
ARTIFICIAL INTELLIGENCE 135

The Organization of Expert Systems*
A Tutorial

Mark Stefik, Jan Aikins, Robert Balzer,
John Benoit, Lawrence Birnbaum,
Frederick Hayes-Roth,Earl Sacerdoti**

XeroxPalo Alto ResearchCenter,Palo Alto, CA 94304, U.S.A.

Recommendedby Daniel G. Bobrow

ABSTRACT
This is a tutorial about the organization of expert problem-solving programs. We begin with a
restrictedclassof problemsthat admitsa verysimpleorganization.To makethis organizationfeasible

it is required that the input data be static and reliable and that the solutionspacebe small enoughto

search exhaustively. Theseassumptionsare then relaxed, one at a time, in case study of ten more
sophisticatedorganizational prescriptions. The first casesgive techniquesfor dealing with unreliable

data and time-varying data. Other casesshow techniquesfor creating and reasoning with abstract
solution spacesand using multiple lines of reasoning. The prescriptions are comparedfor their
coverageand illustrated by examplesfrom recentexpertsystems.

1. Introduction

Twenty years ago,Newell [29] surveyedseveralorganizationalalternativesfor
problemsolvers.He was concernedwith how oneshould go about designing
problem-solvingsystems.Many techniqueshave been developedin artificial
intelligence(henceforthAl) researchsince then and many examplesof expert
systemshave been built. Expert systemsare problem-solvingprogramsthat

* Thereis currently muchinterestandactivity in expertsystemsboth for researchandapplications.

A forthcomingbook editedby Hayes-Roth,Waterman,andLenat[21] providesabroadintroduction
to thecreationandvalidation of expertsystemsfor ageneralcomputerscienceaudience.An extended
versionof this tutorial, which introducesconceptsandvocabularyfor an audiencewithout an AT
background,will appearas achapter in thebook.

** Additional affiliations: 3. Aikins, Hewlett-Packard,PaloAlto, CA; R. Balzer,USC/Information
SciencesInstitute, Marina del Rey, CA; J. Benoit, The MITRE Corporation, McLean, VA; L.
Birnbauni, Yale University, New Haven, CT; F. Hayes-Roth,Teknowledge,Palo Alto, CA; E.
Sacerdoti,MachineIntelligenceCorp., Palo Alto, CA.

Artificial Intelligence 18 (1982) 135-173

0004 .3702/82/0000-0000/$02.75 © 1982 North-Holland

136 M. STEFIK ET AL.

solve substantialproblemsgenerallyconcededas being difficult andrequiring
expertise.Theyarecalled knowledgebasedbecausetheir performancedepends
critically on the useof factsandheuristicsusedby experts.Expert systemshave
beenusedas a vehicle for Al researchunder the rationale that they provide a
forcing function for researchin problemsolving anda reality test.

Recentlysometextbookshave appearedthat organizeprinciples of Al (e.g.,
[301) and give examples of advanced programming techniques (e.g.,
[6]). However, there is no guidebook for an expert systems designer
to the issuesand choices in designing a system. Furthermore,an unguided
sampling of expert systems from the literature can be quite confusing.
Examplesare scatteredin various journals,conferenceproceedings,andtech-
nical reports. Systemswith seemingly similar tasks sometimeshave radically
different organizations,andseeminglydifferent tasksare sometimesperformed
with only minor variationson a single organization.The variations reflect the
immaturity of the field in which most of the systemsare experimental.From
the diversity of experimentsone would like to extract alternativesand prin-
ciples to guide adesigner.

This tutorial is organizedas follows: Section 2 is a catalogof some generic
expert tasks. For each task there is a checklist of requirementsand key
problemsassociatedwith expertperformanceof the task. The purposeof this
section is to extract aset of architecturallyrelevant issuesthat cover a variety
of problem-solvingtasks,Section3 presentsthe substanceof theorganizational
ideas. It addressesthe issuesfrom Section2 andmakesprescriptions.

2. A Characterizationof Expert Tasks

In this section we will consider several generic tasks that experts perform.
Examining thesetaskswill help us to understandwhat makesexpert reasoning
difficult. The difficulties provide a guide to architecturalrelevance;they enable
us to focuson issuesthat relate to critical stepsin reasoning.

Interpretation

Interpretationis the analysisof data to determinetheir meaning.

Example. Interpretation of mass spectrometerdata [2]. In this case,the data
are measurementsof the massesof molecular fragmentsand interpretation
meansthe determinationof oneor more chemicalstructures.

Requirements.Find consistentandcorrectinterpretationsof the data.It is often
important that analysis systemsbe rigorously complete, that is, that they
considerthe possibleinterpretationssystematicallyanddiscardcandidatesonly
whenthere is enoughevidenceto rule them out.

Key problems. Data are often noisy and errorful, that is, datavaluesmay be
missing,erroneous,or extraneous.

EXPERT SYSTEMSTUTORIAL 137

(1) This meansthat interpretersmust copewith partial information.
(2) For anygiven problem,thedatamayseemcontradictory.The interpreter

must be able to hypothesizewhich dataarebelievable.
(3) When the dataare unreliable,the interpretationwill also be unreliable.

For credibility it is important to identify where information is uncertain or
incompleteandwhereassumptionshavebeenmade.

(4) Reasoningchainscan be long andcomplicated.It is helpful to be ableto
explain how the interpretationis supportedby the evidence.

Diagnosis

Diagnosis is the processof fault-finding in a system (or determinationof a
diseasestate in a living system) basedon interpretation of potentially noisy
data.

Example. Diagnosisof infectiousdiseases[34].

Requirements.Requirementsinclude those of interpretation.A diagnostician
must understandthe systemorganization(i.e., its anatomy)and the relation-
shipsand interactionsbetweensubsystems.

Key problems. (1) Faultscan sometimesbe maskedby the symptomsof other
faults. Some diagnosticsystemsignore this problem by making a single fault
assumption.

(2) Faults can be intermittent. A diagnosticiansometimeshas to stressa
systemin order to reveal faults.

(3) Diagnosticequipmentcan itself fail. A diagnosticianhas to do his best
with faulty sensors.

(4) Some data about a system are inaccessible,expensive,or dangerousto
retrieve. A diagnosticianmust decidewhich measurementsto take.

(5) The anatomy of natural systemssuch as the human body is not fully
understood.A diagnostician may need to combine several (somewhat in-
consistent)partial models.

Monitoring

Monitoring meansto continuouslyinterpret signalsand to set off alarms when
intervention is required.

Example. Monitoring a patient using a mechanical breathing device after
surgery[17].

Requirements.A monitoring system is a partial diagnostic system with the
requirement that the recognition of alarm conditions be carried out in real
time. For credibility, it must avoid false alarms.

Key problems. What constitutes an alarm condition is often context-depen-
dent.To accountfor this, monitoring systemshave to vary signal expectations
with time andsituation.

138 M.STEFIKETAL.

Prediction

Predictionmeansto forecastthe courseof the future from a model of the past
andpresent.

Example. Predicting the effects of a changein economicpolicy. (Someplan-
fling programshave apredictivecomponent.Thereis currently an opportunity
to developexpertpredictionprogramsin a variety of areas.)

Requirements.Prediction requires reasoningabout time. Predictorsmust be
able to refer to things that changeover time and to e~ventsthat are ordered in
time. They must haveadequatemodelsof the ways that variousactionschange
the stateof the modeledenvironmentover time.

Key problems. (1) Prediction requires the integration of incomplete infor-
mation. When information is complete,prediction is not an Al problem (e.g.,
wherewill Jupiterbe two yearsfrom nextThursday).

(2) Predictionsshould account for multiple possible futures (hypothetical
reasoning),andshould indicatesensitivity to variationsin the input data.

(3) Predictorsmust be able to makeuseof diversedata, since indicatorsof
the future can be found in many places.

(4) The predictive theory may need to be contingent; the likelihood of
distant futuresmay dependon nearerbut unpredictableevents.

Planning

A plan is a program of actions that can be carried out to achieve goals.
Planning meansto createplans.

Example. Experimentplanningin moleculargenetics[36].

Requirements.A planner must construct a plan that achievesgoals without
consuming excessiveresourcesor violating constraints. If goals conflict, a
plannerestablishespriorities. If planningrequirementsor decisiondataare not
fully known or changewith time, then a plannermust be flexible andoppor-
tunistic. Sinceplanning always involves a certain amountof prediction, it has
the requirementsof that taskas well.

Key problems. (1) Planning problems are sufficiently large and complicated
that a plannerdoesnot immediately understandall of the consequencesof his
actions.This meansthat the plannermust be able to act tentatively, so as to
explorepossibleplans.

(2) If the details are overwhelming,he must be able to focus on the most
important considerations.

(3) In largecomplexproblems,thereoften areinteractionsbetweenplans for
different subgoals.A plannermust attendto theserelationshipsand copewith
goal interactions.

EX1~ERTSYSTEMSTUTORIAL 139

(4) Often the planning context is only approximately known, so that a
plannermust operatein the face of uncertainty.This requirespreparing for
contingencies.

(5) If the plan is to be carried out by multiple actors, coordination (e.g.
choreography)is required.

Design

Design is the making of specificationsto createobjects that satisfy particular
requirements.

Example. Designing adigital circuit. (This is an areaof increasedinterestand
activity in expertsystems.)

Requirements.Design hasmany of the samerequirementsas planning.

Key problems. (1) In largeproblems,a designercannotimmediately assessthe
consequencesof design decisions.He must be able to explore design pos-
sibilities tentatively.

(2) Constraintson a design come from many sources.Usually there is no
comprehensivetheory that integratesconstraintswith designchoices.

(3) In very largesystems,adesignermust copewith the systemcomplexity
by factoring the designinto subproblems.He must alsocope with interactions
betweenthe subproblems,sincethey are seldomindependent.

(4) When a designis large, it is easyto forget the reasonsfor some design
decisionsandhard to assessthe impact of a changeto part of a design.This
suggeststhat a designsystemshould record justifications for designdecisions
and be able to use these justifications to explain decisions later. This is
especiallyapparentwhen subsystemsaredesignedby different designers.

(5) When designsare beingmodified, it is important to be able to reconsider
the designpossibilities.During redesign,designersneedto be able to seethe
‘big picture’ in order to escapefrom points in the designspacethat are only
locally optimal.

(6) Many design problems require reasoning about spatial relationships.
Reasoningabout distance,shapes,and contoursdemandsconsiderablecom-
putational resources.We do not yet havegood waysto reasonapproximately
or qualitatively about shapeandspatialrelationships.

Severalissuesappearrepeatedlyacrossthis catalogof expert tasks:
Large solution spaces. In interpretation problems like the mass spec-

trometery example [2], some problemsrequire millions of possible chemical
structures to be considered. In planning and design tasks, the number of
reasonablesolutionsis usuallya very small fraction of avery largenumber of
possiblesolutions. In each of thesetasks,the size and characterizationof the
solution spaceis an importantorganizationalparameter.

Tentativereasoning. Many diagnosticproceduresprofitably employ assump-
tions about the number of faults or about the reliability of sensors.Part way

140 M. STEFIK ET AL.

through diagnosis, it may be discoveredthat these assumptionsare unwar-
ranted. This places a premimum on the ability to undo the effects of the
assumptions.Similarly, in design and planning tasks it is often appropriate
becauseof scaleto employ simplifying assumptions(e.g., abstractions).In any
given design, some of the assumptionswill fail in a design, so there is an
incentive to employ methodsthat facilitate the reworking of assumptionsand
trade-offsduring iterationsof the designprocess.

Time-varying data. Patient monitoring and diagnosis tasks are concerned
with situationsthat evolveover time—asdiseasesfollow their naturalcourseor
as treatmentsare administered.

Noisy data. Sensorsoften yield noisy data. This is a factor for any task
involving reasoningfrom measurementssuch as interpretation,diagnostic,and
monitoring tasks.

The next sectionconsidersorganizationalprescriptionsthatdeal with eachof
theseissues.

3. Knowledge Engineering Prescriptions

Feigenbaum[18] definesthe activity of knowledgeengineeringas follows.

“The knowledgeengineerpracticesthe art of bringing the principles
and tools of Al researchto bear on difficult applicationsproblems
requiringexperts’ knowledgefor their solution.The technicalissuesof
acquiringthis knowledge,representingit, andusing it appropriatelyto
construct and explain lines-of-reasoning,are important problems in
the design of knowledge-basedsystems The art of constructing
intelligent agentsis bothpart of andan extensionof the programming
art. It is theart of building complexcomputerprogramsthat represent
andreasonwith knowledgeof the world.” [18, pp. 1014—1016]

This sectionis intendedas aprescriptiveguideto building expertsystems.To
illustratethe strengthsandlimitationsof organizationalalternativeswe will cite
a numberof contemporarysystems.In presentingtheseexampleswe adopt a
level of detail that is adequatefor making the ideas clear yet avoiding the
particulars of the task and the programming implementation. The reader
seekingamore detaileddiscussionof implementationis encouragedto consult
a textbookon Al programming(e.g., [6]).

One of the most variable characteristicsof expert systemsis the way that
they search for solutions. The choice of search method is affected by many
characteristicsof a domain, such as the sizeof the solution space,errors in the
data, and the availability of abstractions.Inference is at the heart of a
reasoningsystem and failure to organize it properly can result in problem-
solversthat are hopelesslyinefficient, naive,or unreliable.As aconsequenceof
this, searchis oneof the most studiedtopics in artificial intelligence.

EXPERT SYSTEMSTUTORIAL 141

Our pedagogicalstyle is to startwith a very restrictedclassof problemsthat
admitsa very simplesearchprocess.We will articulatethe domain restrictions
under which this organizationis applicable,andtherebyexposeits limitations.
Then we will relax the requirements on the task domain and introduce
amelioratingtechniquesas architecturalprescriptions.Fig. I showsa chart of

2 I 3 I 4 I

No Evaluator for
Partial Solution
Fixed Order of

Abstracted Steps

6

State~trigge red
Expectations

FIG. 1. Case 1 beginswith a restrictedclassof problemsthat admits a very simple organization.
Theseassumptionsarerelaxedoneat a time in theothercases.

~1

Requirements —p.

Prescriptions .—--+

Small Solution Space
Data Reliable & Fixed
Reliable Knowledge

Exhaustive Search
Monotonic Reasoning

Single Line of Reasoning

I
IUnreliable Data

or Knowledge

Combining Evidence
from Multiple Sources

Probability Models
Fuzzy Models
Exact Models

Time.Varying Data I
Big, Factorable

Solution Space

Hierarchical

Generate and Test

5 9 1
Representation Method

Too Inefficient

Tuned Data Structures
Knowledge Compilation

Cognitive Economy

Single Line of Reasoning

Too Weak

Multiple Lines of
Reasoning

10

Single Knowledge Source
Too Weak

Heterogenous Models
Opportunistic Scheduling
Variable-Width Search

No Fixed Sequence
of Subproblems

Abstract Search Space

7

Subproblerns Interact

Constraint Propagation
Least Commitment

8
Efficient Guessing

is Needed

Belief Revision for
Plausible Reasoning

142 M. STEFIK ET AL.

the casesthat we will consider.Each box in the figure correspondsto one of
the cases and the numbering indicates the order in which the cases are
discussed.The lines connecting the boxes organize the cases into a tree
structuresuch that a sequenceof casesalong a branchcorrespondsto increas-
ingly elaborateconsiderationsof a basic idea. The first threebranchesconsider
the complicationsof unreliable data or knowledge, time-varying data, and a
largesearchspace.Any given problem mayrequire combining ideasfrom any
of thesetopics. The problem of a largesearchspaceis then consideredalong
threemajor branches.The first branch(cases5 through 8) considersorganiza-
tions for abstractingasearchspace.The secondbranchfocuseson methodsfor
incompletesearch.The third branchconsidersonly ways to make the knowl-
edge baseitself more efficient. This breakdown is mainly pedagogical.Real
systemsmay combinetheseideas.

3.1. Case 1—Small search spacewith reliable knowledgeand data

Systemsfor complex tasks are generallymore complicatedthan systemsfor
simple tasks. In this section we will considera very simple architecturewhich
has been used for relatively simple applications. We begin by listing the
requirementsfor task simplicity:

(1) The dataandknowledgeshould be reliable.
(2) The dataandknowledgeshould be static.
(3) The spaceof possiblesolutionsshould be small.
On the surfacetheserequirementsmay seemquite mild. Indeed,there is a

widely held belief among peoplewho have not looked closely into problem
solving that most problems satisfy these requirements.After all, for many
problemsthe facts seemstraightforwardandthereare not that many solutions
to consider.Under closer examination,however,most real tasksfail to meet
theserequirementsincluding the examplesof expert tasks listed in Section 2.

The first requirement is that the dataand knowledge be reliable. Reliable
data are not noisy or errorful. There can be no extraneoussignals and no
missedsignals (e.g., due to sampling). In real applicationsfew sourcesof data
meet theserequirements.In addition to datareliability, the knowledgemust be
reliable.Reliableknowledgeis applicablewithout concernaboutconsistencyor
correctness.Systematicapplicationof reliable knowledge should not lead to
false, approximate,or tentativeconclusions.The main advantageof reliability
for both dataandknowledgeis the monotonicityof the system.In the simplest
architecture,the memory is a monotonic data baseto which conclusionsare
addedby the reasoningsystemas they are inferred. No provisionsneedto be
madefor retraction of factspendingnew information. It is enoughto developa
single line of reasoning;that is, thereis no needto developmultiple arguments
to supportpotential conclusions.If morethan oneinferencerule is applicable
at agiven time, the order in which they are applied is unimportant.

EXPERTSYSTEMSTUTORIAL 143

The secondrequirementis intendedto avoid the problemof reasoningwith
time-dependentdata.This meansthat the systemneednot be concernedwith
invalidating facts as time passes.

The requirement that the searchspaceshould be small implies that no
provisions need to be made to cope with the limitations of computational
resources.There need be no concern about computationally efficient data
structuresor for avoiding combinatorialexplosions.It doesn’t matterwhether
the searchis for onesolution or all possiblesolutions as long as the spaceis
small. If the search is exhaustive, the maximum size of the search space
dependson the time it takesto considerasingle solution. A useful numberto
keep in mind for this maximum is ten factorial (10!). If 25 millisecondsare
required to considera solution, then 10! solutionscan be consideredsequen-
tially duringa full twenty-fourhour day.This is often apracticalupperlimit for
exhaustivesearch.The surpriseis that the ceiling is so low.

An organizationfor solving theseproblemshas two main parts: a memory
andan inferencemethod.The simplestorganizationof the memorywould be a
list of inferred facts (i.e., beliefs). For many problems, the beliefs can be
representedin the predicatecalculus1such as

(On BlockI Block2),
(NOT (On BIock2 Table-i)).

Somesystemsattemptto optimizethe storageformat of the data.For example,
in frame systems(see[3]) the indexing of facts is organizedto makethe most
commonaccesspaths more efficient. Data which are usedtogetherare stored
togetherin frames.

In the following sectionswe exploresome more sophisticatedorganizations
that will enableusto relax theserestrictionson the problems.

3.2. Case2—Unreliabledataor knowledge

Expertssometimesmakejudgmentsunder pressureof time. All the datamay
not be available;someof thedatamay be suspect;someof the knowledgefor
interpreting the data may be unreliable. These difficulties are part of the
normal stateof affairs in many interpretationanddiagnostictasks.The general
problemof drawing inferencesfrom uncertainor incompletedatahasinvited a
variety of technical approaches.

One of the earliest and simplest approachesto reasoningwith uncertainty
was incorporatedin the MYCIN expert system [7, 34] for selecting antibiotic
therapyfor bacteremia.One of the requirementsfor MYCIN was to represent
judgmentalreasoningsuch as “A suggestsB” or “C andD tendto rule out E”.
To this end, MYCIN introduced a model of approximate implication using

In our exampleswe usetheprefix form of thenotationbecauseof its obvioussimilarity to list

notationsas in LISP.

i~w M.STEFIKETAL.

numberscalled certainty factors to indicatethe strengthof aheuristicrule. The
following is an exampleof a rule from MYCIN’S knowledgebase.

If (1) the infection is primary-bacteremiaand
(2) the site of the culture is oneof the sterile sites and
(3) the suspectedportal of entry of the organismis the

gastro-intestinaltract,
then there is suggestiveevidence(.7) that the identity of the
organismis bacteroides.

The number‘.7’ in this rule indicates that the evidenceis strongly indicative
(0.7 out of 1) but not absolutelycertain. Evidenceconfirming a hypothesisis
collected separatelyfrom that which disconfirms it, and the ‘truth’ of the
hypothesisat any time is the algebraicsum of the evidence.This admits the
combinationof evidencein favor andagainst the samehypothesis.

The introduction of these numbers is a departurefrom the exactnessof
predicate calculus. In MYCIN, things are not just true or false; reasoningis
inexact and that inexactnessis numerically characterizedin the rules by an
expert physician. Facts about the world are representedas 4-tuples cor-
respondingto an atomic formula with a numerictruth value. For example,

(IDENTITY ORGANISM-2 KLEBSIELLA .25)

is interpretedas ‘The identify of organism-2is Kiebsiella with certainty0.25’.
In predicatecalculus, the rules of inferencetell us how to,combinewffs and
truth values.MYCIN hasits own way to combineformulas.When thepremiseof
a rule is evaluated,each predicatereturns a numberbetween 1 and —1 (—1
means‘definitely false’). MYCIN’s versionof AND performs a minimization of
its arguments;OR performsamaximizationof its arguments.This resultsin a
numericalvalue between—1 and 1 for the premiseof a rule. For ruleswhose
premise valuessurpassan empirical thresholdof 0.2, the rule’s conclusion is
madewith acertaintythat is theproduct of the premisevalueandthe certainty
factor of the rule. Theserules of combination can be shown to have certain
properties—suchas insensitivity to the order in which the rules are applied.
MYCIN’S certainty factorsare derivedfrom probabilitiesbut havesome distinct
differences(see[34]).

A reasonablequestion about such approachesis whether they are un-
necessarilyad hoc. A commonly voiced criticism is that MYCIN introducesits
own formalismfor reasoningwith uncertaintywhen therearethoroughly-studied
probabilistic approachesavailable.For example,Bayes’ Rule could be usedto
calculatethe probability (e.g., of adisease)in light of specifiedevidence,from
the a priori probability of the diseaseandthe conditionalprobabilitiesrelating
the observationsto the diseases.The main difficulty with Bayes’ Rule is the
large amount of data that are required to determinethe conditional prob-
abilities neededin the formula. This amount of data is so unwieldy that the

EXPERTSYSTEMSTUTORIAL 145

conditional independenceof observationsis often assumed.It can be argued
that such independenceassumptionsunderminethe rigorousstatistical model.
A middle ground which replacesobservationswith subjectiveestimatesof prior
probabilities hasbeenproposedby Duda, Hart, and Nilsson [14] andanalyzed
for its limitations by Pednault,Zucker, andMuresan[31].

Another approachto inexact reasoningthat divergesfrom classicallogic is
fuzzy logic as discussedby Zadeh [40] andothers. In fuzzy logic, a statement
like ‘X is a large number’ is interpretedas having an imprecise denotation
characterizedby a fuzzy set. A fuzzy set is a set of valueswith corresponding
possibility valuesas follows.

Fuzzy Proposition:
X is a largenumber.

Correspondingfuzzy set:
(XE [0,10], .1),
(X E [10,1000], .2),
({X> 1000}, .7).

The interpretation of the proposition ‘X is large’ is that ‘X might be less than
10’ with possibility0.1, or between10 and 1000 with possibility 0.2, and so on.
The fuzzy values are intendedto characterizean imprecisedenotationof the
proposition.

Fuzzylogic dealswith the lawsof inferencefor fuzzy sets.Its utility in reasoning
aboutunreliabledatadependson the appropriatenessof interpretingsoftdata
(see Zadeh [41]) as fuzzy propositions. There is little agreementamong Al
researcherson the utility of thesemodifiedlogics for intelligent systems,or even
on their advantagesfor reasoningwith incompletedata.

The pseudo-probabilityand fuzzy approachesfor reasoningwith partial and
unreliabledatadepart from the predicatecalculus by introducing a notion of
inexactness.Other approachesare possible. For example, the use of exact
inferencemethodson unreliabledata in an expert systemis illustrated by the
GAl programreportedby Stefik [37]. GAl is a data interpretationsystemwhich
copeswith errorful data. It exploits the redundancyof experimentaldata in
order to correct errorsthat it maycontain.

GAl infers DNA structuresfrom segmentationdata. GAl’S task is to assemble
modelsof completeDNA structuresgiven dataaboutpieces(called segments)
of the structures.The segmentdataare producedby chemicalprocesseswhich
break DNA apart in predictable ways. In a typical problem, several in-
dependentbreakingprocessescalled digestionsareperformedandthe resulting
segmentsare measured.These digestionsgive independentmeasurementsof
the DNA molecule. For example, independentestimatesof the molecular
weight can be computedby summingthe weightsof the segmentsin any of the
‘complete’ digestions.(A digest is called completeif all of the moleculeshave
beencleavedin all possibleplacesby the enzymes.)

146 M. STEFIK ET AL.

An exampleof a rule for correctingmissing data is:

If a segmentappearsin a completedigestionfor an enzymethat
fails to appearin the incompletedigestionfor that enzyme,
it maybe addedto the list of segmentsfor the incompletedigestion.

This rule is basedon the observationthat segmentsare easierto overlook in
incomplete digestions than in complete digestions. This rule places more
confidencein datafrom completedigestionsthan from incompleteones.Other
data correction rules incorporatemore elaboratereasoningby modeling pre-
dictableinstrumenterror suchas failure to resolvemeasurementswhich are too
close together. Such rules enable GA! to look to the data for evidence of
instrumentfailure.

In summary,severalmethodsfor reasoningwith unreliabledataand knowl-
edgehavebeenproposed.The probability-relatedandpossibility methodsuse
modified logics to handle approximations.They use numerical measuresfor
combining evidence.In contrast,data correction rules can reasonwith partial
information without compromisingthe exactnessof predicatecalculus.All of
thesemethodsdependon the formalization of extrameta-knowledgein order to
correct the data, take back assumptions,or combineevidence.The availability
of this meta-knowledgeis a critical factorin the viability of theseapproachesto
particular applications.

A specialmethod for contendingwith both fallible knowledgeand limited
computationalresourceswill be consideredin Section 3.10.

3.3. Case3—Time-varying data

Some expert tasks involve reasoningabout situationsthat changeover time.
One of the earliest approachesin Al to take this into account was the
situational calculus introduced by McCarthy and Hayes for representing
sequencesof actions and their effects [25]. The central idea is to include
‘situations’ alongwith theotherobjectsmodeledin thedomain.Forexample,the
formula

(On Block-I Table-2Situation-2)

could represent the fact that in Situation-2, Block-i is on Table-2. A key
feature of this formulation is that situations are discrete.This discreteness
reflects the intendeduseof this calculus in robot planningproblems. A robot
starts in an initial situation and performs a sequenceof actions.After each
action, the state of the robot’s world is modeledby anothersituation. In this
representation,a situation variable can take situations as values. In some
implementations,the actual situationvariable is usually left implicit by index-
ing the formulas accordingto situations.

Actions in the situational calculus are representedby functions whose

EXPERT SYSTEMS TUTORIAL 147

domains and rangesare situations.For each action, a set of frame axioms
characterizesthe set of assertions(i.e., ‘the frame’) that remain fixed while an
action takesplace within it. In a robot planning task, an exampleof an action
would be the Move action for moving an object to a new location. A frame
axiom for Move would be that all objects not explicitly movedare left in their
original location.

While many issuescan beraisedaboutthis approachto representingchanging
situations,many Al systemshaveusedit for avariety of taskswith only minor
variations. Sometimesthe changesof situation are signalled by time-varying
data, rather than by the autonomousactions of a robot. An exampleof this is
shown by the VM system reported by Fagan [16, 17]. VM (for Ventilator
Manager) is a program that interpretsthe clinical significanceof patientdata
from aphysiologicalmonitoring system.VM monitorsthe post-surgicalprogress
of a patient requiring mechanical breathing assistance.A device called a
mechanicalventilator providesbreathing assistancefor seriously ill patients.
The type and settings of the ventilator are adjusted to match the patient’s
needs.As the patient’sstatusimproves, variousadjustmentsandchangesare
made, such as replacingthe mechanicalventilator with a ‘T-piece’ to supply
oxygento thepatient.

In VM’s application,a patient’s situation is affected by the progressionof
diseaseand the responseto therapeuticinterventions. For such applications,
the model of clinical reasoningmust accountfor information received from
testsandobservationsover time.

VM illustrates knowledgesuitable for coping with time-varying data. This
knowledgein VM is organizedin termsof severalkindsof rules: transition rules,
initialization rules, statusrules, and therapyrules. Periodically VM receivesa
new set of instrument measurementsand then it reruns all of its rules.
Transition rules are used to detect when the patient’sstatehas changed,e.g.,
when the patient startsto breatheon the T-piece.The following is an example
of a transition rule.

If (1) the current context is ‘Assist’ and
(2) respirationrate hasbeenstablefor 20 minutesand
(3) l/E ratio hasbeenstablefor 20 minutes,

then the patient is on ‘CMV’ (controlled mandatoryventilation).

This rule governs the transition between an ‘Assist’ context and a ‘CMV’
context. When the premise of a transition rule is satisfied in VM, a new
‘context’ is entered.Thesecontextscorrespondto specific statesor situations.
When a context is changed, VM uses initialization rules to update its in-
formation for the new context (e.g., expectationsandunacceptablelimits for
the measurements).Theserules refer to the recent history of the patient to
establishnew expectationsand information for the new context. Part of one

148 M. STEFIK ET AL.

such rule follows:

If (I) the patient transitionedfrom ‘Assist’ to ‘T-piece’ or
(2) the patienttransitionedfrom ‘CMV’ to ‘T-piece’

thenexpect the following:

Very
low Low

{~-Acceptable——]
f—Ideal—]

Mm Max High
Very
high

SYS 110 150
DIA 60 95

MAP 6() 75 110 120
Pulse rate 60 120
ECO2 22 28 30 40 45 50

v~’sreasoningabout time is limited to adjacenttime intervals. It is concer-
nedonly with the previousstateand the next state.Its mechanismsfor dealing
with this are (I) state-triggeredexpectationsand (2) rules for dynamic belief
revision. The transition rules in VM govern changesof context. Data arrives
periodically, but contextis changedonly when it is adequatelysupportedby the
evidence. The initialization rules are essentially like the frame axioms—
establishingwhat changesandwhat staysthe samein the new context. Oncea
context is set, the expectationsare used to govern VM’s behavior until the
context is changedagain.

Programswhich need to reason about more distant eventsrequire more
elaborate representationsof events and time. For example, planning and
prediction tasks require reasoning about possible futures. For these ap-
plications, the situational calculus must be extendedto allow for multiple
possible futures with undeterminedoperations,unordered sets of possible
future events,andthe possibleactionsof uncontrolledmultiple actors. While
Al systems capable of such sorts of reasoning seem within reach, their
constructionis still a researchenterprise.

3.4. Case4—Large but factorablesolutionspace

In the restrictedclass of problemsthat we startedwith in Section 3.1, it was
stipulatedthat:

(1) The dataandknowledgemust be reliable.
(2) The datamust be static.
(3) The searchspacemust be small.

We have already discussed some techniques for relaxing the first two
requirements.In this sectionwe will begin the considerationof techniquesfor
copingwith very largesearchspaces.

EXPERT SYSTEMSTUTORIAL 149

In many dataanalysistasks,it is not enoughto find just oneinterpretation of
the data. It is often desirableto find every interpretationthat is consistentwith
the data.This conservativeattitude is standardin high risk applicationssuch as
the analysisof poisonoussubstancesor medical diagnosis.A systematicap-
proachwould be to considerall possiblecases,andto rule out those that are
inconsistentwith the data.This approachis called reasoningby eliminationand
hasbeenfamiliar to philosophersfor years,but it has often beenregardedas
impractical.The difficulty is that there is often no practicalway to considerall
of the possiblesolutions.

The DENDRAL program [2] is probably the best known Al program
that reasonsby elimination (using generateand test). The key to making
it work is to incorporate early pruning into the generate and test cycle.
This section illustrates some of the characteristicsof problemson which this
approachwill work, and gives examplesof the kinds of knowledge that are
needed.Sincethe problemareafor the DENDRAL programis rathercomplicated
for tutorial purposes,we will considera simpler expert system,GAl [37], that
was alreadymentionedin Section 3.2.

Like DENDRAL, GAl is a data interpretation program that infers a complete
molecularstructure from measurementsof molecular pieces. Fig. 2 shows a

Complete A Digest: 5 5
Complete B Digest: 3 7
Complete A&B Digest: 1 2 3 4

FIG. 2. EnzymeA cleavesthecircular moleculeat thepoints labeledA. EnzymeB cleavesit at the
points labeledB. The table lists the fragmentsthat would be observedunder ideal digestion
experiments.

The Data

150 M. STEFIK ET AL.

simple exampleof the kind of datathat GA! would haveabout amolecule.The
top part of the figure shows that a molecule is made up of segmentsof
measureablelength. The lines labeled A and B that cut across the circle
indicatethe sites where the moleculeis cleavedby enzymes(namedA and B,
respectively).All of the molecules that GAl j5 concernedwith are linear or
circular. This meansthat all of the molecularsegmentsare linear piecesthat
can he arrangedend to end. When a sample of molecules is completely
digestedby an enzyme,piecesare releasedwhosesizescan be measured.The
goal is to infer the structure of the original molecule from the digest data.
Sometimesmore than onemolecularstructureis consistentwith the available
data.

A primary task in problemslike this is to createaworkablegeneratorof all
of the possible solutions (i.e., all of the possible molecules). In GA!, the first
step is to apply data correction rules as shown in Section 3.2. Then GAl

determinesan initial set of generatorconstraints—aset of segmentsand
enzymesites for building candidatemolecules.The rules for deriving the list
will not be elaboratedhere, but they make conservativeuse of molecular
weight estimatesand redundantdata from several digests. The generation
processthenbeginsby combining thesesegmentsandsites,andtestingwhether
the combinations fit the evidence.For example, the following lists (among
others)correspondto the completemoleculein Fig. 2.

(1 A 2 B 3 A 4 B),
(2 B 3 A 4 B 1 A),
(1 B 4 A 3 B 2 A).

Theseequivalentrepresentationscan he generatedby starting with any of the
four segmentsin the pictureof the moleculein Fig. 2, andreadingoff the sites
and segmentsaround the circle either clockwise or counterclockwise.This
provides us with eight equivalentrepresentationsfor the same molecule. A
generator is said to be nonredundantif it produces exactly one of the
equivalent representationsof a solution (the canonical form) during the
generation process.GAl does this by incorporating rules for pruning non-
canonicalstructuresduring the generationprocess.An exampleof such a rule
follows:

If circular structuresare being generated,only the smallestsegment
in the list of initial segmentsshould he usedfor the first segment.

The key to effective use of generateand test is to prune classesof in-
consistentcandidatesas early as possible.For example,considerthe following
structuresfrom the generationprocessfor the sampleproblem:

(1 B 2 B).

GA! treatsthis as adescriptionof all the moleculesthat matchthe pattern

EXPERT SYSTEMSTUTORIAL 151

(1 B 2 B (Segment)(Site) (Segment)(Site))

whereany of the remainingsegmentsandsitesmaybe filled in the template.It
is easy to see that no molecule matching this templateis consistentwith the
data in Fig. 2—becauseall suchmoleculeswould yield a segmentof length 2 in
the completedigestfor B. Other pruningconsiderationsare moreglobal.When
such pruningrules exist, the solution spaceis said to be factorable.

GAl has beenrun on problemswhere the numberof possiblecandidatesis
several billion. However, the pruning rules are so effective at eliminating
classesof solutionsthat most problemsrequireonly a few secondsof computer
time.

After the generatoris finished, usually twenty or thirty candidatesmake it
through all of the pruning rules. Only oneor two of thesewill be consistent
with all of the data. In principle, it is possibleto addmore pruning rulesto GA!

so that only the consistentsolutionsremain.However, the rules neededto do
this becomeincreasinglycomplexandspecialized.It becomesdifficult to prove
the correctnessof such rules (so that solutionswill not be missed)andto ensure
that the rules arefaithfully representedin the program.Thereis alsoapoint of
diminishing returnswhen eachnew specializedrule coversasmallernumberof
cases.In GA! this problemis addressedby applying adigestion processmodel
to the final candidatesandcomparingits predictionswith the observeddata. A
simple scoring function thenpenalizescandidatesthat predict extraor missing
segments.Becausethe numberof disagreementsbetweenthe idealized digests
of two different moleculesdiverges rapidly for small moleculardifferences, it
was not necessaryto tune the scoringfunction to recognizewrong solutions.

In summary,generate-and-testis an appropriatemethodto considerwhen it
is important to find all of the solutions to a problem. For the method to be
workable,thegeneratormust partition the solution spacein ways that allow for
early pruning.Thesecriteria are often associatedwith data interpretationand
diagnosticproblems.

3.5. Case5—No evaluator for partial solutions

Thereare many problemsinvolving largesearchspacesfor which generateand
test is amethodof last resort.The most commondifficulty is that no generator
of solutions can be found for which early pruning is viable. Design and
planning problemsare of this nature.One usually cannot tell from a fragment
of aplan or designwhetherthat fragment is part of acompletesolution; there
is no reliableevaluatorof partial solutionsexpressedas solution fragments.

In this section we will considerthe first of several approachesto problem
solving without early pruning.Theseapproacheshave in common the idea of
abstractingthe searchspacebut differ in their assumptionsabout the natureof
that space.Abstractionemphasizesthe important considerationsof a problem
and enablesits partitioning into subprohlems.In the simplest casethere is a

152 M. STEFIK ET AL.

fixed partitioning in the abstract spacewhich is appropriate for all of the
problemsin an application.

This caseis illustrated by the Ri program reportedby McDermott [27]. RI’S

area of expertiseis the configuring of Digital EquipmentCorporation’sVAX
computersystems.Its input is a customer’s order and its output is a set of
diagrams displaying the spatial relationshipsamongthe componentson the
order.This taskincludesasubstantialelementof design. In order to determine
whether a customer’s order is satisfactory, Rl must determine a spatial
configurationfor the componentsandadd any necessarycomponentsthat are
missing.

The configurationtask can be viewed as ahierarchy of subtaskswith strong
temporal interdependencies.RI partitions the configuration task into six
orderedsubtasksas follows.

(1) Determinewhetherthereis anythinggrosslywrong with the
customer’spurchaseorder (e.g., mismatcheditems, major
prerequisitesmissing).
(2) Put the appropriatecomponentsin the cpu andcpu expansion
cabinets.
(3) Put boxesin the unibusexpansioncabinetandput the
appropriatecomponentsin thoseboxes.
(4) Put panelsin the unibus expansioncabinets.
(5) Lay out the systemon the floor.
(6) Do the cabling.

The actions within each subtask are highly variable; they depend on the
particular combination of componentsin an order and on the way these
componentshavebeenconfiguredso far. Associatedwith eachsubtaskin Rl is
a set of rules for carrying out the subtask.An exampleof a rule for the third
subtaskfollows:

If the most current active context is assigningapower supply
and aunibusadaptorhasbeenput in acabinet
and the position it occupiesin the cabinet (its nexus)is known
andthere is spaceavailable in the cabinet for a power supply for
that nexus
andthere is an availablepower supply
andthere is no H7i01 regulatoravailable,

thenaddan H7i01 regulatorto the order.

Ri has about800 rules aboutconfiguring VAX systems.Most of the rules are
like the example above. They define situations in which some partial con-
figuration should be extendedin particular ways. These rules enable Rl to
combine partial configurations to form an acceptableconfiguration. They
indicate what componentscan (or must) be combined and what constraints

EXPERT SYSTEMSTUTORIAL 153

must be satisfied in order for the combinationsto be acceptable.They make
useof a databasedescribingpropertiesof about 400 VAX components.Other
rules describethe temporal relationshipsbetween subtasksby determining
their ordering. (Theserules are analogousto the transitionrules describedfor
VM in Section3.3 exceptthat the rulesmonitor the stateof RI’S problemsolving
insteadof data from externalsensors.)

The approachthat RI uses is called Match. It is one of Newell’s weak
methods for search [28]. Match enablesRi to explore the spaceof possible
configurations with the basic operations of creating the extending partial
configurations.Match exploresthis spaceby starting in an initial state,going
through intermediatestates,and stopping in a final state without any back-
tracking. Each state in the spaceis a partially instantiatedconfiguration. Rl

proceedsthrough its six major tasks in the same order for each problem; it
nevervaries theorderand it neverbacksup in any problem.The benefit of the
abstractionspaceis that Ri needsto do very little search.

The conditionsthat makeMatch viable are both its sourceof power andits
weakness.The key requirement is that there can be no backtracking. This
meansthat at anyintermediatestate,RI must beable to determinewhetherthe
stateis on asolution path.This requiresthat theremust existapartial ordering
on decisionsfor the tasksuch that the consequencesof applying an operator
bearonly on ‘later’ partsof the solution.

It is interesting that Match is in fact insufficient for the complete task
in Rl. The subtaskof placing moduleson the unibus is formulatedessentiallyas
a bin-packing problem—namely how to find an optimal sequencethat fits
within spatial andpower constraints.No way of solving this problem without
searchis known. ConsequentlyRl usesa different methodfor this part of the
problem.

In summary, the use of abstractionsshould be consideredfor applications
where there is a largesearchspacebut no method for early pruning. Ri is an
exampleof a systemwhich usesa fixed abstractsolution. Within this frame-
work, it usesthe Match weak methodto searchfor a solution. WhetherMatch
is practical for an application dependson how difficult it is to order the
intermediatestates.

3.6. Case6—No fixed partitioning of subproblems

When every exampleproblemin an applicationcan be usefully partitionedinto
the samesubproblems,then the organizationdescribedin the previoussection
should be considered.In applicationswith more variety to the problems, no
fixed set of subproblemscan provide a useful abstraction. For example,
planning domains such as errand running (see [22]) require plans rich with
structure.To be useful, abstractionsmustembodythe variablestructureof the
plans.

154 M.STEFIKETAL.

In this sectionwe will consideran approachcalled top-downrefinementthat
tailors an abstraction to fit each problem. The following aspects of the
approachare important.

(1) Abstractionsfor eachproblemarecomposedfrom terms(selectedfrom a
spaceof terms) to fit the structureof the problem.

(2) During the problem-solving process, these concepts representpartial
solutionsthat are combinedand evaluated.

(3) The conceptsare assignedfixed andpredeterminedabstractionlevels.
(4) The problemsolution proceedstop down, that is, from the mostabstract

to the most specific.
(5) Solutionsto the problemarecompletedat onelevel beforemoving down

to the next more specific level.
(6) Within each level, subproblemsare solved in a problem-independent

order. (This createsapartial ordering on the intermediateabstractstates.)
The best known exampleof a program using this approachis the ABSTRIPS

program reported by Sacerdoti [33]. ABSTRIPS was an early robot planning
program. It made plans for a robot to move objects (e.g., boxes) between
rooms. A design goal for ABSTRIPS was to provide abstractionssufficiently
different from the detailed ‘ground’ spaceto achieve a significant improve-
ment in problem-solvingefficiency, but sufficiently similar so that the mapping
down from abstractionswould not be time-consuming.This led to an interes-
ting andsimple approachfor representingabstractions.

Abstractionsin ABSTRIPS are plans.They differ from ground level plansonly
in the level of detail usedto specify the preconditionsof operators.This level
of detail is indicated by associatinga number(termed a criticality value)with
all of the literals used in preconditions.For example,Sacerdotisuggestedthe
following criticality assignmentsin a robot planningdomain:

Type andColor 4
InRoom 3
PluggedlnandUnplugged 2
NextTo 1

In this example, the predicatesfor Type and Color of objects are given high
criticalities, since the robot has no operatorfor changingthem. These predi-
cates together with the set of robot actions are combined to form plans for
solving particular problems;the spaceof possibleplans is the set of all of the
plans that can be built up from thesepieces.The most abstractplans are the
onesthat include only the highercriticality concepts.

Planning in AB5TRIP5 startsby settingcriticality to amaximum.In it, planning
within each level proceedsbackwardsfrom goals. Preconditionswhose criti-
cality is belowthe currentlevel are invisible to the planner,sinceit is presumed
that theywill be accountedfor during a laterpass.After a plan is completedat
one level, the criticality level is decrementedand planning is startedon the

EXPERT SYSTEMS TUTORIAL 155

lower level. The previous abstractversion of the plan is used to guide the
creation of the next level. For example, an early version of a plan may
determinethe route that the robot takesthrough the rooms. In more detailed
versions, steps for opening and closing doors are included. In this way, the
abstractplans convergeto the specific plan. The sequenceof abstractplans is
createddifferently for eachproblem.

ABSTRIPS was a great advanceover its predecessorSTRIPS, which lacked the
hierarchicalplanningability. Generally,whenhierarchicalandnon-hierarchical
approacheshave been systematicallycompared,the former have dominated.
ABSTRIPS was substantiallymore efficient than STRIPS, and the effect increased
dramatically as longer plans were tried. Since then, many other hierarchical
planning programshave been created.In most of the later programs, the
abstractionconceptshavesimply beenarrangedin ahierarchy,without actually
assigningthem criticality numbers.

In summary,the interestingfeature of top-down refinementis the flexibility
of the abstractions.Abstraction statesare individually constructedto fit each
problemin the domain. In contrastto Match,top-down refinementplacesonly
apartial ordering on the intermediatestatesof the problem-solver.Still, there
are some important conditions about problem solving in the domain of ap-
plication that aie inherent in the method.The basicassumptionis that asmall
fixed amount of problem-solvingknowledge about criticality levels and top-
down generationis sufficient. Furthermore, it must be possible to assign a
partial criticality ordering to the domain concepts.What is important for one
problemmust be important for all of the problems.The next sectionsuggests
somewaysto relax theserequirements.

3.7. Case7—Interactingsubproblems

One basicdifficulty with top-down refinement is the lack of feedbackfrom the
problem-solvingprocess.It is presumedthat the samekindsof decisionsshould
be made at the same point (i.e., criticality level) for each problem in the
domain. In this section,we will explorean approachthat is basedon adifferent
principle for guiding the reasoningprocesscalled the least-commitmentprin-
ciple. The basic idea is that decisions should not be made arbitrarily or
prematurely.They should be postponeduntil thereis enoughinformation.

Reasoningbased on the least-commitmentprinciple requiresthe following
abilities.

(1) The ability to know when there is enough information to make a
decision.

(2) The ability to suspendproblem-solvingactivity on a subproblemwhen
the information is not available.

(3) The ability to move between subproblems,restarting work as infor-
mation becomesavailable.

(4) The ability to combineinformation from different suhproblems.

156 M. STEFIK ET AL.

Level 1 Paint the ceiling and paint the ladder.

Level 2

Level 3

Get Paint H Get Iadder~~~pply_paint to ceiling._K______

Split J Join

Get Paint I—J~~ply_paintto ladder. /

Level 3
(after conflict resolution.)

Get Paint H Get ladder. H Apply paint to ceiling._H

Is~itI ______ ____ ____________

Paint J—~_~oi2j—___—{_Applypaint to ceiling.

FIG. 3. Exampleof planningin NOAH. NOAH analyzesthe interactionsbetweenthestepsin orderto
assigntheman orderingin time. In this example,the ‘painting the ladder’ is seento be in conflict
with using it. To completeboth goals,NOAH decidesto paint theceiling first. Later processingwill
factor out commonsubplanslike ‘get paint’.

Fig. 3 shows an exampleof this style of reasoningfrom the NOAH system
reported by Sacerdoti [32]. NOAH was a robot planning system that used
a least-commitment approachto assign a time-ordering to operatorsin a
plan. Earlier planningprogramsinsertedoperatorsinto a plan as they worked
backwardsfrom goals.In contrast,NOAH assignedthe operatorsonly a partial
ordering andaddedspecificationsfor acompleteordering of theoperatorsonly
asrequired.

In Fig. 3, NOAH starts with two subgoals:paint the ceiling and paint the
ladder. Plansfor the two subgoalsare expandedin parallel and a conflict is
found. If the ladder is paintedfirst, it will be wet andwe won’t be ableto paint
the ceiling. In otherwords, the stepto paint the ladderviolatesaprecondition
(that the ladder be usable)for the stepto paint the ceiling. This interference

EXPERT SYSTEMSTUTORIAL 157

betweenthe subgoalsprovides NOAH with enough information to order the
tasks. If it had arbitrarily ordered the stepsand painted the ladder first, it
would have had to plan aroundthe wet ladder, perhapswaiting for it to dry.
The resulting plan would not havebeenoptimal.

Another exampleof this idea was given in MOLGEN reportedby Stefik [36].
MOLGEN is an expert system that used this style of reasoningfor designing
moleculargeneticsexperiments.MOLGEN’S organizationinvolved the following
features:

(1) Interactionsbetweennearly independentsubproblemsare representedas
constraints.

(2) Interactions between subproblems are discovered via constraint
propagation.

(3) MOLGEN usesexplicit problem-solvingoperators (as opposedto domain-
specificoperations)to reasonwith constraints.

(4) MOLGEN alternatesbetweenleast-commitmentand heuristicstrategiesin
problem-solving.

In the least commitment strategy, MOLGEN makes a choice only when its
available constraintssufficiently narrow its alternatives. Its problem-solving
operatorsare capableof being suspendedso that a decisioncould be post-
poned. Constraint propagation is the mechanism for moving information
between subproblems.It enablesMOLGEN to exploit the synergy between
decisionsin different subproblems.In contrastwith ABSTRIPS, strict backward
expansionof plans within levels, MOLGEN expandsplans opportunistically in
responseto the propagationof constraints.

The fourth feature illustratesan interestinglimitation of the least commit-
ment principle. Every problem-solverhasonly partial knowledgeaboutsolving
problemsin a domain.With only the least-commitmentprinciple, the solution
processmust come to a halt wheneverthere are choicesto be made, but no
compelling reason for deciding any of them. We call this situation a least-
commitmentdeadlock.When MOLGEN recognizesthis situation, it switchesto its
heuristicapproachandmakesaguess.In manycases,aguesswill beworkable,
and the solution processcan continue to completion. In other cases,a bad
guesscan lead to conflicts. The number of conflicts causedby (inaccurate)
guessingis a measureof the incompletenessof the problem-solvingknowledge.
Conflicts can alsoarisefrom the least-commitmentprocessin caseswhere the
goalsare fundamentallyunattainable.

In summary, the least-commitmentprinciple coordinatesdecision-making
with the availability of information and movesthe focus of problem-solving
activity amongthe availablesubproblems.The least-commitmentprinciple is of
no helpwhen thereare many optionsandno compellingreasonsfor choices.In
these cases,some form of plausible reasoningis necessary.In general, this
approachusesmore information to control the problem-solvingprocessthan
the top-down refinementapproach.

158 M. STEFIK ET AL.

3.8. Case8—Guessingis needed

Guessingor plausible reasoning is an inherent part of heuristic search. For
example, the generatorin a generateand test system guessesabout partial
solutionssothat they canbe tested.A moresubtle exampleis a problem-solver
basedon top-down refinement,which implicitly assumesthat it will be able to
refine its higher abstractionsto specific solutions. Some examplesfollow of
genericsituationsin reasoningwhereguessingis important:

(1) Many problem-solversneedto copewith incompleteknowledgeandmay
beunableto determinethe bestchoiceat some stagein its problemsolving. In
such cases,a problem-solver is unable to finish without making a guess.
Examples of this are assumptionsintroduced as a first step in hypothetical
reasoningandassumptionsintroducedto breakaleast-commitmentdeadlockas
discussedin the previoussection.

(2) A searchspacemay be quite densein solutions.If solutionsare plentiful
andequally desirableandthereis no needto get them all, guessingis efficient.

(3) Sometimesthere is an effective way to converge to solutions by sys-
tematically improving approximations.(Top-down refinementis an exampleof
this.) In caseswhereconvergenceis rapid, it may be appropriateto guesseven
whensolutionsare rare.

The difficulty with guessingis in identifying wrong guessesand recovering
from them efficiently. This section considers how plausible reasoning can
benefit from particular architecturalfeatures.

One of the bestknown systemswith architecturalprovisionsfor guessingis
the EL systemfor circuit analysisreportedby Stallman and Sussman[35]. EL

analyzesanalogelectrical circuits. It hastwo main methodsthat are described
below—forward reasoningand the method of ‘assumedstates’.The assumed
statesprovide the examplesof guessing.

Forward reasoning with electrical laws is used to compute electrical
parameters(e.g., voltageor current)at onenodeof a circuit from parameters
at other nodes.EL usesonly a few laws, such as Ohm’s Law which definesa
linear relationshipbetweenvoltage andcurrent for a resistor,and Kirchhoff’s
current law which states that the current flowing out of a node equals the
current flowing into it. Much of EL’S power derives from two things: (1) the
exhaustiveapplication of theselaws and (2) the ability to reasonwith these
laws symbolically asshownin Fig. 4.

This figure illustrates a circuit in which resistorsare connectedin a ladder
arrangement.The analysistask is to determinethe voltagesand resistancesat
all of the nodesof the circuit. The interestingaspectof this is that symbolic
reasoningabout the circuit is much simpler thanwriting and solving equations
for the series and parallel resistor network. Analysis beginswith the intro-
duction of avariable e to representthe unknownnodevoltageat theendof the
ladder.Thisyields acurrente/5 throughresistorR6.Thenby Kirchhoff’s Law we

EXPERT SYSTEMS TUTORIAL 159

Ri
5 ohms

Ri
5 ohms

Before anal~J~

R3
5 ohms

After Analy.~

R3
5 ohms

R5
5 ohms

R5
5 ohms

R6
ohms

FIG. 4. Symbolicpropagationof electricalparameters.Analysis beginsby assigningthesymbole to
theunknownvoltageat theupper right cornerof the ladder.Othervaluesarederivedby stepwise

applicationof Ohm’s andKirchhoff’s laws.

havethe samecurrent throughR5 which givesus avoltage2e on the left of the
resistor. This voltage acrossR4 allows us to computethe current through it
using Ohm’s Law. The application of electrical laws in terms of symbolic
unknownscontinuesuntil all of the voltagesare defined in termsof e. At that
time we have

8e = 10 volts, e = 5/4volts.

Sometimes circuit analysis requires the introduction of more than one
variable to representunknown circuit parameters.In general, the analysis

evolts

160 M.STEFIKETAL.

involves two main processes:i-step deductionsand coincidence.The i-step
deductionsare direct applications(sometimessymbolic) of the electrical laws.
A coincidenceoccurswhena 1-stepdeductionis madewhich assignsavalue to
acircuit parameterthat alreadyhasavalue (symbolic or numeric). At the time
of the coincidence,it is often possible to solve the resultingequation for one
variable in termsof theothers.This allows EL to eliminateunknowns.

The propagationmethodcan beextendedto anydeviceswherethe electrical
laws are invertible andwherethe algebrarequiredfor the symbolic reasoningis
tractable.Unfortunately,many simple and importantelectrical devices,such as
invertersandtransistors,aretoo complicatedfor this approach.For example,a
diode is approximately representedby exponential equations. Electrical
engineeringhas an approachfor thesedevicescalled the methodof assumed
states.This is whereguessingentersinto EL’S problem solving.

The method of assumedstatesusesa piecewise linear approximation for
complicateddevices.The methodrequiresmaking an assumptionaboutwhich
linear region a deviceis operatingin. EL has two possiblestatesfor diodes(on
or off) and three states for transistors(active, cutoff, and saturated).Once a
state is assumed,EL can use tractable linear expressionsfor the propagation
analysisasbefore.

After making an assumption,EL must check whetherthe assumedstatesare
consistentwith the voltagesandcurrentspredictedfor the devices. Incorrect
assumptionsare detectedby meansof a contradiction,which is the event in
which chosenassumptionsareseento be inconsistent.When this happens,then
some of the assumptionsneedto be changed. Intelligent processingof con-
tradictions involves determining which assumptionsto revise. Implementing
this idea in the problem-solverled to the following important architectural
features:

(i) queue-basedcontrol;
(2) dependency-directedbacktracking.
The operatorsin EL thatperform thepropagationanalysisarecalled demons.

They are placedin queuesandrun sequentiallyby a scheduler.When demons
run, they make assertionsin the data baseand then return to the scheduler.
This databaseactivity causesotherdemonswhosetriggersmatchthe assertions
to be addedto the queue.

EL has three queuesfor DC analysis with different priorities. The lowest
priority queueis usedfor device-stateassumptions.Thesedemonsare given a
low priority so that the immediate consequencesof an assumptionwill be
explored before more assumptionsare made.The middle queue is used for
most of the electrical laws. The high priority queue is used for demonsthat
detect contradictions.These demonsare given a high priority so that invalid
assumptionswill be detectedbefore too much computationalwork is done.
Thesedemonstrigger the dependency-directedbacktracking.

EL keepsdependencyrecordsof all of its deductionsandassumptions.In El.,

EXPERT SYSTEMSTUTORIAL 161

an assertion is believed (or in) if it has well-founded support from atomic
assumptions.An assertionwithout such support is said to be out. If an out
assertionreturns to favor, it is said to be unouted.Fig. 5 showsan exampleof
this processin a database.Al, Bl, and Cl are atomicdata that are currently
in. Supposethat Al and A2 are mutually exclusivedevice-stateassumptions.
The top of Fig. 5 showswhich factsare in when Al is in. Arrows are used to
indicate support. (Assertionsfollowing from A2 are shownin dotted lines to
show that they are in the database,but that they are out.) The bottom figure
showswhat happensif Al is outed andA2 is unouted.

An important aspectof EL’S problem-solving is its ability to recoverfrom
tentative assumptions.The details of the implementationand knowledgewill
not be coveredhere, sincethereare many waysto approachthis problem.The
main points are:

(1) In the eventof a contradiction,EL needsto decidewhat to withdraw. It is

(a)

/——~fl
/

FIG. 5. Exampleof belief revisionin EL. ~I~hcdark boxesarc in andthe lighter onesareout. In (a),
Al is in andso all of its consequencesarealso in. In (b), Al is out but A2 is in.

(b)

162 M. STEFIK ET AL.

not effective to simply withdraw all of the assumptionsthat are antecedantsof
the contradictoryassertion.EL must decidewhich of the assumptionsare most
unlikely to changeandthis requiresdomain-specificknowledge.

(2) EL must redo some of the propagationanalysis.Sometimesit is possible
to salvagesome of the symbolic manipulation (e.g., variable elimination) that
hasbeendone.EL hasspecial demonsthat decidecarefully what to forget.

(3) Contradictionsare rememberedso that choice combinations that are
found to be inconsistentare not tried again.

These ideas were the intellectual precursors to work on belief revision
systems.2 Belief revision can he used for reasoning with assumptionsor
defaults.For a problem solver to revise its beliefs in responseto new knowl-
edge,it must reasonaboutdependenciesamongits current set of beliefs. New
beliefs can be the consequencesof new information received or derived. A
critical issue in this style of reasoningis well-founded support andthere are
somepitfalls for the unwary involving cyclical supportstructures.An important
question is “what mechanismsshould be used to resolve ambiguitieswhen
there are several possible revisions?” It is clear this choice needs to be
controlled,but the details for making the decisionremainto beworkedout. In
the examplesabove, we used knowledgeabout justifications to reasonabout
choices.Doyle [13] hasproposedastyle of dialectical argumentationwherethe
primary stepis to argue about the kinds of support for beliefs. In such system
the complexity of knowledge about belief revision would itself require a
substantialknowledgebase.Every approachdependscritically on the kinds of
dependencyrecordsthat are createdandsaved.This work is at the frontier of
current Al research.

In summary, EL 15 an exampleof a program with organizationalprovisions
for plausible reasoning. It uses symbolic forward reasoning for analyzing
circuits. To analyze complicated devices EL has to assumelinear operating
regions. It usesdependency-directedbacktrackingso that it can recoverfrom
incorrect assumptions.It usesa priority-oriented queueto scheduletasks so
that contradictionswill be found quickly and so that the immediate con-
sequencesof assumptionswill be consideredbefore further assumptionsare
made.

3.9. Case9—Single line of reasoningis too weak

When we explain to someonehow we solveda problem,we often invoke 20-20
hindsight and leave out the mistakes that we made along the way. Our
explanation makes it appear that we followed a very direct and reasonable
route from beginning to end. For developingintuitions about problem-solving
behavior,this gives amisleadingimpressionthat problem-solvingis the pursuit

2 A bibliographyof recentpaperson theseideaswaspublishedby Doyle andLondon [121. Basic

algorithmsfor revisingbeliefs havebeenreportedby Doyle [Ill andMcAllester [261.

EXPERTSYSTEMSTUTORIAL 163

of a ~ngle line of reasoning.Actually, there are important and somewhat
subtle reasonsfor being able to use multiple lines of reasoningin problem
solving andseveralof the systemsdescribedabovegain power from this ability.
These systems use multiple lines of reasoningfor two major purposes as
explainedbelow:

(1) To broadenthe coverageof an incompletesearch,or
(2) to combinethe strengthsof separatemodels.

The HEARSAY-Il system115] providesthe best exampleof the first purpose.(It
is described in the next section.) In coping with the conflicting demandsof
searching a large space with limited computational resources,HEARSAY-Il

performs a heuristic and incompletesearch. In general, programsthat have
fallible evaluatorscan decreasethe chancesof discardingagood solution from
weak evidenceby carrying a limited numberof solutionsin parallel.

A good exampleof combining the strengthsof multiple modelsis given by
the SYN program reportedby Sussman,Steele,and de Kleer [10, 381. SYN is a
programfor circuit synthesis,that is, for determiningvaluesfor componentsin
electricalcircuits. The EL programdescribedin the previoussectiondetermined
circuit parameterssuch as voltagegiven fully specifiedcomponentsin acircuit.
SYN determinesvalues for the components(e.g., the resistanceof resistors)
given the form of the circuit andsomeconstraintson its behavior.

SYN usesmany of the propagation analysis ideas developed for El.. The
interestingnew organizationalideain SYN is the idea of slices or multiple views
of a circuit. This correspondsto the idea of equivalent circuits in electrical
engineeringpractice. A simple example of a slice is the idea that a voltage
divider madefrom two resistorsin seriescan be viewedas asingleresistor; one
slice of the circuit describesit as two resistorsandanotherslice describesit as
one. To analyzethe voltagedivider, SYN usesthe secondslice to computethe
current through the divider. Then by reverting back to the first slice, SYN can
compute the voltage at the midpoint. In general, the idea is to switch to
equivalentrepresentationsof circuits to overcomeblockagesin the propagation
of constraints.The power of slices is that they provide redundantpaths for
information to travel in propagationanalysis.

By exploiting electrically equivalent forms of circuits involving resistors,
capacitors,and inductances,SYN is capableof analyzingrathercomplexcircuits
without extensivealgebraicmanipulation.The idea of slices is not limited to
electrical circuits. For example,algebraictransformationsof equationscan be
viewed as meansfor shifting perspectives.Sussmanand Steele also give an
exampleof understandinga mechanicalwatch by using structural and func-
tional decompositions.

In summary,slices are used to combinethe strengthsof different models.
When they are combined with forward reasoning, they provide redundant
pathsfor information to propagate.A problem-solverbasedon this ideamust
know how to createandcombinemultiple views.

164 M. STEFIK ET AL.

3.10. Case 10—Singlesource of knowledge is too weak

An important adjunct to the useof multiple reasonsin problem solving is the
use of multiple sourcesof knowledge. In this section we will consider the
HEARSAY-Il system, which coordinatesdiverse sourcesof knowledgeusing an
opportunistic scheduler. HEARSAY-Il is a system for speech understanding
reportedby Erman et a]. [iSl. It recognizesspoken requestsfor information
from a data base. Production of speechinvolves a seriesof transformations
starting with the speaker’sintentions,through choiceof semanticand syntactic
structures,andendingwith soundgeneration.To understandspeechHEARSAY-

!! mustreversethis process.
In HEARSAY-Il the knowledgefor understandingspeechis organizedas a set

of interacting modules (called knowledge sourcesor KSs) as shown by the
arrowsin Fig. 6. The KSs cooperatein searchinga multi-level spaceof partial

V —

Verify .~-.

FIG. 6. (Levelsandknowledgesourcesin HERSAY-II). The knowledgesourcesareas follows:
Semantics:generatesinterpretationfor the information retrievalsystem.
SEG:digitizes thesignal,measuresparameters,produceslabeledsegmentation.
POM: createssyllable-classhypothesesfrom segments.
MOW: createsword hypothesesfrom syllableclasses.
Word-Ct!: controlsthenumberof hypothesesthat MOW makes.
Word-Seq:createsword-sequencehypothesesfor potentialphrases.
Word-Seq-Ct!:controlsthenumberof hypothesesthat Word-Seqmakes.
Predict: predictswordsthat follow phrases.
Verify: ratesconsistencybetweensegmenthypothesesandcontiguousword-phrasepairs.
Concat:createsa phrasehypothesisfrom a verified contiguousword-phrasepair.
RPOL: ratesthecredibility of hypotheses.

Levels Knowledge Sources

Data Base
Interface Semantics

I
Phrase IParse Concat~

Word

Sequence IWor .d-Seq .4.—

Word
MO~

Word-Seq~.~j~
V

RPOL

Syllable

POM

.~i

Segment SEG .4-

—

Parameter

EXPERT SYSTEMSTUTORIAL 165

solutions. They extract acoustic parameters,classify acoustic segmentsinto
phonetic classes,recognizewords, parse phrases,and generateand evaluate
hypothesesabout undetectedwords and syllables. The KSs communicate
throughaglobaldatabasecalled a blackboardwith seveninformation levels as
shown in the figure. These levels are HEARSAY-H’s heterogeneousabstraction
spaces.The primary relationship between levels is compositional: word
sequencesarecomposedof words, words arecomposedof syllables,and soon.
Entities on the blackboard are hypotheses.When KSs are activated, they
createandmodify hypotheseson the blackboard,record the evidential support
between levels, and assign credibility ratings. For example, a sequenceof
acousticsegmentscan beevidencefor identifying asyllable in aspecific interval
of the utterance;the identification of a word as an adjective can be evidence
that the following word will be an adjectiveor noun.

HEARSAY-II’S useof abstractiondiffers from the systemsconsideredin cases5
through 8. Thosesystemsall use uniform abstractionspaces.The abstractions
are uniform in that they use the samevocabularyas the final solutions and
diper only in the amount of detail. For example in the planning systems,
abstract plans have the same structure and vocabulary as final plans. In
HEARSAY-Il, the diversity of knowledgeneededto solve problemsjustifies the
useof heterogeneousabstractionspaces.

A computationalsystemfor understandingspeechis caught betweenthree
conflicting requirements:a large spaceof possible messagesto understand,
variability in the signal, andthe needto finish in a limited amountof time. The
numberof possible ideal messagesis a function of the vocabulary, language
constraints, and the semanticsof the application. The number of actual
messagesthat a systemencountersis much larger than this becausespeechis
affectedby many sourcesof variability andnoise.At the semanticlevel, errors
correspondto peculiaritiesof conceptualization.At the syntactic level errors
correspondto peculiaritiesof grammar.At the lexical andphonemic levels the
variance is in word choice and articulation. Errors at the lower levels com-
pound difficulties at the high levels. For example, the inability to distinguish
betweenthe four phrases

till Bob rings,
tell Bob rings,
till Bob brings,
tell Bob brings,

may derive from ambiguitiesin the acousticlevels. HEARSAY-Il copeswith this
by getting the KSs at different levels to cooperatein the solution process.This
hasled to the following interestingarchitecturalfeatures:

(I) HEARSAY-lI combinesboth top-down andbottom-upprocessing.
(2) HEARSAY-LI reasonsabout resource allocation with a process called

opportunisticscheduling.

M.STEFIKETAL.

An exampleof top-down processingis the reduction of a generalsentential
concept into alternatesentenceforms, eachsentenceform into specific alter-
nativeword sequences,specific words into alternativephonicsequencesandso
on until a best interpretation is identified. Bottom-up processing tries to
synthesizeinterpretationsfrom the data. For example, one might combine
temporally adjacentword hypothesesinto syntactic or conceptual units. In
HEARSAY-Il, some KSs usetop-down processingand other KSs use bottom-up
processing.

All KSs competeto he scheduledand HEARSAY-Il tries to choosethe most
promising KSs at any given moment using opportunistic scheduling.Oppor-
tunistic schedulingcombinesthe idea of least commitmentwith strategiesfor
managinglimited computationalresources.The opportunistic scheduleradapts
automaticallyto changingconditionsof uncertaintyby changingthe breadthof
search.The basic mechanismfor this is the interaction betweenKS-assigned
credibility ratings on hypothesesand scheduler-assignedpriorities of pending
KS activations.When hypotheseshavebeenrated equally, KS activationsfor
their extensionare scheduledtogether. In this way, ambiguity betweencom-
peting hypothesescausesHEARSAY-lI to searchwith more breadth,andto delay
the choice amongcompetinghypothesesuntil more information is brought to
bear.

HEARSAY-II’S approachto data interpretationdiffers from that of GAl discuss-
ed in Section3.4. Both programscontendwith very large searchspaces.Both
programsneedto haveeffective ways to rule out largeclassesof solutions.GAL

does this with early pruning. In the absenceof constraints,it would expand
every solution in the space. HEARSAY-Il constructs a complete solution by
extendingandcombining partial candidates.Becauseof its opportunistic sche-
duler, it heuristically selectsa limited numberof partial candidatesto pursue.
To avoid missingsolutions,HEARSAY-Il must not focus the searchtoo narrowly
on the most ‘promising’ subspaces.

In summary,HEARSAY-Il providesan exampleof an architecturecreatedto
meet severalconflicting requirements.Multiple levels provide the necessary
abstractionsfor searchinga largespace.The levelsare heterogeneousto match
the diversity of the interpretation knowledge.Opportunistic schedulingcom-
bines the least-commitmentidea with the ability to manage computational
resourcesby varying the breadthof searchand by combining top-down and
bottom-up processing.

3.11. Case11—Generalrepresentationmethodsare too inefficient

Researchon expertsystemshasbenefitedfrom the simplicity of usinguniform
representationsystems.However, as knowledgebasesget larger, the efficiency
penalty incurredby usingdeclarativeanduniform representationscan become
significant. Attention to these matterswill becomeincreasingly important in

EXPERT SYSTEMSTUTORIAL 167

ambitiouslyconceivedfuture expertsystemswith increasinglylargeknowledge
bases.

This section considersarchitecturalapproachesfor tuning the performance
of expert systemsby making changesto the representationof knowledge.
Three main ideas will beconsidered:

(1) Use of specializeddatastructures;
(2) Knowledgecompilation;
(3) Knowledgetransformationsfor cognitive economy.
The organization of data structureshas consequencesfor the efficiency of

retrievinginformation. The selectionandcreation of efficient datastructuresis
aprincipal part of mostcomputersciencecurriculums.Consequently,severalof
the programsdiscussedin the previouscases(e.g.,DENDRAL, GAl, andHEARSAY-

ii) usespecializeddatastructures.In general, thesedatastructuresare design-
ed so that facts that are used together are storedtogether andfacts that are
usedfrequently can be retrievedefficiently.

Choiceof datastructuredependson assumptionsabouthow the datawill be
used. A common assumptionabout special data structuresis that they are
complete with regard to specific relationships.From example, in GAl’S data
structurefor molecularhypotheses,molecularsegmentsare connectedif and
only if they are linked in the data structure. This sort of assumption is
commonplacein representationslike maps,which are assumedto show all of
the streets and street intersections.Representationswhose structure in the
medium is analogousto the structure of the world being modeledare some-
timescalled analogicalrepresentations.

A less understoodissue is the use andselectionof datastructuresin systems
wheremany kinds of information are used.Thereis not much experiencewith
systems that mix a variety of different representations.One step in this
direction is to tag relationswith information describingthe chosenrepresen-
tation so that specializedinformation can be accessedand manipulatedusing
uniform mechanisms.Some ideasalong this line appearedin Davis’ thesis [8],
where schematawere used to describesome formatting and computational
choices,but the work has not beenextendedto describegeneraldimensionsof
representation(see[4j) for useby aproblem solver.

A second important idea for knowledge bases is the idea of compiling
knowledge. By compilation, we mean any processwhich transformsone re-
presentationof knowledgeinto anotherrepresentationwhich can beusedmore
efficiently. This transformationprocesscan include optimization as well as the
tailoring of representationsfor particular instruction sets. Space does not
permit adetaileddiscussionof techniqueshere, but some examplesare listed
below to suggestthebreadthof the idea.

Example I. Burton reportedaSystemfor taking ATN grammarsandcompiling
them into executablecode [51. The compiled grammarscould be executedto

168 M. STEFIK ET AL.

parse sentencesmuch more rapidly than previous interpreter-basedap-
proaches.

Example2. Productionsystemlanguageshavebeenstudiedandexperimented
with for severalyears (e.g., see [91). A basic difficulty with many production
Systemsis that large production systemprogramsexecutemore slowly than
small ones. The extra instructionsdo not needto executeto slow down the
system;their mere presenceinterfereswith the matching processthat selects
productionsto run. An exampleof onesuchlanguageis QPS2reportedby Forgy
and McDermott [19]. Forgy conducteda study of ways to makesuch produc-
tion Systems more efficient by compiling them into a network of ‘node
programs’ [20]. The compiler exploits two propertiesof production systems:
structural similarity and temporal redundancy.Structural similarity refers to
the fact that many productionscontain similar conditions; temporal redun-
dancy refers to the fact that individual productionschangeonly a few facts in
the memorysothat most of thedata is unchangedfrom cycle to cycle. Forgy’s
RETE matching processexploits this by looking only at the changes in the
memory.Forgy’s analysisshowshow severalorders of magnitudeof speedup
can be achieved by compiling the productionsand by making some simple
changesto computing hardware.

Example 3. Another system that compiles a knowledge base of production
rules, EMYCIN, was reported by van Melle [39]. EMYCIN is not considereda
‘pure’ productionsystemsinceit is not strictly data-driven;the order that the
rules are tried in EMYCIN is controlled by the indexing of parameters.This
means that EMYCIN’S interpreter does not repeatedlycheck elements in the
working memory so that some of the optimizations used by Forgy would
provide much less of an improvement for EMYCIN. EMYCIN’S rule compiler
concentrateson eliminating redundancyin the testing of similar patternsin
rules andcompiles theminto decisiontreesrepresentedas LISP code.

Example4. The HARPY systemfor speechrecognitionreportedby Lowerre [24]
illustratesseveralissuesaboutcompilation.HARPY representsthe knowledgefor
recognizingspeechin a unified data structure(context-freeproduction rules)
which representsthe set of all possibleutterancesin HARPY’S domain.This data
structurerepresentsessentiallythe sameinformation that wasusedin HEARSAY-

H except for the parameterizationand segmentationinformation. HARPY’S

knowledgecompiler combinesthe syntax,lexical, andjunctureknowledgeinto
a single large transition network. First, it compiles the grammerinto a word
network, then it replaceseachword with acopy of its pronunciationgraph and
insertsword-juncturerules at the word boundaries.In the final network, each
path from a start node to an endnoderepresentsa sequenceof segmentsfor
somesentence.With the knowledge in its compiled form, HARPY is capableof
performingarapid searchprocessthat attemptsto find the bestmatchbetween

EXPERT SYSTEMSTUTORIAL 169

the utteranceand the set of interpretations.The major concernsabout the
extensibility of this idea are (1) that the highly stylizedform of the input that
HARPY can acceptmakes it difficult to add new knowledge and (2) the com-
pilation is expensivefor a largeknowledgebase(13 hoursof PDP-l0 time for a
thousandword, simple grammar).

The promise of knowledgecompilation ideas is to make it possible to use
very generalmeansfor representingknowledgewhile an expertsystemis being
built anddebugged.Then a compiler can be applied to makethe knowledge
baseefficient enoughto competewith hand coding.Given a compiler, thereis
no need to sacrifice flexibility for efficiency: the knowledge base can be
changedat any time and recompiledas needed.In addition, the compiler can
be modified to re-representthe knowledgeefficiently as hardwareis changed,
or as the trade offs of representationbecomebetter understood.The tech-
niques for doing this are just beginning to be explored and will probably
becomeincreasinglyimportant in the next few years.

So far in our discussionof efficiencywe haveassumedthat it is necessaryfor
the designersof a knowledgebaseto anticipatehow knowledgewill be used
and to arrangefor it to be representedefficiently. Lenat, Hayes-Roth, and
Klahr [23] coined the term cognitive economy to refer to systemswhich
automaticallyimprove their performanceby changingrepresentations,chang-
ing access(e.g., caching), and compiling knowledge bases.Systems like this
needto be able to predict how representationsshould be changed,perhapsby
measurementson representativeproblems.The ideasof cognitiveeconomyand
knowledge compilation are more speculativethan the other ideas we have
consideredandthere are manytheoreticalandpragmaticissuesto be resolved
before theycan be widely used.They are includedhere at the endin the hope
that theywill receivemore attentionin artificial intelligenceresearch.

4. Summary

Our pedagogicaltour of casesbeganwith the considerationof a very simple
architecture.It required that problemsin an applicationhave a small search
spaceandthatdata andknowledgebe reliableandconstant.

In the secondcasewe consideredways to cope with unreliable data or
knowledge.Probabilistic,fuzzy, andexactmethodswerediscussed.All of these
methodsare basedon the idea of increasingreliability by combining evidence.
Each method requires the use of meta-knowledgeabout how to combine
evidence.The probabilistic(and pseudo-probabilistic)approachesusevariousa
priori andconditionalprobability estimates;the fuzzy approachesusefuzzy set
descriptions; the exact approachesuse non-monotonicdata correction rules.
Errorful dataand knowledgeseemto beubiquitousin real applications.In the
HEARSAY-Il example of case10, we saw how an opportunistic schedulerwas
used to copewith the conflicting requirementsof errorful data, limited corn-

170 M. STEFIK ET AL.

putational resources,and a large search spaceby varying the breadthof a
heuristicsearch.

In the third casewe consideredways to work with time-varying data. We
startedwith the situational calculusand thenconsidereda program that used
transition rules to trigger expectationsin amonitoring task. More sophisticated
ways to reasonwith time seemto require more research.

The remaining casesdealt with ways to copewith largesearch spaces.We
started with the hierarchical generateand test approachin the fourth case
which requiresa searchspaceto be factorablein order to allow early pruning.
This approachexploresthe spaceof solutionssystematicallyandcan be quite
effective for returning all consistentsolutions. We consideredthe issuesof
canonicalforms andcompletenessin using this approach.

Generateandtest is a weak method,applicableonly whenearly pruning is
feasible.It requiresthe ability to generatecandidatesin away that largeclasses
can be pruned from very sparsepartial solutions. In many applications,
solutionsmust be instantiatedin substantialdetail before theycan be ruled out.
Fortunately, it is not necessaryin all applications to consider all possible
solutionsandto choosethe best. The next few casesdescribereasoningwith
abstractionsto reducethe combinatoricswithout early pruning. The methods
presentedare usually applicable in satisficing tasks.

In casefive, we considereda form of reasoningbasedon fixed abstractions.
This approachrequires that all of the information neededfor testing partial
solutions be available (or be able to be generated)before a subproblemis
generated.This requirement exposesthe weaknessof this approach: some
problems cannot be solvedfrom the available information without backtrack-
ing. While the abstractionsmake the problemsolver efficient, their use is too
rigid for some applications.

The next approachto abstraction is more flexible. Abstractionsare com-
posed from a set of conceptsin a hierarchical space. This method is called
top-down refinement.The simplest version of top-down refinement (casesix)
usesa fixed criticality ordering of the conceptsand a fixed partial order for
solving subproblems.

Top-downrefinementdoes not allow for variability in the readinessto make
decisions.In the seventhcase,we introduced the least commitmentprinciple
which says that decisions should be postponed until there is enough in-
formation. This approachtendsto exploit the synergyof interactionsbetween
subproblems.It requires the ability to suspendactivity in subproblems,move
information between them, and then restart them as information
becomesavailable. In this case,the problem-solvingknowledge is much richer
than in the previous methods. It was suggestedthat principles like least
commitmentshould be incorporatedas part of meta-levelproblemsolving.

An inherent difficulty with pure least commitment approachesis the
phenomenonof a least commitmentdeadlock.When aproblemsolverrunsout

EXPERT SYSTEMSTUTORIAL 171

of decisions that it knows it can make correctly, it must guess to con-
tinue. We suggestedthat the amount of guessingis a measureof its missing
knowledge, hut that knowledgebaseswill always he incomplete.This theme
was continued in case eight where dependency-directedbacktracking was
discussedas an architectureto supportefficient retractionof beliefs in plausible
reasoning.

Casesnine and ten illustrated: (1) the useof multiple lines of reasoningto
enhancethe power of a problemsolver, (2) the useof heterogeneousabstrac-
tion models to capturethe variety of knowledgein some applications,and (3)
the useof an opportunisticschedulerto useknowledgesourcesas soonas they
becomeapplicable(either top-down or bottom-up) andto control the breadth
of search.

Finally, we consideredsome methods for speedingup processingand in-
formation retrieval: specialized data structures and knowledge compilers.
Thesetechniquesdo not attack the basiccombinatoricsof search,but they do
reduce the cycle time of problem solvers and will become increasingly im-
portant in future expertsystemswith largeknowledgebases.

In articulating these ideasabout expert systems,we were forced to decide
what was essentialand important about expertsystems.In somecases,other
choicesof expertSystemscould havebeenmadeto makethe samepoints.Our
view is that the recent critical work in expert systemshas focused on the
mechanismsof problem-solving,and researchin this area hasbeen the most
fruitful when it has been directed towards substantialapplications.The ap-
plicationsandthe researchreportedhere are both empirical: knowledgebases
are tried, tested,and revised; the architecturalresearchfollows a similar, but
slowercycle.

An expert system is always a product of its time. System builders operate
against a backgroundof competing ideas and controversiesand must also
confront the limitations of their resources.To summarize experimentsand
create a simplified theory, we must necessarilystep outside of this rich
historical context. Inescapably,we are boundto our current vantagepoint. As
this paperis written, thereis a ferment of activity in expert systemresearch.
The theory of building intelligent systemsis far from complete and the ideas
expressedhere are by no meansuniversallyacceptedin the Al community. To
wait for the ideas to settle and survive the test of history would preclude
creating a timely guide to current thinking.

ACKNOWLEDGMENT

In August 1980, the National ScienceFoundationand the Defense AdvanceResearchProjects
Agency co-sponsoreda workshopon expertsystemsin SanDiego. Theconferenceorganizerswere
Rick Hayes-Roth,Don Waterman,andDouglasLenat. Thepurposeof this workshopwasto bring
together researchersfrom many different institutions to write a definitive book [211 on expert
systems.The participantswereorganizedin groupscorrespondingto book chapters.

172 M. STEFIK ET AL.

Theideasin this paperaretheproductof the ‘architecture’group, of which Mark Stefik wasthe
appointedchairmanat theconference.The other membersof thegroupwere theother co-authors
of this paper.During theconferencewe struggledintensivelyfor threedaysto organizetheseideas.
The task of writing this tutorial fell to thechairman andwas carried out over the next several
months.Credit, however, belongsto all of the membersof thegroupfor actively andgenerously
pulling togetherto define the scopeof this tutorial, sharpendistinctions,organizethe ideas, and
later critique versionsof the text.

Thanks also to Daniel Bobrow, John SeeleyBrown, Johande Kleer, Richard Fikes, Adele
Goldberg, Richard Lyon, John McDermott, Allen Newell, and Chris Tong for reading early
versions of this text and providing many helpful suggestions.Thanks to Lynn Conway for
encouragingthis work, andto theXerox Corporationfor providing the intellectual andcomputing
environmentsin whichit could bedone.

REFERENCES

I. Barr, A. and Feigenbaum,E.A., The handbookof artificial intelligence, Computer Science
Department,StanfordUniversity,Stanford, CA, 1980.

2. Buchanan, B.G. and Feigenbaum,E.A., DENDRAI. and Meta-DENDRAL: Their applications
dimension,Artificial Intelligence11(1978)5—24.

3. Bobrow, D.G. and Winograd,T., An overview of KRL, a knowledgerepresentationlanguage,
CognitiveSci. 1(l) (1977)3—46.

4. Bobrow, D.G., Dimensions of representation,in: D.G. Bobrow and A. Collins, Eds.,
Representationand Understanding(AcademicPress,New York, 1975).

5. Burton, R.R., Semanticgrammar:an engineeringtechniquefor constructingnaturallanguage
understandingsystems,Bolt BeranekandNewmanRept. No. 3453(December1976).

6. Charniak, E., Riesbeck C.K., and McDermott, DV., Artificial Intelligence Programming
(Eribaum,Hilisdale, NJ, 1980).

7. Davis, R., Buchanan,B.G. and Shortliffe, E., Production rules as a representationfor a
knowledge-basedconsultationprogram,Artificial Intelligence8 (1977) 15—45.

8. Davis, R., Applicationsof meta-levelknowledgeto theconstruction,maintenanceand useof
largeknowledgebases,Ph.D. Thesis,StanfordUniversity, AT Lab Memo AIM-283 (July 1976).

9. Davis, R. andKing, J., An overviewof productionsystems,in: E.W. Elcock andD. Michie,
Eds., Machine Intelligence (Wiley, New York, 1976)300—332.

10. de Kleer, J. andSussman,G.J., Propagationof constraintsappliedto circuit synthesis,Circuit
TheoryAppI. 8 (1980)127—144.

11. Doyle, J., A truth maintenancesystem,Artificial Intelligence 12 (1979)231—272.
12. Doyle J. and LondonP., A selecteddescriptor-indexedbibliography to the literatureon belief

revision, Sigart Newsletter71 (1980)7—23.
13. Doyle, J., A model for deliberation, action, and introspection, Al TR 581, Artificial In-

telligenceLaboratory,MIT, Cambridge,MA (May 1980).
14. Duda, R.O., Hart, P.E. and Nilsson, N.J., Subjective Bayesian methods for rule-based

inferencesystems,SRI International,Artificial IntelligenceCenterTechnical Note 124 (Janu-
ary 1976).

iS. Erman L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, DR., The HEARSAY-Il speech-
understandingsystem:integrating knowledgeto resolveuncertainty,ACM Comput.Surveys
12(2) (1980)213—253.

16. Fagan, L.M., Kunz, J.C., Feigenbaum,E.A. and Osborn, J.J., Representationof dynamic
clinical knowledge:measurementinterpretationin the intensivecareunit, Proc. Sixth Internat.
Joint Conf. Artificial Intelligence,August 1979.

17. Fagan, J.M., vM: Representingtime-dependentrelations in a medical setting, Doctoral
Dissertation,Computer ScienceDepartment,StanfordUniversity, Stanford, CA, June 1980.

EXPERT SYSTEMSTUTORIAL 173

18. Feigenbaum,E.A., The art of artificial intelligence: I. Themesandcasestudiesof knowledge
engineering,Proc. Fifth Internat. Joint Conf. Artificial Intelligence (1977)1014—1029.

19. Forgy, C. and McDermott, J., OPS: A domain-independentproduction system, Proc. Fifth
Internat. Joint C’onf. Artificial Intelligence (1977)933—939.

20. Forgy, CA., On the efficient implementationof productionsystems,Doctoral Dissertation,
Departmentof ComputerScience,Carnegie-MellonUniversity, Pittsburgh,PA, February1979.

21. Hayes-Roth,F., Waterman,D. andLenat,D., Eds., Building ExpertSystems(in preparation).
22. Hayes-Roth,B. and Hayes-Roth,F., A cognitive model of planning, cognitive Sci. 3 (1979)

275—310.
23. Lenat, D.B., Hayes-Roth,F. and Klahr, P., Cognitive economy, Computer ScienceDepart-

ment, StanfordUniversity, HeuristicProgrammingProject Rept.HPP-79-IS(June 1979).
24, Lowerre, B.T., The HARPY speech recognition system, Ph.D. Thesis, Computer Science

Department,Carnegie-MellonUniversity, Pittsburgh,PA, 1976.
25. McCarthy,J., and Hayes,P.J., Somephilosophicalproblemsfrom thestandpointof artificial

intelligence, in: B. Meltzer andD. Michie, Eds., Machine Intelligence 9 (Wiley, New York,
1979).

26. McAllester, D.A., An outlook on truth maintenance,MIT Al Memo No. 551, April 1980.
27. McDermott, J., Rt: A rule-basedconfigurerof computersystems,Departmentof Computer

Science,Carnegie-MellonUniversity, Rept.CMU-CS-80-119 (April 1980).
28. Newell, A., Artificial intelligenceand theconceptof mind, in: R.C. Schankand KM. Colby,

Eds., ComputerModelsof Thoughtand Language(Freeman,San Francisco,1973).
29. Newell, A., Some problems of basic organization in problem-solving programs, in: M.C.

Yovits, G.T. JacobiandGD. Goldstein,Eds., Proc. SecondConf. on Self-OrganizingSystems
(SpartanBooks, WashingtonDC, 1962).

30. Nilsson,N.J., Principlesof Artificial Intelligence (Tioga, Palo Alto, 1980).
31. Pednault, E.P.D., Zucker, SW., and Muresan, L.V., On the independenceassumption

underlyingsubjectiveBayesianupdating,Artificial Intelligence 16 (1981)213—222.
32. Sacerdoti,ED., A Structurefor PlansandBehavior(Elsevier, NewYork, 1977).
33. Sacerdoti,E.D., Planningin ahierarchyof abstractionspaces,Artificial Intelligence5(2) (1974)

115—135.
34. Shortliffe, E.H., Computer-BasedMedicalConsultations:MYCIN (Elsevier, NewYork, 1976).
35. Stallman, R.M, andSussman,G.J., Forwardreasoninganddependency-directedbacktracking

in a systemfor computer-aidedcircuit analysis,Artificial Intelligence 9 (1977)135—196.
36. Stefik, M.J., Planningwith constraints,Artificial Intelligence16(2) (1981)111—140.
37. Stefik, M., Inferring DNA structuresfrom segmentationdata, Artificial Intelligence 11 (1978)

85—114.
38. Sussman,G.J. andSteele, G.L., CONSTRAiNTS—A languagefor expressingalmost-hierarchical

descriptions,Artificial Intelligence 14 (1980)1—39.
39. van Melle, W., A domain-independentsystem that aids in constructing knowledge-based

consultationprograms,Doctoral Dissertation,ComputerScienceDepartment,StanfordUni-
versity, Rept.No. STAN-CS-80-820(June1980).

40. Zadeh,L.A., A theory of approximatereasoning,in: J.E. Hayes,D. Michie andLI. Mikulich,
Eds., MachineIntelligence9 (Wiley, NewYork, 1979).

41. Zadeh, L.A., Possibility theory andsoft dataanalysis,University of California at Berkeley,
ElectronicsResearchLaboratory,Memo No. UCB/ERL M79/66 (August 1979).

ReceivedAugust1981

