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Abstract

This paper presents  the fundamental  concepts  of  Tabu Search (TS) in a tutorial  fashion.  Special
emphasis is put on showing the relationships with classical Local Search methods and on the basic
elements of any TS heuristic, namely, the definition of the search space, the neighborhood structure,
and the search memory.  Other sections cover other important concepts such as search intensification
and diversification and provide references to significant work on TS.  Recent advances in TS are also
briefly discussed.

Keywords: tabu search; introduction; tutorial.

Résumé

Cet article présente les concepts fondamentaux de la méthode de recherche avec tabous (RT) sous la
forme d'un exposé didactique.  Une attention toute particulière est  accordée aux relations existant
entre cette méthode et les approches classiques de recherche locale, ainsi qu'aux éléments de base de
n'importe  quelle  heuristique  RT,  à  savoir,  la  définition  de  l'espace  de  recherche,  la  structure  de
voisinage  et  la  mémoire  de  la  recherche.  D'autres  sections  traitent  d'autres  concepts  importants
comme  l'intensification  et  la  diversification  de  la  recherche  et  fournissent  des  références  à  des
ouvrages-clés en RT.  Les travaux récents en RT font aussi l'objet d'une courte section.

Mots-clés : recherche avec tabous; introduction; exposé didactique.

 

AN INTRODUCTION TO TABU SEARCH http://www.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm

2 of 21 4/4/09 7:47 AM



INTRODUCTION

Over the last fifteen years, well over a hundred papers presenting applications of Tabu Search
(TS), a heuristic method originally proposed by Glover in 1986, to various combinatorial problems
have appeared in the operations research literature.  In several cases, the methods described provide
solutions very close to optimality and are among the most effective, if not the best, to tackle the
difficult problems at hand.  These successes have made TS extremely popular among those interested
in finding good solutions to the large combinatorial problems encountered in many practical settings. 
Several papers, book chapters, special issues and books have surveyed the rich TS literature (a list of
some of  the  most  important  references  is  provided in  a  later  section).  In  spite  of  this  abundant
literature,  there still  seem to be many researchers who, while they are eager to apply TS to new
problem settings,  find  it  difficult  to  properly  grasp  the  fundamental  concepts  of  the  method,  its
strengths and its limitations, and to come up with effective implementations.  The purpose of this
paper is to address this situation by providing an introduction in the form of a tutorial focusing on the
fundamental concepts of TS.  Throughout the paper, two relatively straightforward, yet challenging
and  relevant,  problems  will  be  used  to  illustrate  these  concepts:  the  Classical  Vehicle  Routing
Problem (CVRP) and the Capacitated Plant Location Problem (CPLP).  These will be introduced in
the following section.  The remainder of the paper is organized as follows.  The basic concepts of TS
(search space, neighborhoods, and short-term tabu lists) are described and illustrated in Section 2. 
Intermediate, yet critical, concepts, such as intensification and diversification, are described in Section
3.  This is followed in Section 4 by a brief discussion of advanced topics and recent trends in TS, and
in Section 5 by a short list of key references on TS and its applications.  Section 6 provides practical
tips for newcomers struggling with unforeseen problems as they first try to apply TS to their favorite
problem.  Section  7  concludes  the  paper  with  some  general  advice  on  the  application  of  TS  to
combinatorial problems.

1.  ILLUSTRATIVE PROBLEMS

1.1  The Classical Vehicle Routing Problem

Vehicle  Routing  Problems  have  very  important  applications  in  the  area  of  distribution
management.  As  a  consequence,  they  have  become  some  of  the  most  studied  problems  in  the
combinatorial optimization literature and large number of papers and books deal with the numerous
procedures that have been proposed to solve them. These include several TS implementations that
currently rank among the most effective. The Classical Vehicle Routing Problem (CVRP) is the basic
variant in that class of problems.  It can formally be defined as follows.  Let G = (V, A) be a graph
where V is the vertex set and A is the arc set.  One of the vertices represents the depot at which a fleet
of  m  identical  vehicles  of  capacity  Q  is  based,  and the other  vertices  customers  that  need to  be
serviced.  With each customer vertex vi are associated a demand qi and a service time ti.  With each

arc (vi, vj) of A are associated a cost cij and a travel time tij.  The CVRP consists in finding a set of

routes such that:

1.            Each route begins and ends at the depot;
2.            Each customer is visited exactly once by exactly one route;
3.            The total demand of the customers assigned to each route does not exceed Q;
4.            The total duration of each route (including travel and service times) does not exceed a
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specified value L;
5.            The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers into m groups,
each of total demand no larger than Q, that are sequenced to yield routes (starting and ending at the
depot) of duration no larger than L.

1.2  The Capacitated Plant Location Problem

The Capacitated Plant  Location Problem  (CPLP) is  one of  the basic problems in Location
Theory.  It is encountered in many application settings that involve locating facilities with limited
capacity to provide services.  The CPLP can be formally described as follows.  A set of customers I
with demands di, i e I, for some product are to be served from plants located in a subset of sites from a

given set J of “potential sites”. For each site j e J, the fixed cost of “opening” the plant at j is fj and its

capacity is Kj.  The cost of transporting one unit of the product from site j to customer i is cij. The

objective  is  to  minimize  the  total  cost,  i.e.,  the  sum of  the  fixed  costs  for  open  plants  and  the
transportation costs.

Letting xij (i e I, j e J) denote the quantity shipped from site j to customer i (the xij’s are the

so-called flow variables) and yj (j e J) be a 0-1 variable indicating whether or not the plant at site j is
open  (the  yj’s  are  the  location  variables),  the  problem  can  be  formulated  as  the  following

mathematical program:

(CPLP)              Minimize  z = 

               subject to   

                                    

                                        

                                         

Remark 1.  For any vector ỹ of location variables, optimal (w.r.t. to this plant configuration) values for
the flow variables x(ỹ) can be retrieved by solving the associated transportation problem:

(TP)               Minimize  z(ỹ) = 

               subject to   
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If  ỹ = y*, the optimal location variable vector, the optimal solution to the original CPLP problem is
simply given by (y*, x(y*)).
 
Remark 2.  An optimal solution of the original CPLP problem can always be found at an extreme
point of the polyhedron of feasible flow vectors defined by the constraints:
 

                                  

                                    

                                         

This  property  follows from the fact  that  the  CPLP can be interpreted as  a  fixed-charge problem
defined  in  the  space  of  the  flow  variables.  This  fixed-charge  problem has  a  concave  objective
function that always admits an extreme point minimum.  The optimal values for the location variables

can easily be obtained from the optimal flow vector by setting yj  equal to 1 if and to 0

otherwise.
To our knowledge, no TS heuristic has ever been proposed for the CPLP, but we will see in the

following that this problem can be used to illustrate many important concepts related to the approach.

2.  BASIC CONCEPTS

2.1  Historical background

Before introducing the basic concepts of TS, we believe it is useful to go back in time to try to
better understand the genesis of the method and how it relates to previous work.

Heuristics,  i.e.,  approximate  solution  techniques,  have  been  used  since  the  beginnings  of
operations research to tackle difficult combinatorial problems.  With the development of complexity
theory in the early 70’s, it became clear that, since most of these problems were indeed NP-hard, there
was  little  hope  of  ever  finding  efficient  exact  solution  procedures  for  them.  This  realization
emphasized the role of heuristics for solving the combinatorial problems that were encountered in
real-life applications and that needed to be tackled, whether or not they were NP-hard.  While many
different approaches were proposed and experimented with, the most popular one was based on Local
Search  (LS)  improvement  techniques.  LS  can  be  roughly  summarized  as  an  iterative  search
procedure that, starting from an initial feasible solution, progressively improves it by applying a series
of  local  modifications  (or  moves).  At  each iteration,  the  search moves  to  an  improving feasible
solution that differs only slightly from the current one (in fact, the difference between the previous
and the  new solutions  amounts  to  one of  the  local  modifications  mentioned above).  The search
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terminates when it encounters a local optimum with respect to the transformations that it considers, an
important limitation of the method: unless one is extremely lucky, this local optimum is often a fairly
mediocre solution.  In LS, the quality of the solution obtained and computing times are usually highly
dependent upon the “richness” of the set of transformations (moves) considered at each iteration of
the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance of a paper in
which the authors (Kirkpatrick, Gelatt and Vecchi) were describing a new heuristic approach called
Simulated Annealing (SA) that could be shown to converge to an optimal solution of a combinatorial
problem, albeit in infinite computing time.  Based on analogy with statistical mechanics, SA can be
interpreted as a form of controlled random walk in the space of feasible solutions.  The emergence of
SA indicated that one could look for other ways to tackle combinatorial optimization problems and
spurred the interest of the research community.  In the following years, many other new approaches,
mostly  based  on  analogies  with  natural  phenomena,  were  proposed  (TS,  Ant  Systems,  Threshold
Methods)  and,  together  with  some older  ones,  such as  Genetic  Algorithms  (Holland,  1975),  they
gained an increasing popularity.  Now collectively known under the name of Meta-Heuristics (a term
originally coined by Glover in 1986),  these methods have become over the last  fifteen years the
leading edge of heuristic approaches for solving combinatorial optimization problems.

2.2  Tabu Search

Building upon some of his previous work, Fred Glover proposed in 1986 a new approach, which
he called Tabu Search, to allow LS methods to overcome local optima.  (In fact, many elements of
this first TS proposal, and some elements of later TS elaborations, were introduced in Glover, 1977,
including short term memory to prevent the reversal of recent moves, and longer term frequency
memory to reinforce attractive components.)  The basic principle of TS is to pursue LS whenever it
encounters a local optimum by allowing non-improving moves; cycling  back to previously visited
solutions is prevented by the use of memories, called tabu lists, that record the recent history of the
search, a key idea that can be linked to Artificial Intelligence concepts.  It is interesting to note that,
the same year, Hansen proposed a similar approach, which he named steepest ascent/mildest descent. 
It  is  also  important  to  remark  that  Glover  did  not  see  TS as  a  proper  heuristic,  but  rather  as  a
Meta-Heuristic,  i.e.,  a  general  strategy  for  guiding  and  controlling  “inner”  heuristics  specifically
tailored to the problems at hand.

2.3  Search space and neighborhood structure

As we just mentioned, TS is an extension of classical LS methods.  In fact, basic TS can be seen
as  simply  the  combination  of  LS  with  short-term memories.  It  follows  that  the  two  first  basic
elements of any TS heuristic are the definition of its search space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible solutions that can
be considered (visited) during the search.  For instance, in the CVRP example described in Section 1,
the search space could simply be the set of feasible solutions to the problem, where each point in the
search space corresponds to a set of vehicles routes satisfying all the specified constraints.  While in
that case the definition of the search space seems quite natural, it is not always so.  Consider now the
CPLP example of Section 1: the feasible space involves both integer location and continuous flow
variables that are linked by strict conditions; moreover, as has been indicated before, for any feasible
set of values for the location variables,  one can fairly easily retrieve optimal values for the flow
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variables by solving the associated transportation problem.  In this context, one could obviously use
as a search space the full feasible space; this would involve manipulating both location and flow
variables, which is not an easy task.  A more attractive search space is the set of feasible vectors of
location variables, i.e., feasible vectors in {0, 1}|J|, any solution in that space being “completed” to
yield a feasible solution to the original problem by computing the associated optimal flow variables. 
It is interesting to note that these two possible definitions are not the only ones.  Indeed, on the basis
of Remark 2 above, one could also decide to search instead the set of extreme points of the set of
feasible flow vectors, retrieving the associated location variables by simply noting that a plant must be
open whenever some flow is allocated to it.  In fact, this type of approach was used successfully by
Crainic, Gendreau and Farvolden (2000) to solve the Fixed Charge Multi-commodity Network Design
Problem, a more general problem that includes the CPLP as a special case.  It is also important to note
that it  is not always a good idea to restrict the search space to feasible solutions; in many cases,
allowing  the  search  to  move  to  infeasible  solutions  is  desirable,  and  sometimes  necessary  (see
subsection 3.4 below for further details).

Closely linked to the definition of the search space is that of the neighborhood structure.  At
each iteration of  LS or  TS,  the local  transformations that  can be applied to the current  solution,
denoted S, define a set of neighboring solutions in the search space, denoted N(S) (the neighborhood
of S).  Formally, N(S) is a subset of the search space defined by:

N(S) = {solutions obtained by applying a single local transformation to S}.

In  general,  for  any  specific  problem  at  hand,  there  are  many  more  possible  (and  even,
attractive) neighborhood structures than search space definitions.  This follows from the fact that there
may be several plausible neighborhood structures for a given definition of the search space.  This is
easily illustrated on our CVRP example that has been the object of several TS implementations.  In
order to simplify the discussion, we suppose in the following that the search space is the feasible
space. 

Simple  neighborhood  structures  for  the  CVRP involve  moving  at  each  iteration  a  single
customer from its current route; the selected customer is inserted in the same route or in another route
with sufficient residual capacity.  An important feature of these neighborhood structures is the way in
which insertions are performed: one could use random insertion or insertion at the best position in the
target  route;  alternately,  one  could  use  more  complex  insertion  schemes  that  involve  a  partial
re-optimization of the target route, such as GENI insertions (see Gendreau, Hertz and Laporte, 1994). 
Before proceeding any further it  is important to stress that while we say that these neighborhood
structures involve moving a single customer, the neighborhoods they define contain all the feasible
route configurations that  can be obtained from the current solution by moving any  customer and
inserting it in the stated fashion.  Examining the neighborhood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the λ-interchange of Osman
(1993), are obtained by allowing simultaneously the movement of customers to different routes and
the swapping of customers between routes.  In Rego and Roucairol (1996), moves are defined by
ejection chains that are sequences of coordinated movements of customers from one route to another;
for instance, an ejection chain of length 3 would involve moving a customer v1 from route R1 to route

R2, a customer v2 from R2 to route R3 and a customer v3 from R3 to route R4.  Other neighborhood
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structures involve the swapping of sequences of several customers between routes, as in the Cross-
exchange of Taillard et al. (1997).  These types of neighborhoods have seldom be used for the CVRP,
but are common in TS heuristics for its time-windows extension, where customers must be visited
within a pre-specified time interval.  We refer the interested reader to Gendreau, Laporte and Potvin
(2002) and Bräysy and Gendreau (2001) for a more detailed discussion of TS implementations for the
CVRP and the Vehicle Routing Problem with Time-Windows.

When  different  definitions  of  the  search  space  are  considered  for  any  given  problem,
neighborhood structures will inevitably differ to a considerable degree.  This can be illustrated on our
CPLP example.  If the search space is defined with respect to the location variables, neighborhood
structures will usually involve the so-called “Add/Drop” and “Swap” moves that respectively change
the status of one site (i.e., either opening a closed facility or closing an open one) and move an open
facility from one site to another (this move amounts to performing simultaneously an Add move and a
Drop move).  If, however, the search space is the set of extreme points of the set of feasible flow
vectors,  these  moves  become  meaningless.  One  should  instead  consider  moves  defined  by  the
application of pivots to the linear programming formulation of the transportation problem, since each
pivot operation moves the current solution to an adjacent extreme point.

The preceding discussion should have clarified a major point: choosing a search space and a
neighborhood structure is by far the most critical step in the design of any TS heuristic.  It is at this
step that one must make the best use of the understanding and knowledge he/she has of the problem at
hand.

2.4  Tabus

Tabus  are  one  of  the  distinctive  elements  of  TS  when  compared  to  LS.  As  we  already
mentioned,  tabus  are  used  to  prevent  cycling  when  moving  away  from  local  optima  through
non-improving moves.  The key realization here is that when this situation occurs, something needs to
be done to prevent the search from tracing back its steps to where it came from.  This is achieved by
declaring tabu (disallowing) moves that reverse the effect of recent moves.  For instance, in the CVRP
example,  if  customer v1  has just  been moved from route  R1  to route  R2,  one could declare tabu

moving back v1 from R2 to R1 for some number of iterations (this number is called the tabu tenure of

the move).  Tabus are also useful to help the search move away from previously visited portions of the
search space and thus perform more extensive exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually only a fixed
and  fairly  limited  quantity  of  information  is  recorded.  In  any  given  context,  there  are  several
possibilities regarding the specific information that is recorded.  One could record complete solutions,
but this requires a lot of storage and makes it expensive to check whether a potential move is tabu or
not;  it  is  therefore seldom used.  The most  commonly used tabus involve recording the last  few
transformations performed on the current solution and prohibiting reverse transformations (as in the
example above); others are based on key characteristics of the solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problems.  In the CVRP,
one could define tabus in several ways.  To continue our example where customer v1 has just been

moved from route R1 to route R2, one could declare tabu specifically moving back v1 from R2 to R1
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and record this in the short-term memory as the triplet (v1, R2, R1).  Note that this type of tabu will not

constrain the search much, but that cycling may occur if v1 is then moved to another route R3 and then

from  R3  to  R1.  A  stronger  tabu  would  involve  prohibiting  moving  back  v1  to  R1  (without

consideration for its current route) and be recorded as (v1, R1).  An even stronger tabu would be to

disallow moving v1 to any other route and would simply be noted as (v1). 

In the CPLP, when searching the space of location variables, tabus on Add/Drop moves should
prohibit changing the status of the affected location variable and can be recorded by noting its index;
tabus for Swap moves are more complex: they could be declared with respect to the site where the
facility was closed, to the site where the facility was opened, to both locations (i.e., changing the
status of both location variables is tabu), or to the specific swapping operation.  When searching the
space of flow variables, one can take advantage of the fact that a pivot operation is associated with a
unique pair of entering and leaving variables to define tabus; while here again several combinations
are  possible,  experience  has  shown that  when  dealing  with  pivot  neighborhood  structures,  tabus
imposed on leaving variables (to prevent them from coming back in the basis) are usually much more
effective.

Multiple tabu lists can be used simultaneously and are sometimes advisable.  For instance, in
the CPLP, if one uses a neighborhood structure that contains both Add/Drop and Swap moves, it
might be a good idea to keep a separate tabu list for each type of moves.

Standard tabu lists are usually implemented as circular lists of fixed length.  It has been shown,
however,  that  fixed-length tabus cannot always prevent cycling, and some authors have proposed
varying the tabu list length during the search (Glover, 1989, 1990; Skorin-Kapov, 1990; Taillard, 1990
and 1991).  Another solution is  to randomly generate the tabu tenure of  each move within some
specified interval; using this approach requires a somewhat different scheme for recording tabus that
are then usually stored as tags in an array (the entries in this array will usually record the iteration
number until which a move is tabu; see Gendreau, Hertz and Laporte, 1994, for more details).

2.5  Aspiration criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attractive moves,
even when there is no danger of cycling, or they may lead to an overall stagnation of the searching
process.  It is thus necessary to use algorithmic devices that will allow one to revoke (cancel) tabus. 
These  are  called  aspiration  criteria.  The  simplest  and  most  commonly  used  aspiration  criterion
(found in almost all TS implementations) consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solution (since the new
solution has obviously not been previously visited).  Much more complicated aspiration criteria have
been proposed and successfully implemented (see, for instance, de Werra and Hertz, 1989, or Hertz
and de Werra, 1991), but they are rarely used.  The key rule in this respect is that if cycling cannot
occur, tabus can be disregarded.

2.6  A template for simple tabu search

We are now in the position to give a general template for TS, integrating the elements we have
seen so far.  We suppose that we are trying to minimize a function f(S) over some domain and we
apply the so-called “best improvement” version of TS, i.e., the version in which one chooses at each
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iteration the best available move (this is the most commonly used version of TS).
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Notation

o     S,         the current solution,
o     S*,       the best-known solution,
o     f*,        value of S*,
o     N(S),   the neighborhood of S,
o     Ñ(S),   the “admissible” subset of N(S) (i.e., non-tabu or allowed by aspiration).

Initialization

Choose (construct) an initial solution S0.

Set S := S0 , f* := f(S0),  S* := S0 , T := Ø.

Search

While termination criterion not satisfied do

o       Select S in argmin [f(S')];
     S'ε Ñ(S)

if f(S) < f*, then set f* := f(S),  S* := S;

o       record tabu for the current move in T (delete oldest entry if necessary);

endwhile.

2.7  Termination criteria

One may have noticed that we have not specified in our template above a termination criterion. 
In theory, the search could go on forever, unless the optimal value of the problem at hand is known
beforehand.  In practice, obviously, the search has to be stopped at some point.  The most commonly
used stopping criteria in TS are:

o       after a fixed number of iterations (or a fixed amount of CPU time);

o       after some number of iterations without an improvement in the objective function value
(the criterion used in most implementations);

o       when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a sequence of phases, the
duration of each phase being determined by one of the above criteria.

2.8  Probabilistic TS and candidate lists

In “regular” TS, one must evaluate the objective for every element of the neighborhood N(S) of
the current solution.  This can prove extremely expensive from the computational standpoint.  An
alternative is to instead consider only a random sample N'(S) of N(S), thus reducing significantly the
computational burden.  Another attractive feature of this alternative is that the added randomness can
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act as an anti-cycling mechanism; this allows one to use shorter tabu lists than would be necessary if a
full exploration of the neighborhood was performed.  One the negative side, it must be noted that, in
that case, one may miss excellent solutions (more on this topic in subsection 6.3).  Probabilities may
also be applied to activating tabu criteria.

Another way to control the number of moves examined is by means of  candidate list strategies,
which provide more strategic ways of generating a useful subset N'(S) of N(S).  (The probabilistic
approach can be considered to be one instance of a candidate list strategy, and may also be used to
modify  such  a  strategy.)  Failure  to  adequately  address  the  issues  involved  in  creating  effective
candidate  lists  is  one  of  the  more  conspicuous  shortcomings  that  differentiates  a  naive  TS
implementation from one that is more solidly grounded.  Relevant designs for candidate list strategies
are discussed in Glover and Laguna (1997).  We also discuss a useful type of candidate generation
approach in Section 3.4.

3.  INTERMEDIATE CONCEPTS

Simple TS as described above can sometimes successfully solve difficult problems, but in most
cases, additional elements have to be included in the search strategy to make it fully effective.  We
now briefly review the most important of these.

3.1  Intensification

The idea behind the concept of search intensification is  that,  as an intelligent human being
would probably do, one should explore more thoroughly the portions of the search space that seem
“promising” in order to make sure that the best solutions in these areas are indeed found.  From time
to time, one would thus stop the normal searching process to perform an intensification phase.  In
general, intensification is based on some intermediate-term memory, such as a recency memory, in
which one records the number of consecutive iterations that various “solution components” have been
present in the current solution without interruption.  For instance, in the CPLP application, one could
record how long each site has had an open facility.  A typical approach to intensification is to restart
the search from the best currently known solution and to “freeze” (fix) in it the components that seem
more attractive.  To continue the CPLP example, one could thus freeze a number of facilities in the
sites that have had them for the largest number of iterations and perform a restricted search on the
other sites.  Another technique that is often used consists in changing the neighborhood structure to
one allowing more powerful or more diverse moves.  In the CVRP example, one could therefore
allow more complex insertion moves or switch to an ejection chain neighborhood structure.  In the
CPLP example, if Add/Drop moves were used, Swap moves could be added to the neighborhood
structure.  In probabilistic TS, one could increase the sample size or switch to searching without
sampling.

Intensification is used in many TS implementations, but it  is  not always necessary.  This is
because there are many situations where the search performed by the normal searching process is
thorough enough.  There is thus no need to spend time exploring more carefully the portions of the
search space that have already been visited, and this time can be used more effectively as we shall see
right now.

3.2  Diversification
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One of the main problems of all methods based on Local Search approaches, and this includes
TS in spite of the beneficial impact of tabus, is that they tend to be too “local” (as their name implies),
i.e., they tend to spend most, if not all, of their time in a restricted portion of the search space.  The
negative consequence of this fact is that, although good solutions may be obtained, one may fail to
explore the most interesting parts of the search space and thus end up with solutions that are still
pretty far from the optimal ones.  Diversification is an algorithmic mechanism that tries to alleviate
this problem by forcing the search into previously unexplored areas of the search space.  It is usually
based on some form of long-term memory of the search, such as a frequency memory, in which one
records  the  total  number  of  iterations  (since  the  beginning  of  the  search)  that  various  “solution
components” have been present in the current solution or have been involved in the selected moves. 
For instance, in the CPLP application, one could record during the number of iterations during which
each site has had an open facility.  In the CVRP application, one could note how many times each
customer has been moved from its  current route.  In cases where it  is  possible to identify useful
“regions” of the search space, the frequency memory can be refined to track the number of iterations
spent in these different regions.

There are two major diversification techniques.  The first, called restart diversification, involves
forcing  a  few  rarely  used  components  in  the  current  solution  (or  the  best  known  solution)  and
restarting the search from this point.  In CPLP procedures, one could thus open one or a few facilities
at  locations  that  have  seldom had  them up  to  that  point  and  resume  searching  from that  plant
configuration (one could also close facilities at locations that have been used the most frequently).  In
a CVRP heuristic,  customers that  have not  yet  been moved frequently could be forced into new
routes.  The  second  diversification  method,  continuous  diversification,  integrates  diversification
considerations directly into the regular searching process.  This is achieved by biasing the evaluation
of possible moves by adding to the objective a small term related to component frequencies (see
Soriano and Gendreau, 1996, for an extensive discussion on these two techniques).  A third way of
achieving diversification is strategic oscillation as we will see in the next subsection.

Before  closing  this  subsection,  we  would  like  to  stress  that  ensuring  proper  search
diversification  is  possibly  the  most  critical  issue  in  the  design  of  TS  heuristics.  It  should  be
addressed with extreme care fairly early in the design phase and revisited if the results obtained are
not up to expectations.

3.3  Allowing infeasible solutions

Accounting for all problem constraints in the definition of the search space often restricts the
searching process too much and can lead to mediocre solutions.  This occurs, for example, in CVRP
instances where the route capacity or duration constraints are too tight to allow moving customers
effectively  between routes.  In  such cases,  constraint  relaxation  is  an  attractive  strategy,  since  it
creates a larger search space that can be explored with “simpler” neighborhood structures.  Constraint
relaxation is easily implemented by dropping selected constraints from the search space definition and
adding to the objective weighted penalties for constraint violations.  This, however, raises the issue of
finding correct weights for constraint violations.  An interesting way of circumventing this problem is
to use self-adjusting penalties, i.e., weights are adjusted dynamically on the basis of the recent history
of the search: weights are increased if  only infeasible solutions were encountered in the last  few
iterations, and decreased if all recent solutions were feasible (see, for instance, Gendreau, Hertz and
Laporte, 1994, for further details).  Penalty weights can also be modified systematically to drive the
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search to cross the feasibility boundary of the search space and thus induce diversification.  This
technique, known as strategic oscillation, was introduced as early as 1977 by Glover and used since
in several successful TS procedures.  (An important early variant oscillates among alternative types of
moves, hence neighborhood structures, while another oscillates around a selected value for a critical
function.)

3.4  Surrogate and auxiliary objectives

There are many problems for which the true objective function is quite costly to evaluate, a
typical example being the CPLP when one searches the space of location variables.  (Remember that,
in this case, computing the objective value for any potential solution entails solving the associated
transportation problem.)  When this occurs, the evaluation of moves may become prohibitive, even if
sampling  is  used.  An  effective  approach  to  handle  this  issue  is  to  evaluate  neighbors  using  a
surrogate objective, i.e., a function that is correlated to the true objective, but is less computationally
demanding, in order to identify a (small) set of promising candidates (potential solutions achieving
the best values for the surrogate).  The true objective is then computed for this small set of candidate
moves and the best one selected to become the new current solution.  (See Crainic et al., 1993, for an
example of this approach.)

Another frequently encountered difficulty is that the objective function may not provide enough
information to effectively drive the search to more interesting areas of the search space.  A typical
illustration of this situation is the variant of the CVRP in which the fleet size is not fixed, but is rather
the primary objective (i.e., one is looking for the minimal fleet size allowing a feasible solution).  In
this problem, except for solutions where a route has only one or a few customers assigned to it, most
neighborhood  structures  will  lead  to  the  situation  where  all  elements  in  the  neighborhood  score
equally with respect to the primary objective (i.e., all allowable moves produce solutions with the
same number of vehicles).  In such a case, it is absolutely necessary to define an auxiliary objective
function to orient the search.  Such a function must measure in some way the desirable attributes of
solutions.  In our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be totally emptied
in a subsequent iteration. It should be noted that coming up with an effective auxiliary objective is not
always easy and may require a lengthy trial and error process.  In some other cases, fortunately, the
auxiliary objective is obvious for anyone familiar with the problem at hand.  (See Gendreau, Soriano
and Salvail, 1993, for an illustration.)

4.   ADVANCED TOPICS AND RECENT TRENDS IN TABU SEARCH

The concepts and techniques described in the previous sections are sufficient to design effective
TS heuristics for many combinatorial problems.  Most early TS implementations, several of which
were  extremely  successful,  relied  indeed  almost  exclusively  on  these  algorithmic  components. 
Nowadays, however, most leading edge research in TS makes use of more advanced concepts and
techniques.  While it  is  clearly beyond the scope of an introductory tutorial,  such as this  one,  to
review this type of advanced material, we would like to give readers some insight into it by briefly
describing some current trends in TS research.  Readers who wish to learn more about this topic
should read our survey paper (Gendreau,  2002) and some of the references provided in the next
section.
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A large part of the recent research in TS deals with various techniques for making the search
more effective.  These include methods for exploiting better the information that becomes available
during search and creating better starting points, as well as more powerful neighborhood operators
and  parallel  search  strategies.  (On  this  last  topic,  see  the  taxonomy  of  Crainic,  Toulouse  and
Gendreau, 1997, and the survey of Cung et al., 2002.)  The numerous techniques for making better
use of the information are of particular significance since they can lead to dramatic performance
improvements.  Many of these rely on elite solutions (the best solutions previously encountered) or on
parts of these to create new solutions, the rationale being that “fragments” (elements) of excellent
solutions are often identified quite early in the searching process, but that the challenge is to complete
these fragments or to recombine them (Glover, 1992; Glover and Laguna, 1993; Rochat and Taillard,
1995; Glover and Laguna, 1997).  Other methods, such as the Reactive Tabu Search of Battiti and
Tecchiolli (1994), attempt to find ways of making the search move away from local optima that have
already been visited.

Another important trend in TS (this is, in fact, a pervasive trend in the whole meta-heuristics
field) is hybridization, i.e., using TS in conjunction with other solution approaches such as Genetic
Algorithms  (Fleurent  and  Ferland,  1996;  Crainic  and  Gendreau,  1999),  Lagrangean  relaxation
(Grünert, 2002), Constraint Programming (Pesant and Gendreau, 1999), column generation (Crainic,
Gendreau and Farvolden, 2000) and integer programming techniques (there is a whole chapter on this
topic in Glover and Laguna, 1997).

TS research has also started moving away from its traditional application areas (graph theory
problems, scheduling, vehicle routing) to new ones: continuous optimization (Rolland, 1996), multi-
criteria optimization, stochastic programming, mixed integer programming (Lokketangen and Glover,
1996; Crainic, Gendreau and Farvolden, 2000), real-time decision problems (Gendreau et al., 1999),
etc.  These  new areas  confront  researchers  with  new challenges  that,  in  turn,  call  for  novel  and
original extensions of the method.

5.  KEY REFERENCES

Readers who wish to read other introductory papers on TS can choose among several ones.  Let
us mention the ones by de Werra and Hertz (1989), Hertz and de Werra, (1991), Glover and Laguna
(1993), Glover, Taillard and de Werra (1993) and, in French, by Soriano and Gendreau (1997).  The
book by Glover and Laguna (1997) is  the ultimate reference on TS: apart  from the fundamental
concepts of the method, it presents a considerable amount of advanced material, as well as a variety of
applications.  It is interesting to note that this book contains several ideas applicable to TS that yet
remain to be fully exploited.  The issues of Annals of Operations Research, respectively devoted to
“Tabu Search” (Glover, Laguna, Taillard and de Werra, 1993) and “Metaheuristics in Combinatorial
Optimization” (Laporte and Osman, 1996), and the books made up from selected papers presented at
the Meta-Heuristics International Conferences (MIC) are also extremely valuable.  At this time, the
books for the 1995 Breckenridge conference (Osman and Kelly, 1996), the 1997 Sophia-Antipolis one
(Voss, Martello, Osman and Roucairol, 1999) and the 1999 Angra dos Reis one (Ribeiro and Hansen,
2002) have been published.  The proceedings of MIC’2001, held in Porto, are currently available
electronically on the website located at URL: http://tew.ruca.ua.ac.be/eume/MIC2001.

6.  TRICKS OF THE TRADE
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6.1  Getting started

Newcomers to TS trying to apply the method to a problem that they wish to solve are often
confused about what they need to do to come up with a successful implementation.  Basically, they do
not know where to start.  We believe that the following step-by-step procedure can help a lot and
provides a useful framework for getting started.

A step-by-step procedure

1.      Read one or two good introductory papers to gain some knowledge of the concepts and of the
vocabulary.

2.      Read several papers describing in detail applications in various areas to see how the concepts
have been actually implemented by other researchers.

3.      Think a lot about the problem at hand, focusing on the definition of the search space and the
neighborhood structure.

4.      Implement  a simple  version based on this search space definition and this neighborhood
structure.

5.      Collect statistics on the performance of this simple heuristic.  It is usually useful at this point
to introduce a variety of memories, such as frequency and recency memories, to really track
down what the heuristic does.

6.      Analyze results and adjust the procedure accordingly.  It  is  at  this  point  that  one should
eventually  introduce  mechanisms  for  search  intensification  and  diversification  or  other
intermediate features.  Special attention should be paid to diversification, since this is often
where simple TS procedures fail.

6.2  More tips

It is not unusual that, in spite of following carefully the preceding procedure, one ends up with a
heuristic that nonetheless produces mediocre results.  If this occurs, the following tips may prove
useful:

1.      If there are constraints,  consider penalizing them.  Letting the search move to infeasible
solutions  is  often  necessary  in  highly  constrained  problems  to  allow  for  a  meaningful
exploration of the search space (see Section 3).

2.      Reconsider  the  neighborhood  structure  and  change  it  if  necessary.  Many  TS
implementations  fail  because  the  neighborhood structure  is  too  simple.  In  particular,  one
should make sure that the chosen neighborhood structure allows for a purposeful evaluation of
possible  moves  (i.e.,  the  moves  that  seem  intuitively  to  move  the  search  in  the  “right”
direction should be the ones that are likely to be selected); it might also be a good idea to
introduce a surrogate objective (see Section 3) to achieve this.

3.      Collect more statistics.

4.      Follow the execution of the algorithm step-by-step on some reasonably sized instances.

5.      Reconsider  diversification.  As  mentioned  earlier,  this  is  a  critical  feature  in  most  TS
implementations.
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6.      Experiment  with  parameter  settings.  Many  TS  procedures  are  extremely  sensitive  to
parameter  settings;  it  is  not  unusual  to  see  the  performance  of  a  procedure  dramatically
improve after changing the value of one or two key parameters (unfortunately, it is not always
obvious to determine which parameters are the key ones in a given procedure).

6.3  Additional tips for probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates problems of its
own that need to be carefully addressed.  The most important of these is the fact that, more often than
not,  the  best  solutions  returned by probabilistic  TS will  not  be  local  optima with  respect  to  the
neighborhood structure being used.  This is particularly annoying since, in that case, better solutions
can be easily obtained, sometimes even manually.  An easy way to come around this is to simply
perform a local  improvement phase (using the same neighborhood operator)  from the best  found
solution at the end of the TS itself.  One could alternately switch to TS without sampling (again from
the  best  found  solution)  for  a  short  duration  before  completing  the  algorithm.  A possibly  more
effective technique is to add throughout the search an intensification step without sampling; in this
fashion, the best solutions available in the various regions of the search space explored by the method
will be found and recorded.  (Glover and Laguna, 1993, similarly proposed special aspiration criteria
for allowing the search to reach local optima at useful junctures.)

6.4  Parameter calibration and computational testing

Parameter calibration and computational experiments are key steps in the development of any
algorithm.  This is particularly true in the case of TS, since the number of parameters required by
most implementations is fairly large and since the performance of a given procedure can vary quite
significantly  when  parameter  values  are  modified.  The  first  step  in  any  serious  computational
experimentation is to select a good set of benchmark instances (either by obtaining them from other
researchers or by constructing them), preferably with some reasonable measure of their difficulty and
with a wide range of size and difficulty.  This set should be split into two subsets, the first one being
used at the algorithmic design and parameter calibration steps, and the second reserved for performing
the  final  computational  tests  that  will  be  reported  in  the  paper(s)  describing  the  heuristic  under
development.  The reason for doing so is quite simple: when calibrating parameters, one always run
the risk of overfitting, i.e., finding parameter values that are excellent for the instances at hand, but
poor in general, because these values provide too good a “fit” (from the algorithmic standpoint) to
these instances. Methods with several parameters should thus be calibrated on much larger sets of
instances than ones with few parameters to ensure a reasonable degree of robustness.  The calibration
process itself should proceed in several stages:

1.      Perform exploratory testing to find good ranges of parameters.  This can be done by
running the heuristic with a variety of parameter settings.

2.      Fix the value of parameters that appear to be “robust”, i.e., which do not seem to have a
significant impact on the performance of the procedure. 

3.      Perform systematic testing for the other parameters.  It is usually more efficient to test
values for only a single parameter at a time, the others being fixed at what appear to be
reasonable values.  One must be careful, however, for cross effects between parameters.
Where such effects exist, it can be important to jointly test pairs or triplets of parameters,
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which can be an extremely time-consuming task.

The paper by Crainic et al. (1993) provides a detailed description of the calibration process for a
fairly complex TS procedure and can used as a guideline for this purpose.

7.  CONCLUSION

Tabu Search is a powerful algorithmic approach that has been applied with great success to
many difficult combinatorial problems.  A particularly nice feature of TS is that, like all approaches
based on Local Search, it can quite easily handle the “dirty” complicating constraints that are typically
found in real-life applications.  It is thus a really practical approach.  It is not, however, a panacea:
every  reviewer  or  editor  of  a  scientific  journal  has  seen  more  than  his/her  share  of  failed  TS
heuristics.  These failures stem from two major causes: an insufficient understanding of fundamental
concepts of the method (and we hope that this tutorial will help in alleviating this shortcoming), but
also, more often than not, a crippling lack of understanding of the problem at hand.  One cannot
develop a good TS heuristic for a problem that he/she does not know well!  This is because significant
problem knowledge is absolutely required to perform the most basic steps of the development of any
TS procedure, namely the choice of a search space and of an effective neighborhood structure.  If the
search space and/or the neighborhood structure are inadequate, no amount of TS expertise will be
sufficient to save the day.  A last word of caution: to be successful, all meta-heuristics need to achieve
both depth and breadth in their searching process; depth is usually not a problem for TS, which is
quite aggressive in this respect (TS heuristics generally find pretty good solutions very early in the
search), but breadth can be a critical issue.  To handle this, it is extremely important to develop an
effective diversification scheme.
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