Graphs and Graph Theory Introduction
In the branch of mathematics called Graph Theory, a graph bears no relation to the graphs that chart data, such as the progress of the stock market or the growing population of the planet. Graph paper is not particularly useful for drawing the graphs of Graph Theory.
In Graph Theory, a graph is a collection of dots that may or may not be connected to each other by lines. It doesn't matter how big the dots are, how long the lines are, or whether the lines are straight, curved, or squiggly. The "dots" don't even have to be round!

All that matters is which dots are connected by which lines.

Two dots can only be connected by one line. If two dots are connected by a line, it's not "legal" to draw another line connecting them, even if that line stretches far away from the first one.

If you look at a graph and your eyes want to zip all around it like a car on a race course, or if you notice shapes and patterns inside other shapes and patterns, then you are looking at the graph the way a graph theorist does.



Here are some of the special words graph theorists use to describe what they see when they are looking at graphs:
Edges and vertices of graphs

A graph is made up of dots connected by lines.



A "dot" is called a vertex.

When there is more than one vertex, they are called vertices.

A "line" is called an edge. (The plural is simply edges.)

The degree of a vertex in a graph




The degree of a vertex in a graph is the number of edges that touch it.
The number on each vertex of this graph is the degree of that vertex.



The Size of a Graph

The size of a graph is the number of vertices that it has.



Regular graphs




A graph is regular if every vertex has the same degree.
Paths and Cycles in a graph




A path is a route that you travel along edges and through vertices in a graph. All of the vertices and edges in a path are connected to one another.
A cycle is a path which begins and ends on the same vertex. A cycle is sometimes called a circuit.

The number of edges in a path or a cycle is called the length of the path. Is the length of the path also the number of vertices?

A Hamiltonian Path in a Graph




A hamiltonian path in a graph is a path that passes through every vertex in the graph exactly once. A hamiltonain path does not necessarily pass through all the edgesof the graph, however.
A hamiltonian path which ends in the same place in which it began is called a hamiltonian circuit or a hamiltonain cycle.

An Eulerian Path in a Graph




An eulerian path in a graph is a path that travels along every edge of the graph exactly once. An eulerian path might pass through individual vertices of the graph more than once.
An eulerian path which begins and ends in the same place is called an eulerian circuit or an eulerian cycle


Planar Graphs




A planar graph is a graph that can be drawn so that the edges only touch each other where they meet at vertices.



You can usually re-draw a planar graph so that some of the edges cross. Even so, it is still a planar graph. When it is drawn so that the edges cross, the drawing is called a non-planar representation of a planar graph.



Non-planar Graphs




The graph above is nonplanar. No matter how you stretch the edges around, you cannot redraw the graph so that none of the edges cross each other between thevertices.
A non-planar graph should not be confused with a planar graph that just happens to be drawn in such a way that two or more edged cross. The graph below is a planar graph, but it is drawn here in a nonplanar representation.






Distance in a Graph
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Distance in a graph isn't measured in inches or kilmoters. This isn't surprising, because you don't do any measuring in inches or kilometers when you draw a graph in the first place.
Still, when you look at a graph, you can see how it might be possible to say that some vertices are closer together then others.

The distance between two vertices is a count of the number of edges along which you must travel to get from one of the verticesto the other.

If there is more than one path between two vertices, the number of edges in the shortest path is the distance.

The number of edges in a path is called the length of the path.



The Diameter of a Graph




The diameter of a graph is the longest distance you can find between two vertices.
When you are measuring distances to determine a graph's diameter, recall that if 2 vertices have many paths of different distances connecting them, you can only count the shortest one.

An interesting problem in graph theory is to draw graphs in which both the degrees of the vertices and the diameter of the graph are small. Drawing the largest graphs possible that meet these criteria is an open problem. (See Three For the Money.)



 




Isomorphic Graphs
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Two graphs are isomorphic if you can re-draw one of them so that it looks exactly like the other.
To re-draw a graph, it helps to imagine the edges as infinitely stretchable rubber bands. You can move the vertices around and stretch the edges any way you like -- as long as they don't become disconnected.

Sometimes it is very hard to tell whether two graphs are isomorphic or not. In fact, no one knows a simple method for taking two graphs and determining quickly whether or not they are isomorphic.



Complete Graphs



 

 


In a complete graph, every pair of vertices is connected by an edge. It is impossible to add an edge to a complete graph because every possible edge has been drawn.
Complete graphs always have diameter 1. Why?



Neighboring vertices in a graph

In a graph, the neighbors of a vertex are all the vertices which are connected to that vertex by a single edge.
The distance between two vertices which are neighbors is always 1.


Dominating Sets in Graphs




In a graph, the neighbors of a vertex are all the vertices which are connected to that vertex by a single edge. A dominating set for a graph is a set of vertices whose neighbors, along with themselves, constitute all the vertices in the graph.
(The Ice Cream Stands Problem is an example of a dominating set problem.

Mathematics in Maps and Planning

"What is the minimum?" This is a very important question that mathematicians ask in many different contexts. The Ice Cream Stands problem presented in this section is one where, when you have found a solution, you must then ask, "Is this the best solution that I can find?" The notion of minimality is used as the basis for evaluating the quality of solutions.
The map of the town that is used in the activities is a collection of dots and lines that mathematicians call a graph . (Graphs are described, along with some of the terminology that is used for talking about them in Games on Graphs .) You may want to refer to that information if you are not already familiar with graphs such as these--they are made up of dots and lines, and unrelated to graphs that chart information with which you are undoubtedly familiar.
The technical term for an optimal solution to the Ice Cream Stands problem is a minimum dominating set . The problem itself is probably best understood in the form of the ice cream stands story itself. If the dots are houses and the lines are roads, then what is the smallest set of locations to put the ice cream stands so no one has to walk down more than one street to get to one? A set of dots or vertices where the ice cream stands go in a solution to this problem is called the dominating set.
A dominating set for a graph is easy enough to find. But ice cream stands are expensive to build--as are warehouses, "hub" airports, electrical switching stations, etc. So it is that many situations which involve planning the location of important facilities can be modeled by a graph for which we ask the question, "What is a minimumdominating set?" We want the one with the smallest possible number of members. It turns out that for an arbitrary graph or map, there is only one reliable step-by-step procedure that you can use to find a minimum dominating set, and that is to check every possible combination of vertices to see if it is a dominating set. When you find a dominating set that might be minimal, there is not always a way to be sure it is unless you check all the possibilities for a better solution.

Is checking all the possibilities so bad? Couldn't you get a computer to do it? A computer can certainly find one possibility extremely quickly. This does not mean, however, that the computer can find and check all the possibilities in a reasonable amount of time. To know if that can be done, you have to know how many possibilities there are. The number of possibilities will vary with the size of the graph: the more vertices it has, the more possibilities there will be. But how many more? This question belongs to a branch of mathematics concerned with computatonal complexity.
The best way to try and figure out how many possibilities there might be is to look at some examples, beginning with some very small ones, and try to find some kind of trend or pattern in the way the possibilities grow with the size of the graph.

A graph with only one vertex is trivial: there is one possibility. For a graph with two vertices, you could place ice cream stands on both vertices, or on one or the other, so there are three possibilities. For a graph with three vertices, you have to count the number of possibilities for each quantity of ice cream stands that is possible to use. There is only one way to arrange three ice cream stands, of course. How many ways to arrange two? One?

For a graph with four vertices, you continue in the same way, only there will be even more possibilities. It takes a lot of careful counting to begin to get a feel for how the numbers grow. Generally speaking, the number of possibilities to check grows at a much faster rate than the number of vertices in the graph. This kind of growth is called exponential . There are some problems that mathematicians and scientists would like to solve whose solutions are minimum dominating sets, but the graphs are large enough that it would take a fast computer years and years to produce a solution--longer, perhaps than the estimated age of the universe!

The fact that the Ice Cream Stands puzzle appears to be so difficult to solve allows us to use it to play with the idea of a one-way function . In the Ice Cream Stands Problem you can explore this idea by seeing how a person can create puzzles like these with the solution in mind first, but completely disguise the solution by the time the puzzle is finished. If you go from the solution to the puzzle, a good solution is always known to the maker of the puzzle. But you can't go the other way with such ease. (Another example of a one-way function is finding the prime factors of a large number. You can look up two large prime numbers from a table in a book, multiply them together and ask someone else to find the factors and they will most likely have a very hard time indeed!)

Of course this one-way trick isn't going to help someone who is trying to figure out where to locate the big and little computers in a large interconnected computing system, because no one created that problem with the solution already in mind! One-way functions are important, however, in cryptography , the mathematics of secret codes and secure passwords. If you had a clubhouse with a huge graph on the door, and only members knew what the minimum dominating set for the graph was, the minimum dominating set could be the password because the chances of someone else figuring it out would be slim.
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