' B. newnane') # bind Zi plnfo object

>>> A conpress_si ze

11

>>> B. conpress_si ze

1000

>>> z.read(A fil enane)|[: 40] # Check what's in A

" AA

>>> z.read(B.fil enane)[: 40] # Check what's in B

' BB'

>>> # For conparison, see what Info-Zip reports on created archive
>>> jnport os

>>> print os.popen('unzip -v new. zip').read()

Archive: new. zip

Length Met hod Size Ratio Dat e Ti me CRC- 32 Nanme
1000 Defl: N 11 99% 07-18-01 21:39 51a02e01 A
1000 Stored 1000 0% 07-18-01 21:39 7d9c564d B. newnane
1000 Defl: N 11 99% 07-18-01 21:39 66778189 C. newnane
3000 1022 66% 3 files

The module gzip is a wrapper around zlib, with the latter performing the actual compression and
decompression tasks.

CONSTANTS

Several string constants (struct formats) are used to recognize signature identifiers in the ZIP
format. These constants are not normally used directly by end-users of zipfile.

zipfile.stringCentral Dir = "'PK\x01\ x02

zi pfile.stringEndArchive ="' PK\x05\x06

zi pfile.stringFil eHeader ="' PK\ x03\ x04
zipfile.structCentralDir = '<4s4B4H315H21"
zi pfile.struct EndArchive = ' <4s4H21H
zipfile. structFil eHeader = '<4s2B4H312H

Symbolic names for the two supported compression methods are also defined.

zipfile.ZIP_STORED = 0
zipfile.Zl P_DEFLATED = 8

FUNCTIONS

zipfile.is_zipfile(filename=...)

Check if the argument filename is a valid ZIP archive. Archives with appended comments are not
recognized as valid archives. Return 1 if valid, None otherwise. This function does not guarantee
archive is fully intact, but it does provide a sanity check on the file type.

CLASSES

zipfile.PyZipFile(pathname)

Create a zipfile.ZipFile object that has the extra method zipfile.ZipFile.writepy() . This extra
method allows you to recursively add all *.py[oc] files to an archive. This class is not general
purpose, but a special feature to aid distutils .

zipfile.ZipFile(file=...[,mode="r' [,compression=ZIP_STORED]])

Create a new zipfile.ZipFile object. This object is used for management of a ZIP archive. The first
argument file must be specified and is simply the filename of the archive to be manipulated. The
second argument mode may have one of three string values: r to open the archive in read-only
mode; w to truncate the filename and create a new archive; a to read an existing archive and
add to it. The third argument compression indicates the compression method—ZIP_DEFLATED
requires that zlib and the zlib system library be present.

zipfile.ZipInfo()

Create a new zipfile.Ziplnfo object. This object contains information about an individual archived
filename and its file image. Normally, one will not directly instantiate zipfile.Ziplnfo but only look
at the zipfile.ZipInfo objects that are returned by methods like zipfile.ZipFile.infolist(),
zipfile.ZipFile.getinfo() , and zipfile.ZipFile.NameTolnfo . However, in special cases like
zipfile.ZipFile.writestr() , it is useful to create a zipfile.ZipInfo directly.

METHODS AND ATTRIBUTES

zipfile.ZipFile.close()

Close the zipfile.ZipFile object, and flush any changes made to it. An object must be explicitly
closed to perform updates.

zipfile.ZipFile.getinfo(name=...)

Return the zipfile.ZipInfo object corresponding to the filename name. If name is not in the ZIP
archive, a KeyError is raised.

zipfile.ZipFile.infolist()

Return a list of zipfile.ZipInfo objects contained in the zipfile.ZipFile object. The return value is
simply a list of instances of the same type. If the filename within the archive is known,
zipfile.ZipFile.getinfo() is a better method to use. For enumerating over all archived files,
however,zipfile.ZipFile.infolist() provides a nice sequence.

zipfile.ZipFile.namelist()

Return a list of the filenames of all the archived files (including nested relative directories).

zipfile.ZipFile.printdir()

Print to STDOUT a pretty summary of archived files and information about them. The results are
similar to running Info-Zip's unzip with the -l option.

zipfile.ZipFile.read(name=...)

Return the contents of the archived file with filename name.

zipfile.ZipFile.testzip()

Test the integrity of the current archive. Return the filename of the first zipfile.ZipInfo object with
corruption. If everything is valid, return None.

zipfile.ZipFile.write(filename=...[,arcname=...[,compress_type=...]])

Add the file filename to the zipfile.ZipFile object. If the second argument arcname is specified,
use arcname as the stored filename (otherwise, use filename itself). If the third argument
compress_type is specified, use the indicated compression method. The current archive must be
opened in w or a mode.

zipfile.ZipFile.writestr(zinfo=..., bytes=...)

Write the data contained in the second argument bytes to the zipfile.ZipFile object. Directory
meta-information must be contained in attributes of the first argument zinfo (a filename, data,
and time should be included; other information is optional). The current archive must be opened
in w or a mode.

zipfile.ZipFile.NameTolnfo

Dictionary that maps filenames in archive to corresponding zipfile.Ziplnfo objects. The method
zipfile.ZipFile.getinfo() is simply a wrapper for a dictionary lookup in this attribute.

zipfile.ZipFile.compression

Compression type currently in effect for new zipfile.ZipFile.write() operations. Modify with due
caution (most likely not at all after initialization).

zipfile.ZipFile.debug =0

Attribute for level of debugging information sent to STDOUT. Values range from the default O (no
output) to 3 (verbose). May be modified.

zipfile.ZipFile.filelist

List of zipfile.ZipInfo objects contained in the zipfile.ZipFile object. The method
zipfile.ZipFile.infolist() is simply a wrapper to retrieve this attribute. Modify with due caution
(most likely not at all).

zipfile.ZipFile.filename

Filename of the zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.fp

Underlying file object for the zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.mode

Access mode of current zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.start_dir

Position of start of central directory. DO NOT modify!

zipfile.ZipInfo.CRC

Hash value of this archived file. DO NOT modify!

zipfile.ZipInfo.comment

Comment attached to this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.compress_size

Size of the compressed data of this archived file. DO NOT modify!

zipfile.ZipInfo.compress_type

Compression type used with this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.create_system

System that created this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.create_version

PKZip version that created the archive. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.Zipinfo.date_time

Timestamp of this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.external_attr

File attribute of archived file when extracted.

zipfile.ZipInfo.extract_version

PKZip version needed to extract the archive. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.file_offset

Byte offset to start of file data. DO NOT modify!

zipfile.ZipInfo.file size

Size of the uncompressed data in the archived file. DO NOT modify!

zipfile.ZipInfo.filename

Filename of archived file. Modify with due caution (e.g., for use with zipfile.ZipFile.writestr()).

zipfile.ZipInfo.header_offset

Byte offset to file header of the archived file. DO NOT modify!

zipfile.ZipInfo.volume

Volume number of the archived file. DO NOT modify!

EXCEPTIONS

zipfile.error

Exception that is raised when corrupt ZIP file is processed.

zipfile.BadZipFile

Alias for zipfile.error .

See Atso: zlib 181; gzip 173;

zlib « Compress and decompress with zlib library

zlib is the underlying compression engine for all Python standard library compression modules.
Moreover,zlib is extremely useful in itself for compression and decompression of data that does
not necessarily live in files (or where data does not map directly to files, even if it winds up in

them indirectly). The Python zlib module relies on the availability of the zlib system library.

There are two basic modes of operation for zlib. In the simplest mode, one can simply pass an
uncompressed string to zlib.compress() and have the compressed version returned. Using
zlib.decompress() is symmetrical. In a more complicated mode, one can create compression or
decompression objects that are able to receive incremental raw or compressed byte-streams,
and return partial results based on what they have seen so far. This mode of operation is similar
to the way one uses sha.sha.update(), md5.md5.update() , rotor.encryptmore() , or
binascii.crc32() (albeit for a different purpose from each of those). For large byte-streams that
are determined, it may be more practical to utilize compression/decompression objects than it
would be to compress/decompress an entire string at once (for example, if the input or result is
bound to a slow channel).

CONSTANTS

zlib.ZLIB_VERSION

The installed zlib system library version.

zlib.Z_BEST_COMPRESSION =9

Highest compression level.

zlib.Z BEST_SPEED =1

Fastest compression level.

zlib.Z_HUFFMAN_ONLY =2

Intermediate compression level that uses Huffman codes, but not Lempel-Ziv.

FUNCTIONS

zlib.adler32(s [,crc])

Return the Adler-32 checksum of the first argument s. If the second argument crc is specified, it
will be used as an initial checksum. This allows partial computation of a checksum and
continuation. An Adler-32 checksum can be computed much more quickly than a CRC32
checksum. Unlike md5 or sha, an Adler-32 checksum is not sufficient for cryptographic hashes,
but merely for detection of accidental corruption of data.

See Acso: zlib.crc32() 182; md5 167; sha 170;

zlib.compress(s [,level])

Return the zlib compressed version of the string in the first argument s. If the second argument
level is specified, the compression technique can be fine-tuned. The compression level ranges
from 1 to 9 and may also be specified using symbolic constants such as Z_BEST_COMPRESSION
and Z_BEST_SPEED. The default value for level is 6 and is usually the desired compression level
(usually within a few percent of the speed of Z_ BEST_SPEED and within a few percent of the size

of Z_BEST_COMPRESSION).

See Atso: zlib.decompress() 182; zlib.compressobj 183;

zlib.crc32(s [,crc])

Return the CRC32 checksum of the first argument s. If the second argument crc is specified, it
will be used as an initial checksum. This allows partial computation of a checksum and
continuation. Unlike md5 or sha, a CRC32 checksum is not sufficient for cryptographic hashes,
but merely for detection of accidental corruption of data.

Identical to binascii.crc32() (example appears there).

See Atso: binascii.crc32() 160; zlib.adler32() 182; md5 167; sha 170;

zlib.decompress(s [,winsize [,buffsize]])

Return the decompressed version of the zlib compressed string in the first argument s. If the
second argument winsize is specified, it determines the base 2 logarithm of the history buffer
size. The default winsize is 15. If the third argument buffsize is specified, it determines the size of
the decompression buffer. The default buffsize is 16384, but more is dynamically allocated if
needed. One rarely needs to use winsize and buffsize values other than the defaults.

See Atso: zlib.compress() 182; zlib.decompressobj 183;

CLASS FACTORIES

zlib does not define true classes that can be specialized. zlib.compressobj() and
zlib.decompressobj() are actually factory-functions rather than classes. That is, they return
instance objects, just as classes do, but they do not have unbound data and methods. For most
users, the difference is not important: To get a zlib.compressobj or zlib.decompressobj object,
you just call that factory-function in the same manner you would a class object.

zlib.compressobj([level])

Create a compression object. A compression object is able to incrementally compress new strings
that are fed to it while maintaining the seeded symbol table from previously compressed byte-
streams. If argument level is specified, the compression technique can be fine-tuned. The
compression level ranges from 1 to 9. The default value for level is 6 and is usually the desired
compression level.

See Aiso: zlib.compress() 182; zlib.decompressobj() 183;

zlib.decompressobj([winsize])

Create a decompression object. A decompression object is able to incrementally decompress new
strings that are fed to it while maintaining the seeded symbol table from previously
decompressed byte-streams. If the argument winsize is specified, it determines the base 2
logarithm of the history buffer size. The default winsize is 15.

See Atso: zlib.decompress() 182; zlib.compressobj() 183;

METHODS AND ATTRIBUTES

zlib.compressobj.compress(s)

Add more data to the compression object. If the symbol table becomes full, compressed data is
returned, otherwise an empty string. All returned output from each repeated call to
zlib.compressobj.compress() should be concatenated to a decompression byte-stream (either a
string or a decompression object). The example below, if run in a directory with some files, lets
one examine the buffering behavior of compression objects:

zlib_objs.py

Denonstrate conpression object streans
import zlib, glob
decom = zli b. deconpr essobj ()
com = zlib. conpressobj ()
for file in glob.glob('*"):
s = open(file).read()
c = com conpress(s)

print ' COWPRESSED: ', len(c), 'bytes out’

d = decom deconpress(c)

print ' DECOVWPRESS: ', len(d), 'bytes out'

print 'UNUSED DATA:', |en(decom unused _data), 'bytes’
raw_ input('-- % (% bytes) --' % (file, "len(s)'))

f = comflush()

m = decom deconpress(f)

print 'DECOWRESS:', len(m, 'bytes out'

print "UNUSED DATA:', |en(decom unused data), 'byte

See Atso: zlib.compressobj.flush() 184 ; zlib.decompressobj.decompress() 185; zlib.compress()
182;

zlib.compressobj.flush([mode])

Flush any buffered data from the compression object. As in the example in
zlib.compressobj.compress() , the output of a zlib.compressobj.flush() should be concatenated to
the same decompression byte-stream as zlib.compressobj.compress() calls are. If the first
argument mode is left empty, or the default Z_FINISH is specified, the compression object
cannot be used further, and one should delete it. Otherwise, if Z SYNC_FLUSH or Z_FULL_FLUSH
are specified, the compression object can still be used, but some uncompressed data may not be
recovered by the decompression object.

See Atso: zlib.compress() 182; zlib.compressobj.compress() 183;

zlib.decompressobj.unused_data

As indicated, zlib.decompressobj.unused-data is an instance attribute rather than a method. If
any partial compressed stream cannot be decompressed immediately based on the byte-stream
received, the remainder is buffered in this instance attribute. Normally, any output of a
compression object forms a complete decompression block, and nothing is left in this instance
attribute. However, if data is received in bits over a channel, only partial decompression may be
possible on a particular zlib.decompressobj.decompress() call.

See Atso: zlib.decompress() 182; zlib.decompressobj.decompress() 185;

zlib.decompressobj.decompress (s)

Return the decompressed data that may be derived from the current decompression object state
and the argument s data passed in. If all of s cannot be decompressed in this pass, the
remainder is left in zlib.decompressobj.unused-data .

zlib.decompressobj.flush()

Return the decompressed data from any bytes buffered by the decompression object. After this
call, the decompression object cannot be used further, and you should del it.

EXCEPTIONS

zlib.error

Exception that is raised by compression or decompression errors.

See Auso: gzip 173; zipfile 176;

2.2.6 Unicode

Note that Appendix C (Understanding Unicode) also discusses Unicode issues.

Unicode is an enhanced set of character entities, well beyond the basic 128 characters defined in
ASCII encoding and the codepage-specific national language sets that contain 128 characters
each. The full Unicode character set—evolving continuously, but with a large number of
codepoints already fixed—can contain literally millions of distinct characters. This allows the
representation of a large number of national character sets within a unified encoding space, even
the large character sets of Chinese-Japanese-Korean (CJK) alphabets.

Although Unicode defines a unique codepoint for each distinct character in its range, there are
numerousencodings that correspond to each character. The encoding called UTF-8 defines ASCII
characters as single bytes with standard ASCII values. However, for non-ASCII characters, a
variable number of bytes (up to 6) are used to encode characters, with the "escape" to Unicode
being indicated by high-bit values in initial bytes of multibyte sequences. UTF-16 is similar, but
uses either 2 or 4 bytes to encode each character (but never just 1). UTF-32 is a format that
uses a fixed 4-byte value for each Unicode character. UTF-32, however, is not currently
supported by Python.

Native Unicode support was added to Python 2.0. On the face of it, it is a happy situation that
Python supports Unicode—it brings the world closer to multinational language support in
computer applications. But in practice, you have to be careful when working with Unicode,
because it is all too easy to encounter glitches like the one below:

>>> al ef, omega = unichr(1488), unichr(969)
>>> uni codedat a. nane(al ef)
>>> print alef
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
Uni codeError: ASCI |1 encoding error: ordinal not in range(128)
>>> print chr(170)

>>> if alef == chr(170): print "Hebrew is Roman diacritic"

Traceback (nobst recent call last):
File "<stdin>", line 1, in ?
Uni codeError: ASCI| decoding error: ordinal not in range(128)

A Unicode string that is composed of only ASCII characters, however, is considered equal (but
not identical) to a Python string of the same characters.

>>> u"spant == "spant
1
>>> u"spant is "spant
0

>>> "gpant is "spant # string interning i s not guaranteed
>>> u"spant is u"spant # unicode interning not guaranteed
Still, the care you take should not discourage you from working with multilanguage strings, as

Unicode enables. It is really amazingly powerful to be able to do so. As one says of a talking dog:
It is not that he speaks so well, but that he speaks at all.

Built-In Unicode Functions/Methods

The Unicode string method u"".encode() and the built-in function unicode() are inverse
operations. The Unicode string method returns a plain string with the 8-bit bytes needed to
represent it (using the specified or default encoding). The built-in unicode() takes one of these
encoded strings and produces the Unicode object represented by the encoding. Specifically,
suppose we define the function:

>>> chk_eq = |l anmbda u, enc: u == uni code(u. encode(enc), enc)

The call chk_eq(u, enc) should return 1 for every value of u and enc—as long as enc is a valid
encoding name and u is capable of being represented in that encoding.

The set of encodings supported for both built-ins are listed below. Additional encodings may be
registered using the codecs module. Each encoding is indicated by the string that names it, and
the case of the string is normalized before comparison (case-insensitive naming of encodings):

ascii, us-ascii

Encode using 7-bit ASCII.

base64

Encode Unicode strings using the base64 4-to-3 encoding format.

latin-1, is0-8859-1

Encode using common European accent characters in high-bit values of 8-bit bytes. Latin-1

character'sord() values are identical to their Unicode codepoints.

quopri

Encode in quoted printable format.

rotl3

Not really a Unicode encoding, but "rotate 13 chars" is included with Python 2.2+ as an example
and convenience.

utf-7

Encode using variable byte-length encoding that is restricted to 7-bit ASCII octets. As with utf-8,
ASCII characters encode themselves.

utf-8

Encode using variable byte-length encoding that preserves ASCII value bytes.

utf-16

Encoding using 2/4 byte encoding. Include "endian" lead bytes (platform-specific selection).

utf-16-le

Encoding using 2/4 byte encoding. Assume "little endian,”" and do not prepend "endian" indicator
bytes.

utf-16-be

Encoding using 2/4 byte encoding. Assume "big endian," and do not prepend "endian" indicator
bytes.

unicode-escape

Encode using Python-style Unicode string constants (u"\uXXXxx").

raw-unicode-escape

Encode using Python-style Unicode raw string constants (ur"\uXxXxx").

The error modes for both built-ins are listed below. Errors in encoding transformations may be
handled in any of several ways:

strict

Raise UnicodeError for all decoding errors. Default handling.

ignore

Skip all invalid characters.

replace

Replace invalid characters with ? (string target) or u™\xfffd" (Unicode target).

u

.encode([enc [,errmode]])
.encode([enc [,errmode]])

Return an encoded string representation of a Unicode string (or of a plain string). The
representation is in the style of encoding enc (or system default). This string is suitable for
writing to a file or stream that other applications will treat as Unicode data. Examples show
several encodings:

>>> al ef = unichr(1488)
>>> s = ' A +al ef

>>> g

u' A\ u05do0’

>>> s, encode(' uni code-escape')
" A\ u05d0’

>>> s, encode(' utf-8")

" A\ xd7\ x90'

>>> s. encode(' utf-16")

"\ xf f\ xfeAl x00\ xdO\ x05
>>> s, encode(' utf-16-1e")

" Al x00\ xdO\ x05'
>>> s, encode(' ascii')
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
Uni codeError: ASCI |1 encoding error: ordinal not in range(128)
>>> s, encode(' ascii',"ignore')
DA

unicode(s [,enc [,errmode]])

Return a Unicode string object corresponding to the encoded string passed in the first argument
s. The string s might be a string that is read from another Unicode-aware application. The
representation is treated as conforming to the style of the encoding enc if the second argument is
specified, or system default otherwise (usually utf-8). Errors can be handled in the default strict
style or in a style specified in the third argument errmode.

unichr(cp)

Return a Unicode string object containing the single Unicode character whose integer codepoint is
passed in the argument cp.

codecs = Python Codec Registry, API, and helpers

Thecodecs module contains a lot of sophisticated functionality to get at the internals of Python's
Unicode handling. Most of those capabilities are at a lower level than programmers who are just
interested in text processing need to worry about. The documentation of this module, therefore,
will break slightly with the style of most of the documentation and present only two very useful
wrapper functions within the codecs module.

codecs.open(filename=...[mode='rb' [,encoding=...[,errors="strict' [,buffering=1]1]1)

This wrapper function provides a simple and direct means of opening a Unicode file, and treating
its contents directly as Unicode. In contrast, the contents of a file opened with the built-in open()
function are written and read as strings; to read/write Unicode data to such a file involves
multiple passes through u™".encode() and unicode() .

The first argument filename specifies the name of the file to access. If the second argument
mode is specified, the read/write mode can be selected. These arguments work identically to
those used by open() . If the third argument encoding is specified, this encoding will be used to
interpret the file (an incorrect encoding will probably result in a UnicodeError). Error handling
may be modified by specifying the fourth argument errors (the options are the same as with the
built-inunicode() function). A fifth argument buffering may be specified to use a specific buffer
size (on platforms that support this).

An example of usage clarifies the difference between codecs.open() and the built-in open() :

>>> jnmport codecs

>>> al ef = unichr(1488)

>>> open(' uni code_test',"wh'). wite((' A +al ef).encode(' utf-8"))
>>> open(' uni code_test').read() # Read as plain string

" Al xd7\ x90'

>>> # Now read directly as Unicode

>>> codecs. open(' uni code_test', encoding="utf-8").read()

u' Al u05do’

Data written back to a file opened with codecs.open() should likewise be Unicode data.

See Aiso: open() 15;

codecs.EncodedFile(file=..., data_encoding=...[,file_encoding=...[,errors='strict']])

This function allows an already opened file to be wrapped inside an "encoding translation™ layer.
The mode and buffering are taken from the underlying file. By specifying a second argument
data_encoding and a third argument file_encoding, it is possible to generate strings in one
encoding within an application, then write them directly into the appropriate file encoding. As
withcodecs.open() and unicode() , an error handling style may be specified with the fourth
argument errors.

The most likely purpose for codecs.EncodedFile() is where an application is likely to receive byte-
streams from multiple sources, encoded according to multiple Unicode encodings. By wrapping
file objects (or file-like objects) in an encoding translation layer, the strings coming in one
encoding can be transparently written to an output in the format the output expects. An example
clarifies:

>>> jnport codecs

>>> al ef = unichr(1488)

>>> open(' unicode_test',"wb').wite((' A +al ef).encode('utf-8"))
>>> fp = open('unicode_test', 'rb+")

>>> fp.read() # Plain string w two-byte UTF-8 char in it
" Al xd7\ x90°
>>> utfl1l6_witer = codecs. EncodedFil e(fp, utf-16"',"utf-8")

>>> ascii_witer codecs. EncodedFi l e(fp,'ascii', ' utf-8")
>>> utfl6_witer.tell () # W apper keeps sane current position
3

>>> s = al ef.encode(' utf-16")

>>> s # Plain string as UTF-16 encodi ng
"\ xf f\xfe\xdO\ x05'

>>> utfl6_ witer.wite(s)

>>> ascii_witer.wite(' XYZ")

>>> fp.close() # File should be UTF-8 encoded
>>> open(' uni code_test').read()
" A\ xd7\ x90\ xd7\ x90XYZ

See Atso: codecs.open() 189;

unicodedata = Database of Unicode characters

The module unicodedata is a database of Unicode character entities. Most of the functions in
unicodedata take as an argument one Unicode character and return some information about the
character contained in a plain (non-Unicode) string. The function of unicodedata is essentially
informational, rather than transformational. Of course, an application might make decisions
about the transformations performed based on the information returned by unicodedata . The
short utility below provides all the information available for any Unicode codepoint:

unichr_info.py

Return all the information [unicodedata] has

about the single unicode character whose codepoi nt
is specified as a command-1ine argunent.

Arg may be any expression evaluating to an integer
from uni codedata i nport *

i mport sys

char = unichr(eval (sys.argv[1]))

print 'bidirectional', bidirectional (char)
print 'category ', category(char)

print 'conbining ', conbi ni ng(char)

print 'decinal ', decimal (char, 0)

print 'deconposition', deconposition(char)
print 'digit ", digit(char, 0)

print '"mrrored ", mrrored(char)

print 'namne ', name(char,' NOT DEFI NED)
print 'nuneric ", nuneric(char,0)

try: print 'lookup ", '"lookup(nane(char))’

except: print "Cannot | ookup"
The usage of unichr_info.py is illustrated below by the runs with two possible arguments:

% pyt hon uni chr_info.py 1488
bi directional R

cat egory Lo

comnbi ni ng 0

deci nal 0

deconposition

digit 0

mrrored 0

nane HEBREW LETTER ALEF
nuneri c 0

| ookup u' \u05d0o

% pyt hon uni chr _info.py ord('1")
bi di recti onal EN

cat egory Nd

conbi ni ng 0

deci nal 1
deconposition

digit 1
mrrored 0

name DA T ONE
nuneric 1.0

| ookup u' 1

For additional information on current Unicode character codepoints and attributes, consult:

<http://www.unicode.org/Public/UNIDATA/UnicodeData.html>

FUNCTIONS

unicodedata.bidirectional(unichr)

Return the bidirectional characteristic of the character specified in the argument unichr. Possible
values are AL, AN, B, BN, CS, EN, ES, ET, L, LRE, LRO, NSM, ON, PDF, R, RLE, RLO, S, and WS.
Consult the URL above for details on these. Particularly notable values are L (left-to-right), R
(right-to-left), and WS (whitespace).

unicodedata.category (unichr)

Return the category of the character specified in the argument unichr. Possible values are Cc, Cf,
Cn, LI, Lm, Lo, Lt, Lu, Mc, Me, Mn, Nd, NI, No, Pc, Pd, Pe, Pf, Pi, Po, Ps, Sc, Sk, Sm, So, ZI, Zp,
and Zs. The first (capital) letter indicates L (letter), M (mark), N (hnumber), P (punctuation), S
(symbol), Z (separator), or C (other). The second letter is generally mnemonic within the major
category of the first letter. Consult the URL above for details.

unicodedata.combining(unichr)

Return the numeric combining class of the character specified in the argument unichr. These
include values such as 218 (below left) or 210 (right attached). Consult the URL above for
details.

unicodedata.decimal(unichr [,default])

Return the numeric decimal value assigned to the character specified in the argument unichr. If
the second argument default is specified, return that if no value is assigned (otherwise raise
ValueError).

unicodedata.decomposition(unichr)

Return the decomposition mapping of the character specified in the argument unichr, or empty
string if none exists. Consult the URL above for details. An example shows that some characters
may be broken into component characters:

>>> from uni codedata i nport *

>>> name(uni chr (190))

" VULGAR FRACTI ON THREE QUARTERS'

>>> deconposi tion(uni chr(190))

"<fraction> 0033 2044 0034’

>>> name(uni chr (0x33)), nane(uni chr(0x2044)), nane(unichr(0x34))
("DIAT THREE' , ' FRACTION SLASH, 'DIG@ T FOUR)

unicodedata.digit(unichr [,default])

Return the numeric digit value assigned to the character specified in the argument unichr. If the
second argument default is specified, return that if no value is assigned (otherwise raise
ValueError).

unicodedata.lookup(name)

Return the Unicode character with the name specified in the first argument name. Matches must
be exact, and ValueError is raised if no match is found. For example:

>>> from uni codedata i nport *
>>> | ookup(' GREEK SMALL LETTER ETA')

u' \u03b7'

>>> | ookup(' ETA")

Traceback (nobst recent call last):
File "<stdin>", line 1, in ?

KeyError: undefined character nane

See ALso: unicodedata.name() 193;

unicodedata.mirrored(unichr)

Return 1 if the character specified in the argument unichr is a mirrored character in bidirection
text. Return O otherwise.

unicodedata.name(unichr)

Return the name of the character specified in the argument unichr. Names are in all caps and
have a regular form by descending category importance. Consult the URL above for details.

See Atso: unicodedata.lookup() 193;

unicodedata.numeric(unichr [,default])

Return the floating point numeric value assigned to the character specified in the argument
unichr. If the second argument default is specified, return that if no value is assigned (otherwise
raise ValueError).

4 Previous Mext ¥
Team-Fly - &
Top

- 4 Pravious Meaxt b
Team-Fly " 4

Text Processing in Python
H’ By David Mertz

____:...-q;..'.'," Table of Contents

| 5

Chapter 2. Basic String Operations

2.3 Solving Problems

2.3.1 Exercise: Many ways to take out the garbage

DISCUSSION

Recall, if you will, the dictum in "The Zen of Python" that "There should be one—and preferably
only one—obvious way to do it." As with most dictums, the real world sometimes fails our ideals.
Also as with most dictums, this is not necessarily such a bad thing.

A discussion on the newsgroup <comp.lang.python= in 2001 posed an apparently rather simple
problem. The immediate problem was that one might encounter telephone numbers with a variety
of dividers and delimiters inside them. For example, (123) 456-7890, 123-456-7890, or 123/456-
7890 might all represent the same telephone number, and all forms might be encountered in
textual data sources (such as ones entered by users of a free-form entry field. For purposes of this
problem, the canonical form of this number should be 1234567890.

The problem mentioned here can be generalized in some natural ways: Maybe we are interested in
only some of the characters within a longer text field (in this case, the digits), and the rest is
simply filler. So the general problem is how to extract the content out from the filler.

The first and "obvious" approach might be a procedural loop through the initial string. One version
of this approach might look like:

>>> s = ' (123)/456-7890'
>>> result = '
>>> for ¢ in s:
if cin '0123456789':
result = result + c
>>> result
' 1234567890"

This first approach works fine, but it might seem a bit bulky for what is, after all, basically a single
action. And it might also seem odd that you need to loop though character-by-character rather
than just transform the whole string.

One possibly simpler approach is to use a regular expression. For readers who have skipped to the
next chapter, or who know regular expressions already, this approach seems obvious:

>>> jnport re

>>> s = ' (123)/456-7890
>>> re.sub(r'\D, "', s)
' 1234567890'

The actual work done (excluding defining the initial string and importing the re module) is just one
short expression. Good enough, but one catch with regular expressions is that they are frequently
far slower than basic string operations. This makes no difference for the tiny example presented,
but for processing megabytes, it could start to matter.

Using a functional style of programming is one way to express the "filter" in question rather
tersely, and perhaps more efficiently. For example:

>>> g = '(123)/456- 7890
>>> filter(lanbda c:c.isdigit(), s)
' 1234567890

We also get something short, without needing to use regular expressions. Here is another
technique that utilizes string object methods and list comprehensions, and also pins some hopes
on the great efficiency of Python dictionaries:

>>> jsdigit ={'0:2,"1:1,"2":1,"3:1,"4":1,

e "5':1,'6':1,' 7 :1,'8 :1,"9" :1}. has_key
>>> " join([x for x ins if isdigit(x)])

' 1234567890"

QUESTIONS

1: Which content extraction technique seems most natural to you? Which would you prefer
to use? Explain why.

2: What intuitions do you have about the performance of these different techniques, if
applied to large data sets? Are there differences in comparative efficiency of techniques
between operating on one single large string input and operating on a large number of
small string inputs?

3: Construct a program to verify or refute your intuitions about performance of the
constructs.

4: Can you think of ways of combining these techniques to maximize efficiency? Are there
any other techniques available that might be even better (hint: think about what
string.translate() does)? Construct a faster technique, and demonstrate its efficiency.

5: Are there reasons other than raw processing speed to prefer some of these techniques
over others? Explain these reasons, if they exist.

2.3.2 Exercise: Making sure things are what they should be

DISCUSSION

The concept of a "digital signature"” was introduced in Section 2.2.4. As was mentioned, the Python
standard library does not include (directly) any support for digital signatures. One way to
characterize a digital signature is as some information that proves or verifies that some other
information really is what it purports to be. But this characterization actually applies to a broader
set of things than just digital signatures. In cryptology literature one is accustomed to talk about
the "threat model™ a crypto-system defends against. Let us look at a few.

Data may be altered by malicious tampering, but it may also be altered by packet loss, storage-
media errors, or by program errors. The threat of accidental damage to data is the easiest threat
to defend against. The standard technique is to use a hash of the correct data and send that also.
The receiver of the data can simply calculate the hash of the data herself—using the same
algorithm—and compare it with the hash sent. A very simple utility like the one below does this:

crc32.py

Cal cul ate CRC32 hash of input files or STDI N

Increnmental read for large input sources

Usage: python crc32.py [filel [file2 [...]]]
or: pyt hon crc32. py < STDI N

i mport binascii
i mport fileinput
filelist =[]
crc = binascii.crc32('")
for line in fileinput.input():
if fileinput.isfirstline():
if fileinput.isstdin():
filelist.append(' STDIN)
el se:
filelist.append(fileinput.filenanme())
crc = binascii.crc32(line,crc)
print "Files:", " ".join(filelist)
print 'CRC32:', crc

A slightly faster version could use zlib.adler32() instead of binascii.crc32 . The chance that a
randomly corrupted file would have the right CRC32 hash is approximately (2**-32)—unlikely
enough not to worry about most times.

A CRC32 hash, however, is far too weak to be used cryptographically. While random data error will
almost surely not create a chance hash collision, a malicious tamperer—Mallory, in crypto-
parlance—can find one relatively easily. Specifically, suppose the true message is M, Mallory can
find an M' such that CRC32(M) equals CRC32(M"). Moreover, even imposing the condition that M'
appears plausible as a message to the receiver does not make Mallory's tasks particularly difficult.

To thwart fraudulent messages, it is necessary to use a cryptographically strong hash, such as
SHA or MD5. Doing so is almost the same utility as above:

sha.py

Cal cul ate SHA hash of input files or STDI N
Usage: pyt hon sha.py [filel [file2 [...]]]
or: pyt hon sha. py < STDI N

i mport sha, fileinput, os, sys
filelist =[]

sha = sha. sha()

for line in fileinput.input():

if fileinput.isfirstline():
if fileinput.isstdin():
filelist.append(' STDI N)
el se:
filelist.append(fileinput.filenanme())
sha. updat e(line[:-1] +os.|i nesep) # sanme as binary read
sys.stderr.wite('Files: "+ ".join(filelist)+ \nSHA: ")
print sha. hexdi gest ()

An SHA or MD5 hash cannot be forged practically, but if our threat model includes a malicious
tamperer, we need to worry about whether the hash itself is authentic. Mallory, our tamperer, can
produce a false SHA hash that matches her false message. With CRC32 hashes, a very common
procedure is to attach the hash to the data message itself—for example, as the first or last line of
the data file, or within some wrapper lines. This is called an "in band" or "in channel” transmission.
One alternative is "out of band" or "off channel” transmission of cryptographic hashes. For
example, a set of cryptographic hashes matching data files could be placed on a Web page. Merely
transmitting the hash off channel does not guarantee security, but it does require Mallory to attack
both channels effectively.

By using encryption, it is possible to transmit a secured hash in channel. The key here is to
encrypt the hash and attach that encrypted version. If the hash is appended with some identifying
information before the encryption, that can be recovered to prove identity. Otherwise, one could
simply include both the hash and its encrypted version. For the encryption of the hash, an
asymmetrical encryption algorithm is ideal; however, with the Python standard library, the best we
can do is to use the (weak) symmetrical encryption in rotor. For example, we could use the utility
below:

hash_rotor.py

#! /usr/ bi n/ env pyt hon

Encrypt hash on STDI N using sys.argv[1l] as password
i nport rotor, sys, binasci

ci pher = rotor.newotor(sys.argv[1])

hexhash = sys.stdin.read()[:-1] # no newine

print hexhash

hash = bi nascii.unhexlify(hexhash)

sys.stderr.wite(' Encryption: ')

print binascii.hexlify(cipher.encrypt(hash))

The utilities could then be used like:

% cat mary.txt

Mary had a little | anb

% pyt hon sha. py mary.txt | hash_rotor.py nmypassword >> nary.txt
Files: mary.txt

SHA: Encrypti on:

% cat mary. txt

Mary had a little |anmb

c49bf 9a7840f 6c07ab00b164413d7958e0945941

63a9d3a2f 4493d957397178354f 21915ch36f 8f 8

The penultimate line of the file now has its SHA hash, and the last line has an encryption of the
hash. The password used will somehow need to be transmitted securely for the receiver to validate
the appended document (obviously, the whole system make more sense with longer and more
proprietary documents than in the example).

QUESTIONS

1: How would you wrap up the suggestions in the small utilities above into a more robust
and complete "digital_signatures.py" utility or module? What concerns would come into a
completed utility?

2: Why is CRC32 not suitable for cryptographic purposes? What sets SHA and MD5 apart
(you should not need to know the details of the algorithm for this answer)? Why is
uniformity of coverage of hash results important for any hash algorithm?

3: Explain in your own words why hashes serve to verify documents. If you were actually
the malicious attacker in the scenarios above, how would you go about interfering with
the crypto-systems outlined here? What lines of attack are left open by the system you
sketched out or programmed in (1)?

4: If messages are subject to corruptions, including accidental corruption, so are hashes.
The short length of hashes may make problems in them less likely, but not impossible.
How might you enhance the document verification systems above to detect corruption
within a hash itself? How might you allow more accurate targeting of corrupt versus
intact portions of a large document (it may be desirable to recover as much as possible
from a corrupt document)?

5: Advanced: The RSA public-key algorithm is actually quite simple; it just involves some
modulo exponentiation operations and some large primes. An explanation can be found,
among other places, at the author's Introduction to Cryptology Concepts I1:
<http://gnosis.cx/publish/programming/cryptology2.pdf>.

Try implementing an RSA public-key algorithm in Python, and use this to enrich the digital
signature system you developed above.

2.3.3 Exercise: Finding needles in haystacks (full-text indexing)

DISCUSSION

Many texts you deal with are loosely structured and prose-like, rather than composed of well-
ordered records. For documents of that sort, a very frequent question you want answered is,
"What is (or isn't) in the documents?"—at a more general level than the semantic richness you
might obtain by actually reading the documents. In particular, you often want to check a large
collection of documents to determine the (comparatively) small subset of them that are relevant to
a given area of interest.

A certain category of questions about document collections has nothing much to do with text
processing. For example, to locate all the files modified within a certain time period, and having a
certain file size, some basic use of the os.path module suffices. Below is a sample utility to do such
a search, which includes some typical argument parsing and help screens. The search itself is only
a few lines of code:

findfilel.py

Find files matching date and size
_Uusage = """
Usage:

python findfilel.py [-start=days_ago] [-end=days_ago]
[-smal |l =m n_size] [-]arge=max_size] [pattern]

Exanpl e:

python findfilel.py -start=10 -end=5 -smal | =1000 -I|arge=5000 *.t xt
i mport os.path
i mport tinme
i mport gl ob
i mport sys

def parseargs(args):
""" Somewhat flexible argunent parser for multiple platforns.

Switches can start with - or /, keywords can end with = or
No error checking for bad arguments is perfornmed, however

now = tine.tinme()
secs_in_day = 60*60*24

start =0 # start of epoch
end = tine.tinme() # right now
small =0 # enpty files

|l arge = sys.maxint # max file size
pat = '*' # match all

for arg in args:
if arg[0] in "-/":
i f arg[1l: 6] =="start': start
elif arg[1l:4]=="end : end
elif arg[l:6]=="small"': snall int(arg[7:])
elif arg[l:6]=="large': large int(arg[7:])
elif arg[1] in "h?' : print _usage

now (secs_in_day*int(arg[7:]))
now (secs_in_day*int(arg[5:]))

el se:
pat = arg
return (start,end,snall, | arge, pat)
if _nanme__ =="'"_min__":
if len(sys.argv) > 1:
(start,end,small, | arge, pat) = parseargs(sys.argv[1l:])

for fnane in glob.glob(pat):

i f not os.path.isfile(fname):
conti nue # don't check directories

nodti me = os. pat h. get mti ne(fnane)

size = o0s. path. getsi ze(fnane)

if small <= size <= large and start <= nodtine <= end:
print tinme.ctine(nodtine),' %8d ' ¥%i ze, f nane

el se: print _usage

What about searching for text inside files? The string.find() function is good for locating contents
quickly and could be used to search files for contents. But for large document collections, hits may
be common. To make sense of search results, ranking the results by number of hits can help. The
utility below performs a match-accuracy ranking (for brevity, without the argument parsing of
findfilel.py):

findfile2.py

Find files that contain a word
_usage = "Usage: python findfile.py word"
i mport os.path

i nport gl ob
i mport sys

if len(sys.argv) == 2:
search_word = sys.argv][1]
results =[]
for fname in glob.glob('*"):
if os.path.isfile(fnane): # don't check directories
text = open(fnane).read()
fsize = len(text)
hits = text.count(search_word)
density = (fsize > 0) and float(hits)/(fsize)
if density > O: # consi der when density==
results. append((density, fnanme))
results.sort ()
results.reverse()
print ' RANKI NG FI LENAME
print '------ e
for match in results:
print '%d ' % nt(match[0] *1000000), match[1]
el se:
print _usage

Variations on these are, of course, possible. But generally you could build pretty sophisticated
searches and rankings by adding new search options incrementally to findfile2.py. For example,
adding some regular expression options could give the utility capabilities similar to the grep utility.

The place where a word search program like the one above falls terribly short is in speed of
locating documents in very large document collections. Even something as fast, and well
optimized, as grep simply takes a while to search a lot of source text. Fortunately, it is possible to
shortcut this search time, as well as add some additional capabilities.

A technique for rapid searching is to perform a generic search just once (or periodically) and
create an index—i.e., database—of those generic search results. Performing a later search need
notreally search contents, but only check the abstracted and structured index of possible
searches. The utility indexer.py is a functional example of such a computed search index. The
most current version may be downloaded from the book's Web site <http://gnosis.cx/TPiP/>.

The utility indexer.py allows very rapid searching for the simultaneous occurrence of multiple
words within a file. For example, one might want to locate all the document files (or other text
sources, such as VARCHAR database fields) that contain the words Python, index, and search.
Supposing there are many thousands of candidate documents, searching them on an ad hoc basis
could be slow. But indexer.py creates a comparatively compact collection of persistent dictionaries
that provide answers to such inquiries.

The full source code to indexer.py is worth reading, but most of it deals with a variety of
persistence mechanisms and with an object-oriented programming (OOP) framework for reuse.
The underlying idea is simple, however. Create three dictionaries based on scanning a collection of
documents:

*| ndexer. fil ei ds: fileid --> fil enane
*| ndexer.files: filename --> (fileid, wordcount)
*| ndexer . wor ds: word --> {fileidl:occurs, fileid2:occurs, ...}

The essential mapping is *Indexer.words. For each word, what files does it occur in and how
often? The mappings *Indexer.fileids and *Indexer.files are ancillary. The first just allows shorter
numeric aliases to be used instead of long filenames in the *Indexer.words mapping (a
performance boost and storage saver). The second, *Indexer.files, also holds a total wordcount for

each file. This allows a ranking of the importance of different matches. The thought is that a
megabyte file with ten occurrences of Python is less focused on the topic of Python than is a
kilobyte file with the same ten occurrences.

Both generating and utilizing the mappings above is straightforward. To search multiple words,
one basically simply needs the intersection of the results of several values of the *Indexer.words
dictionary, one value for each word key. Generating the mappings involves incrementing counts in
the nested dictionary of *Indexer.words, but is not complicated.

QUESTIONS

1: One of the most significant—and surprisingly subtle—concerns in generating useful word
indexes is figuring out just what a "word" is. What considerations would you bring to
determine word identities? How might you handle capitalization? Punctuation?
Whitespace? How might you disallow binary strings that are not "real" words. Try
performing word-identification tests against real-world documents. How successful were
you?

2: Could other data structures be used to store word index information than those proposed
above? If other data structures are used, what efficiency (speed) advantages or
disadvantages do you expect to encounter? Are there other data structures that would
allow for additional search capabilities than the multiword search of indexer.py? If so,
what other indexed search capabilities would have the most practical benefit?

3: Consider adding integrity guarantees to index results. What if an index falls out of
synchronization with the underlying documents? How might you address referential
integrity? Hint: consider binascii.crc32, sha , and md5. What changes to the data
structures would be needed for integrity checks? Implement such an improvement.

4: The utility indexer.py has some ad hoc exclusions of nontextual files from inclusion in an
index, based simply on some file extensions. How might one perform accurate exclusion
of nontextual data? What does it mean for a document to contain text? Try writing a
utility istextual.py that will identify text and nontext real-world documents. Does it work
to your satisfaction?

5: Advanced: indexer.py implements several different persistence mechanisms. What other
mechanisms might you use from those implemented? Benchmark your mechanism. Does
it do better than SlicedZPickleIndexer (the best variant ncluded in both speed and
space)?

- 4 Pravious Meaxt b
Team-Fly T
Top

- 4 Pravious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Chapter 3. Regular Expressions

Regular expressions allow extremely valuable text processing techniques, but ones that
warrant careful explanation. Python's re module, in particular, allows numerous
enhancements to basic regular expressions (such as named backreferences, lookahead
assertions, backreference skipping, non-greedy quantifiers, and others). A solid introduction
to the subtleties of regular expressions is valuable to programmers engaged in text
processing tasks.

The prequel of this chapter contains a tutorial on regular expressions that allows a reader
unfamiliar with regular expressions to move quickly from simple to complex elements of
regular expression syntax. This tutorial is aimed primarily at beginners, but programmers
familiar with regular expressions in other programming tools can benefit from a quick read
of the tutorial, which explicates the particular regular expression dialect in Python.

It is important to note up-front that regular expressions, while very powerful, also have
limitations. In brief, regular expressions cannot match patterns that nest to arbitrary depths.
If that statement does not make sense, read Chapter 4, which discusses parsers—to a large
extent, parsing exists to address the limitations of regular expressions. In general, if you
have doubts about whether a regular expression is sufficient for your task, try to understand
the examples in Chapter 4, particularly the discussion of how you might spell a floating point
number.

Section 3.1 examines a number of text processing problems that are solved most naturally
using regular expressions. As in other chapters, the solutions presented to problems can
generally be adopted directly as little utilities for performing tasks. However, as elsewhere,
the larger goal in presenting problems and solutions is to address a style of thinking about a
wider class of problems than those whose solutions are presented directly in this book.
Readers who are interested in a range of ready utilities and modules will probably want to
check additional resources on the Web, such as the Vaults of Parnassus
<http://www.vex.net/parnassus/> and the Python Cookbook
<http://aspn.activestate.com/ASPN/Python/Cookbook/>.

Section 3.2 is a "reference with commentary" on the Python standard library modules for
doing regular expression tasks. Several utility modules and backward-compatibility regular
expression engines are available, but for most readers, the only important module will be re
itself. The discussions interspersed with each module try to give some guidance on why you
would want to use a given module or function, and the reference documentation tries to
contain more examples of actual typical usage than does a plain reference. In many cases,
the examples and discussion of individual functions address common and productive design
patterns in Python. The cross-references are intended to contextualize a given function (or
other thing) in terms of related ones (and to help a reader decide which is right for her). The
actual listing of functions, constants, classes, and the like are in alphabetical order within
each category.

4 Previous MNext b
Team-Fly x
Top

4 Previous Next b

o
Team-Fly o

Text Processing in Python
By David Mertz

Table of Contents

Chapter 3. Regular Expressions

3.1 A Regular Expression Tutorial

Some people, when confronted with a problem, think "I know, I'll use regular expressions."
Now they have two problems.

—Jamie Zawinski, <alt.religion.emacs> (08/12/1997)

3.1.1 Just What Is a Regular Expression, Anyway?

Many readers will have some background with regular expressions, but some will not have any.
Those with experience using regular expressions in other languages (or in Python) can probably
skip this tutorial section. But readers new to regular expressions (affectionately called regexes by
users) should read this section; even some with experience can benefit from a refresher.

A regular expression is a compact way of describing complex patterns in texts. You can use them
to search for patterns and, once found, to modify the patterns in complex ways. They can also be
used to launch programmatic actions that depend on patterns.

Jamie Zawinski's tongue-in-cheek comment in the epigram is worth thinking about. Regular
expressions are amazingly powerful and deeply expressive. That is the very reason that writing
them is just as error-prone as writing any other complex programming code. It is always better
to solve a genuinely simple problem in a simple way; when you go beyond simple, think about
regular expressions.

A large number of tools other than Python incorporate regular expressions as part of their
functionality. Unix-oriented command-line tools like grep, sed, and awk are mostly wrappers for
regular expression processing. Many text editors allow search and/or replacement based on
regular expressions. Many programming languages, especially other scripting languages such as
Perl and TCL, build regular expressions into the heart of the language. Even most command-line
shells, such as Bash or the Windows-console, allow restricted regular expressions as part of their
command syntax.

There are some variations in regular expression syntax between different tools that use them,
but for the most part regular expressions are a "little language" that gets embedded inside bigger
languages like Python. The examples in this tutorial section (and the documentation in the rest of
the chapter) will focus on Python syntax, but most of this chapter transfers easily to working with
other programming languages and tools.

As with most of this book, examples will be illustrated by use of Python interactive shell sessions
that readers can type themselves, so that they can play with variations on the examples.
However, the re module has little reason to include a function that simply illustrates matches in
the shell. Therefore, the availability of the small wrapper program below is implied in the

examples:

re_show.py

inmport re
def re_show(pat, s):
print re.conpile(pat, re.M.sub("{\g<0>}", s.rstrip()),"\n

s ="""Mary had a little lanmb
And everywhere that Mary
went, the | anb was sure

to go' "'’

Place the code in an external module and import it. Those new to regular expressions need not
worry about what the above function does for now. It is enough to know that the first argument
to re_show() will be a regular expression pattern, and the second argument will be a string to be
matched against. The matches will treat each line of the string as a separate pattern for purposes
of matching beginnings and ends of lines. The illustrated matches will be whatever is contained
between curly braces.

3.1.2 Matching Patterns in Text: The Basics

The very simplest pattern matched by a regular expression is a literal character or a sequence of
literal characters. Anything in the target text that consists of exactly those characters in exactly
the order listed will match. A lowercase character is not identical with its uppercase version, and
vice versa. A space in a regular expression, by the way, matches a literal space in the target (this
is unlike most programming languages or command-line tools, where a variable number of
spaces separate keywords).

>>> fromre_show i nport re_show, s
>>> re_show('a', s)

Ma}ry h{a}d {a} little I{a}nb.
And everywhere th{a}t Ma}ry

went, the | {a}nb W a}s sure

to go.

>>> re_show(' Mary', s)
{Mary} had a little | anb.
And everywhere that {Mary}
went, the |anb was sure
to go.

Q s+ Q s o+ g 4 Q re 3 L+ B L * B L = e L o= Qe s QD

A number of characters have special meanings to regular expressions. A symbol with a special
meaning can be matched, but to do so it must be prefixed with the backslash character (this
includes the backslash character itself: To match one backslash in the target, the regular
expression should include \\). In Python, a special way of quoting a string is available that wiill
not perform string interpolation. Since regular expressions use many of the same backslash-
prefixed codes as do Python strings, it is usually easier to compose regular expression strings by
quoting them as "raw strings" with an initial "r".

>>> fromre_show i nport re_show
>>> s = '''Special characters nust be escaped.*'"’
>>> re_show(r'.*', s)

{Speci al characters nust be escaped. *}

>>> re_show(r'\.*" s)
Speci al characters nust be escaped{.*}

>>> re_show("\\\\'", r'Python \ escaped \ pattern')
Pyt hon {\} escaped {\} pattern

>>> re_show(r'\\', r'Regex \ escaped \ pattern')
Regex {\} escaped {\} pattern

Q ¢ Q=+ D o+ O osd Q ke Lo+ Qe O o+e Q0 s QD o+ L o+ Q fs O o++ D

Two special characters are used to mark the beginning and end of a line: caret ("™") and dollar
sign ("$"). To match a caret or dollar sign as a literal character, it must be escaped (i.e., precede
it by a backslash "\").

An interesting thing about the caret and dollar sign is that they match zero-width patterns. That
is, the length of the string matched by a caret or dollar sign by itself is zero (but the rest of the
regular expression can still depend on the zero-width match). Many regular expression tools
provide another zero-width pattern for word-boundary ("\b"). Words might be divided by
whitespace like spaces, tabs, newlines, or other characters like nulls; the word-boundary pattern
matches the actual point where a word starts or ends, not the particular whitespace characters.

>>> fromre_show i nport re_show, s
>>> re_show(r' *Mary', s)

{Mary} had a little lanb

And everywhere that Mary

went, the |anb was sure

to go

>>> re_show(r' Mary$', s)
Mary had a little |anb
And everywhere that {Mary}
went, the | anb was sure
to go

>>> re_show(r'$',"'Mary had a little lanb')
Mary had a little |anmb{}

O ose 0 e D oae 0 e 03 e O s O e D oee @ s 03 oer 0 s @ ss 3 e @

In regular expressions, a period can stand for any character. Normally, the newline character is
not included, but optional switches can force inclusion of the newline character also (see of re
module functions). Using a period in a pattern is a way of requiring that "something" occurs here,
without having to decide what.

Readers who are familiar with DOS command-line wildcards will know the question mark as filling
the role of "some character” in command masks. But in regular expressions, the question mark
has a different meaning, and the period is used as a wildcard.

>>> fromre_show i nport re_show, s
>>> re_show(r'.a', s)

{Ma}ry {ha}d{ a} little {la}nb

And everywhere t{ha}t {Ma}ry

went, the {la}nb {wa}s sure

to go

A regular expression can have literal characters in it and also zero-width positional patterns. Each
literal character or positional pattern is an atom in a regular expression. One may also group

several atoms together into a small regular expression that is part of a larger regular expression.
One might be inclined to call such a grouping a "molecule,” but normally it is also called an atom.

In older Unix-oriented tools like grep, subexpressions must be grouped with escaped
parentheses; for example, \ (Mary\). In Python (as with most more recent tools), grouping is
done with bare parentheses, but matching a literal parenthesis requires escaping it in the
pattern.

>>> fromre_show i nport re_show, s
>>> re_show(r' (Mary)()(had)', s)
{Mary had} a little lanb

And everywhere that Mary

went, the |anb was sure

to go

>>> re_showm(r'\(.*\)", "spam (and eggs)"')
spam {(and eggs)}

Rather than name only a single character, a pattern in a regular expression can match any of a
set of characters.

A set of characters can be given as a simple list inside square brackets; for example, [aeiou] will
match any single lowercase vowel. For letter or number ranges it may also have the first and last
letter of a range, with a dash in the middle; for example, [A-Ma-m] will match any lowercase or
uppercase letter in the first half of the alphabet.

Python (as with many tools) provides escape-style shortcuts to the most commonly used
character class, such as \s for a whitespace character and \d for a digit. One could always define
these character classes with square brackets, but the shortcuts can make regular expressions
more compact and more readable.

>>> fromre_show i nport re_show, s
>>> re_show(r'[a-z]a', s)

Mary {ha}d a little {la}nb

And everywhere t{ha}t Mary

went, the {la}nb {wa}s sure

to go

The caret symbol can actually have two different meanings in regular expressions. Most of the
time, it means to match the zero-length pattern for line beginnings. But if it is used at the
beginning of a character class, it reverses the meaning of the character class. Everything not
included in the listed character set is matched.

>>> fromre_show inport re_show, s
>>> re_show(r'["a-z]a', s)

{Ma}ry had{ a} little | anb

And everywhere that {Ma}ry

went, the |lanmb was sure

to go

Q ¢ Q e D orr G 24 Q re {} vr 3 e D o+ e te L} =0 Qe O o+

Using character classes is a way of indicating that either one thing or another thing can occur in a
particular spot. But what if you want to specify that either of two whole subexpressions occur in a
position in the regular expression? For that, you use the alternation operator, the vertical bar
'I'Y. This is the symbol that is also used to indicate a pipe in Unix/DOS shells and is sometimes
called the pipe character.

The pipe character in a regular expression indicates an alternation between everything in the
group enclosing it. What this means is that even if there are several groups to the left and right
of a pipe character, the alternation greedily asks for everything on both sides. To select the scope
of the alternation, you must define a group that encompasses the patterns that may match. The
example illustrates this:

>>> fromre_show i nport re_show

>>> s2 = 'The pet store sold cats, dogs, and birds.'
>>> re_show(r' cat|dog|bird , s2)

The pet store sold {cat}s, {dog}s, and {bird}s.

>>> s3 = '=first first= # =second second= # =first= # =second='
>>> re_show(r' =first|second=", s3)

{=first} first=# =second {second=} # {=first}= # ={second=}
>>> re_show(r' (=) (first)| (second) (=)', s3)

{=first} first= # =second {second=} # {=first}= # ={second=}

>>> re_show(r' =(first|second)=", s3)
=first first= # =second second= # {=first=} # {=second=}

Q s+ Q s o+ g 4 Q re 3 L+ B L * B L = e L o= Qe s QD

One of the most powerful and common things you can do with regular expressions is to specify
how many times an atom occurs in a complete regular expression. Sometimes you want to
specify something about the occurrence of a single character, but very often you are interested in
specifying the occurrence of a character class or a grouped subexpression.

There is only one quantifier included with "basic" regular expression syntax, the asterisk ("*"); in
English this has the meaning "some or none" or "zero or more." If you want to specify that any
number of an atom may occur as part of a pattern, follow the atom by an asterisk.

Without quantifiers, grouping expressions doesn't really serve as much purpose, but once we can

add a quantifier to a subexpression we can say something about the occurrence of the
subexpression as a whole. Take a look at the example:

>>> fromre_show i nport re_show

>>> s = '"'""Match with zero in the mddl e: @@
Subexpressi on occurs, but...: @! =ABC@
Lots of occurrences: @*! ——' ——' ==l ==l =@
Must repeat entire pattern: @!==!=l==1=@""

>>> re_showm(r' @=!=)*@, s)

Match with zero in the mddle: {@®
Subexpressi on occurs, but...: @! =ABC@
Lots of occurrences: {@! ==!==l==l==I=
Mist repeat entire pattern: @!==!=l==1=@

3.1.3 Matching Patterns in Text: Intermediate

In a certain way, the lack of any quantifier symbol after an atom quantifies the atom anyway: It
says the atom occurs exactly once. Extended regular expressions add a few other useful numbers
to "once exactly" and "zero or more times." The plus sign ('+") means "one or more times" and
the question mark ("?") means "zero or one times." These quantifiers are by far the most
common enumerations you wind up using.

If you think about it, you can see that the extended regular expressions do not actually let you
"say" anything the basic ones do not. They just let you say it in a shorter and more readable
way. For example, (ABC)+ is equivalent to (ABC)(ABC)*, and X(ABC)?Y is equivalent to
XABCY|XY. If the atoms being quantified are themselves complicated grouped subexpressions,
the question mark and plus sign can make things a lot shorter.

>>> fromre_show i nport re_show
>>> s = """ AAAD
ABBBBCD
BBBCD
ABCCD
... AAABBBC "'
>>> re_show(r' AtB*C?D , s)
{ AAAD}
{ ABBBBCD}
BBBCD
ABCCD
AAABBBC

D o+ O e D o+ O s QD e Lo QD e D o+e O s @D v L s+ Qe D o+ D

Using extended regular expressions, you can specify arbitrary pattern occurrence counts using a
more verbose syntax than the question mark, plus sign, and asterisk quantifiers. The curly
braces ("{" and "}") can surround a precise count of how many occurrences you are looking for.

The most general form of the curly-brace quantification uses two range arguments (the first
must be no larger than the second, and both must be non-negative integers). The occurrence
count is specified this way to fall between the minimum and maximum indicated (inclusive). As
shorthand, either argument may be left empty: If so, the minimum/maximum is specified as
zero/infinity, respectively. If only one argument is used (with no comma in there), exactly that
number of occurrences are matched.

>>> fromre_show i nport re_show
>>> s?2 = '''aaaaa bbbbb ccccc
aaa bbb ccc
... aaaaa bbbbbbbbbbbbbb ccccc'
>>> re_show(r' a{5} b{,6} c{4,8}', s2)
{aaaaa bbbbb ccccc}
aaa bbb ccc
aaaaa bbbbbbbbbbbbbb ccccc

>>> re_show(r'a+ b{3,} c?', s2)
{aaaaa bbbbb c}cccc

{aaa bbb c}cc

{aaaaa bbbbbbbbbbbbbb c}cccc

>>> re_show(r' a{5} b{6,} c{4,8}', s2)
aaaaa bbbbb ccccc

aaa bbb ccc

{aaaaa bbbbbbbbbbbbbb ccccc}

Q s+ Q es [o+ F s Q ke) ie Qe [owr () =3 L3 e 0} =+ Q) e L} v

One powerful option in creating search patterns is specifying that a subexpression that was
matched earlier in a regular expression is matched again later in the expression. We do this using
backreferences. Backreferences are named by the numbers 1 through 99, preceded by the
backslash/escape character when used in this manner. These backreferences refer to each
successive group in the match pattern, as in (one) (two) (three) \1\2\3. Each numbered
backreference refers to the group that, in this example, has the word corresponding to the
number.

It is important to note something the example illustrates. What gets matched by a backreference
is the same literal string matched the first time, even if the pattern that matched the string could
have matched other strings. Simply repeating the same grouped subexpression later in the
regular expression does not match the same targets as using a backreference (but you have to
decide what it is you actually want to match in either case).

Backreferences refer back to whatever occurred in the previous grouped expressions, in the
order those grouped expressions occurred. Up to 99 numbered backreferences may be used.
However, Python also allows naming backreferences, which can make it much clearer what the
backreferences are pointing to. The initial pattern group must begin with ?P<name>, and the
corresponding backreference must contain (?P=name).

>>> fromre_show i nport re_show

>>> s2 = "'""'"]Jkl abc xyz
j kI xyz abc
j kI abc abc
j kI xyz xyz
>>> re_show(r' (abc| xyz) \1', s2)
j kI abc xyz
j kI xyz abc
j kI {abc abc}
j kI {xyz xyz}
>>> re_show(r' (abc| xyz) (abc|xyz)', s2)
] kI {abc xyz}
] kI {xyz abc}
j kI {abc abc}
j kI {xyz xyz}
>>> re_show(r' (?P<l| et 3>abc| xyz) (?P=let3)', s2)
j kI abc xyz
j kI xyz abc
j kI {abc abc}
j kI {xyz xyz}

Q 9+ Q s [o+ F 54 Q ke) e Qe s [o4r) LRCI o e L} =+ Q LEETEN o BN & |
Quantifiers in regular expressions are greedy. That is, they match as much as they possibly can.

Probably the easiest mistake to make in composing regular expressions is to match too much.
When you use a quantifier, you want it to match everything (of the right sort) up to the point
where you want to finish your match. But when using the *, +, or numeric quantifiers, it is easy
to forget that the last bit you are looking for might occur later in a line than the one you are
interested in.

>>> fromre_show i nport re_show
>>>s2 ="'"'""-- | want to match the words that start

-- with "th' and end with 's'.
this
t hus
thistle
this |line matches too much
>>> re_showm(r'th.*s', s2)
-- 1 want to match {the words that s}tart
-- wi{th "th" and end with 's}".
{this}
{t hus}
{this}tle
{this line matches} too nuch

Q s+ Q s O o+ O 4 Q e 3 e D e D o+ 0 o=a e L o= Qe o+ D

Often if you find that regular expressions are matching too much, a useful procedure is to
reformulate the problem in your mind. Rather than thinking about, "What am | trying to match
later in the expression?" ask yourself, "What do | need to avoid matching in the next part?"” This
often leads to more parsimonious pattern matches. Often the way to avoid a pattern is to use the
complement operator and a character class. Look at the example, and think about how it works.

The trick here is that there are two different ways of formulating almost the same sequence.
Either you can think you want to keep matching until you get to XYZ, or you can think you want
to keep matching unless you get to XYZ. These are subtly different.

For people who have thought about basic probability, the same pattern occurs. The chance of
1
rolling a 6 on a die in one roll is /%, What is the chance of rolling a 6 in six rolls? A naive

1 1 1 1 1 1
calculation puts the odds at Jix Jog fog Jog o4 J'f”, or 100 percent. This is wrong, of course
(after all, the chance after twelve rolls isn't 200 percent). The correct calculation is, "How do |
avoid rolling a 6 for six rolls?" (i.e., /6 x 16 x 14 x /6 x /6 x /6, or about 33 percent). The
chance of getting a 6 is the same chance as not avoiding it (or about 66 percent). In fact, if you

imagine transcribing a series of die rolls, you could apply a regular expression to the written
record, and similar thinking applies.

>>> fromre_show i nport re_show

>>>s2 ='"'"'"-- | want to match the words that start
-- with "th" and end with 's'.
this
t hus
thistle

this |ine matches too nuch
>>> re_show(r'th[”~s]*.', s2)
-- | want to match {the words} {that s}tart
-- wi{th "th" and end with '"s}".
{this}
{t hus}
{this}tle
{this} line matches too nuch

Q ¢ Q=+ D o+ O osd Q ke Lo+ Qe O o+e Q0 s QD o+ L o+ Q fs O o++ D

Not all tools that use regular expressions allow you to modify target strings. Some simply locate
the matched pattern; the mostly widely used regular expression tool is probably grep, which is a
tool for searching only. Text editors, for example, may or may not allow replacement in their

regular expression search facility.

Python, being a general programming language, allows sophisticated replacement patterns to
accompany matches. Since Python strings are immutable, re functions do not modify string
objects in place, but instead return the modified versions. But as with functions in the string
module, one can always rebind a particular variable to the new string object that results from re
modification.

Replacement examples in this tutorial will call a function re_new() that is a wrapper for the
module function re.sub () . Original strings will be defined above the call, and the modified results
will appear below the call and with the same style of additional markup of changed areas as
re_show() used. Be careful to notice that the curly braces in the results displayed will not be
returned by standard re functions, but are only added here for emphasis. Simply import the
following function in the examples below:

re_new.py

i mport re
def re_new(pat, rep, s):
print re.sub(pat, '{ +rep+'}', s)

Let us take a look at a couple of modification examples that build on what we have already
covered. This one simply substitutes some literal text for some other literal text. Notice that
string.replace() can achieve the same result and will be faster in doing so.

>>> fromre_new i nport re_new

>>> s = 'The zoo had wi|ld dogs, bobcats, lions, and other wild cats.'
>>>re_new('cat','dog',s)

The zoo had wild dogs, bob{dog}s, lions, and other wild {dog}s.

Most of the time, if you are using regular expressions to modify a target text, you will want to
match more general patterns than just literal strings. Whatever is matched is what gets replaced
(even if it is several different strings in the target):

>>> fromre_new inport re_new

>>> s = 'The zoo had wi |l d dogs, bobcats, lions, and other wild cats.'
>>> re_new(' cat|dog', ' snake',s)
The zoo had wild {snake}s, bob{snake}s, lions, and other wld {snake}s.

>>> re_newW(r'[a-z]+i[a-z]*',' ' nice',s)
The zoo had {nice} dogs, bobcats, {nice}, and other {nice} cats.

It is nice to be able to insert a fixed string everywhere a pattern occurs in a target text. But
frankly, doing that is not very context sensitive. A lot of times, we do not want just to insert fixed
strings, but rather to insert something that bears much more relation to the matched patterns.
Fortunately, backreferences come to our rescue here. One can use backreferences in the pattern
matches themselves, but it is even more useful to be able to use them in replacement patterns.
By using replacement backreferences, one can pick and choose from the matched patterns to use
just the parts of interest.

As well as backreferencing, the examples below illustrate the importance of whitespace in regular

expressions. In most programming code, whitespace is merely aesthetic. But the examples differ
solely in an extra space within the arguments to the second call—and the return value is
importantly different.

>>> fromre_new i nport re_new

>>> s = ' A37 B4 Cl107 D54112 E1103 XXX

>>>re newr' ([A-Z])([0-9]{2,4})",r'\2:\1",5s)
{37: A} B4 {107:C {5411:D}2 {1103: E} XXX

>>>re newmr' ([A-Z])([0-9]{2,4}) ',r'\2:\1",5s)
{37: A }B4 {107: C }D54112 {1103: E } XXX

Q s+ Q es [o+ F s Q ke) ie Qe [owr () =3 L3 e 0} =+ Q) e L} v

This tutorial has already warned about the danger of matching too much with regular expression
patterns. But the danger is so much more serious when one does modifications, that it is worth
repeating. If you replace a pattern that matches a larger string than you thought of when you
composed the pattern, you have potentially deleted some important data from your target.

It is always a good idea to try out regular expressions on diverse target data that is
representative of production usage. Make sure you are matching what you think you are
matching. A stray quantifier or wildcard can make a surprisingly wide variety of texts match what
you thought was a specific pattern. And sometimes you just have to stare at your pattern for a
while, or find another set of eyes, to figure out what is really going on even after you see what
matches. Familiarity might breed contempt, but it also instills competence.

3.1.4 Advanced Regular Expression Extensions

Some very useful enhancements to basic regular expressions are included with Python (and with
many other tools). Many of these do not strictly increase the power of Python's regular
expressions, but they do manage to make expressing them far more concise and clear.

Earlier in the tutorial, the problems of matching too much were discussed, and some
workarounds were suggested. Python is nice enough to make this easier by providing optional
"non-greedy" quantifiers. These quantifiers grab as little as possible while still matching whatever
comes next in the pattern (instead of as much as possible).

Non-greedy quantifiers have the same syntax as regular greedy ones, except with the quantifier

followed by a question mark. For example, a non-greedy pattern might look like: A[A-Z] *?B. In

English, this means "match an A, followed by only as many capital letters as are needed to find a
B."

One little thing to look out for is the fact that the pattern [A-Z]*?. will always match zero capital
letters. No longer matches are ever needed to find the following "any character” pattern. If you
use non-greedy quantifiers, watch out for matching too little, which is a symmetric danger.

>>> fromre_show i nport re_show

>>> s ="'"""-- | want to match the words that start
-- with "th' and end with 's'.
this line matches just right

... this # thus # thistle''

>>> re_show(r'th.*s',s)

-- | want to match {the words that s}tart

-- wi{th "th" and end with 's}"'.

{this line matches jus}t right

{this # thus # this}tle

>>> re_show(r'th.*?s',s)

-- | want to match {the words} {that s}tart
-- wi{th "th" and end with 's}".

{this} line matches just right

{this} # {thus} # {this}tle

>>> re_show(r'th.*?s ',s)

-- | want to match {the words }that start
-- with "th' and end with 's'

{this }line matches just right

{this }# {thus }# thistle

Q s+ Q s o+ g 4 Q re 3 L+ B L * B L = e L o= Qe s QD

Modifiers can be used in regular expressions or as arguments to many of the functions in re. A
modifier affects, in one way or another, the interpretation of a regular expression pattern. A
modifier, unlike an atom, is global to the particular match—in itself, a modifier doesn't match
anything, it instead constrains or directs what the atoms match.

When used directly within a regular expression pattern, one or more modifiers begin the whole
pattern, as in (?Limsux). For example, to match the word cat without regard to the case of the
letters, one could use (?i)cat. The same modifiers may be passed in as the last argument as
bitmasks (i.e., with a | between each modifier), but only to some functions in the re module, not
to all. For example, the two calls below are equivalent:

>>> jnport re

>>> re.search(r' (?Li)cat',"' The Cat in the Hat').start()

4

>>> re.search(r'cat','The Cat in the Hat',re.L|re.l).start()
4

However, some function calls in re have no argument for modifiers. In such cases, you should
either use the modifier prefix pseudo-group or precompile the regular expression rather than use
it in string form. For example:

>>> jnport re
>>> re.split(r' (?i)th" ,"Brillig and The Slithy Toves')

["Brilligand ', "e Sli', 'y Toves']
>>> re.split(re.conpile("th" ,re.l),"'Brillig and the Slithy Toves')
["Brilligand ', "e Sli', 'y Toves']

See the re module documentation for details on which functions take which arguments.
Q s+ Q oo [s+ O 54 Q re {} e 3 e D o+ Qs Q3 e L} o= Qe 3 o+

The modifiers listed below are used in re expressions. Users of other regular expression tools
may be accustomed to a g option for "global" matching. These other tools take a line of text as
their default unit, and "global” means to match multiple lines. Python takes the actual passed
string as its unit, so "global"” is simply the default. To operate on a single line, either the regular
expressions have to be tailored to look for appropriate begin-line and end-line characters, or the
strings being operated on should be split first using string.split() or other means.

L (re.L) - Locale custom zation of \w, \W \b, \B
i (re.l) - Case-insensitive match

m(re.M - Treat string as nultiple |ines

s (re.S) - Treat string as single line

u (re.U - Unicode custom zation of \w, \W \b, \B

%))

* ok * * F

* x (re.X) - Enable verbose regul ar expressions

The single-line option ("s") allows the wildcard to match a newline character (it won't otherwise).
The multiple-line option ("m") causes "~" and "$" to match the beginning and end of each line in
the target, not just the begin/end of the target as a whole (the default). The insensitive option
("i"") ignores differences between the case of letters. The Locale and Unicode options ("L" and
"u") give different interpretations to the word-boundary ("\b") and alphanumeric ("\w") escaped
patterns—and their inverse forms ("\B" and "\W").

The verbose option ("x™) is somewhat different from the others. Verbose regular expressions may
contain nonsignificant whitespace and inline comments. In a sense, this is also just a different
interpretation of regular expression patterns, but it allows you to produce far more easily
readable complex patterns. Some examples follow in the sections below.

Q s+ Q s O o+ O 4 Q e 3 e D e D o+ 0 o=a e L o= Qe o+ D

Let's take a look first at how case-insensitive and single-line options change the match behavior.

>>> fromre_show i nport re_show

>>> s = "''MAINE # Massachusetts # Col orado #
m ssi ssippi # Mssouri # Mnnesota #' "'
>>> re_showm(r'M*[ise] ', s)

{MAI NE # Massachusetts }# Col orado #
m ssi ssippi # {Mssouri }# Mnnesota #

>>> re_show(r' (?i)M*[ise] ', s)
{MAI NE # Massachusetts }# Col orado #
{m ssissippi # Mssouri }# Mnnesota #

>>> re_show(r' (?si)M*[ise] ', s)
{MAI NE # Massachusetts # Col orado #
m ssi ssippi # Mssouri }# M nnesota #

Looking back to the definition of re_show(), we can see it was defined to explicitly use the
multiline option. So patterns displayed with re_show() will always be multiline. Let us look at a
couple of examples that use re.findall() instead.

>>> fromre_show i nport re_show

>>> s = "'"'MAINE # Massachusetts # Col orado #
... mssissippi # Mssouri # M nnesota # '’
>>> re_show(r' (?2im" "M *[ise] ', s)

{MAI NE # Massachusetts }# Col orado #
{m ssissippi # Mssouri }# Mnnesota #

>>> jnport re

>>> re.findall (r' (?2i)"M*[ise] ', s)

[' MAI NE # Massachusetts ']

>>> re.findall (r' (?2im~ "M *[ise] ', S)

[' MAI NE # Massachusetts ', 'mississippi # Mssouri ']

[+ TR TN + BT » BRI + BT + SRR+ AN IR + RSN BERECUN + RN = BRI+ BRNCIPRN = BRI+

Matching word characters and word boundaries depends on exactly what gets counted as being
alphanumeric. Character codepages for letters outside the (US-English) ASCII range differ among
national alphabets. Python versions are configured to a particular locale, and regular expressions
can optionally use the current one to match words.

Of greater long-term significance is the re module's ability (after Python 2.0) to look at the
Unicode categories of characters, and decide whether a character is alphabetic based on that
category. Locale settings work OK for European diacritics, but for non-Roman sets, Unicode is
clearer and less error prone. The "u" modifier controls whether Unicode alphabetic characters are
recognized or merely ASCII ones:

>>> jnport re

>>> al ef, omega = unichr(1488), unichr(969)
>>> u = alef + Ab Cd "'+onegat' Xy Z
>>> u, len(u.split()), len(u)
(u'\u05d0 A b Cd\u03c9 Xy Z', 9, 17)

>>> ' join(re.findall (ur'\b\wb', u))
uUAb:CdXy:Z
>>> "' join(re.findall (ur' (?2u)\b\wb', u))

u' \u05d0: A: b: C. d:\u03c9: X y: Z

O e+ @ ss Doer D s 0 s o+ 3 ss Doee @ ss o+ 0 s+ O s 0+ D

Backreferencing in replacement patterns is very powerful, but it is easy to use many groups in a

complex regular expression, which can be confusing to identify. It is often more legible to refer to
the parts of a replacement pattern in sequential order. To handle this issue, Python's re patterns

allow "grouping without backreferencing."

A group that should not also be treated as a backreference has a question mark colon at the
beginning of the group, as in (?:pattern). In fact, you can use this syntax even when your
backreferences are in the search pattern itself:

>>> fromre_new i nport re_new

>>> s = ' A-xyz-37 # B:abcd: 142 # C-wxy-66 # D grs-93'

>>>re newmr' ([A-Z])(?:-[a-z]{3}-)([0-9]*)", r'\1\2", s)
{A37} # B:abcd: 142 # {C66} # {D93}

>>> # Groups that are not of interest excluded from backref

>>> re_new(r' ([A-Z])(-[a-2]{3}-)([0-9]%)", r'\1\2', s)
{A-xyz-} # B:abcd: 142 # {Cwxy-} # {D-qrs-}
>>> # One could | ose track of groups in a conplex pattern

O se 0 e D3 oee D ea 03 se O s @ e e @ ss 03 s 0 sa 0 s s 3+ D3

Python offers a particularly handy syntax for really complex pattern backreferences. Rather than
just play with the numbering of matched groups, you can give them a name. Above we pointed
out the syntax for named backreferences in the pattern space; for example, (?P=name).
However, a bit different syntax is necessary in replacement patterns. For that, we use the \g
operator along with angle brackets and a name. For example:

>>> fromre_new inport re_new

>>> s = "A-xyz-37 # B:abcd: 142 # CGwy-66 # D-qrs-93"

>>> re_nevv(r' (?P<prefix>[A-Z])(-[a-z]{3}-)(?P<id>[0-9]*)"
r'\g<prefix>\g<id>,s)

{A37} # B:abcd: 142 # {C66} # D93}

Q s+ Q s o+ g 4 Q re 3 L+ B L * B L = e L o= Qe s QD

Another trick of advanced regular expression tools is "lookahead assertions.” These are similar to
regular grouped subexpression, except they do not actually grab what they match. There are two

advantages to using lookahead assertions. On the one hand, a lookahead assertion can function
in a similar way to a group that is not backreferenced; that is, you can match something without
counting it in backreferences. More significantly, however, a lookahead assertion can specify that
the next chunk of a pattern has a certain form, but let a different (more general) subexpression
actually grab it (usually for purposes of backreferencing that other subexpression).

There are two kinds of lookahead assertions: positive and negative. As you would expect, a
positive assertion specifies that something does come next, and a negative one specifies that
something does not come next. Emphasizing their connection with non-backreferenced groups,
the syntax for lookahead assertions is similar: (?=pattern) for positive assertions, and (?
Ipattern) for negative assertions.

>>> fromre_new inport re_new
>>> s = ' A-xyz37 # B-ab6142 # C-Wky66 # D-qrs93
>>> # Assert that three | owercase |letters occur after CAP-DASH

S>> re_new(r' ([A-Z]-)(?=[a-2]{3}) ([\wWd]*)", r'\211', s)
{xyz37A-} # B-ab6142 # C- Wky66 # {qrs93D }
>>> # Assert three |lowercase letts do NOT occur after CAP- DASH

S>> re_new(r' ([A-2Z]-)(?' [a-2]{3}) ([\wd]*)", r'\211', s)
A-xyz37 # {ab6142B-} # {Wy66C-} # D-qrs93

D o+ O e D o+ O s QD e Lo QD e D o+e O s @D v L s+ Qe D o+ D

Along with lookahead assertions, Python 2.0+ adds "lookbehind assertions.” The idea is
similar—a pattern is of interest only if it is (or is not) preceded by some other pattern.
Lookbehind assertions are somewhat more restricted than lookahead assertions because they
may only look backwards by a fixed number of character positions. In other words, no general
quantifiers are allowed in lookbehind assertions. Still, some patterns are most easily expressed
using lookbehind assertions.

As with lookahead assertions, lookbehind assertions come in a negative and a positive flavor. The
former assures that a certain pattern does not precede the match, the latter assures that the
patterndoes precede the match.

>>> fromre_new inport re_new

>>> re_show(' Man', 'Manhandl ed by The Man')

{ Man} handl ed by The {Man}

>>> re_show(' (?<=The)Man', 'Manhandl ed by The Man')
Manhandl ed by The {Man}

>>> re_show ' (?<! The)Man', 'Manhandl ed by The Man')
{Man} handl ed by The Man

Q s+ Q s O o+ O 4 Q e 3 e D e D o+ 0 o=a e L o= Qe o+ D

In the later examples we have started to see just how complicated regular expressions can get.
These examples are not the half of it. It is possible to do some almost absurdly difficult-to-
understand things with regular expression (but ones that are nonetheless useful).

There are two basic facilities that Python's "verbose" modifier ("x") uses in clarifying expressions.
One is allowing regular expressions to continue over multiple lines (by ignoring whitespace like
trailing spaces and newlines). The second is allowing comments within regular expressions. When
patterns get complicated, do both!

The example given is a fairly typical example of a complicated, but well-structured and well-
commented, regular expression:

>>> fromre_show i nport re_show

>>> s = '"'""The URL for ny site is: http://nysite.conf nydoc.htm . You
m ght also enjoy ftp://yoursite.confindex. htm for a good
pl ace to download files."""'

S>> pat = r""" (?x)(# verbose identify URLs within text
(http|ftp|gopher) # nmake sure we find a resource type
1l # ...needs to be followed by col on-sl ash-sl ash

[\n\r]+ # sone stuff then space, newine, tab is URL
\w # URL al ways ends in al phanuneric char
(?=[\s\.,]) # assert: followed by whitespace/ peri od/ comma
.) # end of match group' "'

>>> re_show(pat, s)
The URL for ny site is: {http://nysite.com nydoc. htm}. You
m ght also enjoy {ftp://yoursite.comindex.htm} for a good

pl ace to downl oad files.

.. L Previnugl Maxt I]
Team-Fly T . :
Top

—~— 4 Prewious Next b
Team-Fly " 4

8- LLIL Text Processing in Python
"P‘f'.THOH By David Mertz
EE

T Table of Contents

Chapter 3. Regular Expressions

3.2 Some Common Tasks

3.2.1 Problem: Making a text block flush left

For visual clarity or to identify the role of text, blocks of text are often indented—especially in prose-
oriented documents (but log files, configuration files, and the like might also have unused initial
fields). For downstream purposes, indentation is often irrelevant, or even outright incorrect, since the
indentation is not part of the text itself but only a decoration of the text. However, it often makes
matters even worse to perform the very most naive transformation of indented text—simply remove
leading whitespace from every line. While block indentation may be decoration, the relative
indentations of lines within blocks may serve important or essential functions (for example, the
blocks of text might be Python source code).

The general procedure you need to take in maximally unindenting a block of text is fairly simple. But
it is easy to throw more code at it than is needed, and arrive at some inelegant and slow nested
loops of string.find() and string.replace() operations. A bit of cleverness in the use of regular
expressions—combined with the conciseness of a functional programming (FP) style—can give you a
quick, short, and direct transformation.

flush_left.py

Renove as many | eadi ng spaces as possi ble from whol e bl ock
fromre inport findall, sub

What is the mininmumline indentation of a bl ock?

i ndent = |l anbda s: reduce(mn,map(len,findall (' (?m" *(?=\S)"',s)))
Renove the bl ock-m ni numindentation fromeach Iine?

flush_left = lanbda s: sub('(?m”" {%}' %indent(s),"'"',s)

if _name__ =="'__min__
I mport sys
print flush |eft(sys.stdin.read())

The flush_left() function assumes that blocks are indented with spaces. If tabs are used—or used
combined with spaces—an initial pass through the utility untabify.py (which can be found at
$PYTHONPATH/tools/scripts/) can convert blocks to space-only indentation.

A helpful adjunct to flush_left() is likely to be the reformat_para() function that was presented in
Chapter 2, Problem 2. Between the two of these, you could get a good part of the way towards a
"batch-oriented word processor." (What other capabilities would be most useful?)

3.2.2 Problem: Summarizing command-line option documentation

Documentation of command-line options to programs is usually in semi-standard formats in places
like manpages, docstrings, READMEs and the like. In general, within documentation you expect to
see command-line options indented a bit, followed by a bit more indentation, followed by one or more
lines of description, and usually ended by a blank line. This style is readable for users browsing
documentation, but is of sufficiently complexity and variability that regular expressions are well
suited to finding the right descriptions (simple string methods fall short).

A specific scenario where you might want a summary of command-line options is as an aid to
understanding configuration files that call multiple child commands. The file /etc/inetd.conf on Unix-
like systems is a good example of such a configuration file. Moreover, configuration files themselves
often have enough complexity and variability within them that simple string methods have difficulty
parsing them.

The utility below will look for every service launched by /etc/inetd.conf and present to STDOUT
summary documentation of all the options used when the services are started.

show_services.py

import re, os, string, sys

def show opts(cndline):
args = string.split(cndline)
cnd = args|[0]
if len(args) > 1:
opts = args[1:]
mght want to check error output, so use popen3()
(in_, out , err) = os.popen3('man % | col -b" % cnd)
manpage = out . read()
i f | en(manpage) > 2: # found actual docunentation
print '\n%' % cnd
for opt in opts:
pat_opt = r' (?sm M\ s*" +opt+r' . *?(?=\n\n)’
opt _doc = re.search(pat_opt, manpage)
if opt _doc is not None:
print opt _doc. group()
el se: # try harder for something rel evant
mentions = []
for para in string.split(manpage, ' \n\n'):
if re.search(opt, para):
nment i ons. append(' \n%' % para)
i f not nmentions:

print '\n ",opt," '*9,' Option docs not found
el se:
print '\n ",opt," '*9,'Mentioned in bel ow para:’
print "\n".join(nmentions)
el se: # no manpage avail abl e
print cndline

print No docunentati on avail abl e’

def services(fnane):
conf = open(fnane).read()
pat _srv = r' "' (?xm) (?="["#]) # I ns that are not comrented out
(?:(?:[\W]+ s+){6}) # first six fields ignored
(.*9) # to end of Inis servc |launch

return re.findall (pat_srv, conf)

if _nanme_ =='"_min__
for service in services(sys.argv[1]):
show_opt s(service)

The particular tasks performed by show_opts() and services() are somewhat specific to Unix-like
systems, but the general techniques are more broadly applicable. For example, the particular
comment character and number of fields in /etc/inetd. conf might be different for other launch
scripts, but the use of regular expressions to find the launch commands would apply elsewhere. If the
man and col utilities are not on the relevant system, you might do something equivalent, such as
reading in the docstrings from Python modules with similar option descriptions (most of the samples
in $PYTHONPATH/tools/ use compatible documentation, for example).

Another thing worth noting is that even where regular expressions are used in parsing some data,
you need not do everything with regular expressions. The simple string.split() operation to identify
paragraphs in show_opts() is still the quickest and easiest technique, even though re.split() could do
the same thing.

Note: Along the lines of paragraph splitting, here is a thought problem. What is a regular expression

that matches every whole paragraph that contains within it some smaller pattern pat? For purposes

of the puzzle, assume that a paragraph is some text that both starts and ends with doubled newlines
(¢'\n\n").

3.2.3 Problem: Detecting duplicate words

A common typo in prose texts is doubled words (hopefully they have been edited out of this book
except in those few cases where they are intended). The same error occurs to a lesser extent in
programming language code, configuration files, or data feeds. Regular expressions are well-suited to
detecting this occurrence, which just amounts to a backreference to a word pattern. It's easy to wrap
the regex in a small utility with a few extra features:

dupwords.py

Detect doubl ed words and di splay w th context
I nclude words doubl ed across lines but within paras

i mport sys, re, glob
for pat in sys.argv[1l:]:
for file in glob.glob(pat):
newfile =1
for para in open(file).read().split("\n\n"):
dups = re.findal I (r' (?m (. *(\b\w+\b)\s*\b\2\b. *$)', para)

i f dups:
if newfile:
print "%\n%\n'" % ('-'*70,file)
newfile = 0

for dup in dups:
print '[%] --> %dup[l], dup[O]

This particular version grabs the line or lines on which duplicates occur and prints them for context
(along with a prompt for the duplicate itself). Variations are straightforward. The assumption made
by dupwords.py is that a doubled word that spans a line (from the end of one to the beginning of
another, ignoring whitespace) is a real doubling; but a duplicate that spans paragraphs is not likewise
noteworthy.

3.2.4 Problem: Checking for server errors

Web servers are a ubiquitous source of information nowadays. But finding URLs that lead to real
documents is largely hit-or-miss. Every Web maintainer seems to reorganize her site every month or
two, thereby breaking bookmarks and hyperlinks. As bad as the chaos is for plain Web surfers, it is
worse for robots faced with the difficult task of recognizing the difference between content and
errors. By-the-by, it is easy to accumulate downloaded Web pages that consist of error messages
rather than desired content.

In principle, Web servers can and should return error codes indicating server errors. But in practice,
Web servers almost always return dynamically generated results pages for erroneous requests. Such
pages are basically perfectly normal HTML pages that just happen to contain text like "Error 404: File
not found!" Most of the time these pages are a bit fancier than this, containing custom graphics and
layout, links to site homepages, JavaScript code, cookies, meta tags, and all sorts of other stuff. It is
actually quite amazing just how much many Web servers send in response to requests for
nonexistent URLs.

Below is a very simple Python script to examine just what Web servers return on valid or invalid
requests. Getting an error page is usually as simple as asking for a page called
http://somewebsite.com/phony-url or the like (anything that doesn’t really exist). urllib is discussed
inChapter 5, but its details are not important here.

url_examine.py

i mport sys
fromurllib inmport urlopen

if len(sys.argv) > 1:
fpin = url open(sys.argv[1])
print fpin.geturl ()
print fpin.info()
print fpin.read()
el se:
print "No specified URL"

Given the diversity of error pages you might receive, it is difficult or impossible to create a regular
expression (or any program) that determines with certainty whether a given HTML document is an
error page. Furthermore, some sites choose to generate pages that are not really quite errors, but
not really quite content either (e.g, generic directories of site information with suggestions on how to
get to content). But some heuristics come quite close to separating content from errors. One
noteworthy heuristic is that the interesting errors are almost always 404 or 403 (not a sure thing, but
good enough to make smart guesses). Below is a utility to rate the "error probability” of HTML
documents:

error_page.py

i nport re, sys
page = sys.stdin.read()

Mapping frompatterns to probability contribution of pattern
err_pats = {r' (?is)<TITLE>. *?(404| 403). *?ERROR. *?</ TI TLE>": 0. 95,
r' (?is)<TITLE>. *?ERROR *?(404| 403) . *?</ TITLE>' : 0. 95,
r' (?is)<TlI TLESERROR</ TI TLE>' : 0. 30,
r'(?is)<TITLE>. *?ERROR *?</ TI TLE>' : 0. 10,
r' (?is)<META . *?(404| 403) . *?ERRCOR *?>"': 0. 80,
r' (?is)<META . *?ERROR. *?(404| 403).*?>": 0. 80,

r'(?is)<TITLE>. *?Fil e Not Found.*?</TITLE>': 0. 80,
r' (?is)<TITLE>. *?Not Found. *?</TI TLE>': 0. 40,

r' (?is)<BODY. *(404| 403). *</ BODY>': 0. 10,

r' (?is)<Hl>. *?(404|403).*?</H1>": 0. 15,

r' (?is)<BODY. *not found.*</BODY>': 0.10,

r' (?is)<Hl>. *?not found.*?</H1>: 0.15,
r(
r(
r(
r(
r(

?i s) <BODY. *t he requested URL. *</BCDY>': 0. 10,

?i s) <BODY. *t he page you requested. *</ BODY>': 0. 10,

?i s) <BODY. *page. {1, 50} unavai | abl e. *</ BODY>': 0. 10,

?i s) <BODY. *request . {1, 50} unavai | abl e. *</ BODY>' : 0. 10,
?i)does not exist': 0.10,

}

err_score =0
for pat, prob in err_pats.itens():
if err_score > 0.9: break
if re.search(pat, page):
print pat, prob
err_score += prob

if err_score > 0.90: print 'Page is alnost surely an error report’

elif err_score > 0.75: print "It is highly Iikely page is an error report’
elif err_score > 0.50: print 'Better-than-even odds page is error report’
elif err_score > 0.25: print '"Fair indication page is an error report’

el se: print 'Page is probably real content’

Tested against a fair number of sites, a collection like this of regular expression searches and
threshold confidences works quite well. Within the author's own judgment of just what is really an
error page, erro_page.py has gotten no false positives and always arrived at at least the lowest
warning level for every true error page.

The patterns chosen are all fairly simple, and both the patterns and their weightings were determined
entirely subjectively by the author. But something like this weighted hit-or-miss technique can be
used to solve many "fuzzy logic" matching problems (most having nothing to do with Web server
errors).

Code like that above can form a general approach to more complete applications. But for what it is
worth, the scripts url_examine.py and error_page.py may be used directly together by piping from
the first to the second. For example:

% pyt hon url open. py http://gnosis.cx/ nonesuch | python ex_error_page. py
Page is al nost surely an error report

3.2.5 Problem: Reading lines with continuation characters

Many configuration files and other types of computer code are line oriented, but also have a facility to
treat multiple lines as if they were a single logical line. In processing such a file it is usually desirable
as a first step to turn all these logical lines into actual newline-delimited lines (or more likely, to
transform both single and continued lines as homogeneous list elements to iterate through later). A
continuation character is generally required to be the last thing on a line before a newline, or possibly
the last thing other than some whitespace. A small (and very partial) table of continuation characters
used by some common and uncommon formats is listed below:

\ Pyt hon, JavaScript, C C++, Bash, TCL, Unix config
_ Visual Basic, PAW

& Lyris, COBOL, IBIS

; dipper, TOP

- XSPEC, Net REXX
= Oracl e Express

Most of the formats listed are programming languages, and parsing them takes quite a bit more than
just identifying the lines. More often, it is configuration files of various sorts that are of interest in
simple parsing, and most of the time these files use a common Unix-style convention of using trailing
backslashes for continuation lines.

Onecould manage to parse logical lines with a string module approach that looped through lines and

performed concatenations when needed. But a greater elegance is served by reducing the problem to
a single regular expression. The module below provides this:

logical_lines.py

Determine the logical lines in a file that nmi ght have

continuation characters. 'logical _lines()' returns a

list. The self-test prints the logical |ines as

physical lines (for all specified files and options).

i mport re

def logical _lines(s, continuation="\\"', strip_trailing_space=0):

C = continuation
if strip_trailing_space:
s =re.sub(r' (?m (%) (\s+)$ %c], r'\1", s)
pat_log = r' (?2sm". *?2$(?<!%)"' %c] # e.g. (?2sm". *2$(?<!I\\)

return [t.replace(c+'\n',"") for t inre.findall(pat_log, s)]
if __name_ =="'_min_'
i mport sy

files, strip, contin = ([], 0, "\\")
for arg in sys.argv[1l:]:
if arg[:-1] == "'--continue=": contin = arg[-1]
elif arg[:-1] == "'-c contin = arg[-1]
elif argin ('--string','-s"): strip = 1
el se: files.append(arQg)
if not files: files.append(sys.stdin)
for file in files:
s = open(sys.argv[1l]).read()
print "\n'".join(logical _lines(s, contin, strip))

The comment in the pat_log definition shows a bit just how cryptic regular expressions can be at
times. The comment is the pattern that is used for the default value of continuation. But as dense as
it is with symbols, you can still read it by proceeding slowly, left to right. Let us try a version of the
same line with the verbose modifier and comments:

>>> pat =r'"'

(?x) # This is the verbose version

(7?s) # In the pattern, let "." match newines, if needed
(?m # Allow ~ and $ to match every begin- and end-of-Iine
N

Start the match at the beginning of a line

*? # Non-greedily grab everything until the first place
where the rest of the pattern natches (if possible)
$ # End the match at an end-of-Iline

(?<! # Only count as a match if the encl osed pattern was not
the imrediately last thing seen (negative | ookbehi nd)

\\) # It wasn't an (escaped) backsl ash''

3.2.6 Problem: Identifying URLs and email addresses in texts

A neat feature of many Internet and news clients is their automatic identification of resources that
the applications can act upon. For URL resources, this usually means making the links "clickable"; for
an email address it usually means launching a new letter to the person at the address. Depending on
the nature of an application, you could perform other sorts of actions for each identified resource. For
a text processing application, the use of a resource is likely to be something more batch-oriented:
extraction, transformation, indexing, or the like.

Fully and precisely implementing RFC1822 (for email addresses) or RFC1738 (for URLS) is possible
within regular expressions. But doing so is probably even more work than is really needed to identify
99% of resources. Moreover, a significant number of resources in the "real world" are not strictly
compliant with the relevant RFCs—most applications give a certain leeway to "almost correct"
resource identifiers. The utility below tries to strike approximately the same balance of other well-
implemented and practical applications: get almost everything that was intended to look like a
resource, and almost nothing that was intended not to:

find_urls.py

Functions to identify and extract URLs and enmil addresses

import re, fileinput

pat_url = re.conpile(r
(?x)(# verbose identify URLS within text
(http|ftp| gopher) # nake sure we find a resource type
/1l # ...needs to be foll owed by col on-sl ash-sl ash
(\w+[:.]1?2){2,} # at |least two domain groups, e.g. (gnosis.)(cx)
(/?] # could be just the domain nane (nmaybe w sl ash)
[\nm\r"]+ # or stuff then space, newine, tab, quote
[\W]) # resource nane ends in al phanuneric or slash
(?=[\s\.,>)""\]]) # assert: followed by white or clause ending
) # end of nmatch group
)
pat _email = re.conmpile(r""’
(?xm) # verbose identify URLs in text (and nultiline)
(?=". {11} # Mail header nmtcher
(?<!Message-ID:| # rule out Message-1D s as best possible
In-Reply-To)) # ...and also In-Reply-To
(.*?)(# nmust grab to email to allow prior |ookbehind
([A-Za-z0-9-]1+\.)? # maybe an initial part: DAVID. nmertz@nosis. cx
[A-Za-z0-9-1+ # definitely some |ocal user: MERTZ@nosi s. CX
@ # ...needs an at sign in the mddle
(\wt\.?2){2,} # at least two domain groups, e.g. (gnosis.)(cx)
(?=[\s\.,>)""\]]) # assert: followed by white or clause endi ng
) # end of match group
extract_urls = lanbda s: [u[0] for uinre.findall(pat_url, s)]
extract _email = lanbda s: [(e[1l]) for e in re.findall(pat_emil, s)]
if name ="' _ min__":

for line in fileinput.input():
urls = extract _urls(line)
if urls:
for url in urls:

print fileinput.filename(),"'=>",url
emails = extract_email (Iine)
if emails:
for email in emils:
print fileinput.filename(),'->",enai

A number of features are notable in the utility above. One point is that everything interesting is done
within the regular expressions themselves. The actual functions extract_urls() and extract_email()
are each a single line, using the conciseness of functional-style programming, especially list
comprehensions (four or five lines of more procedural code could be used, but this style helps
emphasize where the work is done). The utility itself prints located resources to STDOUT, but you
could do something else with them just as easily.

A bit of testing of preliminary versions of the regular expressions led me to add a few complications
to them. In part this lets readers see some more exotic features in action; but in greater part, this
helps weed out what | would consider "false positives.” For URLs we demand at least two domain
groups—this rules out LOCALHOST addresses, if present. However, by allowing a colon to end a
domain group, we allow for specified ports such as http://gnosis.cx:8080/resource/.

Email addresses have one particular special consideration. If the files you are scanning for email
addresses happen to be actual mail archives, you will also find Message-ID strings. The form of these
headers is very similar to that of email addresses (In-Reply-To: headers also contain Message-1Ds).
By combining a negative look-behind assertion with some throwaway groups, we can make sure that
everything that gets extracted is not a Message-ID: header line. It gets a little complicated to
combine these things correctly, but the power of it is quite remarkable.

3.2.7 Problem: Pretty-printing numbers

In producing human-readable documents, Python's default string representation of numbers leaves

something to be desired. Specifically, the delimiters that normally occur between powers of 1,000 in
written large numerals are not produced by the str() or repr() functions—which makes reading large
numbers difficult. For example:

>>> pudget = 12345678. 90

>>> print ' The conpany budget is $%' % str(budget)
The company budget is $12345678.9

>>> print ' The conpany budget is %0.2f" 9% budget
The conpany budget is 12345678. 90

Regular expressions can be used to transform numbers that are already "stringified" (an alternative
would be to process numeric values by repeated division/remainder operations, stringifying the
chunks). A few basic utility functions are contained in the module below.

pretty_nums.py

Create/ mani pul ate grouped string versions of nunbers
i mport re

def comm fy(f, digits=2, nmaxgroups=5, european=0):
tenplate = "9%®4. %df' %digits
s =tenplate %f
pat = re.conpile(r' (\d+)(\d{3})([.,11%)([.,\d]*)")
i f european:
repl =r'\1.\2\3\4'
el se: # coul d al so use | ocal e.l ocal econv()[' deci mal _point']

repl =r'\1,\2\3\ 4
for i in range(nmaxgroups):

S = re.sub(pat,repl,s)
return s

def uncomm fy(s):
return s.replace(',"',"'")

def eurify(s):

s = s.replace('."',"\000") # pl ace hol der
s = s.replace(',',".") # change group delimter
s = s.replace('\000',"',") # decimal delinmter
return s

def angl of y(s):
s = s.replace(',"',"'\000") # pl ace hol der
s = s.replace('.",",") # change group delimter
s = s.replace('\000",".") # decimal delimter
return s

val s = (12345678. 90, 23456789. 01, 34567890. 12)

sanple = ''' The conpany budget is $%.

Its debt is $%s, agai nst assets

of $%'"

i f name ="' _ min__":

_Brint_ganple % val s,
print sanple %tuple(map(comm fy, vals)),
print eurify(sanple %tupl e(map(commfy, vals))),

The technique used in commify() has virtues and vices. It is quick, simple, and it works. It is also
slightly kludgey inasmuch as it loops through the substitution (and with the default maxgroups
argument, it is no good for numbers bigger than a quintillion; most numbers you encounter are
smaller than this). If purity is a goal—and it probably should not be—you could probably come up
with a single regular expression to do the whole job. Another quick and convenient technique is the
"place holder" idea that was mentioned in the introductory discussion of the string module.

. 4 Previous Hext »
Team-Fly xr))
Top

4 Prewious MNext b

o
Team-Fly o

Text Processing in Python
By David Mertz

Table of Contents

Chapter 3. Regular Expressions

3.3 Standard Modules

3.3.1 Versions and Optimizations

Rules of Optimization:

Rule 1: Don't do it.

Rule 2 (for experts only): Don't do it yet.
—M.A. Jackson

Python has undergone several changes in its regular expression support. regex was superceded by
pre in Python 1.5; pre, in turn, by sre in Python 2.0. Although Python has continued to include the
older modules in its standard library for backwards compatibility, the older ones are deprecated
when the newer versions are included. From Python 1.5 forward, the module re has served as a
wrapper to the underlying regular expression engine (sre or pre). But even though Python 2.0+ has
usedre to wrap sre, pre is still available (the latter along with its own underlying pcre C extension
module that can technically be used directly).

Each version has generally improved upon its predecessor, but with something as complicated as
regular expressions there are always a few losses with each gain. For example, sre adds Unicode
support and is faster for most operations—but pre has better optimization of case-insensitive
searches. Subtle details of regular expression patterns might even let the quite-old regex module
perform faster than the newer ones. Moreover, optimizing regular expressions can be extremely
complicated and dependent upon specific small version differences.

Readers might start to feel their heads swim with these version details. Don't panic. Other than out
of historic interest, you really do not need to worry about what implementations underlie regular
expression support. The simple rule is just to use the module re and not think about what it
wraps—the interface is compatible between versions.

The real virtue of regular expressions is that they allow a concise and precise (albeit somewhat
cryptic) description of complex patterns in text. Most of the time, regular expression operations are
fast enough ; there is rarely any point in optimizing an application past the point where it does what
it needs to do fast enough that speed is not a problem. As Knuth famously remarks, "We should
forget about small efficiencies, say about 97% of the time: Premature optimization is the root of all
evil." ("Computer Programming as an Art" in Literate Programming, CSLI Lecture Notes Number 27,
Stanford University Center for the Study of Languages and Information, 1992).

In case regular expression operations prove to be a genuinely problematic performance bottleneck
in an application, there are four steps you should take in speeding things up. Try these in order:

1. Think about whether there is a way to simplify the regular expressions involved. Most
especially, is it possible to reduce the likelihood of backtracking during pattern matching? You
should always test your beliefs about such simplification, however; performance characteristics
rarely turn out exactly as you expect.

2. Consider whether regular expressions are really needed for the problem at hand. With
surprising frequency, faster and simpler operations in the string module (or, occasionally, in
other modules) do what needs to be done. Actually, this step can often come earlier than the
first one.

3. Write the search or transformation in a faster and lower-level engine, especially mx.TextTools .
Low-level modules will inevitably involve more work and considerably more intense thinking
about the problem. But order-of-magnitude speed gains are often possible for the work.

4. Code the application (or the relevant parts of it) in a different programming language. If speed
is the absolutely first consideration in an application, Assembly, C, or C++ are going to win.
Tools like swig—while outside the scope of this book—can help you create custom extension
modules to perform bottleneck operations. There is a chance also that if the problem really
must be solved with regular expressions that Perl's engine will be faster (but not always, by
any means).

3.3.2 Simple Pattern Matching

‘fnmatch-GIob—style pattern matching

The real purpose of the fnmatch module is to match filenames against a pattern. Most typically,
fnmatch is used indirectly through the glob module, where the latter returns lists of matching files
(for example to process each matching file). But fnmatch does not itself know anything about
filesystems, it simply provides a way of checking patterns against strings. The pattern language
used by fnmatch is much simpler than that used by re, which can be either good or bad, depending
on your needs. As a plus, most everyone who has used a DOS, Windows, 0OS/2, or Unix command
line is already familiar with the fnmatch pattern language, which is simply shell-style expansions.

Four subpatterns are available in fnmatch patterns. In contrast to re patterns, there is no grouping
and no quantifiers. Obviously, the discernment of matches is much less with fnmatch than with re.
The subpatterns are as follows:

Glob-style subpatterns

* Mat ch everything that foll ows (non-greedy).

? Mat ch any single character.

[set] Match one character froma set. A set generally
follows the sane rules as a regul ar expression
character class. It may include zero or nore ranges
and zero or nore enunerated characters.

[!set] Match any one character that is not in the set.

A pattern is simply the concatenation of one or more subpatterns.

FUNCTIONS

fnmatch.fnmatch(s, pat)

Test whether the pattern pat matches the string s. On case-insensitive filesystems, the match is
case-insensitive. A cross-platform script should avoid fnmatch.fnmatch() except when used to
match actual filenames.

>>> from fnmatch i nport fnmatch

>>> fnmatch('this', '"[T]?2i*) # On Unix-like system
0

>>> fnmatch('this', "[T]?2i*) # On Wn-1like system

1

See Atso: fnmatch.fnmatchcase() 233;

fnmatch.fnmatchcase(s, pat)

Test whether the pattern pat matches the string s. The match is case-sensitive regardless of
platform.

>>> from fnmatch i nport fnmatchcase

>>> fnmat chcase('this', "[T]?2i*")

0

>>> fromstring inport upper

>>> fnmat chcase(upper('this'), upper('[T]?i*"))
1

See Atso: fnmatch.fnmatch() 233;

fnmatch.filter(Ist, pat)

Return a new list containing those elements of Ist that match pat. The matching behaves like
fnmatch.fnmatch() rather than like fnmatch.fnmatchcase() , so the results can be OS-dependent.
The example below shows a (slower) means of performing a case-sensitive match on all platforms.

>>> jnport fnmatch # Assuming Uni x-1ike system

>>> fnmatch. filter([' This',"that',"other',"thing'], '"[Tt]?i*")
['"This', "thing']

>>> fnmatch. filter([' This',"that',"other',"thing'], '[a-z]*")
['that', "other', "thing']

>>> fromfnmatch inport fnmatchcase # For all platforns

>>> nymatch = | anbda s: fnmatchcase(s, '[a-z]*")

>>> filter(nmymatch, ['This', "that', ' other',"thing'])

['that', "other', '"thing']

For an explanation of the built-in function filter () function, see Appendix A.
See Aiso: fnmatch.fnmatch() 233; fnmatch.fnmatchcase() 233;

See Atso: glob 64; re 236;

3.3.3 Regular Expression Modules

‘pre-Pre—sre module ‘

‘pcre-UnderIying C module for pre ‘

The Python-written module pre, and the C-written pcre module that implements the actual regular
expression engine, are the regular expression modules for Python 1.5—1.6. For complete backwards
compatibility, they continue to be included in Python 2.0+. Importing the symbol space of pre is
intended to be equivalent to importing re (i.e., sre at one level of indirection) in Python 2.0+, with
the exception of the handling of Unicode strings, which pre cannot do. That is, the lines below are
almost equivalent, other than potential performance differences in specific operations:

>>> inport pre as re
>>> jnport re

However, there is very rarely any reason to use pre in Python 2.0+. Anyone deciding to import pre
should know far more about the internals of regular expression engines than is contained in this
book. Of course, prior to Python 2.0, importing re simply imports pcre itself (and the Python
wrappers later renamed pre).

SeE ALso: re 236;

reconvert « Convert [regex] patterns to [re] patterns

This module exists solely for conversion of old regular expressions from scripts written for pre-1.5
versions of Python, or possibly from regular expression patterns used with tools such as sed, awk,
or grep. Conversions are not guaranteed to be entirely correct, but reconvert provides a starting
point for a code update.

FUNCTIONS

reconvert.convert(s)

Return as a string the modern re-style pattern that corresponds to the regex-style pattern passed
in argument s. For example:

>>> jnport reconvert

>>> reconvert.convert(r'\<\(cat\|dog\)\>")

"\\b(cat|dog)\\b'

>>> jnport re

>>> re.findall (r'\b(cat | dog)\b', "The dog chased a bobcat")

[*dog’]

See ALso: regex 235;

regexeDeprecated regular expression module

Theregex module is distributed with recent Python versions only to ensure strict backwards
compatibility of scripts. Starting with Python 2.1, importing regex will produce a
DeprecationWarning:

% python -c "inport regex"
-c:1: DeprecationWarning: the regex nodul e i s deprecat ed;
pl ease use the re nodul e

For all users of Python 1.5+, regex should not be used in new code, and efforts should be made to
convert its usage to re calls.

SEe ALso: reconvert 235;

sreeSecret Labs Regular Expression Engine

Support for regular expressions in Python 2.0+ is provided by the module sre. The module re simply
wrapssre in order to have a backwards- and forwards-compatible name. There will almost never be
any reason to import sre itself; some later version of Python might eventually deprecate sre also. As
withpre, anyone deciding to import sre itself should know far more about the internals of regular
expression engines than is contained in this book.

SEeE ALso: re 236;

reeRegular expression operations

PATTERN SUMMARY

Figure 3.1 lists regular expression patterns; following that are explanations of each pattern. For
more detailed explanation of patterns in action, consult the tutorial and/or problems contained in
this chapter. The utility function re_show() defined in the tutorial is used in some descriptions.

Figure 3.1. Regular expression patterns

Summary of Regular Expression Patterns

Atoms Guantifiers
Plain symbol: ... Universal quantilier: *
Escape: A MNon-gready universal quantifies: "
Grouping operators: () Existential guantifie:: +
Backreferance: \#, \ ## Non-greedy existential guantitier: +7
Character class; [] Potentiaiy guanlifier: 7
Digit characler class: \d Non-greedy polentiality quantifier: 77
Mon-digit character class: \D Exact numeric guaniilier { num}
Alphanumeric char class; W Lower-bound quantifier {min, }
Mon-alphanum char class: \W Bounded numeric quantifier: {min, max)
Whitespace char class: \= Nen-greedy bounded quantifier; {min, max}?

MNon-whilespace char class: \S

Wikicard character: Group-Like Patterns

Beginning of line: i Pattern modifiers: (?Limsux)
Beginning of siring: WA Comments: (?#...)
End of line: 5 Non-backreferanced atom: (%:...)
End of slring: \& Posilive Lookahead assertion: {?=...}
Word boundary: A% - Megative Lookahead assertion: (?!...)
Mon-word boundary: \B Positive Lookbehind assertion: (?<=...)
Akemalion oparator: | MNegative Lookbehind assertion: (?<!...)

Mamed group ideniilier: (7P <name>)

Constants Mamed group backrelarence: (?P=name)

re. IGNORECASE ra.
re.LOCALE re.

re MULTILINE re.
rae.DOTALL re.

re . UNICODE re.
ra.VEREOSE re.

o EBPH

ATOMIC OPERATORS

Plain symbol

Any character not described below as having a special meaning simply represents itself in the target
string. An "A" matches exactly one "A" in the target, for example.

Escape: "\"

The escape character starts a special sequence. The special characters listed in this pattern
summary must be escaped to be treated as literal character values (including the escape character
itself). The letters "A", "b", "B", "d", "D", "s", "S", "w", "W", and "Z" specify special patterns if
preceded by an escape. The escape character may also introduce a backreference group with up to
two decimal digits. The escape is ignored if it precedes a character with no special escaped
meaning.

Since Python string escapes overlap regular expression escapes, it is usually better to use raw
strings for regular expressions that potentially include escapes. For example:

>>> fromre_show i nport re_show
>>> re_show(r'\$ \\ \~A" | r"\$ \\ \~ g\ A"
\$ W\ AN {$\ A

>>> re_showm(r'\d \w, '7a6#! C)
{7a 6#! C

Grouping operators: "(",")"

Parentheses surrounding any pattern turn that pattern into a group (possibly within a larger
pattern). Quantifiers refer to the immediately preceding group, if one is defined, otherwise to the
preceding character or character class. For example:

>>> fromre_show inport re_show
>>> re_show(r' abc+', 'abcabc abc abccc')
{abc}{abc} {abc} {abccc}

>>> re_show(r' (abc)+', 'abcabc abc abccc')
{abcabc} {abc} {abc}cc

Backreference: "\d", "\dd"

A backreference consists of the escape character followed by one or two decimal digits. The first
digit in a back reference may not be a zero. A backreference refers to the same string matched by
an earlier group, where the enumeration of previous groups starts with 1. For example:

>>> fromre_show inport re_show
>>> re_show(r' ([abc])(.*)\1", "all the boys are coy')
{all the boys a}re coy

An attempt to reference an undefined group will raise an error.

Character classes: "[", "]"

Specify a set of characters that may occur at a position. The list of allowable characters may be
enumerated with no delimiter. Predefined character classes, such as "\d", are allowed within custom
character classes. A range of characters may be indicated with a dash. Multiple ranges are allowed
within a class. If a dash is meant to be included in the character class itself, it should occur as the
first listed character. A character class may be complemented by beginning it with a caret ("~"). If a
caret is meant to be included in the character class itself, it should occur in a noninitial position.
Most special characters, such as "$", ".", and "(", lose their special meaning inside a character class
and are merely treated as class members. The characters "]", "\", and "-" should be escaped with a
backslash, however. For example:

>>> fromre_show i nport re_show
>>> re_show(r'[a-fA-F]', "AXc G)
{Ab X {c} G

>>> re_show(r'[-A$BC\]]', r"rAX -\][$)
{Ad X{-2 VDY T (%}

>>> re_show(r' [*A-Fa-f]', r"AXc G)
Al HXe{HG

Digit character class: "\d"

The set of decimal digits. Same as "0-9".

Non-digit character class: "\D"

The set of all characters except decimal digits. Same as "~0-9".

Alphanumeric character class: "\w"

The set of alphanumeric characters. If re.LOCALE and re.UNICODE modifiers are not set, this is the
same as [a-zA-Z0-9_]. Otherwise, the set includes any other alphanumeric characters appropriate
to the locale or with an indicated Unicode character property of alphanumeric.

Non-alphanumeric character class: "\W"

The set of nonalphanumeric characters. If re.LOCALE and re.UNICODE modifiers are not set, this is
the same as [™a-zA-Z0-9_]. Otherwise, the set includes any other characters not indicated by the
locale or Unicode character properties as alphanumeric.

Whitespace character class: "\s"

The set of whitespace characters. Same as [\t\n\r\f\v].

Non-whitespace character class: "\S"

The set of nonwhitespace characters. Same as [\t\n\r\f\v].

Wildcard character: ".

The period matches any single character at a position. If the re. DOTALL modifier is specified, "." will
match a newline. Otherwise, it will match anything other than a newline.

Beginning of line: """

The caret will match the beginning of the target string. If the re.MULTILINE modifier is specified, "™"
will match the beginning of each line within the target string.

Beginning of string: "\A"

The "\A" will match the beginning of the target string. If the re. MULTILINE modifier is not specified,
"\A" behaves the same as "™". But even if the modifier is used, "\A" will match only the beginning of
the entire target.

End of line: "$"

The dollar sign will match the end of the target string. If the re. MULTILINE modifier is specified, "$"
will match the end of each line within the target string.

End of string: "\Z"

The "\Z" will match the end of the target string. If the re. MULTILINE modifier is not specified, "\Z"

behaves the same as "$". But even if the modifier is used, "\Z" will match only the end of the entire
target.

Word boundary: "\b"

The "\b" will match the beginning or end of a word (where a word is defined as a sequence of
alphanumeric characters according to the current modifiers). Like "~" and "$", "\b" is a zero-width
match.

Non-word boundary: "\B"

The "\B" will match any position that is not the beginning or end of a word (where a word is defined
as a sequence of alphanumeric characters according to the current modifiers). Like "~" and "$",
"\B" is a zero-width match.

Alternation operator: " |"

The pipe symbol indicates a choice of multiple atoms in a position. Any of the atoms (including
groups) separated by a pipe will match. For example:

>>> fromre_show i nport re_show

>>> re_show(r'Alc|]G, rAXc G)

{Ab X {c} {G

>>> re_show(r' (abc)| (xyz)', 'abc efg xyz I m")
{abc} efg {xyz} I'm

QUANTIFIERS

Universal quantifier: "*"

Match zero or more occurrences of the preceding atom. The "*" quantifier is happy to match an
empty string. For example:

>>> fromre_show inport re_show
>>> re_show('a* ', ' a aa aaa aaaa b')
{ }{a }{aa }{aaa}{aaaa }b

Non-greedy universal quantifier: "*?"

Match zero or more occurrences of the preceding atom, but try to match as few occurrences as
allowable. For example:

>>> fromre_show i nport re_show
>>> re_show' <. *>' | '<> <tag>Text</tag>')
{<> <tag>Text </tag>}

>>> re_show(' <. *?>', '<> <tag>Text</tag>')
{<>} {<tag>}Text{</tag>}

Existential quantifier: " +"

Match one or more occurrences of the preceding atom. A pattern must actually occur in the target
string to satisfy the "+" quantifier. For example:

>>> fromre_show i nport re_show
>>> re_show('a+ ', ' a aa aaa aaaa b')
{a }{aa }{aaa }{aaaa }b

Non-greedy existential quantifier: "+?"

Match one or more occurrences of the preceding atom, but try to match as few occurrences as
allowable. For example:

>>> fromre_show i nport re_show
>>> re_show(' <. +>', '<> <tag>Text</tag>')
{<> <tag>Text </tag>}

>>> re_show(' <. +?>', '<> <tag>Text</tag>')
{<> <tag>}Text{</tag>}

Potentiality quantifier: " ?"

Match zero or one occurrence of the preceding atom. The "?" quantifier is happy to match an empty
string. For example:

>>> fromre_show inport re_show
>>> re_show('a? ', ' a aa aaa aaaa b')
{ }{a }a{a }aa{a }aaaf{a }b

Non-greedy potentiality quantifier: "??"

Match zero or one occurrence of the preceding atom, but match zero if possible. For example:

>>> fromre_show i nport re_show
>>> re_show(' a?', ' a aa aaa aaaa b')
{ a}{ a}a{ a}laa{ a}aaa{ }b

>>> re_show(' a??', ' a aa aaa aaaa b')
{ }a{ }aa{ }aaa{ }aaaa{ }b

Exact numeric quantifier: "{num}"
Match exactly num occurrences of the preceding atom. For example:

>>> fromre_show i nport re_show
>>> re_show('a{3} ', ' a aa aaa aaaa b')
a aa {aaa }af{aaa }b

Lower-bound quantifier: "{min,}"

Matchat least min occurrences of the preceding atom. For example:

>>> fromre_show i nport re_show
>>> re _show('a{3,} ', ' a aa aaa aaaa b')
a aa {aaa }{aaaa }b

Bounded numeric quantifier: "{min,max}"

Matchat least min and no more than max occurrences of the preceding atom. For example:

>>> fromre_show i nport re_show
>>> re_show('a{2,3} ', ' a aa aaa aaaa b')
a {aa }{aaa }af{aaa }

Non-greedy bounded quantifier: "{min,max}?"

Matchat least min and no more than max occurrences of the preceding atom, but try to match as
few occurrences as allowable. Scanning is from the left, so a nonminimal match may be produced in
terms of right-side groupings. For example:

>>> fromre_show i nport re_show
>>> re_show(' a{2,4}?', ' a aa aaa aaaa b')
a{ aa}{ aa}a{ aataa b

>>> re_show('a{2,4}? ', ' a aa aaa aaaa b')
a {aa }{aaa }{aaaa }b

GROUP-LIKE PATTERNS

Python regular expressions may contain a number of pseudo-group elements that condition
matches in some manner. With the exception of named groups, pseudo-groups are not counted in
backreferencing. All pseudo-group patterns have the form "(?...)".

Pattern modifiers: "(?Limsux)"

The pattern modifiers should occur at the very beginning of a regular expression pattern. One or
more letters in the set "Limsux" may be included. If pattern modifiers are given, the interpretation
of the pattern is changed globally. See the discussion of modifier constants below or the tutorial for
details.

Comments: "(?#...)"

Create a comment inside a pattern. The comment is not enumerated in backreferences and has no
effect on what is matched. In most cases, use of the "(?x)" modifier allows for more clearly
formatted comments than does "(?#...)".

>>> fromre_show i nport re_show
>>> re_show(r' The(?#words in caps) Cat', 'The Cat in the Hat')
{The Cat} in the Hat

Non-backreferenced atom: "(?:...)

Match the pattern "...", but do not include the matched string as a backreferencable group.
Moreover, methods like re.match.group () will not see the pattern inside a non-backreferenced
atom.

>>> fromre_show i nport re_show
>>> re_show(r' (?:\w+) (\w+).* \1', "abc xyz xyz abc')
{abc xyz xyz} abc

>>> re_show(r' (\w+) (\w+).* \1', "abc xyz xyz abc')
{abc xyz xyz abc}

Positive Lookahead assertion: "(?=...)"

Match the entire pattern only if the subpattern "..." occurs next. But do not include the target
substring matched by "..." as part of the match (however, some other subpattern may claim the
same characters, or some of them).

>>> fromre_show i nport re_show
>>> re_showr' \w+ (?=xyz)', 'abc xyz xyz abc")
{abc }{xyz }xyz abc

Negative Lookahead assertion: "(?!...)"

Match the entire pattern only if the subpattern "..." does not occur next.

>>> fromre_show inport re_show
>>> re_showr' \w+ (?!'xyz)', "abc xyz xyz abc")
abc xyz {xyz }abc

Positive Lookbehind assertion: "(?<=...)"

Match the rest of the entire pattern only if the subpattern "..." occurs immediately prior to the
current match point. But do not include the target substring matched by "..." as part of the match
(the same characters may or may not be claimed by some prior group(s) in the entire pattern). The
pattern "..." must match a fixed number of characters and therefore not contain general quantifiers.

>>> fromre_show i nport re_show
>>> re_show(r' \w+(?<=[A-Z]) ', 'Wrds THAT end in capS X)
Wrds {THAT }end in {capS } X

Negative Lookbehind assertion: " (?<!...)"

Match the rest of the entire pattern only if the subpattern "..." does not occur immediately prior to
the current match point. The same characters may or may not be claimed by some prior group(s) in
the entire pattern. The pattern "..." must match a fixed number of characters and therefore not
contain general quantifiers.

>>> fromre_show i nport re_show
>>> re_show(r' \w+(?<![A-Z]) ', 'Wrds THAT end in capS X')
{Words } THAT {end }{in }capS X

Named group identifier: "(?P<name>)"

Create a group that can be referred to by the name name as well as in enumerated backreferences.
The forms below are equivalent.

>>> fromre_show i nport re_show
>>> re_show(r' (\w+) (\w+).* \1', "abc xyz xyz abc')
{abc xyz xyz abc}

>>> re_show(r' (?P<first>\wt) (\wt).* (?P=first)', 'abc xyz xyz abc')
{abc xyz xyz abc}

>>> re_show(r' (?P<first>\w+) (\w+).* \1', "abc xyz xyz abc')
{abc xyz xyz abc}

Named group backreference: "(?P=name)"

Backreference a group by the name name rather than by escaped group number. The group name
must have been defined earlier by (?P<name=>), or an error is raised.

CONSTANTS

A number of constants are defined in the re modules that act as modifiers to many re functions.
These constants are independent bit-values, so that multiple modifiers may be selected by bitwise
disjunction of modifiers. For example:

>>> jnport re
>>> ¢ = re.conpile('cat | dog', re.l GNORECASE | re. UN CODE)

re.l,re.IGNORECASE

Modifier for case-insensitive matching. Lowercase and uppercase letters are interchangeable in
patterns modified with this modifier. The prefix (?i) may also be used inside the pattern to achieve
the same effect.

re.L, re.LOCALE

Modifier for locale-specific matching of \w, \W, \b, and \B. The prefix (?L) may also be used inside
the pattern to achieve the same effect.

re.M, re MULTILINE

Modifier to make ~ and $ match the beginning and end, respectively, of each line in the target
string rather than the beginning and end of the entire target string. The prefix (?m) may also be
used inside the pattern to achieve the same effect.

re.S, re.DOTALL

Modifier to allow . to match a newline character. Otherwise, . matches every character except
newline characters. The prefix (?s) may also be used inside the pattern to achieve the same effect.

re.U, re.UNICODE

Modifier for Unicode-property matching of \w, \W, \b, and \B. Only relevant for Unicode targets. The
prefix (?u) may also be used inside the pattern to achieve the same effect.

re.X, re.VERBOSE

Modifier to allow patterns to contain insignificant whitespace and end-of-line comments. Can
significantly improve readability of patterns. The prefix (?x) may also be used inside the pattern to
achieve the same effect.

re.engine

The regular expression engine currently in use. Only supported in Python 2.0+, where it normally is
set to the string sre. The presence and value of this constant can be checked to make sure which
underlying implementation is running, but this check is rarely necessary.

FUNCTIONS

For all re functions, where a regular expression pattern pattern is an argument, pattern may be
either a compiled regular expression or a string.

re.escape(s)

Return a string with all nonalphanumeric characters escaped. This (slightly scattershot) conversion
makes an arbitrary string suitable for use in a regular expression pattern (matching all literals in
original string).

>>> jnmport re
>>> print re.escape("(*@ $@")
\(*\@a ™3\ @l

re.findall(pattern=..., string=...)

Return a list of all nonoverlapping occurrences of pattern in string. If pattern consists of several
groups, return a list of tuples where each tuple contains a match for each group. Length-zero
matches are included in the returned list, if they occur.

>>> jnport re

>>> re.findall (r'\b[a-z] +\d+\b', "abcl23 xyz666 | m-11 def 77")
["abc123', 'xyz666', 'def77']

>>> re.findall (r'\b([a-z]+)(\d+)\b', "abcl23 xyz666 | m-11 def77")
[("abc', "123"), ('xyz', '666"), ('def', "77")]

See Atso: re.search() 249; mx.TextTools.findall() 312;

re.purge()

Clear the regular expression cache. The re module keeps a cache of implicitly compiled regular
expression patterns. The number of patterns cached differs between Python versions, with more
recent versions generally keeping 100 items in the cache. When the cache space becomes full, it is

flushed automatically. You could use re.purge() to tune the timing of cache flushes. However, such
tuning is approximate at best: Patterns that are used repeatedly are much better off explicitly
compiled with re.compile() and then used explicitly as named objects.

re.split(pattern=..., string=...[,maxsplit=0])

Return a list of substrings of the second argument string. The first argument pattern is a regular
expression that delimits the substrings. If pattern contains groups, the groups are included in the
resultant list. Otherwise, those substrings that match pattern are dropped, and only the substrings
between occurrences of pattern are returned.

If the third argument maxsplit is specified as a positive integer, no more than maxsplit items are
parsed into the list, with any leftover contained in the final list element.

>>> jnmport re
>>> re.split(r'\s+, '"The Cat in the Hat')

["The', "Cat', "in', "the', 'Hat']

>>> re.split(r'\s+, "The Cat in the Hat', maxsplit=3)
["The', "Cat', "in', "the Hat']

>>> re.split(r'(\s+)', '"The Cat in the Hat')

["The', " ", "Cat', " ", "in", " ', "the', ' ', "Hat']
>>> re.split(r'(a)(t)', "The Cat in the Hat')

["The C, 'a'", '"t', ' intheH, "a, "t', "]

>>> re.split(rta(t)', "The Cat in the Hat")

["The C, "t', " inthe H, "t', ""]

See Aiso: string.split() 142;

re.sub(pattern=..., repl=..., string=...[,count=0])

Return the string produced by replacing every nonoverlapping occurrence of the first argument
pattern with the second argument repl in the third argument string. If the fourth argument count is
specified, no more than count replacements will be made.

The second argument repl is most often a regular expression pattern as a string. Backreferences to
groups matched by pattern may be referred to by enumerated backreferences using the usual
escaped numbers. If backreferences in pattern are named, they may also be referred to using the
form \g<name=> (where name is the name given the group in pat). As well, enumerated
backreferences may optionally be referred to using the form \g<num=>, where num is an integer
between 1 and 99. Some examples:

>>> jnport re
>>> s = 'abcl23 xyz666 | mm-11 def 77

>>> re.sub(r'\b([a-z]+)(\d+)', r'\2\1 :', s)
'123abc : 666xyz : | m-11 77def :'
>>> re.sub(r'\b(?P<l ets>[a-z]+)(?P<nuns>\d+)', r'\g<nunms>\g<l> :.', s)

'123abc : 666xyz : Im-11 77def :'
>>> re.sub(' A, "X, ' AAAAAAAAAA' | count =4)
" XXXXAAAAAA

A variant manner of calling re.sub () uses a function object as the second argument repl. Such a
callback function should take a MatchObject as an argument and return a string. The repl function is
invoked for each match of pattern, and the string it returns is substituted in the result for whatever
pattern matched. For example:

>>> jnport re

>>> sub_cb = | anbda pat: '('+' len(pat.group())'+)" +pat.group()
>>> re.sub(r'\w', sub_cb, 'The length of each word')

"(3)The (6)length (2)of (4)each (4)word

Of course, if repl is a function object, you can take advantage of side effects rather than (or instead
of) simply returning modified strings. For example:

>>> jnport re

>>> def side_effects(match):
Arbitrarily conplicated behavior could go here..
print len(match.group()), match.group()
return match. group() # unchanged match

>>> new = re.sub(r'\w+', side_effects, 'The Iength of each word')
The

| engt h

of

each

wor d

>>> new

"The Il ength of each word'

ArBRADNOW

Variants on callbacks with side effects could be turned into complete string-driven programs (in
principle, a parser and execution environment for a whole programming language could be
contained in the callback function, for example).

See Atso: string.replace() 139;

re.subn(pattern=..., repl=..., string=...[,count=0])

Identical to re.sub () , except return a 2-tuple with the new string and the number of replacements
made.

>>> jnport re

>>> s = '"abcl23 xyz666 | m-11 def77

>>> re.subn(r'\b([a-z]+)(\d+)", r'\2\1 :', s)
(' 123abc : 666xyz : Im-11 77def :', 3)

See Aiso: re.sub() 246;

CLASS FACTORIES

As with some other Python modules, primarily ones written in C, re does not contain true classes
that can be specialized. Instead, re has several factory-functions that return instance objects. The
practical difference is small for most users, who will simply use the methods and attributes of
returned instances in the same manner as those produced by true classes.

re.compile(pattern=...[,flags=...])

Return a PatternObject based on pattern string pattern. If the second argument flags is specified,
use the modifiers indicated by flags. A PatternObject is interchangeable with a pattern string as an

argument to re functions. However, a pattern that will be used frequently within an application
should be compiled in advance to assure that it will not need recompilation during execution.
Moreover, a compiled PatternObject has a number of methods and attributes that achieve effects
equivalent to re functions, but which are somewhat more readable in some contexts. For example:

>>> jnport re
>>> word = re.conpile('[A-Za-z]+'")
>>> word.findall (' The Cat in the Hat')

["The', "Cat', "in', '"the', 'Hat']
>>> re.findall (word, 'The Cat in the Hat')
["The', "Cat', "in', '"the', 'Hat']

re.match(pattern=..., string=...[,flags=...])

Return a MatchObject if an initial substring of the second argument string matches the pattern in
the first argument pattern. Otherwise return None. A MatchObject, if returned, has a variety of
methods and attributes to manipulate the matched pattern—but notably a MatchObject is not itself
a string.

Sincere.match() only matches initial substrings, re.search() is more general. re.search() can be
constrained to itself match only initial substrings by prepending "\A" to the pattern matched.

See Atso: re.search() 249; re.compile.match() 250;

re.search(pattern=..., string=...[,flags=...])

Return a MatchObject corresponding to the leftmost substring of the second argument string that
matches the pattern in the first argument pattern. If no match is possible, return None. A matched
string can be of zero length if the pattern allows that (usually not what is actually desired). A
MatchObject, if returned, has a variety of methods and attributes to manipulate the matched
pattern—but notably a MatchObject is not itself a string.

See Atso: re.match() 248; re.compile.search() 250;

METHODS AND ATTRIBUTES

re.compile.findall(s)

Return a list of nonoverlapping occurrences of the PatternObject in s. Same as re.findall() called
with the PatternObject.

SEE ALSO re.findall()

re.compile.flags

The numeric sum of the flags passed to re.compile() in creating the PatternObject. No formal
guarantee is given by Python as to the values assigned to modifier flags, however. For example:

>>> jnport re
>>>re.l,re.L,re.Mre. S re. X

(2, 4, 8, 16, 64)

>>> c =re.conpile('a, re.l | re.M
>>> c. fl ags

10

re.compile.groupindex

A dictionary mapping group names to group numbers. If no named groups are used in the pattern,
the dictionary is empty. For example:

>>> jnport re

>>> c = re.conpile(r" (\d+)(\[A-Z]+)([a-z]+)")

>>> C. groupi ndex

{}

>>> c=re.conpile(r' (?P<nuns>\d+) (?P<caps>\[A-Z] +) (?P<lws>[a-z]+)")
>>> C. groupi ndex

{"nuns': 1, 'caps': 2, 'lws': 3}

re.compile.match(s [,start [,end]])

Return a MatchObject if an initial substring of the first argument s matches the PatternObject.
Otherwise, return None. A MatchObject, if returned, has a variety of methods and attributes to
manipulate the matched pattern—but notably a MatchObject is not itself a string.

In contrast to the similar function re.match() , this method accepts optional second and third
arguments start and end that limit the match to substring within s. In most respects specifying start
and end is similar to taking a slice of s as the first argument. But when start and end are used, "™"
will only match the true start of s. For example:

>>> jnport re

>>> s = 'abcdefg

>>> ¢ = re.conmpile('b")

>>> print c.match(s, 1)

None

>>> c.match(s[1l:])

<SRE_Mat ch object at 0x10c440>
>>> ¢ = re.conpile('.*f$")

>>> c.match(s[:-1])

<SRE_Mat ch object at 0x116d80>
>>> c. mat ch(s, 1, 6)

<SRE_Mat ch object at 0x10c440>

See Atso: re.match() 248; re.compile.search() 250;

re.compile.pattern

The pattern string underlying the compiled MatchObject.

>>> jnport re

>>> ¢ = re.conpile('*abc$')
>>> c.pattern

' Mabc$'

re.compile.search(s [,start [,end]])

Return a MatchObject corresponding to the leftmost substring of the first argument string that
matches the PatternObject. If no match is possible, return None. A matched string can be of zero
length if the pattern allows that (usually not what is actually desired). A MatchObject, if returned,
has a variety of methods and attributes to manipulate the matched pattern—but notably a
MatchObject is not itself a string.

In contrast to the similar function re.search() , this method accepts optional second and third
arguments start and end that limit the match to a substring within s. In most respects specifying
start and end is similar to taking a slice of s as the first argument. But when start and end are used,
"~ will only match the true start of s. For example:

>>> jnport re

>>> s = 'abcdefg

>>> ¢ =re.conpile('"b")
>>> ¢ = re.conpile('"b")

>>> print c.search(s, 1),c.search(s[1:])

None <SRE Mat ch object at 0x117980>

>>> ¢ = re.conpile('.*f$")

>>> print c.search(s[:-1]),c.search(s,1, 6)

<SRE_Match object at Ox51040> <SRE_Mat ch object at 0x51040>

See Atso: re.search() 249; re.compile.match() 250;

re.compile.split(s [,maxsplit])

Return a list of substrings of the first argument s. If thePatternObject contains groups, the groups
are included in the resultant list. Otherwise, those substrings that match PatternObject are dropped,
and only the substrings between occurrences of pattern are returned.

If the second argument maxsplit is specified as a positive integer, no more than maxsplit items are
parsed into the list, with any leftover contained in the final list element.

re.compile.split() is identical in behavior to re.split() , simply spelled slightly differently. See the
documentation of the latter for examples of usage.

See Atso: re.split() 246;

re.compile.sub(repl, s [,count=0])

Return the string produced by replacing every nonoverlapping occurrence of the PatternObject with
the first argument repl in the second argument string. If the third argument count is specified, no
more than count replacements will be made.

The first argument repl may be either a regular expression pattern as a string or a callback function.
Backreferences may be named or enumerated.

re.compile.sub () is identical in behavior to re.sub() , simply spelled slightly differently. See the
documentation of the latter for a number of examples of usage.

See Aiso: re.sub() 246; re.compile.subn() 252;

re.compile.subn()

Identical to re.compile.sub() , except return a 2-tuple with the new string and the number of
replacements made.

re.compile.subn() is identical in behavior to re.subn() , simply spelled slightly differently. See the
documentation of the latter for examples of usage.

See Aiso: re.subn() 248; re.compile.sub() 251;

Note: The arguments to each "MatchObject” method are listed on the re.match() line, with ellipses
given on the re.search() line. All arguments are identical since re.match() and re.search() return the
very same type of object.

re.match.end([group])
re.search.end ([group])

The index of the end of the target substring matched by the MatchObject. If the argument group is
specified, return the ending index of that specific enumerated group. Otherwise, return the ending
index of group O (i.e., the whole match). If group exists but is the part of an alternation operator
that is not used in the current match, return -1. If re.search.end() returns the same non-negative
value as re.search.start () , then group is a zero-width substring.

>>> jnport re

>>> m= re.search(' (\w) ((\d*)|)(\w+)',"The Cat in the Hat')
>>> m groups()

("The', ' ', None, 'Cat')

>>> mend(0), mend(1l), mend(2), mend(3), mend(4)

(7, 3, 4, -1, 7)

re.match.endpos, re.search.endpos

The end position of the search. If re.compile.search() specified an end argument, this is the value,
otherwise it is the length of the target string. If re.search() or re.match() are used for the search,
the value is always the length of the target string.

See Atso: re.compile.search() 250; re.search() 249; re.match() 248;

re.match.expand(template)
re.search.expand(template)

Expand backreferences and escapes in the argument template based on the patterns matched by
the MatchObject. The expansion rules are the same as for the repl argument to re.sub () . Any
nonescaped characters may also be included as part of the resultant string. For example:

>>> jnport re

>>> m= re.search(' (\w) (\w+)',"'The Cat in the Hat')
>>> mexpand(r'\g<2>: \1')

"Cat : The'

re.match.group([group [,...]])
re.search.group([group [,...]1)

Return a group or groups from the MatchObject. If no arguments are specified, return the entire
matched substring. If one argument group is specified, return the corresponding substring of the
target string. If multiple arguments groupl, group2, ... are specified, return a tuple of
corresponding substrings of the target.

>>> jnport re

>>> m= re.search(r' (\w+)(/)(\d+)"'," " abc/123")
>>> m group()

"abc/ 123

>>> m group(1l)

"abc’

>>> m group(1l,3)

("abc', "123")

See Atso: re.search.groups() 253; re.search.groupdict() 253;

re.match.groupdict([defval])
re.search.groupdict([defval])

Return a dictionary whose keys are the named groups in the pattern used for the match.
Enumerated but unnamed groups are not included in the returned dictionary. The values of the
dictionary are the substrings matched by each group in the MatchObject. If a named group is part
of an alternation operator that is not used in the current match, the value corresponding to that key
is None, or defval if an argument is specified.

>>> jnport re

>>> m= re.search(r' (?P<one>\wt) ((?P<tab>\t)|())(?P<two>\d+)',"'abc 123")
>>> m groupdi ct ()

{"one': "abc', 'tab': None, 'two': '123'}

>>> mgroupdict('---")

{*one': "abc', 'tab': '---', "two': '123'}

See Aiso: re.search.groups() 253;

re.match.groups([defval])
re.search.groups([defval])

Return a tuple of the substrings matched by groups in the MatchObject. If a group is part of an
alternation operator that is not used in the current match, the tuple element at that index is None,
or defval if an argument is specified.

>>> jnport re

>>> m=re.search(r' (\w+) ((\t)|(/))(\d+)'," abc/123")
>>> m groups()

("abc', /', None, '/', '123")

>>> mgroups('---")

("abc', /", "---t, "t 1123")

See Aiso: re.search.group() 253; re.search.groupdict() 253;

re.match.lastgroup, re.search.lastgroup

The name of the last matching group, or None if the last group is not named or if no groups
compose the match.

re.match.lastindex, re.search.lastindex

The index of the last matching group, or None if no groups compose the match.

re.match.pos, re.search.pos

The start position of the search. If re.compile.search() specified a start argument, this is the value,
otherwise it is 0. If re.search() or re.match() are used for the search, the value is always 0.

See Atso: re.compile.search() 250; re.search() 249; re.match() 248;

re.match.re, re.search.re

The PatternObject used to produce the match. The actual regular expression pattern string must be
retrieved from the PatternObject's pattern method:

>>> jnport re

>>> m=re.search('a',"' The Cat in the Hat')
>>> mre.pattern

"a

re.match.span ([group])
re.search.span([group])

Return the tuple composed of the return values of re.search.start (group) and re.search.end
(group). If the argument group is not specified, it defaults to O.

>>> jnmport re

>>> m= re.search(' (\w+) ((\d*)|)(\w+)',"The Cat in the Hat")
>>> m groups()

("The', ' ", None, 'Cat')

>>> m span(0), mspan(1l), mspan(2), mspan(3), mspan(4)
((0, 7), (0, 3), (3, 4, (-1, -1), (4 7))

re.match.start ([group])
re.search.start ([group])

The index of the end of the target substring matched by the MatchObject. If the argument group is
specified, return the ending index of that specific enumerated group. Otherwise, return the ending
index of group O (i.e., the whole match). If group exists but is the part of an alternation operator
that is not used in the current match, return -1. If re.search.end() returns the same non-negative
value as re.search.start() , then group is a zero-width substring.

>>> jnport re

>>> m= re.search(' (\w) ((\d*)|)(\w+)',"The Cat in the Hat')
>>> m groups()

("The', ' ', None, 'Cat')

>>> mstart(0), mstart(1l), mstart(2), mstart(3), mstart(4)
(0, 0, 3, -1, 4)

re.match.string, re.search.string

The target string in which the match occurs.

>>> jnmport re

>>> m= re.search('a',"'The Cat in the Hat")
>>> mstring

"The Cat in the Hat'

EXCEPTIONS

re.error

Exception raised when an invalid regular expression string is passed to a function that would
produce a compiled regular expression (including implicitly).

~ 4 Frevious | Hext h_
Team-Fly x

Top

- 4 Prawious MNext b
Team-Fly a

Text Processing in Python
By David Mertz

Table of Contents

Chapter 4. Parsers and State Machines

All the techniques presented in the prior chapters of this book have something in common,
but something that is easy to overlook. In a sense, every basic string and regular expression
operation treats strings as homogeneous. Put another way: String and regex techniques
operate on flat texts. While said techniques are largely in keeping with the "Zen of Python"
maxim that "Flat is better than nested,” sometimes the maxim (and homogeneous
operations) cannot solve a problem. Sometimes the data in a text has a deeper structure
than the linear sequence of bytes that make up strings.

It is not entirely true that the prior chapters have eschewed data structures. From time to
time, the examples presented broke flat texts into lists of lines, or of fields, or of segments
matched by patterns. But the structures used have been quite simple and quite regular.
Perhaps a text was treated as a list of substrings, with each substring manipulated in some
manner—or maybe even a list of lists of such substrings, or a list of tuples of data fields. But
overall, the data structures have had limited (and mostly fixed) nesting depth and have
consisted of sequences of items that are themselves treated similarly. What this chapter
introduces is the notion of thinking about texts as trees of nodes, or even still more
generally as graphs.

Before jumping too far into the world of nonflat texts, | should repeat a warning this book
has issued from time to time. If you do not need to use the techniques in this chapter, you
are better off sticking with the simpler and more maintainable techniques discussed in the
prior chapters. Solving too general a problem too soon is a pitfall for application
development—it is almost always better to do less than to do more. Fullscale parsers and
state machines fall to the "more™" side of such a choice. As we have seen already, the class
of problems you can solve using regular expressions—or even only string operations—is
quite broad.

There is another warning that can be mentioned at this point. This book does not attempt to
explain parsing theory or the design of parseable languages. There are a lot of intricacies to
these matters, about which a reader can consult a specialized text like the so-called "Dragon
Book"—Aho, Sethi, and Ullman's Compilers: Principle, Techniques and Tools (Addison-
Wesley, 1986; ISBN: 0201100886)—or Levine, Mason, and Brown's Lex & Yacc (Second
Edition, O'Reilly, 1992; ISBN: 1-56592-000-7). When Extended Backus-Naur Form (EBNF)
grammars or other parsing descriptions are discussed below, it is in a general fashion that
does not delve into algorithmic resolution of ambiguities or big-O efficiencies (at least not in
much detail). In practice, everyday Python programmers who are processing texts—but who
are not designing new programming languages—need not worry about those parsing
subtleties omitted from this book.

4 Prewvious MNext b
Team-Fly - 5
Top

~— 4 Pravious | Hext b |
Team-Fly a

Text Processing in Python
By David Mertz

{ Table of Contents

Chapter 4. Parsers and State Machines

4.1 An Introduction to Parsers

4.1.1 When Data Becomes Deep and Texts Become Stateful

Regular expressions can match quite complicated patterns, but they fall short when it comes
to matching arbitrarily nested subpatterns. Such nested subpatterns occur quite often in
programming languages and textual markup languages (and other places sometimes). For
example, in HTML documents, you can find lists or tables nested inside each other. For that
matter, character-level markup is also allowed to nest arbitrarily—the following defines a
valid HTML fragment:

>>> s = '"'""<p>Plain text, <i>italicized phrase,
<i>italicized subphrase</i> bold
subphrase</i>, <i>other italic
phrase</i></p>""

The problem with this fragment is that most any regular expression will match either less or
more than a desired <i> element body. For example:

>>> jtal ="' (?2sx)<i > +</i>""
>>> for phrs in re.findall(ital, s):
print phrs, "\n----- '

<i>italicized phrase,
<i>talicized subphrase</i> bold
subphrase</i>, <i>other italic
phrase</i>

>>> jtal2 = r' " (?sxX)<i > +?</i >
>>> for phrs inre.findall(ital2, s):
print phrs, '\n----- '

<i>italicized phrase,
<i>talicized subphrase</i>
<i>other italic
phrase</i>

What is missing in the proposed regular expressions is a concept of state. If you imagine
reading through a string character-by-character (which a regular expression match must do
within the underlying regex engine), it would be useful to keep track of "How many layers of
italics tags am | in?" With such a count of nesting depth, it would be possible to figure out
which opening tag <i> a given closing tag </i> was meant to match. But regular
expressions are not stateful in the right way to do this.

You encounter a similar nesting in most programming languages. For example, suppose we
have a hypothetical (somewhat BASIC-like) language with an IF/THEN/END structure. To
simplify, suppose that every condition is spelled to match the regex cond\d+, and every
action matches act\d+. But the wrinkle is that IF/THEN/END structures can nest within each
other also. So for example, let us define the following three top-level structures:

>>> g = '
| F condl THEN act1 END
| F cond2 THEN
| F cond3 THEN act 3 END
END
| F cond4 THEN
act 4
END

As with the markup example, you might first try to identify the three structures using a
regular expression like:

>>> pat = r'"'"' (?sXx)

IF \s+

cond\ d+ \s+

THEN \ s+

act\d+ \s+

END "'

>>> for stm in re.findall(pat, s):
print stnt, '

| F condl THEN act1 END

| F cond4 THEN
act4
END

This indeed finds three structures, but the wrong three. The second top-level structure
should be the compound statement that used cond2, not its child using cond3. It is not too
difficult to allow a nested IF/THEN/END structure to optionally substitute for a simple action;
for example:

>>> pat2 = """ (?sx)(
|F \s+
cond\ d+ \s+

THEN \ s+
((IF\s+ cond\d+ \s+ THEN \s+ act\d+ \s+ END)
| (act\d+)
) \s+
END
)
>>> for stm in re.findall(pat2, s):
print stmt[0], "\n----- '

| F condl THEN act1 END
| F cond2 THEN
| F cond3 THEN act 3 END
END
| F cond4 THEN
act 4
END

By manually nesting a "first order" IF/THEN/END structure as an alternative to a simple
action, we can indeed match the example in the desired fashion. But we have assumed that
nesting of IF/THEN/END structures goes only one level deep. What if a "second order"
structure is nested inside a "third order" structure—and so on, ad infinitum? What we would
like is a means of describing arbitrarily nested structures in a text, in a manner similar to,
but more general than, what regular expressions can describe.

4.1.2 What Is a Grammar?

In order to parse nested structures in a text, you usually use something called a "grammar."
A grammar is a specification of a set of "nodes" (also called "productions') arranged into a
strictly hierarchical "tree" data structure. A node can have a name—and perhaps some other
properties—and it can also have an ordered collection of child nodes. When a document is
parsed under a grammar, no resultant node can ever be a descendent of itself; this is
another way of saying that a grammar produces a tree rather than a graph.

In many actual implementations, such as the famous C-based tools lex and yacc, a grammar
is expressed at two layers. At the first layer, a "lexer" (or "tokenizer") produces a stream of
"tokens" for a "parser" to operate on. Such tokens are frequently what you might think of as
words or fields, but in principle they can split the text differently than does our normal idea
of a "word." In any case tokens are nonoverlapping subsequences of the original text.
Depending on the specific tool and specification used, some subsequences may be dropped
from the token stream. A "zero-case" lexer is one that simply treats the actual input bytes
as the tokens a parser operates on (some modules discussed do this, without losing
generality).

The second layer of a grammar is the actual parser. A parser reads a stream or sequence of
tokens and generates a "parse tree" out of it. Or rather, a tree is generated under the
assumption that the underlying input text is "well-formed" according to the grammar—that
is, there is a way to consume the tokens within the grammar specification. With most parser
tools, a grammar is specified using a variant on EBNF.

An EBNF grammar consists of a set of rule declarations, where each rule allows similar
quantification and alternation as that in regular expressions. Different tools use slightly
different syntax for specifying grammars, and different tools also differ in expressivity and
available quantifiers. But almost all tools have a fairly similar feel in their grammar
specifications. Even the DTDs used in XML dialect specifications (see Chapter 5) have a very

similar syntax to other grammar languages—which makes sense since an XML dialect is a
particular grammar. A DTD entry looks like:

<! ELEMENT body ((exanple-colum | image-colum)?, text-colum) >

In brief, under the sample DTD, a <body> element may contain either one or zero
occurrences of a "first thing"—that first thing being either an <example-column=> or an
<image-column=>. Following the optional first component, exactly one <text-column> must
occur. Of course, we would need to see the rest of the DTD to see what can go in a <text-
column>, or to see what other element(s) a <body> might be contained in. But each such
rule is similar in form.

A familiar EBNF grammar to Python programmers is the grammar for Python itself. On many
Python installations, this grammar as a single file can be found at a disk location like
[...]/Python22/Doc/ref/grammar.txt. The online and downloadable Python Language
Reference excerpts from the grammar at various points. As an example, a floating point
number in Python is identified by the specification:

EBNF-style description of Python floating point

f | oat nunber .. = pointfloat | exponentfl oat

poi nt f | oat ;= [intpart] fraction | intpart "."
exponent f | oat = (intpart | pointfloat) exponent
I nt part = digt+

fraction ="." digit+

exponent o= ("e" | "E") [+ | "-"] digit+
digit o= "0 "9

The Python grammar is given in an EBNF variant that allows considerable expressivity. Most
of the tools this chapter discusses are comparatively limited (but are still ultimately capable
of expressing just as general grammars, albeit more verbosely). Both literal strings and
character ranges may be specified as part of a production. Alternation is expressed with "|".
Quantifications with both "+" and "*" are used. These features are very similar to those in
regular expression syntax. Additionally, optional groups are indicated with square brackets
' and "1, and mandatory groups with parentheses. Conceptually the former is the same
as the regex "?" quantifier.

Where an EBNF grammar goes beyond a regular expression pattern is in its use of named
terms as parts of patterns. At first glance, it might appear possible simply to substitute
regular expression patterns for named subexpressions. In fact, in the floating point pattern
presented, we could simply do this as:

Regular expression to identify a floating point

pat =r""" (?X)
(# exponent f | oat
(# intpart or pointfloat
pointfl oat
(\d+)?[.]\d+ # optional intpart with fraction

\d+[.] # intpart with period
) # end pointfl oat
I
\d+ # intpart

) # end intpart or pointfloat

[eE][+-]?\d+ # exponent

) # end exponentfl oat

|

(# pointfl oat
(\d+)?[.]\d+ # optional intpart with fraction
|
\d+[.] # intpart with period

) # end poi ntfl oat

As a regular expression, the description is harder to read, even with the documentation
added to a verbose regex. The EBNF grammar is more or less self-documenting. Moreover,
some care had to be taken about the order of the regular expression—the exponentfloat
alternative is required to be listed before the pointfloat alternative since the latter can form
a subsequence of the latter. But aside from the need for a little tweaking and
documentation, the regular expression above is exactly as general—and exactly
equivalent—to the Python grammar for a floating point number.

You might wonder, therefore, what the point of a grammar is. It turns out that a floating
point number is an unusually simple structure in one very specific respect. A floathumber
requires no recursion or self-reference in its definition. Everything that makes up a
floatnumber is something simpler, and everything that makes up one of those simpler
components is itself made up of still simpler ones. You reach a bottom in defining a Python
floating point number.

In the general case, structures can recursively contain themselves, either directly or by
containing other structures that in turn contain the first structures. It is not even entirely
absurd to imagine floating point numbers with such a grammar (whatever language had
them would not be Python, however). For example, the famous number a "googol" was
defined in 1938 by Edward Kasner as 10 to the 100th power (otherwise called "10
dotrigintillion™). As a Python floating point, you could write this as 1e100. Kasner also
defined a "googolplex™” as 10 to the googol power (a number much larger than anyone needs
for any practical reason). While you can create a Python expression to name a
googolplex—for example, 10**1e100—it is not difficult to conceive a programming language
that allowed the term 1e1e100 as a name for a googolplex. By the way: If you try to
actuallycompute a googolplex in Python (or any other programming language), you will be
in for disappointment; expect a frozen computer and/or some sort of crash or overflow. The
numbers you can express in most language grammars are quite a bit more numerous than
those your computer can actually do anything with.

Suppose that you wanted to allow these new "extended" floating point terms in a language.
In terms of the grammar, you could just change a line of the EBNF description:

exponent ::= ("e" | "E") ["+" | "-"] floatnunber

In the regular expression, the change is a problem. A portion of the regular expression
identifies the (optional) exponent:

[eE] [+-]?\d+ # exponent

In this case, an exponent is just a series of digit characters. But for "extended" floating point
terms, the regular expression would need to substitute the entire pat regular expression in
place of \d+. Unfortunately, this is impossible, since each replacement would still contain the
insufficient \d+ description, which would again require substitution. The sequence of
substitutions continues ad infinitum, until the regular expression is infinitely long.

4.1.3 An EBNF Grammar for IF/THEN/END Structures

The IF/THEN/END language structure presented above is a more typical and realistic
example of nestable grammatical structures than are our "extended" floating point numbers.
In fact, Python—along with almost every other programming language—allows precisely
such if statements inside other if statements. It is worthwhile to look at how we might
describe our hypothetical simplified IF/THEN/END structure in the same EBNF variant used
for Python's grammar.

Recall first our simplified rules for allowable structures: The keywords are IF, THEN, and
END, and they always occur in that order within a completed structure. Keywords in this
language are always in all capitals. Any whitespace in a source text is insignificant, except
that each term is separated from others by at least some whitespace. Every condition is
spelled to match the regular expression cond\d+. Every IF "body" either contains an action
that matches the regular expression act\d+, or it contains another IF/THEN/END structure.
In our example, we created three IF/THEN/END structures, one of which contained a nested
structure:

| F condl THEN act1 END
| F cond2 THEN
| F cond3 THEN act 3 END
END
| F cond4 THEN
act 4
END

Let us try a grammar:

EBNF grammar for IF/THEN/END structures

i f_expr o= "IF" ws cond ws "THEN' ws action ws "END'
whitechar ::=" " | "\t" | "\n" | "\r" | "\f" | "\v"

WS .= whitechar+

digit ="0"..."9"

nunber =digit+

cond .= "cond" nunber

action = sinpleact | if_expr

si npl eact = "act" nunber

This grammar is fairly easy to follow. It defines a few "convenience" productions like ws and
number that consist of repetitions of simpler productions. whitechar is defined as an explicit
alternation of individual characters, as is digit for a continuous range. Taken to the extreme,
every production could actually be included in a much more verbose if_expr production—you
would just substitute all the right-hand sides of nested productions for the names in the
if_expr production. But as given, the grammar is much easier to read. The most notable
aspect of this grammar is the action production, since an action can itself recursively contain
an if_expr.

For this problem, the reader is encouraged to develop grammars for some more robust
variations on the very simple IF/THEN/END language we have looked at. As is evident, it is
difficult to actually do much with this language by itself, even if its actions and conditions are
given semantic meaning outside the structure. Readers can invent their own variations, but
a few are proposed below.

4.1.4 Pencil-and-Paper Parsing

To test a grammar at this point, just try to expand each successive character into some
production that is allowed at that point in the parent production, using pencil and paper.
Think of the text of test cases as a tape: Each symbol either completes a production (if so,
write the satisfied production down next to the subsequence), or the symbol is added to the
"unsatisfied register.” There is one more rule to follow with pencil and paper, however: It is
better to satisfy a production with a longer subsequence than a shorter one. If a parent
production consists of child productions, the children must be satisfied in the specified order
(and in the quantity required). For now, assume only one character of lookahead in trying to
follow this rule. For example, suppose you find the following sequence in a test case:

"I F condl..."

Your steps with the pencil would be something like this:

1. Read the "I"—no production is satisfied.

2. Read the "F", unsatisfied becomes "I"-"F". Note that "I'"-"F" matches the literal term in
if_expr (a literal is considered a production). Since the literal term contains no
quantifiers or alternates, write down the "IF" production. Unsatisfied becomes empty.

3. Read the space, Unsatisfied becomes simply a space. Space satisfies the production
ws, but hold off for a character since ws contains a quantifier that allows a longer
substring to satisfy it.

4. Read the second space, unsatisfied becomes space-space. Space-space satisfies the
production ws. But again hold off for a character.

5. Read the third space, unsatisfied becomes space-space-space. This again satisfies the
production ws. But keep holding off for the next character.

6. Read the "c", unsatisfied becomes "space-space-space-c". This does not satisfy any
production, so revert to the production in 5. Unsatisfied becomes "c".

7. Et cetera.

If you get to the last character, and everything fits into some production, the test case is
valid under the grammar. Otherwise, the test case is nongrammatical. Try a few
IF/THEN/END structures that you think are and are not valid against the provided grammar.

4.1.5 Exercise: Some variations on the language

1. Create and test an IF/THEN/END grammar that allows multiple actions to occur
between the THEN and the END. For example, the following structures are valid under
this variation:

| F condl THEN actl1l act2 act3 END
| F cond2 THEN

| F cond3 THEN act3 END

| F cond4 THEN act4 END
END

| F cond5 THEN | F cond6é THEN act6 act7 END act8 END

2. Create and test an IF/THEN/END grammar that allows for arithmetic comparisons of
numbers as conditions (as an enhancement of variation 1, if you wish). Specifically, a
comparison consists of two numbers with one of "<", ">", or "=" between them. There
might or might not be any whitespace between a comparison symbol and surrounding
numbers. Use your judgment about what a number consists of (the Python floating
point grammar might provide an example, but yours could be simpler).

3. Create and test an IF/THEN/END grammar that includes a loop expression as a valid
action. A loop consists of the keyword LOOP, followed by a positive integer, followed by
action(s), and terminated by the END keyword. Loops should be considered actions,
and therefore ifs and loops can be contained inside one another; for example:

| F condl THEN
LOOP 100
| F cond2 THEN
act 2
END
END
END

You can make this LOOP-enhanced grammar an enhancement of whichever variant you
wish.

4. Create and test an IF/THEN/END grammar that includes an optional ELSE keyword. If
an ELSE occurs, it is within an IF body, but ELSE might not occur. An ELSE has its own
body that can contain action(s). For example (assuming variant 1):

| F condl THEN
actl
act 2
ELSE
act 3
act 4
END

5. Create and test an IF/THEN/END grammar that may include zero actions inside an IF,
ELSE, or LOOP body. For example, the following structures are valid under this variant:

| F condl THEN
ELSE act 2
END

*

| F condl THEN
LOOP 100 END

ELSE

END

- 4 Pravious MNext k
Team-Fly x

Top

4 Prewious Next b

o
Team-Fly o

Text Processing in Python
By David Mertz

Table of Contents

Chapter 4. Parsers and State Machines

4.2 An Introduction to State Machines

State machines, in a theoretical sense, underlay almost everything computer- and programming-
related. But a Python programmer does not necessarily need to consider highly theoretical matters in
writing programs. Nonetheless, there is a large class of ordinary programming problems where the
best and most natural approach is to explicitly code a state machine as the solution. At heart, a state
machine is just a way of thinking about the flow control in an application.

A parser is a specialized type of state machine that analyzes the components and meaning of
structured texts. Generally a parser is accompanied by its own high-level description language that
describes the states and transitions used by the implied state machine. The state machine is in turn
applied to text obeying a "grammar."

In some text processing problems, the processing must be stateful : How we handle the next bit of
text depends upon what we have done so far with the prior text. In some cases, statefulness can be
naturally expressed using a parser grammar, but in other cases the state has more to do with the
semantics of the prior text than with its syntax. That is, the issue of what grammatical properties a
portion of a text has is generally orthogonal to the issue of what predicates it fulfills. Concretely, we
might calculate some arithmetic result on numeric fields, or we might look up a name encountered in
a text file in a database, before deciding how to proceed with the text processing. Where the parsing
of a text depends on semantic features, a state machine is often a useful approach.

Implementing an elementary and generic state machine in Python is simple to do, and may be used
for a variety of purposes. The third-party C-extension module mx.TextTools , which is discussed later
in this chapter, can also be used to create far faster state machine text processors.

4.2.1 Understanding State Machines

A much too accurate description of a state machine is that it is a directed graph, consisting of a set of
nodes and a set of transition functions. Such a machine "runs" by responding to a series of events;
each event is in the domain of the transition function of the "current” node, where the range is a
subset of the nodes. The function return is a "next” (maybe self-identical) node. A subset of the
nodes are end-states; if an end-state is reached, the machine stops.

An abstract mathematical description—like the one above—is of little use for most practical
programming problems. Equally picayune is the observation that every program in an imperative
programming language like