
ADOBE INDESIGN CS3
SCRIPTING TUTORIAL

Adobe® InDesign® CS3 Scripting Tutorial

© 2007 Adobe Systems Incorporated. All rights reserved.

Adobe, the Adobe logo, Creative Suite, InDesign, Illustrator, and Photoshop are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Apple
and Mac OS are trademarks of Apple Computer, Inc., registered in the United States and other countries. All other
trademarks are the property of their respective owners.

The information in this document is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document. The software described in this
document is furnished under license and may only be used or copied in accordance with the terms of such license.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

 3

Adobe InDesign CS3 Scripting Tutorial

Introduction
Scripting is the most powerful feature in Adobe® InDesign® CS3. No other feature can save you as much
time, trouble, and money as scripting.

This document is for every InDesign user. If you never created a script before, we show you how to get
started. If you wrote scripts for other applications, we show you how to apply your knowledge to InDesign
scripting.

The document also covers how to install and run an InDesign script and describes what InDesign scripting
can and cannot do. We discuss the software you need to start writing your own scripts.

After you learn the basics of InDesign scripting in this tutorial, you can move on to Adobe InDesign CS3
Scripting Guide, which explores scripting in more depth. Adobe InDesign CS3 Scripting Guide contains
hundreds of tutorial scripts covering topics like text formatting, finding and changing text, associating
scripts with menu items, drawing objects on a page, and exporting documents.

Getting Started
Almost anything you can do with the user interface; you can do with a script. You can draw frames, enter
and format text, place graphics, and print or export the pages of the document. Any action that can
change a document or its contents can be scripted. There even are a few things you can do in scripting
that you cannot do using the user interface.

Scripts can create menus, add menu items, create and display dialog boxes and panels, and respond to
user-interface selections. Scripts can read and write text files, parse XML data, and communicate with
other applications.

Scripts can do everything from very small tasks (like setting a tab stop at the location of the text cursor) to
providing complete features (InDesign’s XHTML export feature is provided by a script). You can start with
simple scripts that do only one thing and move on to scripts that automate your entire publishing
workflow.

Most of the things scripting cannot do—like setting up a workspace or defining a set of keyboard
shortcuts—are things that have to do with the user interface. In addition, scripts cannot add new types of
objects to an InDesign document or add new, fundamental capabilities to the program, like a new
text-composition engine. For that type of extensibility, you must use the InDesign Software Development
Kit (SDK), which shows you to write compiled plug-ins using C++.

We tend to think of scripting in terms of long, repetitive tasks, like laying out a phone book. It also is good
for things like the following:

• Automating the myriad, small, annoying tasks you face every day.

• Customizing InDesign to match your work habits and layouts.

• Achieving creative effects that would be difficult or impossible to attain by other means.

Adobe InDesign CS3 Scripting Tutorial Getting Started 4

Installing Scripts
Installing an InDesign script is easy: put the script file in the Scripts Panel folder inside the Scripts folder in
your InDesign application folder. (Create the Scripts folder if it does not already exist.)

Alternately, put the script inside the Scripts Panel folder in your user-preferences folder. Your
user-preferences folder is at

Mac OS: ~/Library/Preferences/Adobe InDesign/Version 5.0/Scripts

Windows XP: ~\Documents and Settings\user_name\Application Data\Adobe
\InDesign\Version 5.0\Scripts

where ~ is your system volume and user_name is your user name.

Once the script is in the folder, it appears on the Scripts panel inside InDesign. To display the panel, choose
Window > Automation > Scripts.

You also can put aliases/shortcuts to scripts (or to folders containing scripts) in the Scripts Panel folder, and
they will appear in the Scripts panel.

To run a specific script when InDesign starts, put the script inside a folder named “Startup Scripts” inside
the Scripts folder (create this folder if it does not already exist).

Running a Script
To run a script, display the Scripts panel (choose Window > Automation > Scripts), then double-click the
script name in the Scripts panel. Many scripts display user-interface items (like dialog boxes or panels) and
display alerts if necessary.

Using the Scripts Panel
The InDesign Scripts panel is the easiest and best way to run most InDesign scripts. If the panel is not
already visible, you can display it by choosing Window > Automation > Scripts.

Scripts run from the Scripts panel run faster than scripts run from the Finder (Mac OS®) or Explorer
(Windows®). To view the script actions as they execute, choose Enable Redraw from the Scripts panel
menu.

The Scripts panel can run compiled or uncompiled AppleScripts (files with the file extension .spt, .as, or
.applescript), JavaScripts (files with the file extension .js or .jsx), VBScripts (files with the extension
.vbs), or executable programs from the Scripts panel.

To edit a script shown in the Scripts panel, hold down Option (Mac OS) or Alt (Windows) key and
double-click the script’s name. This opens the script in the editor you defined for the script file type.

To open the folder containing a script shown in the Scripts panel, hold down the Command (Mac OS) or
Ctrl-Shift (Windows) keys and double-click the script’s name. Alternately, choose Reveal in Finder (Mac OS)
or Reveal in Explorer (Windows) from the Scripts panel menu. The folder containing the script opens in the
Finder (Mac OS) or Explorer (Windows).

Scripts run as a series of actions, which means you can undo the changes the script made to a document
by choosing Undo from the Edit menu. This can help you troubleshoot a script, as you can step backward
through each change.

Adobe InDesign CS3 Scripting Tutorial Getting Started 5

To add a keyboard shortcut for a script, choose Edit > Keyboard Shortcuts, select an editable shortcut set
from the Set menu, then choose Product Area > Scripts. A list of the scripts in your Scripts panel appears.
Select a script and assign a keyboard shortcut as you would for any other InDesign feature.

About Scripting Languages
The language you use to write scripts depends on the scripting system of your platform: AppleScript for
Mac OS, VBScript for Windows, or JavaScript for either platform. Although the scripting languages differ,
the ways they work with InDesign are very similar.

Each sample script in this document is shown in all three scripting languages. Translating a script from one
language to another is fairly easy.

JavaScript

InDesign supports JavaScript for cross-platform scripting in both Mac OS and Windows. InDesign’s
JavaScript support is based on an Adobe implementation of JavaScript known as ExtendScript. The
ExtendScript interpreter conforms to the current, ECMA 262 standard for JavaScript. All language features
of JavaScript 1.5 are supported. Adobe Illustrator®, Adobe Photoshop®, and other Adobe Creative Suite®
products also use the ExtendScript JavaScript interpreter.

While you can write scripts using other versions of JavaScript, like Microsoft® JScript (in Windows) or Late
Night Software’s OSA JavaScript (on the Mac OS), the terms you use in those languages are not the same as
the terms you use in ExtendScript. ExtendScript examples do not work in other JavaScript versions.

Note: Because ExtendScript tools and features are used in several Adobe products, we consolidated all
ExtendScript documentation. To learn more about JavaScript utilities like the ScriptUI user-interface
module and the ExtendScript Toolkit (a JavaScript development environment and object-model
inspector), see Creative Suite 3 JavaScript Tools Guide.

Mac OS

To use InDesign scripting on Mac OS, you can use either JavaScript or AppleScript. To write AppleScripts,
you must have AppleScript version 1.6 or higher and an AppleScript script editor. AppleScript comes with
all Apple® systems, and it can be downloaded free from the Apple Web site. The Apple Script Editor is
included with the Mac OS; third-party script editors, like Script Debugger (from Late Night Software,
http://www.latenightsw.com) also are available.

Windows

To use InDesign scripting in Windows, you can use either JavaScript or some version of Microsoft Visual
Basic, like VBScript.

The Visual Basic tutorial scripts are written in VBScript. We chose VBScript because no added software is
required to run or edit VBScripts; you can edit them with any text editor (like Notepad) and run them using
the InDesign Scripts panel.

Other versions of Visual Basic include Visual Basic 5 Control Creation Edition (CCE), Visual Basic 6, Visual
Basic .NET, and Visual Basic 2005 Express Edition. Versions of Visual Basic prior to Visual Basic .NET work
well with InDesign scripting. Visual Basic .NET and newer versions work less well, because they lack the
Variant data type, which is used extensively in InDesign scripting.

Adobe InDesign CS3 Scripting Tutorial Getting Started 6

Many applications contain Visual Basic for Applications (VBA), like Microsoft Word, Microsoft Excel,
Microsoft Visio, or AutoCAD. Although you can use VBA to create InDesign scripts, InDesign does not
include VBA.

To use VBScript or Visual Basic for InDesign scripting in Windows XP, you must install InDesign from a user
account that has Administrator privileges. After you complete the installation, any user can run InDesign
scripts, and any user can add scripts to the InDesign Scripts panel.

Which Scripting Language should you use?

If you have written scripts before, use whatever language you know. If you have never written scripts
before or if you need to make your scripts work on both the Mac OS and Windows versions of InDesign,
use JavaScript. If you need to communicate with other, non-Adobe applications on your system, use the
appropriate, platform standard language (AppleScript on Mac OS or VBScript in Windows).

We cannot fully document the language features of AppleScript, JavaScript, or VBScript, so you may need
documentation for any or all those scripting languages.

Note: You also can use almost any other programming language (like Python or C#) that can connect to
the platform standard automation system; that is beyond the scope of this document.

How to use the Scripts in this Document
To use any script from this document, either open the tutorial script file (the filename is given before each
script) or follow these steps:

1. Copy the script from this Adobe PDF document and paste it into your script editor, such as the
ExtendScript Toolkit (for JavaScript examples), the Apple Script Editor (for AppleScript examples), or a
text editor like Notepad (for VBScript examples).

2. Save the script as a plain text file in the Scripts Panel folder (see “Installing Scripts” on page 4), using
the appropriate file extension:

AppleScript: .applescript

JavaScript: .jsx

VBScript: .vbs

3. Choose Windows > Automation > Scripts, to display the Scripts panel.

4. Double-click the script name in the Scripts panel, to run the script.

Note: If you are entering the JavaScript examples, it is very important to use the same capitalization
shown in the example. JavaScript is case-sensitive, and the scripts will fail if they do not use the
capitalization shown. The AppleScript and VBScript examples are not case-sensitive.

Note: If you are copying and pasting scripts from this document, be aware that line breaks caused by the
layout of the document can cause errors in your script. As it can be very difficult to find such errors,
we recommend hat you use the scripts in the zip archive.

Adobe InDesign CS3 Scripting Tutorial Getting Started 7

Your First InDesign Script
Next, we will create an InDesign script that creates a new document, adds a text frame, and enters text in
the text frame. This demonstrates how to do the following:

• Establish communication with InDesign.

• Create a new document.

• Create a text frame on a specific page.

• Add text to a text frame.

AppleScript

Start the Script Editor application (you can find it in your Applications folder, inside the AppleScript folder).
Enter the following script (or open the HelloWorld.applescript tutorial script):

tell application "Adobe InDesign CS3"
set myDocument to make document
tell page 1 of myDocument
set myTextFrame to make text frame
set geometric bounds of myTextFrame to {"6p", "6p", "24p", "24p"}
set contents of myTextFrame to "Hello World!"
end tell
end tell

Save the script as text with the file extension .applescript to the Scripts Panel folder (see “Installing
Scripts” on page 4). To run the script, double-click the script name in the Scripts panel or click the Run
button in the Script Editor window.

JavaScript

Start the ExtendScript Toolkit (or a text editor). Enter the following script (or open the HelloWorld.jsx
tutorial script):

var myDocument = app.documents.add();
var myTextFrame = myDocument.pages.item(0).textFrames.add();
myTextFrame.geometricBounds = ["6p", "6p", "24p", "24p"];
myTextFrame.contents = "Hello World!";

Save the script as a plain-text file with the .jsx file extension to the Scripts Panel folder (see “Installing
Scripts” on page 4). To run the script, double-click the script name in the Scripts panel, or select InDesign
from the application target pop-up menu in the ExtendScript Toolkit and then click the Run button).

VBScript

Start a text editor (e.g., Notepad) and enter the following script (or open the HelloWorld.vbs tutorial
script):

Set myInDesign = CreateObject("InDesign.Application.CS3")
Set myDocument = myInDesign.Documents.Add
Set myTextFrame = myDocument.Pages.Item(1).TextFrames.Add
myTextFrame.GeometricBounds = Array("6p", "6p", "24p", "24p")
myTextFrame.Contents = "Hello World!"

Save the script as a text file with the .vbs file extension to the Scripts Panel folder (see“Installing Scripts”
on page 4). To run the script, double-click the script name in the Scripts panel.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 8

Walking through the Script

Examining the script presented above, here is a step-by-step analysis of what the script does (in each
scripting language):

1. Establish communication with the InDesign application object:

AppleScript: tell application "Adobe InDesign CS3"

JavaScript: Refer to the application as app.

VBScript: Set myInDesign = CreateObject("InDesign.Application.CS3")

2. Create a new document and a reference to the document:

AppleScript: Set myDocument to make document

JavaScript: Var myDocument = app.documents.add();

VBScript: Set myDocument = myInDesign.Documents.Add

3. Create a new text frame on the first page and a create a reference to the text frame.:

AppleScript: tell page 1 of myDocument
set myTextFrame to make text frame

JavaScript: var myTextFrame = myDocument.pages.item(0).textFrames.add();

VBScript: Set myTextFrame = myDocument.Pages.Item(1).TextFrames.Add

4. Set the geometric bounds (the location of the top, left, bottom, and right edges) of the text frame. In
this step, the script uses measurement overrides (“p” for picas) to ensure the text frame is the correct
size, regardless of your default measurement units. The locations are provided as a list, or array, of val-
ues; each scripting language has a slightly different way of creating an array. For more on array vari-
ables, see “Array Variables” on page 11.

AppleScript: set geometric bounds of myTextFrame to {"6p", "6p", "24p", "24p"}

JavaScript: myTextFrame.geometricBounds = ["6p", "6p", "24p", "24p"];

VBScript: myTextFrame.GeometricBounds = Array("6p", "6p", "24p", "24p")

5. Add text to the text frame by setting the contents property to a string.:

AppleScript: set contents of myTextFrame to "Hello World!"

JavaScript: myTextFrame.contents = "Hello World!";

VBScript: myTextFrame.Contents = "Hello World!"

Scripting and the InDesign Object Model
This section discusses the terminology of scripting languages in general and InDesign scripting in
particular.

Scripting Terminology
This section discusses common scripting terms and concepts.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 9

Comments

Comments give you a way to add descriptive text to a script. The scripting system ignores comments as
the script executes; this prevents comments from producing errors when you run your script. Comments
are useful to document the operation of a script (for yourself or someone else). In this document, we use
comments in the tutorial scripts.

To include a comment in an AppleScript, type -- to the left of your comment or surround the comment
with (* and *). In VBScript, type Rem (for “remark”) or ' (a single straight quote) to the left of the
comment. Type the comment marker at the beginning of a line, to make the entire line a comment. In
JavaScript, type // to the left of the comment, or surround the comment with /* and */. For example:

AppleScript: --this is a comment
* and so is this *)

JavaScript: // this is a comment
/* and so is this */

VBScript: Rem this is a comment
' and so is this

Values

The point size of a character of text, the location of a text frame on a page, and the color of stroke of a
rectangle are examples of values used in InDesign scripting. Values are the data your scripts use to do their
work.

The type of a value defines what sort of data the value contains. For example, the value type of the
contents of a word is a text string, and the value type of the leading of a paragraph is a number. Usually,
the values used in scripts are numbers or text. The following table explains the value types most
commonly used in InDesign scripting:

Value Type What it is Example

Boolean Logical True or False. True

Integer Whole numbers (no decimal
points). Integers can be positive
or negative. In VBScript, you can
use the long data type for
integers. In AppleScript, you
also can use the fixed or long
data types for both integers and
real numbers.

14

Double (VBScript),
fixed or real
(AppleScript),
floating point
(JavaScript)

A high-precision number that
can contain a decimal point.

13.9972

String A series of text characters.
Strings appear inside (straight)
quotation marks.

"I am a string"

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 10

Converting Values from one Type to Another

All scripting languages supported by InDesign provide ways to convert variable values from one type to
another. The most common conversions involve converting numbers to strings (so you can enter them in
text or display them in dialog boxes) or converting strings to numbers (so you can use them to set a point
size or page location). See the examples below.

AppleScript:

--To convert from a number to a string:
set myNumber to 2
set myString to (myNumber as string)
--To convert from a string to a number:
set myString to "2"
set myNumber to (myString as integer)
--if your string contains a decimal value, use "as real" rather than "as integer"

JavaScript:

//To convert from a number to a string:
myNumber = 2;
myString = myNumber + "";
//To convert from a string to an integer:
myString = "2";
myNumber = parseInt(myString);
//If your string contains a decimal value, use "parseFloat" rather than
"parseInt":
myNumber = parseFloat(myString);
//You can also convert strings to numbers using the following:
myNumber = +myString;

VBScript:

Rem To convert from a number to a string:
myNumber = 2
myString = cstr(myNumber)
Rem To convert from a string to an integer:
myString = "2"
myNumber = cInt(myString)
Rem If your string contains a decimal value, use "cDbl" rather than "cInt":
myNumber = cDbl(myString)

Array (VBScript,
JavaScript)
or list (AppleScript)

A list of values (the values can
be any type).

AppleScript:
{"0p0", "0p0", "16p4", "20p6"}

VBScript:
Array("0p0", "0p0", "16p4", "20p6")

JavaScript:
["0p0", "0p0", "16p4", "20p6"]

Value Type What it is Example

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 11

Variables

A variable is a container for a value. They are called “variables” because the values they contain might
change. A variable might hold a number, a string of text, or a reference to an InDesign object. Variables
have names, and you refer to a variable by its name. To put a value into a variable, you assign the data to
the variable.

In our first sample script, above, we used the variables myDocument and myTextFrame to avoid having to
provide the full specification of the object (such as text frame 1 of page 1 of document 1 or
app.documents.item(0).pages.item(0).textFrames.item(0)) every time we refer to the object.

In all the sample and tutorial scripts that come with InDesign, all variables start with my. This way, you can
easily differentiate variables we created in a script from the scripting language terms.

Assigning a Value to a Variable

Assigning values or strings to variables is fairly simple, as shown in the following table:

Note: In JavaScript, all variables not preceded by var are considered global by default; that is, they are not
bound to a specific function. var is not required, but we recommend you use var in any script with
more than one function. In AppleScript and VBScript, variables are local unless specifically defined
as global variables. This means the variables do not persist outside the function in which they are
created.

Try to use descriptive names for your variables, like firstPage or corporateLogo, rather than x or c. This
makes your script easier to read. Longer names do not affect the execution speed of the script.

Variable names must be one word, but you can use internal capitalization (myFirstPage) or underscore
characters (my_first_page) to create more readable names. Variable names cannot begin with a
number, and they cannot contain punctuation or quotation marks.

Array Variables

AppleScript, JavaScript, and VBScript support arrays, which is a variable type that is a list of values. In
AppleScript, an array is called a list. Examples of defining arrays are shown below:

Language Examples of Assigning a Value to a Variable

AppleScript set myNumber to 10

set myString to "Hello, World!"

set myTextFrame to make text frame at page 1 of myDocument

JavaScript var myNumber = 10;

var myString = "Hello, World!";

var myTextFrame = myDocument.pages.item(0).textFrames.add();

VBScript myNumber = 10

myString = "Hello, World!"

Set myTextFrame = myDocument.Pages.Item(1).TextFrames.Add

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 12

To refer to an item in an array, refer to the item by its index in the array. The first item in an array in VBScript
and JavaScript is item 0; in AppleScript, item 1. Examples of referring to items in an array are shown below:

Note: The Visual Basic OptionBase statement can be used to set the first item of an array to item 1. In the
examples in this document, the first item in an array is item 0, not item 1, because that is the default.
If you set OptionBase to 1, you must adjust all array references in the sample scripts accordingly.

Arrays can include other arrays, as shown in the following table:

Finding the Value Type of a Variable

Sometimes, your scripts must make decisions based on the value type of an object. For example, if you are
working on a script that operates on a text selection, you might want that script to stop if the type of the
selection is a page item. All the scripting languages allow you to determine the type of a variable.

AppleScript:

-- Given a variable of unknown type, "myMysteryVariable"...
set myType to class of myMysteryVariable
--myType will be an AppleScript type (e.g., rectangle)

JavaScript:

//Given a variable of unknown type, "myMysteryVariable"...
myType = myMysteryVariable.constructor.name;
//myType will be a string corresponding to the JavaScript type (e.g., "Rectangle")

Language Examples of Defining Arrays

AppleScript set myArray to {1, 2, 3, 4}

JavaScript myArray = [1, 2, 3, 4];

VBScript myArray = Array(1, 2, 3, 4)

Rem In Visual Basic.NET: myArray = New Double (1, 2, 3, 4)

Language Examples of Referring to an Item in an Array

AppleScript set myFirstArrayItem to item 1 of myArray

JavaScript var myFirstArrayItem = myArray[0];

VBScript myFirstArrayItem = myArray(0)

Language Examples

AppleScript set myArray to {{0, 0}, {72, 72}}

VBScript myArray = Array(Array(0,0), Array(72, 72))

Rem In Visual Basic.NET: myArray = New Array(New Double(0,0),
NewDouble (0,0))

JavaScript var myArray = [[0,0], [72,72]];

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 13

VBScript:

Rem Given a variable of unknown type, "myMysteryVariable"...
myType = TypeName(myMysteryVariable)
Rem myType will be a string corresponding to the variable type (e.g., "Rectangle")

Operators

Operators use variables or values to perform calculations (addition, subtraction, multiplication, and
division) and return a value. For example:

MyWidth/2

This returns a value equal to half of the content of the variable myWidth.

You also can use operators to perform comparisons: equal to (=), not equal to(<>), greater than(>), or less
than(<). For example:

MyWidth > myHeight

This returns true (or 1) if myWidth is greater than myHeight; otherwise, false (0).

All the scripting languages provide additional utility operators. In AppleScript and VBScript, the
ampersand (&) concatenates (or joins) two strings:

"Pride " & "and Prejudice"

This returns the following string:

"Pride and Prejudice"

In JavaScript, use the plus sign (+) to join the two strings:

"Pride " + "and Prejudice"
//returns the string: "Pride and Prejudice"

Conditional Statements

“If the selected object is a rectangle, set its stroke weight to 12 points.” This is an example of a conditional
statement. Conditional statements make decisions; they give your scripts a way to evaluate something (like
the color of the selected object, the number of pages in the publication, or the date) and act based on the
result. Conditional statements almost always start with if.

Note: Conditional statements often make logical comparisons. In AppleScript and VBScript, use the
equals sign (=) to compare objects. In JavaScript, the equals sign assigns a value to a variable; to
compare objects, use a double equals sign (==).

Control Structures

If you could talk to InDesign, you might say, “Repeat the following procedure 20 times.” In scripting terms,
this is a control structure. Control structures provide repetitive processes, or loops. The idea of a loop is to
repeat an action over and over, with or without changes between instances (or iterations) of the loop, until
a specific condition is met. Control structures usually start with repeat (in AppleScript) or for (in
JavaScript and VBScript).

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 14

Functions and Handlers

Functions (in VBScript or JavaScript) or handlers (in AppleScript) are scripting modules you can refer to
within your script. Typically, you send a value or series of values to a function (or handler) and get back
some other value or values. The code used in functions and handlers is simply a convenience to avoid
having to type the same lines of code repeatedly in your script.

In AppleScript, handlers start with on. In JavaScript and VBScript, functions start with function.

Understanding the InDesign Object Model
When you think about InDesign and InDesign documents, you probably organize the program and its
components in your mind. You know paragraphs are contained by text frames which, in turn, appear on a
page. A page is a part of a spread, and one or more spreads make up a document. Documents contain
colors, styles, layers, and master spreads. As you think about the layouts you create, you intuitively
understand there is an order to them.

InDesign “thinks” about the contents of a document in the same way. A document contains pages, which
contain page items (text frames, rectangles, ellipses, and so on). Text frames contain characters, words,
paragraphs, and anchored frames; graphics frames contain images, EPS files, or PDF files; and groups
contain other page items. The things we mention here are the objects that make up an InDesign
publication, and they are what we work with when we write InDesign scripts.

Objects in your publication are arranged in a specific order: frames are on pages, which are inside a
document, which is inside the InDesign application object. When we speak of an object model or a
hierarchy, we are talking about this structure. Understanding the object model is the key to finding the
object you want to work with, and your best guide to InDesign scripting is your knowledge of InDesign
itself.

Objects have properties (attributes). For example, the properties of a text object include the font used to
format the text, the point size, and the leading applied to the text.

Properties have values; for example, the point size of text can be either a number (in points) or the string
“Auto” for auto leading. The fill color property of text can be set to a color, a gradient, a mixed ink, or a
swatch.

Properties also can be read/write or read only. Read/write properties can be set to other values; read only
properties cannot.

Objects also have methods—the verbs of the scripting world, or the actions an object can perform. For
example, the document object has print, export, and save methods.

Methods have parameters, or values that define the effect of the method. For example, the place method
of a document has a parameter that defines the file you want to place. Parameters can be required or
optional, depending on the method.

The following figure is an overview of the InDesign object model. The diagram is not a comprehensive list
of the objects available to InDesign scripting; instead, it i s a conceptual framework for understanding the
relationships between the types of objects.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 15

The objects in the diagram are explained in the following table:

Term What it Represents

Application InDesign.

Application
defaults

Application default settings, like colors, paragraph styles, and object styles.
Application defaults affect all new documents.

Application
events

The things that happen as a user or script works with the application. Events are
generated by opening, closing, or saving a document or choosing a menu item.
Scripts can be triggered by events.

Application
menus

The menus, submenus, and context menus displayed in the InDesign user interface.
Scripts can be attached to menu choices and can execute menu actions.

Application
methods

The actions the application can take; for example, finding and changing text,
copying the selection, creating new documents, and opening libraries.

Application
preferences

For example, text preferences, PDF export preferences, and document preferences.
Many of the preferences objects also exist at the document level. Just as in the user
interface, application preferences are applied to new documents. Document
preferences change the settings of a specific document.

Application
properties

The properties of the application; for example, the full path to the application, the
locale of the application, and the user name.

Books A collection of open books.

Document An InDesign document.

Document
defaults

Document default settings, like colors, paragraph styles, and text formatting
defaults.

documents

libraries

application defaults

application

books

application preferences

application events

application menus

application methods

application properties

a document

document defaults

document preferences

document events

document methods

document properties

pages or spreads

page

page itemsstories

text objects

document elements

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 16

Looking at the InDesign Object Model

You can view the InDesign object model from inside your script-editing application. All reference
information on objects and their properties and methods is stored in the model and can be viewed

AppleScript

To view the InDesign AppleScript dictionary:, follow these steps:

1. Start InDesign.

2. Start the Apple Script Editor.

3. In the Script Editor, choose File > Open Dictionary. The Script Editor displays a list of scriptable applica-
tions:

Document
elements

For example, the stories, imported graphics, and pages of a document. The figure
that precedes this table shows pages and stories, because those objects are very
important containers for other objects, but document elements also include
rectangles, ovals, groups, XML elements, and any other type of object you can
import or create.

Document events Events that occur at the document level, like importing text. See “application
events” in this table.

Document
methods

The actions the document can take; for example, closing a document, printing a
document, and exporting a document.

Document
preferences

The preferences of a document, like guide preferences, view preferences, and
document preferences.

Document
properties

For example, the document filename, number of pages, and zero point location.

Documents A collection of open documents.

Libraries A collection of open libraries.

Page A single page in an InDesign document.

Page items Any object you can create or place on a page. There are many types of page items,
such as text frames, rectangles, graphic lines, or groups.

Pages or spreads The pages or spreads in an InDesign document.

Stories The text in an InDesign document.

Text objects Characters, words, lines, paragraphs, and text columns are examples of text objects
in an InDesign story.

Term What it Represents

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 17

4. Select your copy of InDesign, and click OK. The Script Editor displays a list of InDesign’s suites (collec-
tions of related objects):

5. Select a suite, to see the objects and methods (commands) it contains. Select an object, to see the
properties associated with it.

JavaScript

To view the InDesign object model in the ExtendScript Toolkit, follow these steps:

1. Start the ExtendScript Toolkit.

2. Choose Help > InDesign CS3 Main Dictionary. The ExtendScript Toolkit loads the InDesign dictionary
and displays it in a separate window.

3. From the Classes list, select the object you want to view, then click the property or method you want
to view in more detail in the Properties and Methods list. The ExtendScript toolkit displays more infor-
mation on the property or method you selected:

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 18

Note: For more on using the ExtendScript Toolkit object-model viewer, see Creative Suite 3 JavaScript Tools
Guide.

VBScript

To view the InDesign object model, you need a VBScript editor/debugger or some version of Visual Basic,
or an application that incorporates Visual Basic for Applications.

➤ Visual Basic 6

To view the object model using Visual Basic 6, follow these steps:

1. Create a new Visual Basic project, then choose Project > References. Visual Basic displays the Refer-
ences dialog box:

2. From the list of available references, select Adobe InDesign CS3 Type Library, and click OK. If the library
does not appear in the list of available references, click Browse and locate and select the file Resources
for Visual Basic.tlb, which is usually inside ~:\Documents and
Settings\user_name\Application Data\Adobe\InDesign\Version 5.0\Scripting
Support\ (where user_name is your user name). If necessary, search for the file. Once you locate the
file, click Open to add the reference to your project.

3. Choose View > Object Browser. Visual Basic displays the Object Browser dialog box.

4. From the list of open libraries shown in the Project/Library menu, choose InDesign. Visual Basic dis-
plays the objects that make up the InDesign object model.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 19

5. Click an object class. Visual Basic displays the properties and methods of the object. For more informa-
tion on a property or method, select the item; Visual Basic displays the definition of the item at the
bottom of the Object Browser window:

➤ Visual Basic.NET

To view the object model using Visual Basic.NET, follow these steps:

1. Create a new Visual Basic project, then choose Project > Add Reference. Visual Basic displays the Add
Reference dialog box.

2. Select the COM tab.

3. From the list of available references, select Adobe InDesign CS3 Type Library, and click Select. Visual
Basic.NET adds the reference to the Selected Components list. If the library does not appear in the list
of available references, click Browse and locate and select the Resources for Visual .tlb file,
which usually is in ~:\Documents and Settings\user_name\Application
Data\Adobe\InDesign\Version 5.0\Scripting Support\ (where user_name is your user
name). Once you find the file, click Open to add the reference to your project:

4. Click OK.

5. Choose View > Object Browser. Visual Basic displays the Object Browser tab.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 20

6. From the list of open libraries in the Objects window, choose interop.indesign. Visual Basic.NET dis-
plays the objects that make up the InDesign object model.

7. Click an object class. Visual Basic.NET displays the properties and methods of the object. For more
information on a property or method, select the item; Visual Basic.NET displays the definition of the
item at the bottom of the Object Browser window:

➤ Visual Basic for Applications

To view the object model using Visual Basic for Applications from Microsoft Excel, follow these steps:

1. Start Excel.

2. Choose Tools > Macros > Visual Basic Editor. Excel displays the Visual Basic Editor window.

3. Choose Tools > References. The Visual Basic Editor displays the Add References dialog box:

4. From the list of available references, select Adobe InDesign CS3 Type Library option, and click Select.
Visual Basic adds the reference to the Selected Components list. If the library does not appear in the
list of available references, click Browse and locate and select the Resources for Visual Basic.tlb
file, which usually is in ~:\Documents and Settings\user_name\Application
Data\Adobe\InDesign\Version 5.0\Scripting Support\ (where user_name is your user
name). Once you find the file, click OK to add the reference to your project.

5. Choose View > Object Browser. The Visual Basic editor display the Object Browser window.

Adobe InDesign CS3 Scripting Tutorial Scripting and the InDesign Object Model 21

6. From the Libraries pop-up menu, choose InDesign. The Visual Basic editor displays a list of the objects
in the InDesign object library.

7. Click an object name. The Visual Basic Editor displays the properties and methods of the object. For
more information on a property or method, select the item; Visual Basic displays the definition of the
item at the bottom of the Object Browser window:

Measurements and Positioning

All items and objects in InDesign are positioned on the page according to measurements you choose. It is
useful to know how the InDesign coordinate system works and what measurement units it uses.

Coordinates

InDesign, like every other page-layout and drawing program, uses simple, two-dimensional geometry to
set the position of objects on a page or spread. The horizontal component of a coordinate pair is referred
to as x; the vertical component, y. You can see these coordinates in the Transform panel or Control when
you select an object using the Selection tool. As in the InDesign user interface, coordinates are measured
relative to the current location of the ruler’s zero point.

There is one difference between the coordinates used in InDesign and the coordinate system used in a
Geometry textbook: on InDesign’s vertical (or y) axis, coordinates below the zero point are positive
numbers; coordinates above the zero point are negative numbers.

Note: When you ask InDesign for the location of a path point, the coordinates are returned in x, y order.
When you set the location of a path point, InDesign expects you to provide the coordinates in the
same order. InDesign returns some coordinates in a different order, however, and it expects you to
supply them in that order. Geometric bounds and visible bounds are arrays containing four
coordinates, which define (in order) the top, left, bottom, and right edges of the object’s bounding
box (or y1, x1, y2, x2).

Working with Measurement Units

When you send measurement values to InDesign, you can send numbers (for example, 14.65) or
measurement strings (for example, “1p7.1”). If you send numbers, InDesign uses the publication’s current
units of measurement. If you send measurement strings (see the table below), InDesign uses the units of
measurement specified in the string.

Adobe InDesign CS3 Scripting Tutorial Adding Features to “Hello World” 22

InDesign returns coordinates and other measurement values using the publication’s current measurement
units. In some cases, these units do not resemble the measurement values shown in the InDesign
Transform panel. For example, if the current measurement system is picas, InDesign returns fractional
values as decimals, rather than using the picas-and-points notation used by the Transform panel. “1p6,” for
example, is returned as “1.5.” InDesign does this because your scripting system would have trouble trying
to perform arithmetic operations using measurement strings; for instance, trying to add “0p3.5” to “13p4”
produces a script error, while adding .2916 to 13.333 (the converted pica measurements) does not.

If your script depends on adding, subtracting, multiplying, or dividing specific measurement values, you
might want to set the corresponding measurement units at the beginning of the script. At the end of the
script, you can set the measurement units back to whatever they were before you ran the script.
Alternately, you can use measurement overrides, like many of the sample scripts. A measurement override
is a string containing a special character, as shown in the following table:

Adding Features to “Hello World”
Next, we will create a new script that makes changes to the “Hello World” publication that we created with
our first script. Our second script demonstrates how to do the following:

• Get the active document.

• Use a function (or handler in AppleScript).

• Get the page dimensions and page margins of the active document.

• Resize a text frame.

• Change the formatting of the text in the text frame.

AppleScript
Either open the ImprovedHelloWorld.applescript tutorial script, or perform the following steps to create
the script:

1. Make sure you have the Hello World document open. If you closed the document without saving it,
simply run the HelloWorld.applescript script again to make a new Hello World document.

2. In the Script Editor, choose File > New to create a new script.

Override Meaning Example

c Ciceros (add didots after the c, if necessary) 1.4c

cm Centimeters .635cm

i (or in) Inches .25i

mm Millimeters 6.35mm

p Picas (add points after the p, if necessary) 1p6

pt Points 18pt

Adobe InDesign CS3 Scripting Tutorial Adding Features to “Hello World” 23

3. Enter the following code:

--Improved "Hello World"
tell application "Adobe InDesign CS3"

--Get a reference to a font.
try

--Enter the name of a font on your system, if necessary.
set myFont to font "Helvetica"

end try
--Get the active document and assign
--the result to the variable "myDocument."
set myDocument to document 1
tell myDocument

--Use the handler "myGetBounds" to get the bounds of the
--"live area" inside the margins of page 1.
set myBounds to my myGetBounds(myDocument, page 1)
tell text frame 1 of page 1

--Resize the text frame to match the page margins.
set geometric bounds to myBounds
tell paragraph 1

--Change the font, size, and paragraph alignment.
try

set applied font to myFont
end try
set point size to 72
set justification to center align

end tell
end tell

end tell
end tell
--myGetBounds is a handler that returns the bounds
--of the "live area" of a page.
on myGetBounds(myDocument, myPage)

tell application "Adobe InDesign CS2"
set myPageHeight to page height of document preferences of myDocument
set myPageWidth to page width of document preferences of myDocument
set myLeft to left of margin preferences of myPage
set myTop to top of margin preferences of myPage
set myRight to right of margin preferences of myPage
set myBottom to bottom of margin preferences of myPage

end tell
set myRight to myPageWidth - myLeft
set myBottom to myPageHeight - myBottom
return {myTop, myLeft, myBottom, myRight}

end myGetBounds

4. Save the script.

5. Run the new script.

Adobe InDesign CS3 Scripting Tutorial Adding Features to “Hello World” 24

JavaScript
Either open the ImprovedHelloWorld.jsx tutorial script, or perform the following steps to create the
script:

1. Make sure you have the Hello World document open. If you closed the document without saving it,
simply run the HelloWorld.jsx script again to make a new Hello World document.

2. Enter the following JavaScript in a new text file:

//Improved Hello World!
//Enter the name of a font on your system, if necessary.
myFont = app.fonts.item("Arial");
var myDocument = app.documents.item(0);
with(myDocument){

var myPage = pages.item(0);
var myBounds = myGetBounds(myPage,myDocument);
with(myDocument.pages.item(0)){

//Get a reference to the text frame.
var myTextFrame = textFrames.item(0);
//Change the size of the text frame.
myTextFrame.geometricBounds = myBounds;
var myParagraph = myTextFrame.paragraphs.item(0);
myParagraph.appliedFont = myFont;
myParagraph.justification = Justification.centerAlign;
myParagraph.pointSize = 48;

}
}
//myGetBounds calculates and return the bounds of the "live area" of the page.

function myGetBounds(myDocument, myPage){
var myWidth = myDocument.documentPreferences.pageWidth;
var myHeight = myDocument.documentPreferences.pageHeight;
var myX1 = myPage.marginPreferences.left;
var myY1 = myPage.marginPreferences.top;
var myX2 = myWidth - myPage.marginPreferences.right;
var myY2 = myHeight - myPage.marginPreferences.bottom;
return [myY1, myX1, myY2, myX2];

}

3. Save the text as a plain text file with the file extension .jsx in the Scripts Panel folder (see “Installing
Scripts” on page 4).

4. Run the new script, by double-clicking the script name in the InDesign Scripts panel.

VBScript
Either open the ImprovedHelloWorld.vbs tutorial script, or perform the following steps to create the
script:

1. Start any text editor (for example, Notepad).

2. Make sure you have the Hello World document open. If you closed the document without saving it,
simply run the HelloWorld.vbs script again to make a new Hello World document.

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 25

3. Enter the following code:

Set myInDesign = CreateObject("InDesign.Application.CS3")
Rem Enter the name of a font on your system, if necessary.
Set myFont = myInDesign.Fonts.Item("Arial")
Set myDocument = myInDesign.ActiveDocument
Set myPage = myDocument.Pages.Item(1)
Rem Get page width and page height using the function "myGetBounds".
myBounds = myGetBounds(myDocument, myPage)
Set myTextFrame = myPage.TextFrames.Item(1)
Rem Resize the text frame to match the publication margins.
myTextFrame.GeometricBounds = myBounds
Set myParagraph = myTextFrame.Paragraphs.Item(1)
Rem Change the font, size, and alignment.
If TypeName(myFont) <> "Nothing" Then

myParagraph.AppliedFont = myFont
End If
myParagraph.PointSize = 48
myParagraph.Justification = idJustification.idCenterAlign
Function myGetBounds(myDocument, myPage)

myPageHeight = myDocument.DocumentPreferences.PageHeight
myPageWidth = myDocument.DocumentPreferences.PageWidth
myTop = myPage.MarginPreferences.Top
myLeft = myPage.MarginPreferences.Left
myRight = myPage.MarginPreferences.Right
myBottom = myPage.MarginPreferences.Bottom
myRight = myPageWidth - myRight
myBottom = myPageHeight - myBottom
myGetBounds = Array(myTop, myLeft, myBottom, myRight)

End Function

4. Save the text as a plain text file with the file extension .vbs in the Scripts folder (see “Installing Scripts”
on page 4).

5. Run the new script, by double-clicking the script name in the InDesign Scripts panel.

Constructing a Document
Obviously, our “Hello World!” script is not very useful in your daily work. While you can use an InDesign
script at any point in your production process, we will start by creating scripts that start at the same point
you do—creating new documents, setting page margins, and creating and applying master pages. The
following figure shows the objects with which we will work.

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 26

.

In this section, we create one long script by adding short blocks of scripting code. Each block
demonstrates a specific area or task in InDesign scripting. As you enter each block, you can run the script
to see what happens. If you are using AppleScript, you will need to add the text end tell to the end of the
script before you run it, then remove the text before continuing.

Note: The figure above uses the JavaScript version of the scripting terms. For AppleScript, you would add
spaces between words (view preferences, rather than viewPreferences); for VBScript, you
would use an item index starting at 1, rather than 0 (masterSpreads.item(1), rather than
masterSpreads.item(0)).

The objects in the object model generally correspond to the names of controls in the user interface, as
shown in the following diagram (which, again, uses the JavaScript form of the scripting terms):

document

viewPreferences

horizontalMeasurementUnits

masterSpreads.item(0)

pages.item(0)

verticalMeasurementUnits

rulerOrigin

marginPreferences

top

left

bottom

right

columnCount

columnGutter

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 27

Setting up Measurement Units and Master Spread Margins
The following script shows how to create a new document and set the margins of the first master spread.
In this section, we show how to build a complex script using simple “building blocks” of scripting code.
Start your script editor and enter the following lines in the scripting language of your choice. After you
enter each block of code, save the script in your Scripts Panel folder (see “Installing Scripts” on page 4).

baselineColor

baselineStart

baselineGridRelativeOption

baselineDivision

baselineViewThreshold

gridColor

verticalGridlineDivision

horizontalGridlineDivision

horizontalGridSubdivision

verticalGridSubdivision

gridsInBack

app.gridPreferences
or

document.gridPreferences

baselineGridShown

documentGridShown

documentGridSnapTo

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 28

AppleScript

Either enter the following code in the Script Editor or open the DocumentConstruction.applescript
tutorial script:

tell application "Adobe InDesign CS3"
--Create a new document.
set myDocument to make document
--Set the measurement units and ruler origin.
set horizontal measurement units of view preferences to points
set vertical measurement units of view preferences to points
set ruler origin of view preferences to page origin
--Get a reference to the first master spread.
set myMasterSpread to master spread 1 of myDocument
--Get a reference to the margin preferences of
--the first page in the master spread.
set myMarginPreferences to margin preferences of page 1 of myMasterSpread
--Now set up the page margins and columns.
set left of myMarginPreferences to 84
set top of myMarginPreferences to 70
set right of myMarginPreferences to 70
set bottom of myMarginPreferences to 78
set column count of myMarginPreferences to 3
set column gutter of myMarginPreferences to 14
--Page margins and columns for the right-hand page.
set myMarginPreferences to margin preferences of page 2 of myMasterSpread
set left of myMarginPreferences to 84
set top of myMarginPreferences to 70
set right of myMarginPreferences to 70
set bottom of myMarginPreferences to 78
set column count of myMarginPreferences to 3
set column gutter of myMarginPreferences to 14

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 29

JavaScript

Either enter the following code in the ExtendScript Toolkit or open the DocumentConstruction.jsx
tutorial script:

//Create a new document.
var myDocument = app.documents.add();
//Set the measurement units and ruler origin.
myDocument.viewPreferences.horizontalMeasurementUnits =
MeasurementUnits.points;
myDocument.viewPreferences.verticalMeasurementUnits = MeasurementUnits.points;
myDocument.viewPreferences.rulerOrigin = RulerOrigin.pageOrigin;
//Get a reference to the first master spread.
var myMasterSpread = myDocument.masterSpreads.item(0);
//Get a reference to the margin preferences of the first page in the master
spread.
var myMarginPreferences = myMasterSpread.pages.item(0).marginPreferences;
//Now set up the page margins and columns.
myMarginPreferences.left = 84;
myMarginPreferences.top = 70;
myMarginPreferences.right = 70;
myMarginPreferences.bottom = 78;
myMarginPreferences.columnCount = 3;
myMarginPreferences.columnGutter = 14;
//Page margins and columns for the right-hand page.
var myMarginPreferences = myMasterSpread.pages.item(1).marginPreferences;
myMarginPreferences.left = 84;
myMarginPreferences.top = 70;
myMarginPreferences.right = 70;
myMarginPreferences.bottom = 78;
myMarginPreferences.columnCount = 3;
myMarginPreferences.columnGutter = 14;

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 30

VBScript

Either enter the following code in your script or text editor, or open the DocumentConstruction.vbs
tutorial script.

Set myInDesign = CreateObject("InDesign.Application.CS3")
Rem Create a new document.
Set myDocument = myInDesign.Documents.Add()
Rem Set the measurement units and ruler origin.
myDocument.ViewPreferences.HorizontalMeasurementUnits =
idMeasurementUnits.idPoints
myDocument.ViewPreferences.VerticalMeasurementUnits =
idMeasurementUnits.idPoints
myDocument.ViewPreferences.RulerOrigin = idRulerOrigin.idPageOrigin
Rem Get a reference to the first master spread.
Set myMasterSpread = myDocument.MasterSpreads.Item(1)
Rem Get a reference to the margin preferences of the first page in the master
spread.
Set myMarginPreferences = myMasterSpread.Pages.Item(1).MarginPreferences
Rem Now set up the page margins and columns.
myMarginPreferences.Left = 84
myMarginPreferences.Top = 70
myMarginPreferences.Right = 70
myMarginPreferences.Bottom = 78
myMarginPreferences.ColumnCount = 3
myMarginPreferences.ColumnGutter = 14
Rem Page margins and columns for the right-hand page.
Set myMarginPreferences = myMasterSpread.Pages.Item(2).MarginPreferences
myMarginPreferences.Left = 84
myMarginPreferences.Top = 70
myMarginPreferences.Right = 70
myMarginPreferences.Bottom = 78
myMarginPreferences.ColumnCount = 3
myMarginPreferences.ColumnGutter = 14

Adding a Baseline Grid
Now that we have a master spread set up, we will add a baseline grid. Add the following script lines (from
the appropriate language) to the end of the script you created earlier. Again, here is a diagram (with the
scripting terms shown in their JavaScript form):
:

AppleScript
set myGridPreferences to grid preferences
set baseline division of myGridPreferences to 14
set baseline start of myGridPreferences to 70
set baseline grid shown of myGridPreferences to true

document

gridPreferences

baselineDivision

baselineStart

baselineGridShown

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 31

JavaScript
var myGridPreferences = myDocument.gridPreferences;
myGridPreferences.baselineDivision = 14;
myGridPreferences.baselineStart = 70;
myGridPreferences.baselineGridShown = true;

VBScript
Set myGridPreferences = myDocument.GridPreferences
myGridPreferences.BaselineDivision = 14
myGridPreferences.BaselineStart = 70
myGridPreferences.BaselineGridShown = True

Adding Master Page Items
Next, we add two text frames to the master pages. These frames will contain the auto-page-number
special character and will be positioned at the bottom of the page.

In the “Hello World” example, we created a text frame and specified its position and size using the
geometric bounds property—an array containing the top, left, bottom, and right coordinates for the
frame. The coordinates correspond to the corners of the frame, just as they would appear in the Control
panel. The geometric bounds are: top = 728, left = 70, bottom = 742, and right = 528, as shown in the
following two figures:

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 32

AppleScript
set myLeftPage to page 1 of myMasterSpread
set myRightPage to page 2 of myMasterSpread
tell myLeftPage

set myLeftFooter to make text frame
set geometric bounds of myLeftFooter to {728, 70, 742, 528}
set first baseline offset of text frame preferences of myLeftFooter to

leading offset
set contents of myLeftFooter to auto page number
set point size of character 1 of parent story of myLeftFooter to 11
set leading of character 1 of myLeftFooter to 14

end tell
tell myRightPage

set myRightFooter to make text frame
set geometric bounds of myRightFooter to {728, 84, 742, 542}
set first baseline offset of text frame preferences of myRightFooter to

leading offset
set contents of myRightFooter to auto page number
set point size of character 1 of parent story of myRightFooter to 11
set leading of character 1 of myRightFooter to 14
set justification of character 1 of myRightFooter to right align

end tell

JavaScript
var myMasterSpread = myDocument.masterSpreads.item(0);
var myLeftPage = myMasterSpread.pages.item(0);
var myRightPage = myMasterSpread.pages.item(1);
var myLeftFooter = myLeftPage.textFrames.add();
myLeftFooter.geometricBounds = [728, 70, 742, 528];
myLeftFooter.textFramePreferences.firstBaselineOffset =
FirstBaseline.leadingOffset;
myLeftFooter.contents = SpecialCharacters.autoPageNumber;
myLeftFooter.parentStory.characters.item(0).pointSize = 11;
myLeftFooter.parentStory.characters.item(0).leading = 14;
var myRightFooter = myRightPage.textFrames.add();
myRightFooter.geometricBounds = [728, 84, 742, 542];
myRightFooter.textFramePreferences.firstBaselineOffset =
FirstBaseline.leadingOffset;
myRightFooter.contents = SpecialCharacters.autoPageNumber;
myRightFooter.parentStory.characters.item(0).pointSize = 11;
myRightFooter.parentStory.characters.item(0).leading = 14;
myRightFooter.parentStory.characters.item(0).justification =
Justification.rightAlign;

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 33

VBScript
Set myMasterSpread = myDocument.MasterSpreads.Item(1)
Set myLeftPage = myMasterSpread.Pages.Item(1)
Set myRightPage = myMasterSpread.Pages.Item(2)
Set myLeftFooter = myLeftPage.TextFrames.Add
myLeftFooter.GeometricBounds = Array(728, 70, 742, 528)
myLeftFooter.TextFramePreferences.FirstBaselineOffset =
idFirstBaseline.idLeadingOffset
myLeftFooter.Contents = idSpecialCharacters.idAutoPageNumber
myLeftFooter.ParentStory.Characters.Item(1).PointSize = 11
myLeftFooter.ParentStory.Characters.Item(1).Leading = 14
Set myRightFooter = myRightPage.TextFrames.Add()
myRightFooter.GeometricBounds = Array(728, 84, 742, 542)
myRightFooter.TextFramePreferences.FirstBaselineOffset =
idFirstBaseline.idLeadingOffset
myRightFooter.Contents = idSpecialCharacters.idAutoPageNumber
myRightFooter.ParentStory.Characters.Item(1).PointSize = 11
myRightFooter.ParentStory.Characters.Item(1).Leading = 14
myRightFooter.ParentStory.Characters.Item(1).Justification =
idJustification.idRightAlign

Adding Master Text Frames
Next, we add master text frames. The following block diagram shows the objects and properties with
which we will work (the diagram uses the JavaScript form of the scripting terms):

document

masterSpreads.item(0)

pages.item(0)

textFrames.item(0)

textFramePreferences

firstBaselineOffset

textColumnCount

textColumnGutter

geometricBounds

label

nextTextFrame

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 34

AppleScript
tell myLeftPage

set myLeftTextFrame to make text frame
set geometric bounds of myLeftTextFrame to {70, 70, 714, 528}
set first baseline offset of text frame preferences of myLeftTextFrame to

leading offset
set text column count of text frame preferences of myLeftTextFrame to 3
set text column gutter of text frame preferences of myLeftTextFrame to 14
--Add a label to make the frame easier to find later on.
set label of myLeftTextFrame to "BodyTextFrame"

end tell
tell myRightPage

set myRightTextFrame to make text frame
set geometric bounds of myRightTextFrame to {70, 84, 714, 542}
set first baseline offset of text frame preferences of myRightTextFrame to

leading offset
set text column count of text frame preferences of myRightTextFrame to 3
set text column gutter of text frame preferences of myRightTextFrame to 14
--Add a label to make the frame easier to find later on.
set label of myRightTextFrame to "BodyTextFrame"

end tell
--Link the two frames using the next text frame property.
set next text frame of myLeftTextFrame to myRightTextFrame

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 35

JavaScript
var myLeftPage = myMasterSpread.pages.item(0);
var myRightPage = myMasterSpread.pages.item(1);
var myLeftTextFrame = myLeftPage.textFrames.add();
myLeftTextFrame.geometricBounds = [70, 70, 714, 528];
myLeftTextFrame.textFramePreferences.firstBaselineOffset =
FirstBaseline.leadingOffset;
myLeftTextFrame.textFramePreferences.textColumnCount = 3;
myLeftTextFrame.textFramePreferences.textColumnGutter = 14;
//Add a label to make the frame easier to find later on.
myLeftTextFrame.label = "BodyTextFrame";
var myRightTextFrame = myRightPage.textFrames.add();
myRightTextFrame.geometricBounds = [70, 84, 714, 542];
myRightTextFrame.textFramePreferences.firstBaselineOffset =
FirstBaseline.leadingOffset;
myRightTextFrame.textFramePreferences.textColumnCount = 3;
myRightTextFrame.textFramePreferences.textColumnGutter = 14;
//Add a label to make the frame easier to find later on.
myRightTextFrame.label = "BodyTextFrame";
//Link the two frames using the nextTextFrame property.
myLeftTextFrame.nextTextFrame = myRightTextFrame;

VBScript
Set myLeftTextFrame = myLeftPage.TextFrames.Add
myLeftTextFrame.GeometricBounds = Array(70, 70, 714, 528)
myLeftTextFrame.TextFramePreferences.FirstBaselineOffset =
idFirstBaseline.idLeadingOffset
myLeftTextFrame.TextFramePreferences.TextColumnCount = 3
myLeftTextFrame.TextFramePreferences.TextColumnGutter = 14
Rem Add a label to make the frame easier to find later on.
myLeftTextFrame.Label = "BodyTextFrame"
Set myRightTextFrame = myRightPage.TextFrames.Add
myRightTextFrame.GeometricBounds = Array(70, 84, 714, 542)
myRightTextFrame.TextFramePreferences.FirstBaselineOffset =
idFirstBaseline.idLeadingOffset
myRightTextFrame.TextFramePreferences.TextColumnCount = 3
myRightTextFrame.TextFramePreferences.TextColumnGutter = 14
Rem Add a label to make the frame easier to find later on.
myRightTextFrame.Label = "BodyTextFrame"
Rem Link the two frames using the nextTextFrame property.
myLeftTextFrame.NextTextFrame = myRightTextFrame

Overriding Master Page Items and Adding Text
Next, we override one of the master text frames we created and add text to it. Again, add this script to the
end of the script we have been working on.

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 36

AppleScript
tell text frame 1 of page 2 of master spread 1 of myDocument

set myTextFrame to override destination page page 1 of myDocument
end tell
--Add text by setting the contents of an insertion point to a string.
--In AppleScript, "return" is a return character.
set contents of insertion point 1 of myTextFrame to "Headline!" & return

JavaScript
var myTextFrame =
myDocument.masterSpreads.item(0).pages.item(1).textFrames.item(0).override(my
Document.pages.item(0));
//Add text by setting the contents of an insertion point to a string.
//In JavaScript, "\r" is a return character.
myTextFrame.insertionPoints.item(0).contents = "Headline!\r";

VBScript
Set myTextFrame =
myDocument.MasterSpreads.Item(1).Pages.Item(2).TextFrames.Item(1).Override(my
Document.Pages.Item(1))
Rem Add text by setting the contents of an insertion point to a string.
Rem In VBScript, vbCr is a return character.
myTextFrame.InsertionPoints.Item(1).Contents = "Headline!" & vbCr

Adding and Applying a Paragraph Style
Our headline looks plain, so we will format it using a paragraph style. To do that, we must create the
paragraph style. The following diagram shows the objects and properties we will work with (again, the text
in this diagram uses the JavaScript form of the scripting terms):

appliedFont

pointSize

spaceBefore

spaceAfter

fillColor

document

paragraphStyle

paragraphStyles

fontStyle

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 37

AppleScript
--First, check to see if the paragraph style already exists.
try

set myParagraphStyle to paragraph style "Heading 1" of myDocument
on error

--The paragraph style did not exist, so create it.
tell myDocument

set myParagraphStyle to make paragraph style with properties
{name:"Heading 1"}

end tell
end try
--We'll need to create a color. Check to see if the color already exists.
try

set myColor to color "Red"
on error

--The color did not exist, so create it.
set myColor to make color with properties {name:"Red", model:process, color

value:{0, 100, 100, 0}}
end try
--Now set the formatting of the paragraph style.
set applied font of myParagraphStyle to "Arial"
set font style of myParagraphStyle to "Bold"
set point size of myParagraphStyle to 24
set space after of myParagraphStyle to 24
set space before of myParagraphStyle to 24
set fill color of myParagraphStyle to color "Red" of myDocument
--Apply the style to the paragraph.
tell paragraph 1 of myTextFrame to apply paragraph style using myParagraphStyle
with clearing overrides
--You could also use:
--set applied paragraph style of paragraph 1 of myTextFrame to myParagraphStyle

JavaScript
var myParagraphStyle = myDocument.paragraphStyles.item("Heading 1");
try {

var myName = myParagraphStyle.name;
}
catch (myError){

//The paragraph style did not exist, so create it.
myParagraphStyle = myDocument.paragraphStyles.add({name:"Heading 1"});

}
//We'll need to create a color. Check to see if the color already exists.
var myColor = myDocument.colors.item("Red");
try {

myName = myColor.name;
}
catch (myError){

//The color did not exist, so create it.
myColor = myDocument.colors.add({name:"Red", model:ColorModel.process,
colorValue:[0,100,100,0]});

}

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 38

//Now set the formatting of the paragraph style.
myParagraphStyle.appliedFont = "Arial";
myParagraphStyle.fontStyle = "Bold";
myParagraphStyle.pointSize = 24;
myParagraphStyle.spaceAfter = 24;
myParagraphStyle.spaceBefore = 24;
myParagraphStyle.fillColor = myDocument.colors.item("Red");
//Apply the style to the paragraph.
myDocument.pages.item(0).textFrames.item(0).paragraphs.item(0).applyParagraph
Style(
myParagraphStyle, true);
//You could also use:
//myDocument.pages.item(0).textFrames.item(0).paragraphs.item(0).appliedParag
raphStyle = myParagraphStyle;

VBScript
Rem First, check to see if the paragraph style already exists.
Rem to do this, we disable error checking:
On Error Resume Next
Set myParagraphStyle = myDocument.ParagraphStyles.Item("Heading 1")
Rem if an error occurred on the previous line, then the paragraph
Rem style did not exist.
If Error.Number <> 0 Then

Set myParagraphStyle = myDocument.ParagraphStyles.Add
myParagraphStyle.Name = "Heading 1"
Error.Clear

End If
Rem We'll need to create a color. Check to see if the color already exists.
Set myColor = myDocument.Colors.Item("Red")
If Error.Number <> 0 Then

Set myColor = myDocument.Colors.Add
myColor.Name = "Red"
myColor.Model = idColorModel.idProcess
myColor.colorValue = Array(0, 100, 100, 0)
Error.Clear

End If
Rem Resume normal error handling.
On Error GoTo 0
Rem Now set the formatting of the paragraph style.
myParagraphStyle.AppliedFont = "Arial"
myParagraphStyle.FontStyle = "Bold"
myParagraphStyle.PointSize = 24
myParagraphStyle.SpaceAfter = 24
myParagraphStyle.SpaceBefore = 24
myParagraphStyle.FillColor = myDocument.Colors.Item("Red")
Rem Apply the style to the paragraph.
myDocument.Pages.Item(1).TextFrames.Item(1).Paragraphs.Item(1).ApplyParagraph
Style myParagraphStyle, True
Rem You could also use:
Rem
myDocument.pages.item(1).textFrames.item(1).paragraphs.item(1).appliedParagra
phStyle = myParagraphStyle

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 39

Placing a Text File
Next, we import a text file. We add the text after the headline in the first text frame on the first page. The
script displays a dialog box you can use to select the text file you want to import. Again, add this script to
the end of the script we have been working on.

AppleScript
--Display a standard open file dialog box to select a text file.
set myTextFile to choose file ("Choose a text file")
--If a text file was selected, and if you didn't press Cancel,
--place the text file at the first insertion point after the headline.
if myTextFile is not "" then

tell insertion point -1 of myTextFrame to place myTextFile
end if

JavaScript
//Display a standard open file dialog box to select a text file.
var myTextFile = File.openDialog("Choose a text file");
//If a text file was selected, and if you didn't press Cancel,
//place the text file at the first insertion point after the headline.
if((myTextFile != "")&&(myTextFile != null)){

myTextFrame.insertionPoints.item(-1).place(myTextFile);
}

VBScript
Rem Display a standard open file dialog box to select a text file.
Rem VBScript does not have the ability to do this, so we'll use
Rem a JavaScript to get a file name. We'll run the JavaScript using
Rem InDesign's DoScript feature.
Rem Disable normal error handling.
On Error Resume Next
Rem Create a JavaScript as a string.
myJavaScriptString = "var myTextFile = File.openDialog(""Choose a text
file"");myTextFile.fsName;"
Rem Run the JavaScript using DoScript.
myFileName = myInDesign.DoScript(myJavaScriptString,
idScriptLanguage.idJavascript)
If Error.Number = 0 Then

Rem Place the text file at the end of the text frame.
myTextFrame.InsertionPoints.Item(-1).Place myFileName
Error.Clear

End If
Rem Restore normal error handling.
On Error GoTo 0

Placing a Graphic
Placing a graphic is like importing a text file. Again, the script displays a dialog box you can use to select
the graphic you want to place. When we place the graphic, InDesign returns a reference to the graphic
itself, rather than to the frame containing the graphic. To get a reference to the frame, use the parent
property of the graphic. Once we have that reference, we can apply an object style to the frame. Again,
add this script to the end of the script we have been working on.

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 40

AppleScript
--Display a standard open file dialog box to select a graphic file.
set myGraphicFile to choose file "Choose graphic file."
--If a graphic file was selected, and if you didn't press Cancel,
--place the graphic file on the page.
if myGraphicFile is not "" then

set myGraphic to place myGraphicFile on page 1 of myDocument
--Since you can place multiple graphics at once, the place method
--returns an array. To get the graphic you placed, get the first
--item in the array.
set myGraphic to item 1 of myGraphic
--Create an object style to apply to the graphic frame.
try

set myObjectStyle to object style "GraphicFrame" of myDocument on error
--The object style did not exist, so create it.
tell myDocument

set myObjectStyle to make object style with properties
{name:"GraphicFrame"}

end tell
end try
set enable stroke of myObjectStyle to true
set stroke weight of myObjectStyle to 3
set stroke type of myObjectStyle to stroke style "Solid" of myDocument
set stroke color of myObjectStyle to color "Red" of myDocument
--The frame containing the graphic is the parent of the graphic.
set myFrame to parent of myGraphic
tell myFrame to apply object style using myObjectStyle
--Resize the frame to a specific size.
set geometric bounds of myFrame to {0, 0, 144, 144}
--Fit the graphic to the frame proportionally.
fit myFrame given proportionally
--Next, fit frame to the resized graphic.
fit myFrame given frame to content
set myBounds to geometric bounds of myFrame
set myGraphicWidth to (item 4 of myBounds) - (item 2 of myBounds)
--Move the graphic frame.
set myPageWidth to page width of document preferences of myDocument
set myMarginPreferences to margin preferences of page 1 of myDocument
set myTopMargin to top of myMarginPreferences
move myFrame to {myPageWidth - myGraphicWidth, myTopMargin}
--Apply a text wrap to the graphic frame.
set text wrap type of text wrap preferences of myFrame to bounding box

text wrap
set text wrap offset of text wrap preferences of myFrame to {24, 12, 24,

12}
end if

end tell

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 41

JavaScript
//Display a standard open file dialog box to select a graphic file.
var myGraphicFile = File.openDialog("Choose a graphic file");
//If a graphic file was selected, and if you didn't press Cancel,
//place the graphic file on the page.
if((myGraphicFile != "")&&(myGraphicFile != null)){

var myGraphic = myDocument.pages.item(0).place(myGraphicFile);
//Since you can place multiple graphics at once, the place method
//returns an array. To get the graphic you placed, get the first
//item in the array (JavaScript arrays start with item 0).
myGraphic = myGraphic[0];
//Create an object style to apply to the graphic frame.
var myObjectStyle = myDocument.objectStyles.item("GraphicFrame");
try {

var myName = myObjectStyle.name;
}
catch (myError){

//The object style did not exist, so create it.
myObjectStyle = myDocument.objectStyles.add({name:"GraphicFrame"});

}
myObjectStyle.enableStroke = true;
myObjectStyle.strokeWeight = 3;
myObjectStyle.strokeType = myDocument.strokeStyles.item("Solid");
myObjectStyle.strokeColor = myDocument.colors.item("Red");
//The frame containing the graphic is the parent of the graphic.
var myFrame = myGraphic.parent;
myFrame.applyObjectStyle(myObjectStyle, true);
//Resize the frame to a specific size.
myFrame.geometricBounds = [0,0,144,144];
//Fit the graphic to the frame proportionally.
myFrame.fit(FitOptions.proportionally);
//Next, fit frame to the resized graphic.
myFrame.fit(FitOptions.frameToContent);
var myBounds = myFrame.geometricBounds;
var myGraphicWidth = myBounds[3]-myBounds[1];
//Move the graphic frame.
var myPageWidth = myDocument.documentPreferences.pageWidth;
var myTopMargin = myDocument.pages.item(0).marginPreferences.top;
myFrame.move([myPageWidth-myGraphicWidth, myTopMargin]);
//Apply a text wrap to the graphic frame.
myFrame.textWrapPreferences.textWrapType =

TextWrapTypes.boundingBoxTextWrap;
myFrame.textWrapPreferences.textWrapOffset = [24, 12, 24, 12];

}

Adobe InDesign CS3 Scripting Tutorial Constructing a Document 42

VBScript
Rem create an object style
On Error Resume Next
Set myObjectStyle = myDocument.ObjectStyles.Item("GraphicFrame")
If Error.Number <> 0 Then

Set myObjectStyle = myDocument.ObjectStyles.Add
myObjectStyle.Name = "GraphicFrame"
Error.Clear

End If
On Error GoTo 0
myObjectStyle.EnableStroke = True
myObjectStyle.StrokeWeight = 3
myObjectStyle.StrokeType = myDocument.StrokeStyles.Item("Solid")
myObjectStyle.StrokeColor = myDocument.Colors.Item("Red")
Rem Again, we'll use a JavaScript to get a file name.
Rem Disable normal error handling.
On Error Resume Next
Rem Create a JavaScript as a string.
myJavaScriptString = "var myTextFile = File.openDialog(""Choose a graphic
file"");myTextFile.fsName;"
Rem Run the JavaScript using DoScript.
myGraphicFileName = myInDesign.DoScript(myJavaScriptString,
idScriptLanguage.idJavascript)
If Error.Number = 0 Then

On Error GoTo 0
Set myGraphic = myDocument.Pages.Item(1).Place(myGraphicFileName)
Rem Since you can place multiple graphics at once, the place method
Rem returns an object collection. To get the graphic you placed, get the

first
Rem item in the collection.
Set myGraphic = myGraphic.Item(1)
Rem Create an object style to apply to the graphic frame.
Rem The frame containing the graphic is the parent of the graphic.
Set myFrame = myGraphic.Parent
myFrame.ApplyObjectStyle myObjectStyle, True
Rem Resize the frame to a specific size.
myFrame.GeometricBounds = Array(0, 0, 144, 144)
Rem Fit the graphic to the frame proportionally.
myFrame.Fit idFitOptions.idProportionally
Rem Next, fit frame to the resized graphic.
myFrame.Fit idFitOptions.idFrameToContent
myBounds = myFrame.GeometricBounds
myGraphicWidth = myBounds(3) - myBounds(1)
Rem Move the graphic frame.
myPageWidth = myDocument.DocumentPreferences.PageWidth
myTopMargin = myDocument.Pages.Item(1).MarginPreferences.Top
myFrame.Move Array(myPageWidth - myGraphicWidth, myTopMargin)
Rem Apply a text wrap to the graphic frame.
myFrame.TextWrapPreferences.TextWrapType =
idTextWrapTypes.idBoundingBoxTextWrap
myFrame.TextWrapPreferences.TextWrapOffset = Array(24, 12, 24, 12)

End If

Adobe InDesign CS3 Scripting Tutorial Beyond the Basics 43

Beyond the Basics
At this point, you know how to create a document, set up master page items, enter text, import text, create
and apply paragraph styles, create and apply object styles, import graphics, fit graphics to frames, and
apply a text wrap. While the document we created is not likely to win any design awards, you have learned
the basics of InDesign scripting. In each example, we created objects, set object properties, and used
object methods.

For your next step in learning about InDesign scripting, see the Adobe InDesign CS3 Scripting Guide. It offers
more advanced tutorials on constructing documents, formatting text, finding and changing text, building
user interfaces, adding menu items, and working with XML and XML rules.

For more information on InDesign scripting, you also can visit the InDesign Scripting User to User forum, at
http://www.adobeforums.com. In the forum, scripters can ask questions, post answers, and share their
newest scripts. The forum contains hundreds of sample scripts.

You also can find more information on InDesign scripting at the InDesign scripting home page,
http://www.adobe.com/products/indesign/xml_scripting.html.

http://www.adobeforums.com
http://www.adobe.com/products/indesign/xml_scripting.html

	Adobe InDesign CS3 Scripting Tutorial
	Introduction
	Getting Started
	Installing Scripts
	Running a Script
	Using the Scripts Panel
	About Scripting Languages
	JavaScript
	Mac OS
	Windows
	Which Scripting Language should you use?

	How to use the Scripts in this Document
	Your First InDesign Script
	AppleScript
	JavaScript
	VBScript
	Walking through the Script

	Scripting and the InDesign Object Model
	Scripting Terminology
	Comments
	Values
	Variables
	Operators
	Conditional Statements
	Control Structures
	Functions and Handlers

	Understanding the InDesign Object Model
	Looking at the InDesign Object Model
	Measurements and Positioning

	Adding Features to “Hello World”
	AppleScript
	JavaScript
	VBScript

	Constructing a Document
	Setting up Measurement Units and Master Spread Margins
	AppleScript
	JavaScript
	VBScript

	Adding a Baseline Grid
	AppleScript
	JavaScript
	VBScript

	Adding Master Page Items
	AppleScript
	JavaScript
	VBScript

	Adding Master Text Frames
	AppleScript
	JavaScript
	VBScript

	Overriding Master Page Items and Adding Text
	AppleScript
	JavaScript
	VBScript

	Adding and Applying a Paragraph Style
	AppleScript
	JavaScript
	VBScript

	Placing a Text File
	AppleScript
	JavaScript
	VBScript

	Placing a Graphic
	AppleScript
	JavaScript
	VBScript

	Beyond the Basics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

