

DHTML Utopia
Modern Web Design Using JavaScript & DOM
(First 4 Chapters)

Thank you for downloading the first four chapters of Stuart
Langridge’s book, DHTML Utopia: Modern Web Design Using
JavaScript & DOM, published by SitePoint.

This excerpt includes the Summary of Contents, Information
about the Author, Editors and SitePoint, Table of Contents,
Preface, the first four chapters of the book and the index.

We hope you find this information useful in evaluating this book.

 For more information or to order, visit sitepoint.com

http://www.sitepoint.com/launch/150d2e

Summary of Contents of this Excerpt
Introduction ... vii

1. DHTML Technologies... 1

2. The Document Object Model ... 13

3. Handling DOM Events.. 43

4. Detecting Browser Features ... 75

Index... 305

Summary of Additional Book Contents
5. Animation .. 95

6. Forms and Validation .. 125

7. Advanced Concepts and Menus .. 167

8. Remote Scripting ... 197

9. Communicating With The Server 251

10. DOM Alternatives: XPath ... 287

DHTML Utopia
Modern Web Design Using
JavaScript & DOM

by Stuart Langridge

DHTML Utopia: Modern Web Design Using JavaScript & DOM
by Stuart Langridge

Copyright © 2005 SitePoint Pty. Ltd.

Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Designer: Julian CarrollTechnical Director: Kevin Yank
Cover Illustrator: Lucas LicataTechnical Editor: Simon Willison

Technical Editor: Nigel McFarlane
Editor: Georgina Laidlaw

Latest Update: May 2005Printing History:
First Edition: May 2005

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0–9579218–9–6
Printed and bound in the United States of America

About the Author

Stuart Langridge has been playing with the Web since 1994, and is quite possibly the
only person in the world to have a BSc in Computer Science and Philosophy. He invented
the term “unobtrusive DHTML,” and has been a leader in the quest to popularize this
new approach to scripting. When not working on the Web, he’s a keen Linux user and
part of the team at open-source radio show LUGRadio. He likes drinking decent beers,
studying stone circles and other ancient phenomena, and trying to learn the piano. Stuart
contributes to Stylish Scripting: SitePoint’s DHTML and CSS Blog.

About The Technical Editors

Simon Willison is a seasoned Web developer from the UK, with a reputation for pioneering
in the fields of CSS and DHTML. He specializes in both client- and server-side develop-
ment, and recently became a member of the Web Standards project. Visit him at
http://simon.incutio.com/, and at Stylish Scripting: SitePoint’s DHTML and CSS Blog,
to which he contributes.

Nigel McFarlane is the Mozilla community’s regular and irregular technical commentator.
He is the author of Firefox Hacks (O’Reilly Media) and Rapid Application Development with
Mozilla (Prentice Hall PTR). When not working for SitePoint, Nigel writes for a number
of trade publications and for the print media. He also consults to industry and government.
Nigel’s background is in science and technology, and in Web-enabled telecommunications
software. He resides in Melbourne, Australia.

About The Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint
on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps
best known for his book, Build Your Own Database Driven Website Using PHP & MySQL,
also from SitePoint. Kevin now lives in Melbourne, Australia. In his spare time he enjoys
flying light aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://simon.incutio.com/
http://www.sitepoint.com/

For Sam, who doesn’t know
what all this is about, but

listens anyway.

ii

Table of Contents
Introduction ... vii

Who Should Read This Book? ... viii
What’s In This Book? ... viii
Whither XHTML? ... x
The Book’s Website ... xii

The Code Archive ... xii
Updates and Errata .. xii

The SitePoint Forums ... xii
The SitePoint Newsletters .. xii
Your Feedback .. xiii
Acknowledgements .. xiii

1. DHTML Technologies ... 1
HTML Starting Points ... 2

Step up to Valid HTML ... 2
Step up to Semantic HTML ... 4

Adding CSS ... 5
A Simple CSS Example .. 5

Adding JavaScript .. 7
A Simple JavaScript Example .. 8
Get Some Tools! .. 9

Further Reading ... 10
Summary ... 11

2. The Document Object Model ... 13
The Origins of the DOM .. 14
What is the DOM? .. 14

The Importance of Valid HTML .. 16
Walking DOM Trees ... 16

Finding the Top of the Tree ... 17
Getting an Element from the Tree .. 17
Walking from Parents to Children .. 20

What to do with Elements ... 21
Changing Element Attributes ... 21
Changing Text Nodes ... 22
Changing Style Properties .. 23

Bigger DOM Tree Changes .. 24
Moving Elements ... 24
Throwing Away Elements ... 26
Creating Elements .. 27

Copying Elements .. 28
Making an Expanding Form ... 30
Making Modular Image Rollovers ... 33

A Sample HTML Page ... 34
Summary ... 41

3. Handling DOM Events .. 43
About Elements and Events .. 43

Common Events .. 44
Hooking Code to Events .. 46
Making Events Work Cross-Browser ... 53

Smart Uses of Events ... 58
Creating Smarter Links .. 59
Making Tables More Readable ... 64

Summary ... 73

4. Detecting Browser Features ... 75
Old-Fashioned Browser Sniffing ... 76
Modern DOM Feature Sniffing .. 77

Which DOM Features Should We Test? 78
Where Should We Test for DOM Features? 78
Testing Non-DOM Features ... 79

Sniffing at Work: scrollImage ... 80
Setting Up the Page ... 81
Demonstrating the DHTML Effect ... 85
How the Code Works .. 86
clientX and clientY Problems .. 88
Browser Detection You Can’t Avoid ... 89
Calculating Screen Positions ... 90

Summary ... 92

5. Animation ... 95
Tastefulness and Usability .. 95
Animation Basics ... 96

The setTimeout Function ... 96
The setInterval Function .. 102

Handling Errors ... 104
When to use try and catch ... 105
The body onerror Handler .. 106

Scriptless Animation with GIFs .. 106
Movement Example: Rising Tooltips .. 108

Creating Special Tooltip Content ... 108
Designing the DHTML Library .. 111

Click here to order the printed 318-page book now (we deliver worldwide)!iv

DHTML Utopia

http://www.sitepoint.com/launch/150d2e

Animating the Content .. 116
Full Rising Tooltips Example Listing ... 119

Summary ... 123

6. Forms and Validation ... 125
Reasons for Form Validation .. 126

Storing Clean Data .. 126
Defending Against Security Exploits ... 126
Improving User Interactivity .. 127

Simple Client-Side Validation .. 127
Using Regular Expressions .. 128
Connecting Regular Expressions to Fields 129
Preparing Quality Error Messages ... 131
Validation Processing ... 132
Checking on Submission .. 136

Client-Server Coordination .. 149
Dangers of Validating on the Client Only 149
Full Example: Server Fallback Validation 149

Improving Form Usability .. 154
Standing on the Shoulders of Giants .. 154
How to Find Scripts ... 159
Type-Ahead Drop-Down Lists .. 159

Summary ... 166

7. Advanced Concepts and Menus .. 167
Creating Menu Content ... 168

Create Semantic Menu Content ... 168
Styling the Menu’s Layout ... 171
Styling the Menu’s Appearance .. 173
Hiding the Secondary Content ... 174

Making the Menu Work .. 175
Advanced CSS Menu Alternatives .. 176
Making Submenus Appear ... 176
Adding Animation .. 185
The Benefit of Object-Based Programming 192

Summary ... 196

8. Remote Scripting ... 197
Problems with Frames .. 198
Remote Scripting Methods ... 198

Using iframe .. 199
Example: Autoforms ... 206
Hidden Cookie Updates ... 219

vClick here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

Example: Name Resolution .. 220
XMLHTTP .. 225
Example: Checking Usernames ... 228
Other Client-Server Options ... 237

Drawing Code from Servers .. 238
Example: Learning about Beer .. 238
Planning the DHTML Beer Pages ... 240
Generating the Starting Page from Data 241
Fetching HTML Fragments .. 243
Fetching and Running JavaScript .. 246

Summary ... 250

9. Communicating With The Server .. 251
Example: Managing Files .. 252

Specifying the File Manager ... 252
Planning the Technology .. 253
Listing Files and Folders ... 257
Server Control Commands ... 261
Implementing Drag-and-Drop .. 263
Expanding and Collapsing Lists .. 275

Using XML-RPC .. 277
Calling XML-RPC APIs .. 279
Example: Weblog Post Editor ... 280

Summary ... 286

10. DOM Alternatives: XPath ... 287
Introducing XPath ... 288

Applying XPath to XML ... 290
XPath Learning Resources .. 292

Example: Parsing RSS Feeds ... 292
About RSS 1.0 ... 293
Constructing Simple XPaths ... 295
Adding XML Namespaces .. 296
Designing the Blogroll .. 297
Building the Scripts .. 301

Summary ... 304
Index ... 305

Click here to order the printed 318-page book now (we deliver worldwide)!vi

DHTML Utopia

http://www.sitepoint.com/launch/150d2e

Introduction
In a single decade, the Web has evolved from a simple method of delivering
technical documents to an essential part of daily life, making and breaking rela-
tionships and fortunes along the way. “Looking something up on the Internet,”
by which is almost always meant the Web, is now within reach of almost anyone
living in a first-world country, and the idea of conducting conversations and
business (and probably orchestras) in your Web browser is no longer foreign, but
part of life.

As Joe Average grows more used to the technology, he demands more: more in-
formation, more ease-of-use, more functionality, more interactivity. And here we
are, ready to provide, because he (and we) wants it, and because it’s fun. (One
of those fortunes mentioned earlier wouldn’t go amiss, either.) As the Web be-
comes a major (if not the major) application development platform, there’s a
greater need to give Websites the flexibility and power that client-side applications
can provide. More importantly, even the simplest Website can benefit from a
little interactivity here and there—making it better, more responsive, or easier
to use. HTML, the workhorse, manages some of this; CSS adds a few more tricks
and a breadth of possibility for the designer. For true flexibility and interactivity,
though, we need scripting.

Browser scripting has a long, albeit rather undistinguished, history. From the
earliest popup boxes, through rollover images, and into scrolling status bars, it
has provided the means to add that touch of the dynamic—even if it wasn’t used
for anything very exciting. But, all the while, a quiet movement was building.
The JavaScript language was refined and made more powerful; the very building
blocks of the Website were made available for manipulation; the real communic-
ative strengths of the Web were given form and the potential for use. Modern
scripting—DOM scripting—is a quantum leap away from the way things were.

In this book, I’ll be explaining how you can get your hands dirty with all this
juicy scripting goodness, and make your sites truly come alive. From the first
moment in which you use JavaScript to examine the structure of the page that
contains that JavaScript, a huge vista of potential really does open up before you.
The techniques described in this book will help you make your sites more dynamic
and more usable. They’ll assist you to overcome browser limitations and add new
functions, and occasionally, to do one or two cool things.

Who Should Read This Book?
This book is aimed at people who have built Websites before. Although I’ll briefly
cover HTML and CSS, you should already have experience working with these
technologies. Some experience with JavaScript might also be useful, but it is by
no means critical: modern scripting techniques are sometimes quite different
than “old-style” JavaScript.

By the time you’ve read the whole book, you’ll have a clear understanding of
how to build your sites so that you can easily hook DHTML scripts into them;
you’ll know how to work in a cross-browser and cross-platform way; lastly, you
will understand the power and flexibility that can be brought to your sites through
DOM enhancements.

What’s In This Book?
The book comprises ten chapters. The chapters do build on one another, so if
this is your first time working with DOM techniques, you might want to read
them in order. Once you have some experience with the DOM, hopping around
to refresh your memory on various points may suit you best.

Chapter 1: DHTML Technologies
To successfully write DOM scripts, a few essential basics—which most readers
of this book will already know—are required. In this first chapter, I’ll quickly
run through the essentials of HTML, CSS, and JavaScript. This chapter is
worth reading, because it’s critical for good scripting that your HTML and
CSS are valid and well-structured; this chapter tells you what that means.

Chapter 2: The Document Object Model
DOM scripting requires a deep understanding of the DOM—the Document
Object Model—itself. Everything else builds on this knowledge. In this
chapter, I’ll explain what the DOM is, how it can be manipulated, and what
such manipulations make possible.

Chapter 3: Handling DOM Events
Events occur when the user does something with your HTML document:
clicks a link, loads a page, or moves the mouse. In order to make your sites
interactive—to react to user input—you will need to work with such events.
Here, I explain what events are, show how to attach your code to them, and
reveal some of the complexities inherent in DOM events.

Click here to order the printed 318-page book now (we deliver worldwide)!viii

Introduction

http://www.sitepoint.com/launch/150d2e

Chapter 4: Detecting Browser Features
Not every Web browser supports the features required to use DOM code ef-
fectively; those that do offer various levels of DOM support. Feature sniffing
is the name given to a set of techniques that have been designed to ensure
that your DOM code operates only in browsers that understand it; this
eradicates situations in which your sites work—but not as you expected!—and
avoids the dreaded JavaScript error box.

Chapter 5: Animation
Animation can be a key to improving a site’s usability; letting the user know
when something’s happening, or that something has changed, can enhance
the user experience, and be of great value to your site’s success. In this chapter,
I describe how to add animation to your pages using DOM scripting tech-
niques—and how to ensure that animation works across different browsers.

Chapter 6: Forms and Validation
Any reasonably-sized Website will contain at least a few forms to collect user
input. Scripting can provide some serious improvements to these forms: the
validation of user input, ease-of-use for users, the collection of better feedback,
and so on. Forms are built from HTML, like everything else, but the DOM
can be said to apply to them more than it does to other elements, because
forms have such a wide range of actions that you can manipulate in your
scripts.

Chapter 7: Advanced Concepts and Menus
In this chapter, we look at a more complex script: a multilevel animated drop-
down menu. The chapter describes the code required to build such a script,
pulling the techniques described in previous chapters together into a single,
real-world example that demonstrates how much power the DOM provides,
and how much easier it can be to work with than previous DHTML methods
for achieving the same tasks.

Chapter 8: Remote Scripting
While DOM scripting alone is an extremely useful tool, it can be made more
powerful still with a little assistance from the server. In this chapter, we ex-
plore how your scripts can retrieve dynamic content from the server, and in-
tegrate that content with the site, eliminating the need for constant page re-
freshes.

Chapter 9: Communicating With The Server
Communication with the server doesn’t mean simply that the server hands
out data. Your scripts can also pass data back, and engage in a real dialogue:

ixClick here to order the printed 318-page book now (we deliver worldwide)!

What’s In This Book?

http://www.sitepoint.com/launch/150d2e

sending back a “something interesting has happened!” message can make
your Websites work much more like real dynamic applications. This chapter
enlarges on the previous one, describing the full power that server communic-
ation can create.

Chapter 10: DOM Alternatives: XPath
JavaScript offers opportunities for more advanced work through its integration
with other technologies. In this final chapter, I describe two of those integra-
tions: using XPath to work with XML, and integrating your DOM scripts
with Flash.

Whither XHTML?
Some people may wonder why all the examples in this book are HTML 4.01
Strict. “Why are you using HTML?” they ask. “Why not XHTML? It’s all, y’know,
XML and stuff! It must be better.”

There is a reason: using XHTML can cause a lot of upgrade issues, particularly
with the DHTML that we use in this book.

If you choose XHTML, then you’re placed in a “complete upgrade or do nothing”
position. When XHTML is served to an ordinary browser, that browser will treat
your lovely XML-compliant XHTML as perfectly ordinary HTML, unless you
make a special effort to do things differently. XHTML treated as ordinary HTML
removes all the supposed benefits of XHTML; it’s not checked for well-formedness
by the browser, for example.

The special effort that you need to make is to change the MIME type with which
your Web server serves your XHTML document. By default, Web servers will
serve it as text/html, which means that it will be treated as “tag soup” HTML,
without enjoying any of the XHTML benefits, as mentioned above. Moreover,
Ian “Hixie” Hickson, who’s part of both the Mozilla and Opera teams as well as
the CSS working group, has laid out a set of objections[1] which states that
XHTML should not be served as text/html at all.

In order to have a browser treat your XHTML as XHTML (and thence as XML),
rather than as tag soup, it must be served with MIME type applica-
tion/xhtml+xml. Unfortunately, Internet Explorer (for one, and it’s not alone)
does not support XHTML documents served as application/xhtml+xml; it will

[1] http://www.hixie.ch/advocacy/xhtml

Click here to order the printed 318-page book now (we deliver worldwide)!x

Introduction

http://www.hixie.ch/advocacy/xhtml
http://www.sitepoint.com/launch/150d2e

give you a “download this document” dialog rather than displaying it in the
browser. That’s a disaster for most Web pages.

It’s possible to have the Web server detect whether the user’s browser can cope
with application/xhtml+xml and serve with an appropriate MIME type:
text/html for those browsers that do not support application/xhtml+xml.
(Remember that serving XHTML as text/html is wrong, according to Hixie’s
objections above.) But, even in those browsers that do support applica-
tion/xhtml+xml, and therefore parse your XHTML document as it should be
parsed, there are still other problems that take some getting around.

Here are a few examples. CSS in properly-parsed XHTML documents works
differently: selectors are case-sensitive, and setting backgrounds and the like on
the body doesn’t propagate those styles up to the document as it does in HTML
(the styles must be set on html instead).

Most importantly for this book, XHTML makes using DOM scripting pretty
awkward. The HTML collections document.images, document.forms,
document.links, and so on, do not exist in many browsers’ implementations of
the XHTML DOM. Arguably, one should avoid using these anyway in preparation
for XHTML later. Instead, you must use document.getElementsByTagName ap-
propriately. The element names in the DOM are also case-sensitive (and always
lowercase, since XML element names are lowercase and XHTML is XML). That
can be a bit of coding style trap. You also can’t use document.write at all, al-
though you probably should avoid it anyway, for reasons I’ll explain in this book.

These are not major problems, and if you’re into standards then most of these
issues won’t affect your code anyway, but a final issue remains: you can’t use
document.createElement to create new elements with the DOM. Instead, because
XHTML is XML, and therefore supports namespaces, you must create each ele-
ment specifically within the XHTML namespace. So, instead of using
document.createElement('a'), to create a new a element, you must use
document.createElementNS('http://www.w3.org/1999/xhtml', 'a').

Of course, you must only use document.createElementNS when your document
is being parsed as XHTML—not when it’s being parsed as HTML (as in Internet
Explorer)—so you’ll need to detect which case you’re dealing with, and change
what the script does appropriately.

In short, using XHTML right now provides very little in the way of benefits, but
brings with it a fair few extra complications. HTML 4.01 Strict is just as “valid”
as XHTML—XHTML did not replace HTML but sits alongside it. It’s just as
easy to validate an HTML 4.01 page as it is to validate an XHTML page. I’ve

xiClick here to order the printed 318-page book now (we deliver worldwide)!

Whither XHTML?

http://www.sitepoint.com/launch/150d2e

used HTML 4.01 Strict for all the examples in this book, and I recommend that
you use it, too.

Mark Pilgrim has written in more detail about using XHTML[2] and the problems
that lie therein. For this book, we’re sticking with tried-and-true HTML 4.01.

The Book’s Website
Located at http://www.sitepoint.com/books/dhtml1/, the Website supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note that most of the code listings are
labelled with filenames, and a number of references are made to the code archive.
This is a downloadable ZIP archive that contains complete code for all the ex-
amples presented in this book.

Updates and Errata
The Errata page on the book’s Website will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about DHTML. If you have a question about anything in this
book, the bes t p lace to go for a quick answer i s
http://www.sitepoint.com/forums/—SitePoint’s vibrant and knowledgeable com-
munity.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

[2] http://www.xml.com/pub/a/2003/03/19/dive-into-xml.html

Click here to order the printed 318-page book now (we deliver worldwide)!xii

Introduction

http://www.xml.com/pub/a/2003/03/19/dive-into-xml.html
http://www.sitepoint.com/books/dhtml1/
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/150d2e

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of Web development. The long-running Site-
Point Tribune is a biweekly digest of the business and moneymaking aspects of
the Web. Whether you’re a freelance developer looking for tips to score that
dream contract, or a marketing major striving to keep abreast of changes to the
major search engines, this is the newsletter for you. The SitePoint Design View is
a monthly compilation of the best in Web design. From new CSS layout methods
to subtle PhotoShop techniques, SitePoint’s chief designer shares his years of
experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact me for
any other reason, the best place to write is books@sitepoint.com. We have a
well-manned email support system set up to track your inquiries, and if our
support staff are unable to answer your question, they send it straight to me.
Suggestions for improvement as well as notices of any mistakes you may find are
especially welcome.

Acknowledgements
The two Simons, Simon Mackie, my editor, and Simon Willison, my expert re-
viewer, deserve quite an enormous vote of thanks. This book would not be any-
where near as good as it is without them.

I’d also like to raise a hand to the Web development community: there are people
everywhere diving into these new technologies with gusto, establishing guidelines,
making discoveries, and revealing hitherto unsuspected truths about how cool
all this stuff is. Keep it up. We’re fixing the world, and I’m proud to be a part of
it.

xiiiClick here to order the printed 318-page book now (we deliver worldwide)!

Your Feedback

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/150d2e

xiv

DHTML Technologies1
The White Rabbit put on his spectacles. ‘Where shall I begin, please your Majesty?’ he
asked. ‘Begin at the beginning,’ the King said gravely, ‘and go on till you come to the end:
then stop.’
—Lewis Carroll, Alice’s Adventures in Wonderland

Dynamic HTML, called DHTML for short, is the name given to a set of Web
development techniques that are mostly used in Web pages that have non-trivial
user-input features. DHTML means manipulating the Document Object Model
of an HTML document, fiddling with CSS directives in style information, and
using client-side JavaScript scripting to tie everything together.

In this introductory chapter, I’ll provide a brief overview of some of the things
you’ll need to know about: the building blocks that make up DHTML Websites.
You’ll find it useful reading if you need to refresh your memory. If you already
know all these details, you might want to flick through the chapter anyway; you
may even be a little surprised by some of it. In the coming pages, we’ll come to
understand that DHTML is actually a combination of proper HTML for your
content, Cascading Style Sheets for your design, and JavaScript for interactivity.
Mixing these technologies together can result in a humble stew or a grandiose
buffet. It’s all in the art of cooking, so let’s start rattling those pots and pans!

HTML Starting Points
Websites are written in HTML. If you’re reading this book, you’ll almost certainly
know what HTML is and will probably be at least somewhat experienced with
it. For a successful DHTML-enhanced Website, it’s critical that your HTML is
two things: valid and semantic. These needs may necessitate a shift away from
your previous experiences writing HTML. They may also require a different ap-
proach than having your preferred tools write HTML for you.

Step up to Valid HTML
A specific set of rules, set out in the HTML recommendation[1], dictate how
HTML should be written. HTML that complies with these rules is said to be
“valid.” Your HTML needs to be valid so that it can be used as a foundation on
which you can build DHTML enhancements. While the set of rules is pretty
complex, you can ensure that your HTML is valid by following a few simple
guidelines.

Correctly Nest Tags

Don’t let tags “cross over” one another. For example, don’t have HTML that
looks like the snippet shown below:

Here is some bold and italic text.

Here, the and tags cross over one another; they’re incorrectly
nested. Nesting is extremely important for the proper use of DHTML. In later
chapters of this book, we’ll study the DOM tree, and the reasons why incorrect
nesting causes problems will become clear. For now, simply remember that if you
cross your tags, each browser will interpret your code in a different way, according
to different rules (rather than according to the standard). Any hope of your being
able to control the appearance and functionality of your pages across browsers
goes right out the window unless you do this right.

Close Container Tags

Tags such as or <p>, which contain other items, should always be closed
with or </p>, or the appropriate closing tag. It’s important to know
which tags contain things (e.g. text or other tags) and to make sure you close

[1] http://www.w3.org/TR/html4/

Click here to order the printed 318-page book now (we deliver worldwide)!2

Chapter 1: DHTML Technologies

http://www.w3.org/TR/html4/
http://www.sitepoint.com/launch/150d2e

them. <p>, for example, doesn’t mean “put a paragraph break here,” but “a
paragraph begins here,” and should be paired with </p>, “this paragraph ends
here.”1 The same logic applies to tags as well.

Always Use a Document Type

A document type (or DOCTYPE) describes the dialect of HTML that’s been
used; there are several different options. In this book, we’ll use the dialect called
HTML 4.01 Strict.2 Your DOCTYPE, which should appear at the very top of
every HTML page, should look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

That information can be typed on a single line, or with a line break after EN”.
Don’t worry, for the moment, about what this means: just be sure to place it at
the top of every page. The article Fix Your Site With the Right DOCTYPE![2],
published on A List Apart[3], lists all the DOCTYPEs you might want to use,
and why you’d need to use them at all. I visit that article all the time to cut and
paste the one I need!

Validate your Page

The most important page creation step is to check that your HTML is valid.
There are numerous tools that you can download and run on your own computer
to test your code’s validity—some HTML editors even have such tools built in—or
you can use one of the many online validators, the most common of which is the
W3C’s own validator[4]. A validator will tell you how you need to adjust your
HTML in order to make it compatible with DHTML techniques. The ultimate
reference for what constitutes valid HTML is the HTML recommendation[5].
It’s complex and detailed, but if you have any questions about how HTML should
be written, or whether a tag really exists, you’ll find the answers there. As men-
tioned above, browsers rely on a standard that describes how validated HTML

1Those who know what they’re doing with container tags will be aware that HTML 4.01 does not
actually require that all container tags are closed (though XHTML still does). However, it’s never
invalid to close a container tag, though it is sometimes invalid to not do so. It’s considerably easier
to just close everything than it is to remember which tags you’re allowed to leave open.
2If you’re thinking, “but I want to use XHTML!” then I bet you already know enough about DOC-
TYPEs to use them properly.
[2] http://www.alistapart.com/articles/doctype/
[3] http://www.alistapart.com/
[4] http://validator.w3.org/
[5] http://ww.w3.org/TR/html4/

3Click here to order the printed 318-page book now (we deliver worldwide)!

Always Use a Document Type

http://www.alistapart.com/articles/doctype/
http://www.alistapart.com/
http://validator.w3.org/
http://ww.w3.org/TR/html4/
http://www.sitepoint.com/launch/150d2e

should be interpreted. However, there are no standards to describe how invalid
HTML should be interpreted; each browser maker has established their own rules
to fill that gap. Trying to understand each of these rules would be difficult and
laborious, and you have better things to do with your time. Sticking to valid
HTML means that any problems you find are deemed to be bugs in that
browser—bugs that you may be able to work around. Thus, using valid HTML
gives you more time to spend with your family, play snooker, etc. which, if you
ask me, is a good reason to do it.

Step up to Semantic HTML
In addition to its validity, your HTML should be semantic, not presentational.
What this means is that you should use HTML tags to describe the nature of an
element in your document, rather than the appearance of that element. So don’t
use a <p> tag if you mean, “put a blank line here.” Use it to mean, “a paragraph
begins here” (and place a </p> at the end of that paragraph). Don’t use
<blockquote> to mean, “indent this next bit of text.” Use it to mean, “this block
is a quotation.” If you mark up your HTML in this way, you’ll find it much
easier to apply DHTML techniques to it further down the line. This approach is
called semantic markup—a fancy way of saying, “uses tags to describe meaning.”

Let’s look at a few example snippets. First, imagine your Website has a list of
links to different sections. That list should be marked up on the basis of what it
is: a list. Don’t make it a set of <a> tags separated by
 tags; it’s a list, so it
should be marked up as such, using and tags. It might look something
like this:

 Home
 About this Website
 Contact details

You’ll find yourself using the tag a lot. Many of the items within a Website
are really lists: a breadcrumb trail is a list of links, a menu structure is a list of
lists of links, and a photo gallery is a list of images.

Similarly, if your list contains items with which comments are associated, maybe
it should be marked up as a definition list:

<dl>
 <dt>Home</dt>
 <dd>Back to the home page</dd>

Click here to order the printed 318-page book now (we deliver worldwide)!4

Chapter 1: DHTML Technologies

http://www.sitepoint.com/launch/150d2e

 <dt>About this Website</dt>
 <dd>Why this site exists, how it was set up, and who did it
 </dd>
 <dt>Contact details</dt>
 <dd>Getting in contact with the Webmaster: email addresses
 and phone numbers</dd>
</dl>

Remember: the way your page looks isn’t really relevant. The important part is
that the information in the page is marked up in a way that describes what it is.
There are lots of tags in HTML; don’t think of them as a way to lay out inform-
ation on your page, but as a means to define what that information means.

If you don’t use HTML to control the presentation of your pages, how can you
make them look the way you want them to? That’s where Cascading Style Sheets
come in.

Adding CSS
Cascading Style Sheets (CSS) is a technique that allows you to describe the
presentation of your HTML. In essence, it allows you to state how you want each
element on your page to look. An element is a piece of HTML that represents
one thing: one paragraph, one heading, one image, one list. Elements usually
correspond to a particular tag and its content. When CSS styles are used, DHTML
pages can work on the appearance and the content of the page independently.
That’s a handy and clean separation. If you want to look good, you need to learn
how to dress up and go to the gym regularly!

A Simple CSS Example
Imagine you want your main page heading (an <h1> tag) to be displayed in big,
red, centered text. You should specify that in your style sheet as follows:

h1 {
 font-size: 300%;
 color: #FF0000;
 text-align: center;
}

See the section called “Further Reading” at the end of this chapter for some links
to introductory tutorials on CSS, which should help if the above lines don’t make
a lot of sense to you.

5Click here to order the printed 318-page book now (we deliver worldwide)!

Adding CSS

http://www.sitepoint.com/launch/150d2e

Here’s a simple HTML page before and after these styles have been applied:

Figure 1.1. That HTML’s stylin’!

The key point here is to remove the presentation aspects from your HTML and
put them into your style sheet. If , for example, you made your page heading
bigger by putting tags in your HTML, then you’d need to paste those
tags into every page on which a header was used. By making your HTML semantic
and moving the page’s presentation into CSS, you can control the look of headings
across the whole site through a single style sheet. This makes your job as Website
developer much easier.

Of course, it’s not quite as easy as that. Although the full definition of CSS allows
you to do some fairly amazing things, and to control the presentation of your
pages to a high degree, not every browser supports everything that CSS has to
offer.

Click here to order the printed 318-page book now (we deliver worldwide)!6

Chapter 1: DHTML Technologies

http://www.sitepoint.com/launch/150d2e

In order to know about the differences in browser support for CSS, you need to
know what CSS can do. There are two sorts of browser incompatibilities: things
that a given browser doesn’t implement, and things that it implements incorrectly.
Occasionally, browsers add their own “special features” as well, but we won’t be
worried about those in this book.

Missing implementations are relatively easy to deal with: don’t rely on such rules
if you want your CSS to work in browsers that have failed to implement them.
This can be a pain, especially since the most commonly used browser in the world,
Internet Explorer for Windows, has some serious holes in its CSS support; how-
ever, this “solution” is often a necessary compromise. Learning which rules you
can and can’t use is one of the steps on the path to CSS guru-hood.

Badly implemented standards are a bigger problem. In such cases, the browser
gets it wrong. Another step to CSS guru-hood is understanding exactly what each
browser does wrong, and how you can work around those failings. You don’t
need that knowledge to start with, though: you’ll pick it up as you go along.
Workarounds for CSS bugs in different browsers are usually achieved using CSS
hacks. These hacks take advantage of the bugs in a browser’s CSS parser to de-
liver it specific style sheet directives that work around its poor implementation
of the standards. A huge variety of these CSS hacks is documented for each
browser in various places around the Web; see the section called “Further Reading”
for more.

Learning to understand and adapt to the vagaries of CSS handling in various
browsers is part of the work that’s required to use CSS effectively. While it can
be a lot of work, many CSS bugs only become apparent with the complex use of
this technology; most CSS is handled perfectly across platforms and browsers
without the need for hacks or complex tests.

While CSS is powerful, it doesn’t quite give us true flexibility in presentation.
The capabilities of CSS increase all the time, and more “interactive” features are
constantly being added to the CSS specification. However, it’s not designed for
building truly interactive Websites. For that, we need the final building block of
DHTML: JavaScript.

Adding JavaScript
JavaScript is a simple but powerful programming language. It’s used to add dy-
namic behavior to your Website—the D in DHTML. HTML defines the page’s
structure, and CSS defines how it looks, but actions, the things that happen when

7Click here to order the printed 318-page book now (we deliver worldwide)!

Adding JavaScript

http://www.sitepoint.com/launch/150d2e

you interact with the page—by clicking a button, dragging an image, or moving
the mouse—are defined in JavaScript. JavaScript works with the Document Object
Model, described in the next chapter, to attach actions to different events
(mouseovers, drags, and clicks). We’re not going to describe all the gory JavaScript
syntax in detail here—the section called “Further Reading” has some links to a
few JavaScript tutorials if you need them.

A Simple JavaScript Example
Here’s a simple piece of JavaScript that converts a text field’s value to uppercase
when the user tabs out of the field. First let’s see the old, bad way of doing it:

File: oldlisteners.html (excerpt)

<input id="street" type="text"
 onchange="this.value = this.value.toUpperCase();">

In this book, we’ll recommend a more modern technique. First, the HTML:

File: newlisteners.html (excerpt)

<input id="street" type="text">

Second, the JavaScript, which is usually located in the <head> part of the page:

File: newlisteners.html (excerpt)

<script type="text/javascript">
function uppercaseListener() {
 this.value = this.value.toUpperCase();
}

function installListeners() {
 var element = document.getElementById('street');
 element.addEventListener('change', uppercaseListener, false);
}

window.addEventListener('load', installListeners, false);
</script>

The first function does the work of converting the text. The second function
makes sure that the first is connected to the right HTML tag. The final line per-
forms this connection once the page has loaded in full. Although this means more
code, notice how it keeps the HTML content clean and simple. In future chapters,
we’ll explore this kind of approach a lot. Don’t worry about the mechanics too
much for now—there’s plenty of time for that!

Click here to order the printed 318-page book now (we deliver worldwide)!8

Chapter 1: DHTML Technologies

http://www.sitepoint.com/launch/150d2e

Get Some Tools!
A good JavaScript development environment makes working with JavaScript far
easier than it would otherwise be. Testing pages in Internet Explorer (IE) can
leave something to be desired; if your page generates JavaScript errors (as it will
do all the time while you’re building it!), IE isn’t likely to be very helpful at dia-
gnosing where, or what, they are. The most useful, yet simple, tool for JavaScript
debugging is the JavaScript Console in Mozilla or Mozilla Firefox. This console
will clearly display where any JavaScript error occurs on your page, and what that
error is. It’s an invaluable tool when building JavaScript scripts. Mozilla Firefox
works on virtually all platforms, and it’s not a big download; it also offers better
support for CSS than Internet Explorer, and should be part of your development
toolkit. Beyond this, there’s also the JavaScript debugger in Mozilla, which is
named Venkman; if you’re the sort of coder who has worked on large projects in
other languages and are used to a debugger, Venkman can be useful, but be aware
that it takes a bit of setting up. In practice, though, when you’re enhancing your
site with DHTML, you don’t need anything as complex as a debugger; the
JavaScript Console and judicious use of alert statements to identify what’s going
on will help you through almost every situation.

Another tool that’s definitely useful is a good code editor in which to write your
Website. Syntax highlighting for JavaScript is a really handy feature; it makes
your code easier to read while you’re writing it, and quickly alerts you when you
leave out a bracket or a quote. Editors are a very personal tool, and you might
have to kiss a fair few frogs before you find your prince in this regard, but a good
editor will seriously speed and simplify your coding work. Plenty of powerful,
customizable editors are available for free, if you don’t already have a preferred
program. But, if you’re currently writing code in Windows Notepad, have a look
at what else is available to see if any other product offers an environment that’s
more to your liking. You’ll want syntax highlighting, as already mentioned; a way
to tie in the external validation of your pages is also useful. Textpad[6] and
Crimson Editor[7] are free, Windows-based editors that cover the basics if you’re
developing on a Windows platform; Mac users tend to swear by BBEdit[8]; Linux
users have gedit or Kate or vim to do the basics, and there’s always Emacs.

JavaScript is the engine on which DHTML runs. DHTML focuses on manipulating
your HTML and CSS to make your page do what the user wants, and it’s Java-

[6] http://www.textpad.com/
[7] http://www.crimsoneditor.com/
[8] http://www.barebones.com/

9Click here to order the printed 318-page book now (we deliver worldwide)!

Get Some Tools!

http://www.textpad.com/
http://www.crimsoneditor.com/
http://www.barebones.com/
http://www.sitepoint.com/launch/150d2e

Script that effects that manipulation. Through the rest of this book, we’ll explore
that manipulation in more and more detail.

Further Reading
Try these links if you’re hungry for more on CSS itself.

http://www.sitepoint.com/article/css-is-easy
SitePoint’s easy introduction to the world of CSS is a great place to start.

http://www.w3schools.com/css/
W3Schools’ CSS tutorials are helpful whether you’re learning, or simply
brushing up on your knowledge of CSS.

http://www.csszengarden.com/
The CSS Zen Garden is a marvelous demonstration of the power of Cascading
Style Sheets alone. It has a real wow factor!

http://centricle.com/ref/css/filters/
This comprehensive list of CSS hacks shows you which browsers will be af-
fected by a given hack, if you need to hide certain CSS directives (or deliver
certain directives) to a particular browser.

http://www.positioniseverything.net/
This site demonstrates CSS issues in various browsers and explains how to
work around them.

http://www.css-discuss.org/
The CSS-Discuss mailing list is “devoted to talking about CSS and ways to
use it in the real world; in other words, practical uses and applications.” The
associated wiki[15] is a repository of useful tips and tricks.

http://www.sitepoint.com/books/
If you’re after something more definitive, SitePoint’s book, HTML Utopia:
Designing Without Tables Using CSS[17] is a complete guide and reference for
the CSS beginner. The CSS Anthology: 101 Tips, Tricks & Hacks[18] is a perfect
choice if you prefer to learn by doing.

[15] http://css-discuss.incutio.com/
[17] http://www.sitepoint.com/books/css1/
[18] http://www.sitepoint.com/books/cssant1/

Click here to order the printed 318-page book now (we deliver worldwide)!10

Chapter 1: DHTML Technologies

http://www.sitepoint.com/article/css-is-easy
http://www.w3schools.com/css/
http://www.csszengarden.com/
http://centricle.com/ref/css/filters/
http://www.positioniseverything.net/
http://www.css-discuss.org/
http://css-discuss.incutio.com/
http://css-discuss.incutio.com/
http://www.sitepoint.com/books/
http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/books/cssant1/
http://www.sitepoint.com/launch/150d2e

A lot of tutorials on the Web cover JavaScript. Some explore both DHTML and
the DOM, while others do not; you should try to find the former.

http://www.sitepoint.com/article/javascript-101-1
This tutorial provides an introduction to the basics of JavaScript for the total
non-programmer. Some of the techniques presented in this article aren’t as
modern as the alternatives presented in this book, but you’ll get a good feel
for the language itself.

http://www.quirksmode.org/
Peter-Paul Koch’s list of JS techniques and scripts covers a considerable
amount of ground in this area.

Summary
In this chapter, we’ve outlined the very basic building-blocks of DHTML: what
HTML really is, how to arrange and display it in your documents using CSS, and
how to add interactivity using JavaScript. Throughout the rest of this book, we’ll
look at the basic techniques you can use to start making your Websites dynamic,
then move on to discuss certain advanced scripting techniques that cover specific
areas. On with the show!

11Click here to order the printed 318-page book now (we deliver worldwide)!

Summary

http://www.sitepoint.com/article/javascript-101-1
http://www.quirksmode.org/
http://www.sitepoint.com/launch/150d2e

12

The Document Object Model2
One day someone came in and observed, on the paper sticking out of one of the Teletypes,
displayed in magnificent isolation, this ominous phrase:

values of will give rise to dom!

…the phrase itself was just so striking! Utterly meaningless, but it looks like what… a
warning? What is “dom?”
—Dennis M. Richie[1]

A Web page is a document. To see that document, you can either display it in
the browser window, or you can look at the HTML source. It’s the same document
in both cases. The World Wide Web Consortium’s Document Object Model
(DOM) provides another way to look at that same document. It describes the
document content as a set of objects that a JavaScript program can see. Naturally,
this is very useful for DHTML pages on which a lot of scripting occurs. (The
quote above is a pure coincidence—it’s from the days before the Web!)

According to the World Wide Web Consortium[2], “the Document Object
Model is a platform- and language-neutral interface that will allow programs and
scripts to dynamically access and update the content, structure and style of doc-

[1] http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
[2] http://www.w3.org/DOM/#what

http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
http://www.w3.org/DOM/#what

uments. The document can be further processed and the results of that processing
can be incorporated back into the presented page.” This statement basically says
that the DOM is not just a novelty—it is useful for doing things. In the coming
pages, we’ll take a brief look at the history of the DOM before investigating more
deeply what it is and how we can use it. We’ll finish up with some example scripts
that demonstrate the power of this critical aspect of DHTML.

The Origins of the DOM
In Netscape Navigator 2, Netscape Communications introduced JavaScript (briefly
called LiveScript), which gave Web developers scripting access to elements in
their Web pages—first to forms, then, later, to images, links, and other features.
Microsoft implemented JavaScript in Internet Explorer 3 (although they called
it JScript) in order to keep up with Netscape.

By version 4, the two browsers had diverged significantly in terms of their respect-
ive feature sets and the access they provided to page content. Each browser
manufacturer implemented its own proprietary means of providing scripting access
to layers. Scripts that wanted to work in both browsers needed to contain code
for each method. The ill-fated “browser wars” were all about these proprietary
extensions to the Web, as each manufacturer strove to attract more developers
to its platform through the lure of new features. There was little regard for cross-
browser compatibility, although Microsoft copied and supported most of the
early innovations made by Netscape.

While all this was taking place, the W3C developed a specification for the Doc-
ument Object Model Level 1, which outlined a generic and standard method to
access the various parts of an XML document using script. Since HTML can be
thought of as a dialect of XML, the DOM Level 1 spec applied to HTML as well.

Both major browser manufacturers implemented the DOM Level 1 specification:
in Internet Explorer 5 and in Netscape 6. The previously existing proprietary
specifications were retrospectively titled; since the new standard was DOM Level
1, those old and now deprecated methods were called DOM Level 0. (Since then,
the W3C has also released the DOM Level 2 and DOM Level 3 specifications,
which add more features and are broken into separate modules.) There’s no
formal DOM Level 0 standard, though.

What is the DOM?
So, you know what the DOM used to be. Now let’s discuss what it is.

Click here to order the printed 318-page book now (we deliver worldwide)!14

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

Essentially, the DOM provides access to the structure of an HTML page by
mapping the elements in that page to a tree of nodes. Each element becomes an
element node, and each bit of text becomes a text node. Take this HTML snippet,
for example:

<body>
 <p>
 This is a paragraph, containing

 a link

 in the middle.
 </p>

 This item has

 some emphasized text

 in it.

 This is another list item.

</body>

I added lots of extra indenting so that you can compare this snippet with the
matching DOM tree. Don’t do that in real life—I’m just trying to make things
clearer in this case. The matching DOM tree is shown in Figure 2.1.

As you can see, the a element, which is located inside the p element in the HTML,
becomes a child node, or just child, of the p node in the DOM tree. (Symmet-
rically, the p node is the parent of the a node. The two li nodes, children of the
same parent, are called sibling nodes or just siblings.)

Notice that the nesting level of each tag in the HTML markup matches the
number of lines it takes to reach the same item in the DOM tree. For example,
the <a> tag is nested twice inside other tags (the <p> and <body> tags), so the a
node in the tree is located two lines from the top.

15Click here to order the printed 318-page book now (we deliver worldwide)!

What is the DOM?

http://www.sitepoint.com/launch/150d2e

Figure 2.1. An example of a DOM tree.

The Importance of Valid HTML
From this last example, we can see more clearly why valid HTML, including
properly nested elements, is important. If elements are improperly nested, prob-
lems arise. Take the following line:

These elements are badly nested.

The DOM tree that results from this incorrectly nested code won’t be a tree at
all: it would need to be malformed in order to express the invalid element layout
that this HTML requests. Each browser fixes malformed content in a different
way, which can generate such horrors as an element that is its own parent node.
Keeping your HTML valid avoids all these problems.

Walking DOM Trees
Trees of nodes turn up a lot in computing, because, among other things, they
have a very useful property: it’s easy to “walk the tree” (that is, to iterate through

Click here to order the printed 318-page book now (we deliver worldwide)!16

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

every one of the tree’s nodes in order) with very little code. Walking a tree is
easy because any element node can be considered as the top of its own little tree.
Therefore, to walk through a tree, you can use a series of steps, for example:

1. Do something with the node we’re looking at

2. Does this node have children? If so:

3. For each of the child nodes, go to step 1

This process is known as recursion, and is defined as the use of a function that
calls itself. Each child is the same type of thing as the parent and can therefore
be handled in the same way. We don’t do much with recursion ourselves, but we
rely quite heavily on the browser recursing through the page’s tree. It’s especially
useful when it comes time to work with events, as we’ll see in Chapter 3.

Finding the Top of the Tree
In order to walk the DOM tree, you need a reference to the node at its top: the
root node. That “reference” will be a variable that points to the root node. The
root node should be available to JavaScript as document.documentElement. Not
all browsers support this approach, but fortunately it doesn’t matter, because
you’ll rarely need to walk through an entire document’s DOM tree starting from
the root. Instead, the approach taken is to use one of the getElementsByWhatever
methods to grab a particular part of the tree directly. Those methods start from
the window.document object—or document for short.

Getting an Element from the Tree
There are two principal methods that can be used to get a particular element or
set of elements. The first method, which is used all the time in DHTML program-
ming, is getElementById. The second is getElementsByTagName. Another
method, getElementsByName, is rarely used, so we’ll look at the first two only
for now.

getElementById

In HTML, any element can have a unique ID. The ID must be specified with
the HTML id attribute:

<div id="codesection">
 <p id="codepara">

17Click here to order the printed 318-page book now (we deliver worldwide)!

Finding the Top of the Tree

http://www.sitepoint.com/launch/150d2e

 </p>

 <a href="http://www.sitepoint.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Each non-list element in that snippet has been given an ID. You should be able
to spot four of them. IDs must be unique within your document—each element
must have a different ID (or no ID at all)—so you can know that a specific ID
identifies a given element alone. To get a reference to that element in JavaScript
code, use document.getElementById(elementId):

var sitepoint_link = document.getElementById('splink')

Now the variable sitepoint_link contains a reference to the first <a> tag in the
above HTML snippet. We’ll see a little later what you can do with that element
reference. The DOM tree for this snippet of HTML is depicted in Figure 2.2.

Figure 2.2. The snippet’s DOM tree.

Click here to order the printed 318-page book now (we deliver worldwide)!18

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

getElementsByTagName

The document.getElementsByTagName method is used to retrieve all elements
of a particular type. The method returns an array1 that contains all matching
elements:

var all_links = document.getElementsByTagName('a');
var sitepoint_link = all_links[0];

The all_links variable contains an array, which contains two elements: a refer-
ence to the SitePoint link, and a reference to the Yahoo! link. The elements are
returned in the order in which they are found in the HTML, so all_links[0]
is the SitePoint link and all_links[1] is the Yahoo! link.

Note that document.getElementsByTagName always returns an array, even if
only one matching element was found. Imagine we use the method as follows:

var body_list = document.getElementsByTagName('body');

To get a reference to the sole body element in this case, we would need to use
the following:

var body = body_list[0];

We would be very surprised if body_list.length (the array’s size) was anything
other than 1, since there should be only one <body> tag! We could also shorten
the process slightly by replacing the previous two lines with this one:

var body = document.getElementsByTagName('body')[0];

JavaScript allows you to collapse expressions together like this. It can make your
code a lot more compact, and save you from declaring a lot of variables which
aren’t really used for anything.

There is another useful feature; getElementsByTagName is defined on any node
at all, not just the document. So, to find all <a> tags in the body of the document,
we could use the method like this:

var links_in_body = body.getElementsByTagName('a');

1Technically, it returns a node collection, but this works just like an array.

19Click here to order the printed 318-page book now (we deliver worldwide)!

getElementsByTagName

http://www.sitepoint.com/launch/150d2e

Note that “Element” is plural in this method’s name, but singular for
getElementById. This is a reminder that the former returns an array of elements,
while the latter returns only a single element.

Walking from Parents to Children
Each node has one parent (except the root element) and may have multiple
children. You can obtain a reference to a node’s parent from its parentNode
property; a node’s children are found in the node’s childNodes property, which
is an array. The childNodes array may contain nothing if the node has no children
(such nodes are called leaf nodes).

Suppose the variable node points to the ul element of the DOM tree. We can
get the node’s parent (the div element) like this:

parent = node.parentNode;

We can check if the unordered list has any list items (children) by looking at the
length property of the childNodes array:

if (node.childNodes.length == 0) {
 alert('no list items found!');
}

If there are any children, their numbering starts at zero. We can obtain the second
child in our example HTML (an li element) as follows:

list_item = node.childNodes[1];

For the special case of the first child, located here:

list_item = node.childNodes[0];

we can also use this shorthand:

child = node.firstChild;

Similarly, the last child (in this case, the second li) has its own special property:

child = node.lastChild;

We’ll see all these properties used routinely through the rest of this book.

Click here to order the printed 318-page book now (we deliver worldwide)!20

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

What to do with Elements
Now you know how to get references to elements—the nodes in your HTML
page. The core of DHTML—the D-for-dynamic bit—lies in our ability to change
those elements, to remove them, and to add new ones. Throughout the rest of
this chapter, we’ll work with the following code snippet, which we saw earlier:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.sitepoint.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Changing Element Attributes
Every property of an element, and every CSS style that can be applied to it, can
be set from JavaScript. The attributes that can be applied to an element in
HTML—for example, the href attribute of an <a> tag—can also be set and read
from your scripts, as follows:

// using our sitepoint_link variable from above
sitepoint_link.href = "http://www.google.com/";

Click on that link after the script has run, and you’ll be taken to Google rather
than SitePoint. The new HTML content, as it exists in the browser’s imagination
(the HTML file itself hasn’t changed), looks like this:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.google.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

21Click here to order the printed 318-page book now (we deliver worldwide)!

What to do with Elements

http://www.sitepoint.com/launch/150d2e

Each element has a different set of attributes that can be changed: a elements
have the href attribute, elements have the src attribute, and so on. In
general, an attribute that can be applied to a tag in your HTML is also gettable
and settable as a property on a node from JavaScript. So, if our code contains a
reference to an img element, we can change the image that’s displayed by altering
the img_element.src property.2

The two most useful references that document elements and their supported at-
tributes are those provided by the two major browser makers: the Microsoft DOM
reference[3], and the Mozilla Foundation’s DOM reference[4].

Importantly, though, when we altered our link’s href above, all we changed was
the destination for the link. The text of the link, which read “SitePoint” before,
has not changed; if we need to alter that, we have to do so separately. Changing
the text in a page is slightly more complex than changing an attribute; to alter
text, you need to understand the concept of text nodes.

Changing Text Nodes
In Figure 2.1 above, you can see how the HTML in a document can be represented
as a DOM tree. One of the important things the figure illustrates is that the text
inside an element is not part of that element. In fact, the text is in a different
node: a child of the element node. If you have a reference to that text node, you
can change the text therein using the node’s nodeValue property:

myTextNode.nodeValue = "Some text to go in the text node";

How can we get a reference to that text node? We need to walk the DOM
tree—after all, we have to know where the text node is before we can alter it. If
we consider the sitepoint_link node above, we can see that its childNodes
array should contain one node: a text node with a nodeValue of "SitePoint".
We can change the value of that text node as follows:

sitepoint_link.childNodes[0].nodeValue = 'Google';

2One notable divergence from this rule is that an element’s class attribute in HTML is available
in JavaScript as node.className, not node.class. This is because “class” is a JavaScript re-
served word.
[3] http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
[4] http://www.mozilla.org/docs/dom/domref/

Click here to order the printed 318-page book now (we deliver worldwide)!22

Chapter 2: The Document Object Model

http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
http://www.mozilla.org/docs/dom/domref/
http://www.sitepoint.com/launch/150d2e

Now, the text displayed on-screen for that link will read Google, which matches
the link destination that we changed earlier. We can shorten the code slightly to
the following:

sitepoint_link.firstChild.nodeValue = 'Google';

You may recall that a node’s firstChild property, and childNodes[0], both
refer to the same node; in this case, you can substitute childNodes[0] with
success. After this change, the browser will see the following document code:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.google.com/" id="splink"
 >Google
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Changing Style Properties
As we have seen, the attributes that are set on an HTML tag are available as
properties of the corresponding DOM node. CSS style properties can also be
applied to that node through the DOM, using the node’s style property. Each
CSS property is a property of that style property, with its name slightly trans-
formed: a CSS property in words-and-dashes style becomes a property of style
with dashes removed and all words but the first taking an initial capital letter.
This is called InterCaps format. Here’s an example. A CSS property that was
named:

some-css-property

would appear to a script as the following JavaScript property:

someCssProperty

So, to set the CSS property font-family for our sitepoint_link element node,
we’d use the following code:

sitepoint_link.style.fontFamily = 'sans-serif';

23Click here to order the printed 318-page book now (we deliver worldwide)!

Changing Style Properties

http://www.sitepoint.com/launch/150d2e

CSS values in JavaScript are almost always set as strings; some values, such as
font-size, are strings because they must contain a dimension3, such as “px” or
“%”. Only entirely numeric properties, such as z-index (which is set as
node.style.zIndex, as per the above rule) may be set as a number:

sitepoint_link.style.zIndex = 2;

Many designers alter style properties to make an element appear or disappear.
In CSS, the display property is used for this: if it’s set to none, the element
doesn’t display in the browser. So, to hide an element from display, we can set
its display property to none:

sitepoint_link.style.display = 'none';

To show it again, we give it another valid value:

sitepoint_link.style.display = 'inline';

For a complete reference to the available CSS style properties and what each
does, see SitePoint’s HTML Utopia: Designing Without Tables Using CSS[5].

Bigger DOM Tree Changes
The next level of DOM manipulation, above and beyond changing the properties
of elements that are already there, is to add and remove elements dynamically.
Being able to change the display properties of existing elements, and to read and
alter the attributes of those elements, puts a lot of power at your disposal, but
the ability to dynamically create or remove parts of a page requires us to leverage
a whole new set of techniques.

Moving Elements
To add an element, we must use the appendChild method of the node that will
become the added node’s parent. In other words, to add your new element as a
child of an existing node in the document, we use that node’s appendChild
method:

3Internet Explorer will let you get away without using a dimension, as it assumes that a dimensionless
number is actually a pixel measurement. However, do not try to take advantage of this assumption;
it will break your code in other browsers, and it’s in violation of the specification.
[5] http://www.sitepoint.com/books/css1/

Click here to order the printed 318-page book now (we deliver worldwide)!24

Chapter 2: The Document Object Model

http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/launch/150d2e

// We'll add the link to the end of the paragraph
var para = document.getElementById('codepara');
para.appendChild(sitepoint_link);

After this, our page will look a little odd. Here’s the updated HTML code:

<div id="codesection">
 <p id="codepara">
 Google
 </p>

 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Another useful thing to know is that, in order to move the node to its new place
in the document, we don’t have to remove it first. If you use appendChild to insert
a node into the document, and that node already exists elsewhere in the document,
the node will not be duplicated; instead, it will move from its previous location
to the new location at which you’ve inserted it. We can do the same thing with
the Yahoo! link:

para.appendChild(document.getElementById('yalink'));

After this, the page will again be rearranged to match the HTML:

<div id="codesection">
 <p id="codepara">
 Google
 Yahoo!
 </p>

</div>

Figure 2.3 shows the new DOM tree so far.

25Click here to order the printed 318-page book now (we deliver worldwide)!

Moving Elements

http://www.sitepoint.com/launch/150d2e

Figure 2.3. The DOM tree after changes.

What if you didn’t want to add your new (or moved) element to the end of that
paragraph? In addition to appendChild, each node has an insertBefore method,
which is called with two arguments: the node to insert, and the node before which
it will be inserted. To move the Yahoo! link to the beginning of the paragraph,
we want to insert it as a child of the paragraph that appears before the Google
link. So, to insert the Yahoo! link (the first argument) as a child of the paragraph
right before the Google link (sitepoint_link, the second argument), we’d use
the following:

para.insertBefore(document.getElementById('yalink'),
 sitepoint_link);

Be sure that the second argument (sitepoint_link) really is an existing child
node of para, or this method will fail.

Throwing Away Elements
Removing an element is very similar to the process of adding one: again, we use
the removeChild method on the element’s parent node. Remembering from
earlier that we can access a given node’s parent as node.parentNode, we can re-
move our sitepoint_link from the document entirely:

// never hurts to be paranoid: check that our node *has* a parent
if (sitepoint_link.parentNode) {
 sitepoint_link.parentNode.removeChild(sitepoint_link);
}

Click here to order the printed 318-page book now (we deliver worldwide)!26

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

That action will change the HTML code to that shown below:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 </p>

</div>

Even after the node’s removal, sitepoint_link still constitutes a reference
to that link. It still exists, it’s just not in the document any more: it’s floating
in limbo. We can add it back to the document somewhere else if we want
to. Set the variable to null to make the deleted element disappear forever.

Creating Elements
Moving existing elements around within the page is a powerful and useful tech-
nique (with which you’re well on the way to implementing Space Invaders or Pac
Man!). But, above and beyond that, we have the ability to create brand new ele-
ments and add them to the page, providing the capacity for truly dynamic content.
The point to remember is that, as before, a page’s text resides in text nodes, so
if we need to create an element that contains text, we must create both the new
element node and a text node to contain its text. To achieve this, we need two
new methods: document.createElement and document.createTextNode.

First, we create the element itself:

var linux_link = document.createElement('a');

Even though we’ve created the element, it’s not yet part of the document. Next,
we set some of its properties in the same way that we’d set properties on an ex-
isting link:

linux_link.href = 'http://www.linux.org/';

We then create the text node for the text that will appear inside the link. We
pass the text for the text node as a parameter:

var linux_tn =
 document.createTextNode('The Linux operating system');

27Click here to order the printed 318-page book now (we deliver worldwide)!

Creating Elements

http://www.sitepoint.com/launch/150d2e

The text node is also floating around, separate from the document. We add the
text node to the element’s list of children, as above:

linux_link.appendChild(linux_tn);

The element and text node now form a mini-tree of two nodes (officially a docu-
ment fragment), but they remain separate from the DOM. Finally, we insert
the element into the page, which is the same as putting it into the DOM tree:

para.appendChild(linux_link);

Here’s the resulting HTML:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 The Linux operating system
 </p>

</div>

As you can see, to create elements, we use the same techniques and know-
ledge—text nodes are children of the element node, we append a child with
node.appendChild—we use to work with nodes that are already part of the
document. To the DOM, a node is a node whether it’s part of the document or
not: it’s just a node object.

Copying Elements
Creating one element is simple, as we’ve seen. But what if you want to add a lot
of dynamic content to a page? Having to create a whole batch of new elements
and text nodes—appending the text nodes to their elements, the elements to each
other, and the top element to the page—is something of a laborious process.
Fortunately, if you’re adding to the page a copy of something that’s already there,
a shortcut is available: the cloneNode method. This returns a copy of the node,
including all its attributes and all its children.4 If you have a moderately complex
piece of HTML that contains many elements, cloneNode is a very quick way to
return a copy of that block of HTML ready for insertion into the document:

4You can elect to clone the node only—not its children—by passing false to the cloneNode
method.

Click here to order the printed 318-page book now (we deliver worldwide)!28

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

var newpara = para.cloneNode(true);
document.getElementById('codesection').appendChild(newpara);

You can’t rush ahead and just do this, though: it pays to be careful with
cloneNode. This method clones all attributes of the node and all its child nodes,
including IDs, and IDs must be unique within your document. So, if you have
elements with IDs in your cloned HTML block, you need to fix those IDs before
you append the cloned block to the document.

It would be nice to be able to grab the Yahoo! link in our cloned block using the
following code:

var new_yahoo_link = newpara.getElementById('yalink');

But, unfortunately, we can’t. The getElementById method is defined only on a
document, not on any arbitrary node. The easiest way around this is to refrain
from defining IDs on elements in a block that you wish to clone. Here’s a line of
code that will remove the Yahoo! link’s id:

newpara.firstChild.removeAttribute('id');

We still have the ID on the paragraph itself, though, which means that when we
append the new paragraph to the document, we’ll have two paragraphs with the
ID codepara. This is bad—it’s not supposed to happen. We must fix it before
we append the new paragraph, revising the above code as follows:

var newpara = para.cloneNode(true);
newpara.id = 'codepara2';
newpara.firstChild.removeAttribute('id');
document.getElementById('codesection').appendChild(newpara);

This code returns the following results:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 The Linux operating system
 </p>
 <p id="codepara2">
 Yahoo!
 The Linux operating system
 </p>

29Click here to order the printed 318-page book now (we deliver worldwide)!

Copying Elements

http://www.sitepoint.com/launch/150d2e

</div>

As you can see, there’s a little bit of surgery involved if you choose to copy big
chunks of the document. This demonstration concludes our experimentation
with this particular bit of code.

Making an Expanding Form
As our first full example, we’ll use the DOM’s element creation methods to build
a form that can grow as the user fills it. This allows users to add to the form as
many entries as they like.

Let’s imagine an online system through which people can sign up themselves,
and any number of their friends, for free beer.5 The users add their own names,
then the names of all of the friends they wish to invite. Without the DOM, we’d
require the form either to contain a large number of slots for friends’ names (more
than anyone would use), or to submit regularly back to the server to get a fresh
(empty) list of name entry areas.

In our brave new world, we can add the extra name entry fields dynamically.
We’ll place a button on the form that says, Add another friend. Clicking that
button will add a new field to the list, ready for submission to the server. Each
newly-created field will need a different name attribute, so that it can be distin-
guished when the server eventually receives the submitted form.6

Our form will provide a text entry box for the user’s name, a fieldset containing
one text entry box for a friend’s name, and a button to add more friends. When
the button is clicked, we’ll add a new text entry box for another friend’s name.

File: expandingForm.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Free beer signup form</title>

 <script type="text/javascript">

5Maybe there’s a mad millionaire philanthropist on the loose. No, I can’t give you a URL at which
this system is running for real!
6Depending on the server-side language used to process the form, this isn’t strictly necessary. Since
our example form won’t actually submit to anything, we’ll implement it as a useful exercise.

Click here to order the printed 318-page book now (we deliver worldwide)!30

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

 var fieldCount = 1;
 function addFriend() {
 fieldCount++;
 var newFriend = document.createElement('input');
 newFriend.type = 'text';
 newFriend.name = 'friend' + fieldCount;
 newFriend.id = 'friend' + fieldCount;
 document.getElementById('fs').appendChild(newFriend);
 }
 </script>

 <style type="text/css">
 input {
 display: block;
 margin-bottom: 2px;
 }
 button {
 float: right;
 }
 fieldset {
 border: 1px solid black;
 }
 </style>

 </head>
 <body>
 <h1>Free beer signup form</h1>
 <form>
 <label for="you">Your name</label>
 <input type="text" name="you" id="you">
 <fieldset id="fs">
 <legend>Friends you wish to invite</legend>
 <button onclick="addFriend(); return false;">
 Add another friend
 </button>
 <input type="text" name="friend1" id="friend1">
 </fieldset>
 <input type="submit" value="Save details">
 </form>
 </body>
</html>

Notice our fieldCount variable; this keeps track of how many friend fields there
are.

31Click here to order the printed 318-page book now (we deliver worldwide)!

Making an Expanding Form

http://www.sitepoint.com/launch/150d2e

File: expandingForm.html (excerpt)

 var fieldCount = 1;

When the button is clicked, we run the addFriend function (we’ll discuss handling
clicks—and various other kinds of events—more in the next chapter):

 <button onclick="addFriend(); return false;">

The addFriend function completes a number of tasks each time it’s run:

1. Increments the fieldCount:

File: expandingForm.html (excerpt)

 fieldCount++;

2. Creates a new input element:

File: expandingForm.html (excerpt)

 var newFriend = document.createElement('input');

3. Sets its type to text—we want a text entry box, an element specified by
<input type="text">:

File: expandingForm.html (excerpt)

 newFriend.type = 'text';

4. Sets a unique id and name (because the ID must be unique, and all the entry
boxes must have different names so they can be distinguished when the
form’s submitted):

File: expandingForm.html (excerpt)

 newFriend.name = 'friend' + fieldCount;
 newFriend.id = 'friend' + fieldCount;

5. Adds this newly-created element to the document:

File: expandingForm.html (excerpt)

 document.getElementById('fs').appendChild(newFriend);

Click here to order the printed 318-page book now (we deliver worldwide)!32

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

Here’s what the page looks like after the “add another friend” button has been
clicked twice, and two friends’ names have been added:

Figure 2.4. Signing up for free beer.

Free beer, thanks to the power of the DOM. We can’t complain about that!

Making Modular Image Rollovers
Image rollover scripts, in which an image is used as a link, and that image changes
when the user mouses over it, are a mainstay of JavaScript programming on the
Web. Traditionally, they’ve required a lot of script, and a lot of customization,
on the part of the developer. The introspective capability of the DOM—the
ability of script to inspect the structure of the page in which it’s running—gives
us the power to detect rollover images automatically and set them up without
any customization. This represents a more systematic approach than the old-
fashioned use of onmouseover and onmouseout attributes, and keeps rollover
code separate from other content.

We’ll build our page so that the links on which we want to display rollover effects
have a class of rollover. They’ll contain one img element—nothing else. We’ll
also provide specially named rollover images: if an image within the page is called
foo.gif, then the matching rollover image will be named foo_over.gif. When
the page loads, we’ll walk the DOM tree, identify all the appropriate links (by
checking their class and whether they contain an img element), and set up the

33Click here to order the printed 318-page book now (we deliver worldwide)!

Making Modular Image Rollovers

http://www.sitepoint.com/launch/150d2e

rollover on each. This specially-named rollover image allows us to deduce the
name of any rollover image without saving that name anywhere. It reduces the
amount of data we have to manage.

An alternative technique involves use of a non-HTML attribute in the image tag:

However, since oversrc isn’t a standard attribute, this approach would cause
your HTML to be invalid.

Some of the following script may seem a little opaque: we will be attaching
listeners to DOM events to ensure that scripts are run at the appropriate times.
If this is confusing, then feel free to revisit this example after you’ve read the
discussion of DOM events in the next chapter.

A Sample HTML Page
First, the HTML: here we have our links, with class rollover, containing the
images.

File: rollovers.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Modular rollovers</title>
 <script type="text/javascript" src="rollovers.js"></script>
 <style type="text/css">
 /* Remove the blue border on the rollover images */
 a.rollover img {
 border-width: 0;
 }
 </style>
 </head>
 <body>
 <h1>Modular rollovers</h1>
 <p>Below we have two links, containing images that we want
 to change on mouseover.</p>

 <a href="" class="rollover" alt="Roll"
 >

Click here to order the printed 318-page book now (we deliver worldwide)!34

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

 <a href="" class="rollover" alt="Roll"
 >

 </body>
</html>

The page also includes the JavaScript file that does all the work:

File: rollovers.js

function setupRollovers() {
 if (!document.getElementsByTagName)
 return;
 var all_links = document.getElementsByTagName('a');
 for (var i = 0; i < all_links.length; i++) {
 var link = all_links[i];
 if (link.className &&
 (' ' + link.className + ' ').indexOf(' rollover ') != -1)
 {
 if (link.childNodes &&
 link.childNodes.length == 1 &&
 link.childNodes[0].nodeName.toLowerCase() == 'img') {
 link.onmouseover = mouseover;
 link.onmouseout = mouseout;
 }
 }
 }
}

function findTarget(e)
{
 /* Begin the DOM events part, which you */
 /* can ignore for now if it's confusing */
 var target;

 if (window.event && window.event.srcElement)
 target = window.event.srcElement;
 else if (e && e.target)
 target = e.target;
 if (!target)
 return null;

 while (target != document.body &&
 target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

35Click here to order the printed 318-page book now (we deliver worldwide)!

A Sample HTML Page

http://www.sitepoint.com/launch/150d2e

 if (target.nodeName.toLowerCase() != 'a')
 return null;

 return target;
}

function mouseover(e) {
 var target = findTarget(e);
 if (!target) return;

 // the only child node of the a-tag in target will be an img-tag
 var img_tag = target.childNodes[0];

 // Take the "src", which names an image called "something.ext",
 // Make it point to "something_over.ext"
 // This is done with a regular expression
 img_tag.src = img_tag.src.replace(/(\.[^.]+)$/, '_over$1');
}

function mouseout(e) {
 var target = findTarget(e);
 if (!target) return;

 // the only child node of the a-tag in target will be an img-tag
 var img_tag = target.childNodes[0];

 // Take the "src", which names an image as "something_over.ext",
 // Make it point to "something.ext"
 // This is done with a regular expression
 img_tag.src = img_tag.src.replace(/_over(\.[^.]+)$/, '$1');
}

// When the page loads, set up the rollovers
window.onload = setupRollovers;

The DOM-walking parts of this code are found in setupRollovers and in
findTarget, which is called from the two mouseover/mouseout functions. Let’s
look at each of these in turn.

The setupRollovers Function

The code for the setupRollovers function starts like this:

Click here to order the printed 318-page book now (we deliver worldwide)!36

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

File: rollovers.js (excerpt)

 if (!document.getElementsByTagName)
 return;

This code confirms that we’re in a DOM-supporting browser. If we’re not (i.e. if
document.getElementsByTagName, the method, doesn’t exist), we exit here and
progress no further. If the method does exist, we continue:

File: rollovers.js (excerpt)

 var all_links = document.getElementsByTagName('a');

Here, we make all_links a reference to a list of all the <a> tags in the document.

File: rollovers.js (excerpt)

 for (var i = 0; i < all_links.length; i++) {
 var link = all_links[i];

The above code iterates through the retrieved list of tags in standard JavaScript
fashion. We assign the link variable to each link, as a way to simplify the follow-
ing code.

File: rollovers.js (excerpt)

 if (link.className &&
 (' ' + link.className + ' ').indexOf(' rollover ') != -1)
 {

We need to know whether each link is of class rollover. However, an element
may have more than one class; if this tag had two classes, rollover and hotlink,
for example, it would have className="rollover hotlink". This would mean
that we could not check for an element having a specific class using the following:

if (element.className == "myclass")

If the element has multiple classes, the above condition will always evaluate to
false. A useful approach here is to look for the string ' myclass ' (the class
name with a space before and after it) in the string ' ' + element.className
+ ' ' (the element’s class attribute with a space before and after it). This will
always find your class, as you’re expecting. It also avoids a problem with a similar
technique, which uses className.indexOf to look for 'myclass'. If the element
in question is of class myclassroom, this technique will give a false positive.7

7Another option is to use a regular expression to spot the class name. In the interests of simplicity,
however, we’ll stick with the method already presented.

37Click here to order the printed 318-page book now (we deliver worldwide)!

The setupRollovers Function

http://www.sitepoint.com/launch/150d2e

File: rollovers.js (excerpt)

 if (link.childNodes &&
 link.childNodes.length == 1 &&
 link.childNodes[0].nodeName.toLowerCase() == 'img') {

We want to confirm that this link contains nothing but an img element, so we
make use of a very handy property of JavaScript, called short-circuit evaluation.
In an if statement of the form if (a && b && c), if a is false, then b and c are
not evaluated at all. This means that b and c can be things that depend on a’s
trueness: if a is not true, then they are not evaluated, so it’s safe to put them into
the if statement.

Looking at the above code may make this clearer. We need to test if the nodeName
of the link’s first child node is img. We might use the following code:

if (link.childNodes[0].nodeName.toLowerCase == 'img')

However, if the current link doesn’t have any child nodes, this code will cause
an error because there is no link.childNodes[0]. So, we must first check that
child nodes exist; second, we confirm that there is one and only one child; third,
we check whether that one-and-only first child is an image. We can safely assume
in the image check that link.childNodes[0] exists, because we’ve already con-
firmed that that’s the case: if it didn’t exist, we wouldn’t have got this far.

File: rollovers.js (excerpt)

 link.onmouseover = mouseover;

This code attaches an event handler to the mouseover event on a node.

File: rollovers.js (excerpt)

 link.onmouseout = mouseout;

And this line attaches an event handler to the mouseout event on that node.
That’s all!

The findTarget Function

This little function is called by the mouseover and mouseout functions. As we’ll
see, they pass event objects to findTarget, which, in return, passes back the link
tag surrounding the image that generated the event, if any such tag is to be found.

findTarget starts like this:

Click here to order the printed 318-page book now (we deliver worldwide)!38

Chapter 2: The Document Object Model

http://www.sitepoint.com/launch/150d2e

File: rollovers.js (excerpt)

 var target;

 if (window.event && window.event.srcElement)
 target = window.event.srcElement;
 else if (e && e.target)
 target = e.target;
 if (!target)
 return null;

This first part is related to DOM event handling, which is explained in the next
chapter. We’ll ignore its workings for now, except to say that it caters for the
differences between Internet Explorer and fully DOM-supporting browsers. Once
this code has run, however, we should have in our variable target the element
that the browser deems to be responsible for the mouseover or mouseout
event—ideally the <a> tag.

File: rollovers.js (excerpt)

 while (target != document.body &&
 target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

 if (target.nodeName.toLowerCase() != 'a')
 return null;

The variable target should be a reference to the <a> tag on which the user clicked,
but it may be something inside the <a> tag (as some browsers handle events this
way). In such cases, the above code keeps getting the parent node of that tag
until it gets to an <a> tag (which will be the one we want). If we find the document
body—a <body> tag—instead, we’ve gone too far. We’ll give up, returning null
(nothing) from the function, and going no further.

If we did find an <a> tag, however, we return that:

File: rollovers.js (excerpt)

 return target;
}

The mouseover / mouseout Functions

These functions work in similar ways and do very similar things: mouseover is
called when we move the mouse over one of our rollover links, while mouseout
is called when we move the mouse out again.

39Click here to order the printed 318-page book now (we deliver worldwide)!

The mouseover / mouseout Functions

http://www.sitepoint.com/launch/150d2e

The code for mouseover starts like this:

File: rollovers.js (excerpt)

 var target = findTarget(e);
 if (!target) return;

We call the findTarget function, described above, to get a reference to the link
over which the mouse is located. If no element is returned, we give up, degrading
gracefully. Otherwise, we have the moused-over <a> tag in target. Next, we dig
out the image.

File: rollovers.js (excerpt)

 var img_tag = target.childNodes[0];

We also know that the <a> tag has one, and only one, child node, and that’s an
 tag. We know this because we checked that this was the case when we set
up the event handler in setupRollovers.

File: rollovers.js (excerpt)

 img_tag.src = img_tag.src.replace(/(\.[^.]+)$/, '_over$1');

Images have a src attribute, which you can access through the DOM with the
element’s src property. In the code snippet above, we apply a regular expression
substitution to that string.8 Changing the value of an tag’s src attribute
causes it to reload itself with the new image; thus, making this substitution (re-
placing something.gif with something_over.gif) causes the original image to
change to the rollover image. The mouseout function does the exact opposite: it
changes the reference to something_over.gif in the image’s src attribute to
something.gif, causing the original image to reappear.

Something for Nothing (Almost)

If you look at the code for this modular rollover, you’ll see that it’s divided into
parts. The setupRollovers function does nothing but install listeners. The
findTarget function does nothing but find the link tag for a given event. The
mouseover and mouseout functions do little other than the actual image swapping
work. The tasks are neatly divided.

8Although the full details of regular expressions are beyond the scope of this book, we’ll look at the
basics in Chapter 6. A more detailed resource is Kevin Yank’s article on sitepoint.com, Regular Expres-
sions in JavaScript [http://www.sitepoint.com/article/expressions-javascript].

Click here to order the printed 318-page book now (we deliver worldwide)!40

Chapter 2: The Document Object Model

http://www.sitepoint.com/article/expressions-javascript
http://www.sitepoint.com/article/expressions-javascript
http://www.sitepoint.com/launch/150d2e

That means that this code is good for other applications. We can change the
mouseover and mouseout functions to do something else—for example, to make
popup help content appear—without needing to start from scratch to get it
working. We get to reuse (or at least rip off with minimal change) the other
functions in the script. This is not only convenient; it’s also neat and clean. We’re
on the way to a better kind of scripting!

Summary
In the introduction, we referred to the DOM as a critical part of DHTML. Ex-
ploring the DOM—being able to find, change, add, and remove elements from
your document—is a powerful technique all by itself, and is a fundamental aspect
of modern DHTML. Once you’ve mastered the techniques described in this
chapter, everything else will fall into place. Through the rest of the book, we’ll
be describing techniques and tricks with which you can do wondrous things on
your sites, and in your Web applications, using DHTML. They all build upon
this fundamental approach of manipulating the Document Object Model.

41Click here to order the printed 318-page book now (we deliver worldwide)!

Summary

http://www.sitepoint.com/launch/150d2e

42

Handling DOM Events3
When I can’t handle events, I let them handle themselves.
—Henry Ford

An event is something that happens, be it in real life, or in DHTML programming.
But to those working with DHTML, events have a very specific meaning. An
event is generated, or fired, when something happens to an element: a mouse
clicks on a button, for example, or a change is made to a form. DHTML program-
ming is all about event handling; your code will run in response to the firing of
this or that event.

Learning which events are available, how to hook your code up to them, and how
to make best use of them is a critical part of building dynamic Web applications.1

That’s what we cover in this chapter, along with a couple of real-world examples.

About Elements and Events
We’re using a modern approach to DHTML, so all our DHTML code will be set
to run in response to the firing of an event. If you’ve done any JavaScript Web
programming before, you may already be using this technique without knowing
it. Let’s look at the procedure by which code has traditionally been hooked up

1It does seem that there are quite a few “critical” bits, I know!

to events, learn how to do it under the DOM (and why the DOM method is
better), and find out exactly what these techniques make possible.

Common Events
Every page element fires a given selection of events. Some events are common
to all elements; others are more specific. For example, all visible elements will
fire a mouseover event when the mouse is moved over them. A change event,
however, will only be fired by elements whose contents can be changed: text
boxes, text areas, and drop-down lists.

You might have noticed above that I used mouseover, rather than onmouseover,
for the event name. Even though the HTML attribute for handling this event is
onmouseover, the modern way to describe the event itself is simply mouseover.
This allows us to talk about the event (mouseover) and the event handler
(onmouseover) separately. The event handler is the location at which an event
handler is placed. In the bad old browser days, these concepts were all mixed up,
but now we can safely think of them as separate entities.

The documents that describe the events fired by a given element are the W3C
DOM specifications and HTML recommendations, which were mentioned in
the last chapter, as well as the W3C DOM 2 Events specification[1]. There’s also
some extra information on key events in the DOM 3 Events specification[2].

A summary of the events that you’re likely to find useful, and that have cross-
browser support, is given in Table 3.1. Note that this isn’t an exhaustive survey:
it’s a listing of events that you’re likely to use often, rather than everything under
the sun.

[1] http://www.w3.org/TR/DOM-Level-2-Events/Overview.html
[2] http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/events.html

Click here to order the printed 318-page book now (we deliver worldwide)!44

Chapter 3: Handling DOM Events

http://www.w3.org/TR/DOM-Level-2-Events/Overview.html
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/events.html
http://www.sitepoint.com/launch/150d2e

Table 3.1. Useful Events.

Fired whenFired by Element(s)Event(s)

The page finishes loading.windowload

The page is unloaded (i.e. the user closes
the browser, or clicks a link, and a new page
loads).

windowunload

The element loses focus (the user clicks
outside it or tabs away from it), and the
content has been changed (note: the event
does not fire immediately when the change
is made!).

input, select,
textarea

change

The element gets the focus (it is tabbed to,
or clicked upon).

label, input, select,
textarea, button

focus

The element loses the focus.label, input, select,
textarea, button

blur

The user resizes the window.windowresize

The user scrolls the window.windowscroll

The user submits the form by clicking the
submit button or hitting Enter in a text
field.

formsubmit

The user moves the mouse onto an element.any visiblemouseover

The user moves the mouse off an element.any visiblemouseout

The user presses any mouse button while
on the element.

any visiblemousedown

The user releases the mouse button while
on the element.

any visiblemouseup

The user moves the mouse anywhere on the
element.

any visiblemousemove

The user clicks any mouse button while on
the element (this is the same as a mousedown
followed by a mouseup).

anyclick

A key is pressed while the element has fo-
cus.

any element that can
be focused

keypress

45Click here to order the printed 318-page book now (we deliver worldwide)!

Common Events

http://www.sitepoint.com/launch/150d2e

Hooking Code to Events
So, now you know some common events, and when they fire. But how do you
make your code run in response to those events?

Hooking up the Old Way

If you’ve done any JavaScript coding before, you’ll probably have written some-
thing like this:

<a href="somewhere.html"
 onclick="myJavaScriptFunction(); return false;"
 >click me!

That onclick attribute connects some JavaScript code to that link’s click event.
When the link is clicked, it will fire a click event, and that code will run. No
problem! Notice, though, that the code never actually mentions “click,” which
is the actual name of the event.

What if we wanted to detect a keypress? Here’s the equivalent script:

function aKeyWasPressed() {
 // put event handler code here ...
}

And here’s the matching snippet of HTML:

<textarea id="myta" onkeypress="aKeyWasPressed()"></textarea>

In this case, how does our aKeyWasPressed function know which key was pressed?
Well, it doesn’t. That’s a major limitation of the old-fashioned approach. But we
can improve on that!

Hooking up the DOM Way

The DOM specifications enlarge the idea of event handlers by providing event
targets and event listeners. An event target is the thing at which an event is
aimed—an element, essentially. An event listener is the thing that grabs the event
when it appears, and responds to it. Where do events come from in the first
place? They come from the user. The browser software captures the user action
and sends the event to the right event target.

Click here to order the printed 318-page book now (we deliver worldwide)!46

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

A given event source can be relevant to more than one event listener. Using the
old-fashioned method above, only one piece of code could be run in response to
any event. For example, an element could have only one onclick attribute.2

Using the modern method, you can run as many pieces of code as you want upon
the firing of an event or events. Listeners get to share events, and events get to
share listeners. To facilitate this, we must move our “hookup” code from the
HTML to a separate script section: as noted above, no element can have more
than one onclick attribute.

Event handling works in different ways, depending on the browser. We’ll examine
the W3C-approved way first, before we look at event handling in Internet Ex-
plorer. Here’s the W3C approach.

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 // put event listener code here...
}

var textarea = document.getElementById('myta');
textarea.addEventListener('keyup', aKeyWasPressed, false);

And here’s the matching bit of HTML:

File: keycodedetect.html (excerpt)

<textarea id="myta"></textarea>

HTML Before Script… for Now

If you’re working through this example in your HTML editor of choice, be
sure to place the JavaScript code after the HTML in this and the next few
examples in this chapter. The textarea must exist before the JavaScript
code can assign an event listener to it.

If you’re used to placing JavaScript at the top of your HTML files, don’t
fret. We’ll discuss an elegant way around this restriction at the end of the
section.

Those few lines of code contain a number of complex concepts. Consider this
snippet:

2Actually, you could have as many as you liked, but each one would overwrite the one before it, so,
effectively, you have only one. Alternatively, you could string JavaScript statements together, using
semicolons in the attribute, but this makes the HTML code even more cluttered.

47Click here to order the printed 318-page book now (we deliver worldwide)!

Hooking up the DOM Way

http://www.sitepoint.com/launch/150d2e

File: keycodedetect.html (excerpt)

var textarea = document.getElementById('myta');

Here, we see a familiar reference to the <textarea>. Next, there’s something
new:

File: keycodedetect.html (excerpt)

textarea.addEventListener('keyup', aKeyWasPressed, false);

This is the crucial line that sets everything up. Each element has an
addEventListener method, which allows you to hook a function to any event3

that the element receives. The method takes three arguments: the event, the
function that should be called, and a true-or-false value for useCapture. This last
item relates to a rarely-used feature of DOM events called event capture. For
the moment, we’ll just set it to false, to indicate that we don’t want to use event
capture. If you’d like to get the full story, see the DOM Level 3 Events specifica-
tion[3] (not for the faint of heart!).

The event is specified as a string, which is the (modern) name of the event (i.e.
without the “on” prefix). The function is specified using only the name of the
function; do not place brackets after it, as in aKeyWasPressed(), as this would
call the function. We don’t want to call it now; we want to call it later, when the
event is fired.4

Now, when a key is pressed in our <textarea>, our aKeyWasPressed function
will be called. Note that JavaScript no longer clutters up our HTML; much like
the separation of design and content facilitated by CSS, we’ve separated our page
content (HTML) from our page behavior (JavaScript). This is an important benefit
of the new technique: we can switch new event listeners in and out without alter-
ing the HTML in our page. It’s the modern way!

We still haven’t addressed the question we posed earlier, though: how does the
aKeyWasPressed function know which key was pressed?

3We’ve used the keyup event here, rather than the more commonly expected keypress, because,
at the time of writing, Safari on Macintosh does not support the assigning of keypress events using
addEventListener. Perhaps more importantly, the DOM3 recommendation does not mention
a keypress event.
[3] http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
4If you have worked in other languages, you may recognize that this means that functions are first-
class objects in JavaScript; we can pass around references to a function using its name, but without
calling it. This procedure doesn’t work in all languages, but it’s a very useful feature of JavaScript.

Click here to order the printed 318-page book now (we deliver worldwide)!48

Chapter 3: Handling DOM Events

http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
http://www.sitepoint.com/launch/150d2e

Getting Event Information

A subtle change that we made in the above code was to give the aKeyWasPressed
function an argument, e.

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 ...

When a function is called as an event listener, it is passed, in the case of a W3C
events-compliant browser, to an event object, which holds details of the event.
This object has a number of properties containing useful information, such as
target, and a reference to the element that fired the event. The precise properties
that are available will depend on the type of event in question, but the most
useful properties are listed in Table 3.2.

Table 3.2. Useful Properties.

MeaningEvent object
property

The element that fired the event.target

The event that was fired (e.g. keyup).type

The mouse button that was pressed (if this is a mouse event): 0
for the left button, 1 for middle, 2 for right.

button

The character code of the key that was pressed5keyCode

Whether the Shift key was pressed (true or false).shiftKey

5Don’t use charCode here, even though some Websites tell you to. keyCode has good cross-
browser support, and charCode does not. Key codes in the DOM are a standards mess! There are
three ways to get the code: keyCode (IE), charCode (Mozilla/Netscape) and data (the official
DOM 3 Events way). Fortunately, all major browsers support the nonstandard keyCode. So always
use this, at least until the data property is widespread (in about 2010!).

Code that identifies which key was pressed would look like this:

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
}

49Click here to order the printed 318-page book now (we deliver worldwide)!

Getting Event Information

http://www.sitepoint.com/launch/150d2e

var textarea = document.getElementById('myta');
textarea.addEventListener('keyup', aKeyWasPressed, false);

When a key is pressed, our function will pop up a dialog box to tell us so.6

Re-using Listeners Across Targets

The target attribute might not seem very useful; after all, we know that it will be
a reference to the <textarea>. But we can hook up the same function as an event
listener on more than one element. We can, for example, attach one single func-
tion as an event listener for click events to every link in our page. When any link
is clicked, our function will be called; we can then tell which link was clicked by
examining the function’s e.target. We’ll come back to this in later examples in
this chapter.

For now, all we need to know is that we don’t have to write a separate event
listener for every single tag in which we’re interested.

What Happens After an Event Fires?

Events have two further important properties: bubbling and default actions.
Think about an HTML document. It’s hierarchical: elements are contained by
other elements. Consider this HTML snippet:

<div>
 <p>
 a link
 </p>
</div>

Clicking on the link will cause that link to fire a click event. But the link is con-
tained within the paragraph, and the paragraph is contained within the <div>.
So clicking the link will also cause both the paragraph and the <div> to see the
click event. This is called event bubbling; an event “bubbles” up through the
DOM tree, starting with the target element, until it reaches the top. Not all events
bubble; for example, focus and blur events do not. Bubbling can often be ig-
nored,7 but there are times when you’ll want to prevent a specific event from
bubbling.

6Note that we use the String.fromCharCode method to convert the keyboard code provided
by keyCode to a human-readable string.
7There are a lot of complex rules about event bubbling and event capturing, the phase of event
propagation that occurs before event bubbling. In practice, we don’t need to know much beyond how
to stop i t happening, but a complete write-up is avai lable at

Click here to order the printed 318-page book now (we deliver worldwide)!50

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

Once you’ve got an event, the DOM Events specification says that you can stop
any further bubbling like this:

function aKeyWasPressed(e) {
 var key = e.keyCode;
 e.stopPropagation();
 ...
}

Once the call to stopPropagation is in place, the event will occur on the <a> tag
only: any listeners on the <p> or <div> tags will miss out. If there are no listeners
on those other tags, there’s no need to stop bubbling. In this case, the event si-
lently passes through the parent tags, having no extra effect.

Some events have a default action. The most obvious example is clicking a link:
the default action for this event is to navigate the current window or frame to
the link’s destination. If we wanted to handle clicks on a link entirely within our
JavaScript code, we might want to prevent that default action from being taken.

In our examples so far, we have handled the keyup event, which is fired when a
key is released. As it turns out, this event has no default action. A closely-related
event that does have a default action is keypress, which occurs whenever a
character is typed using the combination of keydown and keyup. The keypress
event is nonstandard (i.e. it is not described by the W3C DOM standard), which
is why I have avoided mentioning it until now, but it is well supported by the
major browsers.

Let’s say we want to prevent keypress events from inputting text into our
textarea. We could do this by setting up an event listener that cancelled the
default action of that type of event. The DOM standard specifies a method,
named preventDefault, that achieves this, but again, Internet Explorer imple-
ments its own proprietary technique. Here’s the DOM approach:

function aKeyWasPressed(e) {
 e.preventDefault();
}
var textarea = document.getElementById('myta');
textarea.addEventListener('keypress', aKeyWasPressed, false);

http://www.quirksmode.org/js/events_order.html for those who would like to know more of the theory
underlying this aspect of the DOM.

51Click here to order the printed 318-page book now (we deliver worldwide)!

What Happens After an Event Fires?

http://www.quirksmode.org/js/events_order.html
http://www.sitepoint.com/launch/150d2e

Assigning Event Listeners on Page Load

In all of the examples we’ve seen so far in this chapter, the JavaScript code has
had to follow the HTML code to which it assigns event listeners. If the JavaScript
code were to come first, it would be unable to find the HTML elements in ques-
tion, as they would not yet exist.

A solution to this problem is to assign event listeners for specific document ele-
ments in a listener assigned to the window’s load event. As a result, event
listeners will only be assigned once the document has finished loading, and all
elements are available.

Here’s the complete listing for our keystroke detection example, restructured in
this way:

File: keycodedetect.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Detect keystrokes</title>
 <script type="text/javascript">
 function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
 }

 function addListeners(e) {
 var textarea = document.getElementById('myta');
 textarea.addEventListener('keyup', aKeyWasPressed, false);
 }

 window.addEventListener('load', addListeners, false);
 </script>
 </head>
 <body>
 <form>
 <textarea id="myta"></textarea>
 </form>
 </body>
</html>

Click here to order the printed 318-page book now (we deliver worldwide)!52

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

Our main event listener, aKeyWasPressed, has not been changed. What has
changed is the way in which this listener is assigned. The code that assigns it has
been placed inside a new function, addListeners:

File: keycodedetect.html (excerpt)

 function addListeners(e) {
 var textarea = document.getElementById('myta');
 textarea.addEventListener('keyup', aKeyWasPressed, false);
 }

This function is itself an event listener, which we assign to the window object’s
load event:

File: keycodedetect.html (excerpt)

 window.addEventListener('load', addListeners, false);

This event is fired once the document has finished loading, to signal that all
HTML elements are now available. The addListeners function takes this oppor-
tunity to assign listeners to elements as required.

We’ll continue to use this structure as we move forward through this chapter,
and the rest of the book.

Making Events Work Cross-Browser
Naturally, making events work cross-browser is not as easy as just following the
DOM standard. Internet Explorer doesn’t implement the DOM Events model
very well. Instead, it offers a proprietary and different way to hook up event
listeners and gain access to event data.

Adding Event Listeners Portably

Instead of using an addEventListener method on an element, IE has an
attachEvent method, and instead of passing an event object to each event
listener, it has a global event object in window.event. This is inconvenient but
not catastrophic; it just means that you have to take different actions for different
browsers. In practice, what this means is that you have a small number of
standard functions and techniques that you use to carry out event handling ac-
tions. One of these is the addEvent function, created by Scott Andrew:

53Click here to order the printed 318-page book now (we deliver worldwide)!

Making Events Work Cross-Browser

http://www.sitepoint.com/launch/150d2e

File: portabledetect.php (excerpt)

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

IE’s attachEvent method is called, with an event name and a function to be the
listener, but the event name should have “on” at the beginning. The addEvent
function above takes care of the cross-browser differences;8 simply include it in
your code, then use it to attach events. As such, the code above becomes:

function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
}

function addListeners(e) {
 var textarea = document.getElementById('myta');
 addEvent(textarea, 'keyup', aKeyWasPressed, false);
}

addEvent(window, 'load', addListeners, false);

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {

8Note that if the browser doesn’t support either addEventListener or attachEvent, which
is the case for IE5 for Macintosh, the code assigns the event listener directly to the element as an
event handler using its onevent property. This will overwrite any previous event handler that was
attached to that event, which isn’t good, but it’s an interim solution (and better than it not working
at all). There is a way around this issue, which, though it makes the code significantly more complex,
does avoid this problem; details can be found in Simon Willison’s Stylish Scripting blog post at
http://www.sitepoint.com/blog-post-view.php?id=171578.

Click here to order the printed 318-page book now (we deliver worldwide)!54

Chapter 3: Handling DOM Events

http://www.sitepoint.com/blog-post-view.php?id=171578
http://www.sitepoint.com/launch/150d2e

 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

We’re now using the addEvent function to make aKeyWasPressed listen for keyup
events on the textarea.

Inspecting Event Objects Portably

This is not the only change that’s required; we also have to take into account the
fact that IE doesn’t pass an event object to our event listener, but instead stores
the event object in the window object. Just to make our lives as DHTML developers
a little more complex, it also uses slightly different properties on the event object
that it creates. These are shown in Table 3.3.

Table 3.3. W3C Event Object Properties.

IE window.event PropertyW3C Event Object Property

srcElementtarget

typetype

button10button9

keyCodedata11

shiftKeyshiftKey

90 = left button; 2 = right button; 1 = middle button.
101 = left button; 2 = right button; 4 = middle button. For combinations, add numbers: 7 means
all three buttons pressed.
11As previously noted, the standard data property is not well supported.

Taking all this into consideration, our portable code becomes:

File: portabledetect.html (excerpt)

function aKeyWasPressed(e) {
 if (window.event) {
 var key = window.event.keyCode;

55Click here to order the printed 318-page book now (we deliver worldwide)!

Inspecting Event Objects Portably

http://www.sitepoint.com/launch/150d2e

 } else {
 var key = e.keyCode;
 }
 alert('You pressed the key: ' + String.fromCharCode(key));
}

function addListeners(e) {
 var textarea = document.getElementById('myta');
 addEvent(textarea, 'keyup', aKeyWasPressed, false);
}

addEvent(window, 'load', addListeners, false);

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

This updated version of aKeyWasPressed first checks whether a window.event
object exists:

File: portabledetect.html (excerpt)

 if (window.event) {

If it does, then it and its corresponding window.event.keyCode12 property, are
used to obtain the code of the pressed key. If not, the event object passed to the
function (as e), which also has a keyCode property, is used.

Stopping Propagation and Default Actions Portably

Halting bubbling can be done in two ways, as is the case with much event hand-
ling: via the DOM approach and the Internet Explorer approach. In DOM-com-

12This technique for checking that something exists is called feature sniffing, and will be explained
in more detail in the next chapter.

Click here to order the printed 318-page book now (we deliver worldwide)!56

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

pliant browsers, we can prevent an event from bubbling by calling the event ob-
ject’s stopPropagation method inside the event listener.

In Internet Explorer (where there is a global window.event object), we set
window.event.cancelBubble to true inside the event listener. In practice, the
usual technique is to use feature sniffing to Do The Right Thing:

if (window.event && window.event.cancelBubble) {
 window.event.cancelBubble = true;
}
if (e && e.stopPropagation) {
 // e is the event object passed to this listener
 e.stopPropagation();
}

Unfortunately, even this doesn’t cover all the major browsers. Arguably a worse
offender even than Internet Explorer, Apple’s Safari browser provides the
stopPropagation method, but doesn’t actually do anything when it is called.
There is no easy way around this, but since event bubbling will not significantly
affect any of the examples in this book, we’ll just ignore this problem for now.

We also need to feature-sniff to stop default actions. With the DOM, we use the
passed event object’s preventDefault method; with Internet Explorer, we set
the global event object’s returnValue property to false.

if (window.event && window.event.returnValue) {
 window.event.returnValue = false;
}
if (e && e.preventDefault) {
 e.preventDefault();
}

Again, Safari appears to support preventDefault, but doesn’t actually do anything
when it is called. Unfortunately, preventing the default action associated with
an event is a rather vital feature for many of the examples we’ll look at in this
book. The only way to do it in Safari (at least until Apple fixes its DOM standard
event support) is to use an old-style event handler that returns false.

For example, to prevent the click event of a link from navigating to the target
of the link, we would normally just use an event listener that prevented the default
action of the link:

function cancelClick(e) {
 if (window.event && window.event.returnValue) {
 window.event.returnValue = false;

57Click here to order the printed 318-page book now (we deliver worldwide)!

Stopping Propagation and Default Actions Portably

http://www.sitepoint.com/launch/150d2e

 }
 if (e && e.preventDefault) {
 e.preventDefault();
 }
}
addEvent(myLink, 'click', cancelClick, false);

To make this work in Safari, we need a second function, which will return false
to cancel the event, and which we will assign as the onclick event handler of the
link:

function cancelClick(e) {
 if (window.event && window.event.returnValue) {
 window.event.returnValue = false;
 }
 if (e && e.preventDefault) {
 e.preventDefault();
 }
}
function cancelClickSafari() {
 return false;
}
addEvent(myLink, 'click', cancelClick, false);
myLink.onclick = cancelClickSafari;

This is actually quite an ugly solution, as it will overwrite any onclick event
handler that another script may have installed. This kind of inter-script conflict
is what modern event listeners are designed to avoid. Unfortunately, there is
simply no better way around the problem in Safari. We’ll see an example of this
solution in practice later in this chapter.

This sort of cross-browser coding is obviated to a large extent by browser manu-
facturers coming together to implement the W3C DOM, but for event handling
it’s still required.

Smart Uses of Events
That’s enough about how events work. Let’s see a couple of practical examples.
You should also know enough now to fully understand the image rollover code
we saw in Chapter 2.

Click here to order the printed 318-page book now (we deliver worldwide)!58

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

Creating Smarter Links
Some Websites open all clicked links in a new window. Often, they do this with
the intention that the user will return to their site more readily if it’s still open
in another browser window. Some users find this useful; others find it heartily
annoying. It would be possible, given our event-handling techniques above, to
give them the choice.

Imagine we placed a checkbox on the page, which, initially unchecked, was ac-
companied by the label Open links in new window. Clicking any link will open
that link in a new window if the box is checked.

We could implement this functionality using a combination of event listeners:
we attach to each link on the page a click listener, which investigates the checkbox
and opens the corresponding link in a new window if the box is checked. We also
need a listener to run upon page load, to actually attach the listener to each link.

First, here’s the HTML page we’ll work on:

File: smartlinks.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Smart Links</title>
 <script type="text/javascript" src="smartlink.js"></script>
 <style type="text/css">
 form {
 float: right;
 width: 25em;
 height: 5em;
 border: 1px solid blue;
 padding: 1em;
 }
 </style>
 </head>
 <body>
 <h1>Smart Links</h1>
 <form action=""><p>
 <label for="newwin">Open links in new window?
 <input type="checkbox" id="newwin">
 </label>
 </p></form>

59Click here to order the printed 318-page book now (we deliver worldwide)!

Creating Smarter Links

http://www.sitepoint.com/launch/150d2e

 <p>This page contains several links, such as
 SitePoint,
 Yahoo!, and
 Google.
 These links should ordinarily open in the same window when
 clicked, unless the checkbox is checked; this will make them
 open in a new window.
 </p>
 </body>
</html>

As you can see, this page is quite simple, and contains no JavaScript except for
the file that the <script> tag brings in. Figure 3.1 shows how the code displays:

Figure 3.1. The example “smart links” Web page.

Click here to order the printed 318-page book now (we deliver worldwide)!60

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

Next, let’s look at the content of smartlink.js. This code has been assembled
from our earlier discussions, although it contains some extra code for this partic-
ular page. First, here’s an outline of what the script holds:

File: smartlink.js (excerpt)

function addEvent(elm, evType, fn, useCapture) { ... }
function handleLink(e) { ... }
function cancelClick() { ... }
function addListeners(e) { ... }

addEvent(window, 'load', addListeners, false);

And here are those four items in detail:

File: smartlink.js

function addEvent(elm, evType, fn, useCapture) {
 // cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

function handleLink(e) {
 var el;
 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el)
 return;

 while (el.nodeName.toLowerCase() != 'a' &&
 el.nodeName.toLowerCase() != 'body')
 el = el.parentNode;

 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {
 window.open(el.href);

61Click here to order the printed 318-page book now (we deliver worldwide)!

Creating Smarter Links

http://www.sitepoint.com/launch/150d2e

 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 }
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 }
}

function cancelClick() {
 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {
 return false;
 }
 return true;
}

function addListeners() {
 if (!document.getElementById)
 return;

 var all_links = document.getElementsByTagName('a');
 for (var i = 0; i < all_links.length; i++) {
 addEvent(all_links[i], 'click', handleLink, false);
 all_links[i].onclick = cancelClick;
 }
}

addEvent(window, 'load', addListeners, false);

Our code includes the now-familiar addEvent function to carry out cross-browser
event hookups. We use it to call the addListeners function once the page has
loaded.

The addListeners function uses another familiar technique; it iterates through
all the links on the page and does something to them. In this case, it attaches the
handleLink function as a click event listener for each link, so that when a link
is clicked, that function will be called. It also attaches the cancelClick function
as the old-style click event listener for each link—this will permit us to cancel
the default action of each link in Safari.

When we click a link, that link fires a click event, and handleLink is run. The
function does the following:

Click here to order the printed 318-page book now (we deliver worldwide)!62

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

File: smartlink.js (excerpt)

 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el)
 return;

This is the cross-browser approach to identifying which link was clicked; we check
for a window.event object and, if it exists, use it to get window.event.srcElement,
the clicked link. Alternatively, if e, the passed-in parameter, exists, and e.target
exists, then we use that as the clicked link. If we’ve checked for both e and
e.target, but neither exists, we give up and exit the function (with return).

Next up, we want to make sure that we have a reference to our link element:

File: smartlink.js (excerpt)

 while (el.nodeName.toLowerCase() != 'a' &&
 el.nodeName.toLowerCase() != 'body')
 el = el.parentNode;
 if (el.nodeName.toLowerCase() == 'body')
 return;

Some browsers may pass the text node inside a link as the clicked-on node, instead
of the link itself. If the clicked element is not an <a> tag, we ascend the DOM
tree, getting its parent (and that node’s parent, and so on) until we get to the a
element. (We also check for body, to prevent an infinite loop; if we get as far up
the tree as the document body, we give up.)

Note that we also use toLowerCase on the nodeName of the element. This is the
easiest way to ensure that a browser that returns a nodeName of A, and one that
returns a nodeName of a, will both be handled correctly by the function.

Next, we check our checkbox:

File: smartlink.js (excerpt)

 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {

We first confirm (for paranoia’s sake) that there is an element with id newwin
(which is the checkbox). Then, if that checkbox is checked, we open the link in
a new window:

63Click here to order the printed 318-page book now (we deliver worldwide)!

Creating Smarter Links

http://www.sitepoint.com/launch/150d2e

File: smartlink.js (excerpt)

 window.open(el.href);

We know that el, the clicked link, is a link object, and that link objects have an
href property. The window.open method creates a new window and navigates it
to the specified URL.

Finally, we take care of what happens afterward:

File: smartlink.js (excerpt)

 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 }
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 }

We don’t want the link to have its normal effect of navigating the current window
to the link’s destination. So, in a cross-browser fashion, we stop the link’s normal
action from taking place.

As previously mentioned, Safari doesn’t support the standard method of cancelling
the link’s default action, so we have an old-style event listener, cancelClick,
that will cancel the event in that browser:

File: smartlink.js (excerpt)

function cancelClick() {
 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {
 return false;
 }
 return true;
}

You can see that some of this code is likely to appear in every project we attempt,
particularly those parts that have to do with listener installation.

Making Tables More Readable
A handy trick that many applications use to display tables of data is to highlight
the individual row and column that the viewer is looking at; paper-based tables

Click here to order the printed 318-page book now (we deliver worldwide)!64

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

often shade table rows and columns alternately to provide a similar (although
non-dynamic13) effect.

Here’s a screenshot of this effect in action. Note the location of the cursor. If we
had another cursor, you could see that the second table is highlighted differently.
But we don’t, so you’ll just have to try the example code for yourself…

Figure 3.2. Example of table highlighting in a Web page.

We can apply this effect to tables in an HTML document using event listeners.
We’ll attach a mouseover listener to each cell in a table, and have that listener
highlight all the other cells located in that cell’s row and column. We’ll also attach
a mouseout listener that turns the highlight off again.

13…until paper technology gets a lot cooler than it is now, at any rate!

65Click here to order the printed 318-page book now (we deliver worldwide)!

Making Tables More Readable

http://www.sitepoint.com/launch/150d2e

The techniques we have explored in this chapter are at their most powerful when
we combine the dynamic capabilities of DHTML with the page styling of CSS.
Instead of specifically applying a highlight to each cell we wish to illuminate,
we’ll just apply a new class, hi, to those cells; our CSS will define exactly how
table cells with class hi should be displayed. To change the highlight, simply
change the CSS. For a more powerful effect still, use CSS’s selectors to apply
different styles to highlighted cells depending on the table in which they appear.

Here’s an example page that contains tables:

File: tableHighlight.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Highlighted Tables</title>
 <script type="text/javascript" src="tableHighlight.js">
 </script>
 <style type="text/css">
 tr.hi td, td.hi {
 background-color: #ccc;
 }
 table.extra tr.hi td, table.extra td.hi {
 color: red;
 text-decoration: underline overline;
 background-color: transparent;
 }
 </style>
 </head>
 <body>
 <h1>Highlighted Tables</h1>

 <h2>A table with highlighting</h2>
 <table>
 <tr>
 <td></td>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td>Row 1</td>
 <td>1,1</td><td>1,2</td><td>1,3</td><td>1,4</td>
 </tr>

Click here to order the printed 318-page book now (we deliver worldwide)!66

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

 <tr>
 <td>Row 2</td>
 <td>2,1</td><td>2,2</td><td>2,3</td><td>2,4</td>
 </tr>
 <tr>
 <td>Row 3</td>
 <td>3,1</td><td>3,2</td><td>3,3</td><td>3,4</td>
 </tr>
 <tr>
 <td>Row 4</td>
 <td>4,1</td><td>4,2</td><td>4,3</td><td>4,4</td>
 </tr>
 </table>

 <h2>A table with different highlighting</h2>
 <table class="extra">
 <tr>
 <td></td>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td>Row 1</td>
 <td>1,1</td><td>1,2</td><td>1,3</td><td>1,4</td>
 </tr>
 <tr>
 <td>Row 2</td>
 <td>2,1</td><td>2,2</td><td>2,3</td><td>2,4</td>
 </tr>
 <tr>
 <td>Row 3</td>
 <td>3,1</td><td>3,2</td><td>3,3</td><td>3,4</td>
 </tr>
 <tr>
 <td>Row 4</td>
 <td>4,1</td><td>4,2</td><td>4,3</td><td>4,4</td>
 </tr>
 </table>
 </body>
</html>

That code creates two four-by-four tables, each with column and row headings
(so each table contains five rows and five columns in total). Notice that none of
the styles have any effect because, as yet, there are no elements with class="hi".

67Click here to order the printed 318-page book now (we deliver worldwide)!

Making Tables More Readable

http://www.sitepoint.com/launch/150d2e

Let’s look at the matching tableHighlight.js script. Its structure reflects our
earlier discussions, but it contains some additional code for this particular tech-
nique. Here’s an outline of the script:

File: tableHighlight.js (excerpt)

function addEvent(elm, evType, fn, useCapture) { ... }
function ascendDOM(e, target) { ... }
function hi_cell(e) { ... }
function lo_cell(e) { ... }
function addListeners() { ... }

addEvent(window, 'load', addListeners, false);

Notice how similar the function outline is to the smart links example. Here are
the six items in all their detail.

File: tableHighlight.js

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

// climb up the tree to the supplied tag.
function ascendDOM(e, target) {
 while (e.nodeName.toLowerCase() != target &&
 e.nodeName.toLowerCase() != 'html')
 e = e.parentNode;

 return (e.nodeName.toLowerCase() == 'html') ? null : e;
}

// turn on highlighting
function hi_cell(e) {
 var el;
 if (window.event && window.event.srcElement)

Click here to order the printed 318-page book now (we deliver worldwide)!68

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el) return;

 el = ascendDOM(el, 'td');
 if (el == null) return;

 var parent_row = ascendDOM(el, 'tr');
 if (parent_row == null) return;

 var parent_table = ascendDOM(parent_row, 'table');
 if (parent_table == null) return;

 // row styling
 parent_row.className += ' hi';

 // column styling
 var ci = -1;
 for (var i = 0; i < parent_row.cells.length; i++) {
 if (el === parent_row.cells[i]) {
 ci = i;
 }
 }
 if (ci == -1) return; // this should never happen

 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className += ' hi';
 }
}

// turn off highlighting
function lo_cell(e) {
 var el;
 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el) return;

 el = ascendDOM(el, 'td');
 if (el == null) return;

 var parent_row = ascendDOM(el, 'tr');
 if (parent_row == null) return;

69Click here to order the printed 318-page book now (we deliver worldwide)!

Making Tables More Readable

http://www.sitepoint.com/launch/150d2e

 var parent_table = ascendDOM(parent_row, 'table');
 if (parent_table == null) return;

 // row de-styling
 parent_row.className =
 parent_row.className.replace(/\b ?hi\b/, '');

 // column de-styling
 var ci = el.cellIndex;
 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className = cell.className.replace(/\b ?hi\b/, '');
 }
}

function addListeners() {
 if (!document.getElementsByTagName) return;

 var all_cells = document.getElementsByTagName('td');
 for (var i = 0; i < all_cells.length; i++) {
 addEvent(all_cells[i], 'mouseover', hi_cell, false);
 addEvent(all_cells[i], 'mouseout', lo_cell, false);
 }
}

addEvent(window, 'load', addListeners, false);

We add our mouseover and mouseout event listeners using the standard approach.
The addListeners function sets up our hi_cell and lo_cell functions as
mouseover and mouseout event listeners, respectively.

To minimize duplicate code, we’ve added a handy little utility function called
ascendDOM. This marches up the tree from the element supplied in the first argu-
ment to find the first enclosing tag whose name matches the second argument.

Processing happens as follows. Mousing over a table cell triggers the hi_cell
function. This finds the moused-over cell, then calculates the row and the table
in which that cell appears. The ascendDOM function is called quite often in the
code, so you can see the benefit of putting that code into a function. In hi_cell,
the lines that actually do the styling work are these:

File: tableHighlight.js (excerpt)

 parent_row.className += ' hi';

Click here to order the printed 318-page book now (we deliver worldwide)!70

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

File: tableHighlight.js (excerpt)

 cell.className += ' hi';

The rest of the code is simply concerned with picking out the right elements for
these lines to work on.

Our intention here is to apply the class hi to the other cells in the row that con-
tains the moused-over cell, and its column. The first line above executes the first
task. The second line applies the class to a given cell, but our script needs to find
the appropriate cells first.

This is where things get a little complicated. The row is a simple <tr> tag,
whereas the column is a list of cells scattered across all the rows in the table. Ac-
cording to the DOM Level 2 specification, table cell elements have a cellIndex
property, which indicates the cell’s index in the row. To find the other cells in
this column, we could iterate through all the rows in the table and find within
each row the cell that has the same cellIndex.

Sadly, Safari doesn’t properly support cellIndex—it is always set to 0, no matter
what the actual index should be. If Safari supported cellIndex, the process could
have been simple:

 var ci = el.cellIndex;

In fact, this concise snippet must be replaced with the much longer section below:

File: tableHighlight.js (excerpt)

 var ci = -1;
 for (var i = 0; i < parent_row.cells.length; i++) {
 if (el === parent_row.cells[i]) {
 ci = i;
 }
 }
 if (ci == -1) return; // this should never happen

ci is the cellIndex, and can be used to highlight other cells with the same
cellIndex in the other rows in the table:

File: tableHighlight.js (excerpt)

 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className += ' hi';
 }

71Click here to order the printed 318-page book now (we deliver worldwide)!

Making Tables More Readable

http://www.sitepoint.com/launch/150d2e

All the table’s rows are held in the table’s rows array. We walk through that array,
applying the hi class to the cell in each row that has the same index as the
moused-over cell.

The upshot of this exercise is that all the cells in the same column as the moused-
over cell will have class hi; the table row containing the cell will also have class
hi.

Our CSS code takes care of the appearance of these cells:

File: tableHighlight.html (excerpt)

 tr.hi td, td.hi {
 background-color: #ccc;
 }

We’ve applied a background color of class hi to both tds, and tds in a tr of class
hi; thus, these cells will be highlighted. The lo_cell function works similarly,
except that it removes the class hi from the row and column rather than applying
it. The removal is done with the following lines:

File: tableHighlight.js (excerpt)

 parent_row.className =
 parent_row.className.replace(/\b ?hi\b/, '');

File: tableHighlight.js (excerpt)

 cell.className = cell.className.replace(/\b ?hi\b/, '');

Since a className is a string, it has all the methods of a string, one of which is
replace; we can call the replace method with a regular expression (first para-
meter) and a substitute string (second parameter). If a match for the regular ex-
pression is found in the string, it is replaced by the substitute string. In our ex-
ample, we look for matches to the expression \b ?hi\b (note that regular expres-
sions are delimited by slashes, not quotes)—that is, a word boundary followed
by an optional space, the word ‘hi’, and another word boundary—and replace it
with a blank string, thus removing it from the className.

An added bonus of using CSS to provide the style information is that we can
apply different highlighting to different tables on the page without changing the
script. For example, the HTML of the page contains two tables, one with a class
of extra. We apply some CSS specifically to tables with class extra:

Click here to order the printed 318-page book now (we deliver worldwide)!72

Chapter 3: Handling DOM Events

http://www.sitepoint.com/launch/150d2e

File: tableHighlight.html (excerpt)

table.extra tr.hi td, table.extra td.hi {
 color: red;
 text-decoration: underline overline;
 background-color: transparent;
}

As a result, the highlighted cells in that particular table will be highlighted differ-
ently. CSS makes achieving this kind of effect very easy.

Summary
Understanding the processes by which events are fired, and by which code is
hooked to those events, is vital to DHTML programming. Almost everything you
do in DHTML will involve attaching code to events, as described in this chapter.
We’ve examined some common events and the two browser models for listening
to them. We have also covered what happens when an event fires, and how you
can interrupt or alter that process. Finally, we looked at a few events in detail,
and saw some simple examples of how code can attach to those events and improve
the user experience on sites that employ these techniques.

73Click here to order the printed 318-page book now (we deliver worldwide)!

Summary

http://www.sitepoint.com/launch/150d2e

74

Detecting Browser Features4
You just listed all my best features.
—The Cat, Red Dwarf, Series 3, Episode DNA

An important design constraint when adding DHTML to your Websites is that
it should be unobtrusive. By “unobtrusive,” I mean that if a given Web browser
doesn’t support the DHTML features you’re using, that absence should affect
the user experience as little as possible. Errors should not be shown to the user:
the site should be perfectly usable without the DHTML enhancements. The
browsers that render your site will fall into the following broad categories:

1. Offer no JavaScript support at all, or have JavaScript turned off.

2. Provide some JavaScript support, but modern features are missing.

3. Have full JavaScript support, but offer no W3C DOM support at all.

4. Provide incomplete DOM support, but some DOM features are missing or
buggy.

5. Offer complete DOM support without bugs.

The first and the last categories hold no concerns for you as a DHTML developer.
A browser that does not run JavaScript at all will simply work without calling
any of your DHTML code, so you can ignore it for the purposes of this discussion.

You just need to make sure that your page displays correctly when JavaScript is
turned off.1 Similarly, a browser that implements the DOM completely and
without bugs would make life very easy. It’s a shame that such browsers do not
exist.

The three categories in the middle of the list are of concern to us in this chapter.
Here, we’ll explore how to identify which DHTML features are supported by a
given browser before we try to utilize those features in running our code.

There are basically two ways2 to working out whether the browser that’s being
used supports a given feature. The first approach is to work out which browser
is being used, then have a list within your code that states which browser supports
which features. The second way is to test for the existence of a required feature
directly. In the following discussion, we’ll see that classifying browsers by type
isn’t as good as detecting features on a case-by-case basis.

Old-Fashioned Browser Sniffing
In the bad old days, before browser manufacturers standardized on the DOM,
JavaScript developers relied on detection of the browser’s brand and version via
a process known as browser sniffing. Each browser provides a window.navigator
object, containing details about the browser, which can be checked from Java-
Script. We can, for example, find the name of the browser (the “user agent string”)
as follows:

var browserName = navigator.userAgent;
var isIE = browserName.match(/MSIE/); // find IE and look-alikes

Don’t do this any more! This technique, like many other relics from the Dark
Ages of JavaScript coding (before the W3C DOM specifications appeared), should
not be used. Browser sniffing is flaky and prone to error, and should be avoided
like the black plague. Really: I’m not kidding here.

Why am I so unenthusiastic about browser sniffing? There are lots of reasons.
Some browsers lie about, or attempt to disguise, their true details; some, such as
Opera, can be configured to deliver a user agent string of the user’s choice. It’s
pretty much impossible to stay up-to-date with every version of every browser,

1 For example, if your DHTML shows and hides some areas of the page, those areas should show
initially, then be hidden with DHTML, so that they are available to non-DHTML browsers.
2Actually, there’s a third way to identify browser support. The DOM standards specify a
document.implementation.hasFeature method that you can use to detect DOM support.
It’s rarely used, though.

Click here to order the printed 318-page book now (we deliver worldwide)!76

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

and it’s definitely impossible to know which features each version supported
upon its release. Moreover, if your site is required to last for any reasonable
period of time, new browser versions will be released after your site, and your
browser-sniffing code will be unable to account for them. Browser sniffing—what
little of it remains—should be confined to the dustbin of history. Put it in the
“we didn’t know any better” category. There is a significantly better method
available: feature sniffing.

Modern DOM Feature Sniffing
Instead of detecting the user’s browser, then working out for yourself whether it
supports a given feature, simply ask the browser directly whether it supports the
feature. For example, a high proportion of DHTML scripts use the DOM method
getElementById. To work out whether a particular visitor’s browser supports
this method, you can use:

if (document.getElementById) {
 // and here you know it is supported
}

If the if statement test passes, we know that the browser supports the feature
in question. It is important to note that getElementById is not followed by
brackets! We do not say:

if (document.getElementById())

If we include the brackets, we call the method getElementById. If we do not in-
clude the brackets, we’re referring to the JavaScript Function object that underlies
the method. This is a very important distinction. Including the brackets would
mean that we were testing the return value of the method call, which we do not
want to do. For a start, this would cause an error in a non-DOM browser, because
we can’t call the getElementById method there at all—it doesn’t exist! When
we test the Function object instead, we’re assessing it for existence. Browsers
that don’t support the method will fail the test. Therefore, they will not run the
code enclosed by the if statement; nor will they display an error.

This feature of JavaScript—the ability to test whether a method exists—has been
part of the language since its inception; thus, it is safe to use it on even the oldest
JavaScript-supporting browsers. You may recall from the previous chapter the
technique of referring to a Function object without calling it. In Chapter 3, we
used it to assign a function as an event listener without actually calling it. In

77Click here to order the printed 318-page book now (we deliver worldwide)!

Modern DOM Feature Sniffing

http://www.sitepoint.com/launch/150d2e

JavaScript, everything can be treated as an object if you try hard enough; methods
are no exception!

Which DOM Features Should We Test?
The easiest approach is to test for every DOM method you intend to use. If your
code uses getElementById and createElement, test for the existence of both
methods. This will cover browsers in the fourth category above: the ones that
implement some—but not all—of the DOM.

It is not reasonable to assume that a browser that supports getElementById also
supports getElementsByTagName. You must explicitly test for each feature.

Where Should We Test for DOM Features?
An easy way to handle these tests is to execute them before your DHTML sets
up any event listeners. A large subset of DHTML scripts work by setting on page
load some event listeners that will be called as various elements in the browser
fire events. If, before setting up the event listeners, you check that the browser
supplies all the DOM features required by the code, event listeners will not be
set up for browsers that do not support those features. You can therefore reason-
ably assume in setting up your event listeners that all the features you require
are available; this assumption can simplify your code immensely. Here’s an ex-
ample:

function myScriptInit() {
 if (!document.getElementById ||
 !document.getElementsByTagName ||
 !document.createElement) {
 return;
 }
 // set up the event listeners here
}

function myScriptEventListener() {
 var foo = document.getElementById('foo'); // safe to use
}

addEvent(window, 'load', myScriptInit, false);

This script contains a myScriptInit function, which sets up
myScriptEventListener as an event listener. But, before we set up that listener,

Click here to order the printed 318-page book now (we deliver worldwide)!78

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

we check for the existence of the DOM methods getElementById,
getElementsByTagName, and createElement.

The if statement says: “if the JavaScript Function object
document.getElementById does not exist, or if the Function object
document.getElementsByTagName does not exist, or if the Function object
document.createElement does not exist, exit the myScriptInit function.” This
means that, should any of those objects not be supported, the myScriptInit
function will exit at that point: it will not even get as far as setting up the event
listeners. Our code will set up listeners only on browsers that do support those
methods. Therefore, as above, the listener function myScriptEventListener can
feel safe in using document.getElementById without first checking to ensure
that it is supported. If it wasn’t supported, the listener function would not have
been set up.

All this sniffing relies on JavaScript’s runtime behavior. Even though the scripts
are read by the browser at load time, no checks are done on the objects stated in
the scripts until the code is run. This allows us to put browser objects in all scripts,
and use them only when our detection code gets around to it: an arrangement
called late binding.

Testing Non-DOM Features
Feature sniffing can be used on any JavaScript object: not just methods, and not
just those methods that are part of the DOM. Commonly used examples are the
offset properties (offsetWidth, offsetHeight, offsetLeft and offsetTop) of
an element. These JavaScript properties are an extension to the DOM provided
by all the major browsers. They return information on the size and position of
an element in pixels. We can test whether those properties are defined on a given
element’s object as follows:

var foo = document.getElementById('foo');

if (typeof foo.offsetHeight != 'undefined') {
 var fooHeight = foo.offsetHeight;
}

Here, we set fooHeight if, and only if, offsetHeight is supported on foo. This
is a different type of check from the method we used before, though: isn’t it
possible simply to say, if (foo.offsetHeight)? This isn’t a good approach to
use. If foo.offsetHeight is not defined, if (foo.offsetHeight) will not be
true, just as we expect. However, the if statement will also fail if

79Click here to order the printed 318-page book now (we deliver worldwide)!

Testing Non-DOM Features

http://www.sitepoint.com/launch/150d2e

foo.offsetHeight does exist, but is equal to 0 (zero). This is possible because
JavaScript treats zero as meaning false. Testing whether a given item is defined
just got a little more complex (but only a little!).

If you are testing for the existence of function functionName, or method
methodName (on an object obj), use the function/method name without the
brackets to do so:

if (functionName) { ... }
if (obj.methodName) { ... }

Likewise, if you’re testing for a variable v, or for a DOM property prop of an
object, you can often use the variable or the DOM attribute’s property name
directly:

if (v) { ... }
if (obj.prop) { ... }

But, watch out! If the variable or property contains numbers or strings (as does
offsetHeight, for example) then use typeof, because a number might be 0
(zero), and a string might be the empty string "", both which also evaluate to
false:

if (typeof v != 'undefined') { ... }
if (typeof obj.prop != 'undefined') { ... }

Sniffing at Work: scrollImage
Lots of Websites contain photo galleries: pages listing thumbnails of photographs
that, when clicked on, display the photos at full size. An interesting enhancement
to such a site might be to let the user see the full-size photo without having to
click to load it. When the user mouses over the thumbnail, that thumbnail could
become a “viewing area” in which a snippet of the full-sized image is shown. This
technique is useful if your thumbnails aren’t detailed enough to enable users to
tell the difference between superficially similar images. It’s especially handy if
your thumbnails display something like a document, rather than a photo. Fig-
ure 4.1 shows the final effect:

Click here to order the printed 318-page book now (we deliver worldwide)!80

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

Figure 4.1. The thumbnail display implemented by the
scrollImage example.

We’ll describe what’s going on here in a moment. We’ll review the code first,
then see a demonstration before we get to the explanation.

Setting Up the Page
The HTML file for this technique is straightforward:

File: scrollImage.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>ScrollImage demonstration</title>
 <script src="scrollImage.js" type="text/javascript"></script>
 <style type="text/css">
 .scrollimage {
 display: block;
 float: left;
 border: 1px solid black;
 margin: 1em;
 padding: 0;
 }

81Click here to order the printed 318-page book now (we deliver worldwide)!

Setting Up the Page

http://www.sitepoint.com/launch/150d2e

 .scrollimage:hover {
 position: relative;
 }

 .scrollimage img {
 border: none;
 }

 .scrollimage:hover img {
 display: none;
 }
 </style>
 </head>
 <body>

 <h1>Scanned documents</h1>

 <p>
 <a href="1.jpg" class="scrollimage"
 mainx="563" mainy="823" thumbx="82" thumby="120"
 style="background: url(1.jpg); width: 82px;
 height: 120px;"
 >

 <a href="2.jpg" class="scrollimage"
 mainx="563" mainy="777" thumbx="87" thumby="120"
 style="background: url(2.jpg); width: 87px;
 height: 120px;"
 >

 <a href="3.jpg" class="scrollimage"
 mainx="567" mainy="823" thumbx="83" thumby="120"
 style="background: url(3.jpg); width: 83px;
 height: 120px;"
 >

 <a href="4.jpg" class="scrollimage"
 mainx="558" mainy="806" thumbx="83" thumby="120"
 style="background: url(4.jpg); width: 83px;
 height: 120px;"
 >

 <a href="5.jpg" class="scrollimage"
 mainx="434" mainy="467" thumbx="112" thumby="120"
 style="background: url(5.jpg); width: 112px;
 height: 120px;"

Click here to order the printed 318-page book now (we deliver worldwide)!82

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

 >
 </p>

 </body>
</html>

The content of this page is fairly obvious. Notice how the image elements are
hidden by CSS styles when the mouse moves over them. This page also in-
cludes—with the <script src="scrollImage.js"
type="text/javascript"></script> line—this JavaScript file:

File: scrollImage.js

// Based on findPos*, by ppk
// (http://www.quirksmode.org/js/findpos.html)
function findPosX(obj) {
 var curLeft = 0;
 if (obj.offsetParent) {
 do {
 curLeft += obj.offsetLeft;
 } while (obj = obj.offsetParent);
 }
 else if (obj.x) {
 curLeft += obj.x;
 }
 return curLeft;
}

function findPosY(obj) {
 var curTop = 0;
 if (obj.offsetParent) {
 do {
 curTop += obj.offsetTop;
 } while (obj = obj.offsetParent);
 }
 else if (obj.y) {
 curTop += obj.y;
 }
 return curTop;
}

// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
function addEvent(obj, evType, fn, useCapture) {
 if (obj.addEventListener) {
 obj.addEventListener(evType, fn, useCapture);
 return true;

83Click here to order the printed 318-page book now (we deliver worldwide)!

Setting Up the Page

http://www.sitepoint.com/launch/150d2e

 } else if (obj.attachEvent) {
 var r = obj.attachEvent('on' + evType, fn);
 return r;
 } else {
 obj['on' + evType] = fn;
 }
}

addEvent(window, 'load', scrollInit, false);

function scrollInit() {
 if (!document.getElementsByTagName)
 return;
 var allLinks = document.getElementsByTagName('a');
 for (var i = 0; i < allLinks.length; i++) {
 var link = allLinks[i];
 if ((' ' + link . className + ' ').indexOf(' scrollimage ') !=
 -1) {
 addEvent(link, 'mousemove', moveListener, false);
 }
 }
}

function attVal(element, attName) {
 return parseInt(element.getAttribute(attName));
}

function moveListener(ev) {
 var e = window.event ? window.event : ev;
 var t = e.target ? e.target : e.srcElement;

 var xPos = e.clientX - findPosX(t);
 var yPos = e.clientY - findPosY(t);

 if (t.nodeName.toLowerCase() == 'img')
 t = t.parentNode;
 if (t.nodeName.toLowerCase() == 'a') {

 // scaleFactorY = (width(big) - width(small)) / width(small)
 var scaleFactorY =
 (attVal(t, 'mainy') - attVal(t, 'thumby')) / attVal(t,
 'thumby');
 var scaleFactorX =
 (attVal(t, 'mainx') - attVal(t, 'thumbx')) / attVal(t,
 'thumbx');

Click here to order the printed 318-page book now (we deliver worldwide)!84

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

 t.style.backgroundPosition =
 (-parseInt(xPos * scaleFactorX)) + 'px ' +
 (-parseInt(yPos * scaleFactorY)) + 'px';
 }
}

We’ll explore (and fix!) this code shortly. Finally, the page also contains images:
five at full-size, and five thumbnails. You can find them in the code archive for
this book.

Demonstrating the DHTML Effect
Let’s see how the page works. The HTML document shows five images as
thumbnails; in this example, they’re thumbnails of individual pages of a scanned-
in document. Figure 4.2 shows the page content under normal circumstances.

Figure 4.2. Thumbnails of a document.

When we mouse-over a thumbnail image, though, the display of that thumbnail
changes to show the actual image to which it’s linked, as shown in Figure 4.3.

The thumbnail becomes a viewing area in which we can see a snippet of the full-
size image. As the cursor moves over the third image, we see the content of the
third image at full size through the viewing area. For a document thumbnail such
as this, we can use the cursor to move around the document within the viewing
area, so that we can read the content and see if it’s the document we want. This
technique can also be useful, as mentioned, in photo galleries containing images
that look similar when displayed at thumbnail size.

85Click here to order the printed 318-page book now (we deliver worldwide)!

Demonstrating the DHTML Effect

http://www.sitepoint.com/launch/150d2e

Figure 4.3. Mousing over a thumbnail.

How the Code Works
Conceptually, the code works as follows: we set up the page so that every “scrol-
lable” image is made up of an <a> tag of class scrollimage, which contains an
 tag displaying the thumbnail. We apply the full-size image as the CSS
background image of the <a> tag. Then, when the user mouses over the a element,
we hide the img element entirely, allowing the a element’s background image to
show through. We then manipulate the position of that background image so
that it moves in accordance with the cursor.3

This is all fairly advanced stuff, so we need to confirm that the running browser
supports all the features we need in order to make it work. We start by making
the script initialize on page load with the line:

File: scrollImage.js (excerpt)

addEvent(window, 'load', scrollInit, false);

We saw the addEvent method in Chapter 3, but, with what we’ve learned about
feature detection, its workings should now be much clearer to you. First, we check
for the existence of an addEventListener method on the passed object, to see
if the user’s browser supports the DOM Events model correctly:

3We’re storing the dimensions of the larger image in custom attributes on the a element: mainx,
mainy, thumbx, and thumby. This is a slightly suspect technique: it will prevent the HTML from
validating, and should therefore be approached with caution. In this case, however, it is the easiest
way to tie the required values to each of the a elements.

Click here to order the printed 318-page book now (we deliver worldwide)!86

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

File: scrollImage.js (excerpt)

function addEvent(obj, evType, fn, useCapture) {
 if (obj.addEventListener) {
 obj.addEventListener(evType, fn, useCapture);
 return true;

Failing that, we look for Internet Explorer’s proprietary attachEvent method on
the object.

File: scrollImage.js (excerpt)

 } else if (obj.attachEvent) {
 var r = obj.attachEvent('on' + evType, fn);
 return r;

Failing that, we attach the event listener directly to the element, as an event
handler; this is required for IE5 on Macintosh.

File: scrollImage.js (excerpt)

 } else {
 obj['on' + evType] = fn;
 }

This procedure caters for all the ways by which we might attach an event listener,
using feature sniffing to see which option is available.

The initialization function that sets up the scrolling effect, scrollInit, uses
document.getElementsByTagName to find all the a elements in the document.
Therefore, scrollInit checks for this method’s existence before proceeding:

File: scrollImage.js (excerpt)

function scrollInit() {
 if (!document.getElementsByTagName)
 return;

If the user’s browser doesn’t support document.getElementsByTagName, then
we return from the scrollInit function and don’t progress any further.

One extra trick in the feature sniffing code, as described in Chapter 3, addresses
the way in which we find the event object when we’re inside the moveListener
event listener. As we know, the DOM Events specification mandates that an
event object is passed to the event listener as an argument, whereas Internet Ex-
plorer makes the event object available as the global window.event. So, our code
checks for the existence of window.event, and uses it as the event object if it

87Click here to order the printed 318-page book now (we deliver worldwide)!

How the Code Works

http://www.sitepoint.com/launch/150d2e

exists; the code falls back to the passed-in argument if window.event is not
present:

File: scrollImage.js (excerpt)

function moveListener(ev) {
 var e = window.event ? window.event : ev;

Next, we need to get the event’s target from that event object; the DOM specifies
e.target, and Internet Explorer provides e.srcElement. Another feature-sniff
gives us the appropriate value:

File: scrollImage.js (excerpt)

 var t = e.target ? e.target : e.srcElement;

This is a compressed, shorthand version of the code we saw in Chapter 3.

The next step is for the code to get the position of the mouse inside the thumbnail
image area. This is the code from the full listing above that is supposed to do
this:

 var xPos = e.clientX - findPosX(t);
 var yPos = e.clientY - findPosY(t);

In theory, e.clientX and e.clientY give the x- and y-coordinates of the mouse
within the browser window, respectively. By subtracting from these the x- and
y-coordinates of the target element, we obtain the mouse’s position within that
element.

Depending on your browser of choice, this might seem to work just fine at first
glance. Peter-Paul Koch’s findPosX and findPosY functions make short work of
getting the target element’s position.4 Unfortunately, the clientX and clientY
properties of the event object are nowhere near as reliable.

clientX and clientY Problems
The code above is flawed: the event listener uses e.clientX and e.clientY to
ascertain the position of the mouse.

But that’s not a flaw, is it? After all, it’s in the DOM specifications!

4For a complete description of how findPosX and findPosY work, visit Peter-Paul Koch’s page
on the subject at http://www.quirksmode.org/js/findpos.html.

Click here to order the printed 318-page book now (we deliver worldwide)!88

Chapter 4: Detecting Browser Features

http://www.quirksmode.org/js/findpos.html
http://www.sitepoint.com/launch/150d2e

Well, it’s sort of a flaw—a flaw in the way browser manufacturers interpret the
specification. Peter-Paul Koch studies this problem in great detail in his compre-
hensive article, Mission Impossible—Mouse Position[2]. The problem occurs only
when the page is scrolled (which was not the case with the above page). When
a page is scrolled, the specification is rather vague on whether clientX and
clientY are returned relative to the whole document, or to the window (the part
of the document that is visible). Internet Explorer returns them relative to the
window, as does Mozilla, but all of Opera, Konqueror, and iCab return them re-
lative to the document. Netscape also provides pageX and pageY, which are mouse
coordinates relative to the document. (Ironically enough, Internet Explorer may
be the only browser which is fully compliant with the standard; the best reading
of the specification is that clientX and clientY should be relative to the window.)

So, we need to use pageX and pageY if they exist, and clientX and clientY if
they do not; if we’re in Internet Explorer, however, we have to add to clientX
and clientY the amounts by which the page has been scrolled. But how do we
know if we’re in Internet Explorer? We use browser detection.

Browser Detection You Can’t Avoid
That spluttering noise you can hear in the background is the crowd rightly
pointing out that we consigned browser detection to the dustbin of history only
a few pages back, and they’re not wrong. However, there are occasions when
different browsers implement the same properties (in this case, clientX and
clientY) in different ways and when there are no other objects available for
sniffing that can us tell which of the different implementations is in use.

On such occasions, there is no alternative but to use the dreaded browser sniffing
to work out what to do. The mouse position issue described here is almost the
only such situation. The very thought that it might be necessary to use browser
detection should make all right-thinking DHTML developers shudder with guilt,
but, sadly, there’s nothing for it! We add the browser detection script to the code
just before we call addEvent to set up our window load listener:

File: scrollImage.js (excerpt)

var isIE = !window.opera && navigator.userAgent.indexOf('MSIE') !=
 -1;

Note that, first, we check that window.opera is false or non-existent; Opera
sets this variable to make it easy for scripts to detect that it is the browser in use

[2] http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/

89Click here to order the printed 318-page book now (we deliver worldwide)!

Browser Detection You Can’t Avoid

http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/
http://www.sitepoint.com/launch/150d2e

(Opera also implements user-agent switching, so that, from a
navigator.userAgent perspective, it can appear to be Internet Explorer). Once
we’ve established that we’re not using Opera, we go on to look for “MSIE” in the
user agent string; if this is present, Internet Explorer is the browser in use.

Our updated moveListener event listener now looks like this:

File: scrollImage.js (excerpt)

function moveListener(ev) {
 var e = window.event ? window.event : ev;
 var t = e.target ? e.target : e.srcElement;

 var mX, mY;
 if (e.pageX && e.pageY) {
 mX = e.pageX;
 my = e.pageY;
 } else if (e.clientX && e.clientY) {
 mX = e.clientX;
 mY = e.clientY;
 if (isIE) {
 mX += document.body.scrollLeft;
 mY += document.body.scrollTop;
 }
 }

 var xPos = mX - findPosX(t);
 var yPos = mY - findPosY(t);

// ... the rest as before ...

Note that we check first for pageX and pageY (for Mozilla), then fall through to
clientX and clientY. We handle Internet Explorer by checking the isIE variable;
if it’s true, we add the document’s scroll amounts as required. We’re using the
browser detect as little as possible; specifically, Netscape/Mozilla provide the
pageX and pageY properties, and we look for them through feature sniffing, not
by performing browser detection for Mozilla.

Calculating Screen Positions
The last section of our code has little to do with browser detects, but, having
spent all this time to get the right X and Y coordinates, it makes sense to under-
stand how to use them.

Click here to order the printed 318-page book now (we deliver worldwide)!90

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

The last part of the moveListener function starts with a couple of ifs, which
ensure that we have in hand a reference to the <a> tag surrounding the thumbnail
 of interest. No surprises there, so we grab the required DOM element:

File: scrollImage.js (excerpt)

 if (t.nodeName.toLowerCase() == 'img')
 t = t.parentNode;
 if (t.nodeName.toLowerCase() == 'a') {

Next, we have the first of two sets of calculations:

File: scrollImage.js (excerpt)

 // scaleFactorY = (width(big) - width(small)) / width(small)
 var scaleFactorY =
 (attVal(t, 'mainy') - attVal(t, 'thumby')) / attVal(t,
 'thumby');
 var scaleFactorX =
 (attVal(t, 'mainx') - attVal(t, 'thumbx')) / attVal(t,
 'thumbx');

Code like this is liable to be specific to each DHTML effect you undertake, but
the mind-bending you have to do to come up with the code is similar in all cases.
Take a deep breath: here we go!

With the large background image showing through the viewing area, what should
appear when the cursor is in the top-left corner of that viewing area? The top-
left corner of the big image should be in the top-left corner of the viewing area:
that’s straightforward. Now, what should appear when the cursor is located at
the bottom-right corner of the viewing area? Should the bottom-right corner of
the full-sized image be in the top-left corner of the viewing area? That’s what
would happen if the big image were moved by its full size across the viewing area
as the cursor was moved the full distance across the viewing area. Think about
it carefully; you might like to try experimenting with two pieces of paper, one of
which has a rectangular hole in it. The big image would eventually disappear off
the top-left corner of the viewing area! If the background image were tiled (the
default), additional copies of the image would be visible at this bottom-right
corner—a very odd result.

We don’t want the image to move that far. If we move the cursor to the extreme
bottom-right of the viewing area, we want the big image to move by almost its
entire size—but not quite! We want the bottom-right corner of the big image to
move only as far as the bottom-right corner of the viewing area, and not move
any further towards the top-left.

91Click here to order the printed 318-page book now (we deliver worldwide)!

Calculating Screen Positions

http://www.sitepoint.com/launch/150d2e

Now, to make the big image move, we have to calculate a distance by which to
move it. Take some example figures: suppose the big image is ten times the size
of the thumbnail. Let’s suppose the image is 500 pixels on each side, and the
thumbnail’s 50 pixels on each side. For every pixel by which the cursor moves,
the big image should move 500/50: ten times as fast. So the “scale factor” is ten.
But, wait a minute! If the cursor moves 50 pixels left, the big image will move
500 pixels left: right off the left edge of the viewing area. That’s too far. We want
it to move at most 500 minus 50 pixels, so that it’s always “inside” the viewing
area. Therefore, the real scale factor is (500 – 50) / 50 = 9. The full-sized image
should move nine times as fast as the cursor. That’s what the first set of calcula-
tions does, except that it calculates scale factors in both dimensions, since most
images are rectangles, not squares.

Next, we want to move the big image. Here’s the second set of calculations:

File: scrollImage.js (excerpt)

 t.style.backgroundPosition =
 (-parseInt(xPos * scaleFactorX)) + 'px ' +
 (-parseInt(yPos * scaleFactorY)) + 'px';

Now, if (for example) we move the mouse from the top-left towards the bottom-
right, we’re scanning diagonally across the viewing area. As we move, we want
new areas of the big image to come into view. So the big image had better slide
in the opposite direction to the mouse: up towards, and beyond, the top left. It’s
like using a negative margin to bleed text to the left and top of a page. And that’s
what we do by calculating negative pixel amounts.

This idea may seem back-to-front initially. Think of it as though you were
shooting a scene for a movie. The camera (the thumbnail viewing area) is fixed
into place, so it must be the scene at which the camera points that moves if there’s
to be any panning effect. Alternately, imagine yourself looking out of the window
of a moving train without turning your head. It’s the same effect again, provided
the train goes backwards!

Summary
In this chapter, we’ve learned that browsers don’t always support all the DOM
features we’d like, and discussed how feature sniffing helps us as DHTML de-
velopers to code defensively around this issue. Browser sniffing allows us to de-
liver dynamic features to browsers that can handle them and, at the same time,
to avoid crashing or throwing errors in browsers that can’t. We looked at the old
method, browser sniffing, and explained why it shouldn’t be used if at all possible.

Click here to order the printed 318-page book now (we deliver worldwide)!92

Chapter 4: Detecting Browser Features

http://www.sitepoint.com/launch/150d2e

We then explored one occasion on which feature sniffing can’t provide everything
we need, leaving us the old method as a last resort.

93Click here to order the printed 318-page book now (we deliver worldwide)!

Summary

http://www.sitepoint.com/launch/150d2e

94

What’s Next?
If you’ve enjoyed these chapters from DHTML Utopia: Modern
Web Design Using JavaScript & DOM, why not order yourself a
copy?

You’ll learn how to enhance your sites’ interactivity and usability
in browsers that can handle it, without breaking the functionality
on those that can’t. You’ll discover the modern, standards-
compliant DHTML techniques behind some of today’s most
impressive web applications, like Flickr, Google Suggest, Google
Maps, and GMail. You’ll also gain access to the code archive
download, so you can try out all the examples without retyping!

In the remaining chapters, you’ll:

 Discover how to validate form data using regular expressions,
and give dynamic feedback to your users

 Build dropdown lists that improve the usability of dropdown
menus, just like Google Suggest

 Develop a fully standards-compliant, cross-browser,
hierarchical navigation menu

 Get the lowdown on Remote Scripting techniques and AJAX

 Create form fields with name resolution that will automatically
resolve an email address from a nickname

 Develop a super-cool drag and drop file manager application

 And much more!

On top of that, order direct from sitepoint.com and you’ll receive
a free and indispensable 17” x 24” DOM & JavaScript Quick
Reference Guide poster.

 Order now and get it delivered to your doorstep!

https://sitepoint.com/bookstore/go/15/150d2e

Index
A
absolute paths, XPath, 289
absolute positioning of submenus, 172
accessibility of XMLHTTP and

DHTML, 227
ActiveX controls, 237
addEvent function, 53

highlighting table rows, 68
scrollImage example, 86
smartlink.js example, 61

addEventListener method, 48
IE equivalent, 53
scrollImage example, 86

addFriend function, “free beer” form,
32

addListeners function, 53, 62, 70
AJAX applications, 227
Andrew, Scott, 53

(see also addEvent function)
animated GIFs, 106
animation, 95–123

animation involving movement,
108–123

appearance change animation, 96–
104

clock example, 102
JavaScript suitability for multiple

animations, 196
modeling animation states, 115
multi-level animated menu project,

167–196
response to mouseouts after starting,

190
rising tooltips example, 108–123
scriptless animation, 106
text fading example, 96

anonymous functions, 98, 104
anonymous callbacks, 228, 259, 303

type-ahead drop-down list example,
165

APIs (application programming inter-
faces), calling with XML-RPC,
277, 279

apostrophe escaping, 97
appendChild method, 24, 28

“free beer” example form, 32
innerHTML alternative, 234

aqtree3 script, 275
arrays

beer guide example, 241
clippingRectangle array, 188–189
getElementsByTagName method, 19
listing username alternatives, 235
submitted fields in autoform ex-

ample, 214
zero-based indexing, 290

ascendDOM function, 70
Ashley, Brent, 219

(see also RSLite library)
associative arrays, 130
asynchronous operation

fetching RSS feeds, 299
RSLite library, 222
Sarissa library requests, 228

attachEvent method, 53, 87, 183
attributes

(see also properties)
changing with JavaScript, 21
event names and, 44
non-HTML, 34, 298
XPath node selection by values, 290

autocompletion widget, 155
autoforms example, 206–219

indirect submission, 214
JavaScript listing, 209
serving the page, 216
style sheet, 209

B
background color and mouseover ef-

fects, 174, 269
backspace key, 161, 164
bandwidth abuse, 298
beer guide example, 238–249

(see also “free beer” example form)
display, 238, 245, 249
fetching and running JavaScript, 246
fetching HTML from the server, 243
JavaScript code, 243, 248
JavaScript method sequence, 240,

244
PHP script, 247
planning the DHTML pages, 240
style sheet, 239, 243, 246
traditional HTML approach, 238

billboard effect, animated menu, 185
Blogger API, 279

as example of XML-RPC, 277
specification, 280
weblog post editor, 283

blogroll example, 292–304
display, 298, 301
expandable and collapsible lists, 303
HTML content, 297
RSS feeds and, 292
specifying script actions, 299

blur events and validation, 129, 136
<body> element, onerror handler, 106
Boodman, Aaron, 157, 264

(see also DOM-Drag library)
bracket notation

assessing support without calling
methods, 77

passing references without calling
functions, 48

browser detection, 76–77
(see also feature sniffing)
mouse position problem and, 89

browser support
assessing DHTML feature support,

76
assessing DOM method support, 77
for the cellIndex property, 71
for character codes, 49
for clientX and clientY, 88
for CSS, 6, 10
for the CSS clip property, 190
for the DOM, 37, 39, 75
for framesets, 198
for hidden <iframe>s, 205
for JavaScript, 75
for the keypress event, 51
for XMLHTTP, 226
for XPath, 290

“browser wars”, 14
browsers

(see also Internet Explorer; Mozilla
browsers; Netscape browsers;
Safari browser)

clock animation example portability,
104

cross-browser events tabulated, 44
cross-browser identification of

clicked links, 63
cross-browser Sarissa library, 227,

290
detecting features of, 75
evaluating script downloads, 159
Opera browser, 89
portable event listeners, 53
rich-text editors, 155

bubbling (see event bubbling)
bugs

CSS parsers, 7, 10
IE list item bug, 172, 240
IE memory leaks, 182

C
calendar popups, 156

Click here to order the printed 318-page book now (we deliver worldwide)!306

Index

http://www.sitepoint.com/launch/150d2e

callback methods, 210, 303
(see also anonymous functions)
autoform example, 214
drag-and-drop file manager, 256, 263
name resolution example, 222–224
RSLite failure callbacks, 224
Sarissa library requests, 228
username checking example, 232–

233
Camel Casing (see InterCaps format)
Camino browser (see Mozilla browsers)
cancelBubble property, 57, 141
case sensitivity, 8, 63, 163
cellIndex property, 71
change event listeners

autoforms example, 212
name resolution example, 222
username checking example, 232

character code support, 49
checkValid method, validation example,

130, 132
checkValidSubmit method, validation

example, 138
childNodes property, 20, 23
circular references, 182
class attribute, HTML, JavaScript

equivalent, 22
className property

indexOf method, 37
replace method, 72

clearInterval function, 102
clearTimeout function, 99, 185
client-side validation, 127–149

error messages, 131
example JavaScript listing, 144
example screenshot, 147–148
example style sheet, 146
limitations, 125
on form submission, 136
submit event listeners, 137
when to apply, 129

clientX and clientY properties, 88
clip property, CSS, 185, 190
clippingRectangle array, 188–189
clock animation example, 102
cloneNode method, 28
closures, creating, 181
code editors, 9
comma terminators, library object

methods, 114
container tags, HTML, 2
contentDocument property, 213
contentWindow property, 213
control characters, 164
cookies

hidden cookie updates, 219
size limits, 226

country name drop-down lists, 159–160
createElement method, 27

innerHTML alternative, 234
testing browser support for, 79

createTextNode method, 27
cross-site scripting, 126
CSS (Cascading Style Sheets), 5–7

bugs and hacks, 7
changing style properties, 23
dynamic menus using, 176
further reading, 10
globe animation example, 107
highlighting table rows, 66, 72, 246
multi-level animated menu project,

171, 173–174, 177
rising tooltips animation example,

111
z-index stacking problem, CSS2, 110

currentTarget property, 179, 181
cursor location

(see also mouseover effects)
highlighting table rows, 65
Mozilla browser drop targets, 266

cursor movement and image scrolling,
91

custom listener functions, 180–181

307Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

D
date entry, calendar popups, 156
debugging tools, JavaScript, 9
default actions, 50–51, 57

(see also preventDefault method)
delegation, 185
dialog box error message display, 134,

148
dictionaries, 130
dimensionless numbers, 24
dimensions, temporarily visible objects,

191
directories

(see also blogroll example)
expandable and collapsible folder

lists, 252, 275, 303
display property, CSS, 24
<div> tags, rising tooltips animation,

109–110
DOCTYPE declarations, 3
document fragments, 28
document.all and document.layers

properties, 159
document.getElement* methods (see

getElement* methods)
DOM (Document Object Model), 13

adding and removing elements, 24–
30

applicability to XML, 287
degrees of browser support, 75
event handling, 46
history, 14
Microsoft and Mozilla references, 22
mouse position specification, 88
superiority of XPath for XML access,

287, 289
testing for the existence of features,

78, 210
XPath alternative, 287–304

DOM-Drag library, 264, 273
drag-and-drop file manager, 252–277

dropping elements onto targets, 271
expanding and collapsing lists, 275
handling drag-and-drop events, 273
highlighting drop targets, 270
HTML, 253
identifying drop targets, 265
implementing drag-and-drop, 263
library objects, 256
PHP script, 257, 262
Sarissa library use, 259
screenshot, 253
server control commands, 261
specifying, 252
style sheet, 255

drop-down lists, type-ahead, 159

E
e parameter, 49
E4X standard, 234
editors

code, 9
rich-text, 155

elements, HTML
adding and removing, 24–30
changing attributes, 21
copying, 28
creating, 27
draggable, 264
manipulating with JavaScript/DOM,

21
possible events tabulated, 43
sharing event listeners between, 47,

50
elements, XML, selecting, 288
email nicknames (see name resolution

example)
empty <div> elements, 110
empty strings, 80
encapsulation (see library objects)
error handling, 104

Click here to order the printed 318-page book now (we deliver worldwide)!308

Index

http://www.sitepoint.com/launch/150d2e

error messages
client-side validation and, 131
display techniques, 134
displaying multiple, 137
drag-and-drop file manager, 262
hiding from users, 75
name resolution example, 225
pre-submission checks, 136
summary error messages, 148

escaping quotes and apostrophes, 97
eval function, JavaScript, 238, 246
event bubbling, 50–51

(see also stopPropagation method)
Event Cache script, 182
event capture, 48
event handlers, 38, 44

(see also event listeners)
rollover script example, 38

event handling
DOM specification, 46
event bubbling and default actions,

50–51
event targets, 44
smarter uses, 58
W3C approach, 47

event listeners, 46
assigning on page load, 52
change event listeners, 212, 222, 232
client-side validation and, 129
cross-browser operation, 53
custom listener functions, 180–181
highlighting table rows, 65
opening links in a new window, 59
portable detection code, 54–55
reusing across targets, 50
submit events, 137
testing browser support for, 78
tooltips animation example, 113,

116
event model, W3C, 44, 179

event objects
IE storage, 55
methods of passing, 87
properties tabulated, 49, 55

event targets, 44, 46
methods of obtaining, 88

events
linking code to, 46
modern naming of, 44, 48

exception handling, 284
expanding form example, 30–33

F
feature sniffing, 77

portabledetect.html example, 56
scrollImage example, 80, 86
testing for non-DOM features, 79

file manager example (see drag-and-drop
file manager)

filter property, 269
findPosX and findPosY functions, 88
Firefox (see Mozilla browsers)
firstChild property, 20, 23
flicker, 181, 183
flyover help (see tooltip animation ex-

ample)
folders, expandable and collapsible lists,

252, 275, 303
form validation, 125–154

cancelling submission on failure, 141
forms design

example expanding form, 30–33
real-time forms, 206
usability improvement, 154–166

frames, 198, 252
“free beer” example form, 30–33
function outlines

beer guide example, 240
highlighting table rows, 68
smartlink event listener example, 61

309Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

functions
assessing support without calling, 77
passing by name, 98
passing references without calling,

48

G
Gecko-based browsers (see Mozilla

browsers)
getElementBy* methods in script

downloads, 159
getElementById method, 17

assessing support for, 77
limitations, 29
testing browser support for, 79

getElementsBy* methods for walking
DOM trees, 17

getElementsByName method, 17, 215
getElementsByTagName method, 17,

19
scrollImage example, 87
testing browser support for, 37, 79
XPath alternative, 288

global variables, 98, 102
globe animation example, 106

H
hacks

accessing variables within passed
functions, 99

CSS parser workarounds, 7, 10
XMLHTTP distinguished from, 226

handleLink function, smartlink ex-
ample, 62

handleValidity method, validation ex-
ample, 132

hasFeature method, 76
hashes, 130
<head> element, as script location, 8
headings, styling, 5

hidden objects
hidden <iframe> elements, 205,

209
hidden cookie updates, 219
hidden <iframe> elements, 205,

209
hidden image updates, 219
hidden list items, 304
hidden proxy elements, 267, 269

hideMenu method, sliding-menu.js, 189
highlighting

beer guide example, 246
drop targets, 265, 270
table rows, 64, 66, 68

history lists and replace methods, 206
hotspots, 267
HTML

(see also elements, HTML)
dynamic generation with inner-

HTML, 234
dynamic generation, beer guide ex-

ample, 242
dynamic generation, drag-and-drop

file manager , 260
semantic HTML, 4, 168
validity, 2–3, 16, 298

HTMLArea editor, 155
htmlFor property, 141
HTTP 204 piggybacks, 220
HTTP requests, Sarissa support, 228
hyperlinks (see links)

I
icons, 207, 253
id attribute, HTML, 17
IE (see Internet Explorer)
<iframe> elements, 199–216

autoforms example, 206–219
data exchange example display, 203,

205
hidden <iframe>s, 205, 209

Click here to order the printed 318-page book now (we deliver worldwide)!310

Index

http://www.sitepoint.com/launch/150d2e

overcoming the shortcomings of, 205
replacing, using script, 201

image rollovers (see rollover script ex-
ample)

images
calculating screen positions, 90
hidden image updates, 219
replacing, using the src attribute, 40
scrollImage preview example, 80

index numbering, XPath and JavaScript
arrays, 290

indexOf method, className property,
37

infinitely nested forms, 207
inline error messages, 134
innerHTML property, 104, 234
insertBefore method, 26
InterCaps format, 23
Internet Explorer

attaching event listeners, 53
CSS support, 7
DOM-supporting browsers and, 39
list item bug, 172, 240
memory leak problem, 182
origins of XMLHTTP in, 226
rich-text editor, 155
support for :hover pseudo-class, 176
support for DOM event model, 180
support for XPath, 290

invisible objects (see hidden objects)
iterating through link elements, 37

J
Java applets, 237
JavaScript

adding arbitrary properties, 113, 195
changing attributes with, 21
code positioning, 47–48
debugging tools, 9
degrees of browser support, 75
DHTML encapsulation, 111

evaluating script downloads, 159
exception handling, 284
further reading, 11
<iframe> use with, 201
passing code as a string, 97
PHP generation of, 218
remote scripting, 197–250
role in DHTML, 7, 9
running from the server, 246
sharing between multiple pages, 144
testing for non-DOM features, 80
URL requests using XMLHTTP, 226
Web services restrictions, 280
XML-RPC clients, 279

JavaScript Console (Mozilla), 9
JavaScript libraries, 256, 259

(see also Sarissa library)
aqtree3, 275
DOM-Drag, 264, 273

jitter, 190
join method, errText array, 141
jsolait XML-RPC client, 284

K
keyCode property, 49, 163–164
keypress events

default actions and, 51
status of keyup and, 48, 161

Koch, Peter-Paul, 88–89, 163

L
<label> element, HTML, uses, 137,

157
lastChild property, 20
late binding, 79
leaf nodes, 20
legacy scripting techniques, 159
length property, childNodes array, 20
 tags, HTML

(see also <rdf:li> tags; nested lists)
drag-and-drop file manager, 260

311Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

IE list item bug, 172, 240
nested lists, 170
semantic markup, 4

library objects, 111
autoforms example, 209
benefits of object-based program-

ming, 195
blogroll example, 301
client-side validation example, 127
drag-and-drop file manager, 256
form validation example, 144
multi-level animated menu project,

187
name resolution example, 223
nesting, for validation, 129
regular expression sets in, 129
type-ahead drop-down list example,

161
username checking example, 232
weblog post editor, 282

links
background color and activity, 174
globe animation example, 106
identifying clicked links, 63
to <iframe> targets, 203–204
iterating through, 37
layout, 4
opening in a new window, 59

list items (see tags, HTML)
load event, assigning listeners, 52
lowercase conversion, 63, 163

M
Macintosh, IE5 event handling prob-

lems, 54
managing files (see drag-and-drop file

manager)
maps, 130
match method for regular expressions,

134
memory leaks, 182

menus
(see also multi-level animated menu

project; submenus)
scriptless, 176

methods
(see also callback methods; functions)
termination in library objects, 114
testing for the existence of, 77

Meyer, Eric, pure CSS menus, 176
Microsoft Corporation

(see also Internet Explorer)
DOM element reference, 22

modular code, 33, 40
mouse position, scrolling and the DOM

specification, 88
mouseout event listeners, 177

introducing a delay, 183
proxy elements, 268, 270
rollover script example, 39
tooltip animation example, 101, 114

mouseout events
running animation response to, 190

mouseover effects
(see also rollover scripts)
multi-level animated menu project,

174–175
scrollImage example, 85
tooltips animation example, 113
using a:hover, 107, 174

mouseover event listeners, 177
proxy elements, 268, 270
rising tootips animation, 116
rollover script example, 39
tooltip animation example, 101, 114

mouseover events
drop targets in Mozilla browsers, 266

moveLinks method, rising tooltips an-
imation, 116–117

Mozilla browsers
clock animation example portability,

104

Click here to order the printed 318-page book now (we deliver worldwide)!312

Index

http://www.sitepoint.com/launch/150d2e

DOM element reference, 22
drop target mouseover problem, 266
E4X standard, 234
JavaScript debugging, 9
support for XMLHTTP, 226
support for XPath, 290

multi-level animated menu project,
167–196

adding animation, 185
avoiding flicker, 183
creating the HTML, 168
CSS styled menus screenshot, 173–

175
JavaScript code, 176, 192–195
unstyled content screenshot, 170

N
name resolution example, 220–225

(see also username checking example)
PHP script, 221
resolve method, 223, 225
resolve_callback method, 224

namespace clashes (see library objects)
namespaces, XML, 296
naming conventions

events, 44, 48, 54
JavaScript properties, 23
library objects, 112

navigation (see links; multi-level anim-
ated menu project)

nesting
arrays, PHP, 151
expandable and collapsible lists,

252, 275, 303
HTML elements and DOM repres-

entations, 15
HTML elements and validity, 2
infinitely nested forms, 207
lists, multi-level animated menu, 170
literal objects, 130
nested forms design, 206

selecting nested elements with
XPath, 289

Netscape browsers
history of the DOM and, 14
Netscape 6 and hidden <iframe>s,

205
nextSibling property, 114
nodes

(see also elements)
DOM representation of HTML, 15
parent and child, 20
XPath view of XML documents, 288

nodeType property and Safari, 117
nodeValue property, 22

O
object detection

animation error handling and, 105
DOM methods, 37, 77–79, 210
Sarissa library, 233, 259
window.event object, 56

object literals (see library objects)
object-based programming, 195
offset properties, 79
offsetParent property, 88
on prefix, event naming, 44, 48, 54
onclick attribute, DOM alternative, 46
onDrag* properties, DOM-Drag library,

274–275
onerror event handler, 106
online validators, 3
onmouseout and onmouseover attrib-

utes, alternatives to, 33
opacity property, 269
Opera browser, 89
oversrc attribute, 34

P
padding, CSS, and unexpected mouse

effects, 178
pageX and pageY properties, 89

313Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

‘paranoid’ code, 261–262
parentNode property, 20
path attribute, drag-and-drop file man-

ager, 255
phone number validation, 128
photo galleries, 85
PHP

beer guide example, 241–242
checking for unused usernames, 229
drag-and-drop file manager, 257, 262
JavaScript written by, 218
server-side validation, 150
serving the autoform page, 216
use with <iframe>s, 205

piggybacks, HTTP 204, 220
positioning

absolute, of submenus, 172
draggable elements, 265

POST requests, drag-and-drop file
manager, 263

presentation with CSS, not HTML, 5–
6

preventDefault method, 51, 57, 141
progress hints, 207
properties

adding arbitrary properties, 113, 195
event objects, tabulated, 55

proxy elements and drop targets, 267–
270

highlighting and tagging targets,
270–273

Q
query strings with embedded PHP, 205
quotes, escaping inside strings, 97

R
radio buttons, 235
RDF syntax, 293–294
<rdf:li> tags, 294
<rdf:RDF> tags, 296

readability of tables, 64
receiveData function, 203–204
recursion, 17
references to elements, 18, 20
references to functions, 48
refreshing pages, alternatives to, 197–

198
regular expressions

alternative to className.indexOf,
37

client-side validation and, 128
resource on, 40
rollover script example, 40
server-side validation, 149
slash delimiters, 72, 130
storing in library objects, 129
use with replace methods, 72

relative paths, XPath, 295
Remote Procedure Call (see XML-RPC)
remote scripting, 197–250

drawing code from servers, 238–249
hidden image updates, 219
HTTP 204 piggybacks, 220
methods enumerated, 198
obtaining data from servers, 198–

237
other client-server options, 237
using <iframe>s, 199–216
XMLHTTP, 225–228

remote site links and bandwidth abuse,
298

removeAttribute method, 29
removeChild method, 26
replace methods, 72, 206
returnValue property, 57, 141
rich-text editors, 155
rising tooltips animation, 108–123

content animation, 116
content creation, 108
DHTML library object, 111
full code listing, 119–123

rollover script example, 33–41

Click here to order the printed 318-page book now (we deliver worldwide)!314

Index

http://www.sitepoint.com/launch/150d2e

findTarget function, 38
HTML, 34
JavaScript, 35
as modular code, 40
setupRollovers function, 36, 40

root nodes, 17
RSLite library, 219

name resolution example, 220–225
potential for username checking, 229

RSS feeds
blogroll parsing example, 292–304
RSS versions and sample feed, 293

S
Safari browser

cellIndex property, 71
clock animation example portability,

104
link event handling, 117

Sarissa library, 227–228
(see also XMLHTTP)
checking for presence of, 233, 259
cross-browser XPath support, 290
drag-and-drop file manager use, 259
namespace declarations, 296–297
use in beer guide example, 243, 248

screen positions, calculating, 90
script (see JavaScript)
<script> tags, server-side validation,

153
scrollImage example, 80–92

calculating screen positions, 90
discussion, 86
HTML, 81
JavaScript, 83

security and input validation, 126
selectNodes and selectSingleNode

methods, 292
semantic HTML, 4, 168
serialize function, PHP, 218
servers, drawing code from, 238–249

beer guide example, 243–246
servers, obtaining data from, 198–237

hidden image updates, 219
HTTP 204 piggybacks, 220
other client-server options, 237
using <iframe>s, 199–216
XMLHTTP, 225–228

servers, sending instructions to, 251–
286

drag-and-drop file manager, 252–277
weblog post editor, 280–286
XMLHttpRequest and, 261

server-side validation, 149–154
security and, 125, 127

setInterval function, 102
multi-level animated menu project,

187, 190
name resolution example, 222
rising tooltips animation, 116

setTimeout function, 96
asynchronous operation, 99
evaluation context, 98
multi-level animated menu project,

184
type-ahead drop-down lists example,

164
username checking example, 235

short-circuit evaluation, 38
showMenu method, sliding-menu.js,

188
slashes

regular expression delimiters, 72, 130
XPath significance of, 289, 295

sliding menus (see multi-level animated
menu project)

smartlink event listener example, 59–
64

soft hyphens, 260
 tags

inline error messages, 134–135

315Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

rising tooltips animation, 108, 110,
114

SQL injection, 126
src attribute, <iframe> tag, 199
src attribute, <image> tag, 40
src property, image object, 219
state property, rising tooltips anima-

tion, 115
stopPropagation method, 51, 56, 141
string manipulation

fromCharCode method, 50
match method, 134
replace method, 72

strings, empty, 80
style properties, changing, 5, 23

(see also CSS)
submenus

animating, 185
hiding, 174
positioning, 172
revealing, 176

submit event
attaching validation, 137
blocking, in autoform example, 211

submitting forms indirectly, 214
Syntax code editor, 9

T
tables, highlighting rows, 64, 66, 68
target attribute, 50
target elements

drop targets, 265
mouse position and ambiguity, 179
shortcut detection code, 133

targetElement, IE, 181
ternary operator, 133
text

changing text nodes, 22
fading animation example, 96

text boxes
autocompletion widget, 155

“free beer” example form, 30, 32
with instructions, 157
word wrapping within, 260

thumbnails, scrollImage example, 80
timed activity

(see also animation; setTimeout
function)

cancelling timed code, 99
delayed reactions to mouseouts, 183
wiping submenus, 187

toLowerCase method, 63, 163
tooltip animation example, 108–123

HTML, 99
JavaScript, 100

toUpperCase method, 8
tree structures

ascendDOM function, 70
DOM representation of HTML, 15
searching using XPath, 289
walking DOM trees, 16

try...catch commands, 105, 284
“type-ahead find” feature, 160
typeof property, 80

U
 tags, HTML

menu layouts using, 168
nesting lists, 170

‘unobtrusive’ DHTML, 75, 105
update function, clock animation ex-

ample, 104
uppercasing example, 8
usability

animation and, 95
HTML widget enhancements, 154–

166
<label> elements and, 137
remote scripting and, 197
supplying progress hints, 207

useCapture parameter, 48

Click here to order the printed 318-page book now (we deliver worldwide)!316

Index

http://www.sitepoint.com/launch/150d2e

user interface, drag-and-drop functions,
263

user-agent switching, 90
username checking example, 228–237

building the JavaScript, 232
screenshots, 232, 236
style sheet, 231

V
valid HTML, 2

adding new attributes and, 298
DOM representations and, 16
validators, 3

validation of user input, 125–154
client-side validation, 127–149
integration of client- and server-side,

149–154
on form submission, 136
reasons to undertake, 126

variables
accessing within passed functions,

99
element references, 18

Venkman debugger, 9

W
W3C (World Wide Web Consortium)

DOM definition, 13
event handling approach, 47
event model, 44, 179
event object properties, 55
RDF syntax and, 294
XPath and, 288

<wbr> tags, 260
Web services

drawing data from servers, 237
exposure with XML-RPC, 277
JavaScript restrictions, 280

weblog post editor, 280–286
coordinating page and server, 283
HTML page content, 281

Weblogs
(see also Blogger API)
blogroll XPath example, 292–304

Webmail (see name resolution example)
widget enhancements, 154–166

autocomplete text boxes, 155
calendar popups, 156
text boxes with instructions, 157
type-ahead drop-down lists, 159

window object
(see also setTimeout function)
open method, 64
opera property, 89

window.document object (see getEle-
mentsBy* methods)

window.event object
cancelBubble property, 57
checking for existence of, 56
IE event handling and, 53
properties compared with W3C, 55
returnValue property, 57

window.location object, replace meth-
od, 206

window.navigator object, browser
sniffing, 76

window.parent object and <iframe>s,
201

wiping effects, multi-level menu project,
185

wrapper objects
(see also library objects)
XHMHTTP implementations, 227

wrapping words within boxes, 260
Wubben. Mark, 182

X
XML document access, 287, 289
XML namespaces, 296
XMLHTTP, 225–228

browser support, 226
drag-and-drop file manager use, 259

317Click here to order the printed 318-page book now (we deliver worldwide)!

http://www.sitepoint.com/launch/150d2e

Sarissa library, 227
username checking example, 228–

237
XMLHttpRequest class, 226–227, 261
XML-RPC, 277–280

calling APIs, 279
weblog post editor, 280–286

XPath, 287–304
adding XML namespaces, 296
applying to XML documents, 290
blogroll example using, 292–304
constructing simple expressions, 295
learning resources on, 292

XPCOM components, 237

Z
Zakas, Nicholas, 156
zero values, JavaScript interpretation,

80
zero-width spaces, 260
z-index property

CSS2 stacking problem, 110–111
draggable elements, 275
proxy elements for drop targets,

267, 269
Zvon XPath tutorial, 292

Click here to order the printed 318-page book now (we deliver worldwide)!318

Index

http://www.sitepoint.com/launch/150d2e

	DHTML Utopia
	Introduction
	Who Should Read This Book?
	What’s In This Book?
	Whither XHTML?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	1. DHTML Technologies
	HTML Starting Points
	Step up to Valid HTML
	Correctly Nest Tags
	Close Container Tags
	Always Use a Document Type
	Validate your Page

	Step up to Semantic HTML

	Adding CSS
	A Simple CSS Example

	Adding JavaScript
	A Simple JavaScript Example
	Get Some Tools!

	Further Reading
	Summary

	2. The Document Object Model
	The Origins of the DOM
	What is the DOM?
	The Importance of Valid HTML

	Walking DOM Trees
	Finding the Top of the Tree
	Getting an Element from the Tree
	getElementById
	getElementsByTagName

	Walking from Parents to Children

	What to do with Elements
	Changing Element Attributes
	Changing Text Nodes
	Changing Style Properties

	Bigger DOM Tree Changes
	Moving Elements
	Throwing Away Elements
	Creating Elements
	Copying Elements

	Making an Expanding Form
	Making Modular Image Rollovers
	A Sample HTML Page
	The setupRollovers Function
	The findTarget Function
	The mouseover / mouseout Functions
	Something for Nothing (Almost)

	Summary

	3. Handling DOM Events
	About Elements and Events
	Common Events
	Hooking Code to Events
	Hooking up the Old Way
	Hooking up the DOM Way
	Getting Event Information
	Re-using Listeners Across Targets
	What Happens After an Event Fires?
	Assigning Event Listeners on Page Load

	Making Events Work Cross-Browser
	Adding Event Listeners Portably
	Inspecting Event Objects Portably
	Stopping Propagation and Default Actions Portably

	Smart Uses of Events
	Creating Smarter Links
	Making Tables More Readable

	Summary

	4. Detecting Browser Features
	Old-Fashioned Browser Sniffing
	Modern DOM Feature Sniffing
	Which DOM Features Should We Test?
	Where Should We Test for DOM Features?
	Testing Non-DOM Features

	Sniffing at Work: scrollImage
	Setting Up the Page
	Demonstrating the DHTML Effect
	How the Code Works
	clientX and clientY Problems
	Browser Detection You Can’t Avoid
	Calculating Screen Positions

	Summary

	What’s Next?
	Index

