Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Mendel Cooper

<thegrendel .abs@gmail.com>
6.3.
30 Apr 2011

Revision History

Revision 6.1 30 Sep 2009 Revised by: mc
'BUFFALOBERRY' release: Minor Update.

Revision 6.2 17 Mar 2010 Revised by: mc
'ROWANBERRY' release

Revision 6.3 27 Apr 2011 Revised by: mc

'SWOZZLEBERRY release

This tutorial assumes no previous knowledge of scripting or programming, but progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

Dedication

For Anita, the source of all the magic

mailto:thegrendel.abs@gmail.com

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Shell Programming!

hapter 2. Starting Off With a Sha-Ban

Part 2. Basics

Chapter 3. Special Characters

29

Chapter 4. Introduction to Variables and Parameters

4.1. Variable SUDSHLULION.uueeiieeeieeteeeeeeeeeeeeeeeeeererereeeeeeeeeeseseeeeeees

Chapter 5. Quoting

... 29
... 32
... 33
... 34

5.1. Quoting Variables.......ceeoueeierieiieiierie ettt
5.2, BSCAPIME .ttt ettt sttt sttt sbe e bt e bt e b e bt e naeas

S0

Chapter 6. Exit and Exit Status,
Chapter 7. Tests

53

T, TSt COMSIITICES . ..vvuuuuueeeeeieeeeiitiee e et e e ettt e e e e e e ettt e e e e e e eeessaaaanaans

Chapter 8. Operations and Related Topics

... 53
... 60
... 64
... 69
... 70

71

8. 1. OPEIALOIS . uveeeuvreetreeiteeniteeeteesbeeebee ettt enbaeesabeesabeesabeesbeeebeeenareesareesares
8.2. NUMETICAl CONSLANLS ..evvviviiiiiiiieieieieeeeeeeeee et ee et eeereeeseeeeseeeeeesnes

8.3. The Double-Parentheses CONSIIUCE..........ccoveviiiieiiiiiieieeeeeeeeeeeeeeeeeeeeans
8.4. Operator PreCedenCe. .. .covrerureeriiiiiieeiieeniieesiee ettt

Part 3. Bevond the Basics.

... 71
... 77
... 79
... 80

83

Chapter 9. Another Look at Variables

9.1. Internal VariableS.....ccuvvviiiiiiiiieeeeie e
9.2. Typing variables: declare Or tyPESEL........ceerveerueeeerrieerieeieeieeieeeeeiens

9.2.1. Another use for deClare...........ooovuvvveeeiiiiiiiieiiieeeeeeeeee e
9.3. SRANDOM: generate random inteZeL.......oververeererrerrereeeereerereereeeerenes

Chapter 10. Manipulating Variables

10.1. Manipulating STNGSccoeerreerueerieerieenieenieenieesieeniee st et e sieesbe e e e naeas

10.1.1. Manipulating strings using awk..........cecoeereereeneeneeneeneeneeneenn
10.1.2. Further REfEreNCEoooveeeeeeeeeeeeeeeeeeeeeeee e

10.2. Parameter SUDSUEULION. ...vvvvvereeiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeaes

Chapter 11. Loops and Branches

Advanced Bash-Scripting Guide

Table of Contents

Chapter 12. Command Substitution
Chapter 13. Arithmetic Expansion

Chapter 14. Recess Time,
Part 4. Commands

Chapter 15. Internal Commands and Builtins
15.1. Job Control Commands

Chapter 16. External Filters, Programs and Commands

16.1. BASIC COMIMANUS. .. .vvvveeeieieeeeieeeseeesesesesesesasssssssssssessssnsssssssssssessssesanes

16.2. Complex Commands

16.3. Time / Date Commands

Chapter 17. System and Administrative Commands
17.1. Analyzing a System Script

Part 5. Advanced Topics

16.4. Text Processing Commands

16.5. File and Archiving Commands.
16.6. Communications Commands

16.7. Terminal Control Commands

16.8. Math COMIMIANGASuvvveeeeeeeeeeeeieeieieeeee ettt et eeeee et ettt e ettt eeeeeeseeeetstesesesesssessssssssssssasssssssssssssssssssssesenes

135
135
148
149
152

161

167

168

169

177
206

211
211
216
227
231
253
271
285
287
297

312

341

343

Chapter 18. Regular Expressions.

345

18.1. A Brief Introduction to Regular Expressions
18.2. GIODDIIG. . veuveeienteteetteeietee et e et et et et et e et e st e seseeene e seeseeatensanseeseensenseaseeneensansesneensansassesnnansans

345
349

351

Chapter 19. Here Documents

1.1, HET® STIIMES. .o euveeuteetieteeteeete et et et et e st e et e bt e bt et e e st e e sbeesb e e s bt e bt e sbeesbeesbeesbeenbteabeesbeesaeesaeesaeenas

Chapter 20. I/0 Redirection

361

365

Chapter 21. Subshells

20.3. ADDICATIOMS v veeuteeiteeiteette et te et et ettt e st e e st eshteshteeutesbtesbeesbeesbeesheesbeeebee bt e bt e bt e sbeesbee bt ebeebeenbean

368
371
376

378

Advanced Bash-Scripting Guide

Table of Contents

Chapter 22. Restricted Shells 383
Chapter 23. Process Substitution 385
Chapter 24. Functions 390
24.1. Complex Functions and Function COMPIEXITIES eeuverveertierierieniieniieniienieenieesieesieenteesieeneeeneeas 394

24,2, T.0CAL VATTADIES. .. vttt e e e e e e e et e e e e e st e e e e e e e s e sasasssssasssssasasasasanes 404

24.2.1. Local variables and TECUISION. .. .uuuueeeeeeieeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeesereeerereeeseeseeeseseeeseseeseses 406

24.3. Recursion Without 1ocal VariableS.coouvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e aaeaaaeaeaees 408
Chapter 25. Aliases 412
Chapter 26. List Constructs. 415
Chapter 27. Arrays 418
Chapter 28. Indirect References 447
Chapter 29. /dev and /proc 451
20 . L LBV e e e e e e e e e ————eeesaaa——————eeeeeaa——————eeesaaaar———aaeeeaaar——aaeesaanann 451

A I L 0] x0T RO ORORORPRPPPPPRPPPPPRRt 454
Chapter 30. Network Programming 460
hapter 31. Of Zeros and Nulls 463
Chapter 32. Debugging 467
Chapter 33. Options 477
Chapter 34. Gotchas 480
Chapter 35. Scripting With Style 489
35.1. Unofficial Shell Scripting StYIEShEet.......ccueviiiiiiiiiieieiete ettt 489
Chapter 36. Miscellany. 492
36.1. Interactive and non-interactive shells and SCIIPES......c.uereerierirriienienientereeree st 492

36.2. SHEIL WIADDETS . .veuteeuteeitertieriteetteeite et e st te st testtestteeutesutesbtesbeesbeesbeesbeeabee bt enbeenbeesbeesbeanbeenbeabeensean 493

36.3. Tests and Comparisons: AIEIMALIVES.cceterierierienieniertiesttesteesieesteesttenbeesbeesbeesbeesbeesbeenbeeneeas 498

36.4. Recursion: a script Calling TESEIE.......couiiiiiiiiiiiiee et 499

RO TR T ©10) (o] u 41 1 oAl T3 4 10 1 USSR 501

36.6. ODUIMIZATIONS -+ vveeuteuteettertiestteetteetteette st testtesttesttesutesutesbeesbtesbeesbeeebeeabeenbeenbeenbeesbeesbeanbeenbeanbeensean 514

36.7. ASSOTEEA TIPS, ..ttt ettt ettt e b e b e e s bt e s bt e s bt e sbe e s bt e bt e bt e bt e sbeesbeenbeenbeebeenbean 515

36.7.1. Ideas for more POWETTUL SCIIDESvevvtertterierieetierttertte st e st et et et ee et e e sbeesbee b enbeenbeenbeas 515

B0.7.2. WIAGEES ...ttt h et b e s bt e sb e e sbe e s bt e s bt e s bt e bt e beesbe e bt e nbe e be e beebean 525

36.8. SECUTLILY ISSUES. .. .eeuiiuiiiiieitie ittt ettt sttt et e st e bt e s bt e s bt e sbeesheesbe e bt e bt enbeesbeesbee bt ebeabeeneean 527

36.8.1. Infected Shell SCIIDES. . ..ueiterieeieiiesite ettt sttt et e st e b e b e e bt e sbeesbe e beebeenbean 527

36.8.2. Hiding Shell SCript SOUICE ... ccuveiutiiieriieiiieeiie ettt ettt ettt et e sbe e sbeeneeas 528

Advanced Bash-Scripting Guide

Table of Contents
Chapter 36. Miscellany

36.8.3. Writing Secure Shell SCIDLS.ueitiiterieiieiieeierte ettt ettt ettt e st e b b e e b enaeas 528

36.9. POrtabilify ISSUESueeueeiuiertieriieetie ettt sttt ettt et et esb e e s bt e sbeesbe e bt e sbee s bt esbeesbeesbeenbeenbeebeeneean 528

30.9. 1. A TSt SUILE ...eeeeieieeeeeee et aaaaaeaeaeeeaeeeseeeeeseseseseesesaseseeeeeeeeeees 529

36.10. Shell Scripting Under WINAOWS.........couiiterieniiiieniiesiterite sttt ettt siee st e st see e b e b e sbeesbeeneeas 530
Chapter 37. Bash, versions 2, 3, and 4 531
37 1. BaASH, VEISIOM 2.ttt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesssesessssssssssnssssssssssssssssssssssasssssanes 531

37.2. BaASH, VEISIOM 3..uuuiiiiiiiiieiiiieeeieiee ettt ettt ittt eeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesssesssasssssssnssasssssssssssssssssssasssssanes 535

37.2. 1. BaSh, VEISION 3. L iiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e e e e e et et e e aeeeseseeeseeeseseeseeaseseeeeeseeeens 538

37.2.2. BaSh, VEISION 3.2 . i iiiiiieieeeeeeeeeeeeee e e e e e e et et e e aeaeseeeeeseeeseseesesaseseseeeeeeeens 538

373, BaASH, VEISIOM 4 ...ttt ettt e e e e e e e e e e e e e et eeeeeeeeeeeesesesesesesasssssssnssasssssssssssssssssssasssssanes 539

37.3. 1. BaSh, VEISION 4. L. ccoiiiiiiiieeeeeeeeeeeeeeee e a e et et et e e aeseeeeeseeeseseaseeaseseeeeeeaeeess 546

37.3.2. BaASH, VEISION 4.2 e e eiiieeieeeeeeeeeeeeeeee et a e et st et aeae s e e e s e aeeeaeseesesasesaeeeeeaeaens 547

Chapter 38. Endnotes 550
38 1. AULNOT'S INOLE. ...ttt ettt ettt et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesesessssssssssssssssssssssssssssssssssasesssanes 550

38. 2. ADOUL TNE AULROTL. ...ttt e e e e et e e e e e e e e e e e e e e e e e s e s sasasssasasssssasasasasanes 550

38.3. Where t0 GO FOr HelD ... ueiuieiiiiieeieee ettt 550

38.4. Tools Used t0 Produce ThiS BOOK......cciviiiiiiiiiiiiiiiiiiiiiie et aaeaeaeaeanes 551

B384 1 HATAWATE.coeoeeiiieiiiieieeeeeeeeeeeeeeeeeee ettt a e et et e e aeseeeeeseeeseseasesasaeeaeeeseeaens 551

38.4.2. SOftware and PIINEWATE.cooeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeseeeeeseeeseseeseseseseeeeeseeeess 551

LTS 511« 11 1RO ORORRRPRPRPPPRPPPPPRRt 551

380, DDISCIAIITIEE . ettt ettt ettt ettt e e et eeeeeeeeeeeeeeeeeeeeeseseesesesasasesassssssssssnssasssssssssssssssssssasesasanes 553
Bibliography. 554
Appendix A. Contributed Scripts 562
Appendix B. Reference Cards 761
Appendix C. A Sed and Awk Micro-Primer 766
L S e et e e e e e e ————e et e e e a——————eeeeeaaa————eeesaaan————eeesaaar———aeaaaan 766

G AW K oottt et ettt et et et e aaat et et ataaaaaararerarrrar——————————————— 769
Appendix D. Exit Codes With Special Meanings 772
Appendix E. A Detailed Introduction to and Redirection 773
Appendix F. Command-Line Options 775
E.1. Standard Command-Line OPHOMS.......ceueeteiieiieiiieiie ettt sttt sttt sate st e st e s 775

E.2. Bash Command-Line ODHOMS.cutrttrterieeieiieeite ettt ettt st e st e st st st e st e satesaee e 776
Appendix G. Important Files 778
Appendix H. Important System Directories 779

Advanced Bash-Scripting Guide

Table of Contents

781

784

788

789

804

808

808
810

820

823

824

825

Appendix I. An Introduction to Programmable Completion
Appendix J. Localization
Appendix K. History Commands
Appendix L. Sample .bashrc and .bash profile Files
Appendix M. Converting D Batch Files to Shell Scripts
Appendix N. Exercises.
Nl ANALYZING SCIIPES . .tteuteeuteeuteeiieete ettt ettt ettt et et e et e eat e et e satesaeesaeesatesatesstesaeesaeesueesatesatesaeenas
INL2. WIIINE SCIIDES . e vteeuteeuteeiieeite ettt et eete et et sa e ee e atesatesate s st e sabesaeesaeesaeesatessbesaeesmeesueesaeesatesaeenas
Appendix O. Revision Histor
Appendix P. Download and Mirror Sites
Appendix Q. To Do List
Appendix R. Copyright
Appendix S. ASCII Table
DA X i e e ettt eeeetttta—————————atttttta—————————ertttat—————
N O S ettt ettt ettt et e ettt e e e e e e e et ettt eeeeee ettt tua e eeeettat b ——————aaeetttta— e aettttrra———_

Chapter 1. Shell Programming!

No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /et c/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since the scripts can be built in bite-sized sections and there is only
a fairly small set of shell-specific operators and options [1] to learn. The syntax is simple and straightforward,
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

In the 1970s, the BASIC language enabled anyone reasonably computer
to write programs on an early generation of microcomputers. Decades
scripting language enables anyone with a rudimentary knowledge of I
on much more powerful machines.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. This way, the
structure of the application can be tested and played with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not. . . .

When not to use shell scripts

e Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)

¢ Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

¢ Cross-platform portability required (use C or Java instead)

Chapter 1. Shell Programming! 1

Advanced Bash-Scripting Guide

e Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

® Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

¢ Need native support for multi-dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate / manipulate graphics or GUIs

¢ Need direct access to system hardware

¢ Need port or socket I/O

¢ Need to use libraries or interface with legacy code

e Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [3] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as was possible -- and some of them are even
useful in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [4] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.
His countenance was bold and bashed not.

--Edmund Spenser

Chapter 1. Shell Programming! 2

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://bash.webofcrafts.net/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.webofcrafts.net/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up log files in /var/log

Cleanup
Run as root, of course.

cd /var/log

cat /dev/null > messages

cat /dev/null > wtmp

echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log

Variables are better than hard-coded values.

cd SLOG_DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up."

exit # The right and proper method of "exiting" from a script.

A bare "exit" (no parameter) returns the exit status
#+ of the preceding command.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

#!/bin/bash
Cleanup, version 3

Chapter 2. Starting Off With a Sha-Bang 3

Advanced Bash-Scripting Guide

Warning:

This script uses quite a number of features

#+ later on.

By the time you've finished the first half o
#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with $UID 0 have ro
LINES=50 # Default number of lines saved.
E_XCD=86 # Can't change directory?

E_NOTROOT=87 # Non-root exit error.

Run as root, of course.

if ["SUID" —-ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit SE_NOTROOT

fi

if [-n "S$1"]

Test whether command-line argument is present
then

lines=$1
else

lines=SLINES # Default,
fi

if not specified on c

Stephane Chazelas suggests the following,

that will be explained

f the book,

ot privileges.

(non—-empty) .

ommand-line.

#+ as a better way of checking command-line arguments,

#+ but this is still a bit advanced for this st
#

E_WRONGARGS=85 # Non-numerical argument (

#

case "$1" in

") lines=50;;

[!'0-9]) echo "Usage: “basename $0° file-—

&) lines=$1;;

esac

#

#* Skip ahead to "Loops" chapter to decipher al

cd SLOG_DIR

if ["pwd® != "SLOG_DIR"] # or if ["SPWD"
Not in /var/log?

then

echo "Can't change to $LOG_DIR."

exit S$E_XCD

fi # Doublecheck if in right directory before

Far more efficient is:
cd /var/log || {

echo "Cannot change
exit S$E_XCD;

to necessary directory.

4 o o 3 o3 o

Chapter 2. Starting Off With a Sha-Bang

age of the tutorial.
bad argument format) .
exit S$E_WRONGARGS; ;

to-cleanup";

1 this.

!= "SLOG_DIR"]

messing with log file.

>&2

Advanced Bash-Scripting Guide

tail -n $lines messages > mesg.temp # Save last section of message log file.
mv mesg.temp messages # Becomes new log directory.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
echo "Log files cleaned up."

Note that there are other log files in /var/log not affected

#+ by this script.

exit O
A zero return value from the script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

k sk sk

The sha-bang (#!) [5] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [6] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [7]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed —-f
#!/bin/awk —-f

Each of the above script header lines calls a different command interpreter, be it /lbin/sh, the default shell
(bash in a Linux system) or otherwise. [8] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [9] sh standard.

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [10]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [11] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an

extensive library of nifty routines. As an example, the following script prolog tests whether the script has

Chapter 2. Starting Off With a Sha-Bang 5

Advanced Bash-Scripting Guide

been invoked with the correct number of parameters.

E_WRONG_ARGS=85

script_parameters="-a -h -m -z"

-a = all, -h = help, etc.
if [$S# —-ne SNumber_ of_ expected_args]

then

echo "Usage: "basename $0° S$script_parameters"

"basename $0° 1is the script's filename.

exit SE_WRONG_ARGS
fi
Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code
blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [12] or alternatively bash
scriptname. (Not recommended is using sh <scriptname, since this effectively disables reading from
stdin within the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [13]
or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [14] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

Chapter 2. Starting Off With a Sha-Bang 6

Part 2. Basics

Table of Contents

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables

5.2. Escaping
Exit and Exit Status
Tests

6.
7.

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested 1 £/t hen Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators
8.2. Numerical Constants

8.3. The Double-Parentheses Construct
8.4. Operator Precedence

Part 2. Basics

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer
to it as a special character.

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
~ Note whitespace before

Comments may also follow whitespace at the beginning of a line.

A tab precedes this comment.
Comments may even be embedded within a pipe.

initial=(‘cat "Sstartfile" | sed -e '/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.

sed -e 's/\./\. /g' -e 's/_/_ /g')
Excerpted from life.sh script

<1> A command may not follow a comment on the same line. There is no method of

terminating the comment, in order for "live code" to begin on the same line. Use a new
line for the next command.

=) Of course, a quoted or an gscaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in numerical
constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S$S{PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.
The standard quoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

echo hello; echo there

if [-x "S$filename"]; then # Note the space after the semicolon.

Chapter 3. Special Characters 8

Advanced Bash-Scripting Guide

#+ an

echo "File S$filename exists."; cp S$filename S$filename.bak
else # an

echo "File S$filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.
Terminator in a case option [double semicolon].

case "Svariable" in

abc) echo "\S$variable = abc" ;;
xyz) echo "\$variable = xyz" ;;
esac

&, &
Terminators in a case option (version 4+ of Bash).

"dot" command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.

""dot"', as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an Is will not normally show.

bash$ touch .hidden-file
bash$ 1s -1

total 10

—rwW—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1s -al

total 14

ArwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./

drwx—————— 52 bozo Dbozo 3072 Aug 29 20:51 ../

—rW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—IW—YrwW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

Chapter 3. Special Characters 9

Advanced Bash-Scripting Guide

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

"dot'" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

comma operator. The comma operator [15] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a =9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

" Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "S$file"]

then

echo $file

fi

done

/bin/ipcalc

/usr/bin/kcalc

/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.
Lowercase conversion in parameter substitution (added in yersion 4 of Bash).
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.

command substitution. The “‘command” construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

Chapter 3. Special Characters 10

Advanced Bash-Scripting Guide

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It

may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

écho S? # 0
Endless loop:

while :

do
operation-1
operation-2

operation—-n
done
Same as:
while true
do
..
done
Placeholder in if/then test:

if condition

then : # Do nothing and branch ahead
else # Or else

take-some—action
fi

Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

${username="whoami }
S{username='whoami’ } Gives an error without the leading :
unless "username" is a command or builtin...

Provide a placeholder where a command is expected in a here document. See Example 19-10.
Evaluate string of variables using parameter substitution (as in Example 10-7).

S{HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ 1f one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

> data.xxx # File "data.xxx" now empty.
Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

Chapter 3. Special Characters 11

Advanced Bash-Scripting Guide

<& This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment

turns off error checking for the remainder of that line, so almost anything may appear in a comment.

However, this is not the case with :.

This is a comment that generates an error, (if [$x -eqg 3]).
The ":" also serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of

the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!="). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix K). Note that within a script, the history mechanism is disabled.

wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By

itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

The * also represents any number (or zero) characters in a regular expression.
arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
** A double asterisk can represent the exponentiation operator or extended file-match globbing.

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-style trinary operator.
condition?result-if-truetresult-if-false

((var0 = varl<9829:21))
NN

if ["Svarl" -1t 98]
then
var0=9
else
var0=21
fi

In a parameter substitution expression, the ? tests whether a variable has been set.

E e

Chapter 3. Special Characters

12

Advanced Bash-Scripting Guide

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

$

Yariable substitution (contents of a variable).

varl=5

var2=23skidoo

echo S$varl # 5

echo S$var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.
$

end-of-line. In a regular expression, a "$" addresses the end of a line of text.
${}

Parameter substitution.
$..

Quoted string expansion. This construct expands single or multiple escaped octal or hex values into

ASCII [16] or Unicode characters.
$*, $@
positional parameters.

$?
exit status variable. The $? variable holds the exit status of a command, a function, or of the script
itself.

$$
process ID variable. The $$ variable holds the process ID [17] of the script in which it appears.

0

command group.

(a=hello; echo $a)

! | A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

a=123
(a=321;)

echo "a = sa" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(elementl element2 element3)

{xxx,yyy,zzz,...}
Brace expansion.

echo \"{These,words, are, quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {filel,file2,file3} > combined_file

Chapter 3. Special Characters

13

Advanced Bash-Scripting Guide
Concatenates the files filel, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs within braces. [18] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or escaped.
echo {filel, file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B file2
C
{a..z}

Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvwzxyz
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

base64_charset=({A..Z} {a..z} {0..9} + / =)
Initializing an array, using extended brace expansion.
From vliadz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced in version 3 of Bash.

{}
Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the
variables inside a code block remain visible to the remainder of the script.

bash$ { local a;
a=123; }
bash: local: can only be used in a
function
a=123
{ a=321; }
echo "a = S$a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and I/0 redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

read linel
read line2
} < $File

echo "First line in $File is:"
echo "$linel"

echo

echo "Second line in $File is:"
echo "$1line2"

exit O

Now, how do you parse the separate fields of each line?
Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
#+ and whether it can be installed.

Saves output to a file.

#

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "s$S1"]

then
echo "Usage: “basename $0° rpm-file"
exit SE_NOARGS

fi

{ # Begin code block.

echo
echo "Archive Description:"
rpm —gpi $1 # Query description.
echo
echo "Archive Listing:"
rpm —gpl $1 # Query listing.
echo
rpm —-i —--test $1 # Query whether rpm file can be installed.
if ["$?" -eqg $SUCCESS]
then
echo "$1 can be installed."
else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "Sl.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1l.test"
See rpm man page for explanation of options.

exit O

Chapter 3. Special Characters

{}

{1y

[]

(L1

[]

[]

$[...

()

Advanced Bash-Scripting Guide

=) Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [19]

placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a
placeholder for output text.

ls . | xargs -i -t cp ./{} $1

AN AN

From "ex42.sh" (copydir.sh) example.

pathname. Mostly used in find constructs. This is not a shell builtin.

&) The ";" ends the —exec option of a find command sequence. It needs to be escaped to
protect it from interpretation by the shell.

test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.
See the discussion on the [[...]] construct.

array element.

In the context of an array, brackets set off the numbering of each element of that array.

Array[l]=slot_1
echo ${Array[1l]}

range of characters.

As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Evaluate integer expression between $[|.

3
7

a=
b=
echo $[$Sa+s$bl # 10

echo $[$a*$b] # 21
Note that this usage is deprecated, and has been replaced by the ((...)) construct.

integer expansion.

Expand and evaluate integer expression between (()).

Chapter 3. Special Characters 16

Advanced Bash-Scripting Guide

See the discussion on the ((_...)) construct.
>&>>&>><<>
redirection.

scriptname >filename redirects the output of scriptname to file filename. Overwrite

filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to £ilename.

&) This is useful for suppressing output when testing for a condition. For example, let us

test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

command_test () { type "S$1" &>/dev/null; }
A
cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0
cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If

filename does not already exist, it is created.

[i]<>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If

filename does not exist, it is created.
process substitution.
(command) >

< (command)

In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also

Example 16-9.
<<

redirection used in a here document.

Chapter 3. Special Characters

17

<

\<, \>

Advanced Bash-Scripting Guide

redirection used in a here string.

ASCII comparison.

vegl=carrots
veg2=tomatoes

if [["$Svegl" < "Sveg2"]]
then
echo "Although $vegl precede $veg2 in the dictionary,"
echo —n "this does not necessarily imply anything "
echo "about my culinary preferences."
else
echo "What kind of dictionary are you using, anyhow?"
fi

word boundary in a regular expression.

bash$ grep '\<the\>' textfile

pipe. Passes the output (stdout of a previous command to the input (st din) of the next one, or to
the shell. This is a method of chaining commands together.

echo 1ls -1 | sh
Passes the output of "echo 1ls —-1" to the shell,
#+ with the same result as a simple "ls -1".

cat *.lst | sort | unig
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [20

cat $filenamel $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ, Part 3.

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit O

Now, let us pipe the output of Is -1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT
—RW-R——R—— 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

Chapter 3. Special Characters 18

http://www.faqs.org/faqs/unix-faq/faq/part3/

>|

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

&) The stdout of each process in a pipe must be read as the st din of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

cat filel file2 | 1ls -1 | sort
The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = $variable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

OR logical operator. In a test construct, the Il operator causes a return of 0 (success) if either of the
linked test conditions is true.

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 3 45 6 7 8 9 10 # First loop.
do
echo -n "$1i "
done & # Run this loop in background.
Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.

do
echo -n "$1i "
done
echo # This 'echo' sometimes will not display.
#

The expected output from the script:
#1 2345678910
11 12 13 14 15 16 17 18 19 20

19

Advanced Bash-Scripting Guide

Sometimes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo' doesn't execute. Why?)

R

4

Occasionally also:
#1 23456 789 10 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

Very rarely something like:
11 12 13 1 2 3 456 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

B

exit O
Nasimuddin Ansari suggests adding sleep 1
#+ after the echo —n "$i" in lines 6 and 14,

#+ for some real fun.

“1> A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.
&&
AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default
parameter in parameter substitution.

COMMAND -[Optionl] [Option2][...]
ls —-al
sort —-dfu $filename

if [$filel -ot $file2]
then # ~

echo "File $filel is older than S$file2."
fi

if ["$a" -eq ll$bvl]

then # ~
echo "S$a is equal to S$b."
fi
if ["Sc" -eq 24 -a "$d" -eq 47]
then # A A
echo "S$c equals 24 and $d equals 47."
fi

param2=S$ {paraml : ~-SDEFAULTVAL}
A

The double-dash —— prefixes long (verbatim) options to commands.

Chapter 3. Special Characters 20

Advanced Bash-Scripting Guide

sort —--ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.

i) This provides a handy means of removing files whose names begin with a dash.

bash$ 1ls -1

—-rw-r——r—— 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- -badname

bash$ 1ls -1
total 0

The double-dash is also used in conjunction with set.
set —- $variable (asin Example 15-18)

redirection from/to stdin or stdout [dash].

bash$ cat -
abc
abc

Ctl-D
As expected, cat - echoes stdin, in this case keyboarded user input, to stdout. But, does I/O
redirection using - have real-world applications?

(cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.

2) &&

"And-1list": if the 'cd' operation successful,

then execute the next command.
3) tar cf -

The 'c' option 'tar' archiving command creates a new archive,

the 'f' (file) option, followed by '-' designates the target file

as stdout, and do it in current directory tree ('.').
4) |

Piped to

(000)

a subshell

6) cd /dest/directory
Change to the destination directory.

7) &&
"And-1list", as above

8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),

reading data from stdin ('f' followed by '-').

Note that 'x' is a command, and 'p', 'v', 'f' are options.

S o= S e e SR e o o e S e o e e Sk e o e e e e o
ol

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

Whew!

More elegant than, but equivalent to:
cd source/directory
tar c¢cf - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

cp —a /source/directory/* /dest/directory
@ g

cp —a /source/directory/* /source/directory/.[".]* /dest/directory
If there are hidden files in /source/directory.

e S S e e o o o

bunzip2 -c linux-2.6.1l6.tar.bz2 | tar xvf -

—-uncompress tar file—- | ——then pass it to "tar"-—-

If "tar" has not been patched to handle "bunzip2",

#+ this needs to be done in two discrete steps, using a pipe.

The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, — redirects output to stdout (sometimes seen with tar c£f), or
accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Chapter 3. Special Characters 22

Advanced Bash-Scripting Guide
Example 3-4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$ (date +%m—-%d-%Y)

Embeds date in backup filename.

Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}

If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - "find . -mtime -1 -type f -print® > Sarchive.tar
gzip $archive.tar
echo "Directory $PWD backed up in archive file \"S$Sarchive.tar.gz\"."

Stephane Chazelas points out that the above code will fail
#+ 1f there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . -mtime -1 -type f -print0 | xargs -0 tar rvf "Sarchive.tar"
using the GNU version of "find".

find . —-mtime -1 -type f —-exec tar rvf "Sarchive.tar" '{}' \;

portable to other UNIX flavors, but much slower.

exit O

nn "non

<1> Filenames beginning wit may cause problems when coupled with the
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $PWD/-FILENAME, or
SPATHNAME /-FILENAME.

If the value of a variable begins with a —, this may likewise create problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd - command changes to the previous working directory. This uses

the SOLDPWD environmental variable.

"non non

<1> Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it appears.

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

Chapter 3. Special Characters

23

Advanced Bash-Scripting Guide

a=28
echo $a # 28
n "

In a different context, the "=" is a string comparison operator.

+
Plus. Addition arithmetic operator.
In a different context, the + is a Regular Expression operator.
+
Option. Option flag for a command or filter.
Certain commands and builtins use the + to enable certain options and the — to disable them. In
parameter substitution, the + prefixes an _alternate value that a variable expands to.
%
moduloe. Modulo (remainder of a division) arithmetic operation.
leie Tz = 5 % 37
echo $z # 2
In a different context, the % is a pattern matching operator.
home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.
bash$ echo ~bozo
/home /bozo
bash$ echo ~
/home /bozo
bash$ echo ~/
/home/bozo/
bash$ echo ~:
/home/bozo:
bash$ echo ~nonexistent-user
~nonexistent-user
~+
current working directory. This corresponds to the SPWD internal variable.
previous working directory. This corresponds to the SOLDPWD internal variable.
regular expression match. This operator was introduced with version 3 of Bash.
N
beginning-of-line. In a regular expression, a """ addresses the beginning of a line of text.
ANAYAN

Uppercase conversion in parameter substitution (added in yersion 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.

Chapter 3. Special Characters 24

Advanced Bash-Scripting Guide

0ctl-a

Moves cursor to beginning of line of text (on the command-line).
0Ctl-B

Backspace (nondestructive).
Q
ctl-C

Break. Terminate a foreground job.
0
Ctl-D

Log out from a shell (similar to exit).
EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.

0Ctl-E

Moves cursor to end of line of text (on the command-line).
0 Ctl-F

Moves cursor forward one character position (on the command-line).
Q
Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it
might beep.

0
Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

#!/bin/bash
Embedding Ctl-H in a string.

a=""H"H" # Two Ctl-H's —-- backspaces
ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd f
Space at end * ~ Backspaces twice.
echo
echo -n "abcdefs$a" # abcdef
No space at end ~ Doesn't backspace (why?).

Results may not be quite as expected.
echo; echo

Constantin Hagemeier suggests trying:
a=$'\010\010"
a=$"'\b\b'

Chapter 3. Special Characters 25

0

0

0

0

0

Advanced Bash-Scripting Guide
a=$"'\x08\x08"'
But, this does not change the results.
Ctl-I
Horizontal tab.
Ctl-gJ
Newline (line feed). In a script, may also be expressed in octal notation -- \012' or in
hexadecimal -- \x0a'.
Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct 1-K erases from the character

under the cursor to end of line. Within a script, Ct 1-K may behave differently, as in Lee Lee

Maschmeyer's example, below.
Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct1-L causes an advance to end of the paper sheet.

Ctl-M
Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s —p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2

#H4#

read —-n 1 -s -p $'And Control-K\x0Obgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "Svar"

This works the same way as the above example. However:

echo "$var" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed —-

#+ to avoid a garbled screen.

As Lee Maschmeyer explains:

Chapter 3. Special Characters

26

Advanced Bash-Scripting Guide

In the [first vertical tab example] . . . the vertical tab
#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VT is to go straight UP, not down.
It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.
exit O
0ctl-N

Erases a line of text recalled from history buffer [21] (on the command-line).
¢ctl-o0

Issues a newline (on the command-line).
dctl-p

Recalls last command from history buffer (on the command-line).
¢ctl-9

Resume (XON).

This resumes stdin in a terminal.
0 Cctl-R

Backwards search for text in history buffer (on the command-line).
¢Cctl-s

Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
dctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).
0ctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U
erases the entire line of input, regardless of cursor position.
¢Cctl-v

When inputting text, Ct 1-V permits inserting control characters. For example, the following
two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ct1-V is primarily useful from within a text editor.
0ctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character
under the cursor backwards to the first instance of whitespace. In some settings, Ct1-W
erases backwards to first non-alphanumeric character.

Chapter 3. Special Characters 27

Advanced Bash-Scripting Guide

0ctl-X

In certain word processing programs, Cuts highlighted text and copies to clipboard.
0ctl-y

Pastes back text previously erased (with Ct1-U or Ct1-W).
0ctl-z

Pauses a foreground job.
Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.

Whitespace

functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [22] In some contexts, such as variable
assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IES, the special variable separating fields of input to certain commands. It defaults to whitespace.

Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.

To preserve whitespace within a string or in a variable, use guoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Chapter 3. Special Characters

28

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [23]

bash$ wvariablel=23

bash$ echo variablel
variablel

bash$ echo $variablel

23
The only times a variable appears "naked" -- without the $ prefix -- is when declared or assigned,
when unset, when exported, in an arithmetic expression within double parentheses ((...)), or in the

special case of a variable representing a signal (see Example 32-5). Assignment may be with an = (as
in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting.” Using single quotes (' ...")
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of $ {variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

#!/bin/bash
ex9.sh

Variables: assignment and substitution

a=375
hello=S$a

Chapter 4. Introduction to Variables and Parameters 29

Advanced Bash-Scripting Guide

No space permitted on either side of = sign when initializing variables.
What happens if there is a space?

"VARIABLE =value"

A

#% Script tries to run "VARIABLE" command with one argument, "=value".
"VARIABLE= value"

A

#% Script tries to run "value" command with

#+ the environmental variable "VARIABLE" set to "".

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.
echo ${hello} # 375

Also a variable reference, as above.

Quoting .
echo "S$Shello" # 375
echo "${hello}" # 375

echo

hello="A B C D"

echo $hello # A BCD

echo "Shello" # A B C D

As you see, echo S$hello and echo "Shello" give different results.
Why?

#
Quoting a variable preserves whitespace.
#

echo

echo 'Shello' # Shello

A A

Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.

echo "\Shello (null value) = Shello"

Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 var2=22 var3=$V3

echo
echo "varl=S$varl var2=$var?2 var3=Svar3"

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide

May cause problems with older versions of "sh"

echo; echo

numbers="one two three"

A A
other_ numbers="1 2 3"
AN A

If there is whitespace embedded within a variable,
#+ then quotes are necessary.
other numbers=1 2 3

Gives an error message.

echo "numbers = $numbers"

echo "other numbers = S$Sother numbers" # other_numbers = 1 2 3

Escaping the whitespace also works.

mixed_bag=2\ —---\ Whatever

" ~ Space after escape (\).

echo "Smixed_bag" # 2 ——— Whatever

echo; echo

echo "uninitialized_variable = Suninitialized_variable"

Uninitialized variable has null value (no value at all!).
uninitialized_variable= # Declaring, but not initializing it --

#+ same as setting it to a null value, as

echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.
echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.
echo
exit O

above.

An uninitialized variable has a "null" value -- no assigned value at all (not zero!).

if [-z "Sunassigned"]
then

echo "\Sunassigned is NULL."
fi # Sunassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless

possible to perform arithmetic operations on an uninitialized variable.

echo "Suninitialized" # (blank line)
let "uninitialized += 5" # Add 5 to it.
echo "Suninitialized" # 5

Conclusion:
An uninitialized variable has no value,
#+ however it evaluates as 0 in an arithmetic operation.

See also Example 15-23.

Chapter 4. Introduction to Variables and Parameters

31

Advanced Bash-Scripting Guide

4.2. Variable Assignment

the assignment operator (no space before and after)
¢ 1 Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

#!/bin/bash
Naked variables

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a."

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a."

echo

In a 'for' loop (really, a type of disguised assignment) :
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
echo -n "S$a "
done

echo
echo

In a 'read' statement (also a type of assignment) :
echo —-n "Enter \"a\" "

read a

echo "The value of \"a\" is now $a."

echo

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash
a=23 # Simple case

echo $a
b=$a

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide
echo $b

Now, getting a little bit fancier (command substitution).

a="echo Hello!" # Assigns result of 'echo' command to 'a'
echo $a
Note that including an exclamation mark (!) within a

#+ command substitution construct will not work from the command-line,
#+ since this triggers the Bash "history mechanism."
Inside a script, however, the history functions are disabled.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'

echo $Sa # Unquoted, however, it removes tabs and newlines.
echo

echo "S$Sa" # The quoted variable preserves whitespace.

S

(See the chapter on "Quoting.")

exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is likewise a
form of command substitution.

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

#!/bin/bash
int-or-string.sh

a=2334 # Integer.

let "a += 1"

echo "a = $a " # a = 2335

echo # Integer, still.

b=${a/23/BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = $b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = $b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" # b =1
echo # Bash sets the "integer value" of a string to O.
c=BB34
echo "c = s$c" # ¢ = BB34

Chapter 4. Introduction to Variables and Parameters 33

Advanced Bash-Scripting Guide

d=${c/BB/23} # Substitute "23" for "BB".
This makes $d an integer.

echo "d = sd" # d = 2334

let "d += 1" # 2334 + 1

echo "d = sd" # d = 2335

echo

What about null variables?

@="" # ... Or e="" ... Or e=

echo "e = Se" # e =

let "e += 1" # Arithmetic operations allowed on a null variable?
echo "e = S$e" #e=1

echo # Null variable transformed into an integer.

What about undeclared variables?

echo "f = Sf" # £ =

let "f += 1" # Arithmetic operations allowed?

echo "f = S$f" # £ =1

echo # Undeclared variable transformed into an integer.
#

However

let "f /= Sundecl_var" # Divide by zero?

let: £ /= : syntax error: operand expected (error token is " ")

Syntax error! Variable S$undecl_var is not set to zero here!

#

But still

let "f /= Q"

let: £ /= 0: division by 0 (error token is "0")
Expected behavior.

Bash (usually) sets the "integer value" of null to zero
#+ when performing an arithmetic operation.

But, don't try this at home, folks!

It's undocumented and probably non-portable behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $°?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

4.4. Special Variable Types

Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

- In a more general context, each process has an "environment", that is, a group of
variables that the process may reference. In this sense, the shell behaves like any other

Chapter 4. Introduction to Variables and Parameters 34

Advanced Bash-Scripting Guide

process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables causes the
shell to update its environment, and all the shell's child processes (the commands it
executes) inherit this environment.

<1> The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "'seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/' "

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)
If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

=) A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its

parent.
Positional parameters
Arguments passed to the script from the command line [24] : $0, $1, $2, $3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[25] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

MINPARAMS=10

echo

echo "The name of this script is \"S$O\"."

Adds ./ for current directory
echo "The name of this script is \" basename $0 \"."

Chapter 4. Introduction to Variables and Parameters 35

Advanced Bash-Scripting Guide

Strips out path name info (see 'basename')

echo

if [-n "$S1"] # Tested variable is quoted.
then

echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [-n ll$2ll]

then

echo "Parameter #2 is $2"
fi

if [-n "$3"]

then

echo "Parameter #3 is $3"
fi

if [-n "S{10}"] # Parameters > $9 must be enclosed in {brackets}.
then

echo "Parameter #10 is ${10}"

fi

EhE Yom—mmmmmeeoeeeeeeeeeeeeeseeseeesees
echo "All the command-line parameters are: "s$*""

if [$# -1t "SMINPARAMS"]
then

echo

echo "This script needs at least SMINPARAMS command-line arguments!"
fi

echo

exit O
Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

args=S# # Number of args passed.
lastarg=${'!args}
Note: This is an *indirect reference* to $args

Or: lastarg=S${!#} (Thanks, Chris Monson.)
This i1s an *indirect reference* to the $# variable.
Note that lastarg=${!S$#} doesn't work.

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. [26] There must also exist
symbolic links to all the alternate names of the script. See Example 16-2.

i) If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the

Chapter 4. Introduction to Variables and Parameters 36

Advanced Bash-Scripting Guide

expected positional parameter.

variablel =$1_ # Rather than variablel=$1
This will prevent an error, even if positional parameter is absent.

critical_argumentOl=$variablel_

The extra character can be stripped off later, like so.
variablel=${variablel /_/}

Side effects only if $variablel_ begins with an underscore.

This uses one of the parameter substitution templates discussed later.
(Leaving out the replacement pattern results in a deletion.)

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.

if [-z $1]
then

exit SE_MISSING_POS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above method may have unexpected side-effects.
A better method is parameter substitution:

S{l:-SDefaultVal}

See the "Parameter Substition" section

#+ in the "Variables Revisited" chapter.

Example 4-6. wh, whois domain name lookup

#!/bin/bash
ex18.sh

Does a 'whois domain-name' lookup on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script —-- renamed 'wh' -- in /usr/local/bin

Requires symbolic links:

1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh

e

E_NOARGS=75

/usr/local/bin/wh-ripe
/usr/local/bin/wh-apnic
/usr/local/bin/wh-tucows

if [-z "S$1"]

then
echo "Usage: "basename $0° [domain-name]"
exit S$E_NOARGS

fi

Check script

name and call proper server.

case “basename $0° in # Or: case S${O##*/} in
"wh") whois $1@whois.tucows.com; ;
"wh-ripe") whois $1@whois.ripe.net;;
"wh-apnic") whois $1@whois.apnic.net;;
"wh—cw") whois $1@whois.cw.net;;
)

*

Chapter 4. Introduction to Variables and Parameters

echo "Usage:

‘basename $0° [domain-name]";;

37

Advanced Bash-Scripting Guide
esac

exit $°7?

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.
$1 <--- 82, $2 <---$3, $3 <--- $4, etc.

The old $1 disappears, but SO (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also
permits this.

Example 4-7. Using shift

#!/bin/bash
shft.sh: Using 'shift' to step through all the positional parameters.

Name this script something like shft.sh,
#+ and invoke it with some parameters.
#+ For example:

sh shft.sh a b ¢ def 23 Skidoo
until [-z "$1"] # Until all parameters used up
do

echo -n "$1 "

shift
done
echo # Extra linefeed.

But, what happens to the "used-up" parameters?

echo "S$2"

Nothing echoes!

When $2 shifts into $1 (and there is no $3 to shift into $2)
#+ then $2 remains empty.

So, it is not a parameter *copy*, but a *movex*.

exit

See also the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

#!/bin/bash
shift-past.sh

shift 3 # Shift 3 positions.
n=3; shift $n
Has the same effect.

echo "S$1"

exit O

Chapter 4. Introduction to Variables and Parameters 38

Advanced Bash-Scripting Guide

$ sh shift-past.sh 1 2 3 4 5

4

However, as Eleni Fragkiadaki, points out,

#+ attempting a 'shift' past the number of

#+ positional parameters ($#) returns an exit status of 1,
#+ and the positional parameters themselves do not change.
This means possibly getting stuck in an endless loop.

For example:

until [-z "$1"]

do

echo —n "$1 "

shift 20 # If less than 20 pos params,

done #+ then loop never ends!

#

When in doubt, add a sanity check.

shift 20 || break

AAAAANAAAN

&) The shift command works in a similar fashion on parameters passed to a function. See
Example 36-16.

Chapter 4. Introduction to Variables and Parameters

39

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in

globbing and Regular Expressions).

bash$ 1s -1 [Vv]*

—IW—Yrw-r—-— 1 bozo Dbozo 324 Apr 2 15:05 VIEWDATA.BAT
—rW—YW-—Ir—— 1 bozo bozo 507 May 4 14:25 vartrace.sh
—rW—YrwW—Ir—— 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ 1s =1 '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its liferal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Fflirst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [27]

Quoting can also suppress echo's "appetite" for newlines.

bash$ echo $(1ls -1)
total 8 —rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh —-rw-rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(1s -1)"

total 8
—-rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh
—-rw—rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape). [28]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("Svariable™), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [29] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

List="one two three"

Chapter 5. Quoting 40

Advanced Bash-Scripting Guide

for a in $List # Splits the variable in parts at whitespace.
do
echo "S$Sa"
done
one
two
three

echo "——-"

for a in "S$List" # Preserves whitespace in a single variable.
do # A A
echo "S$Sa"
done
one two three

A more elaborate example:

variablel="a variable containing five words"
COMMAND This is $variablel # Executes COMMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COMMAND "This is $variablel" # Executes COMMAND with 1 argument:
"This is a variable containing five words"

variable2="" # Empty.
COMMAND $variable2 S$variable2 S$variable?2
Executes COMMAND with no arguments.
COMMAND "S$variable2" "S$Svariable2" "Svariable2"
Executes COMMAND with 3 empty arguments.
COMMAND "S$variable2 S$variable2 S$variable2"
Executes COMMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazelas.

i) Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

echo

var="" (]\\{ }\s\vlll

echo $var # U (IN{}S"

echo "Svar" # P (I\{}s" Doesn't make a difference.
echo

IFS="\"

echo $var # (1 {1S$" \ converted to space. Why?
echo "Svar" # ' (IN{}S"

Examples above supplied by Stephane Chazelas.

Chapter 5. Quoting 41

Advanced Bash-Scripting Guide

echo

var2="\\\\\""

echo S$Svar2 # "

echo "Svar2" # A\

echo

But ... var2="\\\\"" is illegal. Why?
var3="\\\\"

echo "$var3" # \\\\

Strong quoting works, though.

exit

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

&) Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

The roundabout method.

echo 'Why can'\''t I write '"'"'s between single quotes'
N R [!

Three single-quoted strings, with escaped and quoted single quotes between.

This example courtesy of Stéphane Chazelas.

5.2. Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

<1 With certain commands and utilities, such as echo and sed, escaping a character may have the opposite
effect - it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n

means newline
\r

means return
\t

means tab
\v

means vertical tab
\b

means backspace
\a

Chapter 5. Quoting 42

\Oxx

Advanced Bash-Scripting Guide

means alert (beep or flash)

translates to the octal ASCII equivalent of Onn, where nn is a string of digits

!

"~ The$' ... ' guoted string-expansion construct is a mechanism that uses escaped
octal or hex values to assign ASCII characters to variables, e.g., quote=$'\042".

Example 5-2. Escaped Characters

#!/bin/bash
escaped.sh: escaped characters

echo; echo

FHAHHF AR AR AR AR AR AR AR AR AR AR AR AR A A AR AR A A A R A A
First, let's show some basic escaped-character usage.
#HAHHE AR AR AR AR AR AR AR AR AR AR AR A A A AR AR A R R A A

Escaping a newline.

echo ""

echo "This will print
as two lines."

This will print

as two lines.

echo "This will print \
as one line."
This will print as one line.

echo; echo

echo "\v\v\v\v" # Prints \v\v\v\v literally.

Use the —-e option with 'echo' to print escaped characters.
echo || S ——— |

echo "VERTICAL TABS"

echo —e "\v\v\v\v" # Prints 4 vertical tabs.

echo n AL

echo "QUOTATION MARK"
echo —e "\042" # Prints " (quote, octal ASCII character 42).
echo n AL

The $'\X' construct makes the -e option unnecessary.

echo; echo "NEWLINE AND BEEP"

echo $'\n' # Newline.

echo $'\a' # Alert (beep).
echo w_ n

echo "QUOTATION MARKS"

echo w_ n

Chapter 5. Quoting

43

Advanced Bash-Scripting Guide

echo; echo; echo
Here we have seen $'\nnn" string expansion.

#
Version 2 of Bash introduced the $'\nnn' string expansion construct.
#
echo "Introducing the \$\' ... \' string-expansion construct!"

echo

echo $'\t \042 \t' # Quote (") framed by tabs.

Note that '\nnn' is an octal value.

It also works with hexadecimal values, in an $'\xhhh' construct.
echo $'\t \x22 \t' # Quote (") framed by tabs.

Thank you, Greg Keraunen, for pointing this out.

Farlier Bash versions allowed '\x022'.

echo n n
echo

Assigning ASCII characters to a variable.

quote=$'\042" # " assigned to a variable.
echo "S$Squote This i1s a quoted string, $quote and this lies outside the quotes."

echo
Concatenating ASCII chars in a variable.

triple_underline=$'\137\137\137' # 137 is octal ASCII code for '_'.
echo "S$triple_underline UNDERLINE S$triple_underline"

echo
ABC=$'\101\102\103\010" # 101, 102, 103 are octal A, B, C.
echo S$ABC

echo; echo

escape=$'\033" # 033 is octal for escape.
echo "\"escape\" echoes as S$escape"
no visible output.

echo; echo

exit O

A more elaborate example:

Example 5-3. Detecting key-presses

#!/bin/bash

Author: Sigurd Solaas, 20 Apr 2011
Used in ABS Guide with permission.
Requires version 4.2+ of Bash.

key="no value yet"

while true; do
clear

Chapter 5. Quoting

44

Advanced Bash-Scripting Guide

echo "Bash Extra Keys Demo. Keys to try:"

echo

echo "* Insert, Delete, Home, End, Page_Up and Page_Down"
echo "* The four arrow keys"

echo "* Tab, enter, escape, and space key"

echo "* The letter and number keys, etc."

echo

echo " d = show date/time"

echo " g = quit"

echo " "
echo

Convert the separate home-key to home-key_ num_7:

if ["Skey" = $'\x1b\x4f\x48']; then
key=$"\x1b\x5b\x31\x7e"

Quoted string-expansion construct.
fi

Convert the separate end-key to end-key_num_ 1.

if ["Skey" = $'\x1b\x4f\x46']; then
key=$"\x1b\x5b\x34\x7e"
fi

case "Skey" in
S'"\x1b\x5b\x32\x7e'") # Insert
echo Insert Key
S'"\x1b\x5b\x33\x7e"') # Delete
echo Delete Key
$S'\x1b\x5b\x31\x7e') # Home_key_num_7
echo Home Key
S'\x1b\x5b\x34\x7e"') # End_key_num_1
echo End Key
$'"\x1b\x5b\x35\x7e') # Page_Up
echo Page_Up
S'\x1b\x5b\x36\x7e') # Page_Down
echo Page_Down
S'"\x1b\x5b\x41") # Up_arrow
echo Up arrow
S'"\x1b\x5b\x42") # Down_arrow
echo Down arrow

i

S'\x1b\x5b\x43"') # Right_arrow
echo Right arrow

i

S'\x1b\x5b\x44') # Left_arrow
echo Left arrow

i

$'\x09') # Tab

echo Tab Key

i

$'"\x0a') # Enter

echo Enter Key

i

$'\x1b') # Escape

echo Escape Key

Chapter 5. Quoting

\$

\

B

Advanced Bash-Scripting Guide

rs

$'\x20"'") # Space
echo Space Key

i
d)

date

i
a)
echo Time to quit...
echo
exit O

i

*)

echo You pressed: \'"Skey"\'
rs

esacC

echo
echo "

unset K1 K2 K3

read -s -N1 -p "Press a key: "
K1="SREPLY"

read -s -N2 -t 0.001
K2="SREPLY"

read -s -N1 -t 0.001
K3="SREPLY"

key="S$SK1SK2SK3"

done

exit $?

See also Example 37-1.

gives the quote its literal meaning

echo "Hello" # Hello
echo "\"Hello\" ... he said." # "Hello" ... he said.

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

echo "\$variableO1l" # SvariableOl
echo "The book cost \$7.98." # The book cost $7.98.

gives the backslash its literal meaning

echo "\\" # Results in \
Whereas

echo "\" # Invokes secondary prompt from the command-line.
In a script, gives an error message.

However

echo "\' # Results in \

Chapter 5. Quoting 46

Advanced Bash-Scripting Guide

The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing within
command substitution or a here document.

Simple escaping and quoting
echo \z # z
echo \\z # \z
echo '\z' # \z
echo "\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
Command substitution
echo “echo \z° # z
echo ‘echo \\z’ ¥ z
echo ‘echo \\\z® # \z
echo ‘echo \\\\z° # \z
echo “echo \\\\\\z® # \z
echo ‘echo \\\\\\\z' # \\z
echo “echo "\z"" # \z
echo “echo "\\z™ # \z

Here document
cat <<EOF
\z
EOF # \z

cat <<EOF
\\z
EOF # \z

These examples supplied by Stéphane Chazelas.

Elements of a string assigned to a variable may be escaped, but the escape character alone may not be
assigned to a variable.

variable=\
echo "S$Svariable"

Will not work - gives an error message:

test.sh: : command not found

A "naked" escape cannot safely be assigned to a variable.

#

What actually happens here is that the "\" escapes the newline and
#+ the effect is variable=echo "S$variable"

#+ invalid variable assignment

variable=\

23skidoo

echo "S$variable" # 23skidoo
This works, since the second line
#+ is a valid variable assignment.

variable=\
% escape followed by space
echo "S$variable" # space

variable=\\
echo "S$variable" # \

variable=\\\

echo "S$variable"
Will not work - gives an error message:

Chapter 5. Quoting 47

Advanced Bash-Scripting Guide

test.sh: \: command not found

#

First escape escapes second one, but the third one is left "naked",
#+ with same result as first instance, above.

variable=\\\\

echo "S$variable" # \\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs-20.7"
List of files as argument (s) to a command.

Add two files to the list, and list all.
ls -1 /usr/X11R6/bin/xsetroot /sbin/dump $file_list

What happens if we escape a couple of spaces?

1s -1 /usr/X11R6/bin/xsetroot\ /sbin/dump\ $file_list

Error: the first three files concatenated into a single argument to 'ls -1'
because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line constitutes a
different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

(cd /source/directory && tar cf - .) | \

(cd /dest/directory && tar xpvf -)

Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:

tar cf - -C /source/directory . |
tar xpvf - -C /dest/directory

See note below.

(Thanks, Stéphane Chazelas.)

&) If a script line ends with a |, a pipe character, then a \, an escape, is not strictly necessary. It is, however,
good programming practice to always escape the end of a line of code that continues to the following
line.

echo "foo
bar"
#foo
#fbar

echo

echo 'foo

bar' # No difference yet.
#foo

#bar

echo

echo foo\

Chapter 5. Quoting 48

Advanced Bash-Scripting Guide

bar # Newline escaped.
#foobar

echo

echo "foo\

bar" # Same here, as \ still interpreted as escape within weak quotes.
#foobar

echo

echo 'foo\

bar' # Escape character \ taken literally because of strong quoting.
#foo\

#bar

Examples suggested by Stéphane Chazelas.

Chapter 5. Quoting

49

Chapter 6. Exit and Exit Status

... there are dark corners in the Bourne shell, and
people use all of them.

--Chet Ramey
The exit command terminates a script, just as in a C program. It can also return a value, which is available to
the script's parent process.

Every command returns an exit status (sometimes referred to as a refurn status or exit code). A successful
command returns a 0, while an unsuccessful one returns a non-zero value that usually can be interpreted as an
error code. Well-behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in the
function or script determines the exit status. Within a script, an exit nnncommand may be used to deliver
an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

=) When a script ends with an exit that has no parameter, the exit status of the script is the exit status of the
last command executed in the script (previous to the exit).

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit

The equivalent of a bare exit is exit $? or even just omitting the exit.

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit $?

#!/bin/bash

COMMAND1

COMMAND_LAST

Chapter 6. Exit and Exit Status 50

Advanced Bash-Scripting Guide

Will exit with status of last command.

$? reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value." [30]

Following the execution of a pipe, a $? gives the exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, 0 on success or an integer in the range 1 - 255 on
error.

Example 6-1. exit / exit status

#!/bin/bash

echo hello

echo $? # Exit status 0 returned because command executed successfully.
1lskdf # Unrecognized command.

echo $? # Non-zero exit status returned because command failed to execute.
echo

exit 113 # Will return 113 to shell.
To verify this, type "echo $?" after script terminates.

By convention, an 'exit 0' indicates success,
#+ while a non-zero exit value means an error or anomalous condition.

$? is especially useful for testing the result of a command in a script (see Example 16-35 and Example 16-20).

=& The !, the logical not qualifier, reverses the outcome of a test or command, and this affects its exit status.

Example 6-2. Negating a condition using !

true # The "true" builtin.

echo "exit status of \"true\" = $?" # 0

! true

echo "exit status of \"! true\" = $?" # 1

Note that the "!" needs a space between it and the command.

'true leads to a "command not found" error

#

The '!' operator prefixing a command invokes the Bash history mechanism.
true

'true

No error this time, but no negation either.
It just repeats the previous command (true).

===
Preceding a _pipe_ with ! inverts the exit status returned.
ls | bogus_command # bash: bogus_command: command not found
echo $7? # 127

! 1s | bogus_command # bash: bogus_command: command not found

Chapter 6. Exit and Exit Status 51

Advanced Bash-Scripting Guide

echo $°? # 0

Note that the ! does not change the execution of the pipe.

Only the exit status changes.

#

Thanks, Stéphane Chazelas and Kristopher Newsome.

<1 Certain exit status codes have reserved meanings and should not be user-specified in a script.

Chapter 6. Exit and Exit Status

52

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of

the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

¢ An if/then construct tests whether the exit status of a list of commands is O (since 0 means "success”
by UNIX convention), and if so, executes one or more commands.

¢ There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison expressions
or file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for
false).

¢ With version 2.02, Bash introduced the [[...]] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

Bashsees [[$a —1t $b]] as a single element, which returns an exit status.

[]
The ((...)) and let ... constructs also return an exit status, according to whether the arithmetic
expressions they evaluate expand to a non-zero value. These arithmetic-expansion constructs may
therefore be used to perform arithmetic comparisons.

(0 && 1)) # Logical AND
echo $7? # 1 LR

And so

let "num = ((0 && 1))"

echo S$num # 0

But

let "num = ((0 && 1))"

echo $7? # 1 LR

((200 || 11)) # Logical OR
echo $? # 0 * kK

#

let "num = ((200 || 11))"

echo S$num # 1

let "num = ((200 || 11))"

echo $? # 0 LR

((200 | 11)) # Bitwise OR
echo $°? # 0 * Kk
...

let "num = ((200 | 11))"

echo S$num # 203

let "num = ((200 | 11))"

echo $°? # 0 * ok x

The "let" construct returns the same exit status
#+ as the double-parentheses arithmetic expansion.

Chapter 7. Tests 53

Advanced Bash-Scripting Guide

¢ An if can test any command, not just conditions enclosed within brackets.

if cmp a b &> /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."

fi

The very useful "if-grep" construct:
if grep —g Bash file
then echo "File contains at least one occurrence of Bash."

fi

word=Linux
letter_sequence=inu

if echo "Sword" | grep —-g "Sletter_ sequence"
The "-g" option to grep suppresses output.
then

echo "S$Sletter_sequence found in S$Sword"
else

echo "S$Sletter_sequence not found in S$word"
fi

if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
then echo "Command succeeded."
else echo "Command failed."

fi

® These last two examples courtesy of Stéphane Chazelas.

Example 7-1. What is truth?

#!/bin/bash

Tip:

If you're unsure of how a certain condition would evaluate,
#+ test it in an if-test.

echo

echo "Testing \"O\""

if [0] # zero
then
echo "0 is true."
else # Or else
echo "0 is false."
fi # 0 is true.
echo

echo "Testing \"1\""

if [1] # one
then
echo "1 is true."
else
echo "1 is false."
fi # 1 is true.
echo

Chapter 7. Tests

54

Advanced Bash-Scripting Guide

echo "Testing \"-1\""

if [-1 1] # minus one
then

echo "-1 is true."
else

echo "-1 is false."
fi # -1 is true.
echo

echo "Testing \"NULL\""

if [] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo

echo "Testing \"xyz\""

if [xyz] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo

echo "Testing \"\S$xyz\""
if [Sxyz] # Tests if $xyz is null, but...
it's only an uninitialized variable.

then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
Xy zZ= # Initialized, but set to null value.

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"]
then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.

Chapter 7. Tests

55

Advanced Bash-Scripting Guide

echo

When is "false" true?

echo "Testing \"false\""

if ["false"] # It seems that "false" is just a string.
then
echo "\"false\" is true." #+ and it tests true.
else
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\S$false\"" # Again, uninitialized variable.
if ["Sfalse"]
then
echo "\"\Sfalse\" is true."
else
echo "\"\Sfalse\" is false."
fi # "Sfalse" is false.

Now, we get the expected result.
What would happen if we tested the uninitialized variable "Strue"?
echo

exit O

Exercise. Explain the behavior of Example 7-1, above.

if [condition-true]
then

command 1

command 2

else # Or else
Adds default code block executing if original condition tests false.

command 3
command 4

=& When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if
and then are keywords. Keywords (or commands) begin statements, and before a new statement on the
same line begins, the old one must terminate.

if [-x "$filename"]; then

Else if and elif

elif
elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

Chapter 7. Tests 56

Advanced Bash-Scripting Guide

if [conditionl]
then
commandl
command?2
command3
elif [condition2]
Same as else if
then
command4
command5
else
default-command
fi

The if test condition-true constructis the exact equivalentof if [condition-true]. As
it happens, the left bracket, [, is a foken [31] which invokes the test command. The closing right bracket,], in
an if/test should not therefore be strictly necessary, however newer versions of Bash require it.

&) The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash
script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package.
Likewise, [does not call /usr/bin/ [, whichis linked to /usr/bin/test.

bash$ type test

test is a shell builtin
bash$ type '['

[is a shell builtin
bash$ type '[['

[[is a shell keyword
bash$ type '11'

11 1is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full
pathname.

Example 7-2. Equivalence of test, /usr/bin/test,[], and /usr/bin/ [

#!/bin/bash
echo

if test -z "S1"

then
echo "No command-line arguments."
else
echo "First command-line argument is S$1."
fi
echo
if /usr/bin/test -z "S$1" # Equivalent to "test" builtin.
FONNNANNAAAAAAA # Specifying full pathname.
then
echo "No command-line arguments."
else

Chapter 7. Tests 57

Advanced Bash-Scripting Guide

echo "First command-line argument is $1."

fi
echo
if [-z "S1"] # Functionally identical to above code blocks.
if [-z "s1" should work, but...
#+ Bash responds to a missing close-bracket with an error message.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if /usr/bin/[-z "S$1"] # Again, functionally identical to above.
if /usr/bin/[-z "S$1" # Works, but gives an error message.
Note:
This has been fixed in Bash, version 3.x.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
exit O

The [[]] construct is the more versatile Bash version of []. This is the extended test command, adopted from
ksh88.

No filename expansion or word splitting takes place between [[and]], but there is parameter expansion and
command substitution.

file=/etc/passwd

if [[—e S$file]]
then

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For example, the
&&, I, <, and > operators work within a [[]] test, despite giving an error within a [] construct.
Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a [[...]] construct.

[[Octal and hexadecimal evaluation]]
Thank you, Moritz Gronbach, for pointing this out.

decimal=15
octal=017 # = 15 (decimal)

Chapter 7. Tests 58

Advanced Bash-Scripting Guide

hex=0x0f # = 15 (decimal)
if ["Sdecimal" -eqg "Soctal"]
then
echo "S$Sdecimal equals Soctal"
else
echo "$decimal is not equal to $Soctal" # 15 is not equal to 017
fi # Doesn't evaluate within [single brackets]!
if [["$decimal" -eqg "Soctal" 1]
then
echo "S$Sdecimal equals Soctal" # 15 equals 017
else
echo "$decimal is not equal to Soctal"
fi # Evaluates within [[double brackets 1]!
if [["$decimal" -eq "Shex"]]
then
echo "S$decimal equals Shex" # 15 equals 0xO0f
else
echo "$decimal is not equal to Shex"
fi # [[Shexadecimal]] also evaluates!

=) Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly necessary.

dir=/home/bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
echo "Now in $dir."

else
echo "Can't change to $dir."

fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combination with
a list construct.

varl=20
var2=22
["$varl" -ne "S$var2"] && echo "$varl is not equal to S$var2"

home=/home/bozo

[-d "Shome"] || echo "Shome directory does not exist."
The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Example 7-3. Arithmetic Tests using (())

#!/bin/bash
arith-tests.sh
Arithmetic tests.

The ((...)) construct evaluates and tests numerical expressions.
Exit status opposite from [...] construct!

Chapter 7. Tests 59

Advanced Bash-Scripting Guide

(C0))

echo "Exit status of \"((0))\" is $2." # 1
(1))
echo "Exit status of \"((1))\" is $2." # 0
(5 >4)) # true
echo "Exit status of \"((5 > 4))\" is $?2." # 0
((5>9)) # false
echo "Exit status of \"((5 > 9))\" is $2." # 1
((5 ==5)) # true
echo "Exit status of \"((5 == y)\" is $2." # 0
((5=5)) gives an error message.
(5 -5)) # 0
echo "Exit status of \"((5 - 5))\" is $2." # 1
(57 4)) # Division o.k.
echo "Exit status of \"((5 / 4))\" is $2." # 0
(1 /7 2)) # Division result < 1.
echo "Exit status of \"((1 / 2))\" is $2." # Rounded off to O.
1
(¢1 / 0)) 2>/dev/null # Illegal division by 0.
AAAAAAAANAANAAN
echo "Exit status of \"((1 / 0))\" is $2." # 1

What effect does the "2>/dev/null" have?
What would happen if it were removed?
Try removing it, then rerunning the script.

#

((...)) also useful in an if-then test.

varl=5
var2=4

if ((varl > var2))

then #° A Note: Not $varl, S$var2. Why?
echo "S$varl is greater than S$var2"

fi # 5 is greater than 4

exit O

7.2. File test operators

Returns true if...

file exists
file exists

This is identical in effect to -e. It has been "deprecated," [32] and its use is discouraged.

Chapter 7. Tests

Advanced Bash-Scripting Guide

-f
file is a regular file (not a directory or device file)
-S
file is not zero size
-d
file is a directory
-b
file is a block device
-C
file is a character device
device0="/dev/sda2" # / (root directory)
if [-b "SdeviceO"]
then
echo "S$deviceO is a block device."
fi
/dev/sda2 is a block device.
devicel="/dev/ttyS1l" # PCMCIA modem card.
if [—-c "Sdevicel"]
then
echo "S$devicel is a character device."
fi
/dev/ttySl is a character device.
-p
file is a pipe
function show_input_type ()
{
[-p /dev/£fd/0] && echo PIPE || echo STDIN
}
show_input_type "Input" # STDIN
echo "Input" | show_input_type # PIPE
This example courtesy of Carl Anderson.
-h
file is a symbolic link
-L
file is a symbolic link
-S
file is a socket
-t
file (descriptor) is associated with a terminal device
This test option _may be used to check whether the stdin [=t 0 Jorstdout [=t 1]ina
given script is a terminal.
-Tr
file has read permission (for the user running the test)
-w

Chapter 7. Tests 61

Advanced Bash-Scripting Guide
file has write permission (for the user running the test)
file has execute permission (for the user running the test)
set-group-id (sgid) flag set on file or directory
If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.
set-user-id (suid) flag set on file
A binary owned by root with set ~user-1id flag set runs with root privileges, even when an
ordinary user invokes it. [33] This is useful for executables (such as pppd and cdrecord) that need to

access system hardware. Lacking the suid flag, these binaries could not be invoked by a non-root
user.

—rwsr—-xr-t 1 root 178236 Oct 2 2000 /usr/sbin/pppd

A file with the suid flag set shows an s in its permissions.
sticky bit set

Commonly known as the sticky bit, the save-text-mode flag is a special type of file permission. If a
file has this flag set, that file will be kept in cache memory, for quicker access. [34] If set on a
directory, it restricts write permission. Setting the sticky bit adds a ¢ to the permissions on the file or
directory listing.

drwxrwxrwt 7 root 1024 May 19 21:26 tmp/

If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
she can only delete those files that she owns in it. This keeps users from inadvertently overwriting or
deleting each other's files in a publicly accessible directory, such as /tmp. (The owner of the
directory or root can, of course, delete or rename files there.)

you are owner of file

group-id of file same as yours

file modified since it was last read

fl -nt 2

file £1 is newer than £2

fl -ot {2

file £1 is older than £2

fl -ef 2

files £1 and £2 are hard links to the same file

"not" -- reverses the sense of the tests above (returns true if condition absent).

Chapter 7. Tests 62

Advanced Bash-Scripting Guide

Example 7-4. Testing for broken links

#!/bin/bash

broken-link.sh

Written by Lee bigelow <ligelowbee@yahoo.com>
Used in ABS Guide with permission.

A pure shell script to find dead symlinks and output them quoted
so they can be fed to xargs and dealt with :)
eg. sh broken-link.sh /somedir /someotherdir|xargs rm

B

This, however, is a better method:

find "somedir" -type 1 —-print0]\

xargs -r0 file]\

grep "broken symbolic"|

sed -e 's/”\|: *broken symbolic.*$/"/g'

e

but that wouldn't be pure Bash, now would it.
Caution: beware the /proc file system and any circular links!
FHHFE A

S oo o e e o o o 3 e o o o

If no args are passed to the script set directories-to-search
#+ to current directory. Otherwise set the directories-to-search
#+ to the args passed.

iR E LR RS L LR RS LR

[$# —eq 0] && directorys=pwd || directorys=$@

Setup the function linkchk to check the directory it is passed
#+ for files that are links and don't exist, then print them quoted.
If one of the elements in the directory is a subdirectory then
#+ send that subdirectory to the linkcheck function.

R E T LT L L
linkchk () {
for element in $1/*; do
[-h "Selement" -a ! —-e "Selement"] && echo \"Selement\"
[-d "Selement"] && linkchk S$Selement
Of course, '-h' tests for symbolic link, '-d' for directory.
done

Send each arg that was passed to the script to the linkchk() function

#+ 1if it is a valid directoy. If not, then print the error message
#+ and usage info.
(s Ea AR AL EEE
for directory in S$directorys; do
if [-d S$directory]
then linkchk $directory
else

echo "S$directory is not a directory"
echo "Usage: $0 dirl dir2 ..."
fi
done

exit $7?

Example 31-1, Example 11-7, Example 11-3, Example 31-3, and Example A-1 also illustrate uses of the file
test operators.

Chapter 7. Tests 63

Advanced Bash-Scripting Guide

7.3. Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string comparison
use a different set of operators.

integer comparison

_eq
is equal to
if [" $a" _eq " $b"]
-ne
is not equal to
if [" $a" -ne " $b"]
_gt
is greater than
if [" $a" _gt " $b"]
_ge
is greater than or equal to
if [" $a" _ge " $b"]
-1t
is less than
if [" $a" _lt " $b"]
-le
is less than or equal to
if ["$a" _le "$b"]
<
is less than (within double parentheses)
(("$a" < "$b"))
<=
is less than or equal to (within double parentheses)
(("$a" <= "$b"))
>
is greater than (within double parentheses)
(("$a" > "$b"))
>=

is greater than or equal to (within double parentheses)
(("$a" >= "$b"))

string comparison

Chapter 7. Tests 64

Advanced Bash-Scripting Guide

is equal to

if ["$a" = "$b"]
- is equal to

if ["$a" == "$b"]

This is a synonym for =.

5 ") The == comparison operator behaves differently within a double-brackets test than

~ within single brackets.

[[Sa == z*]] # True if $Sa starts with
[[Sa == "z*"]] # True if S$Sa is equal to
[Sa == z*] # File globbing and word
["Sa" == "z*"] # True if S$a is equal to

Thanks, Stéphane Chazelas

is not equal to

if [n$au != n$bu]

an "z" (pattern matching) .

z* (literal matching) .

splitting take place.
z* (literal matching) .

This operator uses pattern matching within a [[... 1] construct.

is less than, in ASCII alphabetical order
lf [[u$an < n$bu]]

lf [n$au \< n$bu]

Note that the "<" needs to be escaped withina [] construct.

is greater than, in ASCII alphabetical order
if [["$a" > "$b" 1]

lf [n$au \> n$bu]

Note that the ">" needs to be escaped withina [] construct.

See Example 27-11 for an application of this comparison operator.

string is null, that is, has zero length

String="" # Zero—-length ("null") string variable.

if [-z "$String"]

Chapter 7. Tests

65

Advanced Bash-Scripting Guide

then

echo "\$String is null."
else

echo "\$String is NOT null."
fi # $String is null.

-n
string is not null.

<1> The —n test requires that the string be quoted within the test brackets. Using an
unquoted string with ! -z, or even just the unquoted string alone within test brackets
(see Example 7-6) normally works, however, this is an unsafe practice. Always quote a
tested string. [35]

Example 7-5. Arithmetic and string comparisons

#!/bin/bash

a=4

b=5

Here "a" and "b" can be treated either as integers or strings.

There is some blurring between the arithmetic and string comparisons,
#+ since Bash variables are not strongly typed.

Bash permits integer operations and comparisons on variables

#+ whose value consists of all-integer characters.

Caution advised, however.

echo

if ["$a" —-ne ll$bvl]

then
echo "S$a is not equal to Sb"
echo " (arithmetic comparison)"
fi
echo
if ['l$all != 'l$bll]
then
echo "S$a is not equal to Sb."
echo " (string comparison)"
ll4ll != ll5ll
ASCII 52 != ASCII 53
fi
In this particular instance, both "-ne" and "!=" work.
echo
exit O

Example 7-6. Testing whether a string is null

#!/bin/bash
str-test.sh: Testing null strings and unquoted strings,
#+ but not strings and sealing wax, not to mention cabbages and kings

Chapter 7. Tests

66

#

#
#

if
th

el

fi
#

@C

#

if
th

el

fi

@C

if
th

el

fi
#
#
#

Advanced Bash-Scripting Guide

Using if [...]

If a string has not been initialized, it has no defined value.
This state is called "null" (not the same as zero!).

[-n $stringl] # stringl has not been declared or initialized.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."
Wrong result.
Shows $stringl as not null, although it was not initialized.

ho

Let's try it again.

[-n "S$stringl"] # This time, S$stringl is quoted.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."

Quote strings within test brackets!
ho
[$stringl] # This time, $stringl stands naked.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."

This works fine.
The [...] test operator alone detects whether the string is null.
However it is good practice to quote it (if ["S$stringl"]).

As Stephane Chazelas points out,

#
#

@C

st

if
th

el

fi

#

st

if
th

el

if [S$stringl] has one argument, "]"

if ["S$stringl"] has two arguments, the empty "$stringl" and "]"

ho

ringl=initialized
[$stringl] # Again, $stringl stands unquoted.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."
Again, gives correct result.
Still, it is better to quote it ("S$stringl"), because

ringl="a = b"
[$stringl] # Again, S$stringl stands unquoted.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."

Chapter 7. Tests

67

Advanced Bash-Scripting Guide
fi # Not quoting "S$stringl" now gives wrong result!

exit O # Thank you, also, Florian Wisser, for the "heads-up".

Example 7-7. zmore

#!/bin/bash
zmore

View gzipped files with 'more' filter.

E_NOARGS=65
E_NOTFOUND=66
E_NOTGZIP=67

if [$# -eq 0] # same effect as: if [-z "$1"]
$1 can exist, but be empty: zmore "" arg2 arg3
then

echo "Usage: "basename $0° filename" >&2

Error message to stderr.

exit SE_NOARGS

Returns 65 as exit status of script (error code).
fi

filename=$1

if [! —f "$filename"] # Quoting $filename allows for possible spaces.
then
echo "File $filename not found!" >&2 # Error message to stderr.
exit S$E_NOTFOUND
fi
if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then

echo "File $1 is not a gzipped file!"
exit S$SE_NOTGZIP
fi

zcat $1 | more

Uses the 'more' filter.
May substitute 'less' if desired.

exit $°? # Script returns exit status of pipe.
Actually "exit $?" is unnecessary, as the script will, in any case,
#+ return the exit status of the last command executed.

compound comparison

-a
logical and

expl —-a expZ2returns true if both expl and exp?2 are true.
logical or

expl -o expZ2returns true if either expl or exp2 is true.

Chapter 7. Tests

Advanced Bash-Scripting Guide

These are similar to the Bash comparison operators && and Il, used within double brackets.

[[conditionl && condition2]]

The -0 and -a operators work with the test command or occur within single test brackets.

if ["Sexprl" -—-a "Sexpr2"]
then

echo "Both exprl and expr2 are true."
else

echo "Either exprl or expr2 is false."
fi

<1> But, as rihad points out:

[1 —eg 1] & [—-n "“echo true 1>&2°"] # true
[1 —eg 2] & [—-n "“echo true 1>&2°"] # (no output)
""AAAMN False condition. So far, everything as expected.

However
1 -eq 2 —a -n "“echo true 1>&2°"] # true
AnAnnnn False condition. So, why "true" output?

= —

Is it because both condition clauses within brackets evaluate?
[[1 —eq 2 && -n " echo true 1>&2°"]] # (no output)
No, that's not it.

Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8-3, Example 27-17, and Example A-29 to see compound comparison operators in action.

7.4. Nested if/then Condition Tests

Condition tests using the i £/t hen construct may be nested. The net result is equivalent to using the &&

compound comparison operator.

a=3
if ["$a" -gt 0]
then
if ["$a" -1t 5]
then

echo "The value of \"a\" lies somewhere between 0 and 5."
fi
fi

Same result as:

if ["$a" -gt 0] && ["sa" -1t 5]
then

echo "The value of \"a\" lies somewhere between 0 and 5."
fi

Example 37-4 demonstrates a nested i £/then condition test.

Chapter 7. Tests

69

Advanced Bash-Scripting Guide
7.5. Testing Your Knowledge of Tests

The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of if/then
tests. The following is excerpted from an "ancient" version of xinitrc (Red Hat 7.1, or thereabouts).

if [—-f SHOME/.Xclients]; then
exec SHOME/.Xclients
elif [-f /etc/X1ll/xinit/Xclients]; then
exec /etc/X1l/xinit/Xclients
else
failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xclock —-geometry 100x100-5+5 &
xterm —-geometry 80x50-50+150 &
if [-f /usr/bin/netscape -a -f /usr/share/doc/HTML/index.html]; then
netscape /usr/share/doc/HTML/index.html &
fi
fi
Explain the test constructs in the above snippet, then examine an updated version of the file,
/etc/X11/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead to

the discussions of grep, sed, and regular expressions.

Chapter 7. Tests 70

Chapter 8. Operations and Related Topics

8.1. Operators

assignment

variable assignment
Initializing or changing the value of a variable

All-purpose assignment operator, which works for both arithmetic and string assignments.

var=

27

category=minerals # No spaces allowed after the "=".

<1> Do not confuse the "=" assignment operator with the = test operator.

= as a test operator
if ["S$stringl" = "S$string2"]
then
command
fi
if ["XS$stringl" = "XS$string2"] is safer,
#+ to prevent an error message should one of the variables be empty.
(The prepended "X" characters cancel out.)

arithmetic operators

+

ksk

%

plus

minus

multiplication

division

exponentiation

Bash, version 2.02, introduced the "**" exponentiation operator.

let "z=5%*3"

echo

5 *5 *5
"z = $z" # z = 125

modulo, or mod (returns the remainder of an integer division operation)

2

bash$ expr 5 % 3

5/3 = 1, with remainder 2

Chapter 8. Operations and Related Topics

71

Advanced Bash-Scripting Guide

This operator finds use in, among other things, generating numbers within a specific range (see

Example 9-11 and Example 9-15) and formatting program output (see Example 27-16 and Example

A-6). It can even be used to generate prime numbers, (see Example A-15). Modulo turns up
surprisingly often in numerical recipes.

Example 8-1. Greatest common divisor

#!/bin/bash
gcd.sh: greatest common divisor
Uses Euclid's algorithm

The "greatest common divisor" (gcd) of two integers
#+ is the largest integer that will divide both, leaving no remainder.

Euclid's algorithm uses successive division.

In each pass,

#+ dividend <-—-- divisor

#+ divisor <-—— remainder

#+ until remainder = 0.

The gcd = dividend, on the final pass.
#

For an excellent discussion of Euclid's algorithm, see
#+ Jim Loy's site, http://www.jimloy.com/number/euclids.htm.

Argument check
ARGS=2
E_BADARGS=85

if [$# -ne "SARGS"]

then
echo "Usage: “basename $0° first-number second-number"
exit S$E_BADARGS

fi
__
gcd ()
{
dividend=$1 # Arbitrary assignment.
divisor=5$2 #! It doesn't matter which of the two is larger.
Why not?
remainder=1 # If an uninitialized variable is used inside
#+ test brackets, an error message results.
until ["Sremainder" -eqg 0]
do # "oannaaannr Must be previously initialized!
let "remainder = $dividend % S$divisor"
dividend=S$divisor # Now repeat with 2 smallest numbers.
divisor=$remainder
done # Euclid's algorithm
} # Last S$dividend is the gcd.
ged $1 $2

Chapter 8. Operations and Related Topics

72

%=

Advanced Bash-Scripting Guide
echo; echo "GCD of $1 and $2 = S$dividend"; echo

Exercises

1) Check command-line arguments to make sure they are integers,

#+ and exit the script with an appropriate error message if not.

2) Rewrite the gcd () function to use local variables.

exit 0

plus-equal (increment variable by a constant) [36]

let "var += 5" results in var being incremented by 5.
minus-equal (decrement variable by a constant)

times-equal (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.
slash-equal (divide variable by a constant)

mod-equal (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8-2. Using Arithmetic Operations

#!/bin/bash
Counting to 11 in 10 different ways.

n=1; echo —-n "$n "

let "n = Sn + 1" # let "n = n + 1" also works.
echo -n "S$n "

$((n = $n + 1))
":" necessary because otherwise Bash attempts
#+ to interpret "S((n = Sn + 1))" as a command.
echo -n "$n "

((n=mn+1))

A simpler alternative to the method above.

Thanks, David Lombard, for pointing this out.
echo -n "$n "

n=s ((sn + 1))

echo -n "S$n "

S[n=5%n + 1]
":" necessary because otherwise Bash attempts
#+ to interpret "S[n = Sn + 1 " as a command.
Works even if "n" was initialized as a string.

Chapter 8. Operations and Related Topics

73

Advanced Bash-Scripting Guide
echo -n "$n "
n=$[$n + 1]
Works even if "n" was initialized as a string.
#* Avoid this type of construct, since it is obsolete and nonportable.
Thanks, Stephane Chazelas.

echo —n "$n "

Now for C-style increment operators.
Thanks, Frank Wang, for pointing this out.

let "n++" # let "++n" also works.
echo —n "S$n "

((n+t+)) # ((++n)) also works.
echo -n "$n "

S((nt+)) # : $((++n)) also works.
echo -n "$n "

S[n++] # : S[++n] also works
echo —n "$n "

echo

exit O

&) Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an erroneous
result.

echo $BASH VERSION # 1.14

a=2147483646

echo "a = sa" # a = 2147483646
let "at+=1" # Increment "a"
echo "a = sa" # a = 2147483647
let "at+=1" # increment "a" again, past the limit.
echo "a = sa" # a = —2147483648
ERROR: out of range,
+ and the leftmost bit, the sign bit,
+ has been set, making the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as
strings.

a=1.5

let "b = Sa + 1.3" # Error.

t2.sh: let: b = 1.5 + 1.3: syntax error in expression
(error token is ".5 + 1.3")
echo "b = $b" # b=1

Use be in scripts that that need floating point calculations or math library functions.

Chapter 8. Operations and Related Topics

Advanced Bash-Scripting Guide

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems to
be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which provide direct access to system hardware. However, see viadz's
ingenious use of bitwise operators in his base64.sh (Example A-53) script.

bitwise operators

<<
bitwise left shift (multiplies by 2 for each shift position)
<<=
left-shift-equal
let "wvar <<= 2" resultsin var left-shifted 2 bits (multiplied by 4)
>>
bitwise right shift (divides by 2 for each shift position)
>>=
right-shift-equal (inverse of <<=)
&
bitwise AND
&=
bitwise AND-equal
I
bitwise OR
|=
bitwise OR-equal
bitwise NOT
AN
bitwise XOR
N—

bitwise XOR-equal

logical (boolean) operators

!

NOT
if [! —-f SFILENAME]
then
&&
AND
if [Sconditionl] && [Scondition2]
Same as: 1if [Sconditionl —-a S$Scondition2]

Returns true if both conditionl and condition2 hold true...

if [[Sconditionl && Scondition2 1] # Also works.
Note that && operator not permitted inside brackets
#+ of [...] construct.

B " && may also be used, depending on context, in an and list to concatenate commands.

Chapter 8. Operations and Related Topics 75

Advanced Bash-Scripting Guide

OR
if [Sconditionl] || [Scondition2]
Same as: 1f [$Sconditionl -o S$condition2]

Returns true if either conditionl or condition2 holds true...

if [[$Sconditionl || S$condition2]] # Also works.
Note that || operator not permitted inside brackets
#+ of a [...] construct.

&) Bash tests the exit status of each statement linked with a logical operator.

Example 8-3. Compound Condition Tests Using && and ||

#!/bin/bash

a=24
b=47

if ["Sa" -eq 24] && ["Sb" -eqg 47]

then
echo "Test #1 succeeds."
else
echo "Test #1 fails."
fi
ERROR: if ["$a" -eqg 24 && "Sb" -eqg 47]
#+ attempts to execute ' ["$a" -eq 24 '
#+ and fails to finding matching ']'.
#

Note: if [[$a —-eq 24 && Sb -eq 24]] works.
The double-bracket if-test is more flexible
#+ than the single-bracket version.

(The "&&" has a different meaning in line 17 than in line 6.)
Thanks, Stephane Chazelas, for pointing this out.
if ["Sa" -eq 98] || ["S$b" -eq 47]
then
echo "Test #2 succeeds."
else
echo "Test #2 fails."
fi

The -a and -o options provide
#+ an alternative compound condition test.
Thanks to Patrick Callahan for pointing this out.

if ["$a" -eq 24 -a "$b" -eq 47]

then

echo "Test #3 succeeds."
else

echo "Test #3 fails."
fi

Chapter 8. Operations and Related Topics

76

Advanced Bash-Scripting Guide

if ["Sa" -eq 98 -o "Sb" -eqg 47]
then
echo "Test #4 succeeds."
else
echo "Test #4 fails."
fi
a=rhino
b=crocodile
if ["$a" = rhino] && ["S$b" = crocodile]
then
echo "Test #5 succeeds."
else
echo "Test #5 fails."
fi
exit O

The && and Il operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 & 0)) $((4 || 0)) $((0 || 0))
1010

miscellaneous operators

Comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects. [37]

let "tl = ((5 + 3, 7 -1, 15 = 4))"
echo "tl = $tl1" Annann £l = 11
Here tl is set to the result of the last operation. Why?

let "t2 = ((a =9, 15 / 3))" # Set "a" and calculate "t2".
echo "t2 = $t2 a = $a" # t2 =5 a =9

The comma operator finds use mainly in for loops. See Example 11-12.

8.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0 is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # evaluates as BASE#NUMBER (with range and notational restrictions).

Example 8-4. Representation of numerical constants

#!/bin/bash
numbers.sh: Representation of numbers in different bases.

Decimal: the default

let "dec = 32"
echo "decimal number = S$dec" # 32

Chapter 8. Operations and Related Topics 77

Advanced Bash-Scripting Guide

Nothing out of the ordinary here.

Octal: numbers preceded by '0' (zero)
let "oct = 032"

echo "octal number = S$oct" # 26
Expresses result in decimal.

Hexadecimal: numbers preceded by 'Ox' or '0X'
let "hex = 0x32"

echo "hexadecimal number = Shex" # 50
echo $((0x9%9abc)) # 39612
an an double-parentheses arithmetic expansion/evaluation

Expresses result in decimal.

Other bases: BASE#NUMBER
BASE between 2 and 64.
NUMBER must use symbols within the BASE range, see below.

let "bin = 2#111100111001101"
echo "binary number = S$bin" # 31181

let "b32 = 32#77"

echo "base-32 number = S$b32" # 231

let "b64 = 64#@_"

echo "base-64 number = S$bo64" # 4031

This notation only works for a limited range (2 - 64) of ASCII characters.

10 digits + 26 lowercase characters + 26 uppercase characters + @ + _

echo

echo $((36#zz)) $((2#10101010)) S ((L6#AF16)) S ((53#1ad))
1295 170 44822 3375

Important note:

e

Using a digit out of range of the specified base notation
#+ gives an error message.

let "bad_oct = 081"
(Partial) error message output:

Dbad_oct = 081l: value too great for base (error token is "081")
Octal numbers use only digits in the range 0 - 7.
exit $7? # Exit value = 1 (error)

Thanks, Rich Bartell and Stephane Chazelas, for clarification.

Chapter 8. Operations and Related Topics

78

Advanced Bash-Scripting Guide
8.3. The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct is also a
mechanism for allowing C-style manipulation of variables in Bash, for example, ((var++)).

Example 8-5. C-style manipulation of variables

#!/bin/bash
c-vars.sh
Manipulating a variable, C-style, using the ((...)) construct.

echo

((a=23)) # Setting a value, C-style,
#+ with spaces on both sides of the "=".

echo "a (initial wvalue) = $a" # 23

((a++)) # Post-increment 'a', C-style.
echo "a (after a++) = $a" # 24

((a=—)) # Post-decrement 'a', C-style.
echo "a (after a—--) = $a" # 23

((++a)) # Pre-increment 'a', C-style.
echo "a (after ++a) = $a" # 24

((——a)) # Pre-decrement 'a', C-style.
echo "a (after --a) = $a" # 23

echo

FHAFEHS A
Note that, as in C, pre- and post-decrement operators
#+ have different side—-effects.

echo "False" # False

=1; let --n && echo "True"
1 echo "False" # True

; let n—— && echo "True"

(i
(i
Thanks, Jeroen Domburg.

B o

echo

((t = a<45?27:11)) # C-style trinary operator.

A A A

echo "If a < 45, then t = 7, else t = 11." # a = 23
echo "t = St " # t =7
echo

Easter Egg alert!

Chapter 8. Operations and Related Topics 79

Advanced Bash-Scripting Guide

Chet Ramey seems to have snuck a bunch of undocumented C-style
#+ constructs into Bash (actually adapted from ksh, pretty much).
In the Bash docs, Ramey calls ((...)) shell arithmetic,

#+ but it goes far beyond that.

Sorry, Chet,

See also "for"

and "while" loops using the ((...))

the secret is out.

These work only with version 2.04 or later of Bash.

exit

See also Example 11-12 and Example 8-4.

construct.

8.4. Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before the

lower precedence ones. [38]

Table 8-1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE
var++ var—- post-increment, post-decrement |C-style operators
++var —--var pre-increment, pre-decrement
I~ negation logical / bitwise, inverts sense of
following operator
*x exponentiation arithmetic operation
* /0% multiplication, division, modulo |arithmetic operation
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise
-z -n unary comparison string is/is-not null
-e -f -t -x, etc. unary comparison file-test
< -1t > —gt <= -le >= -ge |compound comparison string and integer
-nt —ot -ef compound comparison file-test
== -eq l= -ne equality / inequality test operators, string and integer
& AND bitwise
~ XOR exclusive OR, bitwise
OR bitwise

Chapter 8. Operations and Related Topics

80

Advanced Bash-Scripting Guide

&§& —a AND logical, compound comparison

|| -o OR logical, compound comparison

?: trinary operator C-style

= assignment (do not confuse with equality
test)

*= /= %= += —= <<= >>= &= |combination assignment times-equal, divide-equal,
mod-equal, etc.

, comma links a sequence of operations
LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

¢ The "My Dear Aunt Sally" mantra (multiply, divide, add, subtract) for the familiar arithmetic

operations.
® The compound logical operators, &&, Il, -a, and -o have low precedence.

¢ The order of evaluation of equal-precedence operators is usually left-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the
/etc/init.d/functions file, as found in the Fedora Core Linux distro.

while [-n "S$remaining" -a "Sretry" -gt 0]; do
This looks rather daunting at first glance.

Separate the conditions:

while [-n "S$remaining" -a "Sretry" -gt 0]; do

—-—condition 1-—- " —-condition 2-

If variable "S$remaining" is not zero length

#+ AND (-a)

#+ variable "Sretry" is greater-than zero

#+ then

#+ the [expresion-within-condition-brackets] returns success (0)
#+ and the while-loop executes an iteration.

#

Evaluate "condition 1" and "condition 2" ***before***

#+ ANDing them. Why? Because the AND (-a) has a lower precedence
#+ than the -n and -gt operators,

#+ and therefore gets evaluated *last*.

FHAHEH S H AR A A A A
if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

Again, separate the conditions:

if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

——condition 1-————————— A~ ——condition 2-————-

If file "/etc/sysconfig/il8n" exists

#+ AND (-a)
#+ variable S$SNOLOCALE is zero length
#+ then

Chapter 8. Operations and Related Topics

81

Advanced Bash-Scripting Guide

the [test-expresion-within-condition-brackets] returns success (0)
and the commands following execute.

As before, the AND (-a) gets evaluated *last*
because it has the lowest precedence of the operators within
the test brackets.

Note:

S{NOLOCALE:-} is a parameter expansion that seems redundant.
But, if SNOLOCALE has not been declared, it gets set to *null~*,
in effect declaring it.

This makes a difference in some contexts.

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

if ["S$vI" —-gt "Sv2" -o "Svl" -1t "$v2" -a -e "S$filename"]
Unclear what's going on here...

if [["$v1" —gt "S$v2" 1] || [["Svl" -1t "$v2"]] && [[—-e "Sfilename"]]
Much better -- the condition tests are grouped in logical sections.

Chapter 8. Operations and Related Topics

82

Part 3. Beyond the Basics

Table of Contents
9. Another Look at Variables
9.1. Internal Variables

9.2. Typing variables: declare or typeset
9.3. SRANDOM: generate random integer
10. Manipulating Variables
10.1. Manipulating Strings
10.2. Parameter Substitution
11. Loops and Branches
11.1. Loops
11.2. Nested Loops
11.3. Loop Control
11.4. Testing and Branching
12. Command Substitution

13. Arithmetic Expansion
14. Recess Time

Part 3. Beyond the Basics

83

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables

Builtin variables:

variables affecting bash script behavior
SBASH

The path to the Bash binary itself

bash$ echo $BASH
/bin/bash

$BASH ENV

An environmental variable pointing to a Bash startup file to be read when a script is invoked
$BASH_SUBSHELL

A variable indicating the subshell level. This is a new addition to Bash, version 3.

See Example 21-1 for usage.

$BASHPID
Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives
the same result.

bash4$ echo $$
11015

bash4$ echo $BASHPID
11015

bash4$ ps ax | grep bash4
11015 pts/2 R 0:00 bash4

But ...

#!/bin/bash4

echo "\S$\$ outside of subshell = S" # 9602

echo "\S$SBASH_SUBSHELL outside of subshell = $BASH_SUBSHELL" # 0

echo "\$BASHPID outside of subshell = S$SBASHPID" # 9602

echo

(echo "\\S inside of subshell = s" # 9602
echo "\S$SBASH_SUBSHELL inside of subshell = $BASH_SUBSHELL" # 1
echo "\S$SBASHPID inside of subshell = $BASHPID") # 9603

Note that $$ returns PID of parent process.
SBASH_VERSINFO[n]

A 6-element array containing version information about the installed release of Bash. This is similar
to SBASH_VERSION, below, but a bit more detailed.

Chapter 9. Another Look at Variables 84

Advanced Bash-Scripting Guide
Bash version info:

for n in 0 1 2 3 4 5

do

echo "BASH_VERSINFO[Sn] = ${BASH VERSINFO[Sn]}"
done
BASH_VERSINFO[0] = 3 # Major version no.
BASH_VERSINFO[1] = 00 # Minor version no.
BASH_VERSINFO[2] = 14 # Patch level.
BASH_VERSINFO[3] = 1 # Build version.
BASH_VERSINFO[4] = release # Release status.
BASH_VERSINFO[5] = i386-redhat-linux-gnu # Architecture

(same as SMACHTYPE) .

SBASH_VERSION
The version of Bash installed on the system

bash$ echo $BASH VERSION
3.2.25(1)-release

tcsh% echo $BASH VERSION
BASH_VERSION: Undefined variable.

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.

$CDPATH
A colon-separated list of search paths available to the ¢cd command, similar in function to the $PATH
variable for binaries. The SCDPATH variable may be set in the local ~/ . bashrc file.

bash$ ed bash-doc
bash: cd: bash-doc: No such file or directory

bash$ CDPATH=/usr/share/doc
bash$ ed bash-doc
/usr/share/doc/bash-doc

bash$S echo $PWD
/usr/share/doc/bash-doc

SDIRSTACK
The top value in the directory stack [39] (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the
directory stack.
SEDITOR
The default editor invoked by a script, usually vi or emacs.
SEUID
"effective" user ID number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

<1 The SEUID is not necessarily the same as the $UID.

Chapter 9. Another Look at Variables 85

Advanced Bash-Scripting Guide

SFUNCNAME
Name of the current function

xyz23 ()
{
echo "SFUNCNAME now executing." # xyz23 now executing.
}
xyz23
echo "FUNCNAME = S$SFUNCNAME" # FUNCNAME =

Null value outside a function.

See also Example A-50.

SGLOBIGNORE
A list of filename patterns to be excluded from matching in globbing.
SGROUPS

Groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /et c/passwd and
/etc/group.

root# echo $GROUPS
0

root# echo ${GROUPS[1]}
1

root# echo ${GROUPS[5]}
6

SHOME

Home directory of the user, usually /home /username (see Example 10-7)
SHOSTNAME

The hostname command assigns the system host name at bootup in an init script. However, the

gethostname () function sets the Bash internal variable SHOSTNAME. See also Example 10-7.
SHOSTTYPE

host type

Like SMACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
1686

SIFS
internal field separator

This variable determines how Bash recognizes fields, or word boundaries, when it interprets character
strings.

$IFS defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma-separated data file. Note that $* uses the first character held in $IFS. See Example 5-1.

Chapter 9. Another Look at Variables 86

Advanced Bash-Scripting Guide

bash$S echo "$IFS"

(With $IFS set to default, a blank line displays.)
bash$ echo "$IFS" | cat -vte

/\Is

$

(Show whitespace: here a single space, "I [horizontal tab],
and newline, and display "$" at end-of-line.)

bash$ bash -c 'set w x y z; IFS=":—;"; echo "$*"'
WiX:iy:z
(Read commands from string and assign any arguments to pos params.)

<1> SIFS does not handle whitespace the same as it does other characters.
Example 9-1. $IFS and whitespace

#!/bin/bash
ifs.sh

varl="a+b+c"
var2="d-e—-f"
var3="g,h,i"

IFS=+
The plus sign will be interpreted as a separator.

echo $varl # a b c
echo $var2 # d-e-f
echo $var3 # g,h, 1
echo

IFS="-"

The plus sign reverts to default interpretation.
The minus sign will be interpreted as a separator.

echo $varl # at+b+c
echo $var2 # de £
echo $var3 # g,h, 1
echo

IFS=","

The comma will be interpreted as a separator.
The minus sign reverts to default interpretation.

echo $varl # at+b+c
echo $var?2 # d-e-f
echo $var3 # gh i
echo

IFS=" "

The space character will be interpreted as a separator.
The comma reverts to default interpretation.

Chapter 9. Another Look at Variables

87

Advanced Bash-Scripting Guide

echo $varl # atb+c
echo S$Svar2 # d-e-f
echo S$var3 # g,h, 1
#

However
SIFS treats whitespace differently than other characters.

output_args_one_per_line ()
{
for arg
do
echo "[Sarg]"
done # * " Embed within brackets, for your viewing pleasure.

}

echo; echo "IFS=\" \""
echo "-—————- "

IFS=" "

var=" a b c "

A AN AAN

output_args_one_per_line $var # output_args_one_per_line ‘echo " a b c W=
[a]

[b]

[c]

echo; echo "IFS=:"
echo "-————— "

IFS=:

var=":a::b:c:::" # Same pattern as above,

Noan AAN #+ but substituting ":" for " "
output_args_one_per_line Svar

[1]
]

[
[
[
[b]
[c]
[

[

HH= = = = H T

a
]
b
e
]
]

4=

Note "empty" brackets.
The same thing happens with the "FS" field separator in awk.

4=

echo

exit

(Many thanks, Stéphane Chazelas, for clarification and above examples.)

See also Example 16-41, Example 11-7, and Example 19-14 for instructive examples of using $IFS.
S IGNOREEOF

Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
SLC_COLLATE

Often set in the _bashrc or /etc/profile files, this variable controls collation order in filename

expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in

filename globbing.

Chapter 9. Another Look at Variables 88

Advanced Bash-Scripting Guide

5 " As of version 2.05 of Bash, filename globbing no longer distinguishes between
~ lowercase and uppercase letters in a character range between brackets. For example, Is
[A-M]* would match both Filel.txt and filel.txt. Torevert to the customary
behavior of bracket matching, set LC_COLLATE to C by an export
LC_COLLATE=Cin /etc/profile and/or ~/ .bashrec.

SLC_CTYPE

This internal variable controls character interpretation in globbing and pattern matching.

SLINENO

This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

*** BEGIN DEBUG BLOCK ***
last_cmd_arg=S$_ # Save it.

echo "At line number SLINENO, variable \"v1\" = $v1"
echo "Last command argument processed = $last_cmd_arg"
*** END DEBUG BLOCK ***

SMACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
1686

SOLDPWD

Old working directory ("OLD-Print-Working-Directory", previous directory you were in).

SOSTYPE

SPATH

operating system type

bash$S echo $OSTYPE
linux

Path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, SPATH, a list of
directories, separated by colons. Normally, the system stores the SPATH definition in

/etc/profile and/or ~/ .bashrc (see Appendix G).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=$ {PATH} : /opt/bin appends the /opt /bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

;' The current "working directory", . /, is usually omitted from the $PATH as a security
measure.

SPIPESTATUS

Chapter 9. Another Look at Variables

Array variable holding exit status(es) of last executed foreground pipe.

89

Advanced Bash-Scripting Guide

bash$ echo $PIPESTATUS
0

bash$ 1s —-al | bogus_command

bash: bogus_command: command not found
bash$ echo ${PIPESTATUS[1]}

127

bash$ 1s —-al | bogus_command

bash: bogus_command: command not found
bash$ echo $?

127

The members of the SPTPESTATUS array hold the exit status of each respective command executed

in a pipe. SPIPESTATUS [0] holds the exit status of the first command in the pipe,
SPIPESTATUS [1] the exit status of the second command, and so on.

<1> The SPIPESTATUS variable may contain an erroneous 0 value in a login shell (in

releases prior to 3.0 of Bash).

tcsh% bash

bash$ who | grep nobody | sort
bash$ echo ${PIPESTATUS[*]}
0

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.

& The SPTPESTATUS variable gives unexpected results in some contexts.

bash$ echo $BASH VERSION
3.00.14 (1) -release

bash$ $§ 1s | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[Q]}
141 127 0

Chet Ramey attributes the above output to the behavior of Is. If Is writes to a pipe
whose output is not read, then STGPIPE Kkills it, and its exit status is 141. Otherwise

its exit status is 0, as expected. This likewise is the case for tr.

&) SPIPESTATUS is a "volatile" variable. It needs to be captured immediately after the

pipe in question, before any other command intervenes.

bash$ $§ 1s | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[Q]}
0 127 0

Chapter 9. Another Look at Variables

90

Advanced Bash-Scripting Guide

bash$ echo ${PIPESTATUS[Q]}
0

<& The pipefail option may be useful in cases where SPIPESTATUS does not give the
desired information.

SPPID
The $PPID of a process is the process ID (pid) of its parent process. [40]

Compare this with the pidof command.
SPROMPT__COMMAND
A variable holding a command to be executed just before the primary prompt, SPS1 is to be
displayed.
$PS1
This is the main prompt, seen at the command-line.
$PS2
The secondary prompt, seen when additional input is expected. It displays as ">".
$PS3
The tertiary prompt, displayed in a select loop (see Example 11-29).
$PS4
The quartenary prompt, shown at the beginning of each line of output when invoking a script with the
-x option. It displays as "+".
SPWD
Working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=83

clear # Clear screen.
TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd S$TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if ["SPWD" != "S$TargetDirectory"]
then # Keep from wiping out wrong directory by accident.
echo "Wrong directory!"
echo "In $PWD, rather than $TargetDirectory!"
echo "Bailing out!"
exit S$E_WRONG_DIRECTORY
fi

rm —-rf *

rm .[A-Za-z0-9]%* # Delete dotfiles.
rm —f .[".]*F ..2% to remove filenames beginning with multiple dots.
(shopt -s dotglob; rm -f *) will also work.

Thanks, S.C. for pointing this out.
A filename (" basename’) may contain all characters in the 0 - 255 range,

#+ except "/".
Deleting files beginning with weird characters, such as -

Chapter 9. Another Look at Variables 91

Advanced Bash-Scripting Guide
#+ is left as an exercise.

echo

echo "Done."

echo "Old files deleted in $TargetDirectory."
echo

Various other operations here, as necessary.

exit $°?

SREPLY
The default value when a variable is not supplied to read. Also applicable to select menus
supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash
reply.sh

REPLY is the default value for a 'read' command.
echo

echo —n "What is your favorite vegetable?
read

echo "Your favorite vegetable is $REPLY."
REPLY holds the value of last "read" if and only if
#+ no variable supplied.

echo

echo —n "What is your favorite fruit?
read fruit

echo "Your favorite fruit is S$fruit."
echo "but..."

echo "Value of \$REPLY is still $REPLY."

SREPLY is still set to its previous value because
#+ the variable S$fruit absorbed the new "read" value.

echo

exit O
SSECONDS
The number of seconds the script has been running.

#!/bin/bash

TIME_LIMIT=10

INTERVAL=1
echo
echo "Hit Control-C to exit before S$TIME_LIMIT seconds."
echo
while ["SSECONDS" -le "STIME_LIMIT"]
do
if ["SSECONDS" -eq 1]
then
units=second
else
units=seconds
fi

Chapter 9. Another Look at Variables

, but only

92

Advanced Bash-Scripting Guide

echo "This script has been running $SECONDS S$units."
On a slow or overburdened machine, the script may skip a count
#+ every once in a while.
sleep $INTERVAL
done

echo -e "\a" # Beep!

exit O
SSHELLOPTS
The list of enabled shell options, a readonly variable.

bash$S echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive—-comments:emacs

$SSHLVL

Shell level, how deeply Bash is nested. [41] If, at the command-line, $SSHLVL is 1, then in a script
will increment to 2.

& This variable is _not affected by subshells. Use $BASH SUBSHELL when you need
an indication of subshell nesting.

STMOUT

If the $TMOUT environmental variable is set to a non-zero value t ime, then the shell prompt will
time out after $t ime seconds. This will cause a logout.

it

As of version 2.05b of Bash, it is now possible to use $TMOUT in a script in combination with read

Works in scripts for Bash, versions 2.05b and later.
TMOUT=3 # Prompt times out at three seconds.
echo "What is your favorite song?"

echo "Quickly now, you only have $TMOUT seconds to answer!"
read song

if [-z "$song"]
then
song=" (no answer)"
Default response.
fi

echo "Your favorite song is $song."

There are other, more complex, ways of implementing timed input in a script. One alternative is to set
up a timing loop to signal the script when it times out. This also requires a signal handling routine to

trap (see Example 32-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

#!/bin/bash
timed-input.sh

TMOUT=3 Also works, as of newer versions of Bash.

TIMER_INTERRUPT=14

Chapter 9. Another Look at Variables

93

Advanced Bash-Scripting Guide

TIMELIMIT=3 # Three seconds in this instance.
May be set to different value.

PrintAnswer ()
{
if ["Sanswer" = TIMEOUT]
then
echo S$Sanswer
else # Don't want to mix up the two instances.
echo "Your favorite veggie is S$Sanswer"
kill $! # Kills no-longer-needed TimerOn function
#+ running in background.
$! is PID of last job running in background.
fi
}
TimerOn ()

{
sleep $TIMELIMIT && kill -s 14 $$ &
Waits 3 seconds, then sends sigalarm to script.

Intl4Vector ()

{
answer="TIMEOUT"
PrintAnswer
exit STIMER_ INTERRUPT

trap Intl4Vector $TIMER INTERRUPT
Timer interrupt (14) subverted for our purposes.

echo "What is your favorite vegetable "

TimerOn

read answer

PrintAnswer

Admittedly, this is a kludgy implementation of timed input.
However, the "-t" option to "read" simplifies this task.

See the "t-out.sh" script.

However, what about timing not just single user input,

#+ but an entire script?

If you need something really elegant
#+ consider writing the application in C or C++,
#+ using appropriate library functions, such as 'alarm' and 'setitimer.

exit O

An alternative is using stty.

Example 9-3. Once more, timed input

#!/bin/bash
timeout.sh

Chapter 9. Another Look at Variables

Advanced Bash-Scripting Guide

Written by Stephane Chazelas,
#+ and modified by the document author.

INTERVAL=5 # timeout interval

timedout_read () {
timeout=$1
varname=S$2
old_tty_settings="stty -g’
stty —icanon min 0 time ${timeout}O
eval read S$varname # or just read S$varname
stty "S$Sold_tty_settings"
See man page for "stty."

echo; echo -n "What's your name? Quick! "
timedout_read $INTERVAL your_name

This may not work on every terminal type.
The maximum timeout depends on the terminal.
#+ (it is often 25.5 seconds).

echo
if [! -z "Syour_name"] # If name input before timeout
then
echo "Your name is S$your_name."
else
echo "Timed out."
fi
echo

The behavior of this script differs somewhat from "timed-input.sh."
At each keystroke, the counter resets.

exit O

Perhaps the simplest method is using the —t option to read.

Example 9-4. Timed read

#!/bin/bash
t-out.sh
Inspired by a suggestion from "syngin seven" (thanks).

TIMELIMIT=4 # 4 seconds

read -t S$STIMELIMIT variable <&l

AAA

In this instance, "<&l1" is needed for Bash 1.x and 2.x,
Dbut unnecessary for Bash 3.x.

echo
if [-z "Svariable"] # Is null?
then
echo "Timed out, variable still unset."
else

Chapter 9. Another Look at Variables

95

SUID

Advanced Bash-Scripting Guide

echo "variable = $variable"
fi

exit O
User ID number

Current user's user identification number, as recorded in /et c/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
SUID is a readonly variable, not subject to change from the command line or within a script, and is
the counterpart to the id builtin.

Example 9-5. Am I root?

#!/bin/bash
am—-i-root.sh: Am I root or not?

ROOT_UID=0 # Root has SUID 0.

if ["SUID" -eqg "S$ROOT_UID"] # Will the real "root" please stand up?
then

echo "You are root."
else

echo "You are just an ordinary user (but mom loves you Jjust the same) ."
fi

exit O

#
Code below will not execute, because the script already exited.

An alternate method of getting to the root of matters:
ROOTUSER_NAME=root

username="id -nu’ # Or... username=" whoami’
if ["Susername" = "SROOTUSER_NAME"]
then
echo "Rooty, toot, toot. You are root."
else
echo "You are just a regular fella."
fi

See also Example 2-3.

- The variables SENV, SLOGNAME, SMAIL, STERM, SUSER, and SUSERNAME are not
Bash builtins. These are, however, often set as environmental variables in one of the
Bash startup files. $SHELL, the name of the user's login shell, may be set from
/etc/passwd or in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo

tcsh% echo $SHELL
/bin/tcsh

tcsh% echo $TERM

Chapter 9. Another Look at Variables

96

Advanced Bash-Scripting Guide
rxvt

bash$ echo $LOGNAME
bozo

bash$ echo $SHELL
/bin/tcsh

bash$ echo $TERM
rxvt

Positional Parameters

$0, 81, $2, etc.
Positional parameters, passed from command line to script, passed to a function, or set to a variable
(see Example 4-5 and Example 15-16)

S#
Number of command-line arguments [42] or positional parameters (see Example 36-2)
$ *
All of the positional parameters, seen as a single word
&) "$*" must be quoted.
s@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list
is seen as a separate word.

&) Of course, "$@" should be quoted.

Example 9-6. arglist: Listing arguments with $* and $@

#!/bin/bash
arglist.sh
Invoke this script with several arguments, such as "one two three".

E_BADARGS=65

if [! —n "$S1"]

then
echo "Usage: "basename $0° argumentl argument2 etc."
exit SE_BADARGS

fi

echo
index=1 # Initialize count.

echo "Listing args with \"\S$*\":"
for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # $* sees all arguments as single word.
echo "Entire arg list seen as single word."

echo

Chapter 9. Another Look at Variables 97

Advanced Bash-Scripting Guide

index=1 # Reset count.
What happens if you forget to do this?

echo "Listing args with \"\S@\":"
for arg in "S$@"
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # S@ sees arguments as separate words.
echo "Arg list seen as separate words."

echo
index=1 # Reset count.

echo "Listing args with \$* (unquoted) :"
for arg in $*
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # Unquoted $* sees arguments as separate words.
echo "Arg list seen as separate words."

exit O
Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1,
which was lost.

#!/bin/bash
Invoke with ./scriptname 1 2 3 4 5

echo "s@" # 12 345
shift

echo "s@" # 2 3 45
shift

echo "s@" # 345

Each "shift" loses parameter $1.
"S$Q" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat ""$@"'
construction accepts input to a script either from stdin or from files given as parameters to the

script. See Example 16-24 and Example 16-25.

<1 The $* and $@ parameters sometimes display inconsistent and puzzling behavior,
depending on the setting of $IFS.

Example 9-7. Inconsistent $* and $@ behavior

#!/bin/bash
Erratic behavior of the "$*" and "$Q" internal Bash variables,

#+ depending on whether they are quoted or not.
Inconsistent handling of word splitting and linefeeds.

set —— "First one" "second" "third:one" "" "Fifth: :one"
Setting the script arguments, $1, $2, etc.

echo

Chapter 9. Another Look at Variables

echo 'IFS unchanged,
c=0

for i in "$*"

do echo "S$((ct+=1)):

done
echo ———

echo 'IFS unchanged,
c=0
for 1 in $*

Advanced Bash-Scripting Guide
uslng Il$*ll \l

quoted

[$i]" # This line remains the same in every instance.

Echo args.

using $*'

unquoted

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS unchanged, using "$Q@"'
c=0

for i in "sSQ@"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS unchanged, using $@'
c=0

for 1 in $@

do echo "$((c+=1)): [Si]"

done

echo ——-

IFS=:

echo 'IFS=":", using "S$*"!'

c=0

for i in "S*"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using $*'

c=0

for 1 in $*

do echo "$((c+=1)): [Si]"

done

echo ——-

var=S$*

echo 'IFS=":", using "Svar" (var=S$*)"'
c=0

for 1 in "Svar"

do echo "$((c+=1)): [S1i]"

done

echo ——-

echo 'IFS=":", using Svar (var=$¥*)'
c=0

for 1 in $var

do echo "$((c+=1)): [Si]"

done

echo ——-

var="3$*"

echo 'IFS=":", using S$var (var="$*")"'
c=0

Chapter 9. Another Look at Variables

99

for 1 in $var

Advanced Bash-Scripting Guide

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var="S$*")'

do echo "$((c+=1)): [Si]"

done
echo ———

echo 'IFS=":",
c=0
for i in "s$@"

using ns@me

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0
for i in $@

using $@'

do echo "$((c+=1)): [Si]"

done
echo ——-

var=s@

echo 'IFS=":",
c=0

for 1 in $var

using S$var (var=$Q@)"'

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var=s@)'

do echo "$((c+=1)): [S1i]"

done

echo ——-
var:ll $@ n

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var="$a@")'

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0
for 1 in $var

using Svar (var="$@")'

do echo "$((c+=1)): [Si]"

done

echo

Try this script with ksh or zsh -y.

exit O

This example script by Stephane Chazelas,

Chapter 9. Another Look at Variables

100

Advanced Bash-Scripting Guide

and slightly modified by the document author.

&) The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

#!/bin/bash

If SIFS set,

but empty,

#+ then "$*" and "$Q@" do not echo positional params as expected.

mecho ()

{

#

echo "$1,$2,$3";

}

IFS:" "
set a b
mecho "$
#

mecho $*
mecho $@
mecho "$

@

* W

@"

Ers

#
#

Echo positional parameters.

Set, but empty.
Positional parameters.

abc,,

AN

a,b,c

a,b,c
a,b,c

The behavior of $* and $Q@ when S$IFS is empty depends
#+ on which Bash or sh version being run.

It is therefore inadvisable to depend on this

Thanks

exit

, Stephane Chazelas.

Other Special Parameters

$_

Flags passed to script (using set). See Example 15-16.

<1 This was originally a ksh construct adopted into Bash, and unfortunately it does not
seem to work reliably in Bash scripts. One possible use for it is to have a script

self-test whether it is interactive.

$!

PID (process ID) of last job run in background

LOG=50.1log

COMMAND1="sleep 100"

echo "Logging PIDs background commands for script: $0" >> "SLOG"
So they can be monitored, and killed as necessary.

echo >>

" sLOG "

Logging commands.

Chapter 9. Another Look at Variables

"feature" in a script.

101

$9

Advanced Bash-Scripting Guide

echo -n "PID of \"$COMMANDI1\": " >> "SLOG"
$ {COMMAND1} &

echo $! >> "SLOG"

PID of "sleep 100": 1506

Thank you, Jacques Lederer, for suggesting this.
Using $! for job control:

possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; }
Forces completion of an ill-behaved program.
Useful, for example, in init scripts.

Thank you, Sylvain Fourmanoit, for this creative use of the "!" wvariable.
Or, alternately:

This example by Matthew Sage.
Used with permission.

TIMEOUT=30 # Timeout value in seconds
count=0

possibly_hanging_job & {
while ((count < TIMEOUT)); do

eval '[! -d "/proc/$!"] && ((count = TIMEOUT)) '
/proc is where information about running processes is found.
"-d" tests whether it exists (whether directory exists).
So, we're waiting for the job in gquestion to show up.
((count++))
sleep 1

done

eval '[-d "/proc/$!"] && kill -15 $!!

If the hanging job is running, kill it.

Special variable set to final argument of previous command executed.

Example 9-9. Underscore variable

#!/bin/bash

/bin/bash
Just called /bin/bash to run the script.
Note that this will vary according to

+ how the script is invoked.

echo $_

H= H H FH

du >/dev/null # So no output from command.
echo $_ # du

1ls —-al >/dev/null # So no output from command.
echo S$_ # -al (last argument)

echo $_ #

Exit status of a command, function, or the script itself (see Example 24-7)

Chapter 9. Another Look at Variables

102

Advanced Bash-Scripting Guide

Process ID (PID) of the script itself. [43] The $$ variable often finds use in scripts to construct
"unique" temp file names (see Example 32-6, Example 16-31, and Example 15-27). This is usually
simpler than invoking mktemp.

9.2. Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables. This
is a very weak form of the fyping [44] available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The fypeset command also works in ksh scripts.

declare/typeset options

-r readonly
(declare -r varl works the same as readonly varl)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

declare -r varl=l
echo "varl = S$varl" # varl = 1

((varl++)) # x.sh: line 4: varl: readonly variable

-i integer

declare —-i number
The script will treat subsequent occurrences of "number" as an integer.

number=3
echo "Number = S$number" # Number = 3

number=three
echo "Number = S$number" # Number = 0
Tries to evaluate the string "three" as an integer.

Certain arithmetic operations are permitted for declared integer variables without the need for expr or
let.

n=6/3
echo "n = S$n" # n=6/3

declare -i n
n=6/3
echo "n = $n" # n=2

-a array

declare -a indices
The variable indices will be treated as an array.
-f function(s)

declare -f

A declare -f line with no arguments in a script causes a listing of all the functions previously
defined in that script.

Chapter 9. Another Look at Variables 103

Advanced Bash-Scripting Guide

declare -f function_name
A declare -f function_name in a script lists just the function named.

-X export

declare -x var3
This declares a variable as available for exporting outside the environment of the script itself.

-x var=$value

declare -x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its

properties.

Example 9-10. Using declare to type variables

#!/b

func

{

in/bash

10

echo This is a function.

decl

echo

decl
varl
echo
varl
echo
At
echo
varl
echo

echo

decl

echo
var2

echo

exit

are —-f # Lists the function above.

are -i varl # varl is an integer.

=2367
"varl declared as S$varl"

=varl+l # Integer declaration eliminates the need for 'let'.
"varl incremented by 1 is Svarl."

tempt to change variable declared as integer.
"Attempting to change varl to floating point value, 2367.1."

=2367.1 # Results in error message, with no change to variable.
"varl is still Svarl"

are -r var2=13.36 # 'declare' permits setting a variable property

#+ and simultaneously assigning it a value.

"var2 declared as $var2" # Attempt to change readonly variable.

=13.37 # Generates error message, and exit from script.
"var2 is still Svar2" # This line will not execute.
0 # Script will not exit here.

<1 Using the declare builtin restricts the scope of a variable.

foo ()

{
FOO="bar"

}

bar ()
{

foo

Chapter 9. Another Look at Variables

104

Advanced Bash-Scripting Guide

echo S$FOO
}

bar # Prints bar.

However. ..

foo (){
declare FOO="bar"
}

bar ()

{

foo

echo S$SFOO
}

bar # Prints nothing.

Thank you, Michael Iatrou, for pointing this out.

9.2.1. Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especially useful with arrays.

bash$ declare | grep HOME
HOME=/home /bozo

bash$ zzy=68
bash$ declare | grep zzy
z7Zy=68

bash$ Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")
bash$ echo ${Colors[@]}

purple reddish-orange light green

bash$ declare | grep Colors

Colors=([0]="purple" [l]="reddish-orange" [2]="light green")

9.3. SRANDOM: generate random integer

Anyone who attempts to generate random

numbers by deterministic means is, of course,

living in a state of sin.

--John von Neumann
SRANDOM is an internal Bash function (not a constant) that returns a pseudorandom [45] integer in the range O
- 32767. It should not be used to generate an encryption key.

Example 9-11. Generating random numbers

Chapter 9. Another Look at Variables 105

Advanced Bash-Scripting Guide
#!/bin/bash

SRANDOM returns a different random integer at each invocation.
Nominal range: 0 - 32767 (signed 1l6-bit integer).

MAXCOUNT=10
count=1

echo
echo "$SMAXCOUNT random numbers:"
e Vommmmcmsmmmsssmss
while ["Scount" -le $SMAXCOUNT] # Generate 10 (SMAXCOUNT) random integers.
do

number=$RANDOM

echo S$number

let "count += 1" # Increment count.
done
e Vommmmcmsmmmsssass "

If you need a random int within a certain range, use the 'modulo' operator.
This returns the remainder of a division operation.

RANGE=500
echo

number=$RANDOM
let "number %= SRANGE"

AN
echo "Random number less than $SRANGE —-—-- S$number"
echo

If you need a random integer greater than a lower bound,
#+ then set up a test to discard all numbers below that.

FLOOR=200
number=0 #initialize
while ["Snumber" -le SFLOOR]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR —--- S$number"
echo
Let's examine a simple alternative to the above loop, namely
let "number = S$SRANDOM + SFLOOR"
That would eliminate the while-loop and run faster.
But, there might be a problem with that. What is it?

Combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while ["Snumber" -le $SFLOOR]
do
number=$RANDOM
let "number %= SRANGE" # Scales S$number down within SRANGE.
done

Chapter 9. Another Look at Variables 106

Advanced Bash-Scripting Guide

echo "Random number between SFLOOR and S$SRANGE —--——- Snumber"
echo

Generate binary choice, that is, "true" or "false" value.
BINARY=2

T=1

number=$RANDOM

let "number %= S$SBINARY"

Note that let "number >>= 14" gives a better random distribution
#+ (right shifts out everything except last binary digit).
if ["Snumber" -eq ST]
then
echo "TRUE"
else
echo "FALSE"
fi
echo

Generate a toss of the dice.
SPOTS=6 # Modulo 6 gives range 0 - 5.
Incrementing by 1 gives desired range of 1 - 6.
Thanks, Paulo Marcel Coelho Aragao, for the simplification.
diel=0
die2=0
Would it be better to just set SPOTS=7 and not add 1? Why or why not?

Tosses each die separately, and so gives correct odds.
let "diel = SRANDOM % S$SPOTS +1" # Roll first one.
let "die2 = SRANDOM % $SPOTS +1" # Roll second one.

Which arithmetic operation, above, has greater precedence —-—
#+ modulo (%) or addition (+)?2

let "throw = $diel + $die2"
echo "Throw of the dice = $throw"
echo

exit O
Example 9-12. Picking a random card from a deck

#!/bin/bash
pick-card.sh

This is an example of choosing random elements of an array.

Pick a card, any card.

Suites="Clubs
Diamonds
Hearts
Spades"

Chapter 9. Another Look at Variables 107

Advanced Bash-Scripting Guide

Denominations="2

O J o U b W

9

10
Jack
Queen
King
Ace"

Note variables spread over multiple lines.

suite=($Suites) # Read into array variable.
denomination= ($Denominations)

num_suites=S${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}

echo —n "${denomination[$ ((RANDOM$num_denominations))]} of "
echo ${suite[$ ((RANDOM%num_suites))]}

Sbozo sh pick-cards.sh
Jack of Clubs

Thank you, "jipe," for pointing out this use of $RANDOM.
exit O

Example 9-13. Brownian Motion Simulation

#!/bin/bash

brownian.sh

Author: Mendel Cooper
Reldate: 10/26/07

License: GPL3

This script models Brownian motion:

#+ the random wanderings of tiny particles in a fluid,

#+ as they are buffeted by random currents and collisions.
#+ This is colloquially known as the "Drunkard's Walk."

It can also be considered as a stripped-down simulation of a
#+ Galton Board, a slanted board with a pattern of pegs,

#+ down which rolls a succession of marbles, one at a time.

#+ At the bottom is a row of slots or catch basins in which
#+ the marbles come to rest at the end of their Jjourney.

Think of it as a kind of bare-bones Pachinko game.

As you see by running the script,

#+ most of the marbles cluster around the center slot.

#+ This is consistent with the expected binomial distribution.
As a Galton Board simulation, the script

#+ disregards such parameters as

#+ board tilt-angle, rolling friction of the marbles,

Chapter 9. Another Look at Variables 108

Advanced Bash-Scripting Guide

#+ angles of impact, and elasticity of the pegs.
To what extent does this affect the accuracy of the simulation?

PASSES=500 # Number of particle interactions / marbles.

ROWS=10 # Number of "collisions" (or horiz. peg rows).

RANGE=3 # 0 - 2 output range from $SRANDOM.

POS=0 # Left/right position.

RANDOM=S$$ # Seeds the random number generator from PID
#+ of script.

declare -a Slots # Array holding cumulative results of passes.

NUMSLOTS=21 # Number of slots at bottom of board.

Initialize_Slots () { # Zero out all elements of the array.
for i in $(seg S$SNUMSLOTS)
do
Slots[$1i]=0
done

echo # Blank line at beginning of run.

}

Show_Slots () {
echo -n " "
for i in $(seg S$SNUMSLOTS) # Pretty-print array elements.
do

printf "%3d" ${Slots[$i]} # Allot three spaces per result.
done

echo # Row of slots:

echo " |__|__ || ||| || |||\ __[_|__|_| ||| [__|"

echo "
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
Running only(!) 500 passes usually avoids this.

Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How random is SRANDOM? Well, let's see
let "Move %= RANGE" # Normalize into range of 0 - 2.
case "S$Move" in

0y o¢ # Do nothing, i.e., stay in place.
1) ((POS—--));; # Left.
2) ((POS++));; # Right.
*) echo -n "Error ";; # Anomaly! (Should never occur.)
esac
}
Play () { # Single pass (inner loop) .
1i=0
while ["$i" -1t "SROWS"] # One event per row.
do
Move
((i++));
done
SHIFT=11 # Why 11, and not 107

Chapter 9. Another Look at Variables

109

Advanced Bash-Scripting Guide

let "POS += SSHIFT" # Shift "zero position" to center.
((Slots[SPOS]++)) # DEBUG: echo $POS
}

Run () { # Outer loop.
p=0
while ["S$p" -1t "SPASSES"]
do
Play
((ptt))
POS=0 # Reset to zero. Why?
done

main ()
Initialize_Slots
Run

Show_Slots

exit $7?

Exercises:

1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram.

2) Alter the script to use /dev/urandom instead of S$RANDOM.

Will this make the results more random?

Jipe points out a set of techniques for generating random numbers within a range.

Generate random number between 6 and 30.
rnumber=S$ ((RANDOM%25+6))

Generate random number in the same 6 - 30 range,
#+ but the number must be evenly divisible by 3.
rnumber=S$ (((RANDOM%$30/3+1) *3))

Note that this will not work all the time.
It fails if SRANDOM%30 returns 0.

Frank Wang suggests the following alternative:
rnumber=S$ ((RANDOM%27/3*3+6))

Bill Gradwohl came up with an improved formula that works for positive numbers.

rnumber=3$ (((RANDOMS (max-min+divisibleBy)) /divisibleBy*divisibleBy+min))
Here Bill presents a versatile function that returns a random number between two specified values.

Example 9-14. Random between values

#!/bin/bash

random-between.sh

Random number between two specified values.

Script by Bill Gradwohl, with minor modifications by the document author.
Corrections in lines 187 and 189 by Anthony Le Clezio.

Used with permission.

Chapter 9. Another Look at Variables 110

Advanced Bash-Scripting Guide

randomBetween () {
Generates a positive or negative random number
#+ between $min and S$Smax
#+ and divisible by $divisibleBy.
Gives a "reasonably random" distribution of return values.
#
Bill Gradwohl - Oct 1, 2003

syntax () {

Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"
echo
echo —-n "Expects up to 3 passed parameters, "
echo "but all are completely optional."
echo "min is the minimum value"
echo "max i1s the maximum value"
echo —n "multiple specifies that the answer must be "
echo "a multiple of this value."
echo " i.e. answer must be evenly divisible by this number."
echo
echo "If any value is missing, defaults area supplied as: 0 32767
echo -n "Successful completion returns 0, "
echo "unsuccessful completion returns"
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randomBetweenAnswer"
echo -n "Negative values for any passed parameter are "
echo "handled correctly."

local min=${1:-0}

local max=${2:-32767}

local divisibleBy=${3:-1}

Default values assigned, in case parameters not passed to function.

local x
local spread

Let's make sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$((0-divisibleBy))

Sanity check.

if [$# —-gt 3 -o ${divisibleBy} -eqg 0 -o ${min} -eq ${max}]; then
syntax
return 1

fi

See if the min and max are reversed.
if [${min} -gt ${max}]; then

Swap them.

x=${min}

min=${max}

max=3${x}

If min is itself not evenly divisible by $divisibleBy,

#+ then fix the min to be within range.

if [$((min/divisibleBy*divisibleBy)) -ne ${min}]; then
if [${min} -1t O]; then

Chapter 9. Another Look at Variables

Advanced Bash-Scripting Guide

min=$ ((min/divisibleBy*divisibleBy))
else

min=$ ((((min/divisibleBy)+1) *divisibleBy))
fi

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [S$S{max} -1t 0]; then
max=$ ((((max/divisibleBy)-1) *divisibleBy))
else
max=$ ((max/divisibleBy*divisibleBy))

Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs (max-min)+divisibleBy, not just abs (max-min)+1.

The slight increase will produce the proper distribution for the
#+ end points.

Changing the formula to use abs(max-min)+1 will still produce

#+ correct answers, but the randomness of those answers is faulty in

#+ that the number of times the end points (Smin and S$max) are returned
#+ is considerably lower than when the correct formula is used.

spread=$ ((max-min))

Omair Eshkenazi points out that this test is unnecessary,

#+ since max and min have already been switched around.

[${spread} -1t 0] && spread=$((0-spread))

let spread+=divisibleBy
randomBetweenAnswer=S$ (((RANDOMS$spread) /divisibleBy*divisibleBy+min))

return 0
However, Paulo Marcel Coelho Aragao points out that
when $max and $min are not divisible by $divisibleBy,

the formula fails.

He suggests instead the following formula:
rnumber = $(((RANDOM% (max-min+1)+min) /divisibleBy*divisibleBy))

HH= = = FH= H T

Let's test the function.
min=-14

max=20

divisibleBy=3

Generate an array of expected answers and check to make sure we get
#+ at least one of each answer if we loop long enough.
declare -a answer

minimum=${min}
maximum=$ {max}

Chapter 9. Another Look at Variables

112

Advanced Bash-Scripting Guide

if [$((minimum/divisibleBy*divisibleBy)) —-ne ${minimum}]; then
if [${minimum} -1t O]; then
minimum=$ ((minimum/divisibleBy*divisibleBy))
else
minimum=$ ((((minimum/divisibleBy)+1) *divisibleBy))
fi

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.

if [$((maximum/divisibleBy*divisibleBy)) —-ne ${maximum}]; then
if [${maximum} -1t O]; then
maximum=$ ((((maximum/divisibleBy)-1) *divisibleBy))
else
maximum=$ ((maximum/divisibleBy*divisibleBy))
fi

We need to generate only positive array subscripts,
#+ so we need a displacement that that will guarantee
#+ positive results.

disp=5$ ((0-minimum))

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
answer [1+disp]=0

done

Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.

for ((i=0; i<S${loopIt}; ++i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randomBetween ${max} ${min} S${divisibleBy}

Report an error if an answer is unexpected.

[${randomBetweenAnswer} -1t ${min} -o ${randomBetweenAnswer} -gt ${max}
&& echo MIN or MAX error — ${randomBetweenAnswer}!

[$((randomBetweenAnswer%S${divisibleBy})) -ne 0] \

&& echo DIVISIBLE BY error - ${randomBetweenAnswer}!

Store the answer away statistically.
answer [randomBetweenAnswer+disp]=$ ((answer [randomBetweenAnswer+disp]+1))
done

Let's check the results

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
[S{answer[i+disp]l} —-eq 0] \
&& echo "We never got an answer of $i." \
|| echo "${i} occurred S${answer[it+disp]} times."
done

Chapter 9. Another Look at Variables

]

\

113

exit O

Advanced Bash-Scripting Guide

Just how random is SRANDOM? The best way to test this is to write a script that tracks the distribution of
"random" numbers generated by SRANDOM. Let's roll a SRANDOM die a few times . . .

Example 9-15. Rolling a single die with RANDOM

#!/bin/bash
How random is RANDOM?

RANDOM=$$

PIPS=6
MAXTHROWS
throw=0

ones=0
twos=0
threes=0
fours=0
fives=0
sixes=0

Reseed the random number generator using script process ID.

A die has 6 pips.
=600 # Increase this if you have nothing better to do with your time.
Throw count.

Must initialize counts to zero,
#+ since an uninitialized variable is null, not zero.

print_result ()

{

echo

echo "one
echo "two

echo "threes = $threes"

echo "fou

echo "fives
echo "sixes

echo

}

update_count ()

case "S1"
0) let
1) let
2) let
3) let
4) let
5) let

esac

}

echo

s = Sones"
s = Stwos"
rs = Sfours"
= Sfives"
= S$sixes"
in
"ones += 1";; # Since die has no "zero", this corresponds to 1.

"twos += 1";; # And this to 2, etc.
"threes += 1";;

"fours += 1";;

"fives += 1";;

"sixes += 1";;

while ["Sthrow" -1t "$SMAXTHROWS"]

do

let "diel = RANDOM % S$SPIPS"
update_count $diel
let "throw += 1"

done

print_result

Chapter 9.

Another Look at Variables

114

Advanced Bash-Scripting Guide

exit O

The scores should distribute fairly evenly, assuming RANDOM is fairly random.
With SMAXTHROWS at 600, all should cluster around 100, plus-or-minus 20 or so.
#

Keep in mind that RANDOM is a pseudorandom generator,

#+ and not a spectacularly good one at that.

4

Randomness is a deep and complex subject.
Sufficiently long "random" sequences may exhibit
#+ chaotic and other "non-random" behavior.

Exercise (easy):

Rewrite this script to flip a coin 1000 times.

Choices are "HEADS" and "TAILS".

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked. Using
the same seed for RANDOM repeats the same series of numbers. [46] (This mirrors the behavior of the
random () function in C.)

Example 9-16. Reseeding RANDOM

#!/bin/bash
seeding-random.sh: Seeding the RANDOM variable.

MAXCOUNT=25 # How many numbers to generate.

random_numbers ()
{
count=0
while ["Scount" -1t "S$SMAXCOUNT"]
do
number=$RANDOM
echo —n "S$number "
let "count += 1"
done

}
echo; echo

RANDOM=1 # Setting RANDOM seeds the random number generator.
random_numbers

echo; echo

RANDOM=1 # Same seed for RANDOM...
random_numbers # ...reproduces the exact same number series.

#

When is it useful to duplicate a "random" number series?
echo; echo
RANDOM=2 # Trying again, but with a different seed...
random_numbers # gives a different number series.

echo; echo

RANDOM=S$$ seeds RANDOM from process id of script.
It is also possible to seed RANDOM from 'time' or 'date' commands.

Chapter 9. Another Look at Variables 115

Advanced Bash-Scripting Guide

Getting fancy...

SEED=S (head -1 /dev/urandom | od -N 1 | awk '{ print $2 }')
Pseudo-random output fetched

#+ from /dev/urandom (system pseudo-random device-file),

#+ then converted to line of printable (octal) numbers by "od",

#+ finally "awk" retrieves just one number for SEED.
RANDOM=S$SEED
random_numbers

echo; echo

exit O

) The /dev/urandom pseudo-device file provides a method of generating much more "random"

pseudorandom numbers than the $SRANDOM variable. dd if=/dev/urandom of=targetfile
bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these
numbers to a variable in a script requires a workaround, such as filtering through od (as in above

example, Example 16-14, and Example A-36), or even piping to mdSsum (see Example 36-14).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a convenient
means of doing this.

Example 9-17. Pseudorandom numbers, using awk

#!/bin/bash
random2.sh: Returns a pseudorandom number in the range 0 - 1.
Uses the awk rand() function.

AWKSCRIPT=' { srand(); print rand() } '
Command (s) / parameters passed to awk
Note that srand() reseeds awk's random number generator.

echo -n "Random number between 0 and 1 = "

echo | awk "SAWKSCRIPT"
What happens if you leave out the 'echo'?

exit O
Exercises:

1) Using a loop construct, print out 10 different random numbers.
(Hint: you must reseed the "srand()" function with a different seed
#+ in each pass through the loop. What happens if you fail to do this?)

2) Using an integer multiplier as a scaling factor, generate random numbers
#+ in the range between 10 and 100.

3) Same as exercise #2, above, but generate random integers this time.

The date command also lends itself to generating pseudorandom integer sequences.

Chapter 9. Another Look at Variables

116

Chapter 10. Manipulating Variables
10.1. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX expr
command. This results in inconsistent command syntax and overlap of functionality, not to mention
confusion.

String Length
${#string}
expr length $string
These are the equivalent of strlen() in C.

expr "$string” : "'

stringZ=abcABC1l23ABCabc

echo S${#stringZz} # 15
echo "expr length $stringZ’ # 15
echo “expr "S$stringz" : '.*'° # 15

Example 10-1. Inserting a blank line between paragraphs in a text file

#!/bin/bash
paragraph-space.sh
Ver. 2.0, Reldate 05Aug08

Inserts a blank line between paragraphs of a single-spaced text file.
Usage: $0 <FILENAME

MINLEN=60 # May need to change this value.
Assume lines shorter than SMINLEN characters ending in a period
#+ terminate a paragraph. See exercises at end of script.

while read line # For as many lines as the input file has...
do
echo "$line" # Output the line itself.

len=${#line}

if [["$len" -1t "SMINLEN" && "$line" =~ \[*\.\] 1]
then echo # Add a blank line immediately
fi #+ after short line terminated by a period.
done
exit

Exercises:

,,,,,,,,,

1) The script usually inserts a blank line at the end

#+ of the target file. Fix this.

2) Line 17 only considers periods as sentence terminators.

Modify this to include other common end-of-sentence characters,

Chapter 10. Manipulating Variables 117

#+

such as 2?2, !,

Advanced Bash-Scripting Guide

and ".

Length of Matching Substring at Beginning of String

expr match "$string" '$substring'

Ssubstringis aregular expression.

expr "$string" : '$substring'

Index

Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc
12345678

echo "expr match "$stringz"
echo "expr "S$stringz" 'abc[A-Z]*.2""

expr index $string $substring
Numerical position in $string of first character in $substring that matches.

stringZ=abcABC1l23ABCabc
123456
echo ‘expr index "S$stringz" C12°

echo ‘expr index "S$stringzZ" 1lc®
'c' (in #3 position)

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position}

Extracts substring from $stringat Sposition.

'abc[A-Z]*.2""

matches before '1'.

8
8

6
C position.

3

If the $string parameter is "*" or "@", then this extracts the positional parameters, [47] starting at

S$position.

${string:position:length}
Extracts $1ength characters of substring from Sstringat Sposition.

stringZ=abcABC1l23ABCabc
0123456789.....
0-based indexing.

echo ${stringz:0}
echo ${stringz:1}
echo ${stringz:7}

echo ${stringZ:7:3}

abcABC123ABCabc
bcABC123ABCabc
23ABCabc

23A
Three characters of substring.

Is it possible to index from the right end of the string?

Chapter 10. Manipulating Variables

118

Advanced Bash-Scripting Guide

echo ${stringZ:-4} # abcABCl23ABCabc
Defaults to full string, as in ${parameter:-default}.
However

echo ${stringZ: (-4)} # Cabc

echo S${stringZ: -4} # Cabc

Now, it works.

Parentheses or added space "escape" the position parameter.

Thank you, Dan Jacobson, for pointing this out.
The position and length arguments can be "parameterized," that is, represented as a variable, rather
than as a numerical constant.

Example 10-2. Generating an 8-character '"'random' string

#!/bin/bash
rand-string.sh
Generating an 8-character "random" string.

if [-n "$1"] # If command-line argument present,

then #+ then set start-string to it.
str0="Ss1"

else # Else use PID of script as start-string.
str0="ss$"

fi

POS=2 # Starting from position 2 in the string.
LEN=8 # Extract eight characters.

strl=$(echo "$str0" | md5sum | md5sum)
Doubly scramble: AANAAA ANNAAA

randstring="${str1 :SPOS:SLEN}"
Can parameterize """~ AN

echo "S$randstring"
exit $°?

bozo$./rand-string.sh my-password
1bdd88c4

No, this is is not recommended
#+ as a method of generating hack-proof passwords.

If the $string parameter is "*" or "@", then this extracts a maximum of $1ength positional
parameters, starting at Sposition.

echo ${*:2} # Echoes second and following positional parameters.
echo ${@:2} # Same as above.
echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length
Extracts $1ength characters from $string starting at Sposition.

stringZ=abcABC123ABCabc

Chapter 10. Manipulating Variables 119

Advanced Bash-Scripting Guide

123456789......

l-based indexing.

echo "expr substr S$stringZ 1 2° # ab
echo "expr substr $stringZ 4 3° # ABC

expr match "$string" "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis a regular expression.

expr "$string” : "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

4 .

echo "expr match "$stringz" '\ (.[b-c]*[A-Z]..[0-9]\)"" # abcABC1l
echo “expr "S$stringzZ" : '\ (.[b-c]l*[A-Z]..[0-9]\)"" # abcABC1l
echo ‘expr "S$stringzZ" : '"\(....... \) " # abcABC1l

All of the above forms give an identical result.
expr match "$string" '.*\($substring\)'

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

expr "$string” : . *\($substring\)’

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

n e
echo "expr match "$stringz" '.*\([A-C][A-C][A-C][a-c]*\)"'" # ABCabc
echo “expr "S$stringz" : ' *\(...... \) " # ABCabc

Substring Removal

${string#substring }

Deletes shortest match of Ssubstring from front of $string.
${string##substring }

Deletes longest match of Ssubstring from front of Sstring.

stringZ=abcABC123ABCabc

|====]| shortest
[————— | longest
echo ${stringZ#a*C} # 123ABCabc

Strip out shortest match between 'a' and 'C'.

echo ${stringZ##a*C} # abc
Strip out longest match between 'a' and 'C'.
${string%substring }

Deletes shortest match of Ssubstringfrom back of Sstring.
For example:

Rename all filenames in S$PWD with "TXT" suffix to a "txt" suffix.
For example, "filel.TXT" becomes "filel.txt"

SUFF=TXT
suff=txt

for i in $(ls *.$SUFF)

Chapter 10. Manipulating Variables

120

Advanced Bash-Scripting Guide

do
mv —f $1i ${i%.S$SSUFF}.Ssuff
Leave unchanged everything *except* the shortest pattern match
#+ starting from the right-hand-side of the variable $i

done ### This could be condensed into a "one-liner" if desired.

Thank you, Rory Winston.

${string%%substring }

Deletes longest match of $Ssubstring from back of $string.

stringZ=abcABC1l23ABCabc

|| shortest
| -——————————— | longest
echo ${stringZ%b*c} # abcABCl23ABCa

Strip out shortest match between 'b' and 'c', from back of $stringZ.

echo ${stringZzZ%%b*c} # a

Strip out longest match between 'b' and 'c', from back of $stringz.

This operator is useful for generating filenames.

Example 10-3. Converting graphic file formats, with filename change

#!/bin/bash
cvt.sh:

Converts all the MacPaint image files in a directory to "pbm" format.

Uses the "macptopbm" binary from the "netpbm" package,
#+ which is maintained by Brian Henderson (bryanh@giraffe-data.com) .
Netpbm is a standard part of most Linux distros.

OPERATION=macptopbm

SUFF IX=pbm # New filename suffix.
if [-n "S$1"]
then
directory=5$1 # If directory name given as a script argument...
else
directory=$PWD # Otherwise use current working directory.
fi

Assumes all files in the target directory are MacPaint image files,

#+ with a ".mac" filename suffix.

for file in $directory/* # Filename globbing.
do
filename=${file%.*c} # Strip ".mac" suffix off filename
#+ ('.*c' matches everything
#+ between '.' and 'c', inclusive).

SOPERATION S$file > "$filename.S$SSUFFIX"
Redirect conversion to new filename.

rm —f S$file # Delete original files after converting.

echo "S$filename.$SUFFIX" # Log what is happening to stdout.
done

exit O

Exercise:

Chapter 10. Manipulating Variables

121

Advanced Bash-Scripting Guide
As it stands, this script converts *all* the files in the current

#+ working directory.
Modify it to work *only* on files with a ".mac" suffix.

Example 10-4. Converting streaming audio files to ogg

#!/bin/bash
ra2ogg.sh: Convert streaming audio files (*.ra) to ogg.

Uses the "mplayer" media player program:

http://www.mplayerhqg.hu/homepage

Uses the "ogg" library and "oggenc":

http://www.xiph.org/

#

This script may need appropriate codecs installed, such as sipr.so
Possibly also the compat-libstdc++ package.

OFILEPREF=${1%%ra} # S