Concepts and Architecture of Grid Computing

> Advanced Topics Spring 2008 Prof. Robert van Engelen

Overview

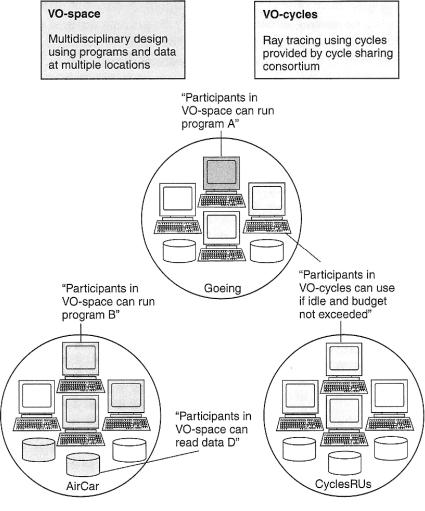
- Grid users: who are they?
- Concept of the Grid
- Challenges for the Grid
- Evolution of Grid systems
- Model of the Grid architecture
- Condor-G: Globus and Condor
- Applications

Grid Users

- Computational/experimental scientists and engineers
 - Control remote instruments
 - □ Access to data repositories and (super)computers
 - □ Visualization and data analysis
- Industry
 - □ Link people (video conferencing & remote collaboration systems)
 - Share resources
 - Problem solving
- Government
 - Public policy making based on collaborative information sharing
 - Disaster response using information gathering and decision making
- Education
 - Virtual classrooms (one-way video conferencing)
 - Remote demonstrations and remote access to collections

Scientific Users of the Grid

- Scientists and engineers may need the Grid for...
 - □ Data intensive applications
 - Collider experiments in particle physics produce petabytes per year
 - Astronomy digital sky surveys, e.g. the virtual observatory project
 - Example data grids: NSF GriPhyN, DOE PPDG, EU DataGrid
 - □ Imaging
 - Managing collections of medical images: MRI, CT scans, X-rays, …
 - Comparing images and metadata for epidemiological studies
 - □ Scientific simulations
 - Using supercomputers as scientific instruments
 - Example simulations: Japanese earth simulator, DOE nuclear bomb simulations, computational chemistry, life sciences, …
 - Remote access to instruments
 - Example: network for earthquake engineering simulation

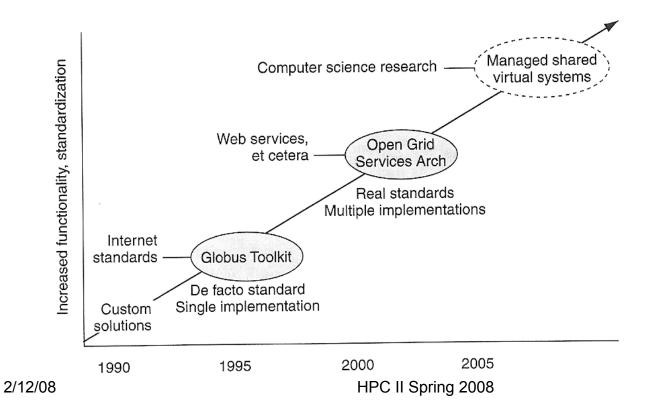


Concept of the Grid

- A common theme underlying these usage modalities is a need for "coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations"
- What is a Virtual Organization (VO)?
 - □ A group of individuals or institutions defined by a set of sharing rules
- The Grid concept
 - □ Grid = a technology that manages two opposing forces: sharing & trust
 - Sharing: coordinated resource sharing in a VO between participants with varying degrees of prior relationships and trust
 - Trust: trust within a VO is precisely defined by the sharing rules governed by security and access policies
- Limited trust means limited sharing
- No trust means no sharing!
- Why trust at all?
 - □ There is a common goal, could be monetary gain
 - □ Isolation of shared resources from critical infrastructure, e.g. sandboxing

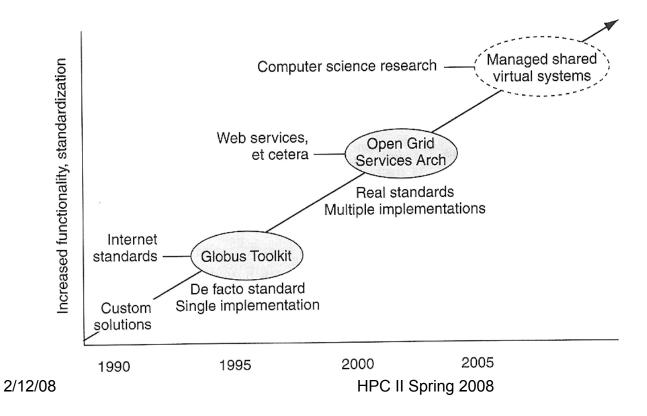
Resource Sharing Relationships

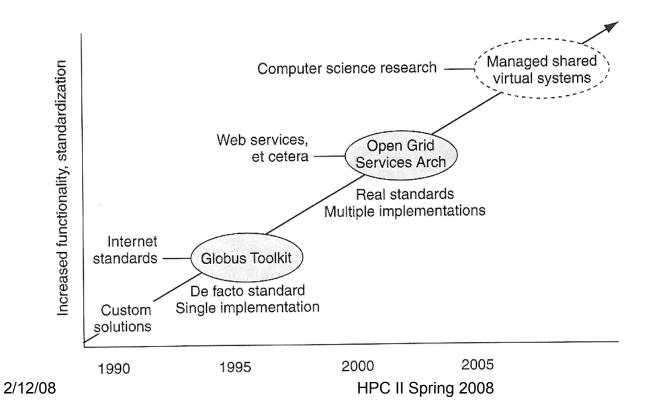
- Physical organizations
 - □ AirCar, Goeing, CyclesRUs
- Two virtual organizations
 - VO-Space: AirCar and Going collaborate on space project
 - VO-Cycles: ray tracing cycle sharing consortium formed by Goeing and CyclesRUs
- Resource sharing within a VO
 - Is conditional: policies for when, where, and what
 - "can run programs A or B"
 - "can read data D"
 - "can use idle machines if budget not exceeded"
 - Is secure: pooling of resources that are certified as "secure"


Challenges

- Trust (security is built on trusted parties or trusted third-party CA)
 - □ Problem: how to trust VO members and its agents (autonomous apps)
 - □ Solution: proxy credentials provided by a CA in public key infrastructure
- Sharing of applications and data
 - Problem: incompatible machines and OS, need to limit access
 - □ Solution: virtualization, Grid resource allocation policies
- Communication of Grid policies and metadata: Grid interoperability
 - □ Problem: incompatible protocols
 - □ Solution: XML-based protocols and open standards
- Reliability and robustness (a non-functional requirement)
 - □ Problem: Grid-based systems can be brittle (network connections)
 - □ Solution: two-phase commit, transaction-based protocols
- Quality of service (QoS) (a non-functional requirement)
 - □ Problem: need end-to-end resource management, transactions
 - □ Solution: budgeting of cycles, bandwidth, and storage capacity

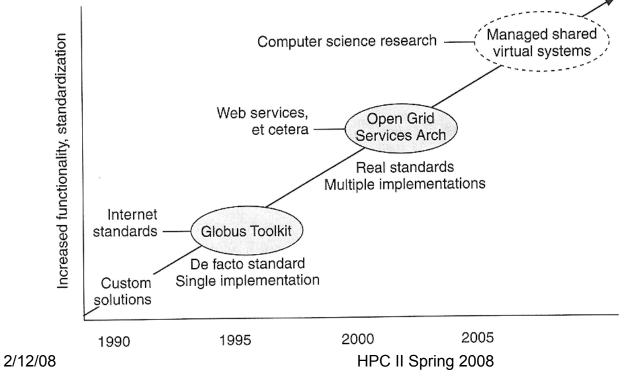
Custom solutions (early 90s)


- "Metacomputing" explorative work
- □ Applications built directly on Internet protocols (TCP/IP)
- Limited functionality, security, scalability, and robustness


Globus toolkit version 2 (GT2) (1997)

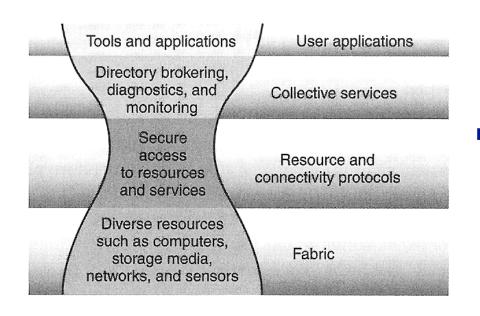
- Popular open-source collection of tools for secure sharing
- Defined and implemented protocols, APIs, and services
- De-facto Grid standards

- Open Grid Services Architecture (OGSA) (2002)
 - Community standard with multiple implementations
 - Globus GT3 implementation
 - Service-oriented architecture based on XML Web services



Open Grid Services Architecture

- OGSA (GT3) is a redesign of Globus GT2
- Factoring of component behaviors
 - □ Problem: current tools combine too many aspects redundantly
 - □ OGSA identifies basic set of essential services
- Service orientation
 - □ Services instead of applications
 - □ A service has a well-defined web interface (like an HTTP server)
- Aligned with XML web services
 - □ XML-based message protocols
- OGSA's idea was good, but its use is not successful
 - Need simpler, more basic service protocols instead of OGSA-specific extensions of the web service description language (WSDL)
- Globus GT4 uses WS-RF (resource framework) a set of messaging-level protocols for resource properties, lifetime management, ...



- Managed, shared virtual systems (?)
 - Improved technology
 - Virtualization to make Grid more seamless
 - Improved quality of service
 - More active management, e.g. network QoS requires WAN-level support

Model of the Grid Architecture

- The "hour-glass" model of the Grid architecture
 - □ Thin center: few standards
 - Wide top: many high-level behaviors can be mapped
 - Wide bottom: many underlying technologies and systems
- Role of layers:
 - □ *Fabric*: interfaces local control
 - Connectivity: secure communications
 - Resource: sharing a single resource
 - Collective: coordinated sharing of multiple resources
 - □ Applications: you decide...

Fabric Layer

- Need to manage a resource
 - □ Reserve usage in advance
 - □ Allocate space (e.g. storage)
- Grid fabric layer provides standardized access to local resource-specific operations
- Software is provided to discover
 - Computers (OS version, hardware config, usage load)
 - Storage systems
 - Networks
- Globus General-purpose Architecture for Reservation and Allocation (GARA)

Connectivity Layer

- Need secure connectivity to resources
- Assumes trust is based on user, not service providers
- Use public key infrastructure (PKI)
 - □ User is recognized by a Certificate Authority (CA) (within Grid)
 - □ Single sign-on: allow users to authenticate only once
 - Delegation: create proxy credentials to allow services/agents to act on a user's behalf
- Integrate and obey local security policies in global view
 - □ Unix file permissions, ACLs, ...
- Globus Security Infrastructure (GSI)
 - Standardized mechanism for proxy credential creation and mapping to local access authentication scheme (logins)
 - Based on generic services security (GSS) API, which allows applications to perform these security operations autonomously

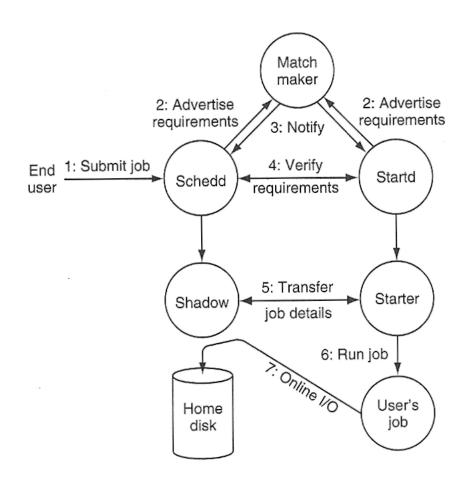
Resource Layer

Need access to resources

- □ Invoke remote computation
- Monitor computation
- Discover resources
- □ Perform data transport (e.g. to and from computations)
- Globus Grid Resource Allocation and Management (GRAM)
 - □ Job manager and reporter
- Globus Monitoring and Discovery Service (MDS-2)
 - □ Registry of resources and monitoring of resource usage stats
- Globus GridFTP
 - □ Good old FTP but faster (multiple streams), integrated security
 - Partial file access

Collective Layer

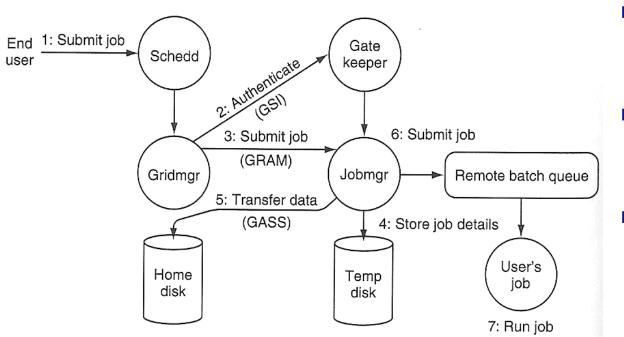
- Need to coordinate sharing of resources
 - Directory services
 - Coallocation, scheduling, brokering services
 - Monitoring and diagnostic services
 - Data replication services
- Tools
 - □ Workflow systems
 - Collaboratory services
- Globus DUROC resource coallocation library


Resource Allocation via Description Languages

- Condor classified advertisements (ClassAds) describe job and requirements
 - machine architecture
 - □ command or executable starting application
 - constraints on required resources
 - executable size
 - required memory
 - operating system and release
 - owner
 - □ rank specifying preferred resources
- Globus RSL uses LDAP-like notation

```
[
Type = "job";
Owner = "Myself";
Executable = "Myimage";
Rank = other.PhysicalMemory > 256 && other.Mips > 20 || other.Kflops > 2000;
Imagesize = 275M;
Constraint = other.Virtual > self.Imagesize;
]
```

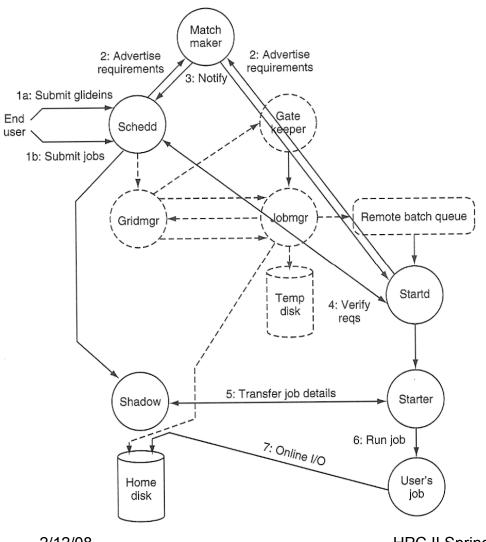

Resource Allocation and Job Scheduling



Condor's 7 steps to run a Condor job

- Resource owner states policy to manage requestors and allocate resources according to rules
 - user access by group via a group authorization policy
 - predefined time slot when job has right to run
 - maximum CPU amount allowed for job
 - maximum disk amount available to group
- Job scheduling and match making based on rules
 - Condor schedd
 - Globus GRAM for RSL

Condor-G: Condor for the Grid



7 steps to run a Condor-G job

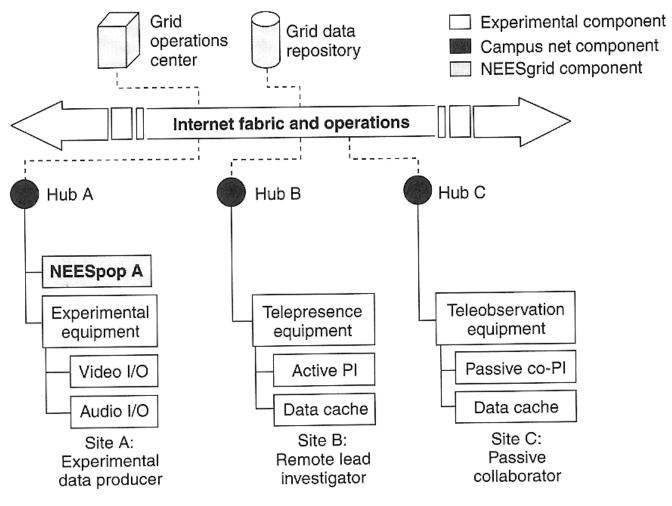
- Condor-G can cross institutional boundaries
- Supports both Condor and non-Condor pools
- Uses
 - Grid SecurityInfrastructure(GSI)
 - Grid Resource
 Allocation
 Manager (GRAM)
 - Global Access to Storage (GASS)

Condor-G Glidein

- Condor pool on top of a Condor-G system
- User submits glideins via Condor-G over GRAM
 - A glidein is a Condor deamon
 - Each glidein creates (part of) an ad-hoc Condor pool
- User submits Condor jobs to run on the pool
- Matchmaker more complex
 - Can be user-defined

Two Example Applications

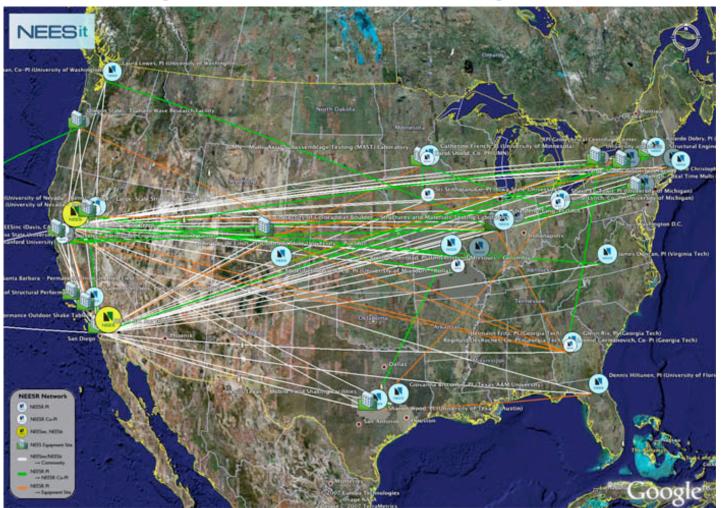
- NEESgrid Earthquake Engineering Collaboratory
- The Virtual Observatory World-Wide Telescope



NEESgrid

- Used by the earthquake engineering community
 - http://it.nees.org
- Goals is to enhance the utility of experimental facilities
 - □ Sharing of experimental data
 - Collaboration between experts from different domains
- Five basic functional components
 - Collaboration technology
 - Information management for sharing data
 - Simulation systems and software
 - NEESgrid-enabled desktops for direct access to Grid
 - □ Support nodes which maintain online knowledge bases

NEESGrid Overview



NEESPoP

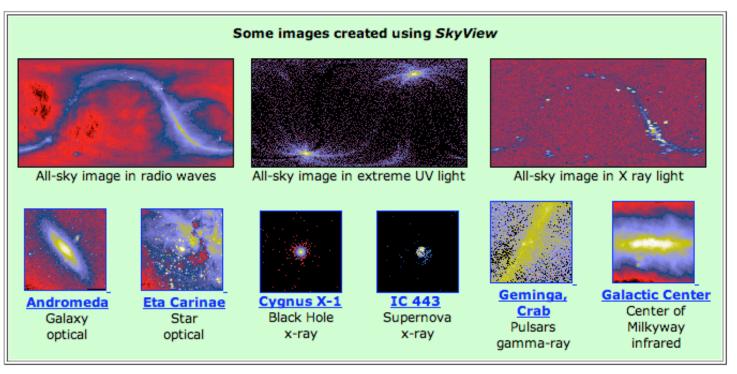
- NEESPoP (NEES Point of Presence) deployed at each experimental facility
- Provides
 - □ Site status published via Globus MDS
 - Teleobservation using streaming data services protocol (NSDS)
 - Telecontrol of actuators using transaction-oriented NEES telecontrol protocol (NTCP)
 - □ Collaboration services (via so-called CHEF portlets)
 - Forums, electronic notebooks
 - Metadata browser for editing and publishing of metadata associated with experimental and simulation data
 - Remote administration services
 - Data access via GridFTP

NEESgrid and Google Earth

Earthquake engineering-related points of interest

The Virtual Observatory World-Wide Telescope

- Unify astronomy archives into giant database
- Integrate archives as a single "intelligent" telescope
- Hope for new discoveries through federating datasets from multiple independent projects


Hierarchical architecture

- □ Archives: raw data (images/text) organized with metadata
- XML Web services: on-demand queries and a XML schema data model (VOTable) to represent astronomy data
- Registries and portals: record what kind of data the archive provides (sky coverage, temporal coverage, spectral coverage, and resolution)

Virtual Observatory Tools

- Digital sky surveys are created using the Chimera virtual data toolkit (built on Globus and Condor)
- Virtual Sky provides image navigation over the whole sky, e.g. access via http://skyview.gsfc.nasa.gov

Further Reading

- [Grid] Chapter 4
- Optional:
 - □ NEESgrid: [Grid] Chapter 6
 - □ Virtual Observatory: [Grid] Chapter 7
 - Condor and reliability: [Grid] Chapter 19