4. The Dual Simplex Method

Javier Larrosa

Albert Oliveras

Enric Rodríguez-Carbonell

Problem Solving and Constraint Programming (RPAR)

- Algorithm as explained so far known as primal simplex: starting with feasible basis, look for optimal basis while keeping feasibility
- Alternative algorithm known as dual simplex: starting with optimal basis, look for feasible basis while keeping optimality

Basic Idea (2)

$$\begin{cases}
\min \ -x - y \\
2x + y \ge 3 \\
2x + y \le 6 \\
x + 2y \le 6 \\
x \ge 0 \\
y \ge 0
\end{cases} =$$

$$\begin{cases} \min -x - y \\ 2x + y - s_1 = 3 \\ 2x + y + s_2 = 6 \\ x + 2y + s_3 = 6 \\ x, y, s_1, s_2, s_3 \ge 0 \end{cases}$$

$$\begin{array}{l}
\min -6 + y + s_3 \\
x = 6 - 2y - s_3 \\
s_1 = 9 - 3y - 2s_3 \\
s_2 = -6 + 3y + 2s_3
\end{array}$$

Basis (x, s_1, s_2) is optimal but not feasible!

Basic Idea (3)

Basic Idea (4)

Let us make the violating variables non-negative ...

- Increase s_2 by making it non-basic
- ... while preserving optimality
 - If y replaces s_2 in the basis, then $y = \frac{1}{3}(s_2 + 6 - 2s_3), -x - y = -4 + \frac{1}{3}(s_2 + s_3)$
 - If s_3 replaces s_2 in the basis, then $s_3 = \frac{1}{2}(s_2 + 6 - 3y), -x - y = -3 + \frac{1}{2}(s_2 - y)$
 - To preserve optimality, y must replace s_2

Basic Idea (5)

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases} \implies \begin{cases} \min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\ x = 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\ y = 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\ s_1 = 3 - s_2 \end{cases}$$

Current basis is feasible and optimal!

Basic Idea (6)

Outline of the Dual Simplex Algorithm

- 1. Initialization: Pick an optimal basis.
- 2. Dual Pricing: If all basic values are ≥ 0, then return OPTIMAL. Else pick a basic variable with value < 0.</p>
- 3. Dual Ratio test: Compute best value preserving optimality, i.e. sign constraints on reduced costs. If best value does not exist, then return INFEASIBLE. Else select non-basic variable to be exchanged with violating basic variable.
- 4. Update: Update the tableau and go to 2.

Duality (1)

- The way the dual simplex works is best understood using the theory of duality
- We can get lower bounds on LP optimum value by combining constraints with convenient multipliers

$$\begin{array}{c|c} \min -x - y \\ 2x + y \ge 3 \\ 2x + y \le 6 \\ x + 2y \le 6 \\ x \ge 0 \\ y \ge 0 \end{array} \Rightarrow \begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases} \begin{array}{c} 1 \cdot (-x - 2y \ge -6 \\ 1 \cdot (y \ge 0 \\ -x - 2y \ge -6 \\ y \ge 0 \\ -x - 2y \ge -6 \\ y \ge 0 \\ -x - y \ge -6 \\ -x - y \ge -6 \end{array}$$

Duality (2)

Duality (3)

 $\mu_1 \cdot (\qquad 2x + y \geq 3 \qquad)$ $\mu_2 \cdot (\qquad -2x - y \geq -6 \qquad)$ $\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ \cdots \ge 0 \end{cases}$ $\mu_3 \cdot (\qquad -x - 2y \geq -6 \qquad)$ $2\mu_1 x + \mu_1 y \ge 3\mu_1$ $-2\mu_2 x - \mu_2 y \geq -6\mu_2$ $-\mu_3 x - 2\mu_3 y \geq -6\mu_3$ $(2\mu_1 - 2\mu_2 - \mu_3)x +$ $y \ge 0$ $(\mu_1 - \mu_2 - 2\mu_3)y \ge$ $3\mu_1 - 6\mu_2 - 6\mu_3$

• If $\mu_1 \ge 0$, $\mu_2 \ge 0$, $\mu_3 \ge 0$, $2\mu_1 - 2\mu_2 - \mu_3 \le -1$ and $\mu_1 - \mu_2 - 2\mu_3 \le -1$ then $3\mu_1 - 6\mu_2 - 6\mu_3$ is a lower bound

Duality (4)

Best possible lower bound can be found by solving

$$\max \quad 3\mu_1 - 6\mu_2 - 6\mu_3 \\ 2\mu_1 - 2\mu_2 - \mu_3 \le -1 \\ \mu_1 - \mu_2 - 2\mu_3 \le -1 \\ \mu_1, \mu_2, \mu_3 \ge 0$$

• Best solution is given by $(\mu_1, \mu_2, \mu_3) = (0, \frac{1}{3}, \frac{1}{3})$

$$0 \cdot (2x + y \ge 3)$$

$$\frac{1}{3} \cdot (-2x - y \ge -6)$$

$$\frac{1}{3} \cdot (-x - 2y \ge -6)$$

$$-x - y \ge -4$$

Matches with optimum!

Dual Problem (1)

Given a LP (called primal)

 $\min c^T x$ $Ax \ge b$ $x \ge 0$

its dual is the LP

 $\begin{array}{l} \max \ b^T y \\ A^T y \leq c \\ y \geq 0 \end{array}$

- Primal variables associated with columns of A
- Dual variables (multipliers) associated with rows of A
- Objective and right-hand side vectors swap their roles

Prop. The dual of the dual is the primal.
 Proof:

 $\max b^{T} y \qquad -\min (-b)^{T} y$ $A^{T} y \leq c \qquad \Longrightarrow \qquad -A^{T} y \geq -c$ $y \geq 0 \qquad \qquad y \geq 0$

 $-\max -c^T x \qquad \min c^T x$ $(-A^T)^T x \le -b \qquad \Longrightarrow \qquad Ax \ge b$ $x \ge 0 \qquad \qquad x \ge 0$

One says the primal and the dual form primal-dual pair

Dual Problem (3)

• Prop.	$\min c^T x$ $Ax = b$ $x \ge 0$	and $\max_{A^T y \leq c} b^T y$	form a primal-dual pair
Proof: $\min c^{2}$ $Ax = c$ $x \ge 0$	$ \begin{array}{c} ^{T}x\\ b & \Longrightarrow \end{array} $	$\min c^T x$ $Ax \ge b$ $-Ax \ge -b$	
$\begin{array}{c} \max \ b \\ A^T y_1 \\ y_1, y_2 \end{array}$	$\begin{aligned} & {}^{T}y_{1} - b^{T}y_{2} \\ & -A^{T}y_{2} \le c \\ & \ge 0 \end{aligned}$	$x \ge 0$ $y := y_1 - y_2$	$ \max \ b^T y \\ A^T y \le c $

• Th. (Weak Duality) Let (P, D) be a primal-dual pair

$$(P) \quad Ax = b \qquad \text{and} \qquad (D) \quad \begin{array}{l} \max \ b^T y \\ A^T y \leq c \end{array}$$
$$x \geq 0$$

If x is feasible solution to P and y is feasible solution to D then $y^T b \le c^T x$

Proof:

 $c - A^T y \ge 0$ and $x \ge 0$ imply $(c - A^T y)^T x \ge 0$. Hence

$$y^T b = y^T A x = (A^T y)^T x \le c^T x$$

Duality Theorems (2)

- Feasible solutions to D give lower bounds on P
- Feasible solutions to P give upper bounds on D
- Can the two bounds ever be equal?
- Th. (Strong Duality) Let (P, D) be a primal-dual pair

$$(P) \quad Ax = b \qquad \text{and} \qquad (D) \quad \begin{array}{l} \max \ b^T y \\ A^T y \leq c \end{array}$$
$$x \geq 0$$

If any of *P* or *D* has a feasible solution and a finite optimum then the same holds for the other problem and the two optimum values are equal.

Duality Theorems (3)

Proof (Th. of Strong Duality):
 By symmetry it is sufficient to prove only one direction.
 Wlog. let us assume *P* is feasible with finite optimum.

After executing the Simplex algorithm to *P* we find *B* optimal feasible basis. Then:

•
$$c_{\mathcal{B}}^T B^{-1} a_j = c_j$$
 for all $j \in \mathcal{B}$

• $c_{\mathcal{B}}^T B^{-1} a_j \leq c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)

So $\pi^T := c_{\mathcal{B}}^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e. $A^T \pi \leq c$. Moreover, $c_{\mathcal{B}}^T \beta = c_{\mathcal{B}}^T B^{-1} b = \pi^T b = b^T \pi$

By the theorem of weak duality, π is optimum for *D*

• If *B* optimal feasible basis for *P*, then simplex multipliers $\pi^T := c_B^T B^{-1}$ are optimal feasible solution for *D*.

• **Prop.** Let (P, D) be a primal-dual pair

$$\begin{array}{ll} \min \ c^T x \\ (P) & Ax = b \\ x \ge 0 \end{array} \quad \text{and} \quad (D) \quad \begin{array}{l} \max \ b^T y \\ A^T y \le c \end{array}$$

If P (resp., D) has a feasible solution but the objective value is not bounded, then D (resp., P) is infeasible

Proof: By contradiction.

If y were a feasible solution to D, by weak duality theorem objective of P would be bounded from below!

• **Prop.** Let (P, D) be a primal-dual pair

$$\begin{array}{ll} \min \ c^T x \\ (P) & Ax = b \\ x \ge 0 \end{array} \quad \text{and} \quad (D) \quad \begin{array}{l} \max \ b^T y \\ A^T y \le c \end{array}$$

If P (resp., D) has a feasible solution but the objective value is not bounded, then D (resp., P) is infeasible

And the converse?

• **Prop.** Let (P, D) be a primal-dual pair

$$(P) \quad Ax = b \qquad \text{and} \qquad (D) \quad \begin{array}{l} \max \ b^T y \\ A^T y \leq c \end{array}$$
$$x \geq 0$$

If P (resp., D) has a feasible solution but the objective value is not bounded, then D (resp., P) is infeasible

And the converse?

 $\begin{array}{rll} \min & 3x_1 + 5x_2 & \max & 3y_1 + y_2 \\ & x_1 + 2x_2 &= 3 & & y_1 + 2y_2 &= 3 \\ & 2x_1 + 4x_2 &= 1 & & 2y_1 + 4y_2 &= 5 \\ & x_1, x_2 \text{ free} & & & x_1, x_2 \text{ free} \end{array}$

Primal unbounded	\implies	Dual infeasible	
Dual unbounded	\implies	Primal infeasible	
Primal infeasible	\implies	Dual {	infeasible
		l	unbounded
Dual infessible		Primal {	f infeasible
			unbounded

Karush Kuhn Tucker Optimality Conds (1)

Consider a primal-dual pair of the form

$$\begin{array}{ll} \min \ c^T x & \max \ b^T y \\ Ax = b & \text{and} & A^T y + w = c \\ x \ge 0 & w \ge 0 \end{array}$$

Karush-Kuhn-Tucker (KKT) optimality conditions are

•
$$Ax = b$$
 • $x, w \ge 0$

• $A^T y + w = c$ • $x^T w = 0$ (complementary slackness)

- They are necessary and sufficient conditions for optimality of the pair of primal-dual solutions (x, (y, w))
- Used, e.g., as a test for quality in LP solvers

Karush Kuhn Tucker Optimality Conds (2)

$$\min c^{T}x \qquad \max b^{T}y \qquad \bullet Ax = b$$

$$(P) Ax = b \qquad (D) A^{T}y + w = c \qquad \bullet A^{T}y + w = c$$

$$x \ge 0 \qquad w \ge 0 \qquad \bullet x, w \ge 0$$

$$\bullet x^{T}w = 0$$

Th. (x, (y, w)) is solution to KKT iff
 x optimal solution to P and (y, w) optimal solution to D
 Proof:

$$\Rightarrow$$
 By $0 = x^T w = x^T (c - A^T y) = c^T x - b^T y$, Weak Duality

 $\Leftarrow x$ is feasible solution to *P*, (y, w) is feasible solution to *D*. By Strong Duality $x^Tw = x^T(c - A^Ty) = c^Tx - b^Ty = 0$ as both solutions are optimal

Towards Dual Simplex: Relating Bases (1)

$$\begin{array}{ll} \min \ z = c^T x & \max \ Z = b^T y \\ (P) \ Ax = b & (D) \ \begin{array}{l} \max \ Z = b^T y \\ A^T y \leq c & \end{array} & \begin{array}{l} \max \ Z = b^T y \\ \Leftrightarrow & A^T y + w = c \\ w \geq 0 & \end{array} \\ \end{array}$$

Let B be basis of P.
 Reorder rows in D so that B-basic variables are first m.
 Reorder columns in D so that the matrix is

$$\begin{pmatrix} B^T & I & 0 \\ \hline R^T & 0 & I \end{pmatrix} \begin{pmatrix} y \\ w_{\mathcal{B}} \\ w_{\mathcal{R}} \end{pmatrix}$$

Submatrix of vars y and vars $w_{\mathcal{R}}$:

$$\hat{B} = \left(\begin{array}{c|c} B^T & 0 \\ \hline R^T & I \end{array} \right)$$

Towards Dual Simplex: Relating Bases (2)

 $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$ is a basis of *D*:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$
$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

- Each var w_j in D is associated to var a x_j in P.
- w_j is $\hat{\mathcal{B}}$ -basic iff x_j is not \mathcal{B} -basic

Dual Feasibility is Primal Optimality

- Let's apply simplex algorithm to dual problem
- Let's see correspondence of dual feasibility in primal LP

$$\hat{B}^{-1}c = \left(\begin{array}{c|c} B^{-T} & 0\\ \hline -R^T B^{-T} & I \end{array}\right) \left(\begin{array}{c} c_{\mathcal{B}} \\ \hline c_{\mathcal{R}} \end{array}\right) = \left(\begin{array}{c} B^{-T}c_{\mathcal{B}} \\ \hline -R^T B^{-T}c_{\mathcal{B}} + c_{\mathcal{R}} \end{array}\right)$$

- There is no restriction on the sign of $y_1, ..., y_m$
- Variables w_j have to be non-negative. But

 $-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0 \quad \text{iff} \quad d_{\mathcal{R}}^T \ge 0$

- $\hat{\mathcal{B}}$ is dual feasible iff $d_j \ge 0$ for all $j \in \mathcal{R}$
- Dual feasibility is primal optimality!

Dual Optimality is Primal Feasibility

- $\hat{\mathcal{B}}$ -basic dual vars: $(y \mid w_{\mathcal{R}})$ with costs $(b^T \mid 0)$
- Non $\hat{\mathcal{B}}$ -basic dual vars: $w_{\mathcal{B}}$ with costs (0)
- Optimality condition: reduced costs ≤ 0 (maximization!)

$$0 \ge \begin{pmatrix} 0 \end{pmatrix} - \begin{pmatrix} b^T & 0 \end{pmatrix} \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix} - \begin{pmatrix} b^T B^{-T} & 0 \end{pmatrix} \begin{pmatrix} I \\ \hline 0 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix} - \begin{pmatrix} b^T B^{-T} & 0 \end{pmatrix} \begin{pmatrix} I \\ \hline 0 \end{pmatrix} = \begin{pmatrix} -\beta^T \end{pmatrix} \quad \text{iff} \quad \beta \ge 0$$

- For all $1 \le p \le m$, w_{k_p} is not dual improving iff $\beta_p \ge 0$
- Dual optimality is primal feasibility!

Improving a Non-Optimal Solution (1)

• Let p ($1 \le p \le m$) be such that $\beta_p < 0 \Leftrightarrow b^T B^{-T} e_p < 0$ Let $\rho_p = B^{-T} e_p$, so $b^T \rho_p = \beta_p$. If w_{k_p} takes value $t \ge 0$:

$$\begin{pmatrix} y(t) \\ w_{\mathcal{R}}(t) \end{pmatrix} = \hat{B}^{-1}c - \hat{B}^{-1}te_p = \\ \begin{pmatrix} B^{-T}c_{\mathcal{B}} \\ d_{\mathcal{R}} \end{pmatrix} - \begin{pmatrix} B^{-T} & 0 \\ \hline -R^TB^{-T} & I \end{pmatrix} \begin{pmatrix} te_p \\ 0 \end{pmatrix} = \\ \begin{pmatrix} B^{-T}c_{\mathcal{B}} - t\rho_p \\ \hline d_{\mathcal{R}} + tR^T\rho_p \end{pmatrix}$$

Dual objective value improvement is

$$\Delta Z = b^T y(t) - b^T y(0) = -tb^T \rho_p = -t\beta_p$$

Improving a Non-Optimal Solution (2)

• Only w variables need to be ≥ 0 : for $j \in \mathcal{R}$

$$w_j(t) = d_j + ta_j^T \rho_p = d_j + t\rho_p^T a_j = d_j + te_p^T B^{-1}a_j = d_j + te_p^T \alpha_j = d_j + t\alpha_j^p$$

$$w_j(t) \ge 0 \iff d_j + t\alpha_j^p \ge 0$$

• If $\alpha_j^p \ge 0$ the constraint is satisfied for all $t \ge 0$

• If
$$\alpha_j^p < 0$$
 we need $rac{d_j}{-\alpha_j^p} \geq t$

Best improvement achieved with

$$\Theta_D := \min\{\frac{d_j}{-\alpha_j^p} \mid \alpha_j^p < 0\}$$

• Variable w_q is blocking when $\Theta_D = \frac{d_q}{-\alpha_q^p}$

Improving a Non-Optimal Solution (3)

1. If $\Theta_D = +\infty$ (there is no *j* such that $j \in \mathcal{R}$ and $\alpha_j^p < 0$):

Value of dual objective can be increased infinitely. Dual LP is unbounded. Primal LP is infeasible.

2. If $\Theta_D < +\infty$ and w_q is blocking:

When setting $w_{k_p} = \Theta_D$ sign of dual slack basic vars (primal reduced costs of non-basic vars) is respected In particular, $w_q(\Theta_D) = d_q + \Theta_D \alpha_q^p = d_q + (\frac{d_q}{-\alpha_q^p}) \alpha_q^p = 0$ We can make a basis change:

- In dual: w_{k_p} enters $\hat{\mathcal{B}}$ and w_q leaves
- In primal: x_{k_p} leaves \mathcal{B} and x_q enters

Update

- We forget about dual LP and work only with primal LP
- New basic indices: $\overline{\mathcal{B}} = \mathcal{B} \{k_p\} \cup \{q\}$
- New objective value: $\overline{Z} = Z \Theta_D \beta_p$
- New dual basic sol: $\bar{y} = y \Theta_D \rho_p$ $\bar{d}_j = d_j + \Theta_D \alpha_j^p$ if $j \in \mathcal{R}$, $\bar{d}_{k_p} = \Theta_D$
- New primal basic sol: $\bar{\beta}_p = \Theta_P$, $\bar{\beta}_i = \beta_i \Theta_P \alpha_q^i$ if $i \neq p$ where $\Theta_P = \frac{\beta_p}{\alpha_q^p}$
- New basis inverse: $\bar{B}^{-1} = EB^{-1}$ where $E = (e_1, \dots, e_{p-1}, \eta, e_{p+1}, \dots, e_m)$ and $\eta^T = \left(\left(\frac{-\alpha_q^1}{\alpha_q^p} \right), \dots, \left(\frac{-\alpha_q^{p-1}}{\alpha_q^p} \right), \frac{1}{\alpha_q^p} \left(\frac{-\alpha_q^{p+1}}{\alpha_q^p} \right), \dots, \left(\frac{-\alpha_q^m}{\alpha_q^p} \right) \right)^T$

Algorithmic Description (1)

- 1. Initialization: Find an initial dual feasible basis \mathcal{B} Compute B^{-1} , $\beta = B^{-1}b$, $y^T = c_{\mathcal{B}}^T B^{-1}$, $d_{\mathcal{R}}^T = c_{\mathcal{R}}^T - y^T R$, $Z = b^T y$
- 2. Dual Pricing: If for all $i \in \mathcal{B}, \beta_i \ge 0$ then return OPTIMAL Else let p be such that $\beta_p < 0$. Compute $\rho_p^T = e_p^T B^{-1}$ and $\alpha_j^p = \rho_p^T a_j$ for $j \in \mathcal{R}$
- 3. Dual Ratio test: Compute $\mathcal{J} = \{j \mid j \in \mathcal{R}, \alpha_j^p < 0\}$. If $\mathcal{J} = \emptyset$ then return INFEASIBLE Else compute $\Theta_D = \min_{j \in \mathcal{J}} (\frac{d_j}{-\alpha_j^p})$ and q st. $\Theta_D = \frac{d_q}{-\alpha_q^p}$

Algorithmic Description (2)

- 4. Update:
 - $\bar{\mathcal{B}} = \mathcal{B} \{k_p\} \cup \{q\}$ $\bar{Z} = Z \Theta_D \beta_p$
 - Dual solution

$$\bar{y} = y - \Theta_D \rho_p$$

$$\bar{d}_j = d_j + \Theta_D \alpha_j^p \text{ if } j \in \mathcal{R}, \ \bar{d}_{k_p} = \Theta_D$$

Primal solution

Compute $\alpha_q = B^{-1}a_q$ and $\Theta_P = \frac{\beta_p}{\alpha_q^p}$ $\bar{\beta}_p = \Theta_P, \quad \bar{\beta}_i = \beta_i - \Theta_P \alpha_q^i \text{ if } i \neq p$ $\bar{B}^{-1} = EB^{-1}$ Go to 2.

Primal vs. Dual Simplex

PRIMAL

- Ratio test: $\mathcal{O}(m)$ divs
- Can handle bounds efficiently
- Many years of research and implementation
- There are classes of LP's for which it is the best
- Not suitable for solving LP's with integer variables

DUAL

- Ratio test: $\mathcal{O}(n-m)$ divs
- Can handle bounds efficiently (not explained here)
- Developments in the 90's made it an alternative
- Nowadays on average it gives better performance
- Suitable for solving LP's with integer variables