IN A NUTSHEL

A Desktop Quick Reference

O, REI LLY® G. Andrew Duthie & Matthew MacDonald

ASP.NET

IN A NUTSHELL

Other Microsoft .NET resources from 0'Reilly

Related titles Programming C# ADO.NET in a Nutshell
C# in a Nutshell .NET Windows Forms in a
Programming Visual Basic Nutshell
NET .NET Framework
Programming ASP.NET Essentials
ASP.NET in a Nutshell Mastering Visual Studio
NET

.NETBooks dotnet.oreilly.com is a complete catalog of O’Reilly’s

Resource Center books on .NET and related technologies, including sam-

ple chapters and code examples.
OREILLY’ ONDotnet.com provides independent coverage of funda-
ONDOtI]Et m mental, interoperable and emerging Microsoft .NET

O’REILLY N_ETWORK
Safari
Bookshelf.

programming and web services technologies.

Conferences O’Reilly & Associates bring diverse innovators together
to nurture the ideas that spark revolutionary industries.
We specialize in documenting the latest tools and sys-
tems, translating the innovator’s knowledge into useful
skills for those in the trenches. Visit conferences.or-

eilly.com for our upcoming events.

need. Try it today with a free trial.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you

ASP.NET

IN A NUTSHELL

Second Edition

G. Andrew Duthie and Matthew MacDonald

O'REILLY"

Beijing « Cambridge « Farnham = KélIn « Paris « Sebastopol « Taipei * Tokyo

User Controls and
Custom Server Controls

Reuse, a technique that is important to most developers, allows you to avoid
constantly reinventing the wheel by using functionality that has already been built
and tested. Reuse increases productivity, by reducing the total amount of code
you need to write, and reliability, since by using tested code, you (presumably)
already know the code works reliably.

ASP.NET provides a range of options for reuse. The first is the wide variety of
built-in server controls that ship with ASP.NET. These server controls alone can
eliminate hundreds, or even thousands, of lines of code that needed to be written
to achieve the same effect in classic ASP. In addition, the .NET Framework Class
Library (FCL) provides hundreds of classes to perform actions (such as sending
SMTP email or making network calls) that in classic ASP would have required
purchasing a third-party component or making calls into the Win32 APL. Of
course, the framework classes provide built-in functionality more than reuse.
Fortunately, the framework also provides robust support for developing your own
classes, user controls, and custom server controls, allowing you to reuse your own
code as well.

Going hand-in-hand with reuse is the concept of extensibility, the ability to take
the existing functionality provided by the .NET Framework and ASP.NET and
extend it to perform actions that are more tailored to your particular applications
and problem domains. ASP.NET provides a significant number of avenues for
extensibility:

Custom server controls
Allow you to create entirely new controls for use with ASP.NET or to derive
from existing controls and extend or modify their functionality.

Components
As in classic ASP, components are the primary means for extending an
ASP.NET application by encapsulating the application’s business logic into
an easily reusable form. With the .NET Framework, it’s easier than ever to

118

build components, and components are more interoperable across
languages than in the COM world. .NET components can also communi-
cate with COM components through an interoperability layer.

HttpHandlers and HttpModules
HttpHandlers are components that are called to perform the processing of
specific types of requests made to IIS. HttpModules are components that
participate in the processing pipeline of all requests for a given ASP.NET
application. These extensibility techniques are beyond the scope of this book,
but you can get answers to questions on these topics in the HttpHandlers and
HttpModules forum at http://www.asp.net/forums.

The rest of this chapter discusses employing ASP.NET user controls and custom
server controls for reuse and employing custom server controls for extensibility.
The chapter also explains how custom server controls can easily be shared across
multiple applications, making reuse simpler than ever.

User Controls

The simplest form of reuse in classic ASP is the include file. By adding the
following directive:

<!-- #include file = "filename.inc" -->

classic ASP developers can place the contents of the specified file inline with the
page in which the directive appeared. Unfortunately, this reuse technique is a bit
crude and sometimes makes applications harder to debug.

While ASP.NET still supports include files, a better way to provide the same kinds
of reuse is through a new feature called user controls. User controls can consist of
any of the following:

e HTML
* Server-side script

e Controls

all in a file with the .ascx file extension. When added to a Web Forms page,
ASP.NET treats user controls as objects; these user controls can expose proper-
ties and methods like any other object. The rendered output of user controls can
also be cached to improve application performance.

Example 6-1 shows a simple user control that provides navigational links to other
examples in this chapter. The user control appears in each example to demon-
strate how the use of a user control can provide a single point for modifying such
frequently used elements as headers, footers, and navigation bars.

Example 6-1. Nav.ascx

<%@ Control Language="vb" %>
<table cellpadding="0" cellspacing="0">
<tr>
<td valign="top">
Navigation Bar

<hr width="80%">

User Controls | 119

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

Example 6-1. Nav.ascx (continued)

<a href="NavBarClient.aspx"
onmouseover="imgl.src="node rev.jpg';"
onmouseout="img1.src="node.jpg";">
<img border="0" align='absMiddle' alt='NavBar Client'
src="node.jpg' id="img1l' name='img1'>
<a href="NavBarClient.aspx"
onmouseover="imgl.src="node_rev.jpg';"
onmouseout="img1.src="node.jpg";">NavBar Client
<hr width="80%">
<a href="UCClient.aspx"
onmouseover="img2.src="alt _node rev.jpg';"
onmouseout="img2.src="alt node.jpg';">
<img border='0"' align="absMiddle' alt='User Control Client'
src="alt_node.jpg' id="img2' name='img2'>
<a href="UCClient.aspx"
onmouseover="img2.src="alt_node_rev.jpg';"
onmouseout="img2.src="alt_node.jpg"';">User Control Client
<hr width="80%">
<a href="BlogClient.aspx"
onmouseover="img3.src="node_rev.jpg';"
onmouseout="img3.src="node.jpg";">
<img border='0"' align="absMiddle' alt='Blog Client'
src="node.jpg' id="img3' name='img3'>
<a href="BlogClient.aspx"
onmouseover="img3.src="node_rev.jpg';"
onmouseout="img3.src="node.jpg";">Blog Client
<hr width="80%">
<a href="BlogAdd.aspx"
onmouseover="img3.src="alt _node rev.jpg';"
onmouseout="img3.src="alt node.jpg';">
<img border='0"' align="absMiddle' alt='Add New Blog'
src="alt_node.jpg' id="img3' name='img3'>
<a href="BlogAdd.aspx"
onmouseover="img3.src="node_rev.jpg';"
onmouseout="img3.src="node.jpg";">Add New Blog
<hr width="80%">
</td>
</tr>
</table>

With the exception of the @ Control directive, which is not strictly required, the
code in Example 6-1 consists exclusively of HTML and client-side script (for
performing a simple mouseover graphics switch). However, the user control could
just as easily contain server controls and/or server-side script to perform more
complicated tasks.

The @ Control directive performs essentially the same task as the @ Page directive,
only for user controls. Chapter 3 lists the attributes of the @ Page and @ Control
directives and the purpose of each.

The advantage of using a user control for this type of functionality is that it places
all of our navigation logic in a single location. This placement makes it consider-
ably easier to maintain the navigation links for a site. If you used ASP.NET’s

120 | Chapter6: User Controls and Custom Server Controls

built-in server controls instead of raw HTML in your navigation user control, you
could manipulate those server controls programmatically from the page on which
the control is used. For example, you could hide the link to the page that’s
currently displayed or highlight it in some fashion.

The disadvantage of a user control is that it is not reusable across multiple sites
(“site,” here, refers to an IIS virtual directory defined as an application). It’s also
not usually a good idea to tightly couple user interface elements and data, as this
control does, because doing so tends to reduce the reusability of a control. Later
in this chapter, you’ll see how to improve this user control by turning it into a
custom server control.

User controls are made available to a page through the use of either the @ Register
directive, which prepares a user control on a page declaratively (i.e., using a tag-
based syntax like server controls), or, programmatically, using the LoadControl
method of the TemplateControl class (from which both the Page class and the
UserControl class derive).

Example 6-2 shows a page that uses the @ Register directive and a declarative tag
to create the user control shown in Example 6-1. The @ Register directive in
Example 6-2 tells ASP.NET to look for any <aspnetian:nav> tags with the
runat="server" attribute, and when it finds one, create an instance of the user
control and place its output where the tag is located. This allows us to place our
control very precisely.

Example 6-2. UCClient.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="aspnetian" TagName="nav" Src="Nav.ascx" %>
<html>
<head>
</head>
<body>
<table border="1" width="100%" cellpadding="20" cellspacing="0">
<tr>
<td align="center" width="150">

</td>
<td align="center">
<h1>User Control Client Page<hi>
</td>
</tr>
<tr>
<td width="150">
<aspnetian:nav runat="server"/»>
</td>
<td>
This is where page content might be placed

<b1r/><b1/><bY/>
</td>
</tr>
</table>
</body>
</html>

w
o
o
<
o
®
)
°
S
~*
=4
S
w

User Controls | 121

You can instead create the control dynamically using the LoadControl method
and add the control to either the Controls collection of the page, or, better yet, to
the Controls collection of a PlaceHolder control. The latter allows you to control
the location of the user control based on the location of the placeholder. You
might choose to use this technique if you know where you want the control to
reside on the page, but don’t necessarily want the control loaded and displayed on
every request. This technique is shown in Example 6-3.

Example 6-3. UCClient_Prog.aspx

<%@ Page Language="vb" %>
<html>
<head>
<script runat="server">
Sub Page Init()
PH.Controls.Add(LoadControl("Nav.ascx"))

End Sub
</script>
</head>
<body>
<table border="1" width="100%" cellpadding="20" cellspacing="0">
<tr>
<td align="center" width="150">

</td>
<td align="center">
<h1>User Control Client Page<hi>
</td>
</tr>
<tr>
<td width="150">
<asp:placeholder id="PH" runat="server"/»>
</td>
<td>
This is where page content might be placed

<b1r/><bT/><bT/>
</td>
</tr>
</table>
</body>
</html>

If you want to work with the control after loading it using Load-
Control, you need to cast the control to the correct type using the
CType function in Visual Basic .NET or by preceding the control
with (typename) in C#. Note that this requires that the user control
be defined in a class that inherits from UserControl, so this tech-
nique would not work with the user control in Example 6-1.

122 | Chapter6: User Controls and Custom Server Controls

Custom Server Controls

For the reasons cited earlier in the chapter, user controls are not always the ideal
choice for reuse. User controls tend to be very good for quickly reusing existing
user interface elements and code, but custom server controls are much better for
developing reusable building blocks for multiple web applications.

A custom server control is, in its essence, a class that derives from either the
Control or WebControl class of the System.Web.UI namespace, or from one of the
classes that derive from these controls. Custom server controls can be used in
your ASP.NET Web Forms pages in very much the same way you use the built-in
server controls that come with ASP.NET. There are two primary categories of
custom server controls:

Rendered controls
Rendered controls consist largely of custom rendering of the text, tags, and
any other output you desire, which may be combined with the rendered
output of any base class from which your control is derived. Rendered
controls override the Render method of the control from which they derive.
This method is called automatically by the page containing the control when
it’s time for the control output to be displayed.

Compositional controls
Compositional controls get their name from the fact that they are composed of
existing controls whose rendered output forms the Ul of the custom control.
Compositional controls create their constituent controls by overriding the
CreateChildControls method of the control from which they derive. This
method, like the Render method, is automatically called by ASP.NET at the
appropriate time.

When designing a new custom server control, you need to consider some issues to
decide which type of control to create:

* Does one existing control provide most, but not all, of the functionality you
desire? A rendered control that derives from that control may be the right
choice.

* Could the desired functionality be provided by a group of existing controls? A
compositional control may be a great way to reuse those controls as a group.

* Do you want to do something that is completely beyond any existing con-
trol? You may want to derive your control from the Control class and over-
ride the Render method to create your custom output.

Note that by default, custom server controls expose all public members of the
class from which they are derived. This exposure is important to consider when
designing a control for use by other developers if you want to limit the customiza-
tions they can make. For instance, you might not want developers to change the
font size of your control. In such a case, you should avoid deriving from a control
that exposes that property.

Rendered Controls

Perhaps the best way to understand the process of creating a rendered custom
server control is to see one. Example 6-4 shows a class written in Visual Basic .NET

Custom Server Controls | 123

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

that implements a custom navigation control with the same functionality as the
Nav.ascx user control discussed earlier in this chapter. Unlike the user control,
which has the linked pages and images hardcoded into the control itself, the
custom control in Example 6-4 gets this information from an XML file.

Example 6-4. NavBar.vb

Imports Microsoft.VisualBasic
Imports System

Imports System.Data

Imports System.Drawing

Imports System.IO

Imports System.Text

Imports System.Web

Imports System.Web.UI

Imports System.Web.UI.WebControls

Namespace aspnetian

Public Class NavBar
Inherits Panel

Private NavDS As DataSet
Private showDividers As Boolean = True

Public Property ShowDividers() As Boolean

Get

Return _showDividers
End CGet
Set

_showDividers = value
End Set

End Property

Sub NavBar_Load(sender As Object, e As EventArgs) Handles MyBase.Load
LoadData()

End Sub

Protected Overrides Sub Render(Writer As HtmlTextWriter)
Dim NavDR As DataRow
Dim RowNum As Integer = 1

Dim SB As StringBuilder

MyBase.RenderBeginTag(Writer)
MyBase.RenderContents(Writer)

Writer.Write("<hr width="80%'>" & vbCrLf)
For Each NavDR In NavDS.Tables(0).Rows

SB = new StringBuilder()
SB.Append(vbTab)

124 | Chapter6: User Controls and Custom Server Controls

Example 6-4. NavBar.vb (continued)

SB.Append("<a href=""")
SB.Append(NavDR("url"))
SB.Append(onmouseover=""")
SB.Append("img")
SB.Append(RowNum.ToString())
SB.Append(".src="")
SB.Append(NavDR ("moimageUrl"))
SB.Append("';""")
SB.Append(" onmouseout=""")
SB.Append("img")
SB.Append(RowNum.ToString())
SB.Append(".src="")
SB.Append(NavDR("imageUr1l"))
SB.Append("';""")
SB.Append(" target="")
SB.Append(NavDR("targetFrame"))
SB.Append("'>")
SB.Append(vbCrLf)
SB.Append(vbTab)
SB.Append(vbTab)
SB.Append("<img border='0"' align="absMiddle' alt="")
SB.Append(NavDR("text"))
SB.Append("' src="")
SB.Append(NavDR("imageUrl"))
SB.Append("' id="")
SB.Append("img")
SB.Append(R wNum ToString())

"

(

(R

("

(v

(

(N

(

(

(R

("

(N

(

(

(

(R

("

(N

(

("

(N

(

(N

("

(

SB.Append(" name—'")
SB.Append("img")

SB.Append wNum ToString())
SB.Append("'>")
SB.Append(vbTab)
SB.Append(“<a href=""")
SB.Append(NavDR("url"))
SB.Append("""
SB.Append
SB.Append
SB.Append(".src="")

SB.Append(NavDR ("moimageUrl"))
SB.Append("';""")

onmouseover=""")

"ing")
owNum ToString())

w
o
o
<
o
®
)
©
S
~*
=
S
w

SB.Append
SB.Append
SB.Append
SB.Append(".src="")
SB.Append(NavDR("imageUrl"))
SB.Append("*;""")

onmouseout=""")

"ing")
owNum ToString())

SB.Append(" target="")
SB.Append(NavDR("targetFrame"))
SB.Append("'>")
SB.Append(NavDR("text"))
SB.Append("")
SB.Append(vbCrLf)

Custom Server Controls | 125

Example 6-4. NavBar.vb (continued)

If _showDividers = True Then
SB.Append("<hr width="80%"'>")
Else
SB.Append("

")
End If
SB.Append(vbCrLf)
Writer.Write(SB.ToString())

RowNum += 1
Next
MyBase.RenderEndTag(Writer)
End Sub
Protected Sub LoadData()
NavDS = New DataSet()

Try
NavDS.ReadXml(Page.Server.MapPath("NavBar.xml"))
Catch fnfEx As FileNotFoundException
CreateBlankFile()
Dim Html As String
Html = "
No NavBar.xml file was found, so one was " & _
"created for you. Follow the directions in the file " & _
"to populate the required fields and, if desired, " & _
"the optional fields."
Me.Controls.Add(New LiteralControl(Html))
End Try

End Sub

Public Sub CreateBlankFile()
'Code to create a blank XML file with the fields used by
' the control. This code is included as a part of the file
' NavBar.vb, included with the sample files for the book.
End Sub

End Class

End Namespace

The real meat of the NavBar control begins with the class declaration, which uses
the Inherits keyword to declare that the control derives from the Panel control.
This gives the control the ability to show a background color, to be hidden or
shown as a unit, and to display the contents of its begin and end tags as part of
the control.

Next, a couple of local member variables are declared. The location of the declara-
tion is important, since these members need to be accessible to any procedure in

126 | Chapter6: User Controls and Custom Server Controls

the control. A property procedure is then added for the ShowDividers property,
which will determine whether the control renders a horizontal line between each
node of the control.

In the NavBar_Load method, which handles the Load event for the control (fired
automatically by ASP.NET), the LoadData method is called to load the NavBar
data from the XML file associated with the control.

Skipping over the Render method temporarily, the LoadData method creates a
new instance of the ADO.NET DataSet class and calls its ReadXml method to
read the data from the XML file. If no file exists, the LoadData method calls
another method (CreateBlankFile) to create a blank XML file with the correct
format for use by the developer consuming the control. This technique not only
deals gracefully with an error condition; it provides an easier starting point for the
developer using the control. Note that the CreateBlankFile method is declared as
public, which means it can be called deliberately to create a blank file, if desired.

Last, but certainly not least, the overridden Render method, which is called
automatically at runtime when the control is created, iterates through the first
(and only) table in the dataset and uses an instance of the StringBuilder class to
build the HTML output to render. Once the desired output has been built, the
method uses the HemlTextWriter passed to it by ASP.NET to write the output to
the client browser. Note that prior to looping through the rows in the dataset, the
render method calls the RenderBeginTag and RenderContents methods of the
base Panel control. This renders the opening <div> tag that is the client-side repre-
sentation of the Panel control, plus anything contained within the opening and
closing tags of the NavBar control. Once all the rows have been iterated and their
output sent to the browser, the RenderEndTag method is called to send the
closing </div> tag to the browser.

&

This example uses a couple of helper classes that are fairly com-
mon in ASP.NET development. The first, the StringBuilder class,
is a helper class that is used for constructing strings. Because strings
are immutable in the .NET Framework (strings cannot be
changed), each time you use string concatenation (i.e., use the VB &
operator or the C# + operator), the original string is destroyed and
a new string containing the result of the concatenation is created.
This can get fairly expensive when you’re doing a lot of concatena-
tion, so the StringBuilder class provides a way of constructing
strings without the expense of concatenation.

The HtmlTextWriter class, an instance of which is automatically cre-
ated and passed to the Render method by the ASP.NET runtime,
allows you to write text output to the client browser, and includes
useful methods (such as WriteBeginTag, WriteEndTag, and Write-
Attribute) and shared/static fields for correctly formatting HTML
output.

You can compile the code in Example 6-4 by using the following single-line
command (which can alternatively be placed in a batch file):

vbc /t:library /out:bin\NavBar.dll /r:System.dll,System.Data.dll,
System.Drawing.dll,System.Web.d1l,System.Xml.d11l NavBar.vb

Custom Server Controls | 127

w
o
o
<
o
®
)
°
S
~*
=4
S
w

The preceding command requires that you create a bin subdirectory under the
directory from which the command is launched and that you register the path to
the Visual Basic compiler in your PATH environment variable. If you have not regis-
tered this path, you will need to provide the full path to the Visual Basic .NET
compiler (by default, this path is %windir%\Microsoft NET\Framework\
%version% where %windir% is the path to your Windows directory, and
%version% is the version number of the framework version you have installed).

Example 6-5 shows the XML file used to populate the control, Example 6-6 shows
the code necessary to use the NavBar control in a Web Forms page, and
Figure 6-1 shows the output of this page.

Example 6-5. NavBar.xml

<navBar>
<!-- node field describes a single node of the control -->
<node>
<!-- Required Fields -->
<!-- url field should contain the absolute or relative
URL to link to -->
<url>NavBarClient.aspx</url>
<!-- text field should contain the descriptive text for
this node -->
<text>NavBar Client</text>
<!-- End Required Fields -->
<!-- Optional Fields -->
<!-- imageUrl field should contain the absolute or relative
URL for an image to be displayed in front of the link -->
<imageUrl>node. jpg</imageUrl>
<!-- moimageUrl field should contain the absolute or
relative URL for an image to be displayed in front of
the link on mouseover --»>
<moImageUrl>node_rev.jpg</moImageUrl>
<!-- targetFrame field should contain one of the following:
_blank, parent, self, top -->
<targetFrame>_self</targetFrame>
<!-- End Optional Fields -->
</node>
<node>
<url>UCClient.aspx</url>
<text>User Control Client</text>
<imageUrl>alt_node.jpg</imageUrl>
<moImageUrl>alt_node_rev.jpg</moImageUrl>
<targetFrame> self</targetFrame>
</node>
<node>
<url>BlogClient.aspx</url>
<text>Blog Client</text>
<imageUrl>node.jpg</imageUrl>
<moImageUrl>node rev.jpg</moImageUrl>
<targetFrame>
</targetFrame>
</node>
<node>

128 | Chapter6: User Controls and Custom Server Controls

Example 6-5. NavBar.xml (continued)

<url>BlogAdd.aspx</url>
<text>Add New Blog</text>
<imageUrl>alt node.jpg</imageUrl>
<moImageUrl>alt_node_rev.jpg</moImageUrl>
<targetFrame>
</targetFrame>
</node>
</navBar>

Example 6-6. NavBarClient.aspx

<%@ Page Language="vb" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian"
Assembly="NavBar" %>
<html>
<head>
<script runat="server">
Sub Page Load()
"NB1.CreateBlankFile()
End Sub
</script>
</head>
<body>
<table border="1" width="100%" cellpadding="20" cellspacing="0">
<tr>
<td align="center" width="150">

</td>
<td align="center">
<h1>NavBar Control Client Page<h1>
</td>
</tr>
<tr>
<td width="150">
<form runat="server">
<aspnetian:NavBar id="NB1"
showdividers="False" runat="server">
Navigation Bar

</aspnetian:NavBar>
</form>
</td>
<td>
This is where page content might be placed

<b1/><b1Y/><bT/><bT/>
</td>
</tr>
</table>
</body>
</html>

Custom Server Controls

129

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

/3 http:/ /localhost faspnetian/Chapter_6/NavBarClient.aspx - Microsoft 1 1Ol x|
File Edit ‘“iew Favorites Tools Help |
daBack ~ = ~) ot | @hsearch (G Favarites @Media £4 | B-S oA - 5
Address I@ http:fflocalhostfaspnetian/Chapter_é/NavBarClient, aspx j @GD

Bl

NavBar Control
Client Page

Nawvigation Bar

— This is where page content mmght be placed
@ HavBar Chent

® Uzer Control Client
() Blog Client

() Add New Blog

N

&l ’_ I_ ’_ (28 Local intranst

Figure 6-1. NavBarClient.aspx output

Compositional Controls

As mentioned earlier in the chapter, compositional controls render their output by
combining appropriate controls within the CreateChildControls method, which is
overridden in the custom control.

Example 6-7 shows the C# code for a compositional control that provides simple
functionality for a blog (which is short for web log). The control has two modes:
Add and Display. The mode is determined by the internal member_mode, which
can be accessed by the public Mode property.

Like the NavBar control created in the previous example, the class definition for
the Blog control specifies that the class derives from the Panel control (using C#’s
: syntax), and also implements the INamingContainer interface. The INaming-
Container interface contains no members, so there’s nothing to actually
implement. It’s simply used to tell the ASP.NET runtime to provide a separate
naming scope for controls contained within the custom control. This helps avoid

130 | Chapter6: User Controls and Custom Server Controls

the possibility of naming conflicts at runtime, and also allows ASP.NET to prop-
erly manage the ViewState of child controls.

Also like the NavBar control, the Blog control uses an XML file to store the indi-
vidual Blog entries. The example uses the same method of retrieving the data,
namely creating a dataset and calling its ReadXml method, passing in the name of
the XML file.

In addition to declaring the _mode member variable and the BlogDS dataset, the
example declares two Textbox controls (which will be used when adding a new
blog entry) and two more string member variables (_ addRedirect and _email).

The code in Example 6-7 then creates public property accessors for all three string
variables. The Mode property determines whether the control displays existing
blogs or displays fields for creating a new blog. The AddRedirect property takes
the URL for a page to redirect to when a new blog is added. The Email property
takes an email address to link to in each new blog field.

Next, the program overrides the Onlnit method of the derived control to handle
the Init event when it is called by the runtime. In this event handler, you call the
LoadData method, which, like the same method in the NavBar control, loads the
data from the XML file or, if no file exists, creates a blank file. It then calls the
Onlnit method of the base class to ensure that necessary initialization work is
done.

Next is the overridden CreateChildControls method. Like the Render method,
this method is called automatically by the ASP.NET runtime when the page is
instantiated on the server. The timing of when CreateChildControls is called,
however, is not predictable, since it may be called at different times during the
lifecycle of the page, depending on how the control is coded, and other factors.
Since the ASP.NET runtime will deliberately wait as long as possible to create the
child controls, you may want to call the EnsureChildControls method (inherited
from the Control class) to make sure that controls are created before you attempt
to access them. A good example of this is when you expose a public property on
your control that gets its value from a child control. If a client of your control
attempts to access this property, and the child control has not yet been created, an
exception will occur. To avoid this, you would add a call to EnsureChildControls
to the property procedure:

Public Property MyTextValue() As String
Get
Me.EnsureChildControls()
Return CType(Controls(1), TextBox).Text
End Get
Set
Me.EnsureChildControls()
CType(Controls(1), TextBox).Text = value.ToString()
End Set
End Property

Also unlike the Render method, you don’t want to call the CreateChildControls
method of the base class, or you’ll create a loop in which this method calls itself
recursively (and the ASP.NET process will hang). In the CreateChildControls
method, you check the value of the _mode member variable and call either the

Custom Server Controls | 131

w
o
o
<
o
®
)
°
S
~*
=4
S
w

pue asq

DisplayBlogs method or the NewBlog method, depending on the value of _mode.
Note that this value is set by default to display, so if the property is not set, the
control will be in display mode. Also note that the example uses the ToLower
method of the String class to ensure that either uppercase or lowercase attribute
values work properly.

The DisplayBlogs method iterates through the data returned in the dataset and
instantiates controls to display this data. We use an if statement to determine
whether more than one entry in a row has the same date. If so, we display only a
single date header for the group of entries with the same date. We add an Html-
Anchor control to each entry to facilitate the readers’ ability to bookmark the
URL for a given entry. Then we write out the entry itself and add a contact email
address and a link to the specific entry at the end of each entry.

Example 6-7. Blog.cs

using System;

using System.Data;

using System.Drawing;

using System.IO;

using System.Web;

using System.Web.UI;

using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace aspnetian

{

public class Blog:Panel, INamingContainer

{

protected DataSet BlogDS;
protected TextBox TitleTB;
protected TextBox BlogText;

private string addRedirect;
private string _email;
private string mode = "display";

public string AddRedirect

{
get

{

return this. addRedirect;

set

{

}
}

this. addRedirect = value;

public string Email

{

132 | Chapter6: User Controls and Custom Server Controls

Example 6-7. Blog.cs (continued)

get
{
return this. email;
set
{
this._email = value;
}
}
public string Mode
{
get
{
return this. mode;
set
{
this._mode = value;
}
}

protected override void OnInit(EventArgs e)

{
LoadData();
base.OnInit(e);

}

protected override void CreateChildControls()

{
this.Controls.Clear();

if (this. mode.TolLower() != "add") f
{
DisplayBlogs();]
=
else -:;
{
NewBlog();
}

}

protected void LoadData()

{
BlogDS = new DataSet();

try
{

}
catch (FileNotFoundException fnfEx)

{

BlogDS.ReadXml(Page.Server.MapPath("Blog.xml"));

CreateBlankFile();

Custom Server Controls | 133

Example 6-7. Blog.cs (continued)

LoadData();

}
}

protected void DisplayBlogs()
{
DateTime BlogDate;
DateTime CurrentDate = new DateTime();

DataRowCollection BlogRows = BlogDS.Tables[0].Rows;
foreach (DataRow BlogDR in BlogRows)
{
string BDate = BlogDR["date"].ToString();
BlogDate = new DateTime(Convert.ToInt32(BDate.Substring(4, 4)),
Convert.ToInt32(BDate.Substring(0, 2)),
Convert.ToInt32(BDate.Substring(2, 2)));

if (CurrentDate != BlogDate)
{
Label Date = new Label();
Date.Text = BlogDate.TolLongDateString();
Date.Font.Size = FontUnit.large;
Date.Font.Bold = true;
this.Controls.Add(Date);
this.Controls.Add(new LiteralControl("

"));
CurrentDate = BlogDate;
}

HtmlAnchor Anchor = new HtmlAnchor();
Anchor.Name = "#" + BlogDR["anchorID"].ToString();
this.Controls.Add(Anchor);

Label Title = new Label();

Title.Text = BlogDR["title"].ToString();
Title.Font.Size = FontUnit.Llarger;
Title.Font.Bold = true;
this.Controls.Add(Title);

this.Controls.Add(new LiteralControl("<p>"));

LiteralControl BlogText = new LiteralControl("<div>" +
BlogDR["text"].ToString() + "</div>");

this.Controls.Add(BlogText);

this.Controls.Add(new LiteralControl("</p>"));

HyperLink Email = new HyperLink();

Email.NavigateUrl = "mailto:" + BlogDR["email"].ToString();
Email.Text = "E-mail me";

this.Controls.Add(Email);

this.Controls.Add(new LiteralControl(" | "));

HyperLink AnchorLink = new HyperLink();

134 | Chapter6: User Controls and Custom Server Controls

Example 6-7. Blog.cs (continued)

AnchorLink.NavigateUrl = Page.Request.Url.ToString() + "#" +
BlogDR["anchorID"].ToString();

AnchorlLink.Text = "Link";

this.Controls.Add(AnchorlLink);

this.Controls.Add(new LiteralControl("<hr width="100%"'/>
"));
}
}

protected void NewBlog()

{
Label Title = new Label();
Title.Text = "Create New Blog";
Title.Font.Size = FontUnit.Llarger;
Title.Font.Bold = true;
this.Controls.Add(Title);

this.Controls.Add(new LiteralControl("

"));

Label Titlelabel = new Label();
Titlelabel.Text = "Title: ";
Titlelabel.Font.Bold = true;
this.Controls.Add(TitlelLabel);
TitleTB = new TextBox();
this.Controls.Add(TitleTB);

this.Controls.Add(new LiteralControl("
"));

Label BlogTextLabel = new Label();
BlogTextlLabel.Text = "Text: ";
BlogTextLabel.Font.Bold = true;
this.Controls.Add(BlogTextLabel);

BlogText = new TextBox();
BlogText.TextMode = TextBoxMode.Multiline;
BlogText.Rows = 10;

BlogText.Columns = 40;
this.Controls.Add(BlogText);

w
o
o
<
o
®
)
°
S
~*
=4
S
w

this.Controls.Add(new LiteralControl("
"));

Button Submit = new Button();
Submit.Text = "Submit";
Submit.Click += new EventHandler(this.Submit Click);
this.Controls.Add(Submit);
}

protected void Submit_Click(object sender, EventArgs e)
{

EnsureChildControls();

AddBlog();

Custom Server Controls | 135

Example 6-7. Blog.cs (continued)

protected void AddBlog()

{
DataRow NewBlogDR;
NewBlogDR = BlogDS.Tables[0].NewRow();
NewBlogDR["date"] = FormatDate(DateTime.Today);
NewBlogDR["title"] = TitleTB.Text;
NewBlogDR["text"] = BlogText.Text;
NewBlogDR["anchorID"] = Guid.NewGuid().ToString();
NewBlogDR["email"] = email;
BlogDS.Tables[0].Rows.InsertAt(NewBlogDR, 0);
BlogDS.WriteXml(Page.Server.MapPath("Blog.xml"));
Page.Response.Redirect(addRedirect);

———

}

protected string FormatDate(DateTime dt)
{

string retString;

retString = String.Format("{0:D2}", dt.Month);
retString += String.Format("{0:D2}", dt.Day);
retString += String.Format("{0:D2}", dt.Year);
return retString;

}

protected void CreateBlankFile()
{

}

// code to create new file...omitted to conserve space

} // closing bracket for class declaration
} // closing bracket for namespace declaration

Displaying the blog entries is only half the battle. While it would certainly be
possible to edit the XML file directly in order to add a new blog entry, it makes
much more sense to make this a feature of the control. This is what the NewBlog
method does. In the NewBlog method, we instantiate Label and TextBox controls
for data entry and a Button control to submit the new blog entry. When the
Button is clicked, the Submit_Click event handler method is called when the
control is re-created on the server. The Submit_Click event handler, in turn, calls
the AddBlog method to insert a new row into the BlogDS dataset and then writes
the contents of the dataset back to the underlying XML file. Before using the
control, of course, we’ll need to compile it and place it in the application’s bin
directory. The following snippet can be used to compile the control:

csc /t:library /out:bin\blog.dll /r:system.dll,system.data.dll,
system.xml.dll,system.web.d1ll blog.cs

Example 6-8 shows the ASP.NET code necessary to instantiate the Blog control
programmatically. Note the use of the PlaceHolder control to precisely locate the
Blog control output. For this code to work correctly, the compiled assembly
containing the Blog control must reside in the application’s bin subdirectory.

136 | Chapter6: User Controls and Custom Server Controls

Figure 6-2 shows the output of the control when used in the client page shown in

Example 6-8.

File Edit ‘“iew Favorites Tools Help

S Back + = - @ ﬁ ‘ @Search (G Favorites @Med\a g | %v S @ - g

apter_b/BlogClient.aspx - Microsoft Internet Explorer = E||5|

Aiddress [{&] hitp: jlocalhostjaspnetianjChapter_6 BlogClient aspx | P

Blog Display Page

Navigation Bar Tuesday, January 29, 2002

@ Mavkar Chent Another Test Blog

® Tser Control Client .
F Here is another test blog! || Here is another test blog!!! Here is another test blog!11

Here is another test blog! ! Here 1z another test blog!!! Here 15 another test blog!!!

- Here is another test blog! || Here iz another test blogl!| Here is another test blog!!1

@ Add New Bla Here is another test blog! || Here 15 another test blog!!! Here is another test blog!11
_— Here is another test blog!!! Here is another test blogll!

() Blog Chent

E-mail me | Link

Test Blog

This 15 a Test Blog! !l This is a Test Blog! !l This is a Test Blog! !l This is a Test

Blosl 1l Thiz is a Test Bloslll This iz a Test Blaelll Thiz 1z a Test Bloelll Thizis a =
‘@ Done ,7’7’7 E Local intranet 4

Figure 6-2. Output of BlogClient.aspx

Example 6-8. BlogClient.aspx

<%@ Page Language="vb" debug="true" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian”
Assembly="NavBar" %>
<html>
<head>
<script runat="server">
Sub Page Init()
Dim Blogl As New Blog()
Blog1.SeparatorColor = System.Drawing.Color.Red
PH.Controls.Add(Blog1)
End Sub
</script>
</head>
<body>
<form runat="server">
<table border="1" width="100%" cellpadding="20" cellspacing="0">
<tr>
<td align="center" width="150">

Custom Server Controls

137

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

Example 6-8. BlogClient.aspx (continued)

</td>
<td align="center">
<h1>Blog Display Page<hi1>
</td>
</tr>
<tr>
<td width="150" valign="top">
<aspnetian:NavBar id="NB1" runat="server">
Navigation Bar

</aspnetian:NavBar>
</td>
<td>
<asp:placeholder id="PH" runat="server"/>
</td>
</tr>
</table>
</form>
</body>
</html>

Example 6-9 shows the code necessary to instantiate the control declaratively. The
example uses the TagPrefix aspnetian2 because both the NavBar control and the
Blog control use the same namespace, but are compiled into separate assemblies
(which means that using the same TagPrefix for both would result in an error).

Example 6-9. BlogAdd.aspx

<%@ Page Language="vb" debug="true" %>
<%@ Register TagPrefix="aspnetian" Namespace="aspnetian"
Assembly="NavBar" %>
<%@ Register TagPrefix="aspnetian2" Namespace="aspnetian"
Assembly="Blog" %>
<html>
<head>
<script runat="server">
Sub Page_Load()
'Uncomment the line below to explicitly create a blank
' XML file, then comment the line out again to run the control
'NB1.CreateBlankFile()
End Sub
</script>
</head>
<body>
<form runat="server">
<table border="1" width="100%" cellpadding="20" cellspacing="0">
<tr>
<td align="center" width="150">

</td>
<td align="center">
<h1>Blog Add Page<hi1>
</td>

138 | Chapter6: User Controls and Custom Server Controls

Example 6-9. BlogAdd.aspx (continued)

</tr>
<tr>
<td width="150" valign="top">
<aspnetian:NavBar id="NB1" runat="server">
Navigation Bar

</aspnetian:NavBar>
</td>
<td>
<aspnetian2:Blog id="Blog1"
mode="Add"
addredirect="BlogClient.aspx"
email="blogs@aspnetian.com"
runat="server"/>
</td>
</tr>
</table>
</form>
</body>
</html>

As you can see, whether the control is used programmatically or declaratively, the
amount of code necessary to provide simple blogging functionality is made trivial
by the use of a custom server control. Note that you can also have the same page
use the Blog control in either Display or Add mode, depending on the user’s
actions, as explained in the following section.

Adding Design-Time Support

While using the Blog control in a Web Forms page is fairly simple, it’s still not
100% intuitive. For example, without documentation, there’s no way for someone
using the Blog control to know what the appropriate values for the Mode prop-
erty are. Without explicitly telling developers using the control about the Add
mode, it would be difficult for them to discover and use this mode on their own.

For developers using Visual Studio .NET (or another IDE that supports Intel-
liSense), you can solve this problem by adding design-time support to the control.
This is done by using a combination of special metadata attributes added to the
control and custom XSD schemas to support IntelliSense statement completion
for Web Forms pages. IntelliSense support in code-behind modules is automatic
and requires no additional coding.

Part of the challenge of providing design-time support for custom server controls
is that different editors in the Visual Studio IDE require different techniques to
support design-time functionality. Custom controls automatically support Intel-
liSense statement completion when working with code-behind modules in Visual
Basic .NET or C#. Figure 6-3 shows this statement completion in action for the
Blog control.

Unfortunately, when editing Web Forms pages, automatic support for statement
completion does not extend to the Design or HTML views (nor does Visual Studio
provide built-in support for viewing and editing properties in the Property

Custom Server Controls | 139

w
o
o
<
o
®
)
°
S
~*
=4
S
w

#2 BlogClient - Microsoft Visual Basic .NET [design] - WebForm1.aspx. vb™
Eile Edit ¥ew Project Build Debug Tools ‘Window Help
B-io-sH@ B8R - &b » Debug - | g mode - B EE T
% b s T2 ANNNK.
Bl start Page | viebForml.aspx® WWebFormil.aspx.vb™ ‘ 4 b x |5ulutwun Explorer - BlogClient @ X
% Iag {Page Events) j |§Load j @I @
7 [[aruwslic Class WebFormi BN [solution Blogelent’ (1 project)
5 Inherits System.Web.UI.Fage =||= GA BlogClient
= (5] References
Telh Form Designer Generated Code - [] Assemblyinfo.vb
- k] Global.asax
. - A styles.css
! =] Private Zul Page Load(ByVal sender L= System.Object, ByVal = @Weh cofig
Elogl. WebForml . aspx
End 51 g8t Fort 4|
B8 ForeCalor
End Class =@ GetT: [
I—— _=_=: H:sCL:irols [Solution Expla... Q Class view |
e8! Height | Properties 2 %
E5! Harizontalalign
B I | =
=@ MergeStyle e ||
ey [Public Property Mode() &s aspnstian.Bloghods]
E&' HamingContainer
=l
s [+
Ready Il |[Lnzs ol 15 ch 15 I A

Figure 6-3. IntelliSense in code-behind

browser without additional work in your control). To complicate things further,
one technique is necessary for supporting IntelliSense in the Property browser and
Design view of the Web Forms editor, while another is necessary for supporting it
in the HTML view of the Web Forms editor.

The technique required for supporting property browsing in Design view uses
metadata attributes to inform Visual Studio .NET about how to handle the prop-
erties. Supporting statement completion and property browsing in HTML view
requires creating a custom XSD schema that describes the types in your control.
We'll discuss both techniques in the next sections.

Metadata attributes

Visual Studio .NET provides rich support for designing and modifying controls
visually by using drag-and-drop techniques and tools, such as the Property
browser, and related designers, such as the color picker. Support for these tools is
provided by a series of metadata attributes that you can add to your control.
These attributes tell the Visual Studio IDE whether to display any properties that
your control exposes in the Properties browser, what type the properties are, and
which designer should be used to set the properties’ values.

To support editing of the AddRedirect property in the Property browser, we
would add the following attributes before the Property procedure, as shown in the
following code snippet:

[

Browsable(true),

Category("Behavior"),

Description("URL to which the page should redirect after

140 | Chapter6: User Controls and Custom Server Controls

successful submission of a new Blog entry."),
Editor(typeof(System.Web.UI.Design.UrlEditor), typeof(UITypeEditor))

]
public string AddRedirect

{ // property procedure code }

These attribute declarations allow the property to be displayed in the Property
browser, set the desired category for the property (when properties are sorted by
category), provide a description of the property, and tell Visual Studio .NET to
use the UrlEditor designer to edit the property’s value.

Additional Uses for Metadata

Metadata attributes aren’t just for use by the Visual Studio .NET designer. In
fact, metadata attributes are used throughout the .NET Framework to allow
developers (both the framework developers, and those who use the framework)
to add descriptive, configuration, and other types of information to assemblies,
classes, and/or class members.

You can also create your own custom attributes in your applications, though the
specifics of doing so is beyond the scope of this book.

The attribute syntax shown in this section is for C#. In C#, attributes take the
form:

[AttributeName (AttributeParams)]
In Visual Basic .NET, attributes are declared with the following syntax:
<AttributeName (AttributeParams)>

Visual Basic .NET requires that the attribute declaration appear on the same line
as the member it’s modifying, so it’s usually a good idea to follow the attribute
with a VB line continuation character to improve readability:

<AttributeName(AttributeParams)>
Public Membername()

In both C# and VB, you can declare multiple attributes within a single set of []
or <> brackets by separating multiple attributes with commas.

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

In addition to setting attributes at the property level, you can set certain attributes
at the class and assembly levels. For example, you can use the assembly-level
attribute TagPrefix to specify the tag prefix to use for any controls contained in
the assembly. Visual Studio .NET then inserts this tag prefix automatically when
you add an instance of the control to a Web Forms page from the Visual Studio
toolbox. The following code snippet shows the syntax for the TagPrefix attribute.
This attribute should be placed within the class module that defines the control,
but outside the class and namespace declarations.

[

assembly: TagPrefix("aspnetian", "aspnetian")

]

Custom Server Controls | 141

namespace aspnetian
{ // control classes, etc. }

To complete the integration of a control in the Visual Studio .NET environment,
add the ToolBoxData attribute (which tells Visual Studio .NET your preferred tag
name for controls inserted from the toolbox) to the class that implements the
control:

ToolboxData("<{0}:Blog runat=server></{0}:Blog>")
]

public class Blog:Panel, INamingContainer
{ // control implementation }

Once compiled, the control will support automatic insertion of the @ Register
directive, tag prefix, and tag name for the Blog control. To add the control to the
Visual Studio .NET toolbox, follow these simple steps:

1. In Design view, select the Web Forms tab of the Visual Studio .NET toolbox.
2. Right-click anywhere in the tab and select Add/Remove Items....
3. With the .NET Framework Components tab selected, click Browse.

4. Browse to the location of the compiled control assembly, select it, and click
Open.

5. Click OK.

Once the control has been added to the toolbox, you can add it to a Web Forms
page by either double-clicking the control or dragging and dropping it from the
toolbox onto the Web Forms page. In either case, Visual Studio .NET will auto-
matically insert the correct @ Register directive, including setting the TagPrefix
based on the assembly-level attribute, and will also create a set of tags for the
control with the tag name specified in the ToolBoxData attribute.

Adding a control designer

As written, the Blog control will not have any visible interface in the Design view
of the Web Forms editor. This can make it more difficult to select the control on
the page, and also may make it more difficult to understand what the control will
look like at runtime. To correct this problem, we can add support for a designer
that will render HTML at design time that approximates the look of the Blog
control at runtime. Note that you can also create designers that completely repro-
duce the runtime output of a control, but doing so is more involved and beyond
the scope of this book.

All server control designers derive from the class System.Web.UI.Design.
ControlDesigner, which exposes a number of methods you can override to provide
design-time rendering for your control. Example 6-10 overrides the GetDesign-
TimeHtml method to return simple HTML. Note that the example shows the
entire designer class for the Blog control, which you can add to the existing Blog.cs
class file (making sure that the class declaration is within the namespace curly
braces).

142 | Chapter6: User Controls and Custom Server Controls

Example 6-10. BlogDesigner class

public class BlogDesigner:ControlDesigner

{
public override string GetDesignTimeHtml()
{
return "<h1>Blog</h1><hr/><hr/>";
}
}

To tie this designer into the Blog class, we use the Designer attribute, as shown in
the following snippet. Note that this code also adds a Description attribute that

describes what the control does.

[
Description("Simple Blog control. Supports display of Web log / news

items from an XML file."),
Designer(typeof(aspnetian.BlogDesigner)),
ToolboxData("<{0}:Blog runat=server></{0}:Blog>")

]

public class Blog:Panel, INamingContainer
{ 7/ class implementation }

As you can see, the BlogDesigner class is extremely simple, but it adds a lot to the
control’s design-time appearance on a web page, as shown in Figure 6-4.

#% BlogClient - Microsoft Visual Basic .NET [design] - WebForm1.aspx®
File Edit W¥ew Project Build Debug Data Format Table Frames Tools Window Help
-ia-eEF@ bR & - » Debug - mode - BE®E 7
= & »
®| s [FE- . -
! Stark Page WebForml.aspr* ‘ WebForml,aspx.vb® < I ¥ || Solution Explorer - BlogClient @ X
32 c t HE P& @
g BlOg ! [g3 solution 'BlogClient' (1 project)
7o o = [5® BlogClient
E - (53] References
E AssemblyInfo.vb
&j Global.asax
AR styles.css
[S web.config
WebForml . aspx
Q Solution Expla. .. Q Class Wiew
Properties 1 x
logl aspretian.Blog |
8
idth]
Yo &P True
(10} Blog1 j
-
Misc
B Hit
Ready

Figure 6-4. Adding design-time rendering

Custom Server Controls | 143

d
(-]
=
<
m
=
n
(=]
=1
-
=
S
w

Example 6-11 shows the code for the Blog control, updated with attributes to
enable design-time support for the control in Design view and the Property
browser. Note that the example adds several using directives to import the
namespaces needed to support the attributes and designer classes we’ve used. The
example also adds an enumeration to be used for the value of the Mode property
and a new property, SeparatorColor.

Example 6-11. Updated Blog.cs

using
using
using
using
using
using
using
using
using
using
using

[

System;
System.ComponentModel;
System.Data;
System.Drawing;
System.Drawing.Design;
System.IO;

System.Web;

System.Web.UI;
System.Web.UI.Design;
System.Web.UI.HtmlControls;
System.Web.UI.WebControls;

assembly: TagPrefix("aspnetian", "aspnetian")

]

namespace aspnetian

{

public enum BlogMode

{

Add,
Display

}
[

Description(@"Simple Blog control. Supports display of Web log / news
items from an XML file."),

Designer(typeof(aspnetian.BlogDesigner)),

ToolboxData("<{0}:Blog runat=server></{0}:Blog>")

]

public class Blog:Panel, INamingContainer

{

protected DataSet BlogDS;
protected TextBox TitleTB;
protected TextBox BlogText;

private string _addRedirect;

private string _email;

private BlogMode mode;

private Color _separatorColor = Color.Black;

[

144

Chapter 6: User Controls and Custom Server Controls

Example 6-11. Updated Blog.cs (continued)

Browsable(true),
Category("Behavior"),
Description("URL to which the page should redirect after

successful submission of a new Blog entry."),
Editor(typeof(System.Web.UI.Design.UrlEditor), typeof(UITypeEditor))
]

public string AddRedirect

{
get
{
return this. addRedirect;
set
{
this. addRedirect = value;
}
}
[
Browsable(true),

Category("Behavior"),
Description("Email address the control will use for listing in new
Blog entries.")

]
public string Email
{
get
{
return this. email;
set
{ £
this. email = value; E
} e
} 2
e
[@
Browsable(true),

Category("Behavior"),
Description("Controls whether existing Blogs are displayed, or
fields for creating a new Blog entry.")

]
public BlogMode Mode
{
get
{
return this. mode;
set
{

this. mode = value;

Custom Server Controls | 145

Example 6-11. Updated Blog.cs (continued)

}
}
[
Browsable(true),

Category("Appearance"),
Description("Controls the color of the line that separates Blog
entries when in display mode.")

]
public Color SeparatorColor
{
get
{
return this. separatorColor;
set
{
this. separatorColor = value;
}
}
protected override void OnInit(EventArgs e)
{
LoadData();
base.OnInit(e);
}
protected override void CreateChildControls()
{
if (this. mode != BlogMode.Add)
{
DisplayBlogs();
else
{
NewBlog();
}
}
protected void LoadData()
{
BlogDS = new DataSet();
try
{
BlogDS.ReadXml(Page.Server.MapPath("Blog.xml"));
}
catch (FileNotFoundException fnfEx)
{

CreateBlankFile();
LoadData();

146 | Chapter6: User Controls and Custom Server Controls

Example 6-11. Updated Blog.cs (continued)

}
}

protected void DisplayBlogs()
{
DateTime BlogDate;
DateTime CurrentDate = new DateTime();

DataRowCollection BlogRows = BlogDS.Tables[0].Rows;
foreach (DataRow BlogDR in BlogRows)
{
string BDate = BlogDR["date"].ToString();
BlogDate = new DateTime(Convert.ToInt32(BDate.Substring(4, 4)),
Convert.ToInt32(BDate.Substring(o, 2)),
Convert.ToInt32(BDate.Substring(2, 2)));

if (CurrentDate != BlogDate)

Label Date = new Label();

Date.Text = BlogDate.TolLongDateString();
Date.Font.Size = FontUnit.Llarge;

Date.Font.Bold = true;

this.Controls.Add(Date);

this.Controls.Add(new LiteralControl("

"));
CurrentDate = BlogDate;

}

HtmlAnchor Anchor = new HtmlAnchor();
Anchor.Name = "#" + BlogDR["anchorID"].ToString();
this.Controls.Add(Anchor);

Label Title = new Label();

Title.Text = BlogDR["title"].ToString();
Title.Font.Size = FontUnit.Llarger;
Title.Font.Bold = true;
this.Controls.Add(Title);

w
o
o
<
o
®
)
°
S
~*
=4
S
w

this.Controls.Add(new LiteralControl("<p>"));

LiteralControl BlogText = new LiteralControl("<div>" +
BlogDR["text"].ToString() + "</div>");

this.Controls.Add(BlogText);

this.Controls.Add(new LiteralControl("</p>"));

HyperLink Email = new HyperlLink();

Email.NavigateUrl = "mailto:" + BlogDR["email"].ToString();
Email.Text = "E-mail me";

this.Controls.Add(Email);

this.Controls.Add(new LiteralControl(" | "));

HyperLink AnchorLink = new HyperLink();

AnchorLink.NavigateUrl = Page.Request.Url.ToString() + "#" +
BlogDR["anchorID"].ToString();

Custom Server Controls | 147

Example 6-11. Updated Blog.cs (continued)

AnchorlLink.Text = "Link";
this.Controls.Add(AnchorLink);

this.Controls.Add(new LiteralControl("<hr color="" +
_separatorColor.ToKnownColor() + "' width="'100%"/>
"));
}

}

protected void NewBlog()

{
Label Title = new Label();
Title.Text = "Create New Blog";
Title.Font.Size = FontUnit.Llarger;
Title.Font.Bold = true;
this.Controls.Add(Title);

this.Controls.Add(new LiteralControl("

"));

Label TitleLabel = new Label();
TitlelLabel.Text = "Title: ";
Titlelabel.Font.Bold = true;
this.Controls.Add(TitleLabel);
TitleTB = new TextBox();
this.Controls.Add(TitleTB);

this.Controls.Add(new LiteralControl("
"));

Label BlogTextLabel = new Label();
BlogTextLabel.Text = "Text: ";
BlogTextlLabel.Font.Bold = true;
this.Controls.Add(BlogTextLabel);

BlogText = new TextBox();
BlogText.TextMode = TextBoxMode.MultilLine;
BlogText.Rows = 10;

BlogText.Columns = 40;
this.Controls.Add(BlogText);

this.Controls.Add(new LiteralControl("
"));

Button Submit = new Button();
Submit.Text = "Submit";
Submit.Click += new EventHandler(this.Submit Click);
this.Controls.Add(Submit);
}

protected void Submit Click(object sender, EventArgs e)

{
EnsureChildControls();
AddBlog();

protected void AddBlog()
{

148 | Chapter6: User Controls and Custom Server Controls

Example 6-11. Updated Blog.cs (continued)

DataRow NewBlogDR;

NewBlogDR = BlogDS.Tables[0].NewRow();

NewBlogDR["date"] = FormatDate(DateTime.Today);
NewBlogDR["title"] = TitleTB.Text;
NewBlogDR["text"] = BlogText.Text;

NewBlogDR["anchorID"] = Guid.NewGuid().ToString();
NewBlogDR["email"] = email;
BlogDS.Tables[0].Rows.InsertAt(NewBlogDR, 0);
BlogDS.WriteXml(Page.Server.MapPath("Blog.xml"));
Page.Response.Redirect(_addRedirect);

}

protected string FormatDate(DateTime dt)

{
string retString;
retString = String.Format("{0:D2}", dt.Month);
retString += String.Format("{0:D2}", dt.Day);
retString += String.Format("{0:D2}", dt.Year);
return retString;

}
public void CreateBlankFile()
{
// code to create new file...omitted to conserve space
}
}
public class BlogDesigner:ControlDesigner
{
public override string GetDesignTimeHtml()
{
return "<h1>Blog</h1><hr/><hr/>";
}
}
}

Custom schemas and Visual Studio annotations

As much as the metadata attributes described in the previous section help provide
support for the Blog control at design time, they’re missing one important piece:
IntelliSense support for adding tags and attributes in the HTML view of the Web
Forms editor. For developers who are more comfortable working in HTML than
in WYSIWYG style, this oversight is significant.

Since the HTML view of the Web Forms editor uses XSD schemas to determine
which elements and attributes to make available in a Web Forms page, to correct
the oversight, we need to implement an XSD schema that describes the Blog
control and the attributes that it supports. Optionally, we can add annotations to
the schema that tell Visual Studio .NET about the various elements and how we’d
like them to behave.

Custom Server Controls | 149

w
o
o
<
o
®
)
°
S
~*
=4
S
w

Example 6-12 contains the portion of the XSD schema specific to the Blog control.
The actual schema file (contained in the sample code for the book, which may be
obtained from the book’s page at the O’Reilly web site: http://www.oreilly.com/
catalog/aspdotnetnut2) also contains type definitions for the Panel control from
which the Blog control is derived, as well as other necessary attribute and type
definitions. These definitions were copied from the asp.xsd schema file created for
the built-in ASP.NET Server Controls.

You should never modify the asp.xsd schema file directly, but
should copy any necessary type or attribute definitions to your
custom schema file. While this may seem redundant, if you edit
asp.xsd directly and a later installation or service pack for the NET
Framework overwrites this file, your custom schema entries will be
lost.

Example 6-12. Blog.xsd

<?xml version="1.0" encoding="utf-8" ?>
<xsd:schema targetNamespace="urn:http://www.aspnetian.com/schemas"
elementFormDefault="qualified"
xmlns="urn:http://www.aspnetian.com/schemas"”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:vs="http://schemas.microsoft.com/Visual-Studio-Intellisense"
vs:friendlyname="Blog Control Schema"
vs:ishtmlschema="false"
vs:iscasesensitive="false"
vs:requireattributequotes="true" >
<xsd:annotation>
<xsd:documentation>
Blog Control schema.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="Blog" type="BlogDef" />

<!-- <aspnetian:Blog> -->
<xsd:complexType name="BlogDef">
<!-- <aspnetian:Blog>-specific attributes -->
<xsd:attribute name="AddRedirect" type="xsd:string"
vs:builder="url"/>
<xsd:attribute name="Email" type="xsd:string"/>
<xsd:attribute name="Mode" type="BlogMode"/>
<xsd:attribute name="SeparatorColor" type="xsd:string"
vs:builder="color"/>
<!-- <asp:Panel>-specific attributes -->
<xsd:attribute name="BackImageUrl" type="xsd:anyURI" />
<xsd:attribute name="HorizontalAlign" type="HorizontalAlign" />
<xsd:attribute name="Wrap" type="xsd:boolean" />
<xsd:attribute name="Enabled" type="xsd:boolean" />
<xsd:attribute name="BorderWidth" type="uig" />
<xsd:attribute name="BorderColor" type="xsd:string"
vs:builder="color" />
<xsd:attribute name="BorderStyle" type="BorderStyle" />

150 | Chapter6: User Controls and Custom Server Controls

Example 6-12. Blog.xsd (continued)

<xsd:attributeGroup ref="WebControlAttributes" />
</xsd:complexType>

<!-- DataTypes -->
<xsd:simpleType name="BlogMode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Add" />
<xsd:enumeration value="Display" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

In Example 6-12, note the targetNamespace and xmlns attributes on the root schema
element, which define the XML namespace for the control’s schema. The value of
the targetNamespace and xmlns attributes will also be used as an attribute in your
Web Forms page to “wire up” the schema. The <xsd:element> tag defines the root
Blog element. The <xsd:complexType> tag defines the attributes for the Blog
element, which includes the web control attributes referenced by the
<xsd:attributeGroup> tag. Finally, the <xsd:simpleType> tag defines the enumera-
tion for the BlogMode type used as one of the attributes for the Blog element.

Note that Example 6-12 uses the vs:builder annotation to tell Visual Studio .NET
to use the Url builder for the AddRedirect attribute and the Color builder for the
SeparatorColor attribute. The vs:builder annotation is one of many annotations
available to modify schemas. The most commonly used are listed in Table 6-1.

Table 6-1. Common Visual Studio .NET annotations

Annotation Purpose Valid values

vs:absolutepositioning Used at the root <schema> element to determine whether Visual true/false
Studio may insert style attributes for positioning.

vs:blockformatted Indicates whether leading whitespace may be added to the element true/false
during automatic formatting.

vs:builder Specifies the builder to be used for editing the related property’s color, style, or url
value.

vs:deprecated Allows a related property to be marked as “deprecated”, which true/false

prevents it from showing up in the Properties browser and in state-
ment completion.

vs:empty Used at the element level to indicate that Visual Studio .NET should ~ true/false
use single tag syntax for the related tag (no end tag).

vs:friendlyname Used at the root level to provide a display name for the schema.

vs:iscasesensitive Used at the root level and specifies whether Visual Studio .NET will true/false
treat the related tags in a case-sensitive manner.

vs:iishtmlschema Used at the root level and specifies whether the schemaisan HTML ~ true/false
document schema.

vs:nonbrowseable Used at the attribute level and specifies that the attribute should not ~ true/false
appear in statement completion.

vs:readonly Used at the attribute level and specifies that the attribute may not true/false
be modified in the Properties window.

vs:requireattributequotes Used at the root level and specifies that the attribute values must true/false
have quotes.

Custom Server Controls | 151

w
o
o
<
o
®
)
°
S
~*
=4
S
w

Once you’ve built your XSD schema, save it to the same location as the asp.xsd
file (which defaults to C:\ProgramFiles\Microsoft Visual Studio .NET 2003\
Common7\Packages\schemas\xml).

To allow Visual Studio .NET to read your custom schema, you’ll need to add an
xmlns attribute to the <body> tag of the page in which you wish to use the schema,
as shown in the following snippet:

<body xmlns:aspnetian="urn:http://www.aspnetian.com/schemas">

Notice that this code uses the aspnetian prefix with the xmlns attribute to specify
that the schema is for controls prefixed with the aspnetian tag prefix. This recall is
set up by the TagPrefix attribute (described earlier in “Metadata attributes”). The
value of the xmlns attribute should be the same as the targetNamespace attribute
defined at the root of the schema.

Once you've wired up your schema via the xmlns attribute, you should be able to
type an opening < character and the first few letters of the aspnetian namespace
and have the Blog control appear as one of the options for statement completion,
as shown in Figure 6-5.

#2 BlogClient - Microsoft Visual Basic .NET [design] - WebForm1.aspx*
Eile Edit Wew Project Build Debug Table Toals ‘Window Help
B-in-sH@ $ BB - 8- » Debug - | g mode - BEE T
HE ab | FE % b s A% %% @ .
55| stortPage WebFormiaspx* | WebFormt . aspx.vb® | 4 b x || Solation Explorer - BlogClient 8 X
bl ICIienchiects&Events j I(NOEvents) j EIE @ -@
E <%@ Register TagPrefix="aspnetian” Namespace="aspnetian” Assenbl—] 6 Solution 'E‘?DC"E"‘E(I project
é.{" <3 Page Language="vh" AutoEventWireup="false" Codebehind="WebFa | |=" !@m"gd'e"t
<!DOCTYPE HTHL PUBLIC "=//W3C//DTD HTHML 4.0 Transitional//EN"> %‘ﬁﬁfa’?t?sf o
ssemblyInfo
<HTHL>
CHEAD - k] Global.asax
. . - E Styles.css
' <titlerWebFormi</citles - (58 web.config
<meta nmwe="GENERATOR" content="MNicrosoft Visual Studio [E] ebForml.aspx
<meta newe="CODE LANGUAGE™ content="Visual Basic .NET 7.
<meta name="vs_defaultClientScript” content="JavaScript™
<meta nswe="vs targetIchewa content="http://schemas.mic i E
</ HEAD> @Solut\on Expla... Ec\ass Wigw \
<hody xwmlns:aspnetian="urn:http://www. aspnetian, cow/ schemas™ |Prupgrt|es o X
<form id="Forml"™ method="post" runac="server":>
I <aspn> d
<aspr]
s
(id)
action
b alutocomp\ete
bdo Eass .
2 tig - action
3 blockquate | _>I_
- b |
03 Design | E HTME
Ready Il |[Ln14 ol 18 ch1g I A

Figure 6-5. Statement completion in HTML view

Example 6-13 shows the code for a page that uses the Blog control from Visual
Studio .NET, including the xmlns attribute added to the <body> element.

152 | Chapter6: User Controls and Custom Server Controls

Example 6-13. BlogClient_VS.aspx

<%@ Register TagPrefix="aspnetian" Namespace="aspnetian"
Assembly="Blog" %>
<%@ Page Language="vb" AutoEventWireup="True" Debug="True"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Blog Client</title>
<meta content="Microsoft Visual Studio.NET 7.0" name="GENERATOR">
<meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
<meta content="JavaScript" name="vs_defaultClientScript">
<meta content="http://schemas.microsoft.com/intellisense/ie5"
name="vs_targetSchema">
<script runat="server">
Sub Page_Load()
If Request.QueryString("mode") = "add" Then
Blogl.Mode = BlogMode.Add
Link1.Visible = False
Link2.Visible = False
Else
Blogl.Mode = BlogMode.Display
Link1.Visible = True
Link2.Visible = True
End If
End Sub
</script>
</head>
<body xmlns:aspnetian="urn:http://www.aspnetian.com/schemas">
<form id="Form1" method="post" runat="server">
<p><asp:hyperlink id="Link1" runat="server"
navigateurl="WebFormi.aspx?mode=add">
Add Blog
</asp:hyperlink></p>
<p><aspnetian:blog id="Blogl" addredirect="WebFormi.aspx
email="andrew@aspnetian.com" runat="server" >
</aspnetian:blog></p>
<p><asp:hyperlink id="Link2" runat="server"
navigateurl="WebFormi.aspx?mode=add">

w
o
o
<
o
®
)
°
S
~*
=4
S
w

Add Blog
</asp:hyperlink></p>
</form>
</body>
</html>

Notice that Example 6-13 provides support for both displaying and adding blog
entries from within the same page; this is done by omitting the Mode property in
the tag that defines the control and setting the Mode programmatically (based on
whether or not the page request was the result of the user clicking one of the “Add
Blog” Hyperlink controls added to the page).

When the page is loaded for the first time, it will be in Display mode. Clicking one
of the hyperlinks will request the page with the mode QueryString element set to
add, which will cause the page to render in Add mode.

Custom Server Controls | 153

Adding Client Script

Sometimes you may want to use client-side script in your ASP.NET pages, either
with controls or independent of them. In classic ASP, it was possible to write
client script to the browser using Response.Write. However, this could get very
messy—particularly if you needed to write the same set of code for use with more
than one form element.

The ASP.NET Page class provides several methods for sending client script to the
browser that make this process simpler and more reliable.

These methods include:

RegisterClientScriptBlock
Renders a string containing the specified client script to the browser.

RegisterHiddenField
Adds an <input> element whose type is set to hidden.

IsClientScriptBlockRegistered
Allows you to test whether a given named script block has been already regis-
tered by another control to avoid redundancy.

You might use these methods to pop up a message box on the client with the
number of Blogs that currently exist in the XML file. To accomplish this, add the
following snippet to the DisplayBlogs method of the Blog control:

Page.RegisterClientScriptBlock("Blog", "<script>alert('There are now " +
BlogRows.Count + " Blogs!');</script>");

Then, if any other controls need to use the same script, call IsClientScript-
BlockRegistered, passing it the name of the script shown above, Blog, to
determine whether to call RegisterClientScriptBlock again. In this way, a single
client-side script block may be shared among multiple controls.

&
S When using any of the methods discussed in this section, you
0‘;‘. - should always check the built-in browser capabilities class to ensure
" o3 that the client supports script (Request.Browser.JavaScript or

Request.Browser.VBScript). Additionally, you should ensure that
you call the method(s) either prior to or in the PreRender event
handler, to ensure that the script is written to the client properly.

Sharing Controls Across Applications

The architecture of the .NET Framework makes using a custom server control or
other assembly as simple as copying that assembly to the bin subdirectory of your
application and adding the appropriate directives and tags to your page. However,
there may be times when you would like multiple applications on the same
machine to be able to use the same control, without having multiple local copies
of the control’s assembly floating around.

Fortunately, .NET addresses this need with the Global Assembly Cache (GAC), a
repository of shared assemblies that are accessible to all .NET applications on a

154 | Chapter6: User Controls and Custom Server Controls

given machine. Adding your own control assemblies to the GAC is a relatively
straightforward process that requires four steps:

1. Use the sn.exe command-line utility to create a public key pair for use in

signing your control:
sn.exe -k Blog.snk

2. Add the AssemblyKeyFileAttribute to the file containing the control code,
passing the path to the keyfile created in Step 1 as an argument. (This is an
assembly-level attribute, so it should be placed outside of any namespace or
class definitions.) When compiled, this attribute will result in a strongly
named assembly that can be placed in the GAC:

[assembly: AssemblyKeyFileAttribute("Blog.snk")]
3. Recompile the control.

4. Add the control to the GAC, either by dragging and dropping the assembly in
Windows Explorer or by using the gacutil.exe utility, as follows:

gacutil -i Blog.dll

&
Y Note that as with the csc.exe and vbc.exe command-line compilers,
0‘;‘. - using the sn.exe and gacutil.exe utilities without a fully qualified
" o}’ path requires that you have the path to these utilities registered as

part of your PATH environment variable. The sn.exe and gacutil.exe
utilities are typically located in the \FrameworkSDK\bin directory,
which is installed either under ProgramFiles\Microsoft. NET or Pro-
gramFiles\Microsoft ~ Visual Studio .NET 2003\SDK\w1.1\Bin,
depending on whether you’ve installed just the .NET Framework
SDK or Visual Studio .NET.

Once you’ve added the control assembly to the GAC, you can use it from any
application on the machine. One caveat: to use custom controls that are installed
in the GAC, you must supply the version, culture, and public key information for
the assembly when adding the @ Register directive for the control, as shown in the
following snippet (which should appear on a single line):

<%@ Register TagPrefix="aspnetian" Namespace="aspnetian" Assembly="Blog,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=6bd31f35fc9a113b" %>

If you’ve added your control to the Visual Studio .NET toolbox, when you use the
control from the toolbox, the correct @ Register directive will be generated for you
automatically.

Additional Resources

The following site provides additional information on the topics discussed in this
chapter:

http://www.aspnextgen.com/
The DotNetJunkies site, run by Microsoft MVP Award winners Donny Mack
and Doug Seven, contains many ASP.NET tutorials, including some on
building custom server controls and user controls.

Additional Resources | 155

w
o
o
<
o
®
)
°
S
~*
=4
S
w

