

The people that made this free re-
lease possible
For those who have purchased this book in e-book format, a big
“Thanks!” goes out to you.

The following companies have also made the free release possible
by advertising for the book and/or supporting me while writing the
book:

VG Universe Design

VG Universe Design is a Web & Graphic Design Studio owned and
operated by this book’s designer, Vivien Anayian. Her work speaks
for itself, and she was instrumental in this book’s public release.

WebDesign.com

WebDesign.com provides premium, professional web development
training to web designers, developers, and WordPress website own-
ers. The WebDesign.com Training Library currenty holds over 230
hours of premium training developed by seasoned experts in their
field, with approximately 20 hours of new training material added
each month.

http://www.vguniverse.com/
http://webdesign.com
http://webdesign.com

WordPress and Ajax

WebDevStudios

WebDevStudios is a website development company specializing in
WordPress. We have a staff of developers and designers who live
and breathe WordPress and pride ourselves in being WordPress ex-
perts. We have the resources to support any client from a single blog
to a WordPress Multisite network with thousands of sites to a Bud-
dyPress site with thousands of members.

WPCandy

WPCandy is an unofficial community of WordPress users and pro-
fessionals. They are best known for their solid WordPress reporting
and also publish a growing weekly podcast and regular community
features. If you love WordPress and want to stay plugged in to the
community, WPCandy is the place to be.

http://webdevstudios.com
http://wpcandy.com
http://wpcandy.com

WORDPRESS & AJAX
An in-depth guide on using Ajax with WordPress

RONALD HUERECA

cover & book design by Vivien Anayian

WordPress and Ajax - 2nd Edition

Copyright © 2010 by Ronald Huereca

All Rights Reserved under International and Pan-American
Copyright Conventions

This book is protected under U.S. and international copyright
law. No part of this book may be used or reproduced in any
manner without the written permission of the copyright holder
except where allowed under fair use.

The rights of this work will be enforced to the fullest extent pos-
sible, including under the Digital Millennium Copyright Act
of 1998 (DMCA) of the United States, the European Directive
on Electronic Commerce (EDEC) in the European Union and
other applicable U.S. and international laws.

All source code used in this book is licensed under the
GNU Public License (GPL). For more information about
the GPL or to obtain a copy of the full license, please visit
http://www.gnu.org/copyleft/gpl.html.

BOOK DESIGNER
Vivien Anayian

COVER DESIGNER
Vivien Anayian

COVER ILLUSTRATIONS
Antelope by Haekel, Vintage educational plate
Killer Whale by W. Sidney Berridge from A Book Of Whales, 1900. Plate XXI (From
cast in National History Museum)

PRIMARY TYPEFACES
Adobe Garamond Pro, designed by Claude Garamond, Robert Slimbach
Futura, designed by Paul Renner
Myriad Pro, designed by Robert Slimbach, Carol Twombly
Monaco, designed by Susan Kare, Kris Holmes, Charles Bigelow

http://www.wpajax.com/contact
http://www.gnu.org/copyleft/gpl.html

Table of Contents
Acknowledgments ..11
About Ronald Huereca - Author 12
Credits and Thanks 12

Introduction ...15
How About a Little Ajax? 16
The Book’s Beginning 16
The Goal of the Book 17
Helpful Tools for the Journey 18
Online Resources 19
A Word of Warning 19

Chapter 1
What is Ajax? ...21

Chapter 2
Adding Scripts Properly to WordPress27
So How Does wp_enqueue_script Work? 29

Handle 29
Src 29
Deps 30
Ver 31
In_footer 31

Great, I have wp_enqueue_script down. Now what? 32
Naming Your Handlers 35

Loading Scripts Conclusion 36

Chapter 3
Localizing Your Scripts37
wp_localize_script 39

Handle 39
Object_name 39
l10n 40

wp_localize_script Example 40
Other Localization Techniques 42
The JSON Technique 42
A Custom Function 44
Localization Conclusion 45

Chapter 4
Adding Styles Properly to WordPress47
How Does wp_enqueue_style Work? 48

Handle, Src, Deps, and Ver 49
Media 49

The wp_enqueue_style Hooks 50
The init Technique 51

Conditional Comments 53
Loading Styles Conclusion 54

Chapter 5

Page Detection in WordPress55
WordPress Conditionals 57

Loading Scripts on the Front-End 58
Loading Scripts on the Home Page 59
Loading Scripts on the Front Page 60
Loading Scripts on Posts or Pages 60
Loading Scripts on Comment Pages 61
Loading Scripts for Post Types 62
Loading Scripts for Custom Taxonomies 62
Loading Scripts for Detecting Shortcodes 62
Load Scripts for a Specific Platform 63
Conditionals Conclusion 63

Page Detection in the Admin Area 64
Page Detection for Specific Admin Pages 65
Page Detection for Menu Items 66

Page Detection Conclusion 68

Chapter 6
WordPress Loading Techniques69

Overriding Styles (and Scripts) 71
Disabling Styles (and Scripts) 73

Loading Just Your Scripts 75
Creating Standalone Pages 77

Loading WordPress Manually Using wp-load 77
Loading WordPress Using a Template Redirect 79

Preventing Plugins From Loading 83
WordPress Loading Techniques Conclusion 86

Chapter 7
Properly Formatting jQuery for WordPress Use ..87
Namespacing 88
Public Properties/Functions 91
Private Variables/Functions 92
Including Your jQuery Script in Your Theme 95
Conclusion for Properly Formatting jQuery for WordPress 96

Chapter 8
Nonces and the Escape API97
WordPress Nonces 98

Nonces and Forms 101
Nonces and URLs 104
Nonces and Ajax 106

The Escape API 107
Validating Numeric Inputs 108
Escaping HTML 109
Escaping Attributes 110
Escaping JavaScript 111
Escaping URLs 111
Filtering HTML 112
Escape API Conclusion 114

Chapter 9
Sending Our First Ajax Request115
Set Up the PHP Class to Handle Back-end Operations 117
Setting up the Interface 119
Setting Up the JavaScript File 122
Setting up the Ajax Object 124
Finalizing the functions.php Class 126

The get_comments Method 126
Add in our JavaScript Files 127
Add in JavaScript Localization 128
Add in String Localization 131
Add in Query Variable Support 131

Finalizing the Ajax Request 133

Chapter 10
Processing Our First Ajax Request139
Securing Your Ajax Processor 140

Performing a Nonce Check 141
Server-Side Processing of Ajax Requests 143
Sending an Ajax Response 146
Client-Side Processing/Parsing 150

Parsing the XML Document Object 150
Processing the Data 151

The Output 156

Chapter 11
WordPress and Admin Ajax165
WordPress' admin-ajax.php 166
Registering the Ajax Processor 168
Getting the Location of the Ajax Processor 170
Passing Data to the Ajax Processor 171
The wp_ajax Callback Method 173
Finalizing the Ajax Processor 173
Admin Ajax Conclusion 175

Chapter 12
Example 1: WP Grins Lite177
The WPGrins Class 181

The Constructor 182
add_scripts and add_scripts_frontend 187
get_js_vars 188
add_styles and add_styles_frontend 190
add_admin_pages 191
print_admin_page 192
ajax_print_grins 193
wp_grins 193
get_admin_options 195
save_admin_options 196
Our Template Tag 197

The Admin Panel (admin-panel.php) 198
The JavaScript File (wp-grins.js) 203

WP Grins Lite Conclusion 207

Chapter 13
Example 2: Static Random Posts209
Creating the Static Random Posts Widget 212

static_random_posts 214
form 215
update 218
get_admin_options 219
save_admin_options 221
init 221
add_admin_pages 222
print_admin_page 222
add_post_scripts 223
get_js_vars 224
widget 225
get_posts 229
build_posts 231
print_posts 233
ajax_refresh_static_posts 234

The Admin Panel (admin-panel.php) 237
Updating the Options 238
The User Interface 242
The JavaScript File (static-random-posts.js) 246
Static Random Posts Conclusion 253

Chapter 14
Example 3: Ajax Registration Form255
Creating the Ajax_Registration Class 257

rform_shortcode 260
post_save 263
has_shortcode 265
add_scripts 266
add_styles 267

The Script File (registration.js) 269
Capturing the Form Data 270
Building the Ajax Object 272
Parsing the Ajax Response 273

The Ajax Processor 280
Parsing the Passed Form Data 280
Data Validation 282
Creating the User 287
Sending the Response 288

Ajax Registration Form Conclusion 289

Now You Begin Your Own Journey291

Acknowledgments

WordPress and Ajax12

About Ronald Huereca - Author
People describe Ronald as a highly opinionated
(and sometimes funny) writer.

He’s worked with WordPress since 2006 and has
released several WordPress plugins, his most pop-
ular being Ajax Edit Comments.

Ronald currently calls Austin, Texas home. His
education includes a Master’s in Business Admin-
istration and a degree in Electronics Engineering
Technology.

When he’s not killing trees or reindeer, he blogs at
his personal site, ronalfy.com.

Credits and Thanks
First, I would like to thank my family, friends,
and God for getting me through a very tough per-

http://www.ajaxeditcomments.com
http://www.ronalfy.com

Acknowledgments 13

sonal situation in 2009. Without them, this book
would not have been possible.

I’d like to thank Vivien Anayian for the inspira-
tion behind Ajax Edit Comments, which conse-
quently started me with Ajax and WordPress.

I’d also like to thank Ajay D’souza and Mark
Ghosh. Both have helped me tremendously along
my WordPress journey.

Finally, I’d like to thank the folks at Automattic
and the contributors behind WordPress.

http://www.inspirationbit.com/
http://www.ajaxeditcomments.com
http://ajaydsouza.com/
http://www.weblogtoolscollection.com
http://www.weblogtoolscollection.com
http://www.automattic.com
http://www.wordpress.org

Introduction

WordPress and Ajax16

How About a Little Ajax?
I’m rather biased when it comes to Ajax. One
of my first WordPress plugins is Ajax-based. As
soon as I started using Ajax, I fell in love with the
possibilities.

You see, Ajax is what helps achieve that “rich” In-
ternet experience. Ajax helps eliminate unneces-
sary page loads, can streamline a user interface,
and can make a task that is cumbersome run
gracefully behind the scenes.

As with every piece of technology, Ajax can be
used for good or for bad. There are those that will
use and abuse Ajax (and they should be spanked
unmercilessly).

The Book’s Beginning
When I was learning Ajax with WordPress, find-
ing good documentation was hard to find. My
education was basically ripping code from other
plugins, mashing them together, and hoping ev-
erything worked.

I’ve grown a lot in my journey. While I am still
far from perfect, I felt it necessary to share what I
have learned over the years.

Introduction 17

This book began humbly. I thought to myself,
“Why not write a quick group of articles on using
Ajax with WordPress?”

I began working on an outline, and it became
quite obvious this wasn’t going to be a short series
of articles. In order to adequately cover the topic,
there needed to be much, much more.

The Goal of the Book
The goal of this book is to provide you a rock-
solid foundation for using Ajax with WordPress.
After the foundation has been laid, you will be
walked through several real-world examples. By
the end of the book, you should not only have a
thorough understanding of Ajax, but how Ajax
functions within WordPress itself.

The code examples I present are from my own
(sometimes painful) experiences with using Ajax.
I’ve cried. I’ve bled. And I hope to share my
agony (err, joy).

Prerequisites For This Book

This book gets right down to business (sorry, no
foreplay), so I’m assuming the following if you in-
tend to follow me throughout this journey:

WordPress and Ajax18

You are using WordPress version 3.0 and •	
above.

You have “some” knowledge of JavaScript and •	
some knowledge of the uber-awesome jQuery
library (you’re free to disagree with me on this,
but keep in mind I carry a big stick).

You already know PHP. This book gets heavy •	
in places, and it helps tremendously if you
have a good grasp on PHP.

You have some experience with WordPress •	
theme or plugin development (and their re-
spective APIs).

Or, you have none of the above, but want to •	
read anyway (you’re the one that ignores the
“falling rocks” signs on the highway, right?)

Helpful Tools for the Journey
Firebug for Firefo•	 x: this tool is one of those
where you wonder how you ever got along
without it. It’ll assist you with debugging any
JavaScript errors.

XAMP•	 P: this tool allows you to host Word-
Press locally. It’s great for testing scripts and
themes without modifying a production in-
stall.

http://www.jquery.com
http://www.jquery.com
http://getfirebug.com/
http://www.apachefriends.org/en/xampp.html

Introduction 19

Online Resources
To access the code and various resources men-
tioned in this book, please visit:

http://www.wpajax.com/code/ - Download-•	
able code samples.

http://www.wpajax.com/links/ - Links and re-•	
sources mentioned in this book.

A Word of Warning
Ok, perhaps I should have said “words.”

My writing style throughout this book is very ca-
sual. I wrote this book as if we’re going on a jour-
ney together to achieve Ajax nirvana.

So what are you waiting for? Let’s begin.

WordPress and Ajax20

Chapter 1

What is Ajax?

WordPress and Ajax22

What is Ajax?
First things first... What the heck is Ajax anyways
besides a lovely acronym (Asynchronous JavaScript
and XML)? It’s definitely not a common house-
hold cleaner (at least, not on the Internet).

Let’s just say that Ajax consists of a bunch of
tubes... Okay, bad joke, but let’s go on.

Ajax, in simple terms, allows a user on the client-
side (the web browser) to indirectly interact with
the server-side (the back-end that you will never
see).

Ajax allows for complex processing of data that
would be impossible to accomplish on the client-
side.

Ajax is event based. Some kind of event occurs
on the client side (a page load, a click, a form sub-
mission) and this event is captured.

JavaScript captures this event, forms the Ajax re-
quest, and sends the request to the server. The
server sees this request, processes it, and sends
back an Ajax response.

It’s really that simple. Perhaps too simple for you
techno-geeks, but I digress. I mean, I could go

Chapter 1, What is Ajax? 23

deep into technical mumbo-jumbo, but all it will
get you is weird stares from the people you’re ex-
plaining it to (and perhaps a slap from the girl
you’re trying to pick up when you start talking
about sending and receiving requests).

Now implementing Ajax, and implementing it
well, is another story. So let’s read on.

Event Occurs

Client-side
Processing

Send Ajax Request Server-side
Processing

Send Ajax ResponseProcess Response

Output Results

Client-side

Server-side

 Ajax ProcessFigure 1.

WordPress and Ajax24

Ajax Best Practices
As with any technology, Ajax can easily be abused.
I’ve seen too many sites that depend on Ajax for
navigation or to access crucial and/or critical con-
tent without alternatives.

From my perspective, Ajax should be absolute-
ly transparent and unobtrusive to the user. I’m
thinking of Flickr and Netflix when I say this.
Both sites mentioned use Ajax to add to the user
experience, rather than detract from it.

When you click on that caption or description, or
leave that star rating, it’s simple and to the point.
All we should know from the end-user’s per-
spective is that it works (and that’s all we should
know).

Hitting the back-button doesn’t ruin the experi-
ence; it just means you’re “done”.

I’ll leave Ajax best practices to just one statement:
it should be absolutely and completely transpar-
ent to the user. The user shouldn’t even know he’s
using Ajax.

Ajax should be used to accomplish quick and sim-
ple tasks. That’s it. Anything more is just asking

All we should
know from
the end-user’s
perspective is that
it works

www.flickr.com
http://www.netflix.com

Chapter 1, What is Ajax? 25

to be beat down by the Internet troll (and he’s
mean).

Here are some good examples of when to use
Ajax:

Reduce the need to move away from the cur-•	
rent page. I’m thinking of Netflix’s star rating
and “Add to Queue” features. The user gets to
keep browsing and isn’t interrupted.

Allow quick editing of options. Observe how •	
easy it is to edit captions and descriptions in
Flickr.

Allow quick functionality without a page re-•	
fresh. I’m thinking of WordPress’ use of com-
ment moderation functions that allow you to
stay on the same page without having to re-
fresh.

And here are some bad examples:

Providing multi-page Ajax operations. If the •	
user hits the back button or refreshes, then
what? He has to start all over from scratch
(and he’s about to call the Internet troll on
you).

Loading content on websites. Ever been to one •	
of those sites that load the content when you

Ajax should
be absolutely
and completely
transparent to the
user

WordPress and Ajax26

click on a button or drop-down menu option?
Not good. There’s no back button function-
ality, no way to bookmark the content, and
if you refresh, you’re back at the beginning.
In other words, they might as well have used
Flash (ducking for cover).

Using Ajax upon a page load. This last one is •	
more of a guideline as there are many excep-
tions. Notable exceptions include scripts that
track statistics and would like to avoid caching
plugins.

If you are implementing an Ajax process and the
project delves into the realm of faking browser
history and remembering user states, then Ajax is
likely not the ideal solution.

Remember, keep Ajax simple. If the user realizes
you are using it, you have failed.

Chapter 2

Adding Scripts Properly to
WordPress

WordPress and Ajax28

Adding Scripts Properly to
WordPress
Starting in WordPress 2.1 (if I remember correct-
ly), the awesome folks at Automattic gave us the
even awesomer function of wp_enqueue_script.

Before that, it was every plugin or theme author
for himself. If you wanted to add in a script, it
was hard-coded in.

As you might imagine, this presented a ton of
problems. Scripts were loaded twice, out of order,
or even when they weren’t needed at all.

Furthermore, some themes and plugins had
the JavaScript embedded within the plugin’s or
theme’s PHP file just to capture a few PHP vari-
ables. Not good! In order to add scripts properly
to JavaScript, you must always keep your PHP and
JavaScript separate. And by separate, I mean sep-
arate files. There’s just no excuse anymore (I’ll get
into this more when I cover localizing scripts).

The wp_enqueue_script function is the first step in
loading your scripts properly. Not only can you
add your script, but you can also specify the de-
pendencies (e.g., jQuery), and the version num-
ber.

Always keep PHP
and JavaScript
separate.

http://www.automattic.com
http://codex.wordpress.org/Function_Reference/wp_enqueue_script

Chapter 2, Adding Scripts Properly to WordPress 29

The function prevents duplicate JavaScript files
from loading, which is always a good thing.

So How Does wp_enqueue_script Work?
The function wp_enqueue_script takes in five argu-
ments, with the last four being optional.

Handle
The handle argument is a string that names your
script, or references someone else’s.

For example, you can add the jQuery script to any
page by calling:

Likewise, if you have previously registered your
script (using wp_register_script), you can call your
script by calling:

Src
The src argument is asking for the URL of the
file. If you supply the src of the script, the

<?php wp_enqueue_script('handle', 'src', 'deps', 'ver', 'in_
footer'); ?>

wp_enqueue_script('jquery');

wp_enqueue_script('my_script');

WordPress and Ajax30

wp_enqueue_script function automatically registers
your script for others to use (no need to use wp_
register_script).

An example of wp_enqueue_script in use is:

Themers would use:

Deps
The deps argument is an array of dependencies.
For example, if your script requires jQuery or
other JavaScript files, it’ll load these files before
your plugin’s JavaScript file.

Here’s an example:

See that array up there (it’s pretty, I know)? That’s
what’s calling your dependencies.

jQuery is built into WordPress by default, so call-
ing it via dependency is no problem as long as you
queue it via wp_enqueue_script.

wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'));

wp_enqueue_script('my_script', get_bloginfo('stylesheet_
directory') . '/my_script.js');

wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'), array('jquery', 'another_script'));

Chapter 2, Adding Scripts Properly to WordPress 31

The another_script dependency assumes you have
already used wp_enqueue_script to assign it a handle
and a src.

The outcome in this scenario is that jQuery and
another_script will load before my_script.

Ver
The ver argument is simply the version of the
JavaScript file for caching purposes. If you are
supplying your own script, it’s a good idea to sup-
ply a version.

The version is string based and looks like this:

As you update your JavaScript file, update the ver
argument. If you don’t, you’ll inevitably run into
caching issues with WordPress.

In_footer
The in_footer argument (since WordPress 2.8) de-
termines if the script will load in the header or
footer (header is the default).

To load your script in the footer, simply pass it a
1 (or true).

wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'), array('jquery', 'another_script'), '1.0.0');

WordPress and Ajax32

Great care should be used when setting the scripts
to load in the footer as some themes may not have
this functionality built in (the same problem ex-
ists for loading scripts in the header).

Great, I have wp_enqueue_script down. Now
what?
You have to call wp_enqueue_script from the appro-
priate hook in WordPress.

Fortunately, WordPress has two such action
hooks you can tap into: admin_print_scripts and
wp_print_scripts.

The admin_print_scripts hook allows you to add
scripts specifically in the admin area, while the
wp_print_scripts hook allows you to add scripts
everywhere else (it should be noted that you can
still use wp_print_scripts to load scripts in the ad-
min area).

Adding your wp_enqueue_script code is as simple
as adding an action inside your plugin or theme
code.

wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'), array('jquery', 'another_script'), '1.0.0', true);

http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference

Chapter 2, Adding Scripts Properly to WordPress 33

An example of the code being used inside of a
class constructor is:

And for those not using a class (classes help avoid
conflicts with other plugins):

I'm particularly fond of working with classes over
standard functions. There's less potential for
naming conflicts, and the class methods can be
given more intuitive names.

Here’s an example class structure (see next page):

add_action('admin_print_scripts', array(&$this, 'add_admin_
scripts'));

add_action('admin_print_scripts', 'add_admin_scripts');

WordPress and Ajax34

<?php
if (!class_exists('myPlugin')) {
 class myPlugin {
 function myPlugin(){$this->__construct();}
 function __construct() {
 //JavaScript
 add_action('wp_print_scripts', array(&$this,'add_
scripts'),1000);
 } //end constructor
 //Adds the appropriate scripts to WordPress
 function add_scripts(){
 wp_enqueue_script('another_script', plugins_url(
'another_script.js', __FILE__), '', '1.0.0');
 wp_enqueue_script('my_script', plugins_url('my_
script.js', __FILE__), array('jquery', 'another_script'),
'1.0.0');
 }//End add_scripts
 }//End class myPlugin
}//End if class
//Further avoid conflict
if (class_exists('myPlugin')) {
 //instantiate the class
 $mypluginvar = new myPlugin();
}
?>

Once you venture into the add_scripts method,
you’ll see the use of the wp_enqueue_script function
in all its glory.

For themers, just include the class in your func-
tions.php file and replace the wp_enqueue_script src
argument with the code such as shown next:

wp_enqueue_script('my_script', get_bloginfo('stylesheet_
directory') . '/my_script.js');

Chapter 2, Adding Scripts Properly to WordPress 35

Naming Your Handlers
Of great importance is naming your handler for
wp_enqueue_script. If you are using a third-par-
ty script (say, Colorbox), use common sense in
naming the handler. There’s no reason to name it
“lightbox” or “mybox”. The handler name should
be obvious, right?

Although I don’t recommend the following tech-
nique for all plugins, here’s a neat way to resolve
naming conflicts: give a way for plugin authors
and themers a way to override your name. How?
Perform an apply_filters for your handler name
and provide the necessary documentation.

Here’s an example:

Using the above example, someone in their theme’s
functions.php or plugin code could add your filter
and overwrite the name to resolve naming con-
flicts.

wp_enqueue_script(apply_filters('my_plugin_script',
'my_script'), plugins_url('my_plugin/my_script.js'),
array('jquery', 'another_script'), '1.0.0', true);

add_filter('my_plugin_script', create_function('$name', 'return
"my_new_name";'));

WordPress and Ajax36

Loading Scripts Conclusion
Using wp_enqueue_script is a great way to avoid
the dreaded dilemma of loading multiple copies
of the same scripts.

To avoid an angry mob of plugin authors at your
door with pitchforks, I’d highly recommend mak-
ing use of the wp_enqueue_script function.

Up next is how to access dynamic content using
JavaScript localization.

Chapter 3

Localizing Your Scripts

WordPress and Ajax38

Localizing Your Scripts
When adding scripts to WordPress, you will in-
evitably run into a small, but painful, issue of lo-
calization.

Localizing a plugin or theme is relatively straight-
forward, but JavaScript presents its own difficul-
ties since we can’t easily call the PHP functions
necessary (which is one reason authors embed
JavaScript in PHP files).

Since embedding JavaScript in PHP files is never
a good technique, we use localization to save the
day.

When using Ajax with WordPress, the JavaScript
file will need to know the exact location of the
WordPress site it is to interact with. You can’t
hard-code this in unless you embed, so how does
one get the location?

Furthermore, if you display anything with
JavaScript, chances are your users will want the
strings to be localized.

Fortunately, WordPress provides the ultra-handy
wp_localize_script function.

http://weblogtoolscollection.com/archives/2007/08/27/localizing-a-wordpress-plugin-using-poedit/
http://weblogtoolscollection.com/archives/2007/08/27/localizing-a-wordpress-plugin-using-poedit/

Chapter 3, Localizing Your Scripts 39

wp_localize_script
The wp_localize_script takes three arguments:

handle•	

object_name•	

l10n•	

Handle
The handle argument will be the same handle you
use for your script name.

For example, if you have a handle of my_script,
you would use the same name when calling the
wp_localize_script function.

Object_name
The object_name argument is a string that tells
WordPress to create a JavaScript object using the
name you specify.

It’s important that the string you pass is as unique
as possible in order to minimize naming conflicts
with other scripts.

For the upcoming example, our object name will
be my_unique_name.

WordPress and Ajax40

l10n
The l10n argument is an array of strings you
would like to localize.

Within this array, you will want to take advantage
of the __ (yes, those are two underlines) Word-
Press function.

wp_localize_script Example
For the purpose of this example, let’s create a
function called localize_vars and have it return
an array.

Please note the use of the __() function. It takes
in the text we want to localize, and our localiza-
tion name. This will be the same name you use if
you take use localization within WordPress.

The variable SiteURL gives us the http path to our
WordPress site, and AjaxUrl gives us the path to
WordPress’ built-in Ajax processor.

<?php
function localize_vars() {
 return array(
 'SiteUrl' => get_bloginfo('url'),
 'AjaxUrl' => admin_url('admin-ajax.php'),
 'OtherText' => __('my text', "my_localization_
name")
);
} //End localize_vars
?>

Chapter 3, Localizing Your Scripts 41

From another area in our code, we call the local-
ize_vars function:

WordPress then conveniently adds localization
JavaScript immediately before our main script is
included. Viewing the page source will reveal:

With the localize example, you can use PHP mag-
ic to add just about anything to your localization
object. Hence, no need to ever embed JavaScript
within a PHP file.

Now you can call your localized JavaScript vari-
ables from your my_script.js file. Here’s an ex-
ample of an alert:

<?php
wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'), array('jquery'), '1.0.0');
wp_localize_script('my_script', 'my_unique_name', localize_
vars());
?>

<script type='text/javascript'>
/* <![CDATA[*/
 my_unique_name = {
 SiteUrl: "http://www.mydomain.com",
 AjaxUrl: "http://www.mydomain.com/wp-admin/admin-
ajax.php",
 OtherText: "my localized text"
 }
/*]]> */
 </script>

WordPress and Ajax42

It’s really as easy as that. You can now localize
JavaScript strings and get the coveted Ajax URL
(which we’ll need for Ajax later).

Other Localization Techniques
While the wp_localize_script function does great
work, it has one inherent flaw: each localized string
is on a new line. For plugins that require a lot of lo-
calized strings, the size of the page source can easily
balloon to unacceptable levels.

To remedy this, we can use two additional localiza-
tion techniques: one uses JSON, and the other is a
custom function.

The JSON Technique
The JSON Technique uses WordPress’ built-in JSON
class in order to parse our localized variables.

We would use the same localize_vars function, but
would modify the way we queue our scripts.

First, let’s create a helper function that will instantiate
the JSON class and spit out our localized variables to
screen.

alert(my_unique_name.SiteUrl);
alert(my_unique_name.OtherText);

Chapter 3, Localizing Your Scripts 43

The js_localize function takes in a $name (our ob-
ject name) and an array of our localized variables
($vars).

The function then instantiates the JSON class and
encodes the variables for output.

Here’s how the code would look when queueing
up your scripts.

Please note that the js_localize function is run
before the script is queued.

function js_localize($name, $vars) {
 ?>
 <script type='text/javascript'>
 /* <![CDATA[*/
 var <?php echo $name; ?> =
 <?php
 require_once(ABSPATH . '/wp-includes/class-json.php');
 $wp_json = new Services_JSON();
 echo stripslashes($wp_json->encodeUnsafe($vars));
 ?>
;
 /*]]> */
 </script>
<?php
}

<?php
js_localize('my_unique_name', localize_vars());
wp_enqueue_script('my_script', plugins_url('my_plugin/my_
script.js'), array('jquery'), '1.0.0');
?>

WordPress and Ajax44

While this technique does eliminate the newlines
and creates cleaner source code, it does have one
major flaw. It doesn’t work for all languages.

For example, the Turkish language causes the
above technique to come crashing down.

However, if you don’t plan on having additional
languages and want localization purely for the
ability to access the JavaScript variables, then I
would recommend this technique.

A Custom Function
For those wanting to eliminate the newlines
caused by wp_localize_scripts, and still have the
ability to handle complex languages, then a cus-
tom function will have to suffice.

We’ll use the same exact code to queue our scripts,
but the js_localize function will change a bit.

My technique is to iterate through the localized
variables, save them to an array, and output the
array to screen.

It might not be the most poetic thing you’ve ever
seen, but it works pretty well, even for those com-
plex languages.

Chapter 3, Localizing Your Scripts 45

Localization Conclusion
Within this chapter you learned the how and the
why of JavaScript localization.

The benefits of localizing your JavaScript are:

No need to embed •	 JavaScript and PHP.

Can capture •	 PHP variables without having to
load the WordPress environment.

Can enable others to translate your •	 JavaScript
strings.

You also learned three different techniques to
achieve localization.

function js_localize($name, $vars) {
 $data = "var $name = {";
 $arr = array();
 foreach ($vars as $key => $value) {
 $arr[count($arr)] = $key . " : '" . esc_js($value)
. "'";
 }
 $data .= implode(",",$arr);
 $data .= "};";
 echo "<script type='text/javascript'>\n";
 echo "/* <![CDATA[*/\n";
 echo $data;
 echo "\n/*]]> */\n";
 echo "</script>\n";
}

WordPress and Ajax46

Using •	 wp_localize_script - Recommended for
general use.

Using •	 JSON - Recommended for non-com-
plex localization and performance.

Using a Custom •	 Function - Recommended
for complex localization and performance.

In the next chapter we’ll be talking about how to
load styles (CSS) properly. What do styles have
to do with Ajax? Well, you want to make it look
pretty, don’t you?

Chapter 4

Adding Styles Properly to
WordPress

WordPress and Ajax48

Adding Styles Properly to
WordPress
Let’s give WordPress some style with some awe-
some CSS (Cascading Style Sheets, but you prob-
ably knew that already).

Just as wp_enqueue_script can prevent duplicate
scripts from loading, wp_enqueue_style can do the
same. But the biggest advantage of using wp_en-
queue_style over other techniques is the use of de-
pendencies.

Unfortunately, the use of wp_enqueue_style isn’t as
widely adopted as wp_enqueue_script, but in my
non-humble opinion, it’s just as important to
use.

The biggest reasons to use wp_enqueue_style?

Allows for dependencies and media targeting •	
(screen, print, etc.)

Allows for others to overwrite your styles (an •	
uber-awesome reason if you ask me)

So what are the arguments, and what hooks should
we use?

How Does wp_enqueue_style Work?

Chapter 4, Adding Styles Properly to WordPress 49

The wp_enqueue_style function takes in five argu-
ments, with the last four being optional.

Handle, Src, Deps, and Ver
Since I already covered loading scripts properly,
and wp_enqueue_script and wp_enqueue_style are so
similar, I’m going to breeze over the first four ar-
guments (they act the same, really).

So rather than being repetitive, let’s get to the new
argument, which is media.

Media
The media argument is asking for the type of me-
dia the stylesheet is defined for.

In this particular example, we’re just setting the
media type to screen, which is for most browsers.

Some other common media types you may use
are: all, print, screen, handheld.

<?php wp_enqueue_style('handle', 'src', 'deps', 'ver',
'media'); ?>

wp_enqueue_style('my_css', plugins_url('my_plugin/my_css.css'),
array('another_css_file'), '1.0.0', 'screen');

WordPress and Ajax50

The wp_enqueue_style Hooks
In order to use wp_enqueue_style properly, you need
to call it using the appropriate hooks. There are
two main hooks (admin_print_styles and wp_print_
styles), but a third will come in handy for theme
developers (init, which I’ll cover last).

The admin_print_styles hook allows you to add
styles in the admin area, while the wp_print_styles
hook allows you to add styles on both the front-
end and admin area.

To add your styles, use the add_action function
and call the appropriate hook and provide a call-
back function.

Here’s an example of using a callback function
that will load styles on the front-end.

The above code will place a stylesheet on each
front-end and admin area provided that the “an-
other_css_file” dependency has been previously
registered (using wp_register_style). If you want
to place the stylesheet in the admin area only, you
should use admin_print_styles instead.

<?php
add_action('wp_print_styles', 'my_styles_callback');
function my_styles_callback() {
 wp_enqueue_style('my_css', plugins_url('my_plugin/my_
css.css'), array('another_css_file'), '1.0.0', 'screen');
}
?>

Chapter 4, Adding Styles Properly to WordPress 51

The init Technique
One technique I’m rather fond of when it comes
to themes is to use the init action to register all
the styles, and then selectively load the styles in
the theme’s header.php file.

First, let’s dive into the theme’s functions.php and
register some styles:

I registered three styles for later inclusion, and
cascaded the dependencies.

To show these on the front-end, you would ven-
ture into header.php and add the following code
before the </head> tag:

<?php
add_action('init', 'my_theme_register_styles');
function my_theme_register_styles() {
 //Register styles for later use
 wp_register_style('my_theme_style1', get_stylesheet_
directory_uri() . '/style1.css', array(), '1.0', 'all');
 wp_register_style('my_theme_style2', get_stylesheet_
directory_uri() . '/style2.css', array('my_theme_style1'),
'1.0', 'all');
 wp_register_style('my_theme_style3', get_stylesheet_
directory_uri() . '/style3.css', array('my_theme_style1', 'my_
theme_style2'), '1.0', 'all');
}
?>

<?php wp_print_styles(array('my_theme_style1', 'my_theme_
style2', 'my_theme_style3')); ?>
</head>

WordPress and Ajax52

The wp_print_styles function is passed an array
of handlers, and will push our styles out for the
world to see.

Since I cascaded the dependencies, however, you
could (in this particular case) get away with just
passing the handler of the last registered style
(both output the three registered styles):

Using the init method, you can even skip loading
styles via header.php and instead load them for a
particular page template:

The above technique assumes that your theme
makes use of the wp_head() call in header.php. And
in an ideal reality (let’s be optimistic, shall we?),
all themes should make use of the wp_head() and

<?php wp_print_styles(array('my_theme_style3')); ?>

<?php
/*
Template Name: Custom Style Template
*/
 ?>
<?php wp_enqueue_style('my_theme_style3'); ?>
<?php get_header(); ?>
<!--loop stuff-->
<?php get_footer(); ?>

Chapter 4, Adding Styles Properly to WordPress 53

wp_footer() calls (in header.php and footer.php re-
spectively).

Conditional Comments
One of the biggest arguments I’ve seen regarding
not using wp_enqueue_style is its lack of support
for conditional comments.

But wp_enqueue_style does allow for conditional
comments (so now there’s no excuse, ha!).

So how does one achieve the holy grail of con-
ditional comments for inferior (oops, did I say
that?) browsers?

It’s pretty simple really. Declare a $wp_styles
global, and add conditional comment data (we’ll
modify our functions.php example).

add_action('init', 'my_theme_register_styles');
function my_theme_register_styles() {
 //Register styles for later use
 wp_register_style('my_theme_style1', get_stylesheet_
directory_uri() . '/style1.css', array(), '1.0', 'all');
 wp_register_style('my_theme_style2', get_stylesheet_
directory_uri() . '/style2.css', array('my_theme_style1'),
'1.0', 'all');
 wp_register_style('my_theme_style3', get_stylesheet_
directory_uri() . '/style3.css', array('my_theme_style1', 'my_
theme_style2'), '1.0', 'all');
 global $wp_styles;
 $wp_styles->add_data('my_theme_style3', 'conditional',
'lte IE 7');
}

WordPress and Ajax54

In the previous example, we used the $wp_styles
global to add a conditional to load for Internet
Explorer versions less than 7.

If you were to view the source where the styles
loaded, you would see something like this:

Loading Styles Conclusion
Using wp_enqueue_style is a terrific way of loading
styles for both themes and plugins.

Using the techniques mentioned in this chapter,
you should be able to build some fairly advanced
and scalable solutions.

Up next is page detection, because we really don’t
want our scripts and styles to load on every single
page, right?

<link rel='stylesheet' id='my_theme_style1-css' href='http://
yourdomain.com/wp-content/themes/gravy/style1.css?ver=1.0'
type='text/css' media='all' />
<link rel='stylesheet' id='my_theme_style2-css' href='http://
yourdomain.com/ronalfy/wp-content/themes/gravy/style2.
css?ver=1.0' type='text/css' media='all' />
<!--[if lte IE 7]>
<link rel='stylesheet' id='my_theme_style3-css' href='http://
yourdomain.com/wp-content/themes/gravy/style3.css?ver=1.0'
type='text/css' media='all' />
<![endif]-->

Chapter 5

Page Detection in
WordPress

WordPress and Ajax56

Page Detection in Word-
Press
Let’s say you have a WordPress site that has nine-
ty-six (yes, I know this person) plugins installed.
Each plugin performs a specialized function, and
each installs their own CSS and JavaScript. Now
imagine that all of these CSS and JavaScript files
are loaded for each and every single page load.
Catastrophe?

Perhaps the above scenario is a little far-fetched,
but I’ve come across sites where the CSS and
JavaScript overhead has approached half a mega-
byte per page load. All I have to say is, “Ick!”

One solution to the above dilemma is to install a
plugin such as W3 Total Cache or WP Minify to
compress the scripts and styles. While extremely
helpful, this is like putting a band-aid on a lost
limb. It’s not solving the real issue: there are too
many damn scripts running. And, in reality, it’s
probably not your fault.

A plugin’s (or theme’s) scripts and styles should
only load where absolutely needed. Failure to do
so can (and will) cause script conflicts, weird CSS
bugs, and (of course) increase site loading time.

Chapter 5, Page Detection in WordPress 57

This is where page detection comes to the rescue.
With page detection, the scripts and styles load
exactly where needed and nowhere else.

The lack of proper page detection is often why
plugins get a bad rap. People accuse plugins of
slowing down a site considerably, and if many
lack any form of page detection, these people are
right. It will slow down a site. And then you’ll
see yet another post on “How to do XYZ without
a plugin.”

Let’s get over this hump, use some proper page
detection, and get these plugins (and themes)
running as efficient as possible.

The first step in page detection is learning the
many WordPress conditionals, so let’s start there.

WordPress Conditionals
Let’s begin with some basic starter code.

We’ll be using the wp_print_scripts action and a
generic wp_enqueue_script call to load the jQuery
library.

WordPress and Ajax58

This code will run the jQuery library on every
single front-end and admin page. If you use a
theme that requires jQuery on every single page,
perhaps this is acceptable. However, what if you
would like to be more selective?

What if you only want the script to run on the
front page? Or perhaps only on a page with a
specific post type? You can do so with WordPress
conditionals (please note that all of the examples
can be interchanged with the wp_print_styles ac-
tion and the wp_enqueue_style functions).

Loading Scripts on the Front-End
Since wp_print_scripts runs scripts on both the
front-end and admin area, it may be a good idea
to check the is_admin conditional (the is_admin
conditional returns true if you are in the admin
area).

If you would like to run a script everywhere but
the admin area, you would use something like this
(building on our starter code):

<?php
add_action('wp_print_scripts', 'my_plugin_load_scripts');
function my_plugin_load_scripts() {
 //Loads jQuery on every front-end and admin page
 wp_enqueue_script('jquery');
}
?>

Chapter 5, Page Detection in WordPress 59

Loading Scripts on the Home Page
The is_home conditional (returns true or false, as
with most conditionals) is useful for determining
if a page is the home page of your site’s blog. If
you choose to have a static page as your front page,
then the is_home conditional will only return true
for the page you select as your Posts page (options
are found in Administration > Settings > Read-
ing).

If you would like a script to run only when is_home
is true, you would use the following (the remain-
ing conditional examples assume we’re already in
the my_plugin_load_scripts function):

As seen in the above code, we check to see if the
is_home conditional is true. If it’s not, we exit the
function.

<?php
add_action('wp_print_scripts', 'my_plugin_load_scripts');
function my_plugin_load_scripts() {
 if (is_admin()) return;
 //Loads jQuery on every single front-end page
 wp_enqueue_script('jquery');
}
?>

if (!is_home()) return;
//Loads jQuery on the home page of a site's blog
wp_enqueue_script('jquery');

WordPress and Ajax60

Loading Scripts on the Front Page
The is_front_page conditional will return true on
the page you have set as your front page (in Ad-
ministrative > Settings > Reading).

Here’s a quick example:

Loading Scripts on Posts or Pages
Need a script to run on a specific post or page?
WordPress conditionals have you covered.

Here is an example of the is_single conditional,
which detects if you are on a post or not (within
the code are several examples of usage).

What about pages? You would use the is_page
conditional (again, this example shows several
uses).

if (!is_front_page()) return;
wp_enqueue_script('jquery');

if (!is_single()) return;
//or use:
if (!is_single(2043)) return; //Checks for post ID 2043
//or use:
if (!is_single('my-post-slug')) return; //checks for a post
slug of my-post-slug
//or use:
if (!is_single(array(2043, 'my-post-slug', 'my post title')))
return; //Pass an array of matches you'd like to check (behaves
like an "or" statement)
wp_enqueue_script('jquery');

Chapter 5, Page Detection in WordPress 61

Loading Scripts on Comment Pages
Need to run a script on pages with comments
open?

What if you want to only run scripts when there
are comments on a post?

Several sanity checks are run here. We first want
to check if we’re on a post or page, since these are
where we’ll find comments. Next, we make sure
the $post variable is an object. And finally, we
make sure the post has comments.

if (!is_page()) return;
//or use:
if (!is_page(22)) return; //Checks for page ID 22
//or use:
if (!is_page('my-page-slug')) return; //checks for a page slug
of my-page-slug
//or use:
if (!is_page(array(22, 'my-page-slug', 'my page title')))
return; //Pass an array of matches you'd like to check (behaves
like an "or" statement)
wp_enqueue_script('jquery');

if (!comments_open()) return;
wp_enqueue_script('jquery');

global $post;
if (!(is_single() || is_page()) || !is_object($post) || $post-
>comment_count == 0) return;
wp_enqueue_script('jquery');

WordPress and Ajax62

Loading Scripts for Post Types
Need a script to run only for a specific post type? Easy.

Loading Scripts for Custom Taxonomies
Do you need to run a script for only a taxonomy page (typically an
archive page)?

Loading Scripts for Detecting Shortcodes
Here’s a decently hard one. How in the heck do you do page detec-
tion on a shortcode that is embedded within a post’s content?

For those not acquainted with shortcodes, they are small snippets
of text (e.g., [gallery]) placed within a post’s (or page’s) content.
Shortcodes are very useful for placing executable code inside what
is typically non-dynamic content. However, performing page detec-
tion for a specific shortcode inside the content isn’t exactly straight-
forward.

First we’ll make sure we’re on a post or page. After that, we’ll per-
form a regular expression check to see if the shortcode is present in
the content. If it is, we queue our script for inclusion.

if (get_post_type() != 'movies') return;
wp_enqueue_script('jquery');

if (get_query_var("taxonomy") != 'rating') return;
wp_enqueue_script('jquery');

global $post;
if (!(is_single() || is_page()) || !is_object($post)) return;
//Perform a test for a shortcode called yourshortcode in the
content
preg_match('/\[yourshortcode[^\]]*\]/is', $post->post_content,
$matches); //replace yourshortcode with the name of your
shortcode
if (count($matches) == 0) return;
wp_enqueue_script('jquery');

Chapter 5, Page Detection in WordPress 63

Now is the above solution ideal? Not really. In
fact, you can make it super complicated and make
sure the regular expression is only performed when
a post is saved and cache the results as a custom
field. But for quick demonstration purposes, this
does the trick.

Load Scripts for a Specific Platform
Would you like to load a script that requires the
iPhone? What about a script that runs on the Sa-
fari browser, but not Internet Explorer?

Fortunately, WordPress has several global variables
you can use to achieve this.

Here’s a quick snippet that has all of the globals,
but does a check for the iPhone. If the iPhone
isn’t detected, we load an overlay script called
Thickbox (you may be familiar with Thickbox if
you’ve ever used the Media Uploader on a post or
page).

Conditionals Conclusion
There are many, many other conditionals to work
with, so if you fancy some documentation, please

global $is_lynx, $is_gecko, $is_IE, $is_opera, $is_NS4, $is_
safari, $is_chrome, $is_iphone;
if ($is_iphone) return;
wp_enqueue_script('thickbox');

WordPress and Ajax64

check out the official WordPress Codex page on
conditionals: http://codex.wordpress.org/Condi-
tional_Tags

Page Detection in the Admin Area
Page detection is a tad bit more difficult in the
admin area. There aren’t really any conditionals
you can use, and the predictability of what page
your on is pretty much nil. Or is it?

Enter the admin_print_scripts action (for the ex-
amples in this section, you can also interchange
admin_print_scripts with admin_print_styles for
stylesheets).

To load a script for all of the admin pages, you
would use the following code:

That’s great. But what if you only want to load
a script for a certain admin page (such as when
editing a post)? What about for plugin settings
pages, or top-level menu pages?

<?php
add_action('admin_print_scripts', 'my_plugin_load_scripts');
function my_plugin_load_scripts() {
 wp_enqueue_script('jquery');
}
?>

Chapter 5, Page Detection in WordPress 65

Fortunately, admin_print_scripts takes a suffix param-
eter in the format of:

Page Detection for Specific Admin Pages
The suffix can be several different things, so let’s first
go over how to load a script for a specific admin
page.

Say, for example, you would like a script to run when
someone is creating or editing a post. There are two
specific files that allow you to do this, which happen
to be post.php (editing posts or pages) and post-new.
php (new posts or pages). As a result, you can use
post.php and post-new.php as the suffix parameter.

Here’s an example:

In the example, our script will run for files post.php
and post-new.php. Since the script would also run for

admin_print_scripts-suffix

<?php
add_action('admin_print_scripts-post.php', 'my_plugin_load_
scripts');
add_action('admin_print_scripts-post-new.php', 'my_plugin_load_
scripts');
function my_plugin_load_scripts() {
 if (get_post_type() == 'post')
 wp_enqueue_script('jquery');
}
?>

WordPress and Ajax66

pages, we do a quick type-check to make sure it’s
just a post.

You can translate the above example to just about
any admin page.

Need a script to run when editing a comment?
Use the suffix comment.php. What about when
adding a new user? Use the suffix user-new.php.

There are many of these types of pages in the ad-
min panel, and loading scripts or styles is as easy as
adding the page name as a suffix (to admin_print_
scripts and admin_print_styles respectively).

Page Detection for Menu Items
Many themes and plugins come with their own
settings pages in the admin area. Wouldn’t it be
nice to load scripts for these specific areas?

You can, by using the page hook as the suffix.

When you register an admin menu (using func-
tions such as add_options_page and add_menu_page),
the function returns a hook you can use for page
detection.

Chapter 5, Page Detection in WordPress 67

In this next example, we’ll be making use of the
admin_menu action, which is useful for initializing
all of the custom settings pages.

The admin_menu action uses callback function my_
admin_menu. Within my_admin_menu, we assign vari-
able $page_hook with the results of the function
add_menu_page (this adds a top-level settings page).

Afterwards, we use the admin_print_scripts action
with the $page_hook suffix to load a script on our
specific plugin page.

You can use the above technique for all of your
custom menus. For more ways to add menus to

<?php
add_action('admin_menu', 'my_admin_menu');
//Function to initialize the admin menu
function my_admin_menu() {
 $page_hook = add_menu_page("My Plugin Name Options",
"My Plugin", 'administrator', 'my_plugin', 'my_plugin_admin_
settings');
 add_action("admin_print_scripts-$page_hook", 'my_plugin_
load_scripts');
}
//Build the admin menu interface
function my_plugin_admin_settings() {
 echo "My Plugin Page";
}
//Load our scripts
function my_plugin_load_scripts() {
 wp_enqueue_script('jquery');
}
?>

WordPress and Ajax68

WordPress, please see the WordPress Codex page
on administration menus: http://codex.word-
press.org/Adding_Administration_Menus

Page Detection Conclusion
In this chapter you learned how to perform page
detection on the front-end and admin area of a
WordPress site.

Page detection allows you to load scripts and
styles exactly where necessary. Page detection also
helps with page load since unnecessary files are
prevented from loading.

For this next chapter, let’s move away from scripts
and styles a bit, and instead concentrate on some
page-loading techniques that will help you on
your Ajax journey.

Chapter 6

WordPress Loading
Techniques

WordPress and Ajax70

WordPress Loading Tech-
niques
So far we’ve gone through loading scripts and
styles properly, localizing scripts, and how to use
page detection.

What’s next? Let’s just call this chapter the orgy
of various techniques for disabling scripts, loading
the WordPress environment manually, disabling
plugins, and other questionable hacks.

Let’s get started and figure out how to override
the scripts and styles that other plugins or themes
have provided.

Overriding Scripts and Styles

The beauty of queuing scripts and styles is that a
rogue plugin author (such as myself) can override
and/or disable the queued items at will.

Why in the world would anyone want to do this?

Say, for example, that you have installed a plugin
that provides its own styles (let’s use WP PageNavi
as an example, since it is quite popular).

For those not familiar with WP PageNavi, it’s a
neat little plugin that gets rid of the Previous/

Chapter 6, WordPress Loading Techniques 71

Next buttons on a theme and instead gives you
nice numeric options so you can easily navigate
through pages.

I often see themes that support PageNavi include
this as a hard-coded plugin, sometimes because
the CSS has been heavily customized to suit the
theme.

It should be noted that WP PageNavi includes an
option to disable its styles, but that’s just way too
easy. Let’s override the styles instead.

I’ll show you two ways to override this plugin’s
styles: one where you completely override the CSS
with your own file, and one where you disable the
CSS from loading (and include your own in the
theme’s default CSS file).

Overriding Styles (and Scripts)
Styles make use of the wp_print_styles action and
the wp_enqueue_style function for queuing.

All WordPress actions have a priority argument,
which makes it possible to run your code when
needed.

In this case, we want to load our code before Pa-
geNavi queues its stylesheet.

WordPress and Ajax72

Assuming we have taken PageNavi’s CSS file and
placed it in our theme directory, let’s set up an ac-
tion and register the style using the same handler
(so that when PageNavi queues the stylesheet, it
uses our version).

The following could be placed within your plugin’s
init action, or in the theme’s functions.php file:

See the “1” parameter there for add_action? That’s
our priority. Since PageNavi doesn’t declare a pri-
ority (default is 10), we set our priority to run
before its style inclusion function.

By registering our style, we reserve the handler
name. Even though PageNavi queues its style
with its own stylesheet, WordPress sees the han-
dler that we previously registered, and uses that
one instead.

Now what if PageNavi declared a priority of one
(1) like we did? We can declare our priority to

<?php
add_action('wp_print_styles', 'wp_pagenavi_style_override',1);
function wp_pagenavi_style_override() {
 wp_register_style('wp-pagenavi', get_stylesheet_
directory_uri() . '/pagenavi-css.css', array(), '2.7', 'all');
}
?>

Chapter 6, WordPress Loading Techniques 73

run after its code and totally delete PageNavi’s
style reference (so cruel, right?).

However, since PageNavi has a priority of ten (de-
fault), let’s set ours to eleven (it really could be any
integer above ten).

Since our code is run after PageNavi’s, we de-reg-
ister its handler (using wp_deregister_style) and
queue up the style (we could have used a different
handler name here, but it’s a good idea to stick
with the same one).

Overriding styles is that simple. For scripts, it’s
pretty much the same way (albeit, with different
function and action names).

Disabling Styles (and Scripts)
What if you want to completely disable PageNa-
vi’s styles and include them instead in the theme’s
default CSS file?

<?php
add_action('wp_print_styles', 'wp_pagenavi_style_override',11);
function wp_pagenavi_style_override() {
 wp_deregister_style('wp-pagenavi');
 wp_enqueue_style('wp-pagenavi', get_stylesheet_
directory_uri() . '/pagenavi-css.css', array(), '2.7', 'all');
}
?>

WordPress and Ajax74

We’ll make use of priorities once more and call
wp_deregister_style, which will completely dis-
able the style. It’s now up to you to provide your
own styles within your theme’s CSS.

An alternative to de-registering styles is just to
remove the action the plugin uses. Here’s an ex-
ample:

Normally remove_action takes a function name as
its second argument, but since PageNavi uses a
class, we pass an array with the class reference,
and the method name.

<?php
add_action('wp_print_styles', 'wp_pagenavi_style_disable',11);
function wp_pagenavi_style_disable() {
 wp_deregister_style('wp-pagenavi');
}
?>

<?php
add_action('init', 'wp_pagenavi_style_disable');
function wp_pagenavi_style_disable() {
 remove_action('wp_print_styles', array(PageNavi_Core,
'stylesheets'));
}
?>

Chapter 6, WordPress Loading Techniques 75

Loading Just Your Scripts
For advanced users, there may be occasions where
you only want to load just your scripts. You would
do this in order to minimize potential conflicts
with other script files.

Situations where you may want to do this are:

On certain page templates.•	

When using •	 ThickBox or Colorbox as an in-
line frame.

For themers, doing this is relatively simple. Just
remove the wp_head() call from your header.php
file.

From there, you queue your script, and pass the
wp_print_scripts function an array of script han-
dlers.

Here’s some example code:

<?php
/*Use variants of this code before the </head> tag in your
header.php file*/
wp_enqueue_script('my_script', get_stylesheet_directory_uri() .
'/my_script.js', array('jquery'), '1.0.0');
wp_print_scripts(array('my_script'));
?>

http://jquery.com/demo/thickbox/
http://colorpowered.com/colorbox/core/example1/index.html

WordPress and Ajax76

Removing the wp_head call in header.php, however, will cause many
plugins to crash and burn (a lot of plugins need the wp_head call to
load their scripts and styles). Consequently, removing wp_head is a
fairly bad idea.

What about conditionally removing wp_head and printing our scripts
for specific templates? Now we’re talking.

First, we have to get the post or page ID. Next, we have to see if a
custom field named _wp_page_template is set. After that, we check
for a particular template name and disable wp_head accordingly.

In the example, we retrieved the page template name. If one of our
pages uses the Full Width template, we disable wp_head and load

<?php
$custom_template = false;
if (is_page()) {
 global $wp_query;
 $post_id = (int) $wp_query->get_queried_object_id();
 $template = get_post_meta($post_id, '_wp_page_template',
true);
 switch($template) {
 case "custom-page-fullwidth.php":
 $custom_template = true;
 wp_enqueue_script('jquery');
 wp_print_scripts(array('jquery'));
 break;
 }
}
if (!$custom_template)
 wp_head();
?>

Chapter 6, WordPress Loading Techniques 77

all our scripts manually (you can do the same with
styles using wp_print_styles).

Creating Standalone Pages
For those needing to create standalone pages out-
side of the normal templating system that Word-
Press provides, you will first need to manually
load the WordPress environment.

Uses for this technique include:

Providing help pages for plugins or themes.•	

Providing an Ajax processor for your script file •	
(more on that later).

Providing a manually created page (not a •	
permalink) that needs WordPress as a frame-
work.

We’ll first go over how to call wp-load.php directly.
However, there is a more elegant way, which I will
go over next.

Loading WordPress Manually Using wp-load
WordPress’ wp-load.php is the basic starting point
for WordPress. It loads the settings, the config
file, gets your plugins working, theme loaded, and
then some.

http://planetozh.com/blog/2008/07/what-plugin-coders-must-know-about-wordpress-26/
http://planetozh.com/blog/2008/07/what-plugin-coders-must-know-about-wordpress-26/

WordPress and Ajax78

Including wp-load.php in any local file will load
the WordPress environment, meaning you now
have access to all of the back-end code that pow-
ers WordPress.

Here’s some example code on loading WordPress
manually:

Please note that the $root variable will have to be
modified depending on where your page lies in the
directory structure. You may have to use more, or
less, dirname function calls (trial and error is your
good, albeit always drunk, friend).

<?php
/*The use of the dirname functions depend on the hierarchy of
your file. Adjust them as needed.*/
//Code should be used before the </head> tag of your file.
$root = dirname(dirname(dirname(dirname(dirname(__FILE__)))));
if (file_exists($root.'/wp-load.php')) {
 // > WP 2.6
 require_once($root.'/wp-load.php');
 /*Run custom WordPress stuff here */

 //Output header HTML, queue scripts and styles, and
include BODY content
 wp_enqueue_script('my_script', get_stylesheet_directory_
uri() . '/my_script.js', array('jquery'), '1.0.0');
 wp_print_scripts(array('my_script'));
}
?>

Chapter 6, WordPress Loading Techniques 79

This technique assumes you know where wp-load.
php is. If you’re working on a client site, chances
are you know where it is.

If you’re a plugin or theme author writing for the
masses, however, the location is unpredictable.

This is because users can choose to move their
wp-content directory wherever they choose. Since
your theme and/or plugin resides in this directory,
finding wp-load.php is at best a guessing game.

The more elegant way to accomplish standalone
pages is through query variables and a template
redirect.

Loading WordPress Using a Template Redirect
When you are performing a template redirect,
you are (in effect) taking control and dictating to
WordPress which path to take. You can load cus-
tom templates, perform 301 redirects, set head-
ers, and much more.

In this case, we’ll be using a template redirect to
load a custom page based on query variables. Since
the WordPress environment has already loaded by
the time it gets to our redirect, we no longer have
to worry about including wp-load.php directly.

WordPress and Ajax80

First, let’s begin by setting up one action and one
filter and pointing them to some helper functions
(load_page and query_trigger respectively).

You can place the above code in your theme’s func-
tions.php file, or include it in your plugin’s base file
(if writing a plugin). Please keep in mind I made the
function names rather generic. It’s up to you to come
up with something more unique in order to avoid
name conflicts.

The query_vars filter enables us to add a query vari-
able to WordPress. The template_redirect action al-
lows us to capture this query variable and perform an
action on it.

Let’s start with the query_trigger function first.

With the query_trigger function, we are automatical-
ly passed a list of the existing WordPress query vari-

<?php
add_action('template_redirect', 'load_page');
add_filter('query_vars', 'query_trigger');
?>

<?php
function query_trigger($queries) {
 array_push($queries, 'my_page');
 return $queries;
}
?>

Chapter 6, WordPress Loading Techniques 81

ables. It’s our job to add in our query (in this
case, my_page) and return the $queries array.

Now we have to do something with our query
variable, so let’s move on to the load_page func-
tion.

The first thing the load_page function does is es-
tablish an include path, which is captured in the
$pagepath variable.

The function then performs a switch statement
in order to capture the query variable (if appli-
cable).

Right now, we have two cases: one for help.php
and another for changelog.php. If any of those are
found, we load the appropriate page.

<?php
function load_page() {
 $pagepath = WP_PLUGIN_DIR . '/my-plugin-dir/';
 switch(get_query_var('my_page')) {
 case 'help.php':
 include($pagepath . 'help.php');
 exit;
 case 'changelog.php':
 include($pagepath . 'changelog.php');
 exit;
 default:
 break;
 }
}
?>

WordPress and Ajax82

So here’s how it works. Instead of pointing your
browser to a WordPress page, you would point it
to a query.

Using http://mydomain.com/?my_page=help.php
would load the help.php file.

Using http://mydomain.com/?my_page=changelog.php
would load changelog.php.

The benefits of this technique? No having to
search for wp-load.php. You also have access to all
the available WordPress functions, classes, actions,
filters, and so on.

Please note in both help.php and changelog.php,
you will have to queue your scripts like in the wp-
load example shown earlier.

So in order to load scripts on a standalone page,
you will need to:

Load the WordPress environment (via •	 wp-load.

php or using a template redirect).

Queue your scripts for later inclusion.•	

Call the •	 wp_print_scripts function to load your
scripts.

Chapter 6, WordPress Loading Techniques 83

Preventing Plugins From Loading
To call this next technique a hack is giving it a big
compliment.

There may be cases where you will want to prevent
WordPress plugins from loading when creating a
standalone page (to prevent caching, conflicts, or
for some other weird and insane reason).

If you look at your wp-settings.php file, there is a
call to a function named wp_get_active_and_valid_
plugins right before it loads your active plugins.

Within this function, it checks to see if the con-
stant WP_INSTALLING is defined. If it is, WordPress
doesn’t load any plugins.

So to “trick” WordPress into not loading plugins,
you have to define the WP_INSTALLING constant. Af-
terwards, you load the WordPress environment.

After that, we can manually load any plugins de-
sired.

Here’s some sample code demonstrating the con-
cept:

WordPress and Ajax84

The above code demonstrates how to load just one
plugin in order to use its functions if necessary.

As you can see, we set the content-type, define
WP_INSTALLING, and load the WordPress environ-
ment manually.

Afterwards, we specify an absolute path to our pl-
ugin file that we want to load, validate it, make
sure the file exists, and then include the file as part
of WordPress.

<?php
header('Content-Type: text/html');
define('WP_INSTALLING', true);
//Adjust the dirnames to match the path to your wp-load file.
$root = dirname(dirname(dirname(dirname(dirname(__FILE__)))));
if (file_exists($root.'/wp-load.php')) {
 // WP 2.6
 require_once($root.'/wp-load.php');
} else {
 // Before 2.6
 require_once($root.'/wp-config.php');
}
$plugin = 'your-plugin-directory/your-plugin-file.php';

// Validate plugin filename
if (!validate_file($plugin) && '.php' == substr($plugin, -4) &&
file_exists(WP_PLUGIN_DIR . '/' . $plugin)) {
 include_once(WP_PLUGIN_DIR . '/' . $plugin);
}
unset($plugin);
?>

Trial and error is
your good, albeit
always drunk,
friend.

Chapter 6, WordPress Loading Techniques 85

If you have multiple plugins to load, you can use
a foreach statement.

I would advise that you use this technique on a
case-by-case basis.

If writing code for the masses, do not use this tech-
nique as the path to wp-load.php is unpredictable.
However, for personal use and/or client sites, this
technique should be acceptable since you’ll likely
know where wp-load.php can be found.

$current_plugins = get_option('active_plugins');
if (is_array($current_plugins)) {
 foreach ($current_plugins as $plugin) {
 // $plugin looks like: your-plugin-dir/your-plugin-file.
php
 switch($plugin) {
 case: 'yourplugin':
 case: 'anotherplugin':
 break;
 default:
 continue;
 }
 if (!validate_file($plugin) && '.php' ==
substr($plugin, -4) && file_exists(WP_PLUGIN_DIR . '/' .
$plugin)) {
 include_once(WP_PLUGIN_DIR . '/' . $plugin);
 }
 }
 unset($plugin);
}
unset($current_plugins);

WordPress and Ajax86

WordPress Loading Techniques Conclusion
Within this chapter you learned how to:

Override scripts and styles•	

Load just your scripts•	

Create a standalone page•	

Prevent plugins from loading•	

Some of these techniques are just out-right hacks,
but I’ll leave it up to you to decide which ones.

Since we’ve gotten all of the basics out of the way,
let’s move on to doing a little bit of jQuery.

Chapter 7

Properly Formatting jQuery for
WordPress Use

WordPress and Ajax88

Properly Formatting
jQuery for WordPress Use
Did I mention we would be using the uber-awe-
some jQuery library for these examples?

Since we are, it’s a good idea to make sure your
jQuery code is formatted appropriately for Word-
Press.

Topics covered in this section will be:

Namespacing.•	

Public properties/functions.•	

Private variables/functions.•	

You may have your own preference on how to
code your own jQuery scripts, but the examples
I give are based on various painful experiences of
trial and error (remember my drunk friend?). In
my examples, I’m not going for creative program-
ming; I’m going for readability.

Namespacing
For those not familiar with namespacing, let me
give you a brief example.

Say that there are two plugins, both having the
function of readCookie, which is not that un-

http://www.jquery.com

Chapter 7, Properly Formatting jQuery for WordPress Use 89

common since it is a very usable function from
QuirksMode.

The result would be a JavaScript error and a pos-
sibly non-functioning script.

Namespacing resolves this issue by enclosing the
readCookie function inside of a unique name that
can only be called from within the namespace.
The result? No conflicts!

So how does one namespace?

Let’s start off with some basic jQuery starter code
that will spit out an alert box after the page has
finished loading:

The jQuery(document).ready() code starts initializ-
ing before a window has finished loading.

An additional benefit is you can use the above
code ad-inifitum, unlike the selfish onLoad event
(theme and plugin authors using the onLoad event
are just asking to get their butts kicked by other
developers).

jQuery(document).ready(function() {
 var $ = jQuery;
 alert("HI");
});

http://www.quirksmode.org/js/cookies.html
http://docs.jquery.com/Tutorials:Introducing_$(document).ready()

WordPress and Ajax90

One thing you might notice is the $ symbol. It’s
a symbol that jQuery, Prototype, and MooTools
use. Since WordPress runs jQuery in no-conflict
mode, you must use the jQuery object instead of
the $ symbol.

As a sidenote, I highly recommend not using
MooTools with WordPress simply because of the
conflicts it has with the jQuery and Prototype li-
braries (I’m not knocking MooTools or anything,
but it just doesn’t play well with the libraries
WordPress primarily uses).

Since I like using the $ symbol for the sake of sim-
plicity, I declare the $ symbol inside the scope of
the load event and assign it the jQuery object.

From there, we use the jQuery plugin authoring
guidelines to assign our namespace.

Here’s an example:

As you can see from the above code, I created a
namespace called my_script_namespace using the $

jQuery(document).ready(function() {
 var $ = jQuery;
 $.my_script_namespace = {};
});

Never, ever, use
the onLoad event
to initialize a
script. You might
just find some
nasty “surprises”
in your mail.

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring

Chapter 7, Properly Formatting jQuery for WordPress Use 91

reference. Creating a namespace is as simple as
that.

Public Properties/Functions
Since we’re not creating a jQuery plugin, we’ll
stray slightly from the “guidelines”.

There are certain variables, properties, and func-
tions you will want others to be able to publicly
call.

Here’s an example of each type:

The init function is your publicly accessible ini-
tialization function call. You execute code direct-
ly inside this function without referencing other
functions.

The my_function function is probably as close to a
property as you’ll get in JavaScript. You can exe-

jQuery(document).ready(function() {
 var $ = jQuery;
 $.my_script_namespace = {
 init: function() {
 alert("Initializing");
 },
 my_function: function(obj) { /*do some stuff*/
 _my_function($(obj));},
 vars: {}
 }; //end my_script_namespace
});

Namespacing
prevents function
naming conflicts.

WordPress and Ajax92

cute code, and call a private function (which we’ll
declare later).

The variable vars is declared as an empty object,
which can be added to from an additional private
variable of the same name (not declared yet).

Private Variables/Functions
Private variables and functions are necessary for
when you don’t want other scripts to call your
functions directly (use a property for indirect ac-
cess).

A script with private variables and functions looks
like this:

jQuery(document).ready(function() {
 var $ = jQuery;
 $. my_script_namespace = {
 init: function() {
 alert("Initializing");
 },
 my_function: function(obj) { /*do some stuff*/
 _my_function($(obj));},
 vars: {}
 }; //end my_script_namespace
 //Private variables/functions are declared outside of
the namespace
 var myvars = $.my_script_namespace.vars; //private
variable
 function _my_function(obj) { /*private function*/
 //my private code here
 }
});

Chapter 7, Properly Formatting jQuery for WordPress Use 93

Notice that our namespace ended before the dec-
laration of the private functions and variables.
Also note the commas separating the properties,
functions, and variables in the namespace.

All of the functions and variables (that are private)
are now within the scope of the jQuery(document).
ready() enclosure. Since they exist only within
the scope of the enclosure, you will be able to
avoid the conflict of having duplicate JavaScript
functions.

The beauty of this is that the namespace’d func-
tions can call the in-scope functions. Further-
more, the private variables can reference the
namespace’d variables.

If you’ve been looking closely at the code, you’ll
observe that nothing is being done here. After the
namespace is added, no function is being called.
The namespace is there, but nothing is happen-
ing.

It’s as if the namespace doesn’t exist (cue scary
music).

The best way I’ve found to load code is to call a
public initialization function immediately before
the ending of the loading enclosure:

WordPress and Ajax94

By placing the $.my_script_namespace.init(); to-
wards the end, you ensure that the rest of the code
has finished loading. From there, you can call the
public initialization function (which currently
displays an alert box to show it’s working).

Advanced users (such as other plugin authors)
may need to call this from outside the original
script.

In this case, you’ll want to use the above script as
a dependency, and use your own load event to call
the script using the regular jQuery namespace.

jQuery(document).ready(function() {
 var $ = jQuery;
 $. my_script_namespace = {
 init: function() {
 alert("Initializing");
 },
 my_function: function(obj) { /*do some stuff*/
 _my_function($(obj));},
 vars: {}
 }; //end my_script_namespace
 //Private variables/functions are declared outside of
the namespace
 var myvars = $.my_script_namespace.vars; //private
variable
 function _my_function(obj) { /*private function*/
 //my private code here
 }
 $.my_script_namespace.init();
});

Chapter 7, Properly Formatting jQuery for WordPress Use 95

Including Your jQuery Script in Your Theme
Let’s use the jQuery code we developed in this
chapter and put it into a WordPress theme.

Yes, it just spits out an alert box, but this will show
you how to take a script and add it in.

Now one question I often get regarding scripts is
why not to put the script directly into header.php
using the <script> tags? Well, for one, it’s incred-
ibly difficult to specify dependencies. And an-
other reason, it’s impossible to disable the script
programmatically, which is a major benefit of
queueing scripts.

That being said, let’s take our final JavaScript code
and place it in your theme’s root directory with a
file named init.js (I always like having an init.
js file with my theme just so I can initialize events
and such).

Now open up functions.php and we’ll set up a
script that only loads on the front-end of a site.

Here’s the code we’ll use in functions.php:

jQuery(document).ready(function() {
 jQuery.my_script_namespace.init();
});

WordPress and Ajax96

With the above code, you’ll see an alert box when
you visit each front-end page.

Conclusion for Properly Formatting jQuery for
WordPress
In this section you learned how to properly for-
mat jQuery code for WordPress.

The examples given are my personal guidelines
from painful experience, but you’re welcome to
experiment with your own techniques.

So the foundation has been laid. You know how to
load scripts and styles properly. You know how to
localize scripts and perform page detection. And
now you know some pretty nifty loading tricks.

Before we move to our first Ajax request, let’s learn
a little about WordPress security.

<?php
add_action('wp_print_scripts', 'my_theme_js_init');
function my_theme_js_init() {
 if (is_admin()) return;
 wp_enqueue_script('my_theme_init', get_stylesheet_
directory_uri() . '/init.js', array('jquery'));
}
?>

Chapter 8

Nonces and the Escape API

WordPress and Ajax98

Nonces and the Escape
API
Helping secure WordPress is always a good thing.
The golden rule of WordPress security is, “Never
trust anyone, even yourself.”

Security involves making sure requests have origi-
nated from the correct location, and escaping un-
trusted sources of information (which can come
from user input, malicious localization, and even
your own database).

The use of WordPress nonces and the Escape API
(as I’ll call it) assist in securing your WordPress
plugin or theme. And using them with Ajax re-
quests is a must.

Let’s begin with nonces, since you’re probably
wondering what the heck that is.

WordPress Nonces
A WordPress nonce (a number used once, get it?)
is a way of ensuring a request originated from the
correct source.

Okay, so that didn’t make a whole lot of sense,
did it?

Chapter 8, Nonces and the Escape API 99

Let me explain with an analogy.

You have checked into a hotel and are given an
electronic room key for room 215.

What if, while you’re out on the town, you drop
your room key? Someone could pick it up, but
(magnetic hacking aside) that person would have
no idea what room the key went to.

Furthermore, this room key expires the moment
you check out, or even as you request a new room
key, thus rendering the key good for only a short
amount of time.

The room key is your nonce, and each nonce is
associated with an action, which in this example
would be, “Open room 215.”

If someone retrieved this room key, all they would
be able to potentially do is enter your room. The
person couldn’t steal your car, enter your house,
or steal your child’s candy.

Nonces behave almost the same way. They are as-
sociated with a specific action, have an expiration,
and require a specific key (in the form of a unique
string) that will allow the action to proceed.

WordPress and Ajax100

WordPress nonces help protect you from a com-
mon exploit called Cross-Site Request Forgery (or
CSRF).

Say, for example, you are logged in as an admin
user for a WordPress site. Somebody you trust
sends you an e-mail and asks you to visit the site.
You click on the link.

What you didn’t realize, however, was the link was
set up to exploit a user-related WordPress plugin
that would add a user to your WordPress site.

Since a nonce wasn’t used, the plugin has no way
of knowing that you “intentionally” wanted to
add this user. Instead, the plugin is simply relying
on your admin status to perform the action.

If a nonce were used, this request would have
been stopped cold. The person sending the e-
mail would have to know the nonce key, and also
have registered the action within WordPress. And
there’s a time limit, as the nonces are valid for only
24 hours (the keys change every 12 hours).

So what are ideal situations when nonces should
be used?

Chapter 8, Nonces and the Escape API 101

When performing actions in an administrative •	
panel (plugin settings pages, theme settings
pages, custom meta for posts, etc.)

When storing items in the WordPress data-•	
base

When retrieving items from the WordPress •	
database that require a logged-in status (pro-
file information, options)

As a reminder, nonces are action based. If this ac-
tion needs protection, then nonces are necessary
to ensure the request originated legitimately.

Now that the nonce terminology is out of the
way, what are some of the applications for using
nonces?

Nonces and Forms
When using nonces with forms, you can make use
of the WordPress function wp_nonce_field.

The function wp_nonce_field takes in four argu-
ments, all of which are optional.

<?php wp_nonce_field($action, $name, $referer, $echo) ?>

WordPress and Ajax102

$action•	 - The nonce action you would like to take.
An example is: my-form_submit.

$name•	 - The nonce name (default is _wpnonce). I
recommend always using this parameter since
WordPress’ default is _wpnonce and you wouldn’t
want to conflict (especially when creating forms
in the WordPress admin area).

$referer•	 - A boolean on whether to set the referer
field or not. I usually just set this to true.

$echo•	 - Whether to echo out the result, or return
it (default is true). If you are creating a form as
a shortcode or as a string and need the result re-
turned, set this option to false.

Here’s some example code that I’ve placed in a Word-
Press page template (you could use a shortcode in-
stead).

<form id='registration-form' method="post" action="<?php echo
$_SERVER["REQUEST_URI"]; ?>">
<?php wp_nonce_field('submit-form_registration', '_
registration_nonce', true, true); ?>
<!--form data-->
<input type='submit' value='Submit Registration'
name='registration-submit' id='registration-submit' />
</form>

Chapter 8, Nonces and the Escape API 103

The above code has a nonce field that is echoed
out. The action name is submit-form_registration
and the nonce name is _registration_nonce.

The form posts to itself (i.e., the same page),
so when we begin processing the form data, we
would make use of the check_admin_referer Word-
Press function to verify the nonce.

The check_admin_referer function takes in two ar-
guments: the nonce action and the nonce name.
If the nonce isn’t valid, WordPress outputs a mes-
sage (either a ”-1” or a “Are you sure you want to
do this?” message).

An alternative to check_admin_referer is the Word-
Press function wp_verify_nonce.

The function wp_verify_nonce takes in two argu-
ments: the actual nonce and the nonce action.

Here’s an example of the same type of verification
using wp_verify_nonce.

<?php
if (isset($_POST['registration-submit'])):
 check_admin_referer('submit-form_registration', '_
registration_nonce');
 echo "Success!";
endif;
?>

WordPress and Ajax104

Both check_admin_referer and wp_verify_nonce ac-
complish the same thing: stopping an uninten-
tional request cold.

I prefer using wp_verify_nonce since I have more
control over the output. However, check_admin_
referer is simpler and requires less code. It’s your
call on how you want to verify nonces.

Nonces and URLs
If you have comments enabled on your site,
chances are you have received e-mails when some-
one leaves a comment on a post. These comment
e-mails contain several links, notably the ones to
delete or mark the comment as spam. These links
have nonces attached to them.

There are two functions that will help you create
a link that has a nonce attached: wp_nonce_url and
wp_create_nonce.

<?php
if (isset($_POST['registration-submit'])):
 if (!wp_verify_nonce($_REQUEST['_registration_nonce'],
'submit-form_registration')) {
 die("Request is not valid");
 }
endif;
?>

Chapter 8, Nonces and the Escape API 105

Once again, I just created a page template that
spits out a link. The link (when clicked) goes to
the same page, but with a nonce variable attached
as a GET variable.

The wp_nonce_url function takes in two arguments:
the URL to visit, and the nonce action.

Here’s some sample code that would be placed in-
side the loop:

The nonce action used here is called sample-link-
action. When clicked, the nonce is checked.

Let’s modify the above code to use wp_create_nonce
instead. The wp_create_nonce function only takes in
one argument, which is the nonce action name.

It’s up to us to define the query variable (i.e., a GET
variable) that will be appended to the URL.

<?php
if (isset($_REQUEST['_wpnonce'])):
 if (!wp_verify_nonce($_REQUEST['_wpnonce'], 'sample-
link-action')) {
 die("Request is not valid");
 }
endif;
 ?>
<?php
$my_site_url = wp_nonce_url(get_permalink() , 'sample-link-
action');
?>

WordPress and Ajax106

As you can see from the code, a query variable
called _sample_link_nonce is created and assigned
the value from wp_create_nonce.

So when would you use wp_create_nonce over wp_
nonce_url? It’s all about control, as in the case of
check_admin_referer versus wp_verify_nonce.

Both will get you to the same result, but wp_cre-
ate_nonce gives you more control on naming the
nonce name and forming the URL.

Nonces and Ajax
Nonces and Ajax aren’t exactly straightforward,
but you’ll see how Ajax nonces are implement-
ed throughout the various Ajax examples in this
book.

<?php
if (isset($_REQUEST['_sample_link_nonce'])):
 if (!wp_verify_nonce($_REQUEST['_sample_link_nonce'],
'sample-link-action')) {
 die("Request is not valid");
 }
endif;
 ?>
<?php
$nonce = wp_create_nonce('sample-link-action');
$my_site_url = get_permalink() . '?_sample_link_nonce=' .
$nonce;
?>

Chapter 8, Nonces and the Escape API 107

Basically, you would create either a nonce in a
form field or as a URL (using the techniques al-
ready presented in this chapter) and use JavaScript
to capture the nonce value.

You would then use Ajax to pass this nonce value
to your Ajax processor. The Ajax processor will
then verify the nonce.

The two functions to assist you in verifying Ajax
nonces are: check_ajax_referer (same arguments
as check_admin_referer) and (slightly repeating
myself) wp_verify_nonce.

Once again, it’s about control. The check_ajax_
referer function assumes a $_REQUEST variable of _
ajax_nonce. With wp_verify_nonce, the nonce vari-
able can be defined in the function call.

So which is better? It’s your call.

The Escape API
The WordPress Escape API (a.k.a. Data Valida-
tion) is a way for you to sanitize untrusted pieces
of information.

So what information can’t be trusted?

Information you input (yes, you can’t even •	
trust yourself)

WordPress and Ajax108

Information others input•	

Information in your own database (just be-•	
cause it’s already there doesn’t mean it’s safe)

In summary, you can’t trust anyone or anything
that comes in contact with your WordPress instal-
lation. This is why data validation is so crucial.

Let’s go over several functions you would use to
ensure the integrity of your data using both the
Escape API and several PHP functions.

Validating Numeric Inputs
If you create a function or code snippet that takes
a value that should be an integer, it’s a good idea
to ensure that the data is what you think it is.

To verify that an input is an integer, you can use
the PHP function intval.

In the above example, I pass a string variable. The
result is:

<?php
function my_test_input($post_id = 0) {
 echo "Before: $post_id";
 $post_id = intval($post_id);
 echo "After: $post_id";
}
my_test_input("sdlkjflkjdf");
?>

Chapter 8, Nonces and the Escape API 109

You can use the WordPress function absint to en-
sure that the integer isn’t negative:

The PHP is_numeric function can also be used to
verify that the input is indeed a number:

Escaping HTML
Escaping HTML input is useful for storing data
in the WordPress database, for outputting HTML
text to the screen, and for placing HTML text in
textareas.

Here’s an example:

Before: sdlkjflkjdf
After: 0

<?php
echo absint("-40"); //Output is 40
?>

<?php
echo is_numeric(9.4); //Output is 1 or true
?>

<?php
$string = "Test HTML Input";
echo esc_html($string);
//Outputs: Test HTML Input</
em>
?>

WordPress and Ajax110

As you can see from the output, esc_html encodes
the various HTML tags (esc_html also encodes
ampersands, single quotes, and double quotes).

If you wish to use translations with esc_html, you
would append __ (for returning) or _e (for echo-
ing) to the function.

Escaping Attributes
In general, every piece of text that goes within an
attribute should be escaped using the WordPress
function esc_attr. As with esc_html, you can ap-
pend __ or _e for translations.

Here’s an example of using esc_attr to output to
a form input.

<?php
$string = "Test HTML Input";
esc_html_e($string, 'UniqueLocalizationName');
//Outputs: Test HTML Input</
em>
?>

<?php
$string = '"My <> String in quotes"';
?>
<input type="text" value="<?php echo esc_attr($string); ?>"
/>
<?php
//Outputs: <input type="text" value=""My <> String
in quotes"" />
?>

Chapter 8, Nonces and the Escape API 111

Using esc_attr shouldn’t be limited to forms. If it
goes in an attribute, a WordPress best practice is
to escape the text using esc_attr.

Escaping JavaScript
If you’re creating a JavaScript variable with a PHP
value, the esc_js function will escape the value.
The main uses of the function are for escaping
single quotes and double quotes.

The best case I’ve seen for using esc_js is when
localizing JavaScript variables (using wp_localize_
script).

The following example will demonstrate how
esc_js is used with JavaScript localization. The
example assumes you have already used the ap-
propriate WordPress actions to queue the script
up properly.

Escaping URLs
You shouldn’t trust URLs people enter as well.
If a URL is formed maliciously, it can wreak all

<?php
function add_scripts() {
 global $post;
 wp_enqueue_script('ajax-registration-js', plugins_url(
'js/registration.js' ,__FILE__), array('jquery', 'wp-ajax-
response'), '1.0');
 wp_localize_script('ajax-registration-js',
'ajaxregistration',
 array('Ajax_Url' => esc_url(admin_url('admin-
ajax.php')),
 'DatabaseText' => esc_js(intval($post->ID)),
 'TranslationText' => esc_js(__('My Text',
'UniqueLocalizationName'))
));
}
?>

WordPress and Ajax112

kinds of havoc. Fortunately, WordPress has the
esc_url function.

One thing to take note of here is it is generally
a good practice to escape all URLs (even if they
come from your own database). Here’s an exam-
ple:

Please observe how the ”<” character was removed
and the single quote and ampersand were encod-
ed.

Filtering HTML
If you are accepting input from users that is
HTML, it’s a good idea to filter the input.

The WordPress function wp_kses allows you to fil-
ter the HTML input. You can use the WordPress
global $allowedposttags to use the WordPress list.
Or, you can create your own.

Let’s filter the following link a user has submit-
ted:

<?php
echo "<a href='" . esc_url (site_url("/<sampletext'&%")) .
"'>Escaped URL";
//The output: <a href='http://localhost:8888/ronalfy/sampletex
t'&%'>Escaped URL
?>

Chapter 8, Nonces and the Escape API 113

Let’s get a little strict with our attributes. Let’s
only accept the “href” and “title” attributes. Ev-
erything else must be stripped out.

The technique is to build our own KSES array and
use the wp_kses function to filter the input.

The KSES array will only allow one HTML tag
and the two attributes we want to allow.

And here’s the resulting output:

As you can see from the KSES example, you can
filter the HTML so only the tags and attributes
you allow are accepted.

<a href='http://www.wordpress.org' class='link' id='wordpress-
link' title='WordPress.org'>WordPress.org

<?php
$custom_kses = array(
 'a' => array(
 'href' => array (),
 'title' => array ()
));
echo wp_kses("<a href='http://www.wordpress.org' class='link'
id='wordpress-link' title='WordPress.org'>WordPress.org",
$custom_kses);
?>

<a href='http://www.wordpress.org' title='WordPress.
org'>WordPress.org

WordPress and Ajax114

Escape API Conclusion
Within this chapter I’ve covered several PHP and
WordPress functions to assist in data validation.

There are many more functions available, and I
encourage you to read over the Data Validation
section at the WordPress Codex: http://codex.
wordpress.org/Data_Validation

Chapter 9

Sending Our First Ajax
Request

WordPress and Ajax116

Sending Our First Ajax Re-
quest
By now, you should know how to do the follow-
ing:

To properly add scripts to WordPress.•	

To create well-formed jQuery scripts.•	

To localize scripts.•	

It’s now time to work on our first Ajax request.

We’ll be doing a simple Ajax call to the WordPress
back-end to get the total number of comments on
a website. It’s simple, but it’ll demonstrate what’s
needed to make that first Ajax request (gotta crawl
before you walk).

In this example, I’ll be making use of themes. The
later (and more advanced) examples will make use
of plugins (so don’t go crying to mama just yet
plugin authors).

This example spans two chapters and will cover
how to manually create an Ajax processor. How-
ever, WordPress has its own built-in Ajax proces-
sor, and I’ll demonstrate how to use it after we
have our bases covered here.

Chapter 9, Sending Our First Ajax Request 117

Here are the files we’ll be working with:

functions.php•	

sidebar.php•	

my_script.js•	

ajax-processor.php•	

Set Up the PHP Class to Handle Back-end Op-
erations
We’ll first place our PHP class in our functions.
php file. For those not familiar with functions.php,
it allows a theme to have access to a handful of
custom functions throughout the theme. It’s also
a good way to hard-code in plugins.

wp-content themes my_theme

functions.php
sidebar.php
my_script.js

ajax-processor.php

 Base FilesFigure 2.

WordPress and Ajax118

I’ve created the following class to include in our
functions.php file.

The above PHP class is very scaled down, but it
sets up a decent structure for future growth.

Since we are going to be retrieving comments us-
ing the WordPress back-end, I’ve added in the
get_comments method.

<?php
if (!class_exists('myThemeClass')) {
 class myThemeClass {
 /**
 * PHP 4 Compatible Constructor
 */
 function myThemeClass(){$this->__construct();}
 /**
 * PHP 5 Constructor
 */
 function __construct(){
 //initialization code here
 }
 function get_comments() {
 //get comment code here
 }
 } //End Class myPluginClass
}
//instantiate the class
if (class_exists('myThemeClass')) {
 $myClassVar = new myThemeClass();
}
?>

Chapter 9, Sending Our First Ajax Request 119

Use functions.php
for theme-wide
custom functions.

Setting up the Interface
The next step in sending our Ajax request is to set
up some kind of interface that the user will inter-
act with on the client-side.

In this particular case, it’s just a link. Yep, a sim-
ple link!

We’re going to add this link in our sidebar.php
file.

First I’m going to assign a variable our href por-
tion of the link.

There are a few things going on here. The wp_
nonce_url function is necessary for securing links.
It prevents you from following a malicious script
and performing an unintended action on the
back-end.

Since we’re not accessing anything serious, the
wp_nonce_url is overkill, but learning it now will
help you later if you want to secure your Ajax re-
quests.

<?php
$link_url = esc_url(wp_nonce_url(site_url('?my_page=ajax-
processor&action=getcomment'), "my-theme_getcomment"));
?>

http://markjaquith.wordpress.com/2006/06/02/wordpress-203-nonces/

WordPress and Ajax120

In this case, we pass wp_nonce_url our URL and a
unique identifier that combines the name of our
theme to the action it wants to take.

The site_url function is used because we want our
site’s base URL. What’s passed is a relative path, and
WordPress formats the URL appropriately.

Finally, we use the esc_url function, since it’s a Word-
Press best-practice to sanitize data coming from the
database.

The $link_url now has a value similar to this:

We now have two variables to work with when we
deal with our Ajax request: action, and _wpnonce.
Please keep in mind the _wpnonce value was generated
based on the unique string we used with wp_nonce_url,
which in this case is my-theme_getcomments.

Also of note is our action=getcomment variable. Since
it’s likely that our Ajax processor will be taking various
inputs, we specify what action we want it to take.

Our final link code in the sidebar.php file would look
like this:

http://www.yourdomain.com/?my_page=ajax-processor&
action=getcomments&_wpnonce=1d8a910922

Chapter 9, Sending Our First Ajax Request 121

I gave the link an id of get-comments in order to
capture it later for events inside of jQuery. I also
placed an empty div with an id of get-comments-
output for displaying our output (more on that
later).

Notice that I used another localization function,
_e. This echoes out the string rather than return-
ing it, as opposed to the __ function. We’ll add in
our localization code later.

When viewing your theme, you should now see
the Get Comments link.

Now it’s time to set up our JavaScript file.

<?php
$link_url = esc_url(wp_nonce_url(site_url('?my_page=ajax-
processor&action=getcomment'), "my-theme_getcomment"));
 ?>
<a href='<?php echo $link_url; ?>' id='get-comments'><?php
_e('Get Comments','get-comments'); ?>
<div id="get-comments-output"></div>

 Get Comments LinkFigure 3.

WordPress and Ajax122

Setting Up the JavaScript File
We’ll now be working with our my_script.js file,
which should be empty at this point.

First, let’s add in our loading code foundation:

Now, let’s create a namespace of get_my_comments
with a public init function. We’ll also be adding
a call to the init function as well.

Now we have a good foundation going. As soon
as the document has loaded, our initialization
function will run. As of right now, the script
hasn’t been added to your theme yet, but we’ll get
to that soon.

The next step is adding an event to capture when
the user clicks on our Get Comments link. The event
code will be placed inside our init function.

jQuery(document).ready(function() {
 var $ = jQuery;
});

jQuery(document).ready(function() {
 var $ = jQuery;
 $.get_my_comments = {
 init: function() { /*my init code */}
 }; //End of get_my_comments namespace
 $.get_my_comments.init();
});

Chapter 9, Sending Our First Ajax Request 123

Within the event, we’ll call a private function
named _do_ajax and pass it our link object.

We have now captured the click event for our link,
but nothing is happening yet other than calling
our _do_ajax function.

Let’s begin setting up our Ajax object.

In our init function, we call the private function
_do_ajax and pass it our link object.

We then create the _do_ajax function, and create
the variable element to hold our object. We place
the $() around the obj variable in order to use
jQuery actions with it.

jQuery(document).ready(function() {
 var $ = jQuery;
 $. get_my_comments = {
 init: function() {
 $("a#get-comments").bind("click",
function() {
 _do_ajax(this); //Call to our private
function
 return false;

 });
 }
 }; //End of get_my_comments namespace
 function _do_ajax(obj) {
 var element = $(obj); //our link object
 } //end _do_ajax
 $.get_my_comments.init();
});

WordPress and Ajax124

The next step is parsing our link object.

The wpAjax object comes from one of our script
dependencies that we haven’t defined yet (wp-ajax-
response).

It takes the href attribute of the passed element
and creates an object called url with it.

The url object now has two variables we can ac-
cess via JavaScript (url._wpnonce and url.action).
We can also use the href attribute to capture the
path to our Ajax processor, but I want to show you
how to capture this path via localized JavaScript
since not all Ajax requests involve links.

Setting up the Ajax Object
We’ll be building on the existing _do_ajax func-
tion to set up our Ajax object.

I’ll first create an object with the name of s to
hold our Ajax data. Why s? Because it’s short and
sweet (like my alliteration?).

With our s object, we’ll define our parameters for
use with jQuery’s Ajax options.

function _do_ajax(obj) {
 var element = $(obj); //our link object
 var url = wpAjax.unserialize(element.attr('href'));
}

http://docs.jquery.com/Ajax/jQuery.ajax#options

Chapter 9, Sending Our First Ajax Request 125

There’s a lot going on here. First, I define the
s object. I then set the response type using
s.response.

I also set the Ajax request to be POST, give it a
URL to the Ajax processor (using mythemegetcom-
ments.ajax_url, which we’ll create using localiza-
tion later), and assign data that will be passed to
our Ajax processor.

The s.data object is used to pass variables to our
Ajax processor (in this case as POST variables).
The variables passed will be action and _ajax_nonce
(holds the values of our action name and nonce
value respectively).

We have two objects in our script that are un-
defined right now: wpAjax and mythemegetcomments.

function _do_ajax(obj) {
 var element = $(obj); //our link object
 var url = wpAjax.unserialize(element.attr('href'));
 var s = {};
 s.response = 'ajax-response';
 s.type = "POST";
 s.url = mythemegetcomments.ajax_url;
 s.data = $.extend(s.data, { action: url.action, _ajax_
nonce: url._wpnonce });
 s.global = false;
 s.timeout = 30000;
} //end _do_ajax

WordPress and Ajax126

Let’s move back to our functions.php file and add
them in.

Finalizing the functions.php Class
Earlier in this chapter, I gave you the foundation
for a PHP class with a name of myThemeClass.

Here’s what we need to finalize this class:

Finish the •	 get_comments method.

Add in our JavaScript files.•	

Add in JavaScript localization.•	

Add in String localization.•	

The get_comments Method
Let’s concentrate on our get_comments method
first.

What we’ll do is call the wp_count_comments func-
tion and return its content.

The wp_count_comments function returns an ob-
ject with variables approved, moderated, spam, and
trash.

function get_comments() {
 return wp_count_comments();
 /*wp_count_comments returns an object with values of
trash, spam, approved, and moderated*/
}

Chapter 9, Sending Our First Ajax Request 127

Add in our JavaScript Files
In the constructor, let’s add the wp_print_scripts
action to point to a method conveniently named
add_scripts.

Now we can concentrate on our add_scripts meth-
od.

You might remember from our my_scripts.js file
that we had an undefined object of wpAjax. The
dependency wp-ajax-response is the script that ini-
tializes that object.

The next thing going on is we queue our script
(giving it a handle of my_script) and give it the
dependencies of jquery and wp-ajax-response.

function __construct(){
 add_action('wp_print_scripts', array(&$this,'add_
scripts'));
}

function add_scripts() {
 if (is_admin()) return;
 wp_enqueue_script('my_script', get_stylesheet_directory_
uri() .'/my_script.js', array("jquery", "wp-ajax-response") ,
"2.3");
 wp_localize_script('my_script', 'mythemegetcomments',
$this->get_js_vars());
}//End add_scripts

WordPress and Ajax128

Finally, we call the wp_localize_script function,
pass it our script’s handler name, tell it to create
a JavaScript object named mythemegetcomments, and
pass it a list of variables to localize (via the get_js_
vars method, which will return an array of strings
to localize).

Let’s move on to JavaScript localization.

Add in JavaScript Localization
We’ll be calling several strings that need to be
localized in our my_scripts.js file. Here are the
strings that need to be localized:

You have•	

approved•	

comments•	

in moderation•	

trashed•	

spam•	

When we used wp_localize_script, we called a
method named get_js_vars. Let’s define this
method and have it return an array of localized
strings.

Chapter 9, Sending Our First Ajax Request 129

Do you remember how earlier we used the
JavaScript object mythemegetcomments.ajax_url to
get the path to our Ajax processor? This is where
that object comes from.

Since we passed wp_localize_script an object
name of mythemegetcomments, WordPress will create
that JavaScript object and assign a variable named
ajax_url with the URL to our Ajax processor.

We also again make use of the __ function with
the localization name get-comments. We will use
this name in a little bit to add in some localization
so that our JavaScript variables can be translated
into other languages.

When viewing the HTML source, you should
now see something similar to this example:

function get_js_vars() {
 return array(
 'ajax_url' => site_url('?my_page=ajax-processor'),
 'you_have' => __('You have', 'get-comments'),
 'approved' => __('approved', 'get-comments'),
 'comments' => __('comments', 'get-comments'),
 'in_moderation' => __('in moderation', 'get-
comments'),
 'trashed' => __('trashed', 'get-comments'),
 'spam' => __('spam', 'get-comments')

);
} //end get_js_vars

WordPress and Ajax130

Beautiful, right? Everything’s in just the right or-
der.

You now have access to the mythemegetcomments and
wpAjax objects in your my_script.js file.

<script type='text/javascript' src='http://www.yourdomain.com/
wp-includes/js/jquery/jquery.js?ver=1.4.2'></script>
<script type='text/javascript'>
/* <![CDATA[*/
var wpAjax = {
 noPerm: "You do not have permission to do that.",
 broken: "An unidentified error has occurred."
};
try{convertEntities(wpAjax);}catch(e){};
/*]]> */
 </script>
<script type='text/javascript' src='http://www.yourdomain.com/
wp-includes/js/wp-ajax-response.js?ver=20091119'></script>

<script type='text/javascript'>
/* <![CDATA[*/
var mythemegetcomments = {
 ajax_url: "http://www.yourdomain.com/?my_page=ajax-
processor",
 you_have: "You have",
 approved: "approved",
 comments: "comments",
 in_moderation: "in moderation",
 trashed: "trashed",
 spam: "spam"
};
/*]]> */
 </script>
<script type='text/javascript' src='http://www.yourdomain.com/
wp-content/themes/twentyten/my_script.js?ver=2.3'></script>

Chapter 9, Sending Our First Ajax Request 131

Add in String Localization
We’re almost done with the localization. We
just need to add support for localization into our
class.

Let’s go back to our constructor and add in an
init action and point it to a method named (what
else?) init.

We next create the init method and initialize the
localization.

Add in Query Variable Support
Finally, we need to add in query variable support
for our Ajax processor. We’ll start by adding the
load_page and query_trigger methods.

The query_trigger method adds in our query vari-
able and the load_page handles the loading of the
Ajax processor.

function __construct(){
 add_action('wp_print_scripts', array(&$this,'add_
scripts'));
 add_action('init', array(&$this, 'init'));
}

function init() {
 load_theme_textdomain('get-comments');
}

WordPress and Ajax132

If the value for query variable my_page is ajax-pro-
cessor, we check for the existence of the file. If it
exists, the file is included. If not, we return a 404
header (not really necessary, but will assist with
errors later on).

Ideally, instead of returning the 404 error, you
would just break out of the switch and allow for
normal WordPress templating.

Please note that the constant STYLESHEETPATH is
what gives us the absolute directory path to your
active parent or child theme.

function load_page() {
 $pagepath = STYLESHEETPATH . '/';
 switch(get_query_var('my_page')) {
 case 'ajax-processor':
 if (file_exists($pagepath . 'ajax-processor.
php'))
 include($pagepath . 'ajax-processor.
php');
 else
 header("HTTP/1.0 404 Not Found");
 exit;
 default:
 break;
 }
} //end function load_page
function query_trigger($queries) {
 array_push($queries, 'my_page');
 return $queries;
}//end function query_trigger

Chapter 9, Sending Our First Ajax Request 133

Up next is adding in the action for load_page and
the filter for query_trigger. We’ll be adding the
action and filter right after the class is instantiat-
ed.

We’re now done with our class. Phew! Let’s move
on to finalizing our first Ajax request.

Finalizing the Ajax Request
Let’s move back to our my_script.js file.

The last thing we did with it is add in some data
for our s object.

Let’s add in a success and error function for our
Ajax request.

//instantiate the class
if (class_exists('myThemeClass')) {
 $myClassVar = new myThemeClass();
 add_action('template_redirect',
array(&$myClassVar,'load_page'));
 add_filter('query_vars', array(&$myClassVar,'query_
trigger'));
}

WordPress and Ajax134

As seen in the above code, our success and error
functions are each defined to alert us to which
one occurs.

Now it’s time to add in our Ajax call, which is the
last step in sending our first Ajax request.

Sending an Ajax request is that simple!

Now here’s a look at our finalized code for the
first Ajax request (we’ll fill in the success and error
functions later):

function _do_ajax(obj) {
 //[...] s object intialization
 s.success = function(r) {
 alert("Success!");
 }
 s.error = function(r) {
 alert("Epic Fail!");
 }
} //end _do_ajax

function _do_ajax(obj) {
 //[...] s object intialization
 s.success = function(r) {
 alert("Success!");
 }
 s.error = function(r) {
 alert("Epic Fail!");
 }
 $.ajax(s);
} //end _do_ajax

Chapter 9, Sending Our First Ajax Request 135

So what now?

Well, head to your website and click on the Get
Comments link.

And what are you met with? EPIC FAILURE!

jQuery(document).ready(function() {
var $ = jQuery;
$.get_my_comments = {
 init: function() {
 $("a#get-comments").bind("click", function() {
 _do_ajax(this); //Call to our private function
 return false;
 });
 }
}; //End of get_my_comments namespace
function _do_ajax(obj) {
 var element = $(obj); //our link object
 var url = wpAjax.unserialize(element.attr('href'));
 var s = {};
 s.response = 'ajax-response';
 s.type = "POST";
 s.url = mythemegetcomments.ajax_url;
 s.data = $.extend(s.data, { action: url.action, _ajax_
nonce: url._wpnonce });
 s.global = false;
 s.timeout = 30000;
 s.success = function(r) {
 alert("Success");
 } //End success
 s.error = function(r) {
 alert("Epic Fail!");
 }
 $.ajax(s);
} //end _do_ajax
$.get_my_comments.init();
});

WordPress and Ajax136

 Epic Fail!Figure 4.

I can hear you now, “You mean we just did all that
work just to end up in failure?”

Yep, it’s like watching one of those good movies
that have a horrible ending (Matrix trilogy any-
one?).

Before you grab your stick and beat down the au-
thor, be reminded that we have yet to create our
ajax-processor.php file.

The file doesn’t exist, and I set up the load_page
method to spit out a 404 error so that our s.error
function runs when clicking on the Get Comments
link (yes, I’m sneaky).

So in a way, we were successful. We successfully
sent our first request, but hit a brick wall.

Chapter 9, Sending Our First Ajax Request 137

So what’s next? Well obviously we have to resolve
our epic failure (yes, I’ll take some of the blame).

Let’s move on to Part 2 of this example and pro-
cess the Ajax request.

WordPress and Ajax138

Chapter 10

Processing Our First Ajax
Request

WordPress and Ajax140

Processing Our First Ajax
Request
We’ve successfully sent our first Ajax request.
Hurrah! But we ran into a brick wall because our
Ajax processor didn’t exist. Let’s change that.

Securing Your Ajax Processor
Let’s go ahead and create our empty ajax-proces-
sor.php file and place it in your theme’s root direc-
tory.

Once you have done that, go ahead and click on
the Get Comments link.

Success! Well, sort of. Nothing is happening, but
at least we’re talking to our Ajax processor.

To get our Ajax processor ready for business, we
need to add a few things.

In the above example, there are a few things going
on.

We first specify a header with a content type and
charset. Since JavaScript sends requests using

<?php
header('Content-Type: text/html; charset=UTF-8');
define('DOING_AJAX', true);
?>

Chapter 10, Processing Our First Ajax Request 141

UTF-8, it’s important to set our header to the
same charset.

The second thing done here is we define a constant
called DOING_AJAX and assign it a value of true. The
constant DOING_AJAX is mainly used to avoid Cron
jobs, which can slow an Ajax request down.

Now we’re set to move onto the next step: check-
ing our passed nonce.

Performing a Nonce Check
As a reminder, we passed two POST variables to
our Ajax processor:

action•	 - The action we are taking.

_ajax_nonce•	 - The nonce we will be verifying
against.

Another reminder is that we used the string my-
theme_getcomment to create our nonce back in the
sidebar.php file.

Thankfully, WordPress provides an easy function
to verify Ajax nonces. The function, you ask? It’s
called check_ajax_referer.

If we were to send an Ajax request without a nonce
and included the function check_ajax_referer in

WordPress and Ajax142

our script handler, the Ajax processor would send
back a string with value “-1”.

Effectively, when check_ajax_referer fails, the Ajax
server-side processing is stopped cold.

Adding in the check_ajax_referer function in our
Ajax processor will look like this:

Let’s now go back to our my_script.js file and
update the success function to alert us to the re-
sponse that ajax-processor.php file sends back.

Now what happens when we go back to our web-
site and click on that Get Comments link?

If our nonce checking is working, you should re-
ceive a blank alert box. If the nonce failed, you
should receive a “-1”.

You can test this out by changing the string in the
check_ajax_referer function call. Click again on
the Get Comments link and observe that the alert
box now shows a “-1”.

//Check the AJAX nonce
check_ajax_referer('my-theme_getcomment');

s.success = function(r) {
 alert(r);
}

Chapter 10, Processing Our First Ajax Request 143

We should be good to go as far as performing some
basic security checks in our Ajax processor, so let’s
move on to some server-side processing fun.

Pssst... Don’t forget to change the string in check_
ajax_referer back to my-theme_getcomment.

Server-Side Processing of Ajax Requests
Previously, we added in a security check for our
passed nonce. Now it’s time to do some process-
ing of the passed data.

We’ll be interacting with our class defined in the
functions.php file.

Now you may be wondering, “Why don’t we just
include the code needed in myThemeClass inside the
Ajax processor?”

There’s absolutely no problem with that, and later
on in this book, I’ll show you exactly how to do
that, but I want to show you how you can easily
interact with classes from within your Ajax pro-
cessor.

Let’s move on. Next up is capturing our action
variable.

WordPress and Ajax144

Since the action variable was passed as a POST
variable, we check to see if it’s set. If it’s set, we
assign it to the $action variable.

The die function is placed at the end of the file for
one main reason: some servers add in code at the
end of files (the die function prevents this).

Within the $_POST conditional, we add in a switch
statement to determine what action is being tak-
en.

A switch statement for only one value is extreme
overkill, but it demonstrates how you can check
for various actions and perform different tasks.

if (isset($_POST['action'])) {
 $action = $_POST['action'];
}
die(''); //Place at the end of the file
?>

if (isset($_POST['action'])) {
 $action = $_POST['action'];
 switch($action) {
 case 'getcomment':
 break;
 case 'otheraction':
 break;
 default:
 break;
 } //end switch
} //end if

Chapter 10, Processing Our First Ajax Request 145

Now that we’ve added in our switch statement, it’s
time to interact with our myThemeClass class.

Since the Ajax processor is technically being in-
cluded within the load_page method, the Ajax
processor code is in scope of the myPluginClass in-
stantiation.

As a result, we can use the $this variable to access
the methods within myPluginClass.

We’ll be calling $this->get_comments() to retrieve
all of our comment counts.

The above code assigns the variable $comment_count
with the result from the get_comments method.

Remember, the get_comments method returns an
object with four variables:

approved•	

moderated•	

spam•	

trash•	

case 'getcomment':
 $comment_count = $this->get_comments();
 break;

Adding a ‘die’
function at the
end of your
Ajax processor
prevents your
host from
appending
unnecessary code.

WordPress and Ajax146

We’ll be dealing with these variables in the next
section when we work on sending our Ajax re-
sponse.

Sending an Ajax Response
A super easy way of sending back a request to our
my_script.js file is just to echo out the variables.

But, we have four keys we have to deal with, and
parsing that in JavaScript will be a pain.

So what’s one to do?

Fortunately, WordPress has the WP_Ajax_Response
class.

Let’s go ahead and instantiate the class and assign
it to the $response variable.

Now it’s time to add some data to our $response
variable by calling the add method.

When we call the add method, we pass it an as-
sociative array with various parameters. Here are
the parameters we’ll be dealing with:

case 'getcomment':
 $comment_count = $myClassVar->get_comments();
 $response = new WP_Ajax_Response();
 break;

Chapter 10, Processing Our First Ajax Request 147

what•	 - A string that is the XMLRPC response
type. In our case, we’ll just call it “getcom-
ments”.

supplemental•	 - An associative array of strings.
We’ll be passing our $comment_count keys here.

When calling our add method, we’ll have access to
all of the various parameters with JavaScript, so
it’s best to add them in appropriately.

There is an additional parameter for the add meth-
od we could be using called data. This parameter
is used when sending just a string of data.

But we have four pieces of data we need to send
back, so that means if we used the data parameter,
we’d have to create four separate responses by call-
ing the add method each time.

The supplemental parameter allows us to return
multiple values with just one response. We’ll find
out later just how easy it is to get these values via
JavaScript.

Alright, enough talking. Let’s get back to the code
and call the add method already.

WordPress and Ajax148

As you can see from the above code, we pass to
the add method an array with parameters what and
supplemental.

The supplemental parameter itself takes another
array, which we assign our values from $comment_
count.

We’re almost done. All that’s left is to send the
response.

It really is as simple as that.

WordPress does all the dirty work and returns a
nice XML object that you can parse through rath-
er easily using JavaScript.

case 'getcomment':
 $comment_count = $this->get_comments();
 $response = new WP_Ajax_Response();
 $response->add(array(
 'what' => 'getcomments',
 'supplemental' => array(
 'awaiting_moderation' => $comment_count-
>moderated,
 'approved' => $comment_count->approved,
 'spam' => $comment_count->spam,
 'trashed' => $comment_count->trash
)
));

$response->send();

Chapter 10, Processing Our First Ajax Request 149

Here’s the full code for the Ajax processor:

If you click on your Get Comments link, you’re alert-
ed that you have an [object XMLDocument].

<?php
header('Content-Type: text/html; charset=UTF-8');
define('DOING_AJAX', true);
//Check the AJAX nonce
check_ajax_referer('my-theme_getcomment');
if (isset($_POST['action'])) {
 $action = $_POST['action'];
 switch($action) {
 case 'getcomment':
 $comment_count = $this->get_comments();
 $response = new WP_Ajax_Response();
 $response->add(array(
 'what' => 'getcomments',
 'supplemental' => array(
 'awaiting_moderation' => $comment_count-
>moderated,
 'approved' => $comment_count->approved,
 'spam' => $comment_count->spam,
 'trashed' => $comment_count->trash)
));
 $response->send();
 break;
 case 'otheraction':
 break;
 default:
 break;
 } //end switch
} //end if
die('');
?>

WordPress and Ajax150

It’s time to go back to our my_scripts.js file and
do some client-side processing on this returned
object.

Client-Side Processing/Parsing
In this section we’ll be working with our my_script.
js file to do some client-side processing/parsing.

We’ll be completing the s.success function, which
currently looks like this:

Nothing spectacular is going on here other than
a simple alert box that doesn’t show us anything
useful.

Right now as it stands, the r variable is an XML
Document object, which we can do nothing with
at the moment.

Let’s change that.

Parsing the XML Document Object
Do you remember our JavaScript dependency of
wp-ajax-response? We’ll be using that same script
to parse the passed XML Document.

s.success = function(r) {
 alert(r);
}

Chapter 10, Processing Our First Ajax Request 151

The sub function from the wpAjax object that is
used for parsing is called parseAjaxResponse, which
takes two arguments:

Our passed XML Document.•	

Our response type (in our case, •	 ajax-re-

sponse, which was defined in the s object as
s.response).

The call to wpAjax.parseAjaxResponse would look
like this:

The keyword this is used instead of the object s
since the s object is out of scope. However, all of
the values captured in the s object are now avail-
able with the this keyword.

Our parsed response is now stored inside the res
variable.

Getting to that data is another matter. Let’s move
on to processing the parsed data.

Processing the Data

s.success = function(r) {
 res = wpAjax.parseAjaxResponse(r,this.response);
}

WordPress and Ajax152

We could process the data using the easy (but not
scalable way) by assigning another variable the
object we are after.

This would be fine, but what if you had multiple
responses? In our particular case, we don’t, but
I’m still going to show you how to handle mul-
tiple responses for scalability purposes.

The way to handle multiple responses is by using
the jQuery.each function.

The $.each function acts as an interator through
an object or array. It’ll go through each of the re-
sponses and allow us to take action on each one.

Within the $.each function, we’ll be using the this
object to access each response.

The this object should contain the what and sup-
plemental data we sent back using the ajax-proces-
sor.php file.

As a reminder, here’s what the supplemental data
should contain:

moderated•	

approved•	

spam•	

http://docs.jquery.com/Utilities/jQuery.each

Chapter 10, Processing Our First Ajax Request 153

trash•	

Here’s what we should expect the this object to
contain:

Let’s now concentrate on the this.what value,
which should be getcomments.

A simple switch statement in the $.each function
will aid us in picking out the what argument.

Again, a switch statement for one value is extreme
overkill, but it’ll show you how to handle mul-
tiple responses.

this what

supplemental

moderated
approved

spam
trash

getcomments

 The "this" ObjectFigure 5.

WordPress and Ajax154

The switch statement checks the what variable for
several values. In our case, we check for a case of
“getcomments”.

It’s within the “getcomments” case that we’ll ac-
cess our supplemental data.

Getting the supplemental data is super easy thanks
to the parseAjaxResponse function.

Accessing the supplemental data is as simple as call-
ing the key values we assigned in ajax-processor.
php:

this.supplemental.moderated•	

this.supplemental.approved•	

this.supplemental.spam•	

s.success = function(r) {
 var res = wpAjax.parseAjaxResponse(r,this.response);
 $.each(res.responses, function() {
 switch(this.what) {
 case "getcomments":
 //do stuff here
 break;
 case "something else":
 break;
 default:
 break;
 }//end switch
 });//end each
} //End success

Chapter 10, Processing Our First Ajax Request 155

this.supplemental.trash•	

Let’s go ahead and assign the supplemental data to
four JavaScript variables:

moderation_count•	

approved_count•	

spam_count•	

trashed_count•	

Our code would look like this:

Our four variables are now assigned the values re-
trieved from the Ajax request.

We’re done with the client-side processing/pars-
ing.

Let’s move on to the output.

switch(this.what) {
 case "getcomments":
 var moderation_count = this.supplemental.awaiting_
moderation;
 var approved_count = this.supplemental.approved;
 var spam_count = this.supplemental.spam;
 var trashed_count = this.supplemental.trashed;
 break;
 case "something else":
 break;
 default:
 break;
}//end switch

WordPress and Ajax156

The Output
This is the grand finale of sending our Ajax re-
quest.

Here’s a brief summary of what we’ve accom-
plished so far:

We sent our first Ajax request and ended up in •	
EPIC FAILURE (not my fault, I swear).

We secured our Ajax request with the use of •	
nonces.

We processed the Ajax request and prepared •	
for a response.

We sent the response back to our JavaScript •	
file.

We parsed the response and processed it for •	
later use.

So what’s left to do? Output the data, of course.

As a reminder, we have four JavaScript variables
we’ll be using for the output:

moderation_count•	

approved_count•	

spam_count•	

trashed_count•	

Chapter 10, Processing Our First Ajax Request 157

And do you remember the localized JavaScript
variables we defined way back when? Ah, you
don’t? Well, rather than force you to thumb your
way back 20 or so pages, here they are again (I
know, you’re welcome).

So let’s get to it.

Let’s first create our moderation string:

It’s slightly involved here, but don’t be intimidat-
ed. All we’re doing here is building our string
with a combination of the strings stored in the

<script type='text/javascript'>
/* <![CDATA[*/
var mythemegetcomments = {
 ajax_url: "http://www.yourdomain.com/?my_page=ajax-
processor",
 you_have: "You have",
 approved: "approved",
 comments: "comments",
 in_moderation: "in moderation",
 trashed: "trashed",
 spam: "spam"
};
/*]]> */
</script>

//Strings
var moderation = mythemegetcomments.you_have + " " +
moderation_count + " " + mythemegetcomments.comments + " " +
mythemegetcomments.in_moderation + ".
";

WordPress and Ajax158

mythemegetcomments object and the JavaScript vari-
ables we previously defined.

The moderation string should contain something
similar to:

Since we have that down, let’s go ahead and create
the rest of the strings.

Another small problem: what if we have a lot
of spam and approved comments? Would you like
to have an output such as, “You have a total of
1023930 approved comments”?

"You have x comments in moderation."

//Strings
var moderation = mythemegetcomments.you_have + " " +
moderation_count + " " + mythemegetcomments.comments + " " +
mythemegetcomments.in_moderation + ".
";

var approved = mythemegetcomments.you_have + " " +
approved_count + " " + mythemegetcomments.approved + " " +
mythemegetcomments.comments + ".
";

var spam = mythemegetcomments.you_have + " " + spam_count + " "
+ mythemegetcomments.spam + " " + mythemegetcomments.comments +
".
";

var trashed = mythemegetcomments.you_have + " " + trashed_count
+ " " + mythemegetcomments.trashed +

Chapter 10, Processing Our First Ajax Request 159

Um, no, right? Since adding in the comma sepa-
ration for groups of thousands is tedious using
JavaScript, let’s get PHP to do it (ah, the conve-
nience of Ajax).

Let’s venture back to our ajax-processor.php file
and make use of the number_format function.

The number_format function will be wrapped around
our $comment_count keys to transform a count such
as 4209094 into 4,209,094.

We now have our strings finalized.

There’s two ways to go about an output:

Use •	 alert boxes.

Output to the theme.•	

$response->add(array(
 'what' => 'getcomments',
 'supplemental' => array(
 'awaiting_moderation' => number_format($comment_
count->moderated),
 'approved' => number_format($comment_count-
>approved),
 'spam' => number_format($comment_count->spam),
 'trashed' => number_format($comment_count->trash)
)
));
$response->send();

WordPress and Ajax160

Alert boxes are messy and should be used rarely,
if ever. I personally only use them for debugging
purposes.

Outputting to the theme is the correct way to
go. But first we must find a box (err, div) on the
theme to output to.

Do you remember how in our sidebar.php file we
added an empty div with an id of “get-comments-
output”?

This placeholder div is what we’ll use for the out-
put. Please also note that the br tags were added
into the JavaScript variables since we are going
to be outputting to HTML and want to include
some line breaks.

Groovy. Now we’re ready to output. And it’s go-
ing to be a lot easier than you think.

Ah, I love it when things are simple, and that
above code snippet is as easy as it gets.

//JavaScript Output
$("div#get-comments-output").html(moderation + approved + spam
+ trashed);

Chapter 10, Processing Our First Ajax Request 161

We simply capture the div with the id of “get-
comments-output”. We then alter its inner-HT-
ML and fill it with our strings.

Now when you click on the Get Comments link, you
should see something similar to this:

I know, all that work to get just four lines of text
to output to a theme, right? Hey, I never said
Ajax wasn’t tedious at times, but this example
hopefully demonstrated to you how many mov-
ing parts Ajax has.

I’ll leave you with the final s.success function
code for your viewing pleasure.

 The OutputFigure 6.

WordPress and Ajax162

 s.success = function(r) {
 var res = wpAjax.parseAjaxResponse(r,this.response);
 $.each(res.responses, function() {
 switch(this.what) {
 case "getcomments":
 var moderation_count = this.
supplemental.awaiting_moderation;
 var approved_count = this.
supplemental.approved;
 var spam_count = this.supplemental.
spam;
 var trashed_count = this.
supplemental.trashed;

 //Strings
 var moderation = mythemegetcomments.
you_have + " " + moderation_count + " " + mythemegetcomments.
comments + " " + mythemegetcomments.in_moderation + ".
";

 var approved = mythemegetcomments.
you_have + " " + approved_count + " " + mythemegetcomments.
approved + " " + mythemegetcomments.comments + ".
";

 var spam = mythemegetcomments.you_
have + " " + spam_count + " " + mythemegetcomments.spam + " " +
mythemegetcomments.comments + ".
";

 var trashed = mythemegetcomments.you_
have + " " + trashed_count + " " + mythemegetcomments.trashed +
" " + mythemegetcomments.comments + ".";
 $("div#get-comments-output").
html(moderation + approved + spam + trashed);
 break;
 case "something else":
 break;
 default:
 break;
 }//end switch
 });//end each
} //End success

Chapter 10, Processing Our First Ajax Request 163

We’re done! The output is finalized. You may
drink a cerveza now.

But after you’re done drinking, let’s move on to
how to use WordPress’ built-in Ajax processor.
We’ll be modifying this example slightly, so brace
yourself and let’s proceed.

WordPress and Ajax164

Chapter 11

WordPress and Admin Ajax

WordPress and Ajax166

WordPress and Admin Ajax
I recently led you on a journey of sending and
processing an Ajax request to retrieve comment
information from WordPress. In the example, I
showed you how to manually create an Ajax pro-
cessor.

WordPress, however, has its own Ajax processor
built-in, and it’s incredibly simple to use. While
knowing how to manually create an Ajax proces-
sor is still useful, I’m going to show you how to
use WordPress’ built-in Ajax processor.

We’ll be modifying our Get Comments example a bit
here so we don’t have to start from scratch.

WordPress' admin-ajax.php
If you venture into the “wp-admin” folder of
WordPress, one of the files you’ll see is admin-ajax.
php. This file is a WordPress Ajax processor on ste-
roids. It has all the major Ajax actions WordPress
needs, and allows you to define your own as well.

One main misconception to admin-ajax is that it
is used for admin Ajax requests. Get the term
“admin” out of your head as admin-ajax can be
used on both the front-end and admin area of
your site.

Chapter 11, WordPress and Admin Ajax 167

The admin-ajax is completely action based. Basi-
cally, the Ajax request contains an action. The
admin-ajax.php file acts as a director and matches
up an action with a callback function.

Once the callback function is called, the function
is responsible for returning any data (in string for-
mat, XML, or JSON). So think of admin-ajax as
an intermediary between the Ajax request and
Ajax response.

Run callback
function

Send Ajax
Request

Receive Ajax
Response

admin-ajax.php

Ajax action and
data passed

Does Ajax
action exist?

Quit

User has
appropriate
privileges?

No

No

Yes

Yes

 WordPress admin-ajax.php processFigure 7.

WordPress and Ajax168

You may remember from the Get Comments example
that the Ajax action we used was called getcomment.
This action name will come in handy when we
register our Ajax processor function.

In the Get Comments example, we created a sepa-
rate file that served as our Ajax processor. With
admin-ajax, however, it’ll be a separate method
within our class.

Let’s go ahead and register the method that will
serve as the new Ajax processor.

Registering the Ajax Processor
Registering the Ajax processor function is as sim-
ple as adding a WordPress action.

To tell WordPress about an Ajax processor, you
must use the wp_ajax action.

The wp_ajax action is structured like this:

You’ll notice in the wp_ajax action that there is
a suffix of getcomment. This is our Ajax action
name.

<?php
add_action('wp_ajax_getcomment', 'callback_function');
?>

Chapter 11, WordPress and Admin Ajax 169

When the action name gets passed to admin-ajax.
php, WordPress will know to call the function
named callback_function.

However, the above snippet will only run for priv-
ileged (logged-in) users. What if you want to run
code for all users? You would add the nopriv suffix
as well. Here’s an example:

Now both privileged and unprivileged users can
access the Ajax processor (indirectly, of course).

Let’s go ahead and modify the PHP constructor
in our Get Comments example to point to a method
named ajax_get_comments.

<?php
add_action('wp_ajax_getcomment', 'callback_function');
add_action('wp_ajax_nopriv_getcomment', 'callback_function');
?>

<?php
function __construct(){
 add_action('wp_print_scripts', array(&$this,'add_
scripts'));
 add_action('init', array(&$this, 'init'));
 add_action('wp_ajax_getcomment', array(&$this, 'ajax_
get_comments'));
 add_action('wp_ajax_nopriv_getcomment', array(&$this,
'ajax_get_comments'));
}
?>

WordPress and Ajax170

Since we want all users to be able to access the
getcomment action, the second action makes use of
the nopriv suffix.

Getting the Location of the Ajax Processor
In the Get Comments example, we localized a
JavaScript variable to give us the URL to our Ajax
processor. We also used query variables to load
the WordPress environment manually.

With admin-ajax, we don’t have to worry about
query variables, but we do have to worry about
the location of admin-ajax.php.

In the admin area, there is a JavaScript variable
called ajaxurl. This variable contains the URL to
admin-ajax.php.

This variable is handy when in the admin area
only, however. If you’re on the front-end, you’re
out of luck.

Fortunately, all we have to do is update one area
in our code to point to the new location, which is
in the get_js_vars method (the method we use to
return the localized JavaScript variables).

Let’s modify our localized variable ajax_url to
point to the new location of the Ajax processor.

Chapter 11, WordPress and Admin Ajax 171

We make use of the function admin_url and pass
it the filename admin-ajax.php. The resulting URL
would be like:

Since we make use of the same JavaScript variable
in our JavaScript file, there’s no need to update
our script (hooray for small victories!).

Passing Data to the Ajax Processor
Passing data to the Ajax processor is the same
route we took in the Get Comments example.

Let’s look at our sidebar.php code again and mod-
ify the link location to point to the new Ajax pro-
cessor location.

function get_js_vars() {
 return array(
 'ajax_url' => admin_url('admin-ajax.php'),
 'you_have' => __('You have', 'get-comments'),
 'approved' => __('approved', 'get-comments'),
 'comments' => __('comments', 'get-comments'),
 'in_moderation' => __('in moderation', 'get-
comments'),
 'trashed' => __('trashed', 'get-comments'),
 'spam' => __('spam', 'get-comments')

);
} //end get_js_vars

http://www.yourdomain.com/wp-admin/admin-ajax.php

WordPress and Ajax172

Based on the above code, we created a link with a
URL pointing to admin-ajax.php. The URL con-
tains two query variables (an action and a nonce)
that can be captured via JavaScript.

As a reminder, here’s where we capture and pass
the variables via JavaScript in our my_script.js
file.

Via JavaScript, we create a data variable that con-
tains the action name and a nonce. Whenever
the action is detected via the Ajax processor, our
action method is called.

Let’s go ahead and create this method.

<?php
$link_url = esc_url(wp_nonce_url(admin_url('admin-ajax.
php?action=getcomment'), "my-theme_getcomment"));
?>
<a href='<?php echo $link_url; ?>' id='get-comments'><?php
_e('Get Comments','get-comments'); ?>

s.data = $.extend(s.data, { action: url.action, _ajax_nonce:
url._wpnonce });

Chapter 11, WordPress and Admin Ajax 173

The wp_ajax Callback Method
When we used the wp_ajax WordPress action, we
provided a callback method called ajax_get_com-
ments.

Let’s go ahead and create this method in our class.
We’ll use the check_ajax_referer function to do a
nonce check.

As a reminder, the name we used when creating
the nonce was my-theme_getcomment.

The biggest difference between both Ajax proces-
sor techniques is the use of the exit keyword. The
exit keyword is often used for template redirects
in order to terminate a script (stop it from pro-
ceeding any further).

An exit at the end of the Ajax processor prevents
any more items from being outputted erroneous-
ly.

Finalizing the Ajax Processor

function ajax_get_comments() {
 check_ajax_referer('my-theme_getcomment');
 exit;
}

WordPress and Ajax174

Now that our nonce check is complete, let’s go
ahead and flesh out the rest of the Ajax proces-
sor.

If you compare the code of this Ajax processor to
that of the Get Comments method, you’ll find that
they are both very similar.

function ajax_get_comments() {
 check_ajax_referer('my-theme_getcomment');
 $comment_count = $this->get_comments();
 $response = new WP_Ajax_Response();
 $response->add(array(
 'what' => 'getcomments',
 'supplemental' => array(
 'awaiting_moderation' => number_
format($comment_count->moderated),
 'approved' => number_format($comment_count-
>approved),
 'spam' => number_format($comment_count-
>spam),
 'trashed' => number_format($comment_count-
>trash)
)
));
 $response->send();
 exit;
} //end ajax_get_comments

Chapter 11, WordPress and Admin Ajax 175

The biggest differences between this Ajax proces-
sor and the old one are:

I got rid of the switch statement and condi-•	
tionals. The reason? The getcomment action
is now associated with the ajax_get_comments
method. It’s a valid assumption that if the
method is being called, the appropriate action
is being taken.

There is no need to set the content-type or any •	
constants. The admin-ajax.php file does all this
for you.

Admin Ajax Conclusion
WordPress’ admin-ajax.php is a powerful and easy-
to-use technique for easily adding in Ajax proces-
sors.

Everything is action based using the WordPress
action wp_ajax.

Each Ajax action can now have its own associated
method (or function), and you can assign privi-
leges so that the Ajax processor is only run when
needed.

We’ll be making more use of admin-ajax in the
examples, so read on if you’d like to see more im-
plementation techniques.

WordPress and Ajax176

Chapter 12

Example 1:
WP Grins Lite

WordPress and Ajax178

Example 1: WP Grins Lite
The WordPress plugin WP Grins is very simple in
what it accomplishes: it provides clickable smilies
that one can insert into a post or comment.

WP Grins is a great way to spice up a rather dull
looking comments form. The biggest drawback
WP Grins has for me, however, is that it uses the
heavy-weight Prototype JavaScript framework.

None of my other installed plugins used Proto-
type, and neither did my theme. Prototype (the
version included with WordPress) weighs in at 143
KBs per page load. For just adding simple “grins”
to a page, this was unacceptable overhead.

 WP Grins Screenshot - Comment AreaFigure 8.

http://wordpress.org/extend/plugins/wp-grins/
http://www.prototypejs.org/

Chapter 12, Example 1: WP Grins Lite 179

As I explored into the code, I found it rather
trivial to port it over to the much lighter-weight
jQuery library. Thus, the name was born for the
new plugin: WP Grins Lite.

As I explored more into the code, I found several
more issues (no disrespect to Alex King here):

The JavaScript was embedded within the PHP •	
code. Not a huge issue, but it’s a lot cleaner
when separated. In fact, my first version of WP
Grins Lite still used the embedded JavaScript.

There was no class structure to prevent func-•	
tion name conflicts. Granted, the function
names were prefixed with “wp_grins”, so no
big deal here.

The smilies showed up in weird places. Lim-•	
ited page detection was used, but more was
needed.

No option to display smilies manually in the •	
post comments section. This wasn’t a big deal
to me, but it was to one of the users. Adding
this option in would be a moderate challenge.

Adding an option to manually insert the smilies
wasn’t exactly trivial. After some brainstorming, I
determined what was needed:

http://jquery.com/

WordPress and Ajax180

A separation of PHP and JavaScript. With the •	
original WP Grins, the two were interspersed,
and there was no way to call the grins manually
without them also showing up via JavaScript.

An admin panel for the manual option. I •	
could have gone with having the user manu-
ally fill in a config option in the raw file, but
a good plugin author never makes his users
delve into the code. It’s like trying to pick up
single women at a marriage seminar. Not a
good idea.

Have a dedicated function for printing out the •	
grins. This would aid manual showing and
JavaScript use.

For JavaScript use, have the smilies returned •	
via Ajax. I thought about this one for a while,
and finally determined Ajax was best used for
this one. I could have printed the smilies as a
localized variable, but the inner-programmer
in me started screaming at this possibility.

So now you have my justifications for the changes
I made to the plugin.

In order to begin this journey, let’s take a look at
WP Grin Lite’s file structure.

Forcing users to
manually edit
code is like trying
to pick up single
women at a
marriage seminar.
Not a good idea.

Chapter 12, Example 1: WP Grins Lite 181

Let’s begin with the file wp-grins.php.

The WPGrins Class
The importance of using classes as part of your
plugin structure should not be understated.

First, it allows you to enclose all of your functions
(as methods) within the class, and avoid naming
conflicts. If you’ve ever ventured into plugin code
that isn’t using a class, chances are the functions
are prefixed.

While prefixed functions help, a class structure
allows you to have generic and more intuitively-
named function names.

 WP Grins Lite File StructureFigure 9.

wp-grins-lite js wp-grins.js

wp-grins-lite.php
admin-panel.php

grins.css
grins-ie.css

WordPress and Ajax182

Let’s look at the beginning’s of our class struc-
ture.

Shown above is our basic skeleton class called
WPGrins.

There’s nothing in it as of this point, so let’s add
in some methods so we can get some smiley good-
ness.

The Constructor
First up is the constructor.

<?php
if (!class_exists('WPGrins')) {
 class WPGrins {
 var $adminOptionsName = "wpgrinslite";
 /**
 * PHP 4 Compatible Constructor
 */
 function WPGrins(){$this->__construct();}

 /**
 * PHP 5 Constructor
 */
 function __construct(){

 }
 }
}
//instantiate the class
if (class_exists('WPGrins')) {
 $GrinsLite = new WPGrins();
}
?>

Chapter 12, Example 1: WP Grins Lite 183

We’re going to define our actions.
function __construct(){
 //Scripts
 add_action('admin_print_scripts-post.php',
array(&$this,'add_scripts'),1000);
 add_action('admin_print_scripts-post-new.php',
array(&$this,'add_scripts'),1000);
 add_action('admin_print_scripts-page.php',
array(&$this,'add_scripts'),1000);
 add_action('admin_print_scripts-page-new.php',
array(&$this,'add_scripts'),1000);
 add_action('admin_print_scripts-comment.php',
array(&$this,'add_scripts'),1000);
 add_action('wp_print_scripts', array(&$this,'add_scripts_
frontend'),1000);
 //Styles
 add_action('admin_print_styles-post.php',
array(&$this,'add_styles'),1000);
 add_action('admin_print_styles-post-new.php',
array(&$this,'add_styles'),1000);
 add_action('admin_print_styles-page.php',
array(&$this,'add_styles'),1000);
 add_action('admin_print_styles-page-new.php',
array(&$this,'add_styles'),1000);
 add_action('admin_print_styles-comment.php',
array(&$this,'add_styles'),1000);
 add_action('wp_print_styles', array(&$this,'add_styles_
frontend'));

 //Ajax
 add_action('wp_ajax_grins', array(&$this,'ajax_print_
grins'));
 add_action('wp_ajax_nopriv_grins', array(&$this,'ajax_
print_grins'));

 //Admin options
 add_action('admin_menu', array(&$this,'add_admin_pages'));
 $this->adminOptions = $this->get_admin_options();
}

WordPress and Ajax184

Here are the actions we added:

admin_print_scripts•	 and wp_print_scripts.
These are needed to add in the JavaScript
files.

wp_print_styles•	 and admin_print_styles. These
are needed to load the plugin’s CSS.

admin_menu•	 . This is needed to add in our admin
panel.

wp_ajax•	 . This is needed to point to our Ajax-
processor method.

The action admin_print_scripts has a callback
method of add_scripts, whereas wp_print_scripts
has a callback method called add_scripts_frontend.
The action wp_print_styles has a callback method
of add_scripts_frontend, while admin_print_styles
has a callback method of add_styles. The menu
action, admin_menu, has a callback method of add_
admin_pages. Finally, the wp_ajax action has a call-
back method of ajax_print_grins.

For the admin_print_scripts and admin_print_styles
actions, we use several suffixes to assist us in page
detection.

Chapter 12, Example 1: WP Grins Lite 185

We know we don’t want the scripts to be loaded
where WP Grins isn’t needed. But where exactly
do we want WP Grins to load?

Let’s do a little brainstorming. We obviously want
WP Grins to load when a comment form is pres-
ent (which are on single posts and pages on the
front-end). There’s also a comment form on the
back-end, so we want that too.

For posts, we want the scripts to load when some-
one is creating or editing a post. Likewise for
pages.

Now let’s go over our dependencies:

Load only front-end pages where there is a •	
comment form (we’ll need to perform some
page detection in the add_scripts and add_
styles methods).

Only load when a person is editing or creating •	
a post (use post.php and post-new.php as a suffix
to our action).

Only load when a person is editing or creating •	
a new page (use page.php and page-new.php as a
suffix to our action).

WordPress and Ajax186

Load when someone is editing a comment in •	
the admin area (use comment.php as a suffix to
our action)

For the wp_ajax action, we use “grins” as the Ajax
action name. And since we want all users to see
the grins, we had a nopriv suffix to the wp_ajax ac-
tion.

The last thing going on in the code is that we as-
sign a class variable called adminOptions with the
result of the get_admin_options method.

The adminOptions variable will contain an array of
our various admin-panel options (which we’ll de-
fine later). The adminOptions variable can be refer-
enced using the $this predefined PHP variable.

Just looking at the constructor alone, we know we
have to define the following methods:

add_scripts•	

add_scripts_frontend•	
add_styles•	

add_styles_frontend•	
add_admin_pages•	

ajax_print_grins•	

get_admin_options•	

Chapter 12, Example 1: WP Grins Lite 187

add_scripts and add_scripts_frontend
The add_scripts method is performing two duties:
it’s loading JavaScript for both the front-end and
admin area of the WordPress website.

We have one JavaScript dependency, which is
jQuery.

Let’s move on to the code for add_scripts and add_
scripts_frontend.

The add_scripts method queues the scripts for in-
clusion, and is called by the admin_print_scripts
action (with our various page detection suffixes).

function add_scripts(){
 wp_enqueue_script('wp_grins_lite', plugins_url('wp-
grins-lite/js/wp-grins.js'), array("jquery"), 1.0);
 wp_localize_script('wp_grins_lite', 'wpgrinslite',
$this->get_js_vars());
}
function add_scripts_frontend() {
 //Make sure the scripts are included only on the front-
end
 if (!is_admin()) {
 if ((!is_single() && !is_page()) || 'closed' ==
$post->comment_status) {
 return;
 }
 $this->add_scripts();
 }
}

WordPress and Ajax188

The add_scripts_frontend method is called by wp_
print_scripts. The first conditional checks to see
if we’re on the front-end of a site. If we are, we
check if we’re on a post or a page. If we happen to
be on a post or page, but comments are turned off
(no comment form), we get out of the method.
If all is good, we call the add_scripts method to
queue the scripts.

We then queue our scripts and assign some local-
ization via the get_js_vars method. So let’s move
on to that method next.

get_js_vars

function get_js_vars() {
 if (is_admin()) {
 return array(
 'Ajax_Url' => admin_url('admin-ajax.php'),
 'LOCATION' => 'admin',
 'MANUAL' => 'false'
);
 }
 return array(
 'Ajax_Url' => admin_url('admin-ajax.php'),
 'LOCATION' => 'post',
 'MANUAL' => esc_js($this-
>adminOptions['manualinsert'])
);
} //end get_js_vars

Chapter 12, Example 1: WP Grins Lite 189

The get_js_vars method returns all of the local-
ized text needed for JavaScript.

What we want is to determine, in JavaScript,
whether we’re in the admin panel or on a post
(determined by the is_admin conditional).

A second thing we need is the path to WordPress’
Ajax processor.

The third thing we need is to determine if the sm-
ilies on a post are going to be inserted manually,
or via JavaScript (this is determined by our admin
options).

One thing to point out is the reference to the class
variable adminOptions (using $this->adminOptions).
It’s calling a key called manualinsert. We will de-
fine this later when we retrieve our admin op-
tions. You’ve probably also noticed that we used
the esc_js method to sanitize our output. Since
we’re retrieving information from the database for
use in a JavaScript variable, esc_js is the logical
choice for data validation.

Alright, we got the scripts down. Let’s now move
on to the styles using the add_styles method.

WordPress and Ajax190

add_styles and add_styles_frontend
The add_styles method will be used to insert the
CSS for the smilies.

The add_styles queues the styles for inclusion is is
called by the admin_print_styles action.

Within add_styles, we queue two styles, and add
a conditional comment for the handler wp-grins-
ie.

For add_styles_frontend, we use the same exact
conditional check as in the add_scripts_frontend
method. If all is well, we call the add_styles meth-
od to queue up the styles.

function add_styles() {
 wp_enqueue_style('wp-grins', plugins_url('wp-grins-lite/
grins.css'));
 wp_enqueue_style('wp-grins-ie', plugins_url('wp-grins-
lite/grins-ie.css'));
 global $wp_styles;
 $wp_styles->add_data('wp-grins-ie', 'conditional', 'IE'
);
}
function add_styles_frontend() {
 if (!is_admin()) {
 if ((!is_single() && !is_page()) || 'closed' ==
$post->comment_status) {
 return;
 }
 $this->add_styles();
 }
}

Chapter 12, Example 1: WP Grins Lite 191

The styles needed for this plugin simply ensure
that the cursor is in the shape of a hand when
hovering over the smilies.

For grins.css, the styles needed in the file are:

For grins-ie.css, the styles needed are:

Now separate files for six lines of CSS is a bit
much, but you must remember that queueing
the styles allows others to disable or override your
styles.

Hard-coding in the styles in the PHP doesn’t al-
low for this flexibility.

Let’s go ahead and work on our add_admin_pages
method.

add_admin_pages
The add_admin_pages is the callback method for the
admin_menu action.

#wp_grins img {
 cursor: pointer;
}

#wp_grins img {
 cursor: hand;
}

WordPress and Ajax192

The code to add a menu is quite simple.

We pass to the add_options_page function the page
title, menu title (shown in the Settings section in
the admin panel), the access level (in our case, ad-
min only), the current file, and a callback method
that will show the admin page.

The callback method printing out the admin page
is print_admin_page. Let’s move on to that method
next.

print_admin_page
Our print_admin_page method will perform one
simple task: reference an external PHP file that
holds our admin panel.

I like to keep my admin panel scripts separate just
because it’s a little bit cleaner. I also like to edit
my admin panel scripts without having to dig into
the main plugin’s PHP file. It’s just my prefer-
ence, and you are welcome to include the admin
panel code directly in your class if desired.

Here’s our code:

function add_admin_pages(){
 add_options_page('WP Grins Lite', 'WP Grins Lite', 9,
basename(__FILE__), array(&$this, 'print_admin_page'));
}

Chapter 12, Example 1: WP Grins Lite 193

We reference the external script admin-panel.php,
which we’ll get to a bit later.

Let’s work on our Ajax processor method, which
is called ajax_print_grins.

ajax_print_grins
The ajax_print_grins method is our callback
method for the wp_ajax WordPress action.

Since no security is needed and we’re only return-
ing one data set, we will simply echo out the re-
sult.

Since we echo out the result of the wp_grins meth-
od, let’s move on to that one next.

wp_grins
We have a few methods to go before we’re done
with the WPGrins class. For now, we need to work
on outputting those beloved smilies.

//Provides the interface for the admin pages
function print_admin_page() {
 include dirname(__FILE__) . '/admin-panel.php';
}

function ajax_print_grins() {
 echo $this->wp_grins();
 exit;
}

WordPress and Ajax194

There’s a WordPress PHP global variable called
wpsmiliestrans, which is an array of all of the smi-
lies available.

What’s needed is a foreach loop that will build one
long string. Once the string is built, we return
it.

The $tag variable holds the smiley code that will
be used in a post (e.g., :shock:). The $grin vari-
able holds the filename (e.g., icon_redface.gif) to
the smiley.

For each $grin and $tag, we build an img tag.

Did you notice that within the img tag there is an
onclick reference? Hmmm, I wonder what that
jQuery.wpgrins.grin() thing is?

function wp_grins() {
 global $wpsmiliestrans;
 $grins = '';
 $smiled = array();
 foreach ($wpsmiliestrans as $tag => $grin) {
 if (!in_array($grin, $smiled)) {
 $smiled[] = $grin;
 $tag = esc_attr(str_replace(' ', '',
$tag));
 $src = esc_url(site_url("wp-includes/
images/smilies/{$grin}"));
 $grins .= "<img src='$src' alt='$tag'
onclick='jQuery.wpgrins.grin(\"$tag\");' />";
 }
 }
 return $grins;
} //end function wp_grins

Chapter 12, Example 1: WP Grins Lite 195

I’m just guessing, but I think it’s a reference to
a namspace called wpgrins, and a public function
within that namespace called grin. Perhaps a hint
of things to come?

Now let’s work on the get_admin_options method.

get_admin_options
The get_admin_options method holds our default
admin panel variables.

I’ve devised a clever function that checks for ex-
istence of new keys, and keys that have been de-
leted.

The result is a reusable snippet that one can use
for their own theme or plugin script.

function get_admin_options() {
 if (empty($this->adminOptions)) {
 $adminOptions = array(
 'manualinsert' => 'false'
);
 $options = get_option($this->adminOptionsName);
 if (!empty($options)) {
 foreach ($options as $key => $option) {
 if (array_key_exists($key,
$adminOptions)) {
 $adminOptions[$key] = $option;
 }
 }
 }
 $this->adminOptions = $adminOptions;
 $this->save_admin_options();

 }
 return $this->adminOptions;
}

WordPress and Ajax196

For our particular plugin, we only need to know
the value of one variable, which is if the user has
decided to manually insert the smilies on a post
or a page.

The key, manualinsert, is assigned a value of false
by default.

The admin options snippet might seem overly
complicated for just one key, but it’s very scalable.
I have upwards of fifty keys for some of my plu-
gins, and it works just fine, even when I add or
delete keys for updated versions.

It also needs to be called only once, so it saves on
database calls.

The final part of the code calls the method save_
admin_options. Let’s move on to that method.

save_admin_options
The save_admin_options method does one task: it
saves the admin options for later use (obvious,
right?).

function save_admin_options(){
 if (!empty($this->adminOptions)) {
 update_option($this->adminOptionsName, $this-
>adminOptions);
 }
}

Chapter 12, Example 1: WP Grins Lite 197

The code should just about explain itself.

We call the WordPress function update_option, and
pass it our option name (defined as a class variable
with value wpgrinslite) and our admin options.

We’re done with our class, but since we’re allow-
ing manual inclusion of the smilies, we need a
template tag that a user could call.

Our Template Tag
Let’s go ahead and call our template tag wp_print_
grins (yes, I’m unoriginal, and if you listen to my
dad, quite lazy).

We’re going to use this template tag to access our
class and return the grins to the end user (the tem-
plate tag would be placed towards the end of the
wp-grins.php file).

The above snippet is rather straight forward. We
reference the class reference variable GrinsLite by
using the PHP reserved word global.

if (!function_exists('wp_print_grins')) {
 function wp_print_grins() {
 global $GrinsLite;
 if (isset($GrinsLite)) {
 return $GrinsLite->wp_grins();
 }
 }
}

WordPress and Ajax198

We then check to see if the variable is set. If it is,
we call the class method wp_grins and return the
result to the user.

The user, when calling the template tag, would
use:

Congratulations! We’re done with wp-grins.php.
Let’s move on to the admin panel.

The Admin Panel (admin-panel.php)
The first step to creating an external admin panel
is to do a basic security check so that malicious
users can’t access it directly.

We check for the existence of the class variable
adminOptionsName. Accessing the file directly will
cause the file to crash and burn.

<?php
if (function_exists('wp_print_grins')) {
 echo wp_print_grins();
}
?>

<?php
if (empty($this->adminOptionsName)) { die(''); }

$options = $this->get_admin_options(); //global settings

Chapter 12, Example 1: WP Grins Lite 199

Next, we check to see if the user is admin. This is
perhaps unnecessary, but you can’t ever have too
much security (airlines, anyone?).

You can leave a nastier message if you like, but I
chose something benign.

Next up is the code that will execute when a user
clicks the “Update Settings” button.

We’ll have to do a little foresight here and deter-
mine what should be updated.

First we’ll have to do a nonce check, so we know
in advance we’ll have to include a nonce in our
form field.

Second, we’ll have to update the options and show
a success message.

Alright, we know what we want, so let’s get to the
code.

//Check to see if a user can access the panel
if (!current_user_can('administrator'))
 die('');

WordPress and Ajax200

We first check for the existence of a POST vari-
able called update (which will be the name of our
submit button). Up second is our nonce check,
which has a name of wp-grins-lite_options.

We then declare an associative array with a key
called manualinsert and assign it the POST vari-
able manual.

The last thing we do is display a success message
to the user.

Now it’s time to work on our user interface. Sim-
ple radio box options for the manual insert will
suffice.

First, let’s add our nonce field to the form.

<?php
//Update settings
if (isset($_POST['update'])) {
 check_admin_referer('wp-grins-lite_options');
 $options['manualinsert'] = $_POST['manual'];
 $this->adminOptions = $options;
 $this->save_admin_options();
 ?>
 <div class="updated"><p><?php _e('Settings
successfully updated.', $this->localizationName) ?></
p></div>
 <?php
}
?>

Chapter 12, Example 1: WP Grins Lite 201

Keep in mind we created the nonce field with a
name of wp-grins-lite_options, which is the same
name we used above in our nonce check.

The action attribute in our form is used to self-post
to itself, so we expect that clicking on “Update
Settings” will return us to the same page (the rea-
son we have the update code on the same page).

Let’s get to work on our interface:

<div class="wrap">
 <h2>WP Grins Lite Options</h2>
 <form method="post" action="<?php echo $_
SERVER["REQUEST_URI"]; ?>">
 <?php wp_nonce_field('wp-grins-lite_options') ?>

<table class="form-table">
 <tbody>
 <tr valign="top">
 <th scope="row"><?php _e('Manually insert grins? You will
have to call wp_print_grins()', $this->localizationName) ?></
th>
 <td><p><label for="manual_yes"><input
type="radio" id="manual_yes" name="manual" value="true"
<?php if ($options['manualinsert'] == "true") {
echo('checked="checked"'); } ?> /> <?php _e('Yes',$this-
>localizationName); ?></label> <
label for="manual_no"><input type="radio" id="manual_no"
name="manual" value="false" <?php if ($options['manualinsert']
== "false") { echo('checked="checked"'); } ?>/> <?php
_e('No',$this->localizationName); ?></label></p></td>
 </tr>
 </tbody>
</table>

WordPress and Ajax202

Nothing spectacular is going on here. We output
in HTML two radio boxes with the same name at-
tribute. Once has a value of true, and the other
false. When the user clicks on “Update Settings”,
we can capture that value. We also do a condi-
tional check using $options[‘manualinsert’] to
check the correct radio box by default.

All that is left to do now is create our “Update
Settings” button.

That’s it! We’re done with our admin panel. Now
it’s time to test it.

Select “Yes” or “No” and click “Update Settings.”

If everything worked fine, you should see a mes-
sage that says, “Settings successfully updated.”

If not, it’s time to get out your stick and beat the
author.

 <div class="submit">
 <input type="submit" name="update" value="<?php
_e('Update Settings', $this->localizationName) ?>" />
 </div>
 </form>
</div><!--/wrap-->

Chapter 12, Example 1: WP Grins Lite 203

If everything worked fine, make sure you select
the “Manual” option back to “No” so that the
grins will automatically be included.

Since we have the admin panel up and running,
let’s work on our final piece: the JavaScript file.

The JavaScript File (wp-grins.js)
The base for our wp-grins.js file will contain two
functions: one to print out each grin as it is clicked
(grin) and another to initiate our Ajax call to print
out the grins where needed (init).

Our base code will look like the following:

 WP Grins Admin PanelFigure 10.

WordPress and Ajax204

Now the code for printing out each grin (using the
grin function) in the appropriate text box is mon-
strous. How about you just nod your head and
assume that it “just works”? Okay, then (phew!).

What we’re really here for is Ajax anyways, so let’s
get to the init function.

jQuery(document).ready(function() {
var $j = jQuery;
$j.wpgrins = {
 grin: function(tag) {

 },
 init: function() {

 }
};
$j.wpgrins.init();
});

init: function() {
 if (wpgrinslite.MANUAL == "true") { return; }
 var s = {};
 s.response = 'ajax-response';
 s.type = "POST";
 s.data = $j.extend(s.data, {action: 'grins'});
 s.global = false;
 s.url = wpgrinslite.Ajax_Url;
 s.timeout = 30000;
 s.success = function(r) {
 //success stuff here
 }
 $j.ajax(s);
}

Chapter 12, Example 1: WP Grins Lite 205

Please keep in mind that I defined the variable $j
as our reference to jQuery. I also called the init
function (using $j.wpgrins.init()) upon loading
(the goal is to load the grins upon a page load).

The first thing we check for is if the user is go-
ing to manually insert the smilies. This will be
false in the admin panel (remember our localized
JavaScript variables?), so no worries there. On a
post, it will be what the user has decided upon in
the admin panel.

We then build our s object and build a data object
with an action called grins. The action variable is
needed to interface with the WordPress wp_ajax ac-
tion, which will call our class method ajax_print_
grins when the grins action is detected. After the
s object is built, we make our Ajax call.

What we expect to receive back from our Ajax
processor is a string of all the available smilies.

Let’s move into our currently empty success func-
tion.

Via our success function, we will print out the
string filled with smilies.

The string with our smilies will be contained in
variable r.

WordPress and Ajax206

We perform several conditional checks to see if
we’re in a post view (in the admin panel). If so,
we assign a variable named type with the value af-
ter (since we want the smilies to appear after the
edit area).

If we’re in a comment area, we assign type with
value before.

Up next is a simple switch statement that deter-
mines if the grins are displayed before or after

s.success = function(r) {
 var grinsDiv = '<div id="wp_grins">'+r+'</div>';
 if ($j('#postdiv').length > 0) {
 var type = 'after';
 var node = $j('#postdiv');
 } else if ($j('#postdivrich').length > 0) {
 var type = 'after';
 var node = $j('#postdivrich');
 } else if ($j('#comment').length > 0) {
 var type = 'before';
 var node = $j('#comment');
 } else {
 return;
 }
 switch (type) {
 case 'after':
 node.after(grinsDiv);
 $j("#wp_grins").css("paddingTop", "5px");
 break;
 case 'before':
 node.before(grinsDiv);
 break;
 }
} //end success

Chapter 12, Example 1: WP Grins Lite 207

each node. Again, if we’re in a comment area, the
grins are displayed before the edit box. If we’re in
a post area, the grins are displayed after the edit
box.

Coolness! We’re done with our script (and conse-
quently) the plugin.

WP Grins Lite Conclusion
WP Grins Lite is a simple plugin in concept, but
allowing the manual inclusion of the smilies pre-
sented a dilemma that was solved via Ajax.

With the new functionality, the grins will now load
upon a page load. And since JavaScript is needed
to interface with the grins in the first place, using
Ajax here isn’t a huge disadvantage.

If anything, Ajax does the job well here, since us-
ers who have JavaScript disabled won’t even see
the grins.

WordPress and Ajax208

Chapter 13

Example 2:
Static Random Posts

WordPress and Ajax210

Example 2: Static Random
Posts
The WordPress Plugin Static Random Posts was
built out of frustration with other “random posts”
plugins.

I would often visit a site that had displayed ran-
dom posts. If I clicked on one, I’m taken to the
post. But if I click the back button, all of the
posts are refreshed (unless the website makes use
of a caching plugin).

To combat this refreshing problem, I thought to
myself, “What if the random posts were static for
a certain amount of time?”

Another requirement for me is that these random
posts could be “refreshed” manually by the blog’s
admin. For example, if I set the time to refresh
for one week (10,080 minutes in a week), I could
manually refresh the posts until I found a suitable
combination that I liked.

After some brainstorming, I came up with the
main requirements for the plugin:

The plugin will be a widget that can be in-•	
cluded just about anywhere.

Chapter 13, Example 2: Static Random Posts 211

The plugin will have an option to set the num-•	
ber of posts displayed and the title of the wid-
get.

The plugin will have an admin panel to set the •	
refresh time (minutes) and to exclude certain
categories if necessary.

The plugin will have a “Refresh” link on the •	
blog’s front-end so that admin can refresh the
posts at will.

Based on those requirements, we know we need
an admin panel, a script to process the “Refresh”
link, and a main plugin file to create and process
the widget.

 Static Random Posts File StructureFigure 11.

static-random-posts js static-random-posts.js

php admin-panel.php

static-random-posts.php

WordPress and Ajax212

Let’s get started on the static-random-posts.php
file.

Creating the Static Random Posts Widget
Let’s first look at the class skeleton for our widget.
Please note that we inherit the class WP_Widget,
which aids tremendously in creating widgets.

From looking at the above code, we know we have
several standard widget methods that need some
work.

<?php
if (!class_exists('static_random_posts')) {
 class static_random_posts extends WP_Widget {
 var $localizationName = "staticRandom";
 var $adminOptionsName = "static-random-posts";

 function static_random_posts(){
 }
 // widget - Displays the widget
 function widget($args, $instance) {
 }
 //Updates widget options
 function update($new, $old) {
 }
 //Widget form
 function form($instance) {
 }//End function form
 }//End class
}
add_action('widgets_init', create_function('', 'return
register_widget("static_random_posts");'));
?>

Chapter 13, Example 2: Static Random Posts 213

static_random_posts •	 - Our class constructor.

widget•	 - Displays the widget to the end user.

update•	 - Updates the widget when the admin
modifies the widget’s settings.

form•	 - The widget interface in the admin pan-
el.

We’ll also need to define some additional meth-
ods that will assist us with our widget output.

ajax_refresh_static_posts•	 - Will return HTML
via Ajax with updated random posts.

init•	 - An initialization method that will assist
with plugin localization.

print_posts•	 - Will return the HTML of the
random posts.

get_posts•	 - Will return a comma-separated list
of post IDs to display.

build_posts•	 - Will return a widget instance
with new random posts.

add_admin_pages•	 - Allows us to add an admin
settings page.

get_admin_options•	 - Retrieves the stored admin
settings for the widget.

WordPress and Ajax214

add_post_scripts•	 - Adds the scripts necessary
for the plugin’s Ajax.

Let’s get started on the static_random_posts meth-
od first, which will serve as our class constructor.

static_random_posts
We’ll use the class constructor to load all of our
WordPress actions and admin options.

/**
* PHP 4 Compatible Constructor
*/
function static_random_posts(){
 $this->adminOptions = $this->get_admin_options();

 //Initialization stuff
 add_action('init', array(&$this, 'init'));

 //Admin options
 add_action('admin_menu', array(&$this,'add_admin_
pages'));
 //JavaScript
 add_action('wp_print_scripts', array(&$this,'add_post_
scripts'),1000);
 //Ajax
 add_action('wp_ajax_refreshstatic', array(&$this, 'ajax_
refresh_static_posts'));
 //Widget stuff
 $widget_ops = array('description' => __('Shows Static
Random Posts.', $this->localizationName));
 //Create widget
 $this->WP_Widget('staticrandomposts', __('Static Random
Posts', $this->localizationName), $widget_ops);
}

Chapter 13, Example 2: Static Random Posts 215

You probably recognize all of the callback meth-
ods since they were explained earlier.

Of note here is the initialization of the wp_ajax ac-
tion. We used an Ajax action name of refreshstat-
ic, which we’ll need later for JavaScript use. The
nopriv suffix isn’t used here since we don’t want
unprivileged users to have access to the script.

Now that the constructor is finished, let’s work on
the interface that will be displayed to the admin
when adding the widget (under Administration >
Appearance > Widgets).

form
The form method will be automatically called when
the widget is added in the admin panel.

Within this method, we will create the user inter-
face that the admin will see.

Let’s get started on this method’s initialization
code:

//Widget form
function form($instance) {
 $instance = wp_parse_args((array)$instance,
array('title'=> __("Random Posts", $this->localizationName),'po
stlimit'=>5,'posts'=>'', 'time'=>''));
 $postlimit = intval($instance['postlimit']);
 $posts = $instance['posts'];
 $title = esc_attr($instance['title']);

WordPress and Ajax216

The form method is automatically passed an in-
stance of the widget. We use the function wp_parse_
args to merge the instance with our defaults.

Our defaults are as follows:

title•	 - The title of the widget that will be dis-
played on the blog’s front end.

postlimit•	 - How many posts to retrieve.

posts•	 - A comma separated string with our
stored posts.

time•	 - The time the admin sets for post refresh-
ing.

Creating the user interface will fall after the ini-
tialization.

When creating our labels and form inputs, we’ll
make use of class methods get_field_id and get_
field_name and pass it the names of our defaults
(e.g., postlimit). These methods are part of the
WP_Widget class that our class inherited.

The get_field_id and get_field_name methods echo
out the unique IDs and form names necessary for
the widget.

Chapter 13, Example 2: Static Random Posts 217

Towards the end of our user interface, we provide
a link to our global options, which is a link to our
admin page (options-general.php?page-static-ran-
dom-posts.php). This link is only for convenience
and lets the admin know there are other options
for the widget that affect all the widgets globally.

 ?>
 <p>
 <label for="<?php echo esc_attr($this->get_field_
id('title')); ?>"><?php _e("Title", $this->localizationName);
?><input class="widefat" id="<?php echo esc_attr($this-
>get_field_id('title')); ?>" name="<?php echo esc_attr($this-
>get_field_name('title')); ?>" type="text" value="<?php echo
esc_attr($title); ?>" />
 </label>
 </p>
 <p>
 <label for="<?php echo esc_attr($this->get_field_
id('postlimit')); ?>"><?php _e("Number of Posts to Show",
$this->localizationName); ?><input class="widefat" id="<?php
echo esc_attr($this->get_field_id('postlimit')); ?>" name="<?php
echo esc_attr($this->get_field_name('postlimit')); ?>"
type="text" value="<?php echo esc_attr($postlimit); ?>" />
 </label>
 </p>
 <p><?php _e("Please visit",$this->localizationName) ?> <?php
_e("Static Random Posts",$this->localizationName) ?> <?php
_e("to adjust the global settings",$this->localizationName)
?>.</p>
 <?php
 }//End function form

WordPress and Ajax218

As you can see from the screenshot, there is a “Save”
button. When the button is clicked, the update
method runs, so let’s move on to that next.

update
The update method performs one simple task: it
updates the widget with the options the admin
selects.

 Widget User Interface Figure 12.

Chapter 13, Example 2: Static Random Posts 219

When the admin clicks “Save”, a new and old in-
stance is sent to the update method.

We simply assign the variable $instance with the
$old instance. We then pass the $instance variable
our new data and return the instance. Not much
to it.

Let’s now work on our class variable $this-

>adminOptions, which gets initialized via the get_
admin_options method.

get_admin_options
The get_admin_options method is practically iden-
tical to the method we used in Example 1, with
the exception of the default keys used.

Our defaults in this case are:

minutes•	 - Number of minutes until the posts
are refreshed.

//Updates widget options
function update($new, $old) {
 $instance = $old;
 $instance['postlimit'] = intval($new['postlimit']);
 $instance['title'] = esc_attr($new['title']);
 return $instance;
}

WordPress and Ajax220

categories•	 - The categories of the posts we
would like to exclude.

Both of these options will be used in the admin
panel, as well as in several other methods in the
class that we have yet to define.

Let’s get to the code.

Again, we set the defaults, and merge the keys
with any saved ones.

Since this method calls save_admin_options, let’s
work on that next.

//Returns an array of admin options
function get_admin_options() {
 if (empty($this->adminOptions)) {
 $adminOptions = array(
 'minutes' => '5',
 'categories' => ''
);
 $options = get_option($this->adminOptionsName);
 if (!empty($options)) {
 foreach ($options as $key => $option) {
 if (array_key_exists($key,
$adminOptions)) {
 $adminOptions[$key] = $option;
 }
 }
 }
 $this->adminOptions = $adminOptions;
 $this->save_admin_options();

 }
 return $this->adminOptions;
}

Chapter 13, Example 2: Static Random Posts 221

save_admin_options
Once again, this code is practically identical to
the method in Example 1.

The code is fairly simple. It takes the class vari-
able $this->adminOptions and updates it according
to our $this->adminOptionsName variable.

So what’s next?

How about we work on some of our actions.

init
The init method will perform our plugin local-
ization. We called it by adding this action in
our constructor: add_action(‘init’,array(&$this,
‘init’));

The only thing to note here is that all of the lo-
calization files will be included in the “languages”
sub-directory, which I’ve included in the final pl-
ugin version.

//Saves for admin
function save_admin_options(){
 if (!empty($this->adminOptions)) {
 update_option($this->adminOptionsName, $this-
>adminOptions);
 }
}

WordPress and Ajax222

add_admin_pages
The next action is the action for adding in our
admin page. Here is the action we used: add_
action(‘admin_menu’, array(&$this,’add_admin_pag-

es’));

And here’s the resulting code:

Simple and to the point. We call the method
print_admin_page, so let’s move onto that one
next.

print_admin_page
This method will output our admin panel. As
with Example 1, I use an external PHP file for the
admin panel.

/* init - Run upon WordPress initialization */
function init() {
 //* Begin Localization Code */
 $static_random_posts_locale = get_locale();
 $static_random_posts_mofile = WP_PLUGIN_DIR . "/static-
random-posts/languages/" . $this->localizationName . "-".
$static_random_posts_locale.".mo";
 load_textdomain($this->localizationName, $static_random_
posts_mofile);
//* End Localization Code */
}//end function init

function add_admin_pages(){
 add_options_page('Static Random Posts', 'Static Random
Posts', 9, basename(__FILE__), array(&$this, 'print_admin_
page'));
}

Chapter 13, Example 2: Static Random Posts 223

Let’s move onto the next action, which will use
the add_post_scripts method.

add_post_scripts
The add_post_scripts method is called by the fol-
lowing action: add_action(‘wp_print_scripts’,

array(&$this,’add_post_scripts’),1000);

What we want to do within this function is regis-
ter our JavaScript files and do some simple detec-
tion to ensure the scripts don’t load unless neces-
sary.

//Provides the interface for the admin pages
function print_admin_page() {
 include dirname(__FILE__) . '/php/admin-panel.php';
}

//Add scripts to the front-end of the blog
function add_post_scripts() {
 //Only load the widget if the widget is showing
 if (!is_active_widget(true, $this->id, $this->id_base)
|| is_admin()) { return; }
 //queue the scripts
 wp_enqueue_script("wp-ajax-response");
 wp_enqueue_script('static_random_posts_script', plugins_
url('static-random-posts') . '/js/static-random-posts.js',
array("jquery", "wp-ajax-response") , 1.0);
 wp_localize_script('static_random_posts_script',
'staticrandomposts', $this->get_js_vars());
}

WordPress and Ajax224

What we first do in this method is ensure that the
widget is indeed being shown on the front-end
(via the is_admin conditional).

We call the is_active_widget WordPress function
to determine if the widget is being shown. If it
isn’t, we get out of the method.

We then load our scripts and provide some script
localization via wp_localize_script.

When we localize, we call the method get_js_vars.
Let’s move on to that method next.

get_js_vars
All that we’re doing in the get_js_vars method is
returning an array of variables that need to be lo-
calized for use in our JavaScript file. The get_js_
vars output is used as one of the arguments for
the WordPress function wp_localize_script.

Since we will have a “Refresh...” button, we need
a variable to hold that text.

We also need a “Loading...” message for when the
button is clicked.

Finally, we need the URL to WordPress’ admin-
ajax.php file.

Chapter 13, Example 2: Static Random Posts 225

We’re done with most of our actions, but let’s go
ahead and move to the widget method, which will
display the random posts on the front-end.

widget
The widget method is automatically called when
displaying the widget on the front-end.

The method is passed two variables:

$args•	 - An array of arguments.

$instance•	 - The instance of the widget.

The beginning of the method will look like this:

The first thing we do is extract the $args array us-
ing the PHP function extract.

//Returns various JavaScript vars needed for the scripts
function get_js_vars() {
 return array(
 'SRP_Loading' => esc_js(__('Loading...', $this-
>localizationName)),
 'SRP_Refresh' => esc_js(__('Refresh...', $this-
>localizationName)),
 'SRP_AjaxUrl' => admin_url('admin-ajax.php')
);
} //end get_js_vars

// widget - Displays the widget
function widget($args, $instance) {
 extract($args, EXTR_SKIP);

WordPress and Ajax226

The $args array is filled with some useful keys. By
using the extract function, we now have the fol-
lowing variables available:

$before_title•	 - What code and/or words to
display before the widget title.

$after_title•	 - What code and/or words to dis-
play after the widget title.

$before_widget•	 - What code and/or words to
display before the widget.

$after_widget•	 - What code and/or words to
display after the widget.

As a plugin author, we shouldn't modify these
variables, but in order to ensure maximum theme
compatibility, using these variables is a must.

A themer defines these variables somewhere in
their theme (most likely in functions.php) by reg-
istering a sidebar (example):

if (function_exists('register_sidebar')) {
 register_sidebar(array(
 'name' => 'Sidebar1',
 'before_widget' => '<div class="sidebar-box"><div
class="sidebar-box-inside">',
 'after_widget' => '</div></div>',
 'before_title' => '<h3>',
 'after_title' => '</h3>',
));
}

Chapter 13, Example 2: Static Random Posts 227

We have to assume that the themer knows what
he’s doing and rely on his code for the look and
feel of our widget.

Let’s look at the rest of this code for the widget
method.

// widget - Displays the widget
function widget($args, $instance) {
 extract($args, EXTR_SKIP);
 echo $before_widget;
 $title = empty($instance['title']) ? __('Random Posts',
$this->localizationName) : apply_filters('widget_title',
$instance['title']);

 if (!empty($title)) {
 echo $before_title . $title . $after_title;
 };
 //Get posts
 $post_ids = $this->get_posts($instance);
 if (!empty($post_ids)) {
 echo "<ul class='static-random-posts' id='static-
random-posts-$this->number'>";
 $this->print_posts($post_ids);
 echo "";
 if (current_user_can('administrator')) {
 $refresh_url = esc_url(wp_nonce_url(admin_
url("admin-ajax.php?action=refreshstatic&number=$this-
>number&name=$this->option_name"), "refreshstaticposts"));
 echo "
<a href='$refresh_
url' class='static-refresh'>" . __("Refresh...",$this-
>localizationName) . "";
 }
 }
 echo $after_widget;
}

WordPress and Ajax228

There’s four major things going on here in this
method:

We add in the default variables before/after •	
the widget and before/after the title.

We retrieve the post IDs to display by calling •	
our get_posts method (not yet defined). We
pass it the current $instance variable.

We output an unordered list and call the •	 print_

posts method (not yet defined) with the list of
our post IDs.

If the user is admin, we output a link to •	 admin-

ajax.php for refreshing the random posts (we’ll
capture this via JavaScript later).

When all is said and done, our front-end output
should be a widget filled with random links.

We have four more methods to go before we are
done with the class. Let’s go over them quickly:

get_posts•	 - Returns a comma separated string
of post IDs to include in our output.

build_posts•	 - Returns an instance that includes
the post IDs and the time of when the posts
will need to be refreshed.

print_posts•	 - Prints out the posts to the front-
end.

Chapter 13, Example 2: Static Random Posts 229

ajax_refresh_static_posts•	 - Our Ajax proces-
sor.

get_posts
The get_posts method is what we use to return a
string of post IDs.

It takes in two arguments:

$instance•	 - The widget instance.

$build•	 (true or false) - Whether to build new
posts or not.

Before we get into the code, let me explain the
main functionality of this method.

We retrieve the number of posts to display (this
value is saved in our widget instance). We then
do a quick check to see if there are stored post
IDs. If not, we build the IDs.

We then check to see if the time has expired for
the static random links. If the time has expired,
we build new random links.

We then check to see if the $build variable is true.
If it is, we build the posts.

In all three conditionals, we update the main in-
stance.

WordPress and Ajax230

Let’s get to the code:

Pay attention to the variable $all_instances. This
variable holds all of our Static Random Posts wid-
gets.

//Returns the post IDs of the posts to retrieve
function get_posts($instance, $build = false) {
 //Get post limit
 $limit = intval($instance['postlimit']);

 $all_instances = $this->get_settings();
 //If no posts, add posts and a time
 if (empty($instance['posts'])) {
 //Build the new posts
 $instance = $this->build_posts($limit,$instance);
 $all_instances[$this->number] = $instance;
 update_option($this->option_name, $all_instances
);
 } elseif(($instance['time']-time()) <=0) {
 //Check to see if the time has expired
 //Rebuild posts
 $instance = $this->build_posts($limit,$instance);
 $all_instances[$this->number] = $instance;
 update_option($this->option_name, $all_instances
);
 } elseif ($build == true) {
 //Build for the heck of it
 $instance = $this->build_posts($limit,$instance);
 $all_instances[$this->number] = $instance;
 update_option($this->option_name, $all_instances
);
 }
 if (empty($instance['posts'])) {
 $instance['posts'] = '';
 }
 return $instance['posts'];
}

Chapter 13, Example 2: Static Random Posts 231

When we are updating our instance, we update
with this code:

We have to assume that the build_posts method
updates the $instance[‘posts’] key. We then up-
date only our widget by using:

Finally, we call the WordPress function update_op-
tion and pass it our widget’s option_name, and pass
it all of the instances.

Since there is such heavy use of the build_posts
method, let’s move onto that method next.

build_posts
The build_posts method takes in two arguments:

$limit•	 - The number of posts to retrieve.

$instance•	 - The instance to update and return.

First, we get our saved categories IDs as specified
in the admin panel options. Since the categories
are in an array, we implode them and separate the
categories by a comma. The $cats variable will

$instance = $this->build_posts($limit,$instance);
$all_instances[$this->number] = $instance;
update_option($this->option_name, $all_instances);

$all_instances[$this->number] = $instance;

WordPress and Ajax232

hold all of the category IDs to exclude (e.g., -3,-
4,-5).

We then retrieve our list of posts using the Word-
Press function get_posts. We pass it our categories
to exclude, the limit on posts, and the rand option
(for our posts to be random).

After that, we build our $post_ids array, and im-
plode this array to be a comma-separated string.

We update our instance with the $post_ids and a
new time.

Finally, we return the instance.

//Builds and saves posts for the widget
function build_posts($limit, $instance) {
 //Get categories to exclude
 $cats = @implode(',', $this->adminOptions['categories']);

 $posts = get_posts("cat=$cats&showposts=$limit&orderby=r
and"); //get posts by random
 $post_ids = array();
 foreach ($posts as $post) {
 array_push($post_ids, $post->ID);
 }
 $post_ids = implode(',', $post_ids);
 $instance['posts'] = $post_ids;
 $instance['time'] = time()+(60*intval($this-
>adminOptions['minutes']));

 return $instance;
}

Chapter 13, Example 2: Static Random Posts 233

print_posts
The print_posts method was called in the widget
method when outputting the random posts.

The print_posts method takes a string of comma-
separated post IDs. It then retrieves a list of posts
based on those IDs, and outputs the result.

As you can see from the code, it retrieves the posts,
and goes through them one-by-one to build a
string full of posts.

If the $echo variable is set to true (default), it echoes
the string rather than returning it.

//Prints or returns the LI structure of the posts
function print_posts($post_ids,$echo = true) {
 if (empty($post_ids)) { return ''; }
 $posts = get_posts("include=$post_ids");
 $posts_string = '';
 foreach ($posts as $post) {
 $posts_string .= "<a href='" . get_
permalink($post->ID) . "' title='". esc_attr($post->post_title)
."'>" . esc_html($post->post_title) ."\n";
 }
 if ($echo) {
 echo $posts_string;
 } else {
 return $posts_string;
 }
}

WordPress and Ajax234

The $echo variable will come in handy when we’re
using our Ajax processor to retrieve the list of
posts.

Speaking of the Ajax processor, let’s move on to
our Ajax-processing method named ajax_refresh_
static_posts.

ajax_refresh_static_posts
The ajax_refresh_static_posts method is a call-
back method for the wp_ajax WordPress action.
When the refreshstatic Ajax action is detected
(and the user has the appropriate privileges), the
ajax_refresh_static_posts method is called.

The first thing we need to do is to perform a nonce
check.

If you venture way back to the widget method,
you will notice that we used the nonce name re-
freshstaticposts when we called the wp_nonce_url
function to build our “Refresh...” URL.

Assuming this nonce gets passed to us via JavaScript
(it’s coming, I swear!), we perform a nonce check

//Build new posts and send back via Ajax
function ajax_refresh_static_posts() {
 check_ajax_referer('refreshstaticposts');

Chapter 13, Example 2: Static Random Posts 235

using check_ajax_referer. If the nonce check fails,
a ”-1” is sent back and nothing progresses fur-
ther.

Let’s now capture some $_POST variables and
perform some data validation.

With our $number and $name variables at hand, we
have enough information to retrieve our widget,
so let’s do that next.

First, we get the widgets based on our widget
name (there could be more than one of our wid-
gets displayed).

We then narrow down the selection to just one
widget by using our $number variable with the
$settings array.

if (isset($_POST['number']) && current_user_
can('administrator')) {
 $number = intval($_POST['number']);
 $action = addslashes(preg_replace("/[^a-z0-9]/i", '',
strip_tags($_POST['action'])));
 $name = addslashes(preg_replace("/[^_a-z0-9]/i", '',
strip_tags($_POST['name'])));

//Get the SRP widgets
$settings = get_option($name);
$widget = $settings[$number];

WordPress and Ajax236

Our next task is to build the new posts:

We’ve gone over the build_posts method before,
so we know it returns an instance of the updated
widget with brand new posts.

We then assign $post_ids with the new posts for
later use.

We now need to save the widget and refresh the
cache (if available).

Now it’s time to build and return our Ajax re-
sponse.

//Get the new post IDs
$widget = $this->build_posts(intval($widget['postlimit']),$widg
et);
$post_ids = $widget['posts'];

//Save the settings
$settings[$number] = $widget;
update_option($name, $settings);

//Let's clean up the cache
//Update WP Super Cache if available
if(function_exists("wp_cache_clean_cache")) {
 @wp_cache_clean_cache('wp-cache-');
}

Chapter 13, Example 2: Static Random Posts 237

We assign the data key with the result of the print_
posts method (which we pass our $post_ids vari-
able). The false we send tells the method not to
echo out the variables and return them as a string
instead.

We’re now done with creating the widget! Let’s
move on to the admin panel.

The Admin Panel (admin-panel.php)
There are three things we wish to accomplish with
our admin panel for this example.

Allow the user to select a time (in minutes) for •	
the random posts to be refreshed.

Allow a user to select the categories he wants •	
to exclude when retrieving the random posts.

Update the time and categories and save them •	
to our admin options.

 //Build and send the response
 $response = new WP_Ajax_Response();
 $response->add(array(
 'what' => 'posts',
 'id' => $number,
 'data' => $this->print_posts($post_ids,
false)));
 $response->send();
 }
 exit;
} //end ajax_refresh_static_posts

WordPress and Ajax238

First, let’s deal with security:

Now that we have the introduction of our file over
with, let’s get to updating the options.

Updating the Options
The first obstacle we’ll tackle is that of time. We want
to ensure that the time entered is numeric, and that
the time is greater than one minute (not set to zero).

But first, we need to check our nonce, which uses the
string static-random-posts_admin-options.

<?php
/* Admin Panel Code - Created on April 19, 2008 by Ronald
Huereca
Last modified on October 07, 2010
*/
if (empty($this->adminOptionsName)) { die(''); }

$options = $this->adminOptions; //global settings

//Check to see if a user can access the panel
if (!current_user_can('manage_options'))
 die("nope");

//Update settings
if (isset($_POST['update'])) {
 check_admin_referer('static-random-posts_admin-
options');
 $error = false;
 $updated = false;

Chapter 13, Example 2: Static Random Posts 239

We check for the existence of $_POST[‘update’],
check our nonce, and set defaults for variables
$error and $updated.

Up next is checking the $_POST[‘time’] variable.

We use a regular expression to ensure that all val-
ues are a digit (you could have also used the PHP
is_num function). If the time has non-numerical
values, we set the error message.

//Validate the time entered
if (isset($_POST['time'])) {
 $timeErrorMessage = '';
 $timeClass = 'error';
 if (!preg_match('/^\d+$/i', $_POST['time'])) {
 $timeErrorMessage = __("Time must be a numerical
value",$this->localizationName);
 $error = true;
 } elseif($_POST['time'] < 1) {
 $timeErrorMessage = __("Time must be greater than
one minute.",$this->localizationName);
 $error = true;
 } else {
 $options['minutes'] = $_POST['time'];
 $updated = true;
 }
 if (!empty($timeErrorMessage)) {
 ?>
 <div class="<?php echo $timeClass;
?>"><p><?php _e($timeErrorMessage, $this-
>localizationName); ?></p></div>
 <?php
 }
}

WordPress and Ajax240

We next check to see if the time value is less than
one. If it is, we set the error message.

After passing the first two conditionals, we assume
we’re good and update the $options array with the
new time (we’ll save it later).

If the $timeErrorMessage isn’t empty (one of the
first two conditionals has failed), then an error
message is spit out for the user to see.

Up next is building our categories. Since we want
to “exclude” them, we need to add a minus (-)
sign before each one.

To perform this exclusion, we do a for loop and
update each item in the array with a minus (-)
sign. After the loop, we assign our $options array
the new values.

 SRP Error MessageFigure 13.

Chapter 13, Example 2: Static Random Posts 241

Finally, we save the options and output a “success”
message.

Now it’s time to work on the user interface.

 //categories (add a "-" sign for exclusion)
 for ($i=0; $i<sizeof($_POST['categories']); $i++) {
 $_POST['categories'][$i] = "-" . $_POST['categories']
[$i];
 }
 $options['categories'] = $_POST['categories'];

 $updated = true;
 if ($updated && !$error) {
 $this->adminOptions = $options;
 $this->save_admin_options();
 ?>
 <div class="updated"><p><?php _e('Settings
successfully updated.', $this->localizationName) ?></
p></div>
 <?php
 }
}
?>

 SRP Success MessageFigure 14.

WordPress and Ajax242

The User Interface
The user interface will contain a simple text box
to enable users to enter the minutes desired before
the random posts are refreshed (you’ve already seen
a few screenshots with this already included).

Additionally, we’ll output rows of checkboxes
that will contain the blog’s categories. Be default,
none of these will be checked, but we’ll have to
remember previously checked boxes.

First, let’s insert our nonce field.

Keep in mind we use the same exact string that we
used in our nonce check: static-random-posts_ad-
min-options.

As with Example 1, we have the form self-post to
itself, which is the reason we have “update” code
within the same file. In my experience, this is a
cleaner way of updating options rather than hav-
ing too many separate files all over the place.

<div class="wrap">
 <h2>Static Random Posts Options</h2>
 <form method="post" action="<?php echo $_
SERVER["REQUEST_URI"]; ?>">
 <?php wp_nonce_field('static-random-posts_admin-options')
?>

Chapter 13, Example 2: Static Random Posts 243

Up next is our input box for the refresh rate (min-
utes).

The output of the above code would look like
this:

Now it’s time to show the categories as rows of
checkboxes.

What we want here is to get all of the categories
as a flat list (no hierarchy). We also want to check
each category and see if it is in our “exclude” op-
tions. If it is, we want to check the checkbox.

After that, we want to print out the categories.

<table class="form-table">
 <tbody>
 <tr valign="top">
 <th scope="row"><?php _e('Set refresh time (minutes):',
$this->localizationName) ?></th>
 <td><input type="text" name="time" value="<?php echo
esc_attr($options['minutes']); ?>" id="comment_time"/><p><?php
_e('Your random posts will be refreshed every', $this-
>localizationName); echo " " . $options['minutes'] . "
";_e('minutes.', $this->localizationName); ?></p></td>
 </tr>

 Refresh Time Input BoxFigure 15.

WordPress and Ajax244

Within the foreach statement, we check to see if
the category is excluded in our admin options. If
it is, we mark the category as “checked” (checked
categories are excluded from Static Random
Posts).

<tr valign="top">
<th scope="row"><?php _e('Exclude Categories:', $this-
>localizationName) ?></th>
<td>
<?php
$args = array(
 'type' => 'post',
 'child_of' => 0,
 'orderby' => 'name',
 'order' => 'ASC',
 'hide_empty' => false,
 'include_last_update_time' => false,
 'hierarchical' => 1);
$categories = get_categories($args);
foreach ($categories as $cat) {
 $checked = '';
 if (is_array($options['categories'])) {
 if (in_array("-" . $cat->term_id,
$options['categories'], false)) {
 $checked = "checked='checked'";
 }
 }
 echo "<input type='checkbox' id='$cat->term_id'
value='$cat->term_id' name='categories[]' $checked /> ";
 echo "<label for='$cat->term_id'>$cat->name</label>
";
}
 ?>
</td>
</tr>
</tbody>
</table>

Chapter 13, Example 2: Static Random Posts 245

The output of this code will look similar to this
figure:

Finally, we print out our “Update” button.

Phew! Done with the admin panel!

Let’s next move on to our JavaScript file, which
will capture our “Refresh...” link and initiate the
Ajax call.

 Categories OutputFigure 16.

<div class="submit">
 <input type="submit" name="update" value="<?php esc_
attr_e('Update Settings', $this->localizationName) ?>" />
 </div>
 </form>
</div>

WordPress and Ajax246

The JavaScript File (static-random-posts.js)
The JavaScript file will perform one important
function: it must capture when the “Refresh...”
button is clicked and initiate an Ajax call. Let’s
look at the base code for this file.

What we can tell from the code shown above is
that a namespace of staticrandomposts is created.

There’s a public function called init, and this
function is called immediately upon a page load.

The init function calls the private function ini-
tialize_links, so we have to assume the initial-
ize_links function will contain the code to initial-
ize our “Refresh...” button and to perform and
receive the Ajax request.

Let’s start by writing the code to capture button
clicks within the initialize_links function.

jQuery(document).ready(function() {
 var $j = jQuery;
 $j.staticrandomposts = {
 init: function() { initialize_links(); }
 };
 //Initializes the refresh links
 function initialize_links() {

 }
 $j.staticrandomposts.init();
});

Chapter 13, Example 2: Static Random Posts 247

First, let’s go back to the “Refresh...” link that the
user will click on. Here is the full path that is
generated for the link:

Our link is pointing towards WordPress’ admin-
ajax.php and contains four variables:

action=refreshstatic•	 - The action we are tak-
ing.

number=12•	 - The unique number of our widget
(this could be anything).

name=widget_staticrandomposts•	 - This is the
name of our widget.

_wpnonce=e4dca644d3•	 - The unique nonce for
the link.

Within our script, we must capture all of these
variables and pass them via Ajax.

Now let’s get back to the event capturing for our
button (err, link).

function initialize_links() {
 $j(".static-refresh").bind("click", function() {
 return false;
 });
}

http://www.domain.com/wp-admin/admin-ajax.php?action=refreshsta
tic&number=5&name=widget_staticrandomposts&_wpnonce=e4dca644d3

WordPress and Ajax248

Our link (in case I didn’t mention it before) has
a class attribute with the value of static-refresh.
We bind a click event to it, and return false (mak-
ing the link at this point utterly useless).

Once inside the click event function, we need to
capture the four variables mentioned previously,
build our s object, and initiate our Ajax call.

As shown in the above code, we first assign the
“clicked” link to a variable named obj.

$j(".static-refresh").bind("click", function() {
 //prepare object for AJAX call
 var obj = $j(this);
 obj.html(staticrandomposts.SRP_Loading); //from
localized variable
 var s = {};
 s.response = 'ajax-response';
 var url = wpAjax.unserialize(obj.attr('href'));
 s.type = "POST";
 s.data = $j.extend(s.data, {action: url.action, number:
url.number, name: url.name, _ajax_nonce: url._wpnonce});
 s.global = false;
 s.url = staticrandomposts.SRP_AjaxUrl; //from localized
variable
 s.timeout = 30000;
 s.success = function(r) {
 //Ajax stuff here
 }
 $j.ajax(s);
 return false;
});

Chapter 13, Example 2: Static Random Posts 249

We alter the link’s inner-HTML by using one of
our localized variables.

We then start building our s object, and create the
s.data object with our four variables. One thing
to note here is that we assign our passed _wpnonce
variable to _ajax_nonce (for use in the Ajax proces-
sor).

A s.success placeholder is used, and then we initi-
ate our Ajax call.

We’re done right? Not quite. We still have to
build the inner-workings of the s.success func-
tion.

First, what are we expecting here? When the user
clicks the “Refresh...” link, he’s expecting new
posts. So we can reasonably expect that the Ajax
processor will return a string of these new posts
ready for us to insert onto the front-end.

Our first goal upon receiving a response is to
change the text back to “Refresh...” and parse the
Ajax response.

Let’s go ahead and hide the “Refresh...” link (which
should now say “Loading...” by the way) and up-
date the text back to its original value. Next, we’ll
parse the XML response.

WordPress and Ajax250

After we have parsed the response, we go through
each of the responses.

What we’re looking for in this case is a what value
set to posts. We’ll then update the widget with
the new “data”.

Now let’s think waaaay back (ok, only a few pages)
to when we created the code to output the widget.
We created an unordered list and filled this list
with our posts.

Still don’t remember? Okay, here’s a refresher:

s.success = function(r) {
 obj.hide();
 obj.html(staticrandomposts.SRP_Refresh);
 //Parse the XML response
 var res = wpAjax.parseAjaxResponse(r, s.response);

$j.each(res.responses, function() {
 if (this.what == "posts") {
 var data = this.data;
 $j("#static-random-posts-" + url.number).
hide("slow", function() {
 $j("#static-random-posts-" + url.number).
html(data);
 $j("#static-random-posts-" + url.number).
show("slow", function() { obj.show(); });
 return;
 });
 }
});

Chapter 13, Example 2: Static Random Posts 251

So when you see in the code $j(‘#static-random-
posts-’ + url.number, that’s exactly what we’re us-
ing.

We first hide this unordered list. We update its
inner-HTML with the new data. We then show
the unordered list, and make our “Refresh...” link
visible via a callback.

Since someone can theoretically include more
than one Static Random Posts widget on a page (a
benefit of inheriting the WP_Widget class), we have
to make sure that each widget instance is unique.

Adding the widget number to a common prefix is
a great way to ensure that each widget on the page
is served by a unique ID.

WordPress itself already provides a container with
a unique ID for our widget, but since we don’t
want to update the entire widget (just a portion),
we created our own unique ID for the unordered
list that is used.

Here’s the entire intialize_links function:

echo "<ul class='static-random-posts' id='static-random-posts-
$this->number'>";

WordPress and Ajax252

function initialize_links() {
 $j(".static-refresh").bind("click", function() {
 //prepare object for AJAX call
 var obj = $j(this);
 obj.html(staticrandomposts.SRP_Loading); //from
localized variable
 var s = {};
 s.response = 'ajax-response';
 var url = wpAjax.unserialize(obj.attr('href'));
 s.type = "POST";
 s.data = $j.extend(s.data, {action: url.action,
number: url.number, name: url.name, _ajax_nonce: url._
wpnonce});
 s.global = false;
 s.url = staticrandomposts.SRP_AjaxUrl; //from
localized variable
 s.timeout = 30000;
 s.success = function(r) {
 obj.hide();
 obj.html(staticrandomposts.SRP_Refresh);
 //Parse the XML response
 var res = wpAjax.parseAjaxResponse(r,
s.response);
 $j.each(res.responses, function() {
 if (this.what == "posts") {
 var data = this.data;
 $j("#static-random-posts-" +
url.number).hide("slow", function() {
 $j("#static-random-
posts-" + url.number).html(data);
 $j("#static-random-
posts-" + url.number).show("slow", function() { obj.show(); });
 return;
 });
 }
 });
 }
 $j.ajax(s);
 return false;
 });
}

Chapter 13, Example 2: Static Random Posts 253

We’re now done with our JavaScript portion, and
done completely with our widget.

Static Random Posts Conclusion

Within this chapter you learned how to create a
WordPress widget with Ajax capabilities.

I walked you through the brainstorming process
to determine what requirements are needed.

So you see how it’s all falling into place like a
puzzle orgi? Okay, maybe I shouldn’t have gotten

 Static Random Posts OutputFigure 17.

WordPress and Ajax254

that descriptive, but you hopefully get the gist of
it (it being Ajax and WordPress) now, yes?

Let’s move on to to learn how to make an Ajax
registration form.

Chapter 14

Example 3:
Ajax Registration Form

WordPress and Ajax256

Example 3: Ajax Registra-
tion Form
When building an affiliate program for one of my
products, I wanted a way for an affiliate to fill out
some required information and have WordPress
create a WordPress user account automatically be-
hind the scenes.

What resulted was a simple form on the front-end
that the user could fill out and have all of the form
validation done on the client side without a page
refresh.

The Ajax Registration Form is a plugin that dem-
onstrates how to perform data validation, handle
errors, and add a user, all using Ajax.

For this example, we’ll be using three files:

ajax-registration.php - The main plugin file.•	

js/registration.js - The plugin’s JavaScript file.•	

css/registration.css - CSS to handle appear-•	
ance.

While the structure is quite simple (and really, the
plugin is fairly simple as well), there’s a few ad-
vanced concepts involved that demonstrate how

Chapter 14, Example 3: Ajax Registration Form 257

to pass and return complex data to an Ajax pro-
cessor.

Let’s begin with ajax-registration.php, which con-
tains all of our plugin logic.

Creating the Ajax_Registration Class
The Ajax_Registration class will be in charge of:

Loading scripts and styles.•	

Adding a shortcode handler (we’ll be using a •	
shortcode to insert a form onto a post).

Handling the Ajax request.•	

Handling page detection for the shortcode.•	

 Ajax Registration File StructureFigure 18.

ajax-registration css registration.css

js registration.js

ajax-registration.php

WordPress and Ajax258

Knowing these pre-requisites, let’s go ahead and
check out our class structure.

Let’s begin by filling out our constructor. We
need actions for scripts and styles (loading on the
front-end), an action for when a post is saved (for

<?php
class Ajax_Registration {

 //Constructors
 function Ajax_Registration() {
 $this->__construct();
 }
 function __construct() {
 //actions and shortcode
 }
 //Add the registration script to a page
 function add_scripts() {
 }
 //Add Styles for the form
 function add_styles() {
 }
 function ajax_process_registration() {
 } //end ajax_process_registration
 //Perform shortcode page detection
 function has_shortcode() {
 }
 //Add/save shortcode information
 function post_save($post_id) {
 } //end post_save
 //Print out the shortcode
 function rform_shortcode() {
 }
} //end class
//Instantiate
$ajaxregistration = new Ajax_Registration();
?>

Chapter 14, Example 3: Ajax Registration Form 259

caching shortcode data), an action for the Ajax
processor, and a shortcode callback.

If you observe the callback methods, they match
most of the methods in our class structure. The
has_shortcode method isn’t referenced, but it’s a
helper method for adding in scripts and styles
(more on that in a bit).

Since our plugin is based on a shortcode for the
user interface, let’s move into the rform_shortcode
method first.

function __construct() {
 //add scripts
 add_action('wp_print_scripts', array(&$this, 'add_scripts'
));
 //add css
 add_action('wp_print_styles', array(&$this, 'add_styles')
);
 //ajax
 add_action('wp_ajax_nopriv_submitajaxregistration', array(
&$this, 'ajax_process_registration'));
 add_action('wp_ajax_submitajaxregistration', array(&$this,
'ajax_process_registration'));
 //when saving a post
 add_action('save_post', array(&$this, 'post_save'));
 //shortcode
 add_shortcode('rform', array(&$this, 'rform_shortcode')
);
}

WordPress and Ajax260

rform_shortcode
The rform_shortcode method returns a string that
consists of our user interface (a registration form,
if you haven’t guessed by now).

The shortcode used is called rform, and you’d in-
sert it into a post or page by using: [rform]

When the rform shortcode is detected, WordPress
calls the rform_shortcode method and allows us to
return our custom code in string format.

The rform_shortcode method will return a basic
form as a string.

The form will have the following fields and fea-
tures (with all having a unique ID for JavaScript
use):

A form - Has an ID of •	 ajax-registration-form.

Input fields - Has IDs of •	 firstname, lastname,
username, and email.

A nonce field - Has an ID of •	 _registration_

nonce.

A submit button - Has an ID of •	 ajax-submit.

A status message area - Has an ID of •	 registra-

tion-status-message.

Chapter 14, Example 3: Ajax Registration Form 261

Each input field also has a “name” attribute,
which will aid JavaScript in capturing the various
values.

Let’s look at the code:

As you can see from the code, it’s just a basic form.
The nonce being added (via wp_nonce_field) is re-
turned so we could use it with the shortcode. A
nonce here isn’t exactly necessary, but is a security

function rform_shortcode() {
 $return = "<form id='ajax-registration-form'>";
 $return .= wp_nonce_field('submit_ajax-registration',
'_registration_nonce', true, false);
 $return .= "<ul id='ajax-registration-list'>";
 $return .= "<label for='firstname'>First name:
</label><input type='text' size='30' name='firstname'
id='firstname' />";
 $return .= "<label for='lastname'>Last name:
</label><input type='text' size='30' name='lastname'
id='lastname' />";
 $return .= "<label for='username'>Desired Username:
</label><input type='text' size='30' name='username'
id='username' />";
 $return .= "<label for='email'>E-mail Address: </
label><input type='text' size='30' name='email' id='email' /></
li>";
 $return .= "<input type='submit' value='Submit
Registration' name='ajax-submit' id='ajax-submit' />";
 $return .= "<li id='registration-status-message'>";
 $return .= "";
 $return .= "</form>";

 return $return;
}

WordPress and Ajax262

precaution just to make sure the request originat-
ing from the correct site.

When all is said and done, the shortcode output
should look like this (please note that the output
shown already has styles attached).

 Registration Form using the rform ShortcodeFigure 19.

Chapter 14, Example 3: Ajax Registration Form 263

Now that the shortcode callback is finished, all an
end-user would have to do is include the [rform]
shortcode on a post or a page.

The next method we’ll be tackling is the post_save
method, which is a callback method for the save_
post WordPress action.

post_save
The post_save method is used to save a custom
field when a post or page has the [rform] short-
code in its content.

We save this custom field in order to perform
some page detection when queueing the plugin’s
styles and scripts.

Since the post_save method is called each time a
post or page is saved, we either have to add the
custom field (if the shortcode is detected), or re-
move it (if the shortcode isn’t there).

Within the post_save method, we’ll get the post’s
content. If the post is a revision, we’ll have to get
the post’s original ID and get the content for that
instead.

WordPress and Ajax264

Once we have the post’s content, we’ll perform a
regular expression check for the [rform] shortcode,
and save custom field data based on the result.

The results of the regular expression check are
stored in a variable called $matches. If there are
any matches, a custom field with the label _ajax_
registration is saved. If there are no matches, we
remove the custom field (even if it never existed).

The custom field, when used with the post_save
method, ensures that we can perform up-to-date

function post_save($post_id) {
 //Retrieve the post object - If a revision, get the
original post ID
 $revision = wp_is_post_revision($post_id);
 if ($revision)
 $post_id = $revision;
 $post = get_post($post_id);

 //Perform a test for a shortcode in the post's content
 preg_match('/\[rform[^\]]*\]/is', $post->post_content,
$matches);

 if (count($matches) == 0) {
 delete_post_meta($post_id, '_ajax_registration'
);
 } else {
 update_post_meta($post_id, '_ajax_registration',
'1');
 }
} //end post_save

Chapter 14, Example 3: Ajax Registration Form 265

page detection to load our scripts and styles only
where needed (i.e., only when a post or page has
the [rform] shortcode in its content).

Now that we have two of our shortcode methods
down, let’s move on to the page-detection por-
tion, which lies within the has_shortcode method.

has_shortcode
The has_shortcode method is a conditional that
returns true if a post or page has our shortcode
embedded in it. Otherwise, the method returns
false.

When a post is saved and a shortcode is detected
in the post’s content, a custom field called _ajax_
registration is set for the post.

This allows us (when queueing our scripts and
styles) to just check if this custom field is set. If it
is, we allow the scripts and styles to load.

If we didn’t use a custom field, we would have to
run a regular expression on each page load. This
has the potential to slow down a site. While a
regular expression alone may not be enough to
cripple a site’s loading time, it makes more sense
to simply cache the result as a custom field.

WordPress and Ajax266

Let’s look at the code for the has_shortcode meth-
od:

We simply try to get the _ajax_registration cus-
tom field. If it’s set, we return true. If not, we
return false. When used with loading the scripts
and styles, has_shortcode makes sure that the script
and style overhead is only loaded on a post that
has a shortcode embedded.

All of the shortcode methods are finished, so let’s
move to adding the plugin’s scripts.

add_scripts
The add_scripts method is used to load the regis-
tration.js file on the front-end. We’ll have to do
some additional page detection as well.

The script has the dependencies of jquery and wp-
ajax-response.

//Returns true if a post has the rform shortcode, false if not
function has_shortcode() {
 global $post;
 if (!is_object($post)) return false;
 if (get_post_meta($post->ID, '_ajax_registration',
true))
 return true;
 else
 return false;
}

Chapter 14, Example 3: Ajax Registration Form 267

Since we also need to know the location of admin-
ajax.php, a localized JavaScript variable is added as
well.

The first conditional, is_admin, is used to make
sure we’re not in the admin area. The second con-
ditional, has_shortcode, is used for page detection
(to make sure the page in question actually uses
the shortcode).

When we localize the script, we provide a JavaScript
object name of ajaxregistration (JavaScript usage
would consist of: ajaxregistration.Ajax_Url).

Now that our JavaScript file is properly referenced,
let’s add some CSS to our plugin.

add_styles
The add_styles method will load an external CSS
file only for pages with our shortcode embedded.

//Add the registration script to a page
function add_scripts() {
 if (is_admin() || !$this->has_shortcode()) return;
 wp_enqueue_script('ajax-registration-js', plugins_url(
'js/registration.js' ,__FILE__), array('jquery', 'wp-ajax-
response'), '1.0');
 wp_localize_script('ajax-registration-js',
'ajaxregistration', array('Ajax_Url' => admin_url('admin-
ajax.php')));
}

WordPress and Ajax268

The CSS for this plugin is fairly simple and you
can easily expand upon it if you are willing.

The CSS we need covers the list output, and has
some styles for error and status messages.

The following CSS would go into the registra-
tion.css file:

And here’s the add_styles method that queues up
the stylesheet:

#ajax-registration-list {
 list-style-type: none;
}
#ajax-registration-list label {
 display: block;
}
#ajax-registration-form .error {
 background-color: #FFEBE8;
 border: 1px solid #CC0000;
}
#ajax-registration-form .success {
 background-color: #FFFFE0;
 border: 1px solid #E6DB55;
}

function add_styles() {
 if (is_admin() || !$this->has_shortcode()) return;
 wp_enqueue_style('ajax-registration-css', plugins_url(
'css/registration.css' ,__FILE__));
}

Chapter 14, Example 3: Ajax Registration Form 269

Once again, the styles are only loaded on the
front-end (via the is_admin conditional) and where
a shortcode is detected (via the has_shortcode con-
ditional).

Our final class method is ajax_process_registra-
tion, but let’s save that for a bit later. For now,
let’s work on our script file.

The Script File (registration.js)
The registration.js file will handle our Ajax call
and will capture all of the form data.

Let’s look at its basic structure:

We use a jQuery namespace of registrationform
and all of our code will reside within the init
function.

jQuery(document).ready(function() {
 var $ = jQuery;
 $.registrationform = {
 init: function() {

 }
 }; //end .registrationform
 $.registrationform.init();
});

WordPress and Ajax270

Capturing the Form Data
First, let’s work on capturing the “submit” event
when someone clicks the “Submit” button on the
registration form.

Since our form has an ID of ajax-registration-
form, we simply attach a “submit” event to it.

The first thing we need to do after a user has hit
“Submit” is to clear any error messages.

If you remember the CSS we used in registration.
css, there is an error portion for the form inputs
(#ajax-registration-form .error). Via JavaScript,
we need to clear all inputs (e.g., Username, E-mail
Address) from displaying this error class.

init: function() {
 $("#ajax-registration-form").submit(function() {
 return false;
 });
}

$("#ajax-registration-form").submit(function() {
 //Clear all form errors
 $('#ajax-registration-form input').removeClass('error');
 //Update status message
 $("#registration-status-message").removeClass('error').
addClass('success').html('Sending...');
 //Disable submit button
 $('#ajax-submit').attr("disabled", "disabled");

 return false;
});

Chapter 14, Example 3: Ajax Registration Form 271

Our status message must also be cleared, and this
has an ID of registration-status-message. Once we
clear the error for the status message, we change
its text to “Sending...” since the user has initiated
the registration submission.

Finally, we disable the “Submit” button tempo-
rarily.

Up next is retrieving all the form data and serial-
izing it into one string.

The variable form_data is loaded with all of the
form inputs (that have name/value pairs). These
values are serialized to an array. If you were to
look at form_data at this point with a JavaScript
debugger, you would see an array with five values.
This format is not exactly ideal to pass via Ajax, so
we run the jQuery param function on the data.

//Disable submit button
$('#ajax-submit').attr("disabled", "disabled");
//Serialize form data
var form_data = $('#ajax-registration-form input').
serializeArray();
form_data = $.param(form_data);

return false;

WordPress and Ajax272

If you were to look at the value of form_data now,
it would look like:

This serialized format is perfect for sending via
Ajax, and everything is already encoded as well.

Building the Ajax Object
Now that our data is serialized, let’s begin building
the Ajax object. I’m going to show you a slightly
different technique for building the Ajax object,
but it really is the same type of object we’ve built
before if you get down to the details.

We’ll be making use of jQuery’s post function.
For our particular case, we’ll pass it the location
to WordPress’ admin-ajax.php, our data variables,
and a callback function for when the Ajax proces-
sor sends back a response (sounds similar already,
doesn’t it?).

Please note that the path to WordPress’ admin-
ajax.php is retrieved from the localized JavaScript
variable ajaxregistration.Ajax_Url.

For our data parameters, we’ll also be passing a
nonce (the nonce field has an ID of _registra-

_registration_nonce=0ca8be2b7b&firstname=Ronald&lastname=Huereca
&username=ronalfy&email=ron%40ronalfy.com

Chapter 14, Example 3: Ajax Registration Form 273

tion_nonce), and an Ajax action variable (submita-
jaxregistration).

As you can see from the code, there’s a lot less
code for building the Ajax object compared to
earlier methods shown. However, they both do
the same thing.

Parsing the Ajax Response
The function(data) portion is the code that parses
the Ajax response.

Let’s assume that the data variable holds our Ajax
response. We now have to parse the data. Let’s
also build some placeholders for error handling,
which I’ll explain shortly.

form_data = $.param(form_data);

//Submit ajax request
$.post(ajaxregistration.Ajax_Url, { action:
'submitajaxregistration', ajax_form_data: form_data, _ajax_
nonce: $('#_registration_nonce').val() },
 function(data){
 //Success code goes here
 }
);
return false;

WordPress and Ajax274

After parsing the Ajax response, the res variable
holds all of the various responses passed from the
WP_Ajax_Response class (from the Ajax processor).

If there are any errors present, the res.errors vari-
able is set to true. When building the Ajax re-
sponse object in the Ajax processor, you can pass
a WP_Error object. If any of these objects are de-
tected, the overall response is flagged as an error.

This error handling will assist us immensely in de-
termining when to spit out an error message (via
JavaScript) or a success message.

The res object contains whether we have errors,
the response objects, and (if applicable), all of the
error objects as well.

In addition, the errors object contains two addi-
tional variables: code and message.

function(data){
 var res = wpAjax.parseAjaxResponse(data, 'ajax-
response');
 if (res.errors) {
 //errors
 } else {
 //no errors
 }
}

Chapter 14, Example 3: Ajax Registration Form 275

Since res.responses is an array, and errors is also
an array, we must perform two $.each() loops in
order to capture any errors if they are present.

 Res Object StructureFigure 20.

res errors true

responses[] errors[]

 Error Object StructureFigure 21.

errors[] code e.g., "Username"

message
e.g., "Username is

invalid"

WordPress and Ajax276

The first thing we do is re-enable the “Submit”
button (since we disabled it when the user first
clicks the button).

The variable html is used here to store the output
messages that will be shown in our status area on
the form page.

The first $.each() statement loops through all of
the responses. Within each response is another
$.each() statement, which loops through all of the
errors.

The this.code variable stores the form input ID,
so we use the value to select the input and add a
CSS class called “error” to it. We also add on to

if (res.errors) {
 //form errors
 //re-enable submit button
 $('#ajax-submit').removeAttr("disabled");
 var html = '';
 $.each(res.responses, function() {
 $.each(this.errors, function() {
 $("#" + this.code).addClass('error');
 html = html + this.message + '
';
 });
 });
 $("#registration-status-message").removeClass('success').
addClass('error').html(html);
}

Chapter 14, Example 3: Ajax Registration Form 277

the html variable with the contents of this.mes-
sage.

Finally, we clear out the CSS for the status mes-
sage and output the html error message to the sta-
tus box.

The “else” portion is a little more straightforward.
If there are no errors, we go through the first re-
sponse and output a “success” message to the user
informing him that the registration has success-
fully gone through.

 Registration ErrorsFigure 22.

WordPress and Ajax278

} else {
 //no errors
 $.each(res.responses, function() {
 $("#registration-status-message").
addClass('success').html(this.data);
 return;
 });
}

 Registration SuccessfulFigure 23.

Chapter 14, Example 3: Ajax Registration Form 279

Here’s the full code for the success portion for
parsing the Ajax response:

Our script is done. We’ve captured the data, sent
the data via Ajax, and have parsed the response.
However, we have yet to create the Ajax processor
that returns all the necessary data.

function(data){
 var res = wpAjax.parseAjaxResponse(data, 'ajax-
response');
 if (res.errors) {
 //form errors
 //re-enable submit button
 $('#ajax-submit').removeAttr("disabled");
 var html = '';
 $.each(res.responses, function() {
 $.each(this.errors, function() {
 $("#" + this.code).addClass('error');
 html = html + this.message + '
';
 });
 });
 $("#registration-status-message").
removeClass('success').addClass('error').html(html);
 } else {
 //no errors
 $.each(res.responses, function() {
 $("#registration-status-message").
addClass('success').html(this.data);
 return;
 });
 }
}

WordPress and Ajax280

Let’s move back into the Ajax_Registration class
and finish the ajax_process_registration method.

The Ajax Processor
The first thing we’ll be doing in the Ajax processor
is verifying the passed nonce. Please note that we
created the nonce in the rform_shortcode method
by passing an action name of submit_ajax-regis-
tration to the wp_nonce_field WordPress function.
We’ll be using the same action name to verify the
nonce.

Parsing the Passed Form Data
Next, we include a WordPress file called registra-
tion.php, which contains several helper functions
that we’ll need (i.e., validate_username, username_
exists). We’ll also read in the passed form data
and parse it into an array.

function ajax_process_registration() {
 //Verify the nonce
 check_ajax_referer('submit_ajax-registration');

 exit;

} //end ajax_process_registration

Chapter 14, Example 3: Ajax Registration Form 281

Our form data was saved as a $_POST variable
named ajax_form_data (if you don’t believe me,
take a look back at the JavaScript file).

If this data is available, we use the PHP function
parse_str and pass it the $_POST variable and the
name of an array we want the parsed data to be
stored into.

The parse_str function will turn the serialized
string that was passed back into an array. The
variable $form_data will now have values similar to
this:

$form_data[‘firstname’]•	

$form_data[‘lastname’]•	

$form_data[‘email’]•	

$form_data[‘username’]•	

Please note that you could have used the PHP ex-
tract function as well to convert all the array keys
into PHP variables (e.g., $firstname, $lastname).

//Need registration.php for data validation
require_once(ABSPATH . WPINC . '/registration.php');

//Get post data
if (!isset($_POST['ajax_form_data'])) die("-1");
parse_str($_POST['ajax_form_data'], $form_data);

WordPress and Ajax282

Now that we have our form data as a PHP array,
we can perform some data validation on the val-
ues.

Data Validation
We’ll be making use of the sanitize_text_field
WordPress function, which is a useful function
for sanitizing a text field based on form input.

After the inputs have been sanitized, we instanti-
ate an instance of both WP_Ajax_Response (for re-
turning the Ajax response) and WP_Error (used for
error messages).

WP_Ajax_Response has already been covered, but the
WP_Error class needs a little explanation.

The WP_Error class has two methods we’ll use: add
(for adding the error codes) and get_error_codes
(for retrieving all error messages as an array).

//Get the form fields
$firstname = sanitize_text_field($form_data['firstname']);
$lastname = sanitize_text_field($form_data['lastname']);
$username = sanitize_text_field($form_data['username']);
$email = sanitize_text_field($form_data['email']);

$error_response = $success_response = new WP_Ajax_Response();
$errors = new WP_Error();

Chapter 14, Example 3: Ajax Registration Form 283

As we go through and do some more in-depth
data validation, we’ll use the add method for add-
ing both a unique code and an error message.

For purposes here, we’ll be doing a little bit of
hacking.

The “code” portion of the add method should be
unique (and in our case, it will be). However, the
“code” portion also doubles for an ID of the form
input we want to affect on the client-side.

Let’s look at the code to validate the “required”
inputs from our form:

//Start data validation on firstname/lastname
//Check required fields
if (empty($firstname))
 $errors->add('firstname', 'You must fill out a first
name.', 'firstname');

if (empty($lastname))
 $errors->add('lastname', 'You must fill out a last
name.');

if (empty($username))
 $errors->add('username', 'You must fill out a user
name.');

if (empty($email))
 $errors->add('email', 'You must fill out an e-mail
address.');

WordPress and Ajax284

If any of our fields are empty, we add an error to the
$errors object.

Since empty fields are a show stopper, we immediate-
ly return an Ajax response if there are errors present.

Since the get_error_codes method returns an array
of all error codes, we wrap the PHP count function
around it to determine if it’s empty. If it isn’t empty,
we return the Ajax response.

The “id” portion of the Ajax response is designed to
hold a WP_Error object. This is what gives us our er-
rors object when parsing via JavaScript.

Assuming there are no further errors, we proceed
with validating the username.

The username will be invalid if:

The username already exists.•	

The username doesn’t validate.•	

//If required fields aren't filled out, send response
if (count ($errors->get_error_codes()) > 0) {
 $error_response->add(array(
 'what' => 'errors',
 'id' => $errors
));
 $error_response->send();
 exit;
}

Chapter 14, Example 3: Ajax Registration Form 285

The username is reserved.•	

The $invalid_usernames variable is a custom array
that will hold username values we don’t want us-
ers to select. If a username selects a value that
matches in this array, the username will be deter-
mined to be invalid.

The sanitize_user function is used to further sani-
tize the username (remove tags and unsafe char-
acters). Further assisting in validation is the vali-
date_username function, which determines if the
username is a valid WordPress username. If not,
we add an error.

Finally, the username_exists function lets us know
if the username already exists as a WordPress user.
If the user does exist, we add another error.

//Add usernames we don't want used
$invalid_usernames = array('admin');
//Do username validation
$username = sanitize_user($username);
if (!validate_username($username) || in_array($username,
$invalid_usernames)) {
 $errors->add('username', 'Username is invalid.');
}
if (username_exists($username)) {
 $errors->add('username', 'Username already exists.');
}

WordPress and Ajax286

Up next is checking whether the e-mail address
is valid or not. The e-mail address will be invalid
if:

The e-mail address isn’t a proper e-mail ad-•	
dress

The e-mail address already exists.•	

For the e-mail address validation, we’ll be making
use of two WordPress functions: is_email (checks
for a valid e-mail address) and email_exists (checks
if the e-mail is already registered to another user).

Again, we add error messages if any of the valida-
tion checks fail.

Finally, we check for the existence of errors, and if
there are any, we return a response.

Now, if we’re at this point, it has to be assumed
that none of the fields are blank. Furthermore,
an e-mail address couldn’t exist and be invalid at
the same time (wishful thinking). So while it may

//Do e-mail address validation
if (!is_email($email)) {
 $errors->add('email', 'E-mail address is invalid.');
}
if (email_exists($email)) {
 $errors->add('email', 'E-mail address is already in
use.');
}

Chapter 14, Example 3: Ajax Registration Form 287

be evident that we’re overwriting error messages,
we really aren’t.

Creating the User
The data validation portion is now finished. If
there were any errors, we wouldn’t be at this point
in our code execution. Let’s now assume every-
thing is fine and create a new user.

A new password is generated (via wp_generate_
password) and a $user array is created with all of
our validated form inputs. Finally, we pass the

//If any further errors, send response
if (count ($errors->get_error_codes()) > 0) {
 $error_response->add(array(
 'what' => 'errors',
 'id' => $errors
));
 $error_response->send();
 exit;
}

//Everything has been validated, proceed with creating the user
//Create the user
$user_pass = wp_generate_password();
$user = array(
 'user_login' => $username,
 'user_pass' => $user_pass,
 'first_name' => $firstname,
 'last_name' => $lastname,
 'user_email' => $email
);
$user_id = wp_insert_user($user);

WordPress and Ajax288

$user array to wp_insert_user to complete the user
registration.

Now, we are at a fork in the road. For example
purposes, we’ll just be sending out the standard
WordPress e-mail that sends a user their new user-
name and password. However, you could choose
to not use the next code snippet and instead write
your own e-mail message (using wp_mail).

Sending the Response
If we’ve made it down this far in the Ajax proces-
sor, the user has successfully been created and has
been sent an e-mail with their credentials. Now
it’s time to return an output and show this to the
user.

/*Send e-mail to admin and new user -
You could create your own e-mail instead of using this
function*/
wp_new_user_notification($user_id, $user_pass);

 //Send back a response
 $success_response->add(array(
 'what' => 'object',
 'data' => 'User registration
successful. Please check your e-mail.'
));
 $success_response->send();
 exit;
} //end ajax_process_registration

Chapter 14, Example 3: Ajax Registration Form 289

Ajax Registration Form Conclusion

Within this chapter you learned how to create a
WordPress registration form that works via Ajax.

The data validation and user creation are all done
behind-the-scenes without a page refresh. The

 Ajax Registration FormFigure 24.

WordPress and Ajax290

user is alerted instantly when there is a validation
error.

The applications for this technique are numerous.
For example, I have used a variant of it to create
affiliate accounts for one of my products.

I’ve also used another variant to send data to Pay-
Pal and register a user when the purchase com-
pletes.

You could also customize the form to accept other
input fields, such as a website URL, Twitter han-
dler, or custom data such as a country.

The best part of this form is (in my opinion), it
still works if you have user registrations disabled
on your site. While some may view this as a
downside for this technique, I rather enjoy the
customization that can be used over the standard
registration form.

Now You Begin Your Own
Journey

WordPress and Ajax292

Now You Begin Your Own
Journey
First, I’d like to thank you “so” much for taking
the time to read this book. It is my hope that you
have gotten something out of it.

So what now?

Don’t let your journey stop. I would highly rec-
ommend a visit to the book’s website, http://www.
wpajax.com.

Also, check out the following links that are con-
sidered extensions of the book.

http://www.wpajax.com/code - For the down-•	
loadable code mentioned in this book.

http://www.wpajax.com/links - Links to func-•	
tions, techniques, and other helpful resources
that have been mentioned in the book.

http://www.wpajax.com/testimonials - Leave •	
your feedback so others can see how this book
has helped you.

Once again, you are awesome for putting up with
me throughout this journey. Thanks so much.

The people that made this free re-
lease possible
For those who have purchased this book in e-book format, a big
“Thanks!” goes out to you.

The following companies have also made the free release possible
by advertising for the book and/or supporting me while writing the
book:

VG Universe Design

VG Universe Design is a Web & Graphic Design Studio owned and
operated by this book’s designer, Vivien Anayian. Her work speaks
for itself, and she was instrumental in this book’s public release.

WebDesign.com

WebDesign.com provides premium, professional web development
training to web designers, developers, and WordPress website own-
ers. The WebDesign.com Training Library currenty holds over 230
hours of premium training developed by seasoned experts in their
field, with approximately 20 hours of new training material added
each month.

http://www.vguniverse.com/
http://webdesign.com
http://webdesign.com

WordPress and Ajax

WebDevStudios

WebDevStudios is a website development company specializing in
WordPress. We have a staff of developers and designers who live
and breathe WordPress and pride ourselves in being WordPress ex-
perts. We have the resources to support any client from a single blog
to a WordPress Multisite network with thousands of sites to a Bud-
dyPress site with thousands of members.

WPCandy

WPCandy is an unofficial community of WordPress users and pro-
fessionals. They are best known for their solid WordPress reporting
and also publish a growing weekly podcast and regular community
features. If you love WordPress and want to stay plugged in to the
community, WPCandy is the place to be.

http://webdevstudios.com
http://wpcandy.com
http://wpcandy.com

“This book answered all of my Ajax questions
and some I didn’t even know I had!”

— RYAN HELLYER pixopoint.com

“Reading the book is actually kind of fun and
not boring for a second. The writing style is
casual yet accurate, a bit like attending a very
detailed and sharp conference, where you get a
glimpse of the author’s personality as well as a
bit of his knowledge.”

— OZH RICHARD planetozh.com

“Ronald ingeniously shares his knowledge from
his personal and unique experiences with Ajax,
PHP and jQuery along with his witty and often
humorous writing style that makes very techni-
cal tasks as easy as possible on the brain.”

— ROBYN-DALE SAMUDA bloggingpro.com

RONALD HUERECA (ronalfy.com) has worked with
WordPress since 2006 and has released several WordPress
plugins, his most popular being Ajax Edit Comments
(ajaxeditcomments.com).
His education includes a Master’s in Business Administra-
tion and a degree in Electronics Engineering Technology.

WORDPRESS & AJAX — wpajax.com
An in-depth guide on using Ajax with WordPress

http://pixopoint.com
http://ronalfy.com
http://ajaxeditcomments.com
http://wpajax.com

	Acknowledgments
	About Ronald Huereca - Author
	Credits and Thanks

	Introduction
	How About a Little Ajax?
	The Book’s Beginning
	The Goal of the Book
	Helpful Tools for the Journey
	Online Resources
	A Word of Warning

	Chapter 1
	What is Ajax?

	Chapter 2
	Adding Scripts Properly to WordPress
	So How Does wp_enqueue_script Work?
	Handle
	Src
	Deps
	Ver
	In_footer

	Great, I have wp_enqueue_script down. Now what?
	Naming Your Handlers
	Loading Scripts Conclusion

	Chapter 3
	Localizing Your Scripts
	wp_localize_script
	Handle
	Object_name
	l10n

	wp_localize_script Example
	Other Localization Techniques
	The JSON Technique
	A Custom Function
	Localization Conclusion

	Chapter 4
	Adding Styles Properly to WordPress
	How Does wp_enqueue_style Work?
	Handle, Src, Deps, and Ver
	Media

	The wp_enqueue_style Hooks
	The init Technique

	Conditional Comments
	Loading Styles Conclusion

	Chapter 5
	Page Detection in WordPress
	WordPress Conditionals
	Loading Scripts on the Front-End
	Loading Scripts on the Home Page
	Loading Scripts on the Front Page
	Loading Scripts on Posts or Pages
	Loading Scripts on Comment Pages
	Loading Scripts for Post Types
	Loading Scripts for Custom Taxonomies
	Loading Scripts for Detecting Shortcodes
	Load Scripts for a Specific Platform
	Conditionals Conclusion

	Page Detection in the Admin Area
	Page Detection for Specific Admin Pages
	Page Detection for Menu Items

	Page Detection Conclusion

	Chapter 6
	WordPress Loading Techniques
	Overriding Styles (and Scripts)
	Disabling Styles (and Scripts)

	Loading Just Your Scripts
	Creating Standalone Pages
	Loading WordPress Manually Using wp-load
	Loading WordPress Using a Template Redirect

	Preventing Plugins From Loading
	WordPress Loading Techniques Conclusion

	Chapter 7
	Properly Formatting jQuery for WordPress Use
	Namespacing
	Public Properties/Functions
	Private Variables/Functions
	Including Your jQuery Script in Your Theme
	Conclusion for Properly Formatting jQuery for WordPress

	Chapter 8
	Nonces and the Escape API
	WordPress Nonces
	Nonces and Forms
	Nonces and URLs
	Nonces and Ajax

	The Escape API
	Validating Numeric Inputs
	Escaping HTML
	Escaping Attributes
	Escaping JavaScript
	Escaping URLs
	Filtering HTML
	Escape API Conclusion

	Chapter 9
	Sending Our First Ajax Request
	Set Up the PHP Class to Handle Back-end Operations
	Setting up the Interface
	Setting Up the JavaScript File
	Setting up the Ajax Object
	Finalizing the functions.php Class
	The get_comments Method
	Add in our JavaScript Files
	Add in JavaScript Localization
	Add in String Localization
	Add in Query Variable Support

	Finalizing the Ajax Request

	Chapter 10
	Processing Our First Ajax Request
	Securing Your Ajax Processor
	Performing a Nonce Check

	Server-Side Processing of Ajax Requests
	Sending an Ajax Response
	Client-Side Processing/Parsing
	Parsing the XML Document Object
	Processing the Data

	The Output

	Chapter 11
	WordPress and Admin Ajax
	WordPress' admin-ajax.php
	Registering the Ajax Processor
	Getting the Location of the Ajax Processor
	Passing Data to the Ajax Processor
	The wp_ajax Callback Method
	Finalizing the Ajax Processor
	Admin Ajax Conclusion

	Chapter 12
	Example 1: WP Grins Lite
	The WPGrins Class
	The Constructor
	add_scripts and add_scripts_frontend
	get_js_vars
	add_styles and add_styles_frontend
	add_admin_pages
	print_admin_page
	ajax_print_grins
	wp_grins
	get_admin_options
	save_admin_options
	Our Template Tag

	The Admin Panel (admin-panel.php)
	The JavaScript File (wp-grins.js)
	WP Grins Lite Conclusion

	Chapter 13
	Example 2: Static Random Posts
	Creating the Static Random Posts Widget
	static_random_posts
	form
	update
	get_admin_options
	save_admin_options
	init
	add_admin_pages
	print_admin_page
	add_post_scripts
	get_js_vars
	widget
	get_posts
	build_posts
	print_posts
	ajax_refresh_static_posts

	The Admin Panel (admin-panel.php)
	Updating the Options
	The User Interface
	The JavaScript File (static-random-posts.js)
	Static Random Posts Conclusion

	Chapter 14
	Example 3: Ajax Registration Form
	Creating the Ajax_Registration Class
	rform_shortcode
	post_save
	has_shortcode
	add_scripts
	add_styles

	The Script File (registration.js)
	Capturing the Form Data
	Building the Ajax Object
	Parsing the Ajax Response

	The Ajax Processor
	Parsing the Passed Form Data
	Data Validation
	Creating the User
	Sending the Response

	Ajax Registration Form Conclusion

	Now You Begin Your Own Journey

