HttpCore Tutorial

Oleg KalnichevskKi

L. HUPCOrE SCOPE .eveieeee ittt ettt e e e et e e e e e e e e st e e e e e e e s e et b eeeeaaeeesassnrneees iv
A o 1110 @0 (= €0 £ PR iv
3. What HIPCOIrE IS NOT ...iuuuiiiiiiiiiuiuiuuuuninternnennrrnnrnmeerreenrenr.—.——————————————————. iv
O 0o =T = L = SRS 1
1.1, HTTP MESSAGES ... eeeeiiieiiiiaie e e eeeeeeetaa s s e e e et e et s s e e e e e e e eebaa e e e e e e s eeebbb s e e eeeeeenrnnannnes 1
TRt O 1 1 [= 1
1.1.2. BASIC OPEIAIONSuvvveiiiieeeeiiiiiiiiee e e e e e eeee e e e e e e e s s et r e e e e e e s e e satnraaeeeeaeeseannnes 1
G T I I = 011 Y USRS 3
1.1.4. Creating ENETIESeueiieeieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaereeererereserererrsrenrnsrersssnnnnnsnnnnnes 5

1.2. BIocking HTTP CONNECLIONSccoiiiiiieiiiiiie ettt 7
1.2.1. Working with blocking HTTP CONNECLIONSovviiiiiiiieiiiiiee e 8
1.2.2. Content transfer with blocking 17Oc.vviiiiiiiii e 9
1.2.3. Supported content transfer MEChaNISMScceveeeiiiiiiiieee e 9
1.2.4. Terminating HTTP CONNECLIONScccuiiiiieiie et e e 9

1.3. HTTP exception handlinNgeueueuuieimimuiiiirieinieieneneremer ... 10
1.3.1. ProtoCol €XCEPLION ...ttt e e e e e e e e e eeeeas 10

1.4, HTTP ProtOCOl PrOCESSOFScceiiuvereeeatreeeesautteeeesassseeesasseeeesasseeeeaasnnneesannneeesannneeeaas 10
1.4.1. Standard protoCOl INTENCEPIONS ...eeeivrereeeiiiiee ettt 10
1.4.2. Working with protoCOl ProCESSOISceeeiiiiiiiiiiiieee e s eeccireee e e e e s e e e e e 11
L1.4.3. HTTP CONEEXL ..ottt eeeeenneee 12

T o I I 0= =T (RPN 13
151 HTTP parameter DEaNSccoooi oo 14

1.6. Blocking HTTP protocol handlersccooiuiiiiiiiiiiee i 14
G I o I I s o= USSR 14
1.6.2. HTTP reqUuESt BXECULONcceeeeieeieeeeee e 16
1.6.3. CONNECLION PEFSISLENCE / TE-USEvvviiiiiee e e i iiciiiteeee e e e e ee et e e e e e e e s snraaneeaae e 16

P22 NN L@ B = =0 o o SRR 18
2.1. Benefits and shortcomings of the non-blocking I/O modéccccciviniiiiiinininnnnn, 18
2.2. Differences from other NIO frameworkseeeviieiiiiiciiiiiiiee e 18
G T L N 1 o o SRR 18
2.3. 1. 1O ISPALCNENS ...t 18
2.3.2. 1/O reactor SNULAOWNeeiiiiiiiie et 19

P2 R R L@ T =SS o] PR 19
2.3.4. 1/O session state Managementcoooeeeeeee i 19
2.3.5. 1/0 SESSION @VENE MASK ..oiiiieiiiiiiiiee et e e 20
2.3.6. 1/0O SESSION DUFFENS ...uveiiiieee st e e 20
2.3.7. 1/0O SSSI0N SNULAOWNoviiieiiec e 20
2.3.8. LiStening /O rEACLOISeeveeeeiiiciiiieiee e ettt e s e s e e e e e brrn e e e e e e e 20
2.3.9. ConNECiNG /O FEACLOIScccceiiiiiiiiiiee e e e e e e e rar e e e e e 21
2.3.10. Queuing of 1/O interest set OPEratioNSuuuueerummuunnennneanans 22

2.4. 1/O reactor exception NaNAIiNGcooiciiiiiiiiiie e 23
2.4.1. 1/O reaCtor @UAIt 10Qvveeeiiiiiiie ettt 23

2.5. Non-blocking HTTP CONNECLIONScocuuviiiiiiiiiieeiiieee e 24
2.5.1. Execution context of non-blocking HTTP connections................ccccvvveeeeeeeeenes 24
2.5.2. Working with non-blocking HTTP connectionscccccveeeeeeeieicciiiieecee e 24
253 HTTP IO CONLIOI ...coiiiiiiiiieee ettt e e e e 25
2.5.4. Non-blocking content tranSfarcoocveiieiiiiie e 26
2.5.5. Supported non-blocking content transfer mechanisms...........ccccceveeeevvicceviieen.n. 27

HttpCore Tutoria

2.5.6. Direct ChannEl 1/Ocooiiiiiee e 27

2.6. HTTP /O event dispalChersouviiiiieii ettt 28
2.7. Non-blocking HTTP ENLItIES ...t e e e e e e 29
2.7.1. Content consuming non-blocking HTTP entitycevvvvvvvviiiieieieeeieeeeeeeeeeeeeeee 30
2.7.2. Content producing non-blocking HTTP entityc.coovviiiiiiiiiiieiieee e 31

2.8. Non-blocking HTTP protocol handlerscoocueiiiiiiiiieeiiiieee e 32
2.8.1. Asynchronous HTTP service handlerocvvveiiiiiiiiiiiiiee e 32
2.8.2. Asynchronous HTTP client handlerccovvveeiieeii e 34
2.8.3. Compatibility with blocking 1/O ..., 36
2.8.4. ConNeCtion eVeNnt TISLENEYueiiiiieiiiiiee et e e e e e e e e 37

2.9. NON-DIOCKING TLS/SSL ...ttt e e 38
2.9.1. SSL /O SESSION ..uviieeiiiiiieeeiieeee e e eitee e e e sttt e e e e st e e e e s aaeaeeessteeeeeasaeeeeennnaeaeeennes 38
2.9.2. SSL 1/0 event diSpatChiescoocuuiiieiiiiiie e 39

I AN 1V 0ol o [(o o T ox PP 40
3.1. HTTP message parsing and formatting frameworkccccccooiiiiiiiiee e, 40
3.1L.1 HTTP line parsing and formattingccccccevvviiiiiineeeeeee, 40
3.1.2. HTTP message streams and session 1/O BUFfers ..o 42
3.1.3. HTTP message parsers and fOrmMattercceeeevrimmieeiniieee e 43
3.1.4. HTTP header parsing on demandccceeeeiiiieieeiiinieeesiieee e 44

3.2. Customizing HTTP CONNECLIONScceeiieiiiiiiiiiiii e e e e ettt e e e e e e s snnvaaee e 45

Preface

HttpCore is a set of components implementing the most fundamental aspects of the HTTP protocol
that are nonethel ess sufficient to devel op full-featured client-side and server-side HTTP services with

aminimal footprint.

HttpCore has the following scope and goals:

1. HttpCore Scope
* A consistent API for building client / proxy / server side HTTP services
« A consistent API for building both synchronous and asynchronous HTTP services

« A set of low level components based on blocking (classic) and non-blocking (N10O) 1/0 models

2. HttpCore Goals
« Implementation of the most fundamental HT TP transport aspects
« Balance between good performance and the clarity & expressiveness of AP
« Small (predictable) memory footprint

« Sdf contained library (no external dependencies beyond JRE)

3. What HttpCore is NOT

* A replacement for HitpClient

« A replacement for a Servlet container or a competitor to the Servlet AP

Chapter 1. Fundamentals

1.1. HTTP messages

1.1.1. Structure

A HTTP message consists of a head and an optional body. The message head of an HTTP request
consists of areguest line and a collection of header fields. The message head of an HTTP response
consists of astatusline and acollection of header fields. All HT TP messages must include the protocol
version. Some HTTP messages can optionally enclose a content body.

HttpCore defines the HTTP message object model that closely follows the definition and provides
an extensive support for serialization (formatting) and deserialization (parsing) of HTTP message

elements.

1.1.2. Basic operations

1.1.2.1. HTTP request message

HTTP request is a message sent from the client to the server. The first line of that message includes
the method to be applied to the resource, the identifier of the resource, and the protocol version in use.

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/",

Ht t pVersion. HTTP_1_1);

System out .
System out .
System out .
System out .

stdout >

println(request.
println(request.
println(request.
println(request.

get Request Li ne() . get Met hod()) ;
get RequestLine().getUri());
get Prot ocol Version());

get RequestLine().toString());

GET
/
HTTP/ 1.1

GET / HITP/1.1

1.1.2.2. HTTP response message

HTTP response is a message sent by the server back to the client after having received and interpreted
arequest message. Thefirst line of that message consists of the protocol version followed by anumeric
status code and its associated textual phrase.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Ht t pSt at us. SC OK, "OK");

System out .
System out .
System out .
System out .

stdout >

println(response
println(response
println(response
println(response

. get Prot ocol Version());

.get StatusLi ne(). get St at usCode());

. get St at usLi ne() . get ReasonPhrase());
.getStatusLine().toString());

Fundamentals

HTTP/ 1.1

200

(0.6

HTTP/ 1.1 200 OK

1.1.2.3. HTTP message common properties and methods

An HTTP message can contain a number of headers describing properties of the message such as
the content length, content type and so on. HttpCore provides methods to retrieve, add, remove and

enumerate headers.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,

Htt pStatus. SC_ OK, "OK");
response. addHeader (" Set - Cooki e",

"cl=a; path=/; domai n=l ocal host");
response. addHeader (" Set - Cooki e",

"c2=b; path=\"/\", c3=c; domain=\"I|ocal host\"");
Header hl = response. get First Header (" Set - Cooki e") ;
System out . println(hl);

Header h2 = response. get Last Header (" Set - Cooki e") ;
System out . println(h2);

Header[] hs = response. get Header s(" Set - Cooki e") ;
Systemout. println(hs.|ength);

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c2=b; path="/", c3=c; domai n="|ocal host"
2

Thereis an efficient way to obtain all headers of a given type using the Header I t er at or interface.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Htt pStatus. SC_ OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c¢3=c; domain=\"|ocal host\"");

Headerlterator it = response. headerlterator("Set-Cookie");

while (it.hasNext()) {
Systemout.printin(it.next());

}

stdout >

Set - Cooki e: cl=a; path=/; domai n=l ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; donmi n="Iocal host"

It also provides convenience methods to parse HT TP messages into individual header elements.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Htt pSt atus. SC_ OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

Fundamentals

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");

Header El ement Iterator it = new Basi cHeader El enent |t erat or (
response. header | t er at or (" Set - Cooki e"));

while (it.hasNext()) {
Header El enent el em = it.nextEl enent();

Systemout.println(elemgetNane() + " =" + elemgetValue());
NameVal uePair[] paranms = el em get Paraneters();
for (int i =0; i < parans.length; i++) {
Systemout.printin(" " + params[i]);
}
}
stdout >
cl =a
pat h=/
donmi n=l ocal host
c2 =b
pat h=/
c3 =c
domai n=| ocal host

HTTP headers get tokenized into individua header elements only on demand. HTTP headersreceived
over an HTTP connection are stored internally as an array of chars and parsed lazily only when their
properties are accessed.

1.1.3. HTTP entity

HTTP messages can carry acontent entity associated with the request or response. Entities can befound
in some requests and in some responses, as they are optional. Requests that use entities are referred to
as entity enclosing requests. The HT TP specification defines two entity enclosing methods: POST and
PUT. Responses are usually expected to enclose a content entity. There are exceptionsto thisrule such
as responses to HEAD method and 204 No Content, 304 Not Modified, 205 Reset Content responses.

HttpCore distinguishes three kinds of entities, depending on where their content originates:

e streamed: The content is received from a stream, or generated on the fly. In particular, this
category includes entities being received from a connection. Streamed entities are generally not
repeatable.

e sdlf-contained: The content isin memory or obtained by means that are independent from a
connection or other entity. Self-contained entities are generally repeatable.

e wrapping: The content is obtained from another entity.

This distinction is important for connection management with incoming entities. For entities that are
created by an application and only sent using the HttpCore framework, the difference between streamed
and self-contained isof littleimportance. Inthat case, it issuggested to consider non-repeatable entities
as streamed, and those that are repeatabl e as self-contained.

1.1.3.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. Thisisonly possible with
self contained entities (like Byt eArrayEntity Or StringEntity).

Fundamentals

1.1.3.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings
(to support the latter, ie. character content).

Theentity iscreated when executing arequest with enclosed content or when the request was successful
and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the
Ht t pEnt i t y#get Cont ent () method, which returns an j ava. i o. I nput St ream Or one can supply an
output stream to the Ht t pEnt i t y#wr i t eTo(Qut put St r ean) method, which will return once all content
has been written to the given stream.

TheEntityutils class exposes several static methods to more easily read the content or information
from an entity. Instead of reading the j ava. i o. I nput St ream directly, one can retrieve the whole
content body in astring / byte array by using the methods from this class.

When the entity has been received with an incoming message, the methods
Htt pEnt i t y#get Cont ent Type() and Htt pEntit y#get Cont ent Lengt h() methods can be used for
reading the common metadata such as Cont ent - Type and Cont ent - Lengt h headers (if they are
available). Since the cont ent - Type header can contain a character encoding for text mime-types
liketext/plainortext/htnl,theHttpEntity#get Cont ent Encodi ng() method is used to read this
information. If the headers aren't available, a length of -1 will be returned, and NuLL for the content
type. If the cont ent - Type header is available, a Header object will be returned.

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of
the entity.

StringEntity nmyEntity = new StringEntity("inportant nessage",
"UTF-8");

System out. println(nmyEntity. get Content Type());

System out. println(myEntity. get ContentLength());
Systemout.println(EntityUils. get Content CharSet (nyEntity));
Systemout.printin(EntityUtils.toString(nyEntity));
Systemout.printin(EntityUils.toByteArray(nyEntity).length);

stdout >

Cont ent - Type: text/plain; charset=UTF-8
17

UTF- 8

i nport ant nessage

17

1.1.3.3. Ensuring release of system resources

In order to ensure proper release of system resources one must close the content stream associated
with the entity.

Ht t pResponse response;

HtpEntity entity = response.getEntity();

if (entity !'= null) {
I nput Streaminstream = entity. getContent();
try {

Fundamentals

/1 do sonet hing useful
} finally {
instream cl ose();
}
}

Please notethat Ht t pEnt i t y#wri t eTo(Qut put St rean) methodisalso required to ensure proper release
of system resources once the entity has been fully written out. If this method obtains an instance of
java.io. | nputStreamby calling Ht t pEnt i t y#get Content (), it is also expected to close the stream
inafinally clause.

When working with streaming entities, one can usethe Enti tyUti | s#consume(Htt pEntity) method
to ensure that the entity content has been fully consumed and the underlying stream has been closed.

1.1.4. Creating entities
There are afew ways to create entities. The following implementations are provided by HttpCore:
* BasicHttpEntity
* ByteArrayEntity
® StringEntity
®* |nputStreantntity
* FileEntity
* EntityTenpl ate
e HttpEntityWapper
e BufferedHttpEntity
1.1.4.1. BasicHt t pEntity

Thisisexactly asthe nameimplies, abasic entity that represents an underlying stream. Thisisgeneraly
used for the entities received from HTTP messages.

This entity has an empty constructor. After construction it represents no content, and has a negative
content length.

One needs to set the content stream, and optionally the length. This can be done with
the Basi cHt t pEnt i t y#set Cont ent (| nput St rean) and Basi cHtt pEnti t y#set Cont ent Lengt h(| ong)
methods respectively.

Basi cHttpEntity nmyEntity = new BasicHttpEntity();
nyEntity. set Cont ent (sonel nput Streamn ;
nyEntity. set Cont ent Lengt h(340); // sets the length to 340

1.1.4.2. ByteArrayEntity

Byt eArrayEnt ity isaself contained, repeatable entity that obtainsits content from agiven byte array.
This byte array is supplied to the constructor.

String nyData = "Hello world on the other side!!";
Byt eArrayEntity nyEntity = new ByteArrayEntity(nyData.getBytes());

Fundamentals

1.1.4.3. StringEntity

StringEntity isaself contained, repeatable entity that obtains its content from aj ava. | ang. Stri ng
object. It has three constructors, one simply constructs with agivenj ava.l ang. String object; the
second also takes a character encoding for the data in the string; the third allows the mime type to
be specified.

StringBuffer sb = new StringBuffer();

Map<String, String> env = System getenv();

for (Entry<String, String> envEntry : env.entrySet()) {
sb. append(envEntry. get Key()) . append(": ")
.append(envEntry. get Val ue()). append("\n");

}

/] construct without a character encoding (defaults to | SO 8859-1)
HtpEntity nyEntityl = new StringEntity(sb.toString());

// alternatively construct with an encoding (mne type defaults to "text/plain")
HtpEntity nyEntity2 = new StringEntity(sb.toString(), "UTF-8");

// alternatively construct with an encoding and a mne type
HttpEntity nyEntity3 = new StringEntity(sb.toString(), "text/htm", "UTF-8");

1.1.4.4. I nput StreanEntity

I nput StreanEnt i ty isastreamed, non-repeatable entity that obtains its content from an input stream.
It is constructed by supplying the input stream and the content length. The content length is used to
limit the amount of dataread fromthej ava. i o. I nput St r eam If the length matches the content length
available on the input stream, then all data will be sent. Alternatively a negative content length will
read all data from the input stream, which is the same as supplying the exact content length, so the
length is most often used to limit the length.

I nput St ream i nstream = get Sonel nput Strean();
Input StreamEntity nyEntity = new | nput StreankEntity(instream 16);

1.1.45. FileEntity

Fi | eEntity isaself contained, repeatable entity that obtainsits content from afile. Sincethisismostly
used to stream largefiles of different types, one needsto supply the content type of thefile, for instance,
sending a zip file would require the content type appl i cati on/ zi p, for XML appl i cati on/ xm .

HttpEntity entity = new FileEntity(staticFile,
"application/java-archive");

1.1.4.6. EntityTenpl ate

Thisis an entity which receives its content from a Cont ent Pr oducer interface. Content producers are
objectswhich producetheir content on demand, by writing it out to an output stream. They are expected
to be able produce their content every timethey are requested to do so. So creating aent i t yTenpl at e,
one is expected to supply a reference to a content producer, which effectively creates a repeatable
entity.

Thereare no standard content producersin HttpCore. It isbasically just aconvenienceinterfaceto alow
wrapping up complex logic into an entity. To usethis entity one needsto create a classthat implements

Fundamentals

Cont ent Producer and override the Cont ent Producer #wri t eTo(Qut put St ream) method. Then, an
instance of custom Cont ent Producer Will be used to write the full content body to the output stream.
For instance, an HTTP server would serve static fileswith theFi | eEnt i ty, but running CGI programs
could be done with a Cont ent Pr oducer , inside which one could implement custom logic to supply
the content as it becomes available. This way one does not need to buffer it in a string and then use
a StringEntity Or ByteArrayEntity.

Cont ent Producer nyCont ent Producer = new Cont ent Producer () {

public void witeTo(QutputStreamout) throws | OException {
out.write("ContentProducer rocks! ".getBytes());
out.wite(("Time requested: " + new Date()).getBytes());
}

be

HttpEntity nyEntity = new EntityTenpl at e(myCont ent Producer);
nyEntity.witeTo(System out);

stdout >

Cont ent Producer rocks! Time requested: Fri Sep 05 12:20:22 CEST 2008

1.1.4.7. Ht t pEnti t yW apper

Thisisthe base classfor creating wrapped entities. The wrapping entity holds areference to awrapped
entity and delegates all callsto it. Implementations of wrapping entities can derive from this class and
need to override only those methods that should not be delegated to the wrapped entity.

1.1.4.8. BufferedHt t pEntity

Buf feredHt t pEntity isasubclass of Htt pEntitywWapper. It is constructed by supplying another
entity. It reads the content from the supplied entity, and buffersit in memory.

This makes it possible to make a repeatabl e entity, from a non-repeatabl e entity. If the supplied entity
is aready repeatable, calls are simply passed through to the underlying entity.

nyNonRepeat abl eEnti ty. set Cont ent (sonel nput Strean) ;
Buf feredHt t pEntity nyBufferedEntity = new BufferedHttpEntity(
nmyNonRepeat abl eEntity);

1.2. Blocking HTTP connections

HTTP connections are responsible for HTTP message serialization and deserialization. One should
rarely need to use HTTP connection objects directly. There are higher level protocol components
intended for execution and processing of HT TP requests. However, in some cases direct interaction
with HTTP connections may be necessary, for instance, to access properties such as the connection
status, the socket timeout or the local and remote addresses.

It isimportant to bear in mind that HT TP connections are not thread-safe. It is strongly recommended
to limit all interactions with HTTP connection objects to one thread. The only method of
Ht t pConnect i on interface and its sub-interfaces which is safe to invoke from another thread is
Ht t pConnect i on#shut down() .

Fundamentals

1.2.1. Working with blocking HTTP connections

HttpCore does not provide full support for opening connections because the process of establishing
anew connection - especially on the client side - can be very complex when it involves one or more
authenticating or/and tunneling proxies. Instead, blocking HTTP connections can be bound to any
arbitrary network socket.

Socket socket = new Socket();

/1l Initialize socket

Basi cHt t pPar ans parans = new Basi cHt t pParans();
Def aul t Ht t pdl i ent Connecti on conn = new Defaul tHttpC ient Connection();
conn. bi nd(socket, parans);

conn. i sOpen();

Ht t pConnectionMetrics metrics = conn.getMetrics();
netrics. get Request Count () ;

netrics. get ResponseCount () ;

nmetrics. get Recei vedByt esCount () ;

netrics. get Sent Byt esCount () ;

HTTP connection interfaces, both client and server, send and receive messages in two stages. The
message head is transmitted first. Depending on properties of the message head it may be followed by
amessage body. Please noteit is very important to always close the underlying content stream in order
to signal that the processing of the message is complete. HTTP entities that stream out their content
directly from the input stream of the underlying connection must ensure the content of the message
body is fully consumed for that connection to be potentially re-usable.

Over-simplified process of client side request execution may ook like this:

Socket socket = new Socket();

/1 Initialize socket

Ht t pPar ans parans = new Basi cHt t pParans();

Def aul t Ht t pll i ent Connecti on conn = new Defaul tHttpC ient Connection();

conn. bi nd(socket, parans);

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");

conn. sendRequest Header (request) ;

Ht t pResponse response = conn.recei veResponseHeader () ;

conn. recei veResponseEntity(response);

HtpEntity entity = response.getEntity();

if (entity '= null) {
// Do sonething useful with the entity and, when done, ensure all
/'l content has been consuned, so that the underlying connection
/1 can be re-used
EntityUtils.consune(entity);

Over-simplified process of server side request handling may look like this:

Socket socket = new Socket();
// Initialize socket
Ht t pPar ans parans = new Basi cHt t pParans();
Def aul t Ht t pSer ver Connecti on conn = new Def aul t Ht t pSer ver Connecti on();
conn. bi nd(socket, parans);
Ht t pRequest request = conn.recei veRequest Header () ;
i f (request instanceof HttpEntityEncl osi ngRequest) {
conn. recei veRequest Entity((Htt pEntityEncl osi ngRequest) request);
HttpEntity entity = ((HttpEntityEncl osi ngRequest) request)
.getEntity();
if (entity '= null) {

Fundamentals

/1l Do something useful with the entity and, when done, ensure all
/'l content has been consuned, so that the underlying connection
/'l coult be re-used
EntityUtils.consune(entity);

}

}
Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,

200, "OK");
response. set Entity(new StringEntity("Got it"));
conn. sendResponseHeader (r esponse) ;
conn. sendResponseEntity(response);

Please note that one should rarely need to transmit messages using these low level methods and should
use appropriate higher level HTTP service implementations instead.

1.2.2. Content transfer with blocking I/O

HTTP connections manage the process of the content transfer using the Htt pEntity
interface. HTTP connections generate an entity object that encapsulates the content stream
of the incoming message. Please note that Hit pServer Connecti on#r ecei veRequest Entity()
and Httpdient Connecti on#recei veResponseEntity() do not retrieve or buffer any incoming
data. They merely inject an appropriate content codec based on the properties of the
incoming message. The content can be retrieved by reading from the content input stream
of the enclosed entity using Htt pEntity#get Content (). The incoming data will be decoded
automatically completely transparently for the data consumer. Likewise, HTTP connections rely on
Htt pEnti t y#wr it eTo(Qut put St r eam) method to generate the content of an outgoing message. If an
outgoing messages enclosesan entity, the content will be encoded automatically based on the properties
of the message.

1.2.3. Supported content transfer mechanisms

Default implementations of HT TP connections support three content transfer mechanisms defined by
the HTTP/1.1 specification:

e Content-Length delimited: The end of the content entity is determined by the value of the
Cont ent - Lengt h header. Maximum entity length: Long#MAX_VALUE.

* ldentity coding: Theend of the content entity isdemarcated by closing the underlying connection
(end of stream condition). For obvious reasons the identity encoding can only be used on the server
side. Max entity length: unlimited.

e Chunk coding: The content is sent in small chunks. Max entity length: unlimited.

Theappropriate content stream classwill be created automatically depending on properties of the entity
enclosed with the message.

1.2.4. Terminating HTTP connections

HTTP connections can be terminated either gracefully by calling Htt pConnecti on#cl ose() Or
forcibly by calling Htt pConnect i on#shut down() . The former tries to flush all buffered data prior to
terminating the connection and may block indefinitely. The Ht t pConnect i on#cl ose() methodisnot
thread-safe. The latter terminates the connection without flushing internal buffers and returns control
to the caller as soon as possible without blocking for long. The Ht t pConnect i on#shut down() method
is thread-safe.

Fundamentals

1.3. HTTP exception handling

All HttpCore components potentially throw two types of exceptions: | OException in case of an I/
O failure such as socket timeout or an socket reset and Ht t pExcept i on that signals an HTTP failure
such asaviolation of the HTTP protocol. Usualy 1/O errors are considered non-fatal and recoverable,
whereas HTTP protocol errors are considered fatal and cannot be automatically recovered from.

1.3.1. Protocol exception

Prot ocol Excepti on signals a fatal HTTP protocol violation that usually results in an immediate
termination of the HTTP message processing.

1.4. HTTP protocol processors

HTTP protocol interceptor isaroutine that implements a specific aspect of the HTTP protocol . Usually
protocol interceptors are expected to act upon one specific header or a group of related headers of the
incoming message or populate the outgoing message with one specific header or a group of related
headers. Protocol interceptors can al so manipul ate content entiti es encl osed with messages, transparent
content compression / decompression being agood example. Usually thisisaccomplished by using the
'‘Decorator' pattern where awrapper entity classis used to decorate the original entity. Several protocol
interceptors can be combined to form one logical unit.

HTTP protocol processor is a collection of protocol interceptors that implements the 'Chain of
Responsibility' pattern, where each individual protocol interceptor isexpected to work on the particular
aspect of the HTTP protocol it isresponsible for.

Usually the order in which interceptors are executed should not matter aslong asthey do not depend on
aparticular state of the execution context. If protocol interceptors haveinterdependenciesand therefore
must be executed in a particular order, they should be added to the protocol processor in the same
sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors
should not use instance variables unless access to those variablesis synchronized.

1.4.1. Standard protocol interceptors

HttpCore comes with a number of most essential protocol interceptors for client and server HTTP
processing.

1.4.1.1. Request Cont ent

Request Cont ent isthemost important interceptor for outgoing requests. Itisresponsiblefor delimiting
content length by adding Cont ent - Lengt h Or Transf er - Cont ent headers based on the properties of
the enclosed entity and the protocol version. This interceptor is required for correct functioning of
client side protocol processors.

1.4.1.2. ResponseCont ent

ResponseCont ent iS the most important interceptor for outgoing responses. It is responsible for
delimiting content length by adding Cont ent - Lengt h Or Transf er - Cont ent headers based on the
properties of the enclosed entity and the protocol version. This interceptor is required for correct
functioning of server side protocol processors.

10

Fundamentals

1.4.1.3.

1.4.1.4.

1.4.1.5.

1.4.1.6.

1.4.1.7.

1.4.1.8.

1.4.1.9.

Request ConnCont r ol

Request ConnCont r ol is responsible for adding Connecti on header to the outgoing requests, which
is essential for managing persistence of HTTP/ 1. 0 connections. This interceptor is recommended for
client side protocol processors.

ResponseConnCont r ol

ResponseConnCont r ol isresponsible for adding Connect i on header to the outgoing responses, which
is essential for managing persistence of HTTP/ 1. 0 connections. This interceptor is recommended for
server side protocol processors.

Request Dat e

Request Dat e isresponsiblefor adding Dat e header to the outgoing requests. Thisinterceptor isoptional
for client side protocol processors.

ResponseDat e

ResponseDat e IS responsible for adding Dat e header to the outgoing responses. This interceptor is
recommended for server side protocol processors.

Request Expect Cont i nue

Request Expect Cont i nue isresponsiblefor enabling the'expect-continue’ handshake by adding Expect
header. This interceptor is recommended for client side protocol processors.

Request Tar get Host

Request Tar get Host isresponsible for adding Host header. Thisinterceptor is required for client side
protocol processors.

Request User Agent

Request User Agent isresponsible for adding User - Agent header. Thisinterceptor isrecommended for
client side protocol processors.

1.4.1.10. ResponseSer ver

ResponseSer ver isresponsible for adding Ser ver header. Thisinterceptor is recommended for server
side protocol processors.

1.4.2. Working with protocol processors

Usually HTTP protocol processors are used to pre-process incoming messages prior to executing
application specific processing logic and to post-process outgoing messages.

Basi cHt t pProcessor httpproc = new BasicHttpProcessor();
/! Required protocol interceptors

ht t pproc. addl nt er cept or (new Request Content ());

ht t pproc. addl nt er cept or (new Request Tar get Host ()) ;

/'l Recommended protocol interceptors

ht t pproc. addl nt er cept or (new Request ConnControl ());

ht t pproc. addl nt er cept or (new Request User Agent ()) ;

ht t pproc. addl nt er cept or (new Request Expect Conti nue());

Ht t pCont ext context = new BasicHtt pContext();

11

Fundamentals

Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");
htt pproc. process(request, context);
Ht t pResponse response = nul | ;

Send the request to the target host and get a response.

htt pproc. process(response, context);

Please note the Basi cHt t pProcessor class does not synchronize access to itsinternal structures and
therefore may be thread-unsafe.

1.4.3. HTTP context

Protocol interceptors can collaborate by sharing information - such as a processing state - through an
HTTP execution context. HTTP context is a structure that can be used to map an attribute name to
an attribute value. Internally HTTP context implementations are usually backed by a HashMap. The
primary purpose of the HTTP context is to facilitate information sharing among various logically
related components. HTTP context can be used to store a processing state for one message or severa
consecutive messages. Multiple logically related messages can participate in alogical session if the
same context is reused between consecutive messages.

Basi cHt t pProcessor httpproc = new Basi cHttpProcessor();
ht t pproc. addl nt er cept or (new Ht t pRequest I nterceptor() {

public void process(
Ht t pRequest request,
Htt pCont ext context) throws HtpException, | COException {
String id = (String) context.getAttribute("session-id");
if (id!=null) {
request . addHeader (" Sessi on-1D", id);
}

1)
Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");
ht t pproc. process(request, context);

Ht t pCont ext instances can be linked together to form a hierarchy. In the simplest form one context
can use content of another context to obtain default values of attributes not present in thelocal context.

Ht t pCont ext par ent Cont ext = new Basi cHtt pContext ();
parent Cont ext. set Attri bute("paraml", |nteger.valueO(1));
parent Cont ext . set Attri but e("paranR", Integer.valueC(2));

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;

| ocal Cont ext.set Attribute("paranR", I|nteger.valueOX(0));

| ocal Cont ext.setAttribute("paranB", |nteger.valueO(3));

Ht t pCont ext stack = new Def aul t edHt t pCont ext (| ocal Cont ext,
par ent Cont ext) ;

System out. println(stack.getAttribute("paranl"));
System out. println(stack.getAttribute("parank"));
System out . println(stack.getAttribute("paranB8"));
System out. println(stack.getAttribute("parand"));

stdout >

12

Fundamentals

nul |

1.5. HTTP parameters

Ht t pPar ans interface represents a collection of immutable values that define a runtime behavior of a
component. In many ways Ht t pPar ans S Similar to Ht t pCont ext . The main distinction between the
two liesin their use at runtime. Both interfaces represent a collection of objects that are organized as
amap of textual namesto object values, but serve distinct purposes:

e Htt pPar ans isintended to contain simple objects: integers, doubles, strings, collections and objects
that remain immutable at runtime. Ht t pPar ans is expected to be used in the 'write once - ready
many' mode. H: t pCont ext is intended to contain complex objects that are very likely to mutate in
the course of HTTP message processing.

« The purpose of Ht t pPar ans is to define a behavior of other components. Usually each complex
component has its own Ht t pPar ans Object. The purpose of Ht tpContext IS to represent an
execution state of an HTTP process. Usually the same execution context is shared among many
collaborating objects.

Ht t pPar ams, like Ht t pCont ext can be linked together to form a hierarchy. In the simplest form one
set of parameters can use content of another one to obtain default values of parameters not present
inthelocal set.

Ht t pPar ans par ent Parans = new Basi cHt t pPar ans() ;

par ent Par ans. set Par anet er (Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON,
Ht t pVer si on. HTTP_1_0);

par ent Par ans. set Par anet er (Cor ePr ot ocol PNanmes. HTTP_CONTENT_CHARSET,
"UTF-8");

Ht t pPar ans | ocal Parans = new Basi cHt t pPar ans();

| ocal Par ans. set Par anet er (Cor ePr ot ocol PNanes. PROTOCOL_VERSI ON,
Ht t pVersion. HTTP_1_1);

| ocal Par ans. set Par anet er (Cor ePr ot ocol PNanes. USE_EXPECT_CONTI NUE,
Bool ean. FALSE) ;

Ht t pPar ans stack = new Def aul t edHt t pPar ans(| ocal Par ans,
par ent Par ans) ;

System out. printl n(stack. get Par anet er (

Cor ePr ot ocol PNanes. PROTOCOL_VERSI ON)) ;
System out . printl n(stack. get Paranet er (

Cor ePr ot ocol PNanes. HTTP_CONTENT_CHARSET)) ;
System out . printl n(stack. get Paranet er (

Cor ePr ot ocol PNanmes. USE_EXPECT_CONTI NUE)) ;
System out. printl n(stack. get Par anet er (

Cor ePr ot ocol PNanmes. USER_AGENT)) ;

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

13

Fundamentals

Please note the Basi cHt t pPar ams class does not synchronize access to its interna structures and
therefore may be thread-unsafe.

1.5.1. HTTP parameter beans

Ht t pPar ams interface allows for a great deal of flexibility in handling configuration of components.
Most importantly, new parameters can be introduced without affecting binary compatibility with ol der
versions. However, Hi t pParans also has a certain disadvantage compared to regular Java beans:
Ht t pPar ams cannot be assembled using a DI framework. To mitigate the limitation, HttpCore includes
anumber of bean classesthat can be used in order toinitialize Ht t pPar ans objects using standard Java
bean conventions.

Ht t pPar ans parans = new Basi cHtt pParans();

Ht t pPr ot ocol Par anBean paransBean = new Htt pProt ocol Par anBean(par ans) ;
par ansBean. set Ver si on(Ht t pVersi on. HTTP_1_1);

par ansBean. set Cont ent Char set (" UTF-8") ;

par ansBean. set UseExpect Cont i nue(true);

System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanes. HTTP_CONTENT_CHARSET)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNames. USE_EXPECT_CONTI NUE)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanmes. USER_AGENT)) ;

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

1.6. Blocking HTTP protocol handlers

1.6.1. HTTP service

Ht t pSer vi ce isaserver side HTTP protocol handler based on the blocking I/0O model that implements
the essential requirements of the HTTP protocal for the server side message processing as described
by RFC 2616.

Htt pServi ce relies on Htt pProcessor instance to generate mandatory protocol headers for all
outgoing messages and apply common, cross-cutting message transformations to all incoming and
outgoing messages, whereas HTTP request handlers are expected to take care of application specific
content generation and processing.

Ht t pPar ans par ans;

/1 Initialize HTTP paraneters
Ht t pProcessor httpproc;

/1 Initialize HTTP processor

Htt pServi ce httpService = new Htt pService(
ht t pproc,
new Def aul t Connect i onReuseStr at egy(),

14

Fundamentals

new Def aul t Ht t pResponseFact ory());
htt pServi ce. set Par ans(par ans) ;

1.6.1.1. HTTP request handlers

The Ht t pRequest Handl er interface represents a routine for processing of a specific group of HTTP
requests. Ht t pSer vi ce isdesigned to take care of protocol specific aspects, whereasindividual request
handlers are expected to take care of application specific HTTP processing. The main purpose of a
request handler is to generate a response object with a content entity to be sent back to the client in
response to the given request.

Ht t pRequest Handl er nyRequest Handl er = new Htt pRequest Handl er () {

public void handl e(
Ht t pRequest request,
Ht t pResponse response,
Ht t pCont ext context) throws H tpException, | COException {
response. set St at usCode(Ht t pSt at us. SC_CK) ;
response. addHeader (" Cont ent - Type", "text/plain");
response. set Entity(
new StringEntity("sone inportant nessage"));

1.6.1.2. Request handler resolver

HTTP request handlers are usualy managed by a Hit pRequest Handl er Resol ver that matches a
request URI to a request handler. HttpCore includes a very simple implementation of the request
handler resolver based on a trivial pattern matching algorithm: Ht t pRequest Handl er Regi stry
supports only three formats: *, <uri >* and *<uri >.

Htt pServi ce httpService;
/1 Initialize HTTP service

Ht t pRequest Handl er Regi stry handl er Resol ver =
new Htt pRequest Handl er Regi stry();
handl er Reqi stry. regi ster("/service/*", nyRequestHandl er1);
handl er Reqgi stry. regi ster("*.do", nyRequestHandl er2);
handl er Reqgi stry. register("*", myRequestHandl er3);

/1 1nject handler resolver
htt pServi ce. set Handl er Resol ver (handl er Resol ver);

Users ae encouraged to provide more sophisticated implementations — of
Ht t pRequest Handl er Resol ver - for instance, based on regular expressions.

1.6.1.3. Using HTTP service to handle requests

When fully initialized and configured, the Ht t pSer vi ce can be used to execute and handle requests
for active HTTP connections. TheHt t pSer vi ce#handl eRequest () method reads an incoming request,
generates a response and sends it back to the client. This method can be executed in a loop to
handle multiple requests on a persistent connection. The Ht t pSer vi ce#handl eRequest () method is
safe to execute from multiple threads. This allows processing of requests on severa connections
simultaneously, aslong as al the protocol interceptors and requests handlers used by the Ht t pSer vi ce
are thread-safe.

15

Fundamentals

Ht t pServi ce httpService;

/1 Initialize HTTP service
Ht t pSer ver Connecti on conn;
/1 Initialize connection
Ht t pCont ext cont ext;

/'l lInitialize HTTP context

bool ean active = true;
try {
while (active & conn.isOpen()) {
htt pServi ce. handl eRequest (conn, context);
}
} finally {
conn. shut down() ;

}

1.6.2. HTTP request executor

Ht t pRequest Execut or isaclient side HTTP protocol handler based on the blocking 1/0 model that
implements the essential requirements of the HTTP protocol for the client side message processing,

as described by RFC 2616. H: t pRequest Execut or relies on on Htt pProcessor

instance to generate

mandatory protocol headers for all outgoing messages and apply common, cross-cutting message
transformations to all incoming and outgoing messages. Application specific processing can be
implemented outside Ht t pRequest Execut or once the request has been executed and a response has

been received.

Htt pd i ent Connecti on conn;

/| Create connection

Ht t pPar ans par ans;

/1 Initialize HTTP paraneters
Ht t pProcessor htt pproc;

/1l Initialize HTTP processor
Ht t pCont ext cont ext;

/1] Initialize HTTP context

Ht t pRequest Execut or htt pexecutor = new HttpRequest Executor();

Basi cHt t pRequest request = new Basi cHtt pRequest (" GET", "/");
request . set Par ans(par ans) ;
ht t pexecut or . preProcess(request, httpproc, context);
Ht t pResponse response = httpexecutor. execut e(
request, conn, context);
response. set Par ans(par ans) ;
ht t pexecut or. post Process(response, httpproc, context);

HtpEntity entity = response.getEntity();
EntityUtils.consune(entity);

Methods of H: t pRequest Execut or are safe to execute from multiple threads. This allows execution
of requests on several connections simultaneously, aslong as all the protocol interceptors used by the

Ht t pRequest Execut or are thread-safe.

1.6.3. Connection persistence / re-use

The Connect i onReuseSt r at egy interfaceis intended to determine whether the underlying connection
can be re-used for processing of further messages after the transmission of the current message has
been completed. The default connection re-use strategy attempts to keep connections alive whenever
possible. Firstly, it examinesthe version of the HTTP protocol used to transmit the message. HTTP/ 1. 1

Fundamentals

connections are persistent by default, while HTTP/ 1. 0 connections are not. Secondly, it examines
the value of the Connect i on header. The peer can indicate whether it intends to re-use the connection
on the opposite side by sending Keep- Al i ve Or O ose values in the Connect i on header. Thirdly, the
strategy makes the decision whether the connection is safe to re-use based on the properties of the
enclosed entity, if available.

17

Chapter 2. NIO extensions

2.1. Benefits and shortcomings of the non-blocking I/O model

Contrary to the popular belief, the performance of NIO in terms of raw datathroughput is significantly
lower than that of blocking 1/0. NIO does not necessarily fit al use cases and should be used only
where appropriate:

» handling of thousands of connections, a significant number of which can beidle.
 handling high latency connections.

 request / response handling needs to be decoupled.

2.2. Differences from other NIO frameworks

Solves similar problems as other frameworks, but has certain distinct features:
« minimalistic, optimized for data volume intensive protocols such asHTTP.

« efficient memory management: data consumer can read only as much input data as it can process
without having to allocate more memory.

* direct access to the NI1O channels where possible.

2.3. 1/0O reactor

HttpCore NIO is based on the Reactor pattern as described by Doug Lea. The purpose of 1/0 reactors
is to react to 1/O events and to dispatch event notifications to individua /O sessions. The main
idea of /O reactor pattern is to break away from the one thread per connection model imposed
by the classic blocking I/0O model. The | OReact or interface represents an abstract object which
implements the Reactor pattern. Internaly, | OReact or implementations encapsulate functionality of
the NIOj ava. ni 0. channel s. Sel ect or.

1/O reactors usually employ a small number of dispatch threads (often as few as one) to dispatch I/0
event notifications to a much greater number (often as many as several thousands) of 1/0 sessions or
connections. It is generally recommended to have one dispatch thread per CPU core.

Ht t pPar ans parans = new Basi cHt t pParans();

i nt workerCount = 2;

| OReact or ioreactor = new Defaul t Connecti ngl OReact or (wor ker Count ,
par ans) ;

2.3.1. 1/0O dispatchers

| OReact or implementations make use of the | CEvent Di spat ch interface to notify clients of events
pending for a particular session. All methods of the | CEvent Di spat ch are executed on a dispatch
thread of the 1/O reactor. Therefore, it isimportant that processing that takes place in the event methods
will not block the dispatch thread for too long, asthe I/O reactor will be unableto react to other events.

18

NIO extensions

Ht t pPar anms paranms = new Basi cHt t pParans();
| OReact or ioreactor = new Def aul t Connecti ngl OReactor (2, parans);

| OEvent Di spat ch event Di spatch = new Myl OEvent Di spat ch();
i oreact or. execut e(event Di spat ch) ;

Generic 1/0 events as defined by the | OEvent Di spat ch interface:
* connected: Triggered when a new session has been created.

* input Ready: Triggered when the session has pending input.
 out put Ready: Triggered when the session is ready for output.
e timeout: Triggered when the session hastimed out.

 disconnected: Triggered when the session has been terminated.

2.3.2. 1/0 reactor shutdown

The shutdown of 1/0 reactors is a complex process and may usually take a while to complete. 1/0
reactorswill attempt to gracefully terminate all active I/O sessions and dispatch threads approximately
within the specified grace period. If any of the /O sessions failsto terminate correctly, the 1/O reactor
will forcibly shut down remaining sessions.

| ong gracePeriod = 3000L; // mlliseconds
i oreact or. shut down(gracePeri od);

The | OReact or #shut down(| ong) method is safeto call from any thread.

2.3.3.1/0 sessions

The 1 Osessi on interface represents a sequence of logically related data exchanges between two
end points. | OSessi on encapsulates functionality of NIO j ava. ni 0. channel s. Sel ect i onkKey and
j ava. ni 0. channel s. Socket Channel . The channel associated with the | csessi on can be used to read
data from and write data to the session.

| CSessi on i osessi on;

Readabl eByt eChannel ch = (Readabl eByt eChannel) i osessi on. channel ();
Byt eBuf fer dst = ByteBuffer.allocate(2048);

ch.read(dst);

2.3.4.1/0 session state management

I/O sessions are not bound to an execution thread, therefore one cannot use the context of the thread
to store a session's state. All details about a particular session must be stored within the session itself.

| CSessi on i osessi on;

Obj ect soneStat e;

i osession.setAttribute("state", someState);

bj ect currentState = iosession.getAttribute("state");

Please note that if several sessions make use of shared objects, access to those objects must be made
thread-safe.

19

NIO extensions

2.3.5. 1/0 session event mask

One can declare an interest in a particular type of 1/O events for a particular 1/0 session by setting
its event mask.

| OSessi on i osessi on;
i osessi on. set Event Mask(Sel ecti onKey. OP_READ | Sel ecti onKey. OP_WRI TE);

One can also toggle oP_ReAD and oP_WRI TE flags individually.

i osessi on. set Event (Sel ecti onKey. OP_READ) ;
i osessi on. cl ear Event (Sel ect i onKey. OP_READ) ;

Event notifications will not take place if the corresponding interest flag is not set.

2.3.6. 1/0 session buffers

Quite often /O sessions need to maintain internal 1/O buffersin order to transform input / output data
prior to returning it to the consumer or writing it to the underlying channel. Memory management in
HttpCore NIO is based on the fundamental principle that the data consumer can read only as much
input data as it can process without having to allocate more memory. That means, quite often some
input data may remain unread in one of the internal or external session buffers. The /O reactor can
query the status of these session buffers, and make sure the consumer gets notified correctly as more
data gets stored in one of the session buffers, thus allowing the consumer to read the remaining data
once it is able to process it. I/0 sessions can be made aware of the status of external session buffers
using the Sessi onBuf f er St at us interface.

| CSessi on i osessi on;

Sessi onBuf f er St at us nmyBuffer Status = new MySessi onBuf f er St at us() ;
i osessi on. set Buf f er St at us(nyBuf f er St at us) ;

i osessi on. hasBuf f eredl nput () ;

i osessi on. hasBuf f er edCut put () ;

2.3.7.1/0 session shutdown

One can close an 1/0O session gracefully by calling | cSessi on#cl ose() allowing the session to be
closed in an orderly manner or by calling | OSessi on#shut down() to forcibly close the underlying
channel. The distinction between two methodsis of primary importance for those types of 1/0 sessions
that involve some sort of a session termination handshake such as SSL/TL S connections.

2.3.8. Listening I/O reactors

Li st eni ngl OReact or represents an /O reactor capable of listening for incoming connections on one
or severa ports.

Li st eni ngl OReact or i oreactor;

Li st ener Endpoi nt epl = ioreactor.listen(new | netSocket Address(8081));
Li st ener Endpoi nt ep2 = ioreactor.|isten(new | net Socket Address(8082));
Li st ener Endpoi nt ep3 = ioreactor.|listen(new | net Socket Address(8083));

/1 Wait until all endpoints are up

20

NIO extensions

epl. wai t For ();
ep2. wai t For ();
ep3. wai t For () ;

Once an endpoint is fully initialized it starts accepting incoming connections and propagates 1/0
activity notificationsto the | Cevent Di spat ch instance.

One can aobtain a set of registered endpaints at runtime, query the status of an endpoint at runtime,
and closeit if desired.

Li st eni ngl CReact or i oreactor;

Set <Li st ener Endpoi nt > eps = i oreactor. get Endpoi nts();
for (ListenerEndpoint ep: eps) {
/1 Still active?

System out. println(ep.get Address());
if (ep.isCosed()) {
/1 1f not, has it term nated due to an exception?
if (ep.getException() !'= null) {
ep. get Exception(). printStackTrace();
}
} else {
ep. cl ose();

}

2.3.9. Connecting I/O reactors

Connect i ngl OReact or representsan |/O reactor capabl e of establishing connectionswith remote hosts.

Connecti ngl OReact or ioreactor;

Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80),
null, null, null);

Opening a connection to a remote host usually tends to be a time consuming process and may take a
while to complete. One can monitor and control the process of session initialization by means of the
Sessi onRequest interface.

/1 Make sure the request tines out if connection
/'l has not been established after 1 sec
sessi onRequest . set Connect Ti neout (1000) ;
/1 Wit for the request to conplete
sessi onRequest . wai t For () ;
// Has request term nated due to an exception?
i f (sessionRequest.getException() != null) {
sessi onRequest . get Exception(). printStackTrace();
}
/] Get hold of the new I/ O session
| OSessi on i osessi on = sessi onRequest . get Sessi on();

Sessi onRequest implementations are expected to be thread-safe. Session request can be aborted at
any time by calling 1 CSessi on#cancel () from another thread of execution.

if (!sessionRequest.isConpleted()) {
sessi onRequest . cancel ();

21

NIO extensions

One can pass several optional parametersto the Connecti ngl OReact or #connect () method to exert
agreater control over the process of session initialization.

A non-null local socket address parameter can be used to bind the socket to a specific local address.

Connecti ngl OReactor ioreactor;

Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess("ww. googl e. cont', 80),
new | net Socket Address("192. 168. 0. 10", 1234),
null, null);

One can provide an attachment object, which will be added to the new session's context upon
initialization. This object can be used to pass an initial processing state to the protocol handler.

Sessi onRequest sessi onRequest = i oreactor. connect (
new | net Socket Addr ess(" ww. googl e. conf, 80),
nul |, new HttpHost ("ww. google.ru"), null);

| OSessi on i osessi on = sessi onRequest . get Sessi on();
Htt pHost virtual Host = (HttpHost) iosession.getAttribute(
| OSessi on. ATTACHVENT _KEY) ;

It is often desirable to be able to react to the completion of a session request asynchronously
without having to wait for it, blocking the current thread of execution. One can optionally provide
an implementation Sessi onRequest Cal | back interface to get notified of events related to session
requests, such as request completion, cancellation, failure or timeout.

Connect i ngl OReact or ioreactor;

Sessi onRequest sessi onRequest = ioreactor. connect (
new | net Socket Addr ess(" ww. googl e. cont, 80), null, null,
new Sessi onRequest Cal | back() {

public void cancel | ed(Sessi onRequest request) {

}

public void conpl et ed(Sessi onRequest request) {
System out. println("new connection to " +
request . get Renot eAddr ess());
}

public void fail ed(SessionRequest request) {
i f (request.getException() != null) {
request . get Exception(). printStackTrace();
}
}

public void timeout (SessionRequest request) {

}

});

2.3.10. Queuing of I/O interest set operations

Several older JRE implementations (primarily from IBM) include what Java APl documentation refers
to as a naive implementation of the | ava. ni 0. channel s. Sel ecti onkKey class. The problem with

22

NIO extensions

j ava. ni 0. channel s. Sel ect i onKey in such JRESis that reading or writing of the 1/O interest set may
block indefinitely if the l/O selector isin the process of executing aselect operation. HttpCore NIO can
be configured to operate in aspecial mode wherein /O interest set operations are queued and executed
by on the dispatch thread only when the 1/O selector is not engaged in a select operation.

Ht t pPar ans parans = new Basi cHtt pParans();
NI OReact or Par ans. set | nt er est QpsQueuei ng(parans, true);
Li st eni ngl OReact or ioreactor = new Defaul tListeningl OReactor (2, parans);

2.4.1/0 reactor exception handling

Protocol specific exceptions as well as those I/0O exceptions thrown in the course of interaction with
the session's channel are to be expected and are to be dealt with by specific protocol handlers. These
exceptionsmay result in termination of anindividual session but should not affect thel/O reactor and all
other active sessions. There are situations, however, when the 1/O reactor itself encounters an internal
problem such as an 1/0 exception in the underlying NIO classes or an unhandled runtime exception.
Those types of exceptions are usually fatal and will cause the I/O reactor to shut down automatically.

There is a possibility to override this behaviour and prevent 1/O reactors from shutting down
automatically in case of a runtime exception or an 1/O exception in internal classes. This can be
accomplished by providing a custom implementation of the | OReact or Except i onHandl er interface.

Def aul t Connect i ngl OReact or i oreactor;
i oreact or. set Except i onHandl er (new | OReact or Except i onHandl er () {

publ i c bool ean handl e(| OException ex) {
if (ex instanceof Bi ndException) {
/1 bind failures considered OK to ignore
return true;

}

return fal se;

}

publ i ¢ bool ean handl e(Runti meException ex) {
if (ex instanceof UnsupportedQOperationException) {
/1 Unsupported operations considered OK to ignore
return true;

}

return fal se;

53

One needs to be very careful about discarding exceptions indiscriminately. It is often much better to
let the 1/O reactor shut down itself cleanly and restart it rather than leaving it in an inconsistent or
unstable state.

2.4.1. 1/0 reactor audit log

If an I/O reactor is unable to automatically recover from an 1/O or aruntime exception it will enter the
shutdown mode. First off, it will close all active listeners and cancel all pending new session requests.
Then it will attempt to close al active 1/0 sessions gracefully giving them some time to flush pending
output data and terminate cleanly. Lastly, it will forcibly shut down those I/O sessionsthat till remain
active after the grace period. Thisisafairly complex process, where many things can fail at the same

23

NIO extensions

time and many different exceptions can be thrown in the course of the shutdown process. The I/0O
reactor will record all exceptions thrown during the shutdown process, including the original one that
actually caused the shutdown in the first place, in an audit log. One can examine the audit log and
decide whether it is safe to restart the I/O reactor.

Def aul t Connect i ngl OReact or i oreactor;

/Il Gve it 5 sec grace period
i or eact or . shut down(5000) ;

Li st <Excepti onEvent > events = ioreactor.getAuditlLog();
for (ExceptionEvent event: events) {
Systemerr.printIn("Time: " + event.getTimestanp());

event . get Cause() . print StackTrace();

2.5. Non-blocking HTTP connections

Effectively non-blocking HTTP connections are wrappers around | GSessi on with HTTP specific
functionality. Non-blocking HTTP connections are stateful and not thread-safe. Input / output
operations on non-blocking HTTP connections should be restricted to the dispatch events triggered by
the 1/0 event dispatch thread.

2.5.1. Execution context of non-blocking HTTP connections

Non-blocking HTTP connections are not bound to a particular thread of execution and therefore
they need to maintain their own execution context. Each non-blocking HTTP connection has an
Ht t pCont ext instance associated with it, which can be used to maintain a processing state. The
Htt pCont ext instance is thread-safe and can be manipulated from multiple threads.

/1 Get non-bl ocki ng HTTP connecti on
Def aul t NHt t pd i ent Connecti on conn;
/Il State

Obj ect nySt at ebj ect ;

Ht t pCont ext context = conn. get Cont ext () ;
context.setAttribute("state", nyStateObject);

2.5.2. Working with non-blocking HTTP connections

At any point of time one can obtain the request and response objects currently being transferred over
the non-blocking HTTP connection. Any of these abjects, or both, can be null if thereis no incoming
or outgoing message currently being transferred.

NHt t pConnecti on conn;

Ht t pRequest request = conn. get Htt pRequest ();
if (request !'= null) {
Systemout.println("Transferring request: " +
request . get Request Li ne());
}
Ht t pResponse response = conn. get Ht t pResponse();
if (response !'= null) {
Systemout.println("Transferring response: " +
response. get St at usLi ne());

24

NIO extensions

However, please note that the current request and the current response may not necessarily represent
the same message exchange! Non-blocking HTTP connections can operate in afull duplex mode. One
can process incoming and outgoing messages compl etely independently from one another. This makes
non-blocking HTTP connections fully pipelining capable, but at same time impliesthat thisisthe job
of the protocol handler to match logically related request and the response messages.

Over-simplified process of submitting arequest on the client side may look like this:

/1 Ootain HTTP connection
NHt t pd i ent Connecti on conn;

// Ootain execution context
Ht t pCont ext context = conn. get Cont ext () ;

// Obtain processing state
hj ect state = context.getAttribute("state");

/] Generate a request based on the state infornation
Ht t pRequest request = new Basi cHtt pRequest (" GET", "/");

conn. subm t Request (request);
System out . println(conn.isRequestSubmtted());

Over-simplified process of submitting a response on the server side may look like this:

/1 Obtain HTTP connection
NHt t pSer ver Connect i on conn;

// Ootain execution context
Ht t pCont ext context = conn. get Cont ext();

// Obtain processing state
hj ect state = context.getAttribute("state");

/] Generate a response based on the state information

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pSt at us. SC_OK, "OK");

Basi cHttpEntity entity = new BasicH tpEntity();

entity. set Content Type("text/plain");

entity. set Chunked(true);

response. setEntity(entity);

conn. subm t Response(response) ;
System out. println(conn.isResponseSubm tted());

Please note that one should rarely need to transmit messages using these low level methods and should
use appropriate higher level HTTP service implementations instead.

2.5.3. HTTP I/O control

All non-blocking HTTP connections classes implement | 0Control interface, which represents
a subset of connection functionality for controlling interest in 1/0O even notifications. | GCont r ol

instances are expected to be fully thread-safe. Therefore | 0cont rol can be used to request / suspend
I/0 event notifications from any thread.

One must take specia precautions when interacting with non-blocking connections. Ht t pRequest and
Ht t pResponse are not thread-safe. It is generally advisable that all input / output operations on a non-
blocking connection are executed from the I/O event dispatch thread.

25

NIO extensions

The following pattern is recommended:
* Usel 0control interface to pass control over connection's 1/0O events to another thread / session.

« |f input / output operations need be executed on that particular connection, store all the required
information (state) in the connection context and request the appropriate I/O operation by calling
| OCont r ol #r equest | nput () OF | OCont r ol #r equest CQut put () method.

« Execute the required operations from the event method on the dispatch thread using information
stored in connection context.

Please note all operations that take place in the event methods should not block for too long, because
while the dispatch thread remains blocked in one session, it is unable to process events for all other
sessions. /O operations with the underlying channel of the session are not a problem as they are
guaranteed to be non-blocking.

2.5.4. Non-blocking content transfer

The process of content transfer for non-blocking connections works completely differently compared
tothat of blocking connections, as non-blocking connections need to accommodateto the asynchronous
nature of the NIO model. The main distinction between two types of connections is inability to use
the usual, but inherently blocking j ava.io. I nput Streamand j ava.io. Qut put Stream classes to
represent streams of inbound and outbound content. HttpCore NIO provides Cont ent Encoder and
Cont ent Decoder interfaces to handle the process of asynchronous content transfer. Non-blocking
HTTP connections will instantiate the appropriate implementation of a content codec based on
properties of the entity enclosed with the message.

Non-blocking HTTP connections will fire input events until the content entity is fully transferred.

// otain content decoder
Cont ent Decoder decoder;
//Read data in
Byt eBuf fer dst = ByteBuffer.all ocate(2048);
decoder . read(dst);
/1 Decode will be nmarked as conpl ete when
I/ the content entity is fully transferred
i f (decoder.isConpleted()) {

/1 Done

}

Non-blocking HTTP connections will fire output events until the content entity is marked as fully
transferred.

// Ootain content encoder

Cont ent Encoder encoder;

/'l Prepare output data

Byt eBuf fer src = ByteBuffer.all ocate(2048);

/!l Wite data out

encoder.wite(src);

/1l Mark content entity as fully transferred when done
encoder. conpl ete();

Please note, one still has to provide an HttpEntity instance when submitting an entity enclosing
message to the non-blocking HTTP connection. Properties of that entity will be used to initialize an
Cont ent Encoder instance to be used for transferring entity content. Non-blocking HTTP connections,

26

NIO extensions

however, ignore inherently blocking HttpEntity#get Content () and HttpEntity#witeTo()
methods of the enclosed entities.

[/ Obtain HTTP connection
NHt t pSer ver Connecti on conn;

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

BasicHttpEntity entity = new BasicHttpEntity();

entity. set Content Type("text/plain");

entity. set Chunked(true);

entity.setContent(null);

response. setEntity(entity);

conn. subm t Response(response) ;

Likewise, incoming entity enclosing messagewill haveanHt t pEnti ty instance associated with them,
but an attempt to call Htt pEnti t y#get Cont ent () OF Htt pEnti ty#writeTo() methodswill cause an
java.lang. ||| egal Stat eException. The H t pEnti ty instance can be used to determine properties
of the incoming entity such as content length.

/1 Obtain HTTP connection
NHt t pCl i ent Connecti on conn;

Ht t pResponse response = conn. get Ht t pResponse();

HtpEntity entity = response.getEntity();

if (entity !'=null) {
System out. println(entity. getContentType());
Systemout.println(entity. getContentlLength());
System out. println(entity.isChunked());

2.5.5. Supported non-blocking content transfer mechanisms

Default implementations of the non-blocking HTTP connection interfaces support three content
transfer mechanisms defined by the HTTP/1.1 specification:

Cont ent - Lengt h delimited: The end of the content entity is determined by the value of the
Cont ent - Lengt h header. Maximum entity length: Long#MAX_VALUE.

Identity coding: Theend of the content entity isdemarcated by closing the underlying connection
(end of stream condition). For obvious reasons the identity encoding can only be used on the server
side. Max entity length: unlimited.

Chunk coding: The content is sent in small chunks. Max entity length: unlimited.

The appropriate content codec will be created automatically depending on properties of the entity
enclosed with the message.

2.5.6. Direct channel 1/0

Content codes are optimized to read data directly from or write data directly to the underlying 1/0
session's channel, whenever possible avoiding intermediate buffering in a session buffer. Moreover,
those codecs that do not perform any content transformation (Cont ent - Lengt h delimited and identity
codecs, for example) can leverage NIO j ava. ni o. Fi | eChannel methods for significantly improved
performance of file transfer operations both inbound and outbound.

27

NIO extensions

If the actual content decoder implements Fi | eCont ent Decoder Ohe can make use of its methods to
read incoming content directly to afile bypassing an intermediatej ava. ni 0. Byt eBuf f er .

// otain content decoder
Cont ent Decoder decoder;
/Il Prepare file channel
Fi | eChannel dst;
// Make use of direct file I/Oif possible
i f (decoder instanceof FileContentDecoder) {
| ong Bytesread = ((Fil eContentDecoder) decoder)
.transfer(dst, 0, 2048);
/1 Decode will be marked as conpl ete when
/1 the content entity is fully transmtted
i f (decoder.isConpleted()) {
/1 Done
}

If the actual content encoder implements Fi | eCont ent Encoder 0ne can make use of its methods to
write outgoing content directly from afile bypassing an intermediate j ava. ni o. Byt eBuf f er .

// Ootain content encoder
Cont ent Encoder encoder;
/'l Prepare file channel
Fi | eChannel src;
/1 Make use of direct file I/Oif possible
i f (encoder instanceof FileContentEncoder) {
// Wite data out
|l ong bytesWitten = ((FileContent Encoder) encoder)
.transfer(src, 0, 2048);
/1l Mark content entity as fully transferred when done
encoder. conpl ete();

2.6. HTTP I/O event dispatchers

HTTP I/O event dispatchers serve to convert generic I/O events triggered by an 1/O reactor to HTTP
protocol specific events. They rely on NHt t pdl i ent Handl er and NHt t pSer vi ceHandl er interfacesto
propagate HTTP protocol eventsto aHTTP protocol handler.

Server side HTTP I/O events as defined by the NHt t pSer vi ceHandl er interface:
* connect ed: Triggered when a new incoming connection has been created.

* request Recei ved: Triggered when anew HTTP request isreceived. The connection passed asa
parameter to this method is guaranteed to return avalid HT TP request object. If the request received
encloses arequest entity this method will be followed a series of i nput Ready eventsto transfer the
request content.

* inputReady: Triggered when the underlying channel is ready for reading a new portion of
the request entity through the corresponding content decoder. If the content consumer is unable
to process the incoming content, input event notifications can be temporarily suspended using
| OCont r ol interface.

* responseReady: Triggered when the connection is ready to accept new HTTP response. The
protocol handler does not have to submit aresponseiif it is not ready.

28

NIO extensions

e out put Ready: Triggered when the underlying channel is ready for writing a next portion of
the response entity through the corresponding content encoder. If the content producer is unable
to generate the outgoing content, output event notifications can be temporarily suspended using
| CCont r ol interface.

* exception: Triggered when an1/O error occurrs while reading from or writing to the underlying
channel or when an HTTP protocol violation occurs while receiving an HTTP request.

* tinmeout: Triggered when no input is detected on this connection over the maximum period of
inactivity.

» closed: Triggered when the connection has been closed.
Client side HTTP I/O events as defined by the NHt t pdl i ent Handl er interface:

* connect ed: Triggered when anew outgoing connection has been created. The attachment object
passed as a parameter to this event is an arbitrary object that was attached to the session request.

* request Ready: Triggered when the connection is ready to accept new HTTP request. The
protocol handler does not have to submit arequest if it is not ready.

e out put Ready: Triggered when the underlying channel is ready for writing a next portion of
the request entity through the corresponding content encoder. If the content producer is unable
to generate the outgoing content, output event notifications can be temporarily suspended using
I OCont r ol interface.

* responseRecei ved: Triggered when an HTTP response is received. The connection passed as
a parameter to this method is guaranteed to return a valid HTTP response object. If the response
received encloses a response entity this method will be followed a series of i nput Ready events to
transfer the response content.

* input Ready: Triggered when the underlying channdl is ready for reading a new portion of
the response entity through the corresponding content decoder. If the content consumer is unable
to process the incoming content, input event notifications can be temporarily suspended using
| OCont rol interface.

e exception: Triggered when an I/O error occurs while reading from or writing to the underlying
channel or when an HTTP protocol violation occurs while receiving an HTTP response..

e tinmeout: Triggered when no input is detected on this connection over the maximum period of
inactivity.

e closed: Triggered when the connection has been closed.

2.7. Non-blocking HTTP entities

As discussed previously the process of content transfer for non-blocking connections works
completely differently compared to that for blocking connections. For obvious reasons classic I/
O abstraction based on inherently blocking java.io.InputStream and java.io. Qutput Stream
classes is not applicable to the asynchronous process of data transfer. Therefore, non-blocking
HTTP entities provide NIO specific extensions to the HttpEntity interface: Produci ngNHt t pEnti ty
and ConsumingNHttpEntity interfaces. Implementation classes of these interfaces may

29

NIO extensions

throw j ava. | ang. Unsupport edOper at i onException from Ht t pEnti t y#get Content () OrF
Htt pEntity#witeTo() if a particular implementation is unable to represent its content stream as
instance of j ava. i o. | nput St r eamOr cannot stream its content out to anj ava. i o. Qut put St r eam

2.7.1. Content consuming non-blocking HTTP entity

Consum ngNHt t pEnt i ty interface represents a non-blocking entity that allows content to be consumed
from a content decoder. Consuni ngNHtt pEntity extends the base Htt pEntity interface with a
number of NIO specific notification methods:

« consuneCont ent : Notification that content is available to be read from the decoder. | OCont r ol
instance passed as a parameter to the method can be used to suspend input events if the entity is
temporarily unable to allocate more storage to accommodate all incoming content.

» finish: Notification that any resources allocated for reading can be released.
The following implementations of Consuni ngNHt t pEnti ty provided by HttpCore NIO:
e BufferingNHttpEntity
* Consunmi ngNHt t pEntityTenpl at e
2.7.1.1. BufferingNHt t pEntity

Buf feri ngNHtt pEntity iS a subclass of Htt pEntit ywWapper that consumes all incoming
content into memory. Once the content body has been fully received it can be retrieved as

an java.io.lnputStreamVia Htt pEntity#get Content() , OF written to an output stream via
Ht pEntity#witeTo()

2.7.1.2. Consuni ngNHt t pEnt i t yTenpl at e

Consumi ngNHt t pEnt i t yTenpl at e iS asubclass of Htt pEnti t yw apper that decorates the incoming
HTTP entity and delegates the handling of incoming content to a Cont ent Li st ener instance.

static class FileWiteListener inplenments ContentlListener {

private final FileChannel fileChannel;
private long idx = 0;

public FileWitelListener(File file) throws | OException {
this.fileChannel = new Fil el nputStrean(file).getChannel ();
}

public void contentAvail abl e(
Cont ent Decoder decoder, 10Control ioctrl) throws | OException {
| ong transferred;
i f (decoder instanceof FileContentDecoder) {
transferred = ((Fil eContentDecoder) decoder).transfer(
fil eChannel, idx, Long. MAX_VALUE);
} else {
transferred = fil eChannel . transferFrom
new Cont ent Decoder Channel (decoder),
i dx, Long. MAX_VALUE);
}
if (transferred > 0) {
idx += transferred,

}

30

NIO extensions

public void finished() {

try {
fil eChannel . cl ose();

} catch(l OException ignored) {}

}
Htt pEntity incom ngEntity;

File file = new File("buffer.bin");

Consum ngNHt t pEntity entity = new Consum ngNHtt pEntityTenpl at e(
incom ngEntity,
new FileWitelListener(file));

2.7.2. Content producing non-blocking HTTP entity

Produci ngNHt t pEnt i ty interface represents a non-blocking entity that allows content to be written to
a content encoder. Produci ngNHt t pEnti ty extends the base Ht t pEnti ty interface with a number of
NIO specific notification methods:

* produceCont ent: Notification that content can be written to the encoder. | OContr ol instance
passed as a parameter to the method can be used to temporarily suspend output eventsif the entity is
unabl e to produce more content. Please note one must call Cont ent Encoder #conpl et e() toinform
the underlying connection that all content has been written. Failure to do so could result in the entity
never being correctly delimited.

e finish: Notification that any resources allocated for writing can be rel eased.
The following implementations of Produci ngNH: t pEnti ty provided by HttpCore NIO:
* NByteArrayEntity
* NStringEntity
* NFileEntity
2.7.2.1. NByteArrayEntity

Thisis asimple self contained repeatable entity, which receives its content from a given byte array.
This byte array is supplied to the constructor.

String nyData = "Hello world on the other side!!";
NByt eArrayEntity entity = new NByteArrayEntity(mnmyData. getBytes());

2.7.2.2. NStringEntity

It'sisasimple, self contained, repeatabl e entity that retrievesitsdatafrom aj ava. | ang. St ri ng object.
It has 2 constructors, one simply constructs with a given string where the other also takes a character
encoding for the datain thej ava. | ang. Stri ng.

String nyData = "Hello world on the other side!!";
/1 construct without a character encoding
NStringEntity nmyEntityl = new NStringEntity(nyData);
/1 alternatively construct with an encodi ng

31

NIO extensions

NStringEntity nmyEntity2 = new NStringEntity(nyData, "UTF-8");

2.7.2.3. NFileEntity

Thisentity readsits content body from afile. Thisclassis mostly used to stream largefiles of different
types, so one needs to supply the content type of the file to make sure the content can be correctly
recognized and processed by the recipient.

File staticFile = new File("/path/to/ nyapp.jar");
NHt t pEntity entity = new NFileEntity(staticFile,
"application/java-archive");

The NHtt pEnti ty will make use of the direct channel 1/0 whenever possible, provided the content
encoder is capable of transferring data directly from afile to the socket of the underlying connection.

2.8. Non-blocking HTTP protocol handlers

2.8.1. Asynchronous HTTP service handler

AsyncNHt t pSer vi ceHandl er is a fully asynchronous HTTP server side protocol handler that
implements the essential requirements of the HTTP protocol for the server side message processing
as described by RFC 2616. AsyncNHtt pSer vi ceHandl er is capable of processing HTTP requests
with nearly constant memory footprint for individual HTTP connections. The handler stores headers
of HTTP messages in memory, while content of message bodiesis streamed directly from the entity to
the underlying channel (and vice versa) using Consuni ngNHtt pEnti ty and Produci ngNH: t pEntity
interfaces.

When using thisimplementation, it isimportant to ensure that entities supplied for writing implement
Produci ngNHt t pEnt i ty. Doing so will alow the entity to be written out asynchronously. If entities
supplied for writing do not implement the Pr oduci ngNHt t pEnt i ty interface, a delegate is added that
buffers the entire contents in memory. Additionally, the buffering might take place in the I/O dispatch
thread, which could cause /O to block temporarily. For best results, one must ensure that all entities
set on HTTP responses from NHt t pRequest Handl er implement Pr oduci ngNHt t pEntity.

If incoming requests enclose a content entity, NH: t pRequest Handl er instances are expected to return
a Consumi ngNHetpEntity for reading the content. After the entity is finished reading the data,
NHt t pRequest Handl er #handl e() method is called to generate a response.

AsyncNHt t pSer vi ceHandl er relies on Htt pProcessor to generate mandatory protocol headers for
all outgoing messages and apply common, cross-cutting message transformations to all incoming and
outgoing messages, whereasindividual HTTP request handlers are expected to take care of application
specific content generation and processing.

Ht t pPar ans par ans;

[/ Initialize HTTP paraneters
Ht t pProcessor httpproc;

/1 Initialize HTTP processor

AsyncNHt t pSer vi ceHandl er handl er = new AsyncNHtt pSer vi ceHandl er (
ht t ppr oc,
new Def aul t Ht t pResponseFactory(),
new Def aul t Connecti onReuseSt rat egy(),
par ans) ;

32

NIO extensions

2.8.1.1. Non-blocking HTTP request handlers

NHt t pRequest Handl er interface representsaroutinefor processing of aspecific group of non-blocking
HTTPrequests. NH: t pRequest Handl er implementations are expected to take care of protocol specific
aspects, whereas individual request handlers are expected take care of application specific HTTP
processing. The main purpose of arequest handler isto generate aresponse object with acontent entity
to be send back to the client in response to the given request.

NHt t pRequest Handl er nyRequest Handl er = new NHtt pRequest Handl er () {

public Consum ngNHtt pEntity entityRequest (
Ht t pEnti t yEncl osi ngRequest request,
Htt pCont ext context) throws HttpException, |COException {
/1 Buffer incomng content in menory for sinmplicity
return new BufferingNH t pEntity(request.getEntity(),
new HeapByt eBuf fer Al |l ocator());

}

public void handl e(

Ht t pRequest request,

Ht t pResponse response,

NHt t pResponseTri gger trigger,

Htt pCont ext context) throws HttpException, | COException {
response. set St at usCode(Ht t pSt at us. SC_CK) ;
response. addHeader (" Cont ent - Type", "text/plain");
response. set Entity(

new NStringEntity("sonme inportant nmessage"));
[/ Submit response imrediately for sinplicity
trigger.subm t Response(response);

be

Reguest handlers must be implemented in athread-safe manner. Similarly to servlets, request handlers
should not use instance variables unless access to those variables are synchronized.

2.8.1.2. Asynchronous response trigger

The most fundamental difference of the non-blocking request handlers compared to their blocking
counterparts is ability to defer transmission of the HTTP response back to the client without
blocking the I/O thread by delegating the process of handling the HTTP request to a worker thread.
The worker thread can use the instance of NHtt pResponseTri gger passed as a parameter to the
NHt t pRequest Handl er #handl e method to submit a response as at a later point of time once the
response becomes available.

NHt t pRequest Handl er nmyRequest Handl er = new NHtt pRequest Handl er () {

public Consum ngNHtt pEntity entityRequest (
Ht t pEnti t yEncl osi ngRequest request,
Ht t pCont ext context) throws HttpException, | OException {
// Buffer incoming content in menory for sinplicity
return new BufferingNH t pEntity(request.getEntity(),
new HeapByt eBuf ferAl |l ocator());
}

public void handl e(
Ht t pRequest request,
Ht t pResponse response,
NHt t pResponseTri gger trigger,

33

NIO extensions

Ht t pCont ext cont ext)
throws HttpException, |OException {
new Thread() {

@verride
public void run() {
try {
Thr ead. sl eep(10);
}
catch(l nterruptedException ie) {}
try {
URI uri = new URI (request.get RequestLine().getUri());
response. set St at usCode(Ht t pSt at us. SC_OK) ;
response. addHeader (" Cont ent - Type", "text/plain");
response. set Enti ty(
new NStringEntity("some inportant message"));
trigger.subm t Response(response);
} catch(URI Synt axException ex) {
trigger. handl eExcepti on(
new Htt pException("Invalid request URI: " +
ex.getlnput()));

}

}.start();

Please note H: t pResponse objects are not thread-safe and may not be modified concurrently. Non-

blocking request handlers must ensure the HT TP response cannot be accessed by more than one thread
at atime.

2.8.1.3. Non-blocking request handler resolver

The management of non-blocking HTTP request handlers is quite similar to that of blocking HTTP
request handlers. Usually aninstanceof NHtt pRequest Handl er Resol ver isused to maintain aregistry
of request handlers and to matches a request URI to a particular request handler. HttpCore includes
only avery simple implementation of the request handler resolver based on atrivial pattern matching
algorithm: NHt t pRequest Handl er Regi st ry supports only three formats: *, <uri >* and *<uri >.

/1 Initialize asynchronous protocol handl er
AsyncNHt t pSer vi ceHandl er handl er;

NHt t pRequest Handl er Regi st ry handl er Resol ver =
new NHtt pRequest Handl er Regi stry();
handl er Reqi stry.regi ster("/service/*", nyRequestHandl er1);
handl er Reqi stry. regi ster("*.do", nyRequestHandl er2);
handl er Reqgi stry. register("*", nmyRequestHandl er3);

handl er. set Handl er Resol ver (handl er Resol ver);

Users ae encouraged to provide more sophisticated implementations of
NH: t pRequest Handl er Resol ver, for instance, based on regular expressions.

2.8.2. Asynchronous HTTP client handler

AsyncNHt t pd i ent Handl er isafully asynchronousHTTP client side protocol handler that implements
the essential requirements of the HTTP protocol for the client side message processing as described by
RFC 2616. AsyncNHtt pdl i ent Handl er is capable of executing HT TP requests with nearly constant

34

NIO extensions

memory footprint for individual HTTP connections. The handler stores headers of HTTP messages
in memory, while content of message bodies is streamed directly from the entity to the underlying
channel (and vice versa) using Consuni ngNHtt pEnti ty and Produci ngNHe t pEnti ty interfaces.

When using thisimplementation, it isimportant to ensure that entities supplied for writing implement
Produci ngNHt t pEnt i ty. Doing so will alow the entity to be written out asynchronously. If entities
supplied for writing do not implement the Pr oduci ngNHt t pEnt i ty interface, a delegate is added that
buffers the entire contents in memory. Additionally, the buffering might take place in the I/O dispatch
thread, which could cause /O to block temporarily. For best results, one must ensure that all entities
set on HTTP requests from NHt t pRequest Execut i onHandl er implement Pr oduci ngNHt t pEntity.

If incoming responses enclose a content entity, NHt t pRequest Execut i onHandl er IS expected to
returna Consuni ngNHt t pEnti ty for reading the content. After the entity is finished reading the data,
NHt t pRequest Execut i onHandl er #handl eResponse() method is called to process the response.

AsyncNHt t pdl i ent Handl er relieson Htt pProcessor to generate mandatory protocol headers for all
outgoing messages and apply common, cross-cutting message transformations to all incoming and
outgoing messages, whereas HTTP request executor is expected to take care of application specific
content generation and processing.

/1 Initialize HTTP paraneters

Ht t pPar ans par ans;

//lnitialize HTTP processor

Ht t pProcessor htt pproc;

// Create HTTP request execution handl er
NHt t pRequest Execut i onHandl er execHandl er;

AsyncNHt t pCl i ent Handl er handl er = new AsyncNHt t pCl i ent Handl er (
ht t pproc,
execHandl er,
new Def aul t Connecti onReuseStrategy(),
par ans) ;

2.8.2.1. Asynchronous HTTP request execution handler

Asynchronous HT TP request execution handler can be used by client-side protocol handlersto trigger
the submission of anew HTTP request and the processing of an HTTP response.

HTTP request execution events as defined by the NHt t pRequest Execut i onHandl er interface:

* initalizeContext: Triggered when a new connection has been established and the HTTP
context needsto beinitialized. The attachment object passed to this method isthe same object which
was passed to the connecting 1/0 reactor when the connection request was made. The attachment
may optionally contain some state information required in order to correctly initialize the HTTP
context.

e subni t Request : Triggered when the underlying connection isready to send anew HT TP request
to the target host. This method may return null if the client is not yet ready to send arequest. Inthis
case the connection will remain open and can be activated at alater point. If the request encloses an
entity, the entity must be an instance of Pr oduci ngNHt t pEntity.

e responseEntity: Triggered when a response is received with an entity. This method should
return a Consumi ngNH: t pEnt i ty that will be used to consume the entity. Null is a valid response
value, and will indicate that the entity should be silently ignored. After the entity is fully consumed,

35

NIO extensions

handl eResponse method is called to notify a full response and enclosed entity are ready to be
processed.

e handl eResponse: Triggered when an HTTP response is ready to be processed.

e finalizeContext: Triggered whentheconnectionisterminated. Thisevent can beusedtorelease
objects stored in the context or perform some other kind of cleanup.

NHt t pRequest Execut i onHandl er execHandl er =
new NHtt pRequest Executi onHandl er () {

private final static String DONE_FLAG = "done";

public void initalizeContext(
Ht t pCont ext cont ext,
oj ect attachnment) {
if (attachment !'= null) {
Htt pHost virtual Host = (HttpHost) attachnent;
context.setAttri but e(Executi onCont ext. HTTP_TARGET_HOST,
vi rtual Host);

}

public void finalizeContext(HttpContext context) {
cont ext . renoveAttri but e(DONE_FLAG ;

}

public H t pRequest subnitRequest (Htt pContext context) {
// Submit HTTP GET once
Obj ect done = context.getAttribute(DONE_FLAG ;
if (done == null) {
context.setAttri but e(DONE_FLAG Bool ean. TRUE) ;
return new Basi cHt t pRequest (" GET", "/");
} else {
return null;
}
}

public Consum ngNHtt pEntity responseEntity(
Ht t pResponse response,
Ht t pCont ext context) throws | OException {
// Buffer incoming content in menory for sinplicity
return new BufferingNH t pEntity(response.getEntity(),
new HeapByt eBufferAl |l ocator());

}

public void handl eResponse(
Ht t pResponse response,
Ht t pCont ext context) throws | OException {
System out. println(response. get StatusLine());
if (response.getEntity() !'= null) {
System out . printl n(
EntityUtils.toString(response.getEntity()));

b6

2.8.3. Compatibility with blocking 1/O

In addition to asynchronous protocol handlers described above HttpCore ships two variants of HTTP
protocol handlers that emulate blocking 1/0 model on top of non-blocking one and allow message
content to be produced and consumed using standardj ava. i 0. Qut put St ream/j ava. i o. | nput St ream

36

NIO extensions

API. Compatibility protocol handlers can work with HT TP request handlers and request executors that
rely on blocking HttpEntity implementations.

Compatibility protocol handlers rely on 'HttpProcessor to generate mandatory protocol headers for
all outgoing messages and apply common, cross-cutting message transformations to al incoming
and outgoing messages, whereas individual HTTP request executors / HTTP request processors are
expected to take care of application specific content generation and processing.

2.8.3.1. Buffering protocol handlers

Buf f eri ngHt t pSer vi ceHandl er and Buf feringHt t pCl i ent Handl er are protocol handler
implementations that provide compatibility with the blocking I/O by storing the full content of HTTP
messages in memory. Request / response processing callbacks fire only when the entire message
content has been read into ain-memory buffer. Please note that request execution / request processing
take place the main /O thread and therefore individual HTTP request executors / request handlers
must ensure they do not block indefinitely.

Buffering protocol handler should be used only when dealing with HTTP messages that are known
to be limited in length.

2.8.3.2. Throttling protocol handlers

ThrottlingHt tpServiceHandl er and ThrottlingH tpdientHandl er are protocol handler
implementations that provide compatibility with the blocking I/O model by utilizing shared content
buffers and a fairly small pool of worker threads. The throttling protocol handlers alocate input /
output buffersof constant length upon initialization and control the rate of 1/0 eventsin order to ensure
those content buffers do not ever overflow. This helps ensure nearly constant memory footprint for
HTTP connections and avoid out of memory conditions while streaming content in and out. Request /
response processing callbacks fire immediately when a message is received. The throttling protocol
handlers delegate the task of processing requests and generating response content to an Executor,
which is expected to perform those tasks using dedicated worker threads in order to avoid blocking
the 1/O thread.

Usually throttling protocol handlers need only amaodest number of worker threads, much fewer thanthe
number of concurrent connections. If thelength of the messageissmaller or about the size of the shared
content buffer worker thread will just store content in the buffer and terminate almost immediately
without blocking. The I/O dispatch thread in its turn will take care of sending out the buffered content
asynchronously. The worker thread will have to block only when processing large messages and the
shared buffer fillsup. It isgenerally advisableto alocate shared buffers of a size of an average content
body for optimal performance.

2.8.4. Connection event listener

Protocol handlerslike therest of HttpCore classes do not do logging in order to not impose a choice of
alogging framework onto the users. However one can add logging of the most important connection
events by injecting aEvent Li st ener implementation into the protocol handler.

Connection events as defined by the Event Li st ener interface:
e fatal | OException: Triggered when an 1/O error caused the connection to be terminated.

e fatal Protocol Exception: Triggered when an HTTP protocol error caused the connection to
be terminated.

37

NIO extensions

e connect i onOpen: Triggered when anew connection has been established.
e connectionC osed: Triggered when the connection has been terminated.

e connecti onTi meout : Triggered when the connection has timed out.

2.9. Non-blocking TLS/SSL

2.9.1. SSL I/O session

SSLI CSessi on iS a decorator class intended to transparently extend any arbitrary | OSessi on with
transport layer security capabilities based on the SSL/TLS protocol. Individual protocol handlers
should be able to work with SSL sessions without special preconditions or modifications. However, 1/
O dispatchers need to take some additional actions to ensure correct functioning of the transport layer
encryption.

* When the underlying 1/O session has been created, the 1/O dispatch must call SSLI CSessi on#bi nd()
method in order to put the SSL session either into aclient or a server mode.

» When the underlying 1/0O session isinput ready, the 1/0O dispatcher should check whether the SSL I/
O session isready to produceinput databy calling SSLI OSessi on#i sAppl nput Ready() , pass control
totheprotocol handler if itis, andfinally call SSLI OSessi on#i nboundTr ansport () methodin order
to do the necessary SSL handshaking and decrypt input data.

» Whenthe underlying I/O session is output ready, the 1/0O dispatcher should check whether the SSL 1/
O sessionisready to accept output databy calling SSLI CSessi on#i sAppQut put Ready() , passcontrol
to the protocol handler if it is, and finally call SSLI OSessi on#out boundTransport () method in
order to do the nessary SSL handshaking and encrypt application data.

2.9.1.1. SSL I/O session handler

Applications can customize various aspects of the TLS/SS protocol by passing a custom
implementation of the SSLI OSessi onHandl er interface.

SSL events as defined by the SSLI GSessi onHandl er interface:

* initalize: Triggered when the SSL connection is being initialized. The handler can use this
callback to customize properties of the javax. net.ssl. SSLEngi ne used to establish the SSL
session.

» verify: Triggered when the SSL connection has been established and initial SSL handshake
has been successfully completed. The handler can use this callback to verify properties of the
SSL Session. For instance this would be the right place to enforce SSL cipher strength, validate
certificate chain and do hostname checks.

// Get hold of new I/O session
| OSessi on i osessi on;

/1l Initialize default SSL context
SSLCont ext ssl context = SSLCont ext.getlnstance("SSL");
sslcontext.init(null, null, null);

SSLI CSessi on ssl session = new SSLI OSessi on(
i osession, sslcontext, new SSLI OSessi onHandl er () {

38

NIO extensions

public void initalize(
SSLENngi ne ssl engi ne,
Ht t pPar ams parans) throws SSLException {
/1 Ask clients to authenticate
ssl engi ne. set Want Cl i ent Aut h(true);
/'l Enforce strong ciphers
ssl engi ne. set Enabl edGi pher Sui tes(new String[] {
"TLS RSA W TH_AES 256_CBC_SHA",
"TLS_DHE_RSA W TH_AES 256_CBC_SHA",
"TLS_DHE_DSS W TH_AES 256_CBC_SHA" });
}

public void verify(
Socket Addr ess renot eAddr ess,
SSLSessi on session) throws SSLException {
X509Certificate[] certs = session.getPeerCertificateChain();
/| Exam ne peer certificate chain
for (X509Certificate cert: certs) {
Systemout.printin(cert.toString());

}

1)

2.9.2. SSL I/O event dispatches

HttpCore provides SSLd i ent| CEvent Di spatch and SSLServer | CEvent Di spat ch /O dispatch
implementations that can be used to SSL enable connections managed by any arbitrary 1/0 reactor.
The dispatches take all the necessary actions to wrap active 1/0O sessions with the SSL 1/O session
decorator and ensure correct handling of SSL protocol handshaking.

39

Chapter 3. Advanced topics

3.1. HTTP message parsing and formatting framework

HTTP message processing framework is designed to be expressive and flexible while remaining
memory efficient and fast. HttpCore HT TP message processing code achieves near zero intermediate
garbage and near zero-copy buffering for its parsing and formatting operations. The same HTTP
message parsing and formatting APl and implementations are used by both the blocking and non-
blocking transport implementations, which helps ensure a consistent behavior of HTTP services
regardless of the 1/O model.

3.1.1. HTTP line parsing and formatting
HttpCore utilizes a number of low level components for all its line parsing and formatting methods.

Char Ar r ayBuf f er representsasequence of characters, usually asinglelineinan HT TP message stream
such as arequest line, a status line or a header. Internally char Arr ayBuf f er is backed by an array of
chars, which can be expanded to accommodate more input if needed. Char ArrayBuf f er also provides
a number of utility methods for manipulating content of the buffer, storing more data and retrieving
subsets of data.

Char ArrayBuffer buf = new CharArrayBuffer(64);

buf . append("header: data ");

int i = buf.indexCf(':");

String s = buf.substringTrimed(i + 1, buf.length());
Systemout. println(s);

System out. println(s.length());

stdout >

dat a

Par ser Cur sor represents acontext of a parsing operation: the bounds limiting the scope of the parsing
operation and the current position the parsing operation is expected to start at.

Char ArrayBuf fer buf = new CharArrayBuffer(64);

buf . append("header: data ");

int i = buf.indexCOf(':");

Par ser Cur sor cursor = new ParserCursor (0, buf.length());
cursor.updatePos(i + 1);

System out . println(cursor);

stdout >

[0>7>14]

Li nePar ser is the interface for parsing lines in the head section of an HTTP message. There are
individual methods for parsing a request line, a status line, or a header line. The lines to parse are
passed in-memory, the parser does not depend on any specific I/0 mechanism.

40

Advanced topics

Char ArrayBuf fer buf = new CharArrayBuffer(64);
buf . append("HTTP/ 1.1 200");
Par ser Cur sor cursor = new ParserCursor (0, buf.length());

Li neParser parser = new Basi cLi neParser();
Pr ot ocol Versi on ver = parser. parseProtocol Version(buf, cursor);
System out . println(ver);
System out . printl n(buf. substringTri med(
cursor. get Pos(),
cursor. get Upper Bound()));

stdout >

HTTP/ 1.1
200

Char ArrayBuf fer buf = new CharArrayBuffer(64);

buf . append("HTTP/ 1.1 200 OK");

Par ser Cur sor cursor = new ParserCursor (0, buf.length());
Li neParser parser = new Basi cLi neParser();

St atusLi ne sl = parser. parseStatusLi ne(buf, cursor);
System out. println(sl.get ReasonPhrase());

stdout >

XK

LineFormatter for formatting elements of the head section of an HTTP message. This is the
complement to Li nePar ser . There areindividual methods for formatting arequest line, astatusline,
or aheader line.

Please note the formatting does not include the trailing line break sequence Cr- LF.

Char ArrayBuffer buf = new CharArrayBuffer(64);
Li neFormatter formatter = new BasiclLi neFormatter();
formatter. format Request Li ne(buf,

new Basi cRequest Li ne("GET", "/", HttpVersion. HTTP_1_1));
System out. println(buf.toString());
formatter.format Header (buf,

new Basi cHeader (" Cont ent - Type", "text/plain"));
System out. println(buf.toString());

stdout >

GET / HITP/ 1.1
Content - Type: text/plain

Header Val uePar ser isthe interface for parsing header values into el ements.

Char ArrayBuf fer buf = new Char ArrayBuffer(64);
Header Val uePar ser parser = new Basi cHeader Val uePar ser () ;
buf . append(" nanmel=val uel; paranil=pl, " +

"name2 = \"value2\", name3 = value3");
Par ser Cur sor cursor = new ParserCursor (0, buf.length());
System out . printl n(parser. par seHeader El ement (buf, cursor));
System out . print| n(parser. par seHeader El enent (buf, cursor));

41

Advanced topics

System out . printl n(parser. parseHeader El ement (buf, cursor));

stdout >

namel=val uel; paranl=pl
nane2=val ue2
nane3=val ue3

Header Val ueFor mat t er iS the interface for formatting elements of a header value. This is the
complement to Header Val uePar ser .

Char ArrayBuffer buf = new CharArrayBuffer(64);
Header Val ueFormatter formatter = new Basi cHeader Val ueFormatter();
Header El ement[] hes = new HeaderEl ement[] {

new Basi cHeader El enent (" nanel", "val uel",

new NaneVal uePair[] {
new Basi cNaneVal uePai r (" paraml”, "pl")}),

new Basi cHeader El enent (" nane2", "val ue2"),

new Basi cHeader El enent (" nane3", "val ue3"),
b
formatter.format El ements(buf, hes, true);
System out. println(buf.toString());

stdout >

nanel="val uel"; paranl="pl", nane2="val ue2", nane3="val ue3"

3.1.2. HTTP message streams and session I/O buffers

HttpCore provides a number of utility classes for the blocking and non-blocking 1/0 models that
facilitate the processing of HT TP message streams, simplify handling of CrR- LF delimited linesin HTTP
messages and manage intermediate data buffering.

HTTP connection implementations usually rely on session input/output buffersfor reading and writing
datafrom and to an HT TP message stream. Session input/output buffer implementations are 1/0 model
specific and are optimized either for blocking or non-blocking operations.

Blocking HT TP connections use socket bound session buffersto transfer data. Session buffer interfaces
aresimilartoj ava. i o. | nput Stream/ j ava. i 0. Qut put St r eamclasses, but they also provide methods
for reading and writing cr- LF delimited lines.

Socket socket 1;

Socket socket 2;

Ht t pPar ans parans = new Basi cHtt pParans();

Sessi onl nput Buf fer inbuffer = new Socket | nput Buffer (
socket 1, 4096, parans);

Sessi onQut put Buf f er out buffer = new Socket Qut put Buf f er (
socket 2, 4096, parans);

Char ArrayBuffer |inebuf = new CharArrayBuffer(1024);
i nbuf fer. readLi ne(linebuf);
out buffer.witeLine(linebuf);

Non-blocking HT TP connections use session buffers optimized for reading and writing data from and
to non-blocking NIO channels. NIO session input/output sessions help deal with cr- LF delimited lines
in a non-blocking 1/0 mode.

42

Advanced topics

Readabl eByt eChannel channel 1;
Wit abl eByt eChannel channel 2;

Ht t pPar ans parans = new Basi cHtt pParans();

Sessi onl nput Buf fer inbuffer = new Sessionl nput Buf ferl npl (
4096, 1024, parans);

Sessi onQut put Buf fer out buffer = new Sessi onQut put Buf fer | npl (
4096, 1024, parans);

Char ArrayBuffer |inebuf = new CharArrayBuffer(1024);
bool ean endX Stream = fal se;
int bytesRead = inbuffer.fill(channel1);
if (bytesRead == -1) {
endf Stream = true;
}
i f (inbuffer.readLine(linebuf, endOStream) {
out buffer.witeLine(linebuf);
}
i f (outbuffer.hasbData()) {
out buffer. flush(channel 2);

}

3.1.3. HTTP message parsers and formatter

HttpCore also provides coarse-grained facade type interfaces for parsing and formatting of HTTP
messages. Default implementations of those interfaces build upon the functionality provided
by SessionlnputBuffer / SessionCutputBuffer and HttpLineParser [/ HttpLineFormatter
implementations.

Example of HTTP request parsing / writing for blocking HT TP connections:

Sessi onl nput Buf f er i nbuffer;
Sessi onQut put Buf f er out buffer;

Ht t pPar ans paranms = new Basi cHt t pParans();

Ht t pMessagePar ser request Parser = new Htt pRequest Par ser (
i nbuf fer,
new Basi cLi neParser (),
new Def aul t Ht t pRequest Factory(),
par ans) ;

Ht t pRequest request = (HttpRequest) requestParser.parse();
Ht t pMessageWiter requestWiter = new Htt pRequest Wi ter(
out buffer,
new Basi cLi neFormatter(),

par ans) ;

request Witer.wite(request);

Example of HTTP response parsing / writing for blocking HT TP connections:

Sessi onl nput Buf f er i nbuffer;
Sessi onQut put Buf f er out buffer;

Ht t pPar ans parans = new Basi cHt t pParans();
Ht t pMessagePar ser responseParser = new Htt pResponsePar ser (

i nbuf fer,
new Basi cLi neParser (),

43

Advanced topics

new Def aul t Ht t pResponseFact ory(),
par ans) ;

Ht t pResponse response = (HttpResponse) responseParser. parse();
Htt pMessageWiter responseWiter = new Htt pResponseWiter(

out buffer,

new Basi cLi neFormatter(),

par ans) ;

responseWiter.wite(response);

Example of HTTP request parsing / writing for non-blocking HT TP connections:

Sessi onl nput Buf fer inbuffer;
Sessi onQut put Buf f er out buffer;

Ht t pPar ans parans = new Basi cHtt pParans();

NHt t pMessagePar ser request Parser = new Def aul t Ht t pRequest Par ser (
i nbuf fer,
new Basi cLi neParser (),
new Def aul t Ht t pRequest Factory(),
par ans) ;

Ht t pRequest request = (HttpRequest) requestParser.parse();

NHt t pMessageWiter request Witer = new Defaul t H t pRequest Wit er(
out buffer,
new Basi cLi neFormatter(),
par ans) ;

request Witer.wite(request);

Example of HTTP response parsing / writing for non-blocking HT TP connections:

Sessi onl nput Buf fer inbuffer;
Sessi onQut put Buf f er out buffer;

Ht t pPar ans parans = new Basi cHtt pParans();

NHt t pMessagePar ser responseParser = new Def aul t Ht t pResponsePar ser (
i nbuf fer,
new Basi cLi neParser (),
new Def aul t Ht t pResponseFact ory(),
par ans) ;

Ht t pResponse response = (HttpResponse) responseParser. parse();

NHt t pMessageW iter responseWiter = new Defaul t H t pResponseWi t er (
out buf fer,
new Basi cLi neFormatter(),

par ans) ;

responseWiter.wite(response);

3.1.4. HTTP header parsing on demand

The default implementations of Ht t pMessagePar ser and NH: t pMessagePar ser interfaces do not parse
HTTP headersimmediately. Parsing of header valueisdeferred until its properties are accessed. Those
headers that are never used by the application will not be parsed at al. The Char Arr ayBuf f er backing
the header can be obtained through an optional For mat t edHeader interface.

Advanced topics

Header hl = response. get First Header (" Cont ent - Type") ;

if (hl instanceof FormattedHeader) {
Char ArrayBuffer buf = ((FormattedHeader) hl).getBuffer();
System out. printl n(buf);

3.2. Customizing HTTP connections

One can customize the way HTTP connections parse and format HTTP messages by extending the
default implementations and overriding factory methods and replacing the default parser or formatter
implementations with a custom one.

For blocking HT TP connections one also can provide custom implementation of session input/output
buffers.

cl ass MyDefaul t Htt pCl i ent Connecti on
extends DefaultHtt pdientConnection {

@verride
protected Sessionl nput Buf fer createSessionl nput Buffer (
Socket socket,
i nt buffersize,
Ht t pPar ans parans) throws | OException {
return new MySocket | nput Buf f er (socket, buffersize, parans);

}

@verride
protected Sessi onQut put Buf fer createSessi onQut put Buffer(
Socket socket,
int buffersize,
Ht t pPar anms paranms) throws | OException {
return new MySocket Qut put Buf f er (socket, buffersize, parans);

}

@verride
protected HttpMessageWiter createRequestWiter(
Sessi onQut put Buf f er buffer,
Ht t pPar ans parans) {
return new MyHtt pRequest Wi ter (
buf fer, new BasicLi neFormatter(), parans);

}

@verride
protected HttpMessageParser createResponseParser (
Sessi onl nput Buf fer buffer,
Ht t pResponseFact ory responseFactory,
Ht t pPar ans parans) {
return new MyHtt pResponsePar ser (
buf fer, new Basi cLi neParser (), responseFactory, parans);

be

For non-blocking HT TP connection implementation one can replace the default HT TP message parser
and formatter implementations. The session input/output buffer implementations can be overridden at
the 1/O reactor level.

cl ass MyDefaul t NHtt pCl i ent Connecti on
extends Defaul t NHtt pCl i ent Connection {

45

Advanced topics

public MyDefaul t NHt t pll i ent Connecti on(
| OSessi on sessi on,
Ht t pResponseFact ory responseFactory,
Byt eBuf fer Al | ocat or al |l ocator,
Ht t pPar ans par ans) {
super (sessi on, responseFactory, allocator, parans);

@verride
protected NHttpMessageWiter createRequestWiter(
Sessi onQut put Buf fer buffer,
Ht t pPar ans par anms) {
return new Htt pRequest Wi ter(
buf fer, new BasicLi neFormatter(), parans);

@verride
protected NHttpMessageParser createResponsePar ser (
Sessi onl nput Buf f er buffer,
Ht t pResponseFact ory responseFactory,
Ht t pPar anms par anms) {
return new HttpResponsePar ser (
buffer, new BasicLi neParser(), responseFactory,

par ans) ;

46

	HttpCore Tutorial
	Table of Contents
	Preface
	1. HttpCore Scope
	2. HttpCore Goals
	3. What HttpCore is NOT

	Chapter 1. Fundamentals
	1.1. HTTP messages
	1.1.1. Structure
	1.1.2. Basic operations
	1.1.2.1. HTTP request message
	1.1.2.2. HTTP response message
	1.1.2.3. HTTP message common properties and methods

	1.1.3. HTTP entity
	1.1.3.1. Repeatable entities
	1.1.3.2. Using HTTP entities
	1.1.3.3. Ensuring release of system resources

	1.1.4. Creating entities
	1.1.4.1. BasicHttpEntity
	1.1.4.2. ByteArrayEntity
	1.1.4.3. StringEntity
	1.1.4.4. InputStreamEntity
	1.1.4.5. FileEntity
	1.1.4.6. EntityTemplate
	1.1.4.7. HttpEntityWrapper
	1.1.4.8. BufferedHttpEntity

	1.2. Blocking HTTP connections
	1.2.1. Working with blocking HTTP connections
	1.2.2. Content transfer with blocking I/O
	1.2.3. Supported content transfer mechanisms
	1.2.4. Terminating HTTP connections

	1.3. HTTP exception handling
	1.3.1. Protocol exception

	1.4. HTTP protocol processors
	1.4.1. Standard protocol interceptors
	1.4.1.1. RequestContent
	1.4.1.2. ResponseContent
	1.4.1.3. RequestConnControl
	1.4.1.4. ResponseConnControl
	1.4.1.5. RequestDate
	1.4.1.6. ResponseDate
	1.4.1.7. RequestExpectContinue
	1.4.1.8. RequestTargetHost
	1.4.1.9. RequestUserAgent
	1.4.1.10. ResponseServer

	1.4.2. Working with protocol processors
	1.4.3. HTTP context

	1.5. HTTP parameters
	1.5.1. HTTP parameter beans

	1.6. Blocking HTTP protocol handlers
	1.6.1. HTTP service
	1.6.1.1. HTTP request handlers
	1.6.1.2. Request handler resolver
	1.6.1.3. Using HTTP service to handle requests

	1.6.2. HTTP request executor
	1.6.3. Connection persistence / re-use

	Chapter 2. NIO extensions
	2.1. Benefits and shortcomings of the non-blocking I/O model
	2.2. Differences from other NIO frameworks
	2.3. I/O reactor
	2.3.1. I/O dispatchers
	2.3.2. I/O reactor shutdown
	2.3.3. I/O sessions
	2.3.4. I/O session state management
	2.3.5. I/O session event mask
	2.3.6. I/O session buffers
	2.3.7. I/O session shutdown
	2.3.8. Listening I/O reactors
	2.3.9. Connecting I/O reactors
	2.3.10. Queuing of I/O interest set operations

	2.4. I/O reactor exception handling
	2.4.1. I/O reactor audit log

	2.5. Non-blocking HTTP connections
	2.5.1. Execution context of non-blocking HTTP connections
	2.5.2. Working with non-blocking HTTP connections
	2.5.3. HTTP I/O control
	2.5.4. Non-blocking content transfer
	2.5.5. Supported non-blocking content transfer mechanisms
	2.5.6. Direct channel I/O

	2.6. HTTP I/O event dispatchers
	2.7. Non-blocking HTTP entities
	2.7.1. Content consuming non-blocking HTTP entity
	2.7.1.1. BufferingNHttpEntity
	2.7.1.2. ConsumingNHttpEntityTemplate

	2.7.2. Content producing non-blocking HTTP entity
	2.7.2.1. NByteArrayEntity
	2.7.2.2. NStringEntity
	2.7.2.3. NFileEntity

	2.8. Non-blocking HTTP protocol handlers
	2.8.1. Asynchronous HTTP service handler
	2.8.1.1. Non-blocking HTTP request handlers
	2.8.1.2. Asynchronous response trigger
	2.8.1.3. Non-blocking request handler resolver

	2.8.2. Asynchronous HTTP client handler
	2.8.2.1. Asynchronous HTTP request execution handler

	2.8.3. Compatibility with blocking I/O
	2.8.3.1. Buffering protocol handlers
	2.8.3.2. Throttling protocol handlers

	2.8.4. Connection event listener

	2.9. Non-blocking TLS/SSL
	2.9.1. SSL I/O session
	2.9.1.1. SSL I/O session handler

	2.9.2. SSL I/O event dispatches

	Chapter 3. Advanced topics
	3.1. HTTP message parsing and formatting framework
	3.1.1. HTTP line parsing and formatting
	3.1.2. HTTP message streams and session I/O buffers
	3.1.3. HTTP message parsers and formatter
	3.1.4. HTTP header parsing on demand

	3.2. Customizing HTTP connections

