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» Algorithm as explained so far known as primal simplex:
starting with feasible basis,

look for optimal basis while keeping feasibility

» Alternative algorithm known as dual simplex:
starting with optimal basis,
look for feasible basis while keeping optimality




min —x —y 2
min —x — vy
20 +1y >3
20 +y —s1 =23
20 +y <06
\ — § 2x+y+s2=06
x+ 2y <6
xr+2y+ 53 =06
x>0
. Lr,Y,S51,52,53 >0
L y=>0

min —6 + y + s3

r=06—-2y—s3 Basis (z, 51, s-) is optimal
s1=9— 3y — 2s3 but not feasible!







» Let us make the violating variables non-negative ...
s Increase s, by making it non-basic

» ... While preserving optimality

s If y replaces s; In the basis,
then y = %(82 +6—2s3),—r—y=—4+ %(32 + s3)

s If 55 replaces s- in the basis,
then s; = §(s2 +6—3y), —v —y = =3+ 3(s2 — v)

s T0 preserve optimality, ; must replace s-




! min —6 + y + s3 [ min —44—%32%—%33
r=0—2y — s3 $:2—252—|—183
< = D
s1 =9 — 3y — 253 y:2+332—533
| S2 = —0 + 3y + 2s3 | S1=3— 92

» Current basis is feasible and optimal!




2 +y
x>0




1. Initialization: Pickan optimal basis.

2. Dual Pricing: Ifallbasic values are > 0,
then return OPTIMAL.
Else pick a basic variable with value < 0.

3. Dual Ratio test: Compute best value preserving
optimality, i.e. sign constraints on reduced costs.

If best value does not exist,
then return INFEASIBLE.
Else select non-basic variable to be exchanged with

violating basic variable.
4. Updat e: Update the tableau and go to 2.




» The way the dual simplex works is best understood
using the theory of duality

» We can get lower bounds on LP optimum value by
combining constraints with convenient multipliers

[ min —xr —Y [ min —xr — Y
1-( —z-2y > -6 )
20 +y >3 2e +y >3
L y > 0 )
20 +y <6 —2x—y > -6
< = 9 —xr—2y > —6
x4+ 2y <6 —r — 2y > —6
y =2 0
x>0 x>0
—r—y > —6
L ¥=0 L ¥=0




. 1-( 2e+y > 3
min —x — y
2-( —2x—y > —6
20 +y > 3
1-( r > 0
—2x —y > —6
20 +y > 3
—x — 2y > —6
—4x —2y > —12
x>0
x > 0
y=>0
‘ —r—y = -9




1 2c+y > 3 )
. o - ( 2z —y > —6 )
min —x — y
3 ( —z—2y > —6 )
20 +y > 3
2pr + iy = 3
—2x —y > —6
< —2px — poy > —6p2
—x — 2y > —6
—p3T — 2pu3y > —6u3
x>0
(211 — 2p2 — p3)x +
L y=0

(1 — po — 2u3)y >

31 — 6z — 63

o Ity >0, uo >0, ug >0, 2u1 — 20 — pu3 < —1 and
[ — o — 2u3 < —1 then 3, — 615 — 6113 1S @ lower bound
s




» Best possible lower bound can be found by solving

;

max 31 — 6ug — 6us
201 — 2pg — pg < —1
p1— po2 —2p3 < —1

\ Hi, 142, 143 ZO

» Best solution is given by (i1, i, j13) = (0, 1, 1)

Wl

0-( 224y > 3 )
5 ( —2r—y > —6 ) Matches with optimum!
37( —2-2 > -6 )

—x—y > —4




» Given a LP (called primal)

min ¢!z

Ax > b
x>0

Its dual 1s the LP

max bly
Aly < ¢
y >0
» Primal variables associated with columns of A
» Dual variables (multipliers) associated with rows of A

» Objective and right-hand side vectors swap their roles
L e




» Prop. The dual of the dual is the primal.

Proof:
max bly —min (—b)Ty
Aly<e = —Aly>—c
y =0 y >0
—max —clx min ¢!z
(=AY 'z < —b — Ax > b
x>0 x>0

» One says the primal and the dual form primal-dual pair




min ¢! x )T
s Prop. Ar =5 and mffx 7 form a primal-dual pair
- Aty <c
Proof:
. min ¢
min c r
Az > b
Ax = b —
- —Ax > —b
X
o x>0

Imax bTy1 — bTyQ
Aly; — Alyy < ¢ =

Y1, Y2 > 0
 ession4-paS34




» Th. (Weak Duality) Let (P, D) be a primal-dual pair

min clz )T
1IMax
(P) Az =b and (D) 7
N Aty <c

If = Is feasible solution to ” andy Is feasible solution to D
then y'b < ¢!z

Proof:
c—Aly>0and x> 0imply (c — A"y)" 2 > 0. Hence

ylb =yl Az = (ATy)lz <!z




» Feasible solutions to D give lower bounds on P
» Feasible solutions to /” give upper bounds on D

» Can the two bounds ever be equal?
» Th. (Strong Duality) Let (P, D) be a primal-dual pair

min ¢!z )T
max
(P) Az =b and (D) v
x>0 Ay sc

If any of > or D has a feasible solution and a finite
optimum then the same holds for the other problem and
the two optimum values are equal.




» Proof (Th. of Strong Duality):
By symmetry it is sufficient to prove only one direction.
WIlog. let us assume 7 is feasible with finite optimum.

After executing the Simplex algorithm to » we find
B optimal feasible basis. Then:

s cpB taj=c;forall j B
s cpB ta; <c¢;forallj € R (optimality conds hold)

So ! :=c¢,B 'is dual feasible: 7' A < ¢!, ie. Alx <.
Moreover, cgB=cEBlo=nlb=0"r

By the theorem of weak duality, = Is optimum for D

s If B optimal feasible basis for P, then simplex multipliers

m! = ¢, B! are optimal feasible solution for D.
e




» Prop. Let (P, D) be a primal-dual pair

T

min ¢ x )T
max
(P) Az —=b and (D) 7
x >0 Aysc

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P) is infeasible

Proof: By contradiction.

If v were a feasible solution to D, by weak duality
theorem objective of  would be bounded from below!




» Prop. Let (P, D) be a primal-dual pair

min clz

(P) Az =0 and (D)
x>0

max by
Aly <e

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P) is infeasible

» And the converse?




» Prop. Let (P, D) be a primal-dual pair

T

min ¢ )T
max
(P) Az =b and (D) 7
x >0 Ayse

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P) is infeasible

» And the converse?

min 3x1 + b5x9 max  3y; + o
r1+ 229 =3 y1+2y2 =3
201 +4xo =1 201 +4y2 =9
r1,xo free r1,x2 free




Primal unbounded — Dual infeasible
Dual unbounded — Primal infeasible
(. .
Primal infeasible — Dual ¢ nfeasible
unbounded
\ . .
Dual infeasible —  Primal < infeasible
\ unbounded




» Consider a primal-dual pair of the form

min ¢’z max by
Ar=b and Aly+w=c
x>0 w >0

» Karush-Kuhn-Tucker (KKT) optimality conditions are

o Ar = o, w >0

e Aly4+w=c e 21w = 0 (complementary slackness)

» They are necessary and sufficient conditions for
optimality of the pair of primal-dual solutions (z, (1, w))

» Used, e.g., as a test for quality in LP solvers




(KKT)
min ¢!z max bly o Ar =0
(P> Ar =10 (D) ATy+w:c QATy—I—w:c
x >0 w > 0 e, w >0
o lw=0

o Th. (z,(y,w)) Is solution to K KT Iff
2 optimal solution to » and (y, w) optimal solution to D

Proof:

=By 0 =2a2lw=2o(c - Aly)=c'z —b"y, Weak Duality

< 1 IS feasible solution to P, (y,w) Is feasible solution to

D. By Strong Duality v/ w = 2’ (¢ — Aly) =c'o —bly =0

as both solutions are optimal
L sessonacpzan




min z = clx - max Z = bly
max Z =b"y -
(P) Az =1 (D) - — Aly+w=c
Aty <c
x>0 w >0

» Let B be basis of P.
Reorder rows In D so that 3-basic variables are first .
Reorder columns in D so that the matrix is

BT |10 y
wp
R 0|1 W

Submatrix of vars y and vars wy:




A

B = (y,wr) IS a basis of D:

a1 [ BT 0
~RI'B=1 |1

s Eachvar w; In D Is associated to var a =; In .

» w; is B-basic iff x; is not 3-basic




» Let’s apply simplex algorithm to dual problem
» Let’s see correspondence of dual feasibility in primal LP

A1, _ BT 0 cg \ [ Bles
C = —
—RI'B=1 |1 CR —RT'BTeg+ cpn

» There Is no restriction on the sign of 4, ..., y,,

» Variables w; have to be non-negative. But
—RI'BTeg+er>0 iff s —ctB'R>0 iff d5 >0

» Bis dual feasible iff ¢; > 0 for all j ¢ R

» Dual feasibility is primal optimality!
L sessonapa




» 3-basic dual vars: (y | wg) with costs (b | 0)

» Non B-basic dual vars: w; with costs (0)

» Optimality condition: reduced costs < 0 (maximization!)

0= (0)-(v [0) [ Z5=11) (5
(0)-(meo) ()= (o) s

s Forall 1 <p <m,w, Isnotdual improving iff 5, > 0

» Dual optimality is primal feasibility!
L sesonacpai




s Letp (1 <p<m)besuchthat g, <0< v/ B 1e, <0
Let p, = B 'e¢,, 500" p, = B,. If w, takes value ¢ > 0:

Bl — top
dr + tRTpp
» Dual objective value improvement is

AZ = bly(t) — bl y(0) = —tbl p, = —tB,
i




» Only w variables need to be > 0: for j ¢ R
w;(t) =d; + ta]Tpp =d; + tpgaj —
dj —+ tegB_laj — dj + tegozj — dj + tOz?
wj(t) >0 <= dj+ta; >0

o If 04]; > () the constraint is satisfied for all + > 0
d;

» If o <Oweneed —/; > 1

J

» Best improvement achieved with

Op = min{% | 04]; < 0}
J

» Variable w, is blocking when 6, — -,

q




1. If ©p = +oo (there is no j such that j € R and o < 0):

Value of dual objective can be increased infinitely.
Dual LP Is unbounded.

Primal LP is infeasible.

2. If ©p < 400 and w, Is blocking:

When setting w;,, = ©p sign of dual slack basic vars
(primal reduced costs of non-basic vars) is respected

In particular, w,(©p) = d, + Opay = d, + ( )aq =0
We can make a basis change:

o Indual: w, enters 3 and w, leaves
o Inprimal: =z, leaves 5 and z, enters




» We forget about dual LP and work only with primal LP
» New basic indices: 5 =5 — {k,} U {q}
» New objective value: 7 = 7 — 013,
» New dual basic sol: y =y — ©pp,
CZJ' :dj—l—@DCk§ If] c R, Jkp = 0Op
» New primal basic sol: 5, = ©p, ;=3 —6pa, if i #p
where Op =

g

» New basis inverse: ! = pp!
where F = (e1,...,¢p1,1,¢ps1, ..., ¢y) and

r_ ([~ —al '\ 1 [ —apt AR
77 o ag AR C\{g 70}5 ag VARER R ag




1.

Initialilzati on: Find an initial dual feasible basis 3
Compute B!, 3 = B~ b,
yl = ch_l, d% — 677; —y'R, Z =bly

. Dual Pricing:

If for all i € B, 3; > 0 then return OPTIMAL
Else let p be such that 5, < 0.

Compute p;, = ¢, B~ " and o’ = pja; for j € R

Dual Ratio test: Compute 7 = {j|jc R o) <0}
If 7 = () then return INFEASIBLE

Else compute 6 = min;c 7(-2, »)and g st. O = Mo

q




4. Updat e:

B =B~ {k}U{qg)
Z =7 —0Opby
Dual sol uti on

@/::y_@Dpp B
dj:dj—F@DOé]; if 1 € R, dkp:@D

Primal sol uti on

Compute o, = B 'a, and ©p =
5 =Op, [i=p0i—Opa, it i#p
B '=FEB™!

Go to 2.
O sesonapae




PRIMAL
» Ratio test: O(m) divs r
s Can handle bounds r
efficiently

» Many years of research r
and implementation

» There are classes of LP's o
for which it I1s the best

s Not suitable for solving
LP’s with integer variables

DUAL

Ratio test: O(n — m) divs

Can handle bounds
efficiently
(not explained here)

Developments in the 90’s
made it an alternative

Nowadays on average it
gives better performance

Suitable for solving LP’s
with integer variables
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