
2.3. Diffie–Hellman key exchange 65

-

6

q
qq

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q
q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q

q
qqq

q

q

q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q
qq

q

q

q
qqqqq

q

q

q

q

q

q

q

q

q

q
qqq

q

q

q
q

q

qq

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
qq

q

q
qq

q
qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
qqq

q

q

q

q
q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q
qq

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
qqqq

q

q

q

q

q

q

q

q

q

q

qqq

0 30 60 90 120 150 180 210 240 270
0

100

200

300

400

500

600

700

800

900

Figure 2.2: Powers 627i mod 941 for i = 1, 2, 3, . . .

any group and use the group law instead of multiplication. This leads to the
most general form of the discrete logarithm problem. (If you are unfamiliar
with the theory of groups, we give a brief overview in Section 2.5.)

Definition. Let G be a group whose group law we denote by the symbol ?.
The Discrete Logarithm Problem for G is to determine, for any two given
elements g and h in G, an integer x satisfying

g ? g ? g ? · · · ? g︸ ︷︷ ︸
x times

= h.

2.3 Diffie–Hellman key exchange

The Diffie–Hellman key exchange algorithm solves the following dilemma.
Alice and Bob want to share a secret key for use in a symmetric cipher, but
their only means of communication is insecure. Every piece of information that
they exchange is observed by their adversary Eve. How is it possible for Alice
and Bob to share a key without making it available to Eve? At first glance it
appears that Alice and Bob face an impossible task. It was a brilliant insight
of Diffie and Hellman that the difficulty of the discrete logarithm problem
for F∗p provides a possible solution.

The first step is for Alice and Bob to agree on a large prime p and a
nonzero integer g modulo p. Alice and Bob make the values of p and g public
knowledge; for example, they might post the values on their web sites, so Eve

66 2. Discrete Logarithms and Diffie–Hellman

knows them, too. For various reasons to be discussed later, it is best if they
choose g such that its order in F∗p is a large prime. (See Exercise 1.31 for a
way of finding such a g.)

The next step is for Alice to pick a secret integer a that she does not reveal
to anyone, while at the same time Bob picks an integer b that he keeps secret.
Bob and Alice use their secret integers to compute

A ≡ ga (mod p)︸ ︷︷ ︸
Alice computes this

and B ≡ gb (mod p)︸ ︷︷ ︸
Bob computes this

.

They next exchange these computed values, Alice sends A to Bob and Bob
sends B to Alice. Note that Eve gets to see the values of A and B, since they
are sent over the insecure communication channel.

Finally, Bob and Alice again use their secret integers to compute

A′ ≡ Ba (mod p)︸ ︷︷ ︸
Alice computes this

and B′ ≡ Ab (mod p)︸ ︷︷ ︸
Bob computes this

.

The values that they compute, A′ and B′ respectively, are actually the same,
since

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′ (mod p).

This common value is their exchanged key. The Diffie–Hellman key exchange
algorithm is summarized in Table 2.2.

Public Parameter Creation
A trusted party chooses and publishes a (large) prime p
and an integer g having large prime order in F∗p.

Private Computations
Alice Bob

Choose a secret integer a. Choose a secret integer b.
Compute A ≡ ga (mod p). Compute B ≡ gb (mod p).

Public Exchange of Values
Alice sends A to Bob −−−−−−−−−−−−−−−−−−→ A

B ←−−−−−−−−−−−−−−−−−− Bob sends B to Alice
Further Private Computations

Alice Bob
Compute the number Ba (mod p). Compute the number Ab (mod p).
The shared secret value is Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab (mod p).

Table 2.2: Diffie–Hellman key exchange

Example 2.7. Alice and Bob agree to use the prime p = 941 and the
primitive root g = 627. Alice chooses the secret key a = 347 and computes

2.3. Diffie–Hellman key exchange 67

A = 390 ≡ 627347 (mod 941). Similarly, Bob chooses the secret key b = 781
and computes B = 691 ≡ 627781 (mod 941). Alice sends Bob the number 390
and Bob sends Alice the number 691. Both of these transmissions are done
over an insecure channel, so both A = 390 and B = 691 should be considered
public knowledge. The numbers a = 347 and b = 781 are not transmitted and
remain secret. Then Alice and Bob are both able to compute the number

470 ≡ 627347·781 ≡ Ab ≡ Ba (mod 941),

so 470 is their shared secret.
Suppose that Eve sees this entire exchange. She can reconstitute Alice’s

and Bob’s shared secret if she can solve either of the congruences

627a ≡ 390 (mod 941) or 627b ≡ 691 (mod 941),

since then she will know one of their secret exponents. As far as is known,
this is the only way for Eve to find the secret shared value without Alice’s or
Bob’s assistance.

Of course, our example uses numbers that are much too small to afford Al-
ice and Bob any real security, since it takes very little time for Eve’s computer
to check all possible powers of 627 modulo 941. Current guidelines suggest
that Alice and Bob choose a prime p having approximately 1000 bits (i.e.,
p ≈ 21000) and an element g whose order is prime and approximately p/2.
Then Eve will face a truly difficult task.

In general, Eve’s dilemma is this. She knows the values of A and B, so she
knows the values of ga and gb. She also knows the values of g and p, so if she
can solve the DLP, then she can find a and b, after which it is easy for her to
compute Alice and Bob’s shared secret value gab. It appears that Alice and
Bob are safe provided that Eve is unable to solve the DLP, but this is not
quite correct. It is true that one method of finding Alice and Bob’s shared
value is to solve the DLP, but that is not the precise problem that Eve needs
to solve. The security of Alice’s and Bob’s shared key rests on the difficulty
of the following, potentially easier, problem.

Definition. Let p be a prime number and g an integer. The Diffie–Hellman
Problem (DHP) is the problem of computing the value of gab (mod p) from
the known values of ga (mod p) and gb (mod p).

It is clear that the DHP is no harder than the DLP. If Eve can solve the
DLP, then she can compute Alice and Bob’s secret exponents a and b from the
intercepted values A = ga and B = gb, and then it is easy for her to compute
their shared key gab. (In fact, Eve needs to compute only one of a and b.) But
the converse is less clear. Suppose that Eve has an algorithm that efficiently
solves the DHP. Can she use it to also efficiently solve the DLP? The answer
is not known.

68 2. Discrete Logarithms and Diffie–Hellman

2.4 The ElGamal public key cryptosystem

Although the Diffie–Hellman key exchange algorithm provides a method of
publicly sharing a random secret key, it does not achieve the full goal of being
a public key cryptosystem, since a cryptosystem permits exchange of specific
information, not just a random string of bits. The first public key cryptosys-
tem was the RSA system of Rivest, Shamir, and Adleman [100], which they
published in 1978. RSA was, and still is, a fundamentally important discov-
ery, and we discuss it in detail in Chapter 3. However, although RSA was
historically first, the most natural development of a public key cryptosystem
following the Diffie–Hellman paper [36] is a system described by Taher ElGa-
mal in 1985 [38]. The ElGamal public key encryption algorithm is based on the
discrete log problem and is closely related to Diffie–Hellman key exchange from
Section 2.3. In this section we describe the version of the ElGamal PKC that
is based on the discrete logarithm problem for F∗p, but the construction works
quite generally using the DLP in any group. In particular, in Section 5.4.2 we
discuss a version of the ElGamal PKC based on elliptic curve groups.

The ElGamal PKC is our first example of a public key cryptosystem, so
we proceed slowly and provide all of the details. Alice begins by publishing
information consisting of a public key and an algorithm. The public key is
simply a number, and the algorithm is the method by which Bob encrypts
his messages using Alice’s public key. Alice does not disclose her private key,
which is another number. The private key allows Alice, and only Alice, to
decrypt messages that have been encrypted using her public key.

This is all somewhat vague and applies to any public key cryptosystem. For
the ElGamal PKC, Alice needs a large prime number p for which the discrete
logarithm problem in F∗p is difficult, and she needs an element g modulo p of
large (prime) order. She may choose p and g herself, or they may have been
preselected by some trusted party such as an industry panel or government
agency.

Alice chooses a secret number a to act as her private key, and she computes
the quantity

A ≡ ga (mod p).

Notice the resemblance to Diffie–Hellman key exchange. Alice publishes her
public key A and she keeps her private key a secret.

Now suppose that Bob wants to encrypt a message using Alice’s pub-
lic key A. We will assume that Bob’s message m is an integer between 2
and p. (Recall that we discussed how to convert messages into numbers in
Section 1.7.2.) In order to encrypt m, Bob first randomly chooses another
number k modulo p.5 Bob uses k to encrypt one, and only one, message, and

5Most public key cryptosystems require the use of random numbers in order to operate
securely. The generation of random or random-looking integers is actually a delicate process.
We discuss the problem of generating pseudorandom numbers in Section 8.2, but for now we
ignore this issue and assume that Bob has no trouble generating random numbers modulo p.

2.4. The ElGamal public key cryptosystem 69

then he discards it. The number k is called an ephemeral key, since it exists
only for the purposes of encrypting a single message.

Bob takes his plaintext message m, his chosen random ephemeral key k,
and Alice’s public key A and uses them to compute the two quantities

c1 ≡ gk (mod p) and c2 ≡ mAk (mod p).

(Remember that g and p are public parameters, so Bob also knows their val-
ues.) Bob’s ciphertext, i.e., his encryption of m, is the pair of numbers (c1, c2),
which he sends to Alice.

How does Alice decrypt Bob’s ciphertext (c1, c2)? Since Alice knows a, she
can compute the quantity

x ≡ ca
1 (mod p),

and hence also x−1 (mod p). Alice next multiplies c2 by x−1, and lo and
behold, the resulting value is the plaintext m. To see why, we expand the
value of x−1 · c2 and find that

x−1 · c2 ≡ (ca
1)−1 · c2 (mod p), since x ≡ ca

1 (mod p),

≡ (gak)−1 · (mAk) (mod p), since c1 ≡ gk, c2 ≡ mAk (mod p),

≡ (gak)−1 · (m(ga)k) (mod p), since A ≡ ga (mod p),

≡ m (mod p), since the gak terms cancel out.

The ElGamal public key cryptosystem is summarized in Table 2.3.
What is Eve’s task in trying to decrypt the message? Eve knows the public

parameters p and g, and she also knows the value of A ≡ ga (mod p), since Al-
ice’s public key A is public knowledge. If Eve can solve the discrete logarithm
problem, she can find a and decrypt the message. Otherwise it appears diffi-
cult for Eve to find the plaintext, although there are subtleties, some of which
we’ll discuss after doing an example with small numbers.

Example 2.8. Alice uses the prime p = 467 and the primitive root g = 2. She
chooses a = 153 to be her private key and computes her public key

A ≡ ga ≡ 2153 ≡ 224 (mod 467).

Bob decides to send Alice the message m = 331. He chooses an ephemeral key
at random, say he chooses k = 197, and he computes the two quantities

c1 ≡ 2197 ≡ 87 (mod 467) and c2 ≡ 331 · 224197 ≡ 57 (mod 467).

The pair (c1, c2) = (87, 57) is the ciphertext that Bob sends to Alice.
Alice, knowing a = 153, first computes

x ≡ ca
1 ≡ 87153 ≡ 367 (mod 467), and then x−1 ≡ 14 (mod 467).

70 2. Discrete Logarithms and Diffie–Hellman

Public Parameter Creation
A trusted party chooses and publishes a large prime p

and an element g modulo p of large (prime) order.
Alice Bob

Key Creation
Chooses private key 1 ≤ a ≤ p− 1.
Computes A = ga (mod p).
Publishes the public key A.

Encryption
Chooses plaintext m.
Chooses random ephemeral key k.
Uses Alice’s public key A

to compute c1 = gk (mod p)
and c2 = mAk (mod p).

Sends ciphertext (c1, c2) to Alice.
Decryption

Compute (ca
1)−1 · c2 (mod p).

This quantity is equal to m.

Table 2.3: ElGamal key creation, encryption, and decryption

Finally, she computes

c2x
−1 ≡ 57 · 14 ≡ 331 (mod 467)

and recovers the plaintext message m.

Remark 2.9. In the ElGamal cryptosystem, the plaintext is an integer m
between 2 and p − 1, while the ciphertext consists of two integers c1 and c2

in the same range. Thus in general it takes twice as many bits to write down
the ciphertext as it does to write down the plaintext. We say that ElGamal
has a 2-to-1 message expansion.

It’s time to raise an important question. Is the ElGamal system as hard for
Eve to attack as the Diffie–Hellman problem? Or, by introducing a clever way
of encrypting messages, have we unwittingly opened a back door that makes
it easy to decrypt messages without solving the Diffie–Hellman problem? One
of the goals of modern cryptography is to identify an underlying hard problem
like the Diffie–Hellman problem and to prove that a given cryptographic con-
struction like ElGamal is at least as hard to attack as the underlying problem.

In this case we would like to prove that anyone who can decrypt arbitrary
ciphertexts created by ElGamal encryption, as summarized in Table 2.3, must
also be able to solve the Diffie–Hellman problem. Specifically, we would like
to prove the following:

2.4. The ElGamal public key cryptosystem 71

Proposition 2.10. Fix a prime p and base g to use for ElGamal encryption.
Suppose that Eve has access to an oracle that decrypts arbitrary ElGamal
ciphertexts encrypted using arbitrary ElGamal public keys. Then she can use
the oracle to solve the Diffie–Hellman problem described on page 67.

Proof. Rather than giving a compact formal proof, we will be more discur-
sive and explain how one might approach the problem of using an ElGamal
oracle to solve the Diffie–Hellman problem. Recall that in the Diffie–Hellman
problem, Eve is given the two values

A ≡ ga (mod p) and B ≡ gb (mod p),

and she is required to compute the value of gab (mod p). Keep in mind that
she knows both of the values of A and B, but she does not know either of the
values a and b.

Now suppose that Eve can consult an ElGamal oracle. This means that
Eve can send the oracle a prime p, a base g, a purported public key A, and
a purported cipher text (c1, c2). Referring to Table 2.3, the oracle returns to
Eve the quantity

(ca
1)−1 · c2 (mod p).

If Eve wants to solve the Diffie–Hellman problem, what values of c1 and c2

should she choose? A little thought shows that c1 = B = gb and c2 = 1 are
good choices, since with this input, the oracle returns (gab)−1 (mod p), and
then Eve can take the inverse modulo p to obtain gab (mod p), thereby solving
the Diffie–Hellman problem.

But maybe the oracle is smart enough to know that it should never decrypt
ciphertexts having c2 = 1. Eve can still fool the oracle by sending it random-
looking ciphertexts as follows. She chooses an arbitrary value for c2 and tells
the oracle that the public key is A and that the ciphertext is (B, c2). The
oracle returns to her the supposed plaintext m that satisfies

m ≡ (ca
1)−1 · c2 ≡ (Ba)−1 · c2 ≡ (gab)−1 · c2 (mod p).

After the oracle tells Eve the value of m, she simply computes

m−1 · c2 ≡ gab (mod p)

to find the value of gab (mod p). It is worth noting that although, with the
oracle’s help, Eve has computed gab (mod p), she has done so without knowl-
edge of a or b, so she has solved only the Diffie–Hellman problem, not the
discrete logarithm problem.

Remark 2.11. An attack in which Eve has access to an oracle that decrypts
arbitrary ciphertexts is known as a chosen ciphertext attack. The preceding
proposition shows that the ElGamal system is secure against chosen ciphertext
attacks. More precisely, it is secure if one assumes that the Diffie–Hellman
problem is hard.

4.4. Collision algorithms and meet-in-the-middle attacks 227

4.4 Collision algorithms and
meet-in-the-middle attacks

A simple, yet surprisingly powerful, search method is based on the observation
that it is usually much easier to find matching objects than it is to find a
particular object. Methods of this sort go by many names, including meet-in-
the-middle attacks and collision algorithms.

4.4.1 The birthday paradox

The fundamental idea behind collision algorithms is strikingly illustrated by
the famous birthday paradox. In a random group of 40 people, consider the
following two questions:

(1) What is the probability that someone has the same birthday as you?

(2) What is the probability that at least two people share the same birthday?

It turns out that the answers to (1) and (2) are very different. As a warm-up,
we start by answering the easier first question.

A rough answer is that since any one person has a 1-in-365 chance of
sharing your birthday, then in a crowd of 40 people, the probability of some-
one having your birthday is approximately 40

365 ≈ 11%. However, this is an
overestimate, since it double counts the occurrences of more than one person
in the crowd sharing your birthday.14 The exact answer is obtained by com-
puting the probability that none of the people share your birthday and then
subtracting that value from 1.

Pr
(

someone has
your birthday

)
= 1− Pr

(
none of the 40 people
has your birthday

)

= 1−
40∏

i=1

Pr
(

ith person does not
have your birthday

)

= 1−
(

364
365

)40

≈ 10.4%.

Thus among 40 strangers, there is only slightly better than a 10% chance that
one of them shares your birthday.

Now consider the second question, in which you win if any two of the peo-
ple in the group have the same birthday. Again it is easier to compute the
probability that all 40 people have different birthdays. However, the compu-
tation changes because we now require that the ith person have a birthday

14If you think that 40
365

is the right answer, think about the same situation with 366

people. The probability that someone shares your birthday cannot be 366
365

, since that’s
larger than 1.

228 4. Combinatorics, Probability, and Information Theory

that is different from all of the previous i− 1 people’s birthdays. Hence the
calculation is

Pr
(

two people have
the same birthday

)
= 1− Pr

(
all 40 people have
different birthdays

)

= 1−
40∏

i=1

Pr




ith person does not have
the same birthday as any
of the previous i− 1 people




= 1−
40∏

i=1

365− (i− 1)
365

= 1− 365
365

· 364
365

· 363
365

· · · 326
365

≈ 89.1%.

Thus among 40 strangers, there is almost a 90% chance that two of them
share a birthday.

The only part of this calculation that merits some comment is the formula
for the probability that the ith person has a birthday different from any of
the previous i− 1 people. Among the 365 possible birthdays, note that the
previous i− 1 people have taken up i− 1 of them. Hence the probability that
the ith person has his or her birthday among the remaining 365− (i− 1) days
is

365− (i− 1)
365

.

Most people tend to assume that questions (1) and (2) have essentially
the same answer. The fact that they do not is called the birthday paradox. In
fact, it requires only 23 people to have a better than 50% chance of a matched
birthday, while it takes 253 people to have better than a 50% chance of finding
someone who has your birthday.

4.4.2 A collision theorem

Cryptographic applications of collision algorithms are generally based on the
following setup. Bob has a box that contains N numbers. He chooses n distinct
numbers from the box and puts them in a list. He then makes a second list by
choosing m (not necessarily distinct) numbers from the box. The remarkable
fact is that if n and m are each slightly larger than

√
N , then it is very likely

that the two lists contain a common element.
We start with an elementary result that illustrates the sort of calculation

that is used to quantify the probability of success of a collision algorithm.

Theorem 4.38 (Collision Theorem). An urn contains N balls, of which n
are red and N − n are blue. Bob randomly selects a ball from the urn, replaces
it in the urn, randomly selects a second ball, replaces it, and so on. He does
this until he has looked at a total of m balls.

4.4. Collision algorithms and meet-in-the-middle attacks 229

(a) The probability that Bob selects at least one red ball is

Pr(at least one red) = 1−
(
1− n

N

)m

. (4.28)

(b) A lower bound for the probability (4.28) is

Pr(at least one red) ≥ 1− e−mn/N . (4.29)

If N is large and if m and n are not too much larger than
√

N (e.g.,
m,n < 10

√
N), then (4.29) is almost an equality.

Proof. Each time Bob selects a ball, his probability of choosing a red one is n
N ,

so you might think that since he chooses m balls, his probability of getting a
red one is mn

N . However, a small amount of thought shows that this must be
incorrect. For example, if m is large, this would lead to a probability that is
larger than 1. The difficulty, just as in the birthday example in Section 4.4.1,
is that we are overcounting the times that Bob happens to select more than
one red ball. The correct way to calculate is to compute the probability that
Bob chooses only blue balls and then subtract this complementary probability
from 1. Thus

Pr
(

at least one red
ball in m attempts

)
= 1− Pr(all m choices are blue)

= 1−
m∏

i=1

Pr(ith choice is blue)

= 1−
m∏

i=1

(
N − n

N

)

= 1−
(
1− n

N

)m

.

This completes the proof of (a).
For (b), we use the inequality

e−x ≥ 1− x for all x ∈ R.

(See Exercise 4.36(a) for a proof.) Setting x = n/N and raising both sides of
the inequality to the mth power shows that

1−
(
1− n

N

)m

≥ 1− (e−n/N)m = 1− e−mn/N ,

which proves the important inequality in (b). We leave it to the reader (Ex-
ercise 4.36(b)) to prove that the inequality is close to being an equality if m
and n is not too large compared to

√
N .

In order to connect Theorem 4.38 with the problem of finding a match
in two lists of numbers, we view the list of numbers as an urn containing N

230 4. Combinatorics, Probability, and Information Theory

numbered blue balls. After making our first list of n different numbered balls,
we repaint those n balls with red paint and return them to the box. The
second list is constructed by drawing m balls out of the urn one at a time,
noting their number and color, and then replacing them. The probability of
selecting at least one red ball is the same as the probability of a matched
number on the two lists.

Example 4.39. A deck of cards is shuffled and eight cards are dealt face up.
Bob then takes a second deck of cards and chooses eight cards at random,
replacing each chosen card before making the next choice. What is Bob’s
probability of matching one of the cards from the first deck?

We view the eight dealt cards from the first deck as “marking” those same
cards in the second deck. So our “urn” is the second deck, the “red balls”
are the eight marked cards in the second deck, and the “blue balls” are the
other 48 cards in the second deck. Theorem 4.38(a) tells us that

Pr(a match) = 1−
(

1− 8
52

)8

≈ 73.7%.

The approximation in Theorem 4.38(b) gives a lower bound of 70.8%.
Suppose instead that Bob deals ten cards from the first deck and chooses

only five cards from the second deck. Then

Pr(a match) = 1−
(

1− 10
52

)5

≈ 65.6%.

Example 4.40. A set contains 10 billion elements. Bob randomly selects two
lists of 100,000 elements each from the set. What is the (approximate) prob-
ability that there will be a match between the two lists? Formula (4.28) in
Theorem 4.38(a)says that

Pr(a match) = 1−
(

1− 100,000
1010

)100,000

≈ 0.632122.

The approximate lower bound given by the formula (4.29) in Theorem 4.38(b)
is 0.632121. As you can see, the approximation is quite accurate.

It is interesting to observe that if Bob doubles the number of elements in
each list to 200,000, then his probability of getting a match increases quite
substantially to 98.2%. And if he triples the number of elements in each list
to 300,000, then the probability of a match is 99.988%. This rapid increase
reflects that fact that the exponential function in (4.29) decreases very rapidly
as soon as mn becomes larger than N .

Example 4.41. A set contains N objects. Bob randomly chooses n of them,
makes a list of his choices, replaces them, and then chooses another n of them.
How large should he choose n to give himself a 50% chance of getting a match?
How about if he wants a 99.99% chance of getting a match?

4.4. Collision algorithms and meet-in-the-middle attacks 231

For the first question, Bob uses the reasonably accurate lower bound of
formula (4.29) to set

Pr(match) ≈ 1− e−n2/N =
1
2
.

It is easy to solve this for n:

e−n2/N =
1
2

=⇒ −n2

N
= ln

(
1
2

)
=⇒ n =

√
N · ln 2 ≈ 0.83

√
N.

Thus it is enough to create lists that are a bit shorter than
√

N in length.
The second question is similar, but now Bob solves

Pr(match) ≈ 1− e−n2/N = 0.9999 = 1− 10−4.

The solution is
n =

√
N · ln 104 ≈ 3.035 ·

√
N.

Remark 4.42. Algorithms that rely on finding matching elements from within
one or more lists go by a variety of names, including collision algorithm,
meet-in-the-middle algorithm, birthday paradox algorithm, and square root al-
gorithm. The last refers to the fact that the running time of a collision al-
gorithm is generally a small multiple of the square root of the running time
required by an exhaustive search. The connection with birthdays was briefly
discussed in Section 4.4.1; see also Exercise 4.34. When one of these algorithms
is used to break a cryptosystem, the word “algorithm” is often replaced by
the word “attack,” so cryptanalysts refer to meet-in-the-middle attacks, square
root attacks, etc.

Remark 4.43. Collision algorithms tend to take approximately
√

N steps in
order to find a collision among N objects. A drawback of these algorithms
is that they require creation of one or more lists of size approximately

√
N .

When N is large, providing storage for
√

N numbers may be more of an obsta-
cle than doing the computation. In Section 4.5 we describe a collision method
due to Pollard that, at the cost of a small amount of extra computation,
requires essentially no storage.

4.4.3 A discrete logarithm collision algorithm

There are many applications of collision algorithms to cryptography. These
may involve searching a space of keys or plaintexts or ciphertexts, or for public
key cryptosystems, they may be aimed at solving the underlying hard mathe-
matical problem. The baby step–giant step algorithm described in Section 2.7
is an example of a collision algorithm that is used to solve the discrete log-
arithm problem. In this section we further illustrate the general theory by
formulating an abstract randomized collision algorithm to solve the discrete

232 4. Combinatorics, Probability, and Information Theory

logarithm problem. For the finite field Fp, it solves the discrete logarithm
problem (DLP) in approximately

√
p steps.

Of course, the index calculus described in Section 3.8 solves the DLP in Fp

much more rapidly than this. But there are other groups, such as elliptic curve
groups (see Chapter 5), for which collision algorithms are the fastest known
way to solve the DLP. This explains why elliptic curve groups are used in
cryptography; at present, the DLP in an elliptic curve group is much harder
than the DLP in F∗p if the groups have about the same size.

It is also worth pointing out that, in a certain sense, there cannot exist a
general algorithm to solve the DLP in an arbitrary group with N elements in
fewer than O(√

N
)

steps. This is the so-called black box DLP, in which you
are given a box that performs the group operations, but you’re not allowed
to look inside the box to see how it is doing the computations.

Proposition 4.44. Let G be a group and let h ∈ G be an element of order N ,
i.e., hN = e and no smaller power of h is equal to e. Then, assuming that the
discrete logarithm problem

hx = b (4.30)

has a solution, a solution can be found in O(√
N

)
steps, where each step is

an exponentiation in the group G. (Note that since hN = 1, the powering algo-
rithm from Section 1.3.2 lets us raise h to any power using fewer than 2 log2 N
group multiplications.)

Proof. The idea is to write x as x = y − z and look for a solution to

hy = b · hz.

We do this by making a list of hy values and a list of b ·hz values and looking
for a match between the two lists.

We begin by choosing random exponents y1, y2, . . . , yn between 1 and N
and computing the values

hy1 , hy2 , hy3 , . . . , hyn in G. (4.31)

Note that all of the values (4.31) are in the set

S = {1, h, h2, h3, . . . , hN−1},
so (4.31) is a selection of (approximately) n elements of S. In terms of the
collision theorem (Theorem 4.38), we view S as an urn containing N balls and
the list (4.31) as a way of coloring n of those balls red.

Next we choose additional random exponents z1, z2, . . . , zn between 1 and k
and compute the quantities

b · hz1 , b · hz2 , b · hz3 , . . . , b · hzn in G. (4.32)

Since we are assuming that (4.30) has a solution, i.e., b is equal to some
power of h, it follows that each of the values b · hzi is also in the set S. Thus

4.4. Collision algorithms and meet-in-the-middle attacks 233

the list (4.32) may be viewed as selecting n elements from the urn, and we
would like to know the probability of selecting at least one red ball, i.e., the
probability that at least one element in the list (4.32) matches an element in
the list (4.31). The collision theorem (Theorem 4.38) says that

Pr
(

at least one match
between (4.31) and (4.32)

)
≈

(
1− n

N

)n

≈ 1− e−n2/N .

Thus if we choose (say) n ≈ 3
√

N , then our probability of getting a match
is approximately 99.98%, so we are almost guaranteed a match. Or if that
is not good enough, take n ≈ 5

√
N to get a probability of success greater

than 1− 10−10. Notice that as soon as we find a match between the two lists,
say hy = b · hz, then we have solved the discrete logarithm problem (4.30) by
setting x = y − z.15

How long does it take us to find this solution? Each of the lists (4.31)
and (4.32) has n elements, so it takes approximately 2n steps to assemble each
list. More precisely, each element in each list requires us to compute hi for
some value of i between 1 and N , and it takes approximately 2 log2(i) group
multiplications to compute hi using the fast exponentiation algorithm de-
scribed in Section 1.3.2. (Here log2 is the logarithm to the base 2.) Thus it
takes approximately 4n log2(N) multiplications to assemble the two lists. In
addition, it takes about log2(n) steps to check whether an element of the sec-
ond list is in the first list (e.g., sort the first list), so n log2(n) comparisons
altogether. Hence the total computation time is approximately

4n log2(N) + n log2(n) = n log2(N
4n) steps.

Taking n ≈ 3
√

N , which as we have seen gives us a 99.98% chance of success,
we find that

Computation Time ≈ 13.5 ·
√

N · log2(1.3 ·N).

Example 4.45. We do an example with small numbers to illustrate the use of
collisions. We solve the discrete logarithm problem

2x = 390 in the finite field F659.

The number 2 has order 658 moduluo 659, so it is a primitive root. In this
example h = 2 and b = 390. We choose random exponents t and compute
the values of ht and b · ht until we get a match. The results are compiled in
Table 4.9. We see that

283 = 390 · 2564 = 422 in F659.
15If this value of x happens to be negative and we want a positive solution, we can always

use the fact that hN = 1 to replace it with x = y − z + N .

234 4. Combinatorics, Probability, and Information Theory

t ht b · ht

564 410 422
469 357 181
276 593 620
601 416 126
9 512 3

350 445 233

t ht b · ht

53 10 605
332 651 175
178 121 401
477 450 206
503 116 428
198 426 72

t ht b · ht

513 164 37
71 597 203
314 554 567
581 47 537
371 334 437
83 422 489

Table 4.9: Solving 2x = 390 in F659 with random exponent collisions

Hence using two lists of length 18, we have solved a discrete logarithm problem
in F659. (We had a 39% chance of getting a match with lists of length 18, so
we were a little bit lucky.) The solution is

283 · 2−564 = 2−481 = 2177 = 390 in F659.

4.5 Pollard’s ρ method

As we noted in Remark 4.43, collision algorithms tend to require a considerable
amount of storage. A beautiful idea of Pollard often allows one to use almost
no storage, at the cost of a small amount of extra computation. We explain
the basic idea of Pollard’s method and then illustrate it by yet again solving
a small instance of the discrete logarithm problem in Fp.

4.5.1 Abstract formulation of Pollard’s ρ method

We begin in an abstract setting. Let S be a finite set and let

f : S −→ S

be a function that does a good job at mixing up the elements of S. Suppose
that we start with some element x ∈ S and we repeatedly apply f to create
a sequence of elements

x0 = x, x1 = f(x0), x2 = f(x1), x3 = f(x2), x4 = f(x3),

In other words,
xi = (f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

i iterations of f

)(x).

The map f from S to itself is an example of a discrete dynamical system.
The sequence

x0, x1, x2, x3, x4, . . . (4.33)

is called the (forward) orbit of x by the map f and is denoted by O+
f (x).

