
Authentication for Distributed Systems
�

Thomas Y.C. Woo

Wireless Networking Research Department
Bell Laboratories

Lucent Technologies

woo@research.bell-labs.com

Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

lam@cs.utexas.edu

Abstract

A fundamental concern in building a secure distributed system is authentication of local and remote en-
tities in the system. We survey authentication issues in distributed system design. Two basic paradigms
underlying the design of authentication protocols are presented. We then propose an authentication
framework that can be used for designing secure distributed systems, including specific protocols for
secure bootstrapping, user-host authentication, and peer-peer authentication. We conclude with an
overview of two existing authentication systems, namely, Kerberos and SPX.

�

This work was sponsored by grants from the Texas Advanced Research Program, National Science Foundation, and the NSA
INFOSEC University Research Program. This is a revised version of a paper with the same title published in Computer, Volume
25, Number 1, pages 39–52, January 1992. To appear in Internet Besieged: Countering Cyberspace Scofflaws, Dorothy Denning
and Peter Denning (editors), ACM Press and Addison-Wesley, 1997.

1

Contents

1 Introduction 3

2 What Needs Authentication? 4

3 Authentication Exchanges 5

4 Authentication Protocol Paradigms 6
4.1 Protocols Based upon Symmetric Cryptosystems . 7
4.2 Protocols Based upon Asymmetric Cryptosystems . 8
4.3 Notion of Trust . 9

5 Authentication Protocol Failures 10

6 An Authentication Framework 11
6.1 Assumptions . 11
6.2 Protocol Overview . 13
6.3 Secure Bootstrapping . 13
6.4 User-Host Authentication . 15
6.5 Peer-Peer Authentication . 16
6.6 Client-Server Authentication . 18
6.7 Inter-domain Authentication . 19

7 Case Studies 20
7.1 Kerberos . 20
7.2 SPX . 21

8 Conclusion 23

2

1 Introduction

A distributed system—a collection of hosts interconnected by a network—poses some intricate security
problems. A fundamental concern is authentication of local and remote entities in the system. In a distributed
system, the hosts communicate by sending and receiving messages over the network. Various resources (like
files and printers) distributed among the hosts are shared across the network in the form of network services
provided by servers. Individual processes (clients) that desire access to resources direct service requests to
the appropriate servers. Aside from such client-server computing, there are many other reasons for having
a distributed system. For example, a task can be divided up into subtasks that are executed concurrently on
different hosts.

A distributed system is susceptible to a variety of threats mounted by intruders as well as legitimate
users of the system. Indeed, legitimate users are more powerful adversaries since they possess internal state
information not usually available to an intruder (except after a successful penetration of a host). We identify
two general types of threats.

The first type, host compromise, refers to the subversion of individual hosts in a system. Various degrees
of subversion are possible, ranging from the relatively benign case of corrupting process state information
to the extreme case of assuming total control of a host. Host compromise threats can be countered by a
combination of hardware techniques (like processor protection modes) and software techniques (like security
kernel/reference monitor). These techniques are outside the scope of this paper, we refer interested readers
to [4] for an overview of the area of computer systems security. In this paper, we assume that each host
implements a reference monitor that can be trusted to properly segregate processes.

The second type, communication compromise, includes threats associated with message communica-
tions. We subdivide these into:

(T1) eavesdropping of messages transmitted over network links to extract information on private conversa-
tions;

(T2) arbitrary modification, insertion, and deletion of messages transmitted over network links to confound
a receiver into accepting fabricated messages; and

(T3) replay of old messages; this can be considered a combination of (T1) and (T2).

(T1) is a passive threat, while (T2) and (T3) are active threats. A passive threat does not affect the system
being threatened, whereas an active threat does. Therefore, passive threats are inherently undetectable by
the system, and can only be dealt with by using preventive measures. Active threats, on the other hand, are
combated by a combination of prevention, detection, and recovery techniques.

Additionally, there are threats of “traffic analysis” and “denial of service”; we will not consider them
here because they are more relevant to the general security of a distributed system than to our restricted
setting of authentication.

Corresponding to these threats, some basic security requirements can be formulated. For examples,
secrecy and integrity are two common requirements for secure communication. Secrecy specifies that a
message can be read only by its intended recipients, while integrity specifies that every message is received
exactly as it was sent, or a discrepancy is detected.

A strong cryptosystem can provide a high level of assurance of both the secrecy and integrity (see
“Basic cryptography” sidebar). More precisely, an encrypted message provides no information regarding
the original message, hence guaranteeing secrecy; and an encrypted message, if tampered, would not decrypt
into an understandable message, hence guaranteeing integrity.

Replay of old messages can be countered by using nonces or timestamps [4, 11]. A nonce is information
that is guaranteed fresh, that is, it has not appeared or been used before. Therefore, a reply that contains some

3

function of a recently sent nonce should be believed timely because the reply could have been generated only
after the nonce was sent. Perfect random numbers are good nonce candidates; however, their effectiveness
is dependent upon the randomness that is practically achievable. Timestamps are values of a local clock.
Their use requires at least some loose synchronization of all local clocks, and hence their effectiveness is
also somewhat restricted.

The balance of this paper is organized as follows. In Section 2, we discuss what authentication means
as well as the various authentication needs in a distributed system. In Section 3, we describe the different
types of authentication exchanges in a distributed system. In Section 4, two paradigms of authentication
protocol design are presented. In Section 5, we discuss why realistic authentication protocols are difficult to
design. In Section 6, we propose an authentication framework for distributed systems, and present specific
authentication protocols that can be used within the framework. In Section 7, we describe authentication
protocols in two existing systems: Kerberos and SPX. In Section 8, we present some conclusions.

2 What Needs Authentication?

In simple terms, authentication is identification plus verification. Identification is the procedure whereby an
entity claims a certain identity, while verification is the procedure whereby that claim is checked. Thus the
correctness of an authentication relies heavily on the verification procedure employed.

The entities in a distributed system that can be distinctly identified are collectively referred to as princi-
pals. There are three main types of authentication of interest in a distributed system:

(A1) message content authentication — verifying that the content of a message received is the same as
when it was sent;

(A2) message origin authentication — verifying that the sender of a received message is the same one
recorded in the sender field of the message; and

(A3) general identity authentication — verifying that the a principal’s identity is as claimed.

(A1) is commonly handled by tagging a key-dependent message authentication code (MAC) onto a
message before it is sent. Message integrity can be confirmed upon reception by recomputing the MAC and
comparing it with the one attached. (A2) is a subcase of (A3). A successful general identity authentication
results in a belief held by the authenticating principal (the verifier) that the authenticated principal (the
claimant) possesses the claimed identity. Hence subsequent claimant actions are attributable to the claimed
identity. General identity authentication is needed for both authorization and accounting functions. In the
balance of this paper, we restrict our attention to general identity authentication only.

In an environment where both host and communication compromises can occur, principals must adopt a
mutually suspicious attitude toward one another. Therefore, mutual authentication, whereby both communi-
cating principals verify each other’s identity, rather than one-way authentication, whereby only one principal
verifies the identity of the other principal, is usually required.

In a distributed system environment, authentication is carried out using a protocol involving message
exchanges. We refer to these protocols as authentication protocols.

Most existing systems use only very primitive authentication measures or none at all. For example:

� The prevalent login procedure requires users to enter their passwords in response to a system prompt.
Users are then one-way authenticated by verifying the (possibly transformed) password against an
internally stored table. However, no mechanism lets users authenticate a system. Such a design is
acceptable only when the system is trustworthy, or the probability of compromise is low.

4

Basic cryptography

A cryptosystem comes with two procedures, one for encryption and one for decryption. A formal description
of a cryptosystem includes specifications for its message, key, ciphertext spaces, and encryption and decryption
functions.

There are two broad classes of cryptosystems, symmetric and asymmetric [4, 5]. In the former, the encryp-
tion and decryption keys are the same and hence must be kept secret. In the latter, the encryption key differs
from the decryption key, and only the decryption key must be kept secret. The encryption key, however, can
be made public. Consequently, it is important that no one be able to determine the decryption key from the
encryption key. Symmetric and asymmetric cryptosystems are also referred to as shared key and public key
cryptosystems, respectively.

Knowledge of the encryption key allows one to encrypt arbitrary messages in the message space, while
knowledge of the decryption key allows one to recover a message from its encrypted form. Thus, the encryption
and decryption functions satisfy the following relation:

�
is the message space, ��������� is the set of

encryption/decryption key pairs:

	�
� � � 	���������������� ��������� �����
! #"� "%$'&)(
 �
C1
�

where
�+* #,

denotes the encryption operation on message
*

if - is an encryption key, and the decryption op-
eration on

*
if - is a decryption key. (In the case of a symmetric cryptosystem with identical encryption and

decryption keys, the operation should be clear from the context.)
Two widely used cryptosystems are the Data Encryption Standard (DES) [2], a symmetric system, and

RSA [3], an asymmetric system. In RSA, encryption-decryption key pairs satisfy the following commutative
property [1]:

	�
� � � 	�������� ��� ��� � � ��� � �����
! " $'& " (
 �
C2
�

hence yielding a signature capability. That is, suppose
�

and
� �.�

are / ’s asymmetric keys, then
�
0 "%$'&

can
be used as / ’s signature on

since it could only have been produced by / , the only principal that knows

� ���
.

By (C2), / ’s signature is verifiable by any principal with knowledge of
�

, / ’s public key. Note that in (C2), the
roles of

�
and

� �.�
are reversed; specifically,

� ���
is used as an encryption key while

�
functions as a decryption

key. To avoid confusion with the more typical roles for
�

and
� �.�

as exemplified in (C1), we refer to encryption
by
� �.�

as a signing operation. In this paper, asymmetric cryptosystems are assumed to be commutative.
Since, in practice, symmetric cryptosystems can operate much faster than asymmetric ones, asymmetric

cryptosystems are often used only for initialization/control functions, while symmetric cryptosystems can be
used for both initializations and actual data transfer.

References

[1] W. Diffie and M.E. Hellman. Privacy and authentication: An introduction to cryptography. Proceedings of
IEEE, 67(3):397–427, March 1979.

[2] National Bureau of Standards, U.S. Department of Commerce, Washingtion, D.C. Data Encryption Stan-
darad FIPS Pub 46, January 15 1977.

[3] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–126, February 1978.

[4] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons,
Inc., New York, 2nd edition, 1996.

[5] G.J. Simmons. Symmetric and asymmetric encryption. ACM Computing Surveys, 11(4):305–330, Decem-
ber 1979.

5

Host

User 2User 1 Client
Process

Server
Process

Reference Monitor

Figure 1: Principals in a Distributed System

� In a typical client-server interaction, the server—on accepting a client’s request—has to trust that (1)
the resident host of the client has correctly authenticated the client, and (2) the identity supplied in the
request actually corresponds to the client. Such trust is valid only if the system’s hosts are trustworthy
and its communication channels are secure.

These measures are seriously inadequate because the notion of trust in distributed systems is poorly
understood. A satisfactory formal explication of trust has yet to be proposed. Second, the proliferation of
large-scale distributed systems spanning multiple administrative domains has produced extremely complex
trust relationships.

In a distributed system, the entities that require identification are hosts, users and processes [10]. They
thus constitute the principals involved in an authentication, which we describe (also see Figure 1).

Hosts. These are addressable entities at the network level. A host is distinguished from its underlying
supporting hardware. For example, a host � running on workstation � can be moved to run on workstation
��� by performing on ��� the bootstrap sequence for � . A host is usually identified by its name (for example,
a fully qualified domain name) or its network address (for example, an IP address), whereas a particular host
hardware is usually identified by its factory assigned serial number (for example, an ID burned into its boot
PROM).

Users. These entities are ultimately responsible for all system activities. In other words, users initiate
and are accountable for all system activities. Most access control and accounting functions are based on
users. (For completeness, a special user called root can be postulated, who is accountable for system-level
activities like process scheduling.) Typical users include humans, as well as accounts maintained in the user
database. Note that users are considered to be outside the system boundary.

Processes. The system creates processes within the system boundary to represent users. A process requests
and consumes resources on behalf of its unique associated user. Processes fall into two classes: client and
server. Client processes are consumers who obtain services from server processes, who are service providers.
A particular process can act as both a client and a server. For example, print servers are usually created
by (and hence associated with) the user root, and act as servers for printing requests by other processes.
However, they act as clients when requesting files from file servers.

6

3 Authentication Exchanges

For the various principals introduced in the above section, we identify the following major types of authen-
tication exchanges in a distributed system.

Host-host. Host-level activities often require cooperation between hosts. For example, individual hosts
exchange link information for updating their internal topology maps. In remote bootstrapping, a host, upon
reinitialization, must identify a trustworthy bootstrap server to supply the information (for example a copy
of the operating system) required for correct initialization.

User-host. A user gains access to a distributed system by logging in a host in the system. In an open access
environment where hosts are scattered across unrestricted areas, a host can be arbitrarily compromised,
necessitating mutual authentication between the user and host.

Process-process. Two main subclasses exist:

� peer-peer communication. Peer processes must be satisfied with each other’s identity before private
communication can begin.

� client-server communication. An access decision concerning a client’s request can be made only when
the client’s identity is affirmed. A client is willing to surrender valuable information to a server only
after it has verified the server’s identity .

As shown later, these two classes of authentication are closely related, and can be handled by similar
protocols.

From now on, we use authentication to refer to general identity authentication.

4 Authentication Protocol Paradigms

Authentication in distributed systems is invariably carried out with protocols. A protocol is a precisely
defined sequence of communication and computation steps. A communication step transfers messages from
one principal (the sender) to another (the receiver), while a computation step updates a principal’s internal
state. Two distinct states can be identified upon termination of the protocol, one signifying successful
authentication and the other failure.

Although the goal of any authentication is to verify the claimed identity of a principal, specific success
and failure states are highly protocol dependent. For example, the success of an authentication during the
connection establishment phase of a communication protocol is usually indicated by the distribution of a
fresh session key between two mutually authenticated peer processes. On the other hand, in a user login
authentication, success usually results in the creation of a login process on behalf of the user.

We present protocols in the following format. A communication step whereby � sends a message � to�
is represented as � � ��� � whereas a computation step of � is written as � �������

where “
�����

” is a
specification of the computation step. For example, the typical login protocol between a host � and a user	

is given below: (
 denotes a one-way function, that is, given � it is computationally infeasible to find an� such that
� ����� � .)

7

Approaches to authentication

All authentication procedures involve checking known information about a claimed identity against informa-
tion supplied by the claimant during the identity verification procedure. Such checking can be based on the
following three approaches [2].

Proof by Knowledge. The claimant demonstrates knowledge of some information regarding the claimed
identity that can only be known or produced by a principal with the claimed identity. For example, pass-
word knowledge is used in most login procedures. A proof by knowledge can be conducted by a direct
demonstration, like typing in a password, or by an indirect demonstration, such as correctly computing replies
to challenges by a verifier. Direct demonstration is not preferable from a security viewpoint, since a com-
promised verifier can record the submitted knowledge and later impersonate the claimant by presenting the
recorded knowledge. Indirect demonstration can be designed to induce high confidence in the verifier, without
leaving any clue to how the claimant’s replies are computed. For example, Feige, Fiat, and Shamir proposed a
zero-knowledge protocol for proof of identity [1]. This protocol allows a claimant � to prove to a verifier �
that � knows how to compute replies to challenges posed by � without revealing what the replies are. These
protocols are provably secure (under complexity assumptions). However, additional refinements are needed
before they can be applied in practical systems.

Proof by Possession. The claimant produces an item that can only be possessed by a principal with the
claimed identity, for example, an ID badge. For this to work, the item has to be unforgeable and safely guarded.

Proof by Property. The verifier directly measures certain claimant properties. For example, various
biometric techniques can be used: fingerprint, retina print, and so on. The measured property has to be
distinguishing, that is, unique among all possible principals.

Proof by knowledge and possession (and combinations thereof) can be applied to all types of authentication
needs in a secure distributed system, while proof by property is generally limited to the authentication of human
users by a host equipped with specialized measuring instruments.

References

[1] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. In ACM Symposium on Theory of
Computing, pages 210–217, 1987.

[2] K. Shankar. The total computer security problem. Computer, 10(6):50–73, June 1977.

	 � � :
	

� � 	
: “Please enter password”	 � � : �

� : compute � �
��� �
: retrieve user record 	��
���	��
�
��������� � � from user database
: if � �
���	��
�
������� � � then accept; otherwise reject

We next examine the key ideas that underlie authentication protocol design by presenting several proto-
col paradigms.

Since authentication protocols directly use cryptosystems, their basic design principles also follow
closely the type of cryptosystem used. Specifically, we identify two basic paradigms for authentication,
one based on symmetric cryptosystems and the other on asymmetric cryptosystems.

8

Note that protocols presented in this section are intended to illustrate basic design principles only. A
realistic protocol is necessarily a refinement of these basic protocols and addresses weaker environment
assumptions, stronger postconditions, or both. Also, a realistic protocol may use both symmetric and asym-
metric cryptosystems.

The protocols presented in the balance of this paper have been slightly revised from the ones published
in [16]. The revisions ensure that they follow a design principle for authentication protocols called the
Principle of Full Information as expounded in [18]. According to the principle, a principal should, in an
authentication exchange, include in each outgoing encrypted message all of the information it has gathered
so far in the exchange. In particular, each message should contain the names of the authenticating principals.
A conclusion of [18] is that to optimize an authentication protocol, a designer should focus on reducing the
number of messages (or rounds) in the protocol, rather than simplifying encrypted messages.

4.1 Protocols Based upon Symmetric Cryptosystems

In a symmetric cryptosystem, knowing the shared key lets a principal encrypt and decrypt arbitrary mes-
sages. Without such knowledge, a principal cannot create the encrypted version of a message, or decrypt an
encrypted message. Hence, authentication protocols can be designed according to the following principle
called SYM:

If a principal can correctly encrypt a message using a key that the verifier believes is known
only to a principal with the claimed identity (outside of the verifier), this act constitutes sufficient
proof of identity

Thus SYM embodies the proof-by-knowledge principle for authentication, that is, a principal’s knowl-
edge is indirectly demonstrated through its ability to encrypt (see “Approaches to authentication” sidebar).
Using SYM, we immediately obtain the following basic protocol: (� denotes a symmetric key shared be-
tween � and

�
)

� : create � � “I am � .”
: compute � � ��� � � �����

� � �
: � � � ��
: verify � � � �����
	� � �
: if equal then accept; otherwise reject

Clearly, the SYM design principle is sound only if the underlying cryptosystem is strong (one cannot
create the encrypted version of a message without knowing the key) and the key is secret (it is shared only
between the real principal and the verifier). Note that this protocol performs only one-way authentication,
mutual authentication can be achieved by reversing the roles of � and

�
.

One major weakness of the protocol is its vulnerability to replays. More precisely, an adversary could
masquerade as � by recording the message � � and later replaying it to

�
. As mentioned, replay attacks can

be countered by using nonces or timestamps. We modify the protocol by adding a challenge-and-response
step using nonces:

� � �
: “I am � .”
: generate nonce �� � � : �

� : compute � ��� � � � � � ���
� � �

: ��
: verify � � � � � � ���
	� �
: if equal then accept; otherwise reject

9

Replay is foiled by the freshness of � . Thus, even if an eavesdropper has monitored all previous authen-
tication conversations between � and

�
, it still could not produce the correct � � . (This also points out the

need for the cryptosystem to withstand known plaintext attack. That is, the cryptosystem must be unbreak-
able given the knowledge of plaintext-ciphertext pairs.) The challenge-and-response step can be repeated
any number of times until the desired level of confidence is reached by

�
.

This protocol is impractical as a general large-scale solution because each principal must store in
memory the secret key for every other principal it would ever want to authenticate. This presents major
initialization (the predistribution of secret keys) and storage problems. Moreover, the compromise of one
principal can potentially compromise the entire system. These problems can be significantly reduced by
postulating a centralized authentication server � that shares a secret key ����� with every principal � in the
system [11]. The basic authentication protocol then becomes:

� � �
: “I am � .”�
: generate nonce �� � � : �

� : compute � ��� � � � � � �����	�
� � �

: ��
: compute � � � � � � � � ����
 �� � � : �

� : recover � � � � � from � by decrypting with ��� �
: recover � � � � � from � by decrypting with �� �
: compute � ��� � � � � � ���
 �

� � �
: ��
: verify � � � � � � ���
 � 	� �
: if equal then accept; otherwise reject

Thus
�

’s verification step is preceded by a key translation step by � . The protocol correctness now also
rests on � ’s trustworthiness—that � will properly decrypt using � ’s key and reencrypt using

�
’s key. The

initialization and storage problems are greatly alleviated because each principal needs to keep only one key.
The risk of compromise is mostly shifted to � , whose security can be guaranteed by various measures, such
as encrypting stored keys using a master key and putting � in a physically secure room.

4.2 Protocols Based upon Asymmetric Cryptosystems

In an asymmetric cryptosystem, each principal � publishes his public key �� and keeps secret his private
key ��� � . Thus only � can generate � � � ������ for any message � by signing it using ��� � . The signed mes-

sage � � � ������ can be verified by any principal with knowledge of �� (assuming a commutative asymmetric
cryptosystem). The ASYM design principle is:

If a principal can correctly sign a message using the private key of the claimed identity, this act
constitutes a sufficient proof of identity.

This ASYM principle follows the proof-by-knowledge principle for authentication, in that a principal’s
knowledge is indirectly demonstrated through its signing capability. Using ASYM, we obtain a basic proto-
col as follows:

10

� � �
: “I am � .”�
: generate nonce �� � � : �

� : compute � ��� � � � � � � � ����
� � �

: ��
: verify � � � � � � 	� � � ��� �
: if equal then accept; otherwise reject

This protocol depends on the guarantee that � � � ������ cannot be produced without the knowledge of � � �
and the correctness of � as published by � and kept by

�
.

As in the protocols that use symmetric keys, the initialization and storage problems can be alleviated
by postulating a centralized certification authority � that maintains a database of all published public keys.
The protocol can then be modified as follows:

� � �
: “I am � .”�
: generate nonce �� � � : �

� : compute � ��� � � � � � � � ����
� � �

: �� � � : “I need � ’s public key.”
� : retrieve public key � of � from key database

: create certificate � ��� � � �� � ������
� � �

: � � ��
: recover � � � � from � by decrypting with � �
: verify � � � � � � 	� � � ��� �
: if equal then accept; otherwise reject

Thus � , called a public key certificate, represents a certified statement by � that � ’s public key is � .
Other information such as an expiration date and the classification of principal � (for mandatory access
control) can also be included in the certificate (such information is omitted here). Each principal in the
system need only keep a copy of the public key � � of � .

In this protocol, � is an example of an on-line certification authority. It supports interactive queries and
is actively involved in authentication exchanges. A certification authority can also operate off-line. In which
case, a public key certificate is issued to a principal when it first registered. The certificate is kept by the
principal and is forwarded during an authentication exchange, thus eliminating the need to make a separate
query. Forgery is impossible, since a certificate is signed by the certification authority.

4.3 Notion of Trust

Correctness of both the symmetric and asymmetric protocols presented above requires more than the exis-
tence of secure communication channels between principals and the appropriate authentication servers and
certification authorities. In fact, such correctness is critically dependent on the ability of the servers and
authorities to faithfully follow the protocols. Each principal bases its judgment on its own observations
(messages sent and received) and its trust of the server’s judgment.

An authentication server in a symmetric protocol is trusted not to divulge the secret keys of principals
and to apply the correct secret key as specified by the protocol. An on-line certification authority is trusted
not to divulge its own private key and to have the correct public keys of principals. An off-line certification

11

authority is trusted not to divulge its own private key and to properly verify the identity of a principal before
issuing a public key certificate for the principal.

A formal understanding of authentication would require both a formal specification of trust and a rig-
orous reasoning method wherein trust is a basic element. Presently, our formal understanding of trust in
distributed systems is at best inadequate.

5 Authentication Protocol Failures

Despite the apparent simplicity of their basic design principles, realistic authentication protocols are notori-
ously difficult to design. Various published protocols have exhibited subtle security problems [3, 4, 11].

There are several reasons for such difficulty. First, most realistic cryptosystems satisfy algebraic iden-
tities additional to those in (C1) and (C2). These extra properties may generate undesirable effects when
combined with protocol logic. Second, even assuming that the underlying cryptosystem is perfect, unex-
pected interaction among the protocol steps can lead to subtle logical flaws. Third, assumptions regarding
the environment and the capabilities of an adversary are not explicitly specified, making it extremely difficult
to determine when a protocol is applicable and what final states are achieved.

We illustrate the difficulty by showing an authentication protocol proposed in [11] that contains a subtle
weakness [4]: (� and � � are symmetric keys shared between � and � , and

�
and � , respectively, where

� is an authentication server. � is a session key.)

(1) � � � : � � � � �
(2) � � � : � � � � � � � � � � � ���
 ��� �
(3) � � �

: � � � � � �

(4)

� � � : � � � ���
(5) � � �

: � � � ��� ���
The message � � � � � �
 in step (3) can only be decrypted and hence understood by

�
. Step (4) reflects�

’s knowledge of � , while step (5) assures
�

of � ’s knowledge of � ; hence the authentication handshake
is based entirely on knowledge of � . The subtle weakness in the protocol arises from the fact that the
message � � � � ���
 sent in step (3) contains no information for

�
to verify its freshness.1 In fact, this is

the first message sent to
�

about � ’s intention to establish a secure connection. An adversary who has
compromised an old session key � � can impersonate � by replaying the recorded message � � � � � ���
 in step
(3) and subsequently executing the steps (4) and (5) using � � .

To avoid protocol failures, formal methods may be employed in the design and verification of authen-
tication protocols. A formal design method should embody the basic design principles as illustrated in the
previous section. Informal reasoning such as “If you believe that only you and Bob know � , then you should
believe any message you receive encrypted with � was originally sent by Bob.” should be formalized by a
verification method.

Early attempts at formal verification of security protocols mainly followed an algebraic approach [5].
Messages exchanged in a protocol are viewed as terms in an algebra. Various identities involving the en-
cryption and decryption operators (for example, (C1) and (C2)) are taken to be term-rewriting rules. A
protocol is secure if it is impossible to derive certain terms (for example, the term containing the key) from
the terms obtainable by an adversary. The algebraic approach is limited, since it has been used mainly to
deal with one aspect of security, namely secrecy. Recently, various logical approaches have been proposed
to study authentication protocols [3]. Most of these logics adopt a modal basis, with belief and knowledge as
central notions. The logical approaches appear to be more general than the algebraic ones, but they lack the

1Note that only � and � know � to be fresh.

12

rigorous foundations of more well-established logics like first-order logic and temporal logic. In particular,
a satisfactory semantic model for these logical systems has not been developed. Much research is needed to
obtain sound design methods and to formally understand authentication issues.

6 An Authentication Framework

We have so far presented various basic concepts of authentication. In this section, we synthesize these
concepts into an authentication framework that can be incorporated into the design of secure distributed
systems. In particular, we identify and describe below five aspects of secure distributed system design and
the associated authentication needs. This section is not exhaustive in scope; other issues may have to be
addressed in an actual distributed system security framework.

Host initializations. All process executions take place inside hosts. Some hosts (like workstations) also
act as system entry points by allowing user logins. The overall security of a distributed system is highly
dependent on the security of each of the hosts. However, in an open network environment, not all hosts
can be physically protected. Thus resistance to compromise must be built into a host’s software to ensure
secure operation. This suggests the importance of host software integrity. In particular, for a host that
employs remote initialization, loading it with the correct host software is essential to its proper functioning.
In fact, one way to compromise a public host is to reboot the host with incorrect initialization information.
Authentication can be used to implement secure bootstrapping.

User logins. User identity is established at login, and all subsequent user activities are attributed to this
identity. All access control decisions and accounting functions are based on this identity. Correct user
identification is thus crucial to the functioning of a secure system. Also, any host in an open environment
is susceptible to compromise. Therefore a user should not engage in any activity with a host without first
ascertaining the host’s identity. A mutual user-host authentication can achieve the required guarantees.

Peer communications. Distributed systems can distribute a task over multiple hosts to achieve a higher
throughput or more balanced utilizations than centralized systems. Correctness of such a distributed task
depends on whether peer processes participating in the task can correctly identify each other. Authentication
can be used here to identify friend or foe.

Client-server interactions. The client-server model provides an attractive paradigm for constructing dis-
tributed systems. Servers are willing to provide service only to authorized clients while clients are interested
in dealing only with legitimate servers. Authentication can be used to establish a verified consumer-supplier
relationship.

Inter-domain communications. Most distributed systems are not centrally owned or administered; for
example, a campus-wide distributed system often interconnects individually administered departmental sub-
systems. Identifying principals across subsystems requires additional authentication mechanisms across
domains.

13

Bootstrap Server �
�������	�
�
�
�
�
���� ��������

�
��
�
�����

�����
�����

Cryptographic
Facility �

����

Authentication Server �

�������������
�
� �

�����
�����

Cryptographic
Facility �

����

Host �

Reference Monitor

Cryptographic
Facility��� �

�
 �
�
���

Secure
Channel

Smartcard
Reader

Smartcard �

User
�

Display

Keypad

Cryptographic
Facility

�
��� � ����� � � � � � � ����

Physically secure

Network

Figure 2: Authentication Architecture

6.1 Assumptions

In the kind of malicious environments postulated in our threats model, some basic assumptions about the
system must be satisfied to achieve some level of security. We offer a set of assumptions below (for other
possible assumptions, see [1, 10]). These assumptions are also depicted in Figure 2.

� Cryptographic Facility. Each host hardware � has a unique built-in immutable identity �! #" , and
contains a tamper-proof cryptographic facility (CF) that encapsulates the public key � " and the pri-
vate key � � �" of � . That is, the keys are permanently sealed inside a CF and cannot be directly read
from the outside, even by the host itself. The second function of a CF is to act as a black box for all
cryptographic computation. A CF accepts commands and data from the host reference monitor and
carries out any requested computation using both the supplied data and its internal information. A CF
can communicate with the host reference monitor via a secure channel.

14

Ideally, a CF is implemented in hardware either as an add-on card or directly on the motherboard. In
this case, the tamper-proof property can be enforced by engineering design and tremendous compu-
tational advantages can be gained. Alternatively, a CF can be implemented in software. In this case,
explicit trust assumptions (for example, the root file system is secure) will be needed.

� Smartcard. Our framework makes use of smartcards for user logins. The main function of a smart-
card is to serve as an aid for a human user to carry out (mostly cryptographic) computation required
by the user-host authentication protocol. A smartcard is a calculator like device that has a display,
keypad, and contains a CF and a clock.

Each legitimate user
	

is issued a smartcard � that has a unique built-in immutable identity �! �� .
Each smartcard � encapsulates in its CF its private key � � �� , the public key of the authentication
server � � (see below) and a pin number ����� � for its legitimate holder. (The pin number is chosen
in a card-issuing procedure.) Each host that supports user logins using smartcards is equipped with a
smartcard reader.

The smartcards are assumed to be customizable. That is, the authority issuing a smartcard can ini-
tialize its contents with specific chosen values. In particular, the value of ����� � is chosen by a user,
while the value of � � is fixed for a particular security domain.

� Physical Security. Certain assumptions on physical security are also needed for our framework.
These assumptions are typical of most security frameworks. In fact, it can be informally argued that
some minimal physical security is always required for “bootstrapping” security. In other words, a
security framework should be thought of as an “amplifier” for security.

The bootstrap and authentication servers in our framework are assumed to be secure. Typically, this
is achieved by running these servers in a dedicated fashion on physically secure machines. No regular
user accounts are allowed on these machines and they are locked in physically secure rooms.

The bootstrap server � is used in secure bootstrapping. It maintains a database of host information.
In our framework, we make a distinction between host and host hardware. A host hardware refers to
a bare machine, for example, a Sun SPARC 10 workstation with a particular serial number. A host
refers to a specific instance of an operating system on some host hardware. A host typically has a
high-level (for example, DNS) host name and an IP address.

The host database contains, for each host � , a record of the form

��!
	 � ��	 � � � �	 � �! " � � " � � � �" �
specifying the unique host hardware � that can be initialized to run � . For added security, all records
in the database can be encrypted under a secret master key.

The authentication server � maintains a database on principals. More precisely, for each user
	

, �
keeps a record 	 � �! � � � � � , binding

	
to its smartcard � . Also, for each “end” server � , � keeps a

record of its public key �� .

Each of the above assumptions is achievable with current technology. In particular, the technology
of battery-powered credit-card-sized smartcard with a built-in LCD display and keypad that can perform
specialized computations has steadily progressed in recent years. Also, some vendors are starting to include
specialized cryptographic facilities and smartcard readers for hosts as options. The use of a smartcard or
other forms of computation aid is essential to realizing mutual authentication between a host and a user.
Unaided human users simply cannot carry out the intensive computations required by an authentication
protocol.

15

Peer Authentication
Protocol

Login Certificate

User-Host Authentication
Protocol

Bootstrap Certificate (Host License)

Secure Bootstrap
Protocol

Figure 3: Relationship between Protocols

To simplify our presentation, the bootstrap server and the authentication server are assumed to be cen-
tralized. Decentralized servers can be supported by adding authentication between them (see Section 6.7).
Such authentication can be carried out in a hierarchical manner as suggested in the protocol standard CCITT
X.509 [19].

6.2 Protocol Overview

In the following subsections, we present protocol solutions to address the authentication needs outlined
above. Specifically, we present concrete protocols, namely, a secure bootstrap protocol, a user-host authen-
tication protocol and a peer-peer authentication protocol, to address respectively the authentication needs
of host initializations, user logins and peer communications. Client-server authentication is a special case
of peer-peer authentication, and can be achieved with a similar protocol.

The secure bootstrap protocol is used to initialize a host into a “safe” and well-defined initial state prior
to resuming normal operation. In particular, a correctly loaded reference monitor is ready to assume control
of the host in this state. The user-host authentication protocol is responsible for user logins; it allows mutual
authentication between a user and a host. The peer authentication protocol mutually authenticates two peer
processes.

These protocols are inter-related to one another in that the information acquired in one protocol is used
in another protocol (see Figure 3). For example, a bootstrap certificate or host license is generated upon
successful termination of the secure bootstrap protocol. This host license is in turn used in the user-host
authentication protocol to generate a login certificate. Similarly, the login certificate can be used in the
authentication exchange of the peer authentication protocol.

Our protocols should not be considered definitive or optimal. They are presented in this paper to il-
lustrate possible solution approaches and, together, they demonstrate a coherent and consistent solution for
authentication in distributed systems. Lastly, in Section 6.7, we briefly discuss the issues of inter-domain
authentication.

16

W B

Workstation Bootstrap
Server

SB1: ����� � ��� � � ����� "	�

SB2:
�
� � � �������� ��� #"	�

SB3:
��� � � ��� � � “ready”

 "

SB4:
�
� � ���� � � ����� ��� �.�� #"	���

OS
 "

SB5:
� � � � ��� � � ��� � " $'&� "

SB6: �������	���	�

�

Figure 4: Secure Bootstrap Protocol

6.3 Secure Bootstrapping

The secure bootstrap protocol is initiated when a host hardware attempts a remote initialization. This could
occur after a voluntary shutdown, a system crash, or a malicious attack by an adversary attempting to subvert
the host. The secure bootstrap protocol specification is shown in Figure 4. A step by step specification
including some computation steps is given below. OS denotes the operating system to be bootstrapped.

� : generate new secret � "
(SB1) � � all : � " � � � " � �! " ���

� : retrieve record �� 	 � � 	 � ��� �	 � �! " � � " � ��� �" � for � from database
: generate new session key �

(SB2) � � � : � � " � � � � �� � � ���
� : if � " present, proceed; otherwise abort

(SB3) � � � : � � " � �! " �
“ready”

���
� : generate nonce �

(SB4) � � � : � � " � � � � �! 	 � � � �	 ��� �
OS
���

(SB5) � � � : � � �! � �! 	 � �! " � ������ ���
(SB6) � � � : "$#�%'&�(
�& 	

The basic idea of the protocol is as follows: Upon resetting, � generates a new secret � " for use as a
challenge. A secret is like a nonce but with the additional property that it is not predictable. In step (SB1),
� announces its intention to reboot by broadcasting a boot request. We assume that � and the bootstrap
server � are on the same broadcast network, thus allowing � to receive the boot request. The boot request
is encrypted using � " . Therefore, only � , which has knowledge of � � �" , can recover the secret � " . On
receiving the boot request, � retrieves the record for � " , and uses � � �" in the record to recover � " from the
boot request. � then generates a fresh key � to be used for loading OS. In step (SB2), the new key � , together
with the public keys of � and authentication server � , are sent to � . � ascertains that � � " � � � � �� � � ���
came from � by checking the presence of � " , since only � could have composed the message. The nonce
property of � " demonstrates that the message is not a replay. Thus, ��� , � , and � in the message can be
safely taken to be respectively the public keys of � and � , and the session key to be used for loading OS.
At this point, � has authenticated � . It proceeds by sending the “ready” message in step (SB3).

17

When the “ready” message is received, � is certain that the original boot request actually came from � ,
because only � could have decrypted � � " � � � � �� � � ��� to retrieve � . The boot request is timely because
the session key � also serves as a nonce. At this point, � and � have mutually authenticated each other.

Step (SB4) is the actual loading of OS and the transferring of host � ’s private key � � �	 . OS includes
its checksum, which should be recomputed by � to detect any tampering in transit. � acknowledges the
receipt of � � �	 and OS by returning the nonce � , and �!
	 and � " signed with � � �	 in step (SB5). � then
verifies that the correct � and IDs are returned. In step (SB6), a host license

" #�% &
(
 & 	 ��� � 	 � �! " � � 	 � ��� ��� � � � ����
signed by � affirming the binding of host �! 	 with public key �
	 and host hardware �! " is sent to � . The
fields

���
and

� �
within the license denotes respectively the creation time and expiration date of the license.

After receiving the license, � officially “becomes” � , which retains the license as proof of success-
ful bootstrapping and of its own identity. Observe that if secrecy is not required, OS can be transferred
unencrypted. However, the checksum of OS must be sent in encrypted form.

Discussion

The design of the secure bootstrap protocol violates one common principle for using asymmetric cryptosys-
tems, namely, the private key of a principal is not shared so that trust requirements are reduced. In our
design, the private key ��� �" of � is shared between � and � , and it is used essentially as a shared secret
key (as in a symmetric cryptosystem) in the initial authentication steps ((SB1) and (SB2)). The rationale
behind this is to avoid the need to customize the cryptographic facilities of hosts (for example, preloading
each host’s CF with �).

Another approach is have a host’s CF pre-certify (that is, sign in the form of a certificate) the public keys
it will need. For example, � ’s CF can pre-certify both � and � ’s public keys by creating two certificates,
one each for � and � , and storing them in some on-line certificate depository � . On receiving a boot request
from � , � sends these certificates to � , which recognizes its own signature and recovers the public keys
it needs to continue bootstrapping.

6.4 User-Host Authentication

User-host authentication occurs when a human user
	

walks up to a host � and attempts to log in. Our
authentication protocol requires a smartcard � . A successful authentication guarantees host � that

	
is the

legitimate holder of � and guarantees user
	

that � is a “safe” host to use. That is, host � holds a valid
license (obtained through secure bootstrapping) and possesses knowledge of the private key � � �	 .

In most systems, the end result of a successful user authentication is the creation of a login process by
the host’s reference monitor on the user’s behalf. The login process is a proxy for the user, and all requests
generated by this process are taken as if they are directly made by the user. However, a remote host/server
has no way of confirming such proxy status, except to trust the authentication capability and integrity of the
local host. Such trust is unacceptable in a potentially malicious environment because a compromised host
can simply claim the existence of user login processes to obtain unauthorized services.

This trust requirement can be alleviated if a user explicitly delegates its authority to the login host [1, 10].
The delegation is carried out by having the user’s smartcard sign a login certificate to the login host upon the
successful termination of a user-host authentication protocol. The login certificate asserts the host’s proxy
status with respect to the user, and can be presented by the host in future authentication exchanges with
others.

18

C H

U A

User

Login
Server

Smartcard Host

UH1: ����� � � �
UH4: �������	��� �

�
� � ��� ����� ��� � " $'&�

UH7: ����� � � �

UH5: ��� � � ��� � UH6: 	 � �
UH2:
����� ,

�������	���	�

�

UH3:
������� � � �

�
� ,�
� � ��� � ��� � " $'&�

Figure 5: User-Host Authentication Protocol

Because of the possibility of forgery, the possession of a login certificate should not be taken as sufficient
proof of delegation. The host also must demonstrate knowledge of a private delegation key � � �� whose public
counterpart � � is named in the certificate. Also, to reduce the potential impact of a host compromise, the
login certificate is given only a finite lifetime by including an expiration timestamp.

We present such a user-host authentication protocol in Figure 5. A specification with computation steps
is given below. We assume that the host holds a valid license " #�% &
(
 & 	 as would be the case if the host has
executed the secure bootstrap protocol.

� : generate nonce � �
(UH1) � � � : �! � � � �
(UH2) � � � : �! � � "$#�%'&�(
�& 	

� : check host license lifetime; if expired, abort
(UH3) � � � : "$#�%'&�(
�& � 	 , � 	�� �! � � � � � ������

� : generate new delegation key pair � � � ��� �� �
(UH4) � � � : "$#�%'&�(
�& � 	 , � 	�� � � � � � � � ����

� : check license lifetime; if expired, abort
(UH5) � � 	

: �! 	 � � "	
: verify if �! 	� �! " is the host desired; if not, abort

(UH6)
	 � � : � � �
� : verify � � � 	� ����� � ; if not equal, abort

(UH7) � � � : " ����# (�

The protocol proceeds as follows: A user inserts his/her smartcard into the host’s card reader. This
activates the card and it generates a nonce � � . In step (UH1), the card’s identity �! � together with � � are

19

sent through the card reader to the host. In step (UH2), � requests user information associated with �! �
from the authentication server � . Since the license held by � was signed by � and hence is not decipherable
by � , a key translation is requested by � in the same step.

Upon receiving the request from � , � first checks that the host license submitted has not expired.
Then it retrieves the user record for � � and forwards that along with the translated license " #�%'&
(
�& � 	 �
� �! 	 � �! " � �
	 � ��� ��� � � � ���� to � in step (UH3). (Note that this license can be cached by � and need not be
requested for every user authentication.)
� now knows both the legitimate holder

	
of the smartcard � and the public key � � associated with

� . Knowledge of
	

can be used to enforce local discretionary control to provide service (or not), while � �
is needed to verify the authenticity of � . � proceeds to generate a new delegation key pair � � � ��� �� � . �
keeps ��� �� private, to be used in the future for demonstrating its delegation from

	
.

In step (UH4), � returns the nonce � � with the public delegation key � � , and a copy of its translated
license to � . � retrieves �� 	 � �! " � , the identity of � , from the translated license by decrypting it with � � .
A check is made to ensure that the license has not expired. Then in step (UH5), the identity ��! �	 � �! " � is
displayed on the card’s own screen. In step (UH6), if the user decides to proceed, he/she enters on the card’s
keypad her pin number � � � assigned when the card was issued. The pin number entered is compared with
the one stored in the card, ����� � . If they are equal, � signs a login certificate

" � ��# (� � � 	 � �! 	 � � � � ��� ��� � � ������
binding the user

	
with the host �! 	 and the public delegation key � � ; this is sent to � in step (UH7),

completing the delegation. The fields
���

and
� �

within the login certificate denotes respectively the time of
creation and expiration date of the login certificate. Host � (and others) can verify the validity of the login
certificate using � � .

When user
	

logs out, the host erases its copy of the private delegation key � � �� to void the delegation
from

	
. If � is compromised after the delegation, the validity of the login certificate is limited by its

lifetime,
� �

.

Discussion

When smartcard � is issued, its CF is loaded with the public key of a particular server. For � to verify a host
license, the license must be signed with a private key whose public counterpart is known to � . Thus, each
card must be mapped to a particular authentication server � . Typically, a card is mapped to the authentication
server associated with the authority that issues the card. If a user and a host belong to different domains (see
Section 6.6), multiple key translations may be needed before the license of the host can be presented to the
user.

To reduce the smartcard’s complexity, various implementation techniques can be used to eliminate the
need for a clock on the card. Also, the keypad of the smartcard can be a simple one with just a few keys for
making changes. Eliminating the keypad altogether requires more ingenuity, but can be done [1].

The display on a smartcard is crucial to many of its functionalities, and hence should not be eliminated.
Indeed, the cost of a LCD display is insignificant compared to the extra trust required if it were eliminated.

6.5 Peer-Peer Authentication

The primary goal of peer authentication is to establish the identities of two peer principals. Most peer au-
thentication protocols, however, also accomplish a secondary goal, namely, the negotiation of cryptographic
parameters (for example, a new session key) for future communication between the peers. These crypto-
graphic parameters are collectively referred to as a security association.

20

Connection Establishment

P Q

A
Authentication

Server

CE1: / � ���

CE2: / ��� � ��� � ���
CE3:

��� / � � � ��� ����� ��� " $'&� "��

CE4:
� � / ����� ��� � � � ���� " $'&� "��

,
� ����� � � "

CE5:
� � � "

Connection Releasea

P Q

CR1:
� / � � � ��� � ���) #"

CR2:
� ��� ��� � "

aEither � or 	 can initiate connection release. � is shown here as the initiator for illustration purpose.

Figure 6: Peer-Peer Authentication Protocol

In connection-oriented communication schemes, peer authentication and the associated cryptographic
parameters negotiation are performed in the connection establishment phase. In connectionless communica-
tion schemes, both authentication and cryptographic parameters negotiation can be performed the first time
a principal is contacted.

The peer authentication protocol in our framework is shown in Figure 6. It actually consists of two
separate protocols, one for connection establishment and one for connection release.2 This protocol was
first introduced in [16]. An implementation of the protocol to provide a secure socket service was reported
in [15]. Its design principles and correctness proof were presented in [17].

The protocol assumes that the public key of each principal is known by all other principals. For example,�
knows � and �	� , the public keys of � and � , respectively. If � and

�
are processes started from login

shells, their public keys are the public delegation keys in their login certificates (see Section 6.4).

2Secure connection release is seldom addressed in the literature. Although a premature release (for example, one forced by a
saboteur) may not cause problems with respect to confidentiality or integrity, it is a potential denial of service attack.

21

� : generate nonce �
(CE1) � � �

: � � � �
: generate nonce � �

(CE2)
� � � : � � � � � � � �
� : generate new session key �

(CE3) � � �
: � � � � � � � � � � � � � ������ ���

(CE4)
� � � : � � � � � � � � � � � � � ������ ��� � , � � � � � ���

: create security association to
�

with � as session key
(CE5) � � �

: � � � ���
: create security association to � with � as session key

Consider the connection establishment protocol. Before � initiates a connection establishment request,
it generates a nonce � for use as a challenge. In step (CE1), � initiates the authentication exchange by
informing

�
of its identity and nonce. Upon receiving � ’s connection establishment request,

�
generates

its own nonce ��� . In step (CE2),
�

forwards both the identity of � and � ’s nonce together with its own
identity and nonce to � .

� serves the authentication request from
�

by generating a new session key � to be used for future
communication between � and

�
. In step (CE3), � sends � in a signed and encrypted message to

�
. After

verifying that the nonces � and � � are returned,
�

recovers � and forwards in step (CE4) the signed
component to � , together with an authenticator � � � � � ��� . The authenticator allows � to infer that the
correspondent principal must be

�
, as only

�
(aside from �) knows � . At this point, � has authenticated�

and is willing to accept � as the session key for its security association to
�

. In step (CE5), � returns an
acknowledgment � � � ��� to

�
. This authenticates � to

�
, which proceeds to install a security association to

� with � as the session key.
For key distribution only, the authenticator in step (CE4) and the subsequent acknowledgment in step

(CE5) are not necessary. They are included for key handshake, that is, to assure each other that the correct
session key has been properly established by both principals.3

Consider the connection release protocol with � as the initiator. (Either � or
�

can initiate connection
release.)

(CR1) � � �
: � � � � � � � � � ����
: verify presence of same nonces as used in connection establishment
: destroy security association with �

(CR2)
� � � : � � � � � ���
� : destroy security association with

�
In step (CR1), � sends a request for termination in the form � � � � � � � � � ��� to

�
. The nonces � and � �

are the same ones used in their connection establishment, and are stored as part of the security association.
On receiving the termination request,

�
checks that the nonces contained therein match those in its own se-

curity association. If so,
�

acknowledges the request by returning � � � � � ��� in step (CR2) and destroys the
security association. � , on receiving the termination acknowledgment, destroys the corresponding security
association, thus completing the connection release exchange. The scenario when

�
initiates the termination

request is symmetric.

3An implicit key handshake is performed when the session key is first used, for example, in the first transmission of user data.

22

Discussion

The connection establishment protocol was actually obtained by “composing” two subprotocols, one for
key distribution and the other for mutual authentication. Our design of these two subprotocols and their
composition are described in [17].

The connection establishment protocol is interesting in another regard: it can be viewed as a secure
extension of the three-way handshake used in TCP connection establishment. Specifically, steps (CE1),
(CE4) and (CE5) correspond to the three-way handshake. In (CE1), � communicates its sequence number
(nonce �) to

�
. In (CE4),

�
acknowledges � ’s sequence number as well as forwarding its own (nonce

� �). Finally, � acknowledges
�

’s sequence number in (CE5). The encryption required for (CE1), (CE4)
and (CE5) together with the extra messages to � can be considered the cost of adding security to three-way
handshake.

The connection establishment protocol uses a trusted server � in its authentication exchange. This is
not strictly necessary in an asymmetric encryption-based protocol (see Section 7.2 on SPX). Whether or not
an on-line trusted server should be used is a controversial topic. We believe that judicious use of on-line
trusted servers can enhance security by providing on-line supervisory functions (for example, management,
audit and revocation), which cannot be achieved off-line. The key is achieving a balance between the desire
for on-line functionalities and the degree of security risks one is willing to accept.

In our protocol, a trusted server � provides the following functionalities: (i) � provides a source of
high-quality unbiased session keys for use between authenticating principals. This is especially important
in an environment where the authenticating principals do not have a reliable local source of randomness.
Moreover, it is generally agreed that an on-line random number service is essential to a distributed systems
security infrastructure [8]. (ii) � provides an on-line audit service for tracking authentication exchanges. � ,�

and � can periodically reconcile their authentication records to reveal potential attacks. (iii) � facilitates
on-line management of principals. For example, � can be used to track where a principal is currently
logged on. (iv) � provides a simple revocation mechanism. It invalidates expired certificates and aborts
authentications involving principals whose privileges have been revoked.

6.6 Client-Server Authentication

Since both clients and servers are implemented as processes, the basic protocol for peer-peer authentica-
tion can be applied here as well. However, several issues peculiar to client-server interactions need to be
addressed.

In a general-purpose distributed system environment, new services (hence servers) are made available
dynamically. Thus, instead of informing clients of every service available, most implementations use a
service broker to keep track of and direct clients to appropriate service providers. A client first contacts
the service broker by using a purchase protocol that performs the necessary mutual authentication prior to
the granting of a ticket. The client later uses the ticket to redeem services from the actual server using a
redemption protocol.

Authentication performed by the purchase protocol proceeds in the same way as the protocol for peer to
peer authentication, while in the redemption protocol authentication is based upon possession of a ticket and
knowledge of some information recorded in the ticket. Such a ticket contains the names of the client and the
server, a key and a timestamp to indicate lifetime (similar to a login certificate). A ticket can be used only
between the specified client and server. A prime example of this approach is the Kerberos authentication
system, which we discuss in Section 7.1.

Another special issue of client-server authentication is proxy authentication [7]. To satisfy a client’s
request, a server often needs to access other servers on behalf of the client. For example, a database server,
upon accepting a query from a client, may need to access the file server to retrieve certain information on the

23

client’s behalf. A straightforward solution would require the file server to directly authenticate the client.
However, this may not be feasible. In a long chain of service requests, the client may not be aware of a
request made by a server in the chain, and hence may not be in a position to perform the required authenti-
cation. An alternative is to extend the concept of delegation [7] previously used in user-host authentication.
Specifically, a client can forward a signed delegation certificate affirming the delegation of its rights to a
server along with its service request. The server is allowed to delegate to another server by signing its own
delegation certificate as well as relaying the client’s certificate. In general, for a service request involving a
sequence of servers, delegation can be propagated to the final server through intermediate servers, forming
a delegation chain.

Various refinements are possible to extend the delegation scheme described. For example, restricted
delegation can be carried out by explicitly specifying a set of rights and/or objects in a delegation certificate.

6.7 Inter-domain Authentication

Up to now, we have assumed a centralized certification authority trusted by all principals. However, a realis-
tic distributed system is often composed of subsystems independently administered by different authorities.
We use the term domain to refer to such a subsystem. Each domain � maintains its own certification au-
thority ��� that has jurisdiction over all principals within the domain. Intra-domain authentication refers
to an authentication exchange between two principals belonging to the same domain, whereas inter-domain
authentication refers to an authentication exchange that involves two principals belonging to different do-
mains.

Using the previously described protocols, � � is sufficient for all intra-domain authentications for each
domain � . However, a certification authority has no way of verifying a request from a remote principal,
even if the request is certified by a remote certification authority. Hence, additional mechanisms are required
for inter-domain authentication.

To allow inter-domain authentication, two issues need to be addressed: naming and trust. Naming is
concerned with ensuring that principals are uniquely identifiable across domains, so that each authentication
request can be attributed to a unique principal. A global naming system spanning all domains can be used to
provide globally unique names to all principals. A good example of this is the Domain Name System used
in Internet.

Trust refers to the willingness of a local certification authority to accept a certification made by a remote
authority regarding a remote principal. Such trust relationships must be explicitly established between
domains, which can be achieved by:

� sharing an inter-domain key between certification authorities that are willing to trust each other,

� installing the public keys of all trusted remote authorities in a local certification authority’s database,
and

� introducing an inter-domain certification authority for authenticating domain-level authorities.

A hierarchical organization corresponding to that of the naming system can generally be imposed on the
certification authorities. In this case, an authentication exchange between two principals � and

�
involves

multiple certification authorities on a path in the hierarchical organization between � and
�

[6]. The path
is referred to as a certification path.

24

(1)
	 � � :

	
(2) � � �������������
	

:
	 ������

(3)
�������������
	

: retrieve � � and ������� from database
: generate new session key �
: create ticket-granting ticket � � � � ����� ��� 	������� � � � � ��� ���������

(4)
�������������
	 � � : � ���� � � � � ��� � � � � � ����� �����

(5) � � 	
: “Password?”

(6)
	 � � : �	��
�
���

(7) � : compute � �
���	��
�
��� �
: recover � � � � � �
����� by decrypting � ���� � � � � ��� � � � � �
����� ��� � with �
: if decryption fails, abort login; otherwise retain � � � � ����� and �
: erase �	��
�
��� from memory

Figure 7: Kerberos Credential Initialization Protocol

7 Case Studies

We study two authentication services: Kerberos and SPX. Both address primarily client-server authenti-
cation needs. Their services are generally available to an application program through a programming
interface. While Kerberos uses a symmetric cryptosystem, SPX uses an asymmetric cryptosystem as well.

7.1 Kerberos

Kerberos is an authentication system designed for MIT’s Project Athena [12, 13]. The goal of Project
Athena is to create an educational computing environment based on high-performance workstations, high-
speed networking, and servers of various types. Researchers envisioned a large-scale (10,000 workstations
to 1,000 servers) open network computing environment in which individual workstations can be privately
owned and operated. Therefore, a workstation cannot be trusted to identify its users correctly to network
services. Kerberos is not a complete authentication framework required for secure distributed computing in
general; it only addresses issues of client-server interactions.

We limit our discussion to the Kerberos authentication protocols and omit various administrative issues.
Kerberos’s design is based on the use of a symmetric cryptosystem together with trusted third-party

authentication servers. It is a refinement of ideas presented in [11]. The basic components include au-
thentication servers (Kerberos servers) and ticket-granting servers (TGSs). A database is maintained that
contains information on each principal. It stores a copy of each principal’s key that is shared with Ker-
beros. For a user principal

	
, its shared key � � is computed from its password �	��
�
������� � ; specifically

� � �
���	��
�
������� � � for some one-way function
 . The database is read by Kerberos servers and TGSs in
the course of authentication.

Kerberos uses two main protocols. The credential initialization protocol authenticates user logins and
installs initial tickets at the login host. A client uses the client-server authentication protocol to request
services from a server.

The credential initialization protocol uses Kerberos servers. Let
	

be a user who attempts to log into a
host � . The protocol is specified in Figure 7.4

In step (1), user
	

initiates login by entering his/her user name. In step (2), the login host � forwards
the login request to a Kerberos server. In steps (3) and (4), the Kerberos server retrieves the user record of

4Kerberos in the protocol refers to a Kerberos server.

25

(1) � � � ���
: � � � � � � ����� � � � � � � ���

(2)
����

: recover � from � � � � ����� by decrypting with � �����
: recover

� � from � � � � � ��� by decrypting with �
: check timeliness of

� � with respect to local clock
: generate new session key � �
: create server ticket � � � � � � � � � � � � � � � � ��� � ��� �

(3)
���� � � : � � � � � � � � ��� � � � � � � � ���

(4) � : recover � � � � � � � � by decrypting with �
(5) � � � : � � � � � � � � � ��� � ���
(6) � : recover � � from � � � ��� by decrypting with �
�

: recover
���

from � � � ��� ��� �
by decrypting with � �

: check timeliness of
���

with respect to local clock
(7) � � � : � ��� ��� ��� �

Figure 8: Kerberos Client-Server Authentication Protocol
	

and returns a ticket-granting ticket � � � � � ��� � � 	������� � � � � ��� ���������
to � , where

�
is a timestamp and�

is the ticket’s lifetime. In steps (5) and (6),
	

enters his/her password in response to � ’s prompt. In step
(7), If � ��
�
��� is not the valid password of

	
, � would not be identical to � � , and decryption in the last step

would fail.5 Upon successful authentication, the host obtains a new session key � and a copy of � � � � � ��� .
The ticket-granting ticket is used to request server tickets from a TGS. Note that � � � � ����� is encrypted with
� � ��� , the shared key between TGS and Kerberos.

Because a ticket is susceptible to interception or copying, it does not by itself constitute sufficient proof
of identity. Therefore, a principal presenting a ticket must also demonstrate knowledge of the session key
� named in the ticket. An authenticator (to be described) provides the demonstration. Figure 8 shows the
protocol for a client � to request network service from a server � .

� � and
���

are timestamps.
In step (1), client � presents its ticket-granting ticket � � � � ����� to TGS to request a ticket for server

� .6 � ’s knowledge of � is demonstrated using the authenticator � � � � � ��� . In step (2), TGS decrypts
� � � � ����� , recovers � , and uses it to verify the authenticator. If both step (2) decryptions are successful and� � is timely, TGS creates a ticket � � � � � for server � and returns it to � . Holding � � � � � , � repeats the
authentication sequence with � . Thus, in step (5), � presents � with � � � � � and a new authenticator. In step
(6), � performs verifications similar to those performed by TGS in step (2). Finally, step (7) assures � of
the server’s identity. Note that this protocol requires “loosely synchronized” local clocks for the verification
of timestamps.

Kerberos can also be used for authentication across administrative or organizational domains. Each
domain is called a realm. Each user belongs to a realm identified by a field in the user’s ID. Services
registered in a realm will accept only tickets issued by an authentication server for that realm.

To support cross-realm authentication, an inter-realm key is shared between two realms. The TGS of one
realm can be registered as a principal in another realm by using the shared inter-realm key. A user can thus
obtain a ticket-granting ticket for contacting a remote TGS from its local TGS. When the ticket-granting
ticket is presented to the remote TGS, it can be decrypted by the remote TGS, which uses the appropriate
inter-realm key to ascertain that it was issued by the user’s local TGS. In general, an authentication path
spanning multiple intermediate realms is possible.

5In practice, � may not be one-to-one. It suffices to require that given two distinct elements � and 	 , the probability of � � � �
being equal to � � 	 � is negligible.

6Note that each client process is associated with a unique user who created the process. It inherits the user ID and the ticket-
granting ticket issued to the user during login.

26

(1)
	 � � :

	 � � ��
�
���
(2) � � ������� :

	 � � � � � ��� � ��	��
�
��� � ���
	�����
(3) ��������� ����� :

	
(4) ����� � ������� : � � ��� �� � ���������! " "#%$'&)(�+* ��� � ��	��
�
������� � � ��� � � � ���
	��,��
(5) ������� : recover � by decrypting with ��� �-/.+021

: recover � ��� �� � � � �3�
�! " 4#+$!&)(� * and
� � ��	��
�
������� � � by decrypting with �

: verify
� � ��	��
�
��� � 	� � � ��	��
�
������� � �

: if not equal, abort
(6) ��������� � : � � � � �� � ���������! " "#%$'&)(�+* �,5
(7) � : recover � � �� by decrypting first with � and then with

� � ��	��
�
��� �
: generate (RSA) delegation key pair � � � � � �� �
: create ticket � � � � � ��� � � 	�� � � � � ����

(8) � � ����� :
	

(9) ����� � � : � � � �	� � ������

Figure 9: SPX Credential Initialization Protocol

Kerberos is an evolving system on its fifth version (V5). Various limitations of previous versions of
Kerberos were discussed in [2, 9], some of which have been remedied.

7.2 SPX

SPX is another authentication service intended for open network environments [14]. It is a major com-
ponent of the Digital Distributed System Security Architecture [6] and its functionalities resemble those
of Kerberos. SPX has a credential initialization and a client-server authentication protocol. In addition, it
has an enrollment protocol that registers new principals. In this subsection, we focus only on the first two
protocols and omit the last, along with most other administrative issues.

SPX has a Login Enrollment Agent Facility (LEAF) and a Certificate Distribution Center (CDC) that
corresponds to Kerberos servers and TGSs, LEAF, similar to a Kerberos server, is used in the credential
initialization protocol. CDC is an on-line depository of public key certificates (for principals and certifi-
cation authorities) and the encrypted private keys of principals. Note that CDC need not be trustworthy as
everything stored in it is encrypted and can be verified independently by principals.

SPX also contains hierarchically organized certification authorities (CAs) which operate off-line and
are selectively trusted by principals. Their function is to issue public key certificates (binding names and
public keys of principals). Global trust is not needed in SPX. Each CA typically has jurisdiction over just
one subset of all principals, while each principal � trusts only a subset of all CAs, referred to as the trusted
authorities of � . System scalability is greatly enhanced by the absence of global trust and on-line trusted
components.

The credential initialization protocol is performed when a user logs in (see Figure 9. It installs a ticket
and a set of trusted-authority certificates for the user upon successful login. In the protocol,

	
is a user who

attempts to log in a host � ; � ��
�
��� is the password entered by
	

;
�

is a timestamp;
�

is the lifetime of a
ticket; � is a nonce;

� � and
� �

are publicly-known one-way functions; � is a (DES) session key; � � , � -6.+071 ,
� � are respectively the public keys of

	
, the LEAF server, and a trusted authority � of

	
; and � � �� and

��� �-6.+071 are respectively the private keys of
	

and LEAF:
In step (1), user

	
enters its ID and password. In step (2), � applies the one-way function

� � to the
password

	
entered and sends the result, along with a timestamp

�
and a nonce � , in a message to LEAF.

27

(1) � � ����� : �
(2) ����� � � : � � � � � � ������ �
(3) � � � :

� � � � ��� � � � � � �
� � � ��� �� ���
(4) � � ����� : �
(5) ����� � � : � � � � � � � ���� �
(6) � : recover � from � � � � �

: recover � � �� from � � � �� ���
: recover � � from � � � �
�
: verify that � � and � � �� form a delegation key pair

(7) � � � : � � � � ���

Figure 10: SPX Client-Server Authentication Protocol

Upon receiving the message from � , LEAF forwards a request to CDC for
	

’s private key. This key is
stored as a record � ��� �� � �����3���' 4 "#+$!&)(� * ��� � �� ��
�
����� � � � � in CDC. Note that a compromise of CDC would
not reveal these private keys. In step (4), CDC sends the requested private-key record to LEAF using a
temporary session key � . In step (5), LEAF recovers both � � � �� � � ���3���' 4 "#+$!&)(� * and

� � ��	��
�
������� � � from
CDC’s reply. LEAF then verifies � ��
�
��� by checking

� � ��	��
�
��� � against
� � ��	��
�
������� � � . If they are

not equal, the login session is aborted and the abortion logged. Because
� � ��	��
�
������� � � is not revealed to

any principal except LEAF, password guessing attacks would require contacting LEAF for each guess or
compromising LEAF’s private key.

Having determined the password to be valid, LEAF sends the first part of the private-key record en-
crypted by � to � in step (6). (The nonce � sent in step (2) is used as a symmetric key for encryption.) In
step (7), � recovers ��� �� by decrypting the reply from LEAF first with � and then with

� � ��	��
�
��� � . � then
generates a pair of delegation keys and create a ticket � � � � � . In step (8), � requests the public key certifi-
cate for a trusted authority of

	
from CDC. CDC replies with the certificate in step (9). In fact, multiple

certificates can be returned in step (9) if
	

trusts more than one CA. These trusted authorities’ certificates
were previously deposited in the CDC by

	
using the enrollment protocol.

The authentication exchange protocol between a client � and a server � is shown is Figure 10. To
simplify the protocol specification so that a single public key certificate is sent in step (2) and in step (5),
we made the following assumption: Let � ’s public key certificate be signed by � � where � � denotes a
trusted authority of � . Similarly, let � ’s public key certificate be signed by � � where � � denotes a trusted
authority of � .

�
is a timestamp and � is a (DES) session key.

In step (1), � requests � ’s public key certificate from CDC. In step (2), CDC returns the requested
certificate. � can verify the public key certificate by decrypting it with � � � , which is the public key of
� � obtained by � when it executed the credential initialization protocol. In step (3), � � � � � (referred to as
� � � � � in the credential initialization protocol) and the private delegation key � � �� (generated in step (7) of the
credential initialization protocol), along with a new session key � , are sent to � . Only � can recover � from� � ��� � and subsequently decrypt � ��� �� ��� to recover ��� �� . Possession of � � � � � and knowledge of the private
delegation key constitute sufficient proof of delegation from � to � . However, if such delegation from � to
� is not needed, � � � � � � � �����

�
is sent in step (3) instead of � � � �� ��� ; this acts as an authenticator for proving

� ’s knowledge of � � �� without revealing it. In steps (4) and (5), � requests � ’s public key certificate, which
is used to verify � � � � � in step (6). In step (7), � returns � � � � � � to � to complete mutual authentication
between � and � .

28

Since SPX is a relatively recent proposal, its security properties have not been studied extensively. Such
study would be necessary before it could be generally adopted.

Although SPX offers services similar to those of Kerberos, its elimination of on-line trusted authentica-
tion servers and the extensive use of hierarchical trust relationships are intended to make SPX scalable for
very large distributed systems.

8 Conclusion

With the growth in scale of distributed systems, security has become a major concern—and a limiting
factor—in their design. For example, security has been strongly advocated as one of the major design
constraints in both the Athena and Andrew projects. Most existing distributed systems, however, do not
have a well-defined security framework and use authentication only for their most critical applications, if at
all.

Various authentication needs for distributed systems have been described in this paper, and some specific
protocols are presented. Most of them are practically feasible with today’s technology and their adoption
and use should be just a matter of need.

Acknowledgments

We thank Clifford Neuman of the University of Washington and John Kohl of the Massachusetts Institute
of Technology for reviewing the section on Kerberos, and Joseph Tardo and Kannan Alagappan of Digital
Equipment Corporation for reviewing the section on SPX. We are also grateful to the anonymous referees
for their constructive comments.

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B.W. Lampson. Authentication and delegation with smart-cards.
Science of Computer Programming, 21(2):93–113, October 1993.

[2] S.M. Bellovin and M. Merritt. Limitations of the Kerberos authentication system. In Proceedings of USENIX
Winter Conference, pages 253–267, Dallas, TX, January 1991.

[3] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. ACM Transactions on Computer Systems,
8(1):18–36, February 1990.

[4] D.E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[5] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on Information Theory,
IT-29(2):198–208, March 1983.

[6] M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital distributed system security architecture.
In Proceedings of 12th National Computer Security Conference, pages 305–319, Baltimore, Maryland, October
1989.

[7] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system. In Proceedings of
11th IEEE Symposium on Research in Security and Privacy, pages 20–30, Oakland, California, May 7–9 1990.

[8] C. Kaufman. DASS Distributed Authentication Security Service, September 1993. RFC 1507.

[9] J.T. Kohl, B.C. Neuman, and T.Y. Ts’o. The evolution of the Kerberos authentication system. In F. Brazier and
D. Johansen, editors, Distributed Open Systems, pages 78–94. IEEE Computer Society Press, 1994.

[10] J. Linn. Practical authentication for distributed computing. In Proceedings of 11th IEEE Symposium on Research
in Security and Privacy, pages 31–40, Oakland, California, May 7–9 1990.

29

[11] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks of computers. Com-
munications of the ACM, 21(12):993–999, December 1978.

[12] B.C. Neuman and T.Y. Ts’o. An authentication service for computer networks. IEEE Communications Magazine,
32(9):33–38, September 1994.

[13] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service for open network systems. In
Proceedings of USENIX Winter Conference, pages 191–202, Dallas, TX, February 1988.

[14] J.J. Tardo and K. Alagappan. SPX: Global authentication using public key certificates. In Proceedings of 12th
IEEE Symposium on Research in Security and Privacy, pages 232–244, Oakland, California, May 20–22 1991.

[15] T.Y.C. Woo, R. Bindignavle, S. Su, and S.S. Lam. SNP: An interface for secure network programming. In
Proceedings of USENIX Summer Technical Conference, Boston, Massachusetts, June 6–10 1994. Available
from http://www.cs.utexas.edu/users/lam/NRL/.

[16] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Computer, 25(1):39–52, January 1992. See
also “Authentication” revisited. Computer, 25(3):10, March 1992.

[17] T.Y.C. Woo and S.S. Lam. Design, verification, and implementation of an authentication protocol. In Proceedings
of International Conference on Network Protocols, Boston, Massachusetts, October 25–28 1994. Available from
http://www.cs.utexas.edu/users/lam/NRL/.

[18] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. ACM Operating Systems Review,
28(3):24–37, July 1994.

[19] CCITT Recommendation X.509 The Directory—Authentication framework, 1988. See also ISO/IEC 9594-8,
1989.

30

