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Basic Idea (1)

Algorithm as explained so far known as primal simplex:
starting with feasible basis,
look for optimal basis while keeping feasibility

Alternative algorithm known as dual simplex:
starting with optimal basis,
look for feasible basis while keeping optimality
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Basic Idea (2)







































min −x− y

2x+ y ≥ 3

2x+ y ≤ 6

x+ 2y ≤ 6

x ≥ 0

y ≥ 0

=⇒































min −x− y

2x+ y − s1 = 3

2x+ y + s2 = 6

x+ 2y + s3 = 6

x, y, s1, s2, s3 ≥ 0



















min−6 + y + s3

x = 6− 2y − s3

s1 = 9− 3y − 2s3

s2 = −6 + 3y + 2s3

Basis (x, s1, s2) is optimal
but not feasible!
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Basic Idea (3)

min−x− y

y

x + 2y ≤ 6

x
(6, 0)

y ≥ 0

2x + y ≥ 3

x ≥ 0

2x + y ≤ 6
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Basic Idea (4)

Let us make the violating variables non-negative ...

Increase s2 by making it non-basic

... while preserving optimality

If y replaces s2 in the basis,
then y = 1

3
(s2 + 6− 2s3),−x− y = −4 + 1

3
(s2 + s3)

If s3 replaces s2 in the basis,
then s3 =

1

2
(s2 + 6− 3y),−x− y = −3 + 1

2
(s2 − y)

To preserve optimality, y must replace s2
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Basic Idea (5)



















min−6 + y + s3

x = 6− 2y − s3

s1 = 9− 3y − 2s3

s2 = −6 + 3y + 2s3

=⇒



















min −4 + 1

3
s2 +

1

3
s3

x = 2− 2

3
s2 +

1

3
s3

y = 2 + 1

3
s2 −

2

3
s3

s1 = 3− s2

Current basis is feasible and optimal!
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Basic Idea (6)

min−x− y

y

x + 2y ≤ 6

x

(2, 2)

(6, 0)
y ≥ 0

2x + y ≥ 3

x ≥ 0

2x + y ≤ 6
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Outline of the Dual Simplex Algorithm

1. Initialization: Pick an optimal basis.

2. Dual Pricing: If all basic values are ≥ 0,
then return OPTIMAL.
Else pick a basic variable with value < 0.

3. Dual Ratio test: Compute best value preserving
optimality, i.e. sign constraints on reduced costs.
If best value does not exist,
then return INFEASIBLE.
Else select non-basic variable to be exchanged with
violating basic variable.

4. Update: Update the tableau and go to 2.
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Duality (1)

The way the dual simplex works is best understood
using the theory of duality

We can get lower bounds on LP optimum value by
combining constraints with convenient multipliers



















































min −x− y

2x+ y ≥ 3

2x+ y ≤ 6

x+ 2y ≤ 6

x ≥ 0

y ≥ 0

⇒



















































min −x− y

2x+ y ≥ 3

−2x− y ≥ −6

−x− 2y ≥ −6

x ≥ 0

y ≥ 0

1 · ( −x− 2y ≥ −6 )

1 · ( y ≥ 0 )

−x− 2y ≥ −6

y ≥ 0

−x− y ≥ −6
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Duality (2)



















































min −x− y

2x+ y ≥ 3

−2x− y ≥ −6

−x− 2y ≥ −6

x ≥ 0

y ≥ 0

1 · ( 2x+ y ≥ 3 )

2 · ( −2x− y ≥ −6 )

1 · ( x ≥ 0 )

2x+ y ≥ 3

−4x− 2y ≥ −12

x ≥ 0

−x− y ≥ −9
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Duality (3)



















































min −x− y

2x+ y ≥ 3

−2x− y ≥ −6

−x− 2y ≥ −6

x ≥ 0

y ≥ 0

µ1 · ( 2x+ y ≥ 3 )

µ2 · ( −2x− y ≥ −6 )

µ3 · ( −x− 2y ≥ −6 )

2µ1x+ µ1y ≥ 3µ1

−2µ2x− µ2y ≥ −6µ2

−µ3x− 2µ3y ≥ −6µ3

(2µ1 − 2µ2 − µ3)x +

(µ1 − µ2 − 2µ3)y ≥

3µ1 − 6µ2 − 6µ3

If µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, 2µ1 − 2µ2 − µ3 ≤ −1 and
µ1 − µ2 − 2µ3 ≤ −1 then 3µ1 − 6µ2 − 6µ3 is a lower bound
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Duality (4)

Best possible lower bound can be found by solving



























max 3µ1 − 6µ2 − 6µ3

2µ1 − 2µ2 − µ3 ≤ −1

µ1 − µ2 − 2µ3 ≤ −1

µ1, µ2, µ3 ≥ 0

Best solution is given by (µ1, µ2, µ3) = (0, 1
3
, 1
3
)

0 · ( 2x+ y ≥ 3 )

1

3
· ( −2x− y ≥ −6 )

1

3
· ( −x− 2y ≥ −6 )

−x− y ≥ −4

Matches with optimum!
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Dual Problem (1)

Given a LP (called primal)

min cTx

Ax ≥ b

x ≥ 0

its dual is the LP

max bT y

AT y ≤ c

y ≥ 0

Primal variables associated with columns of A

Dual variables (multipliers) associated with rows of A

Objective and right-hand side vectors swap their roles
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Dual Problem (2)

Prop. The dual of the dual is the primal.

Proof:

max bT y

AT y ≤ c

y ≥ 0

=⇒

−min (−b)Ty

−AT y ≥ −c

y ≥ 0

−max −cTx

(−AT )Tx ≤ −b

x ≥ 0

=⇒

min cTx

Ax ≥ b

x ≥ 0

One says the primal and the dual form primal-dual pair
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Dual Problem (3)

Prop.
min cTx

Ax = b

x ≥ 0

and
max bT y

AT y ≤ c
form a primal-dual pair

Proof:

min cTx

Ax = b

x ≥ 0

=⇒

min cTx

Ax ≥ b

−Ax ≥ −b

x ≥ 0

max bT y1 − bT y2

AT y1 − AT y2 ≤ c

y1, y2 ≥ 0

y:=y1−y2
=⇒

max bT y

AT y ≤ c
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Duality Theorems (1)

Th. (Weak Duality) Let (P,D) be a primal-dual pair

(P )

min cTx

Ax = b

x ≥ 0

and (D)
max bT y

AT y ≤ c

If x is feasible solution toP andy is feasible solution to D

then yT b ≤ cTx

Proof:
c− AT y ≥ 0 and x ≥ 0 imply (c−AT y)Tx ≥ 0. Hence

yT b = yTAx = (AT y)Tx ≤ cTx
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Duality Theorems (2)

Feasible solutions to D give lower bounds on P

Feasible solutions to P give upper bounds on D

Can the two bounds ever be equal?

Th. (Strong Duality) Let (P,D) be a primal-dual pair

(P )

min cTx

Ax = b

x ≥ 0

and (D)
max bT y

AT y ≤ c

If any of P or D has a feasible solution and a finite
optimum then the same holds for the other problem and
the two optimum values are equal.
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Duality Theorems (3)

Proof (Th. of Strong Duality):
By symmetry it is sufficient to prove only one direction.
Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find
B optimal feasible basis. Then:

cT
B
B−1aj = cj for all j ∈ B

cT
B
B−1aj ≤ cj for all j ∈ R (optimality conds hold)

So πT := cT
B
B−1 is dual feasible: πTA ≤ cT , i.e. ATπ ≤ c.

Moreover, cT
B
β = cT

B
B−1b = πT b = bTπ

By the theorem of weak duality, π is optimum for D

If B optimal feasible basis for P , then simplex multipliers
πT := cT

B
B−1 are optimal feasible solution for D.
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Duality Theorems (4)

Prop. Let (P,D) be a primal-dual pair

(P )

min cTx

Ax = b

x ≥ 0

and (D)
max bT y

AT y ≤ c

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P ) is infeasible

Proof: By contradiction.
If y were a feasible solution to D, by weak duality
theorem objective of P would be bounded from below!
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Duality Theorems (5)

Prop. Let (P,D) be a primal-dual pair

(P )

min cTx

Ax = b

x ≥ 0

and (D)
max bT y

AT y ≤ c

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P ) is infeasible

And the converse?
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Duality Theorems (5)

Prop. Let (P,D) be a primal-dual pair

(P )

min cTx

Ax = b

x ≥ 0

and (D)
max bT y

AT y ≤ c

If P (resp., D) has a feasible solution but the objective
value is not bounded, then D (resp., P ) is infeasible

And the converse?

min 3x1 + 5x2

x1 + 2x2 = 3

2x1 + 4x2 = 1

x1, x2 free

max 3y1 + y2

y1 + 2y2 = 3

2y1 + 4y2 = 5

x1, x2 free
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Duality Theorems (6)

Primal unbounded =⇒ Dual infeasible
Dual unbounded =⇒ Primal infeasible

Primal infeasible =⇒ Dual

{

infeasible
unbounded

Dual infeasible =⇒ Primal

{

infeasible
unbounded
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Karush Kuhn Tucker Optimality Conds (1)

Consider a primal-dual pair of the form

min cTx

Ax = b

x ≥ 0

and
max bT y

AT y + w = c

w ≥ 0

Karush-Kuhn-Tucker (KKT) optimality conditions are

• Ax = b • x,w ≥ 0

• AT y + w = c • xTw = 0 (complementary slackness)

They are necessary and sufficient conditions for
optimality of the pair of primal-dual solutions (x, (y, w))

Used, e.g., as a test for quality in LP solvers
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Karush Kuhn Tucker Optimality Conds (2)

(P )

min cTx

Ax = b

x ≥ 0

(D)

max bT y

AT y + w = c

w ≥ 0

(KKT )

• Ax = b

• AT y + w = c

• x,w ≥ 0

• xTw = 0

Th. (x, (y, w)) is solution to KKT iff
x optimal solution to P and (y, w) optimal solution to D

Proof:
⇒ By 0 = xTw = xT (c− AT y) = cTx− bT y, Weak Duality

⇐ x is feasible solution to P , (y, w) is feasible solution to
D. By Strong Duality xTw = xT (c−AT y) = cTx− bT y = 0

as both solutions are optimal
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Towards Dual Simplex: Relating Bases (1)

(P )

min z = cTx

Ax = b

x ≥ 0

(D)
max Z = bT y

AT y ≤ c
⇐⇒

max Z = bT y

AT y + w = c

w ≥ 0

Let B be basis of P .
Reorder rows in D so that B-basic variables are first m.
Reorder columns in D so that the matrix is

(

BT I 0

RT 0 I

)





y
wB

wR





Submatrix of vars y and vars wR:

B̂ =

(

BT 0

RT I

)
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Towards Dual Simplex: Relating Bases (2)

B̂ = (y, wR) is a basis of D:

B̂ =

(

BT 0

RT I

)

B̂−1 =

(

B−T 0

−RTB−T I

)

Each var wj in D is associated to var a xj in P .

wj is B̂-basic iff xj is not B-basic
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Dual Feasibility is Primal Optimality

Let’s apply simplex algorithm to dual problem

Let’s see correspondence of dual feasibility in primal LP

B̂−1c =

(

B−T 0

−RTB−T I

)(

cB

cR

)

=

(

B−T cB

−RTB−T cB + cR

)

There is no restriction on the sign of y1, ..., ym

Variables wj have to be non-negative. But

−RTB−T cB + cR ≥ 0 iff cTR − cTBB
−1R ≥ 0 iff dTR ≥ 0

B̂ is dual feasible iff dj ≥ 0 for all j ∈ R

Dual feasibility is primal optimality!
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Dual Optimality is Primal Feasibility

B̂-basic dual vars: (y | wR) with costs (bT | 0)

Non B̂-basic dual vars: wB with costs (0)

Optimality condition: reduced costs ≤ 0 (maximization!)

0 ≥
(

0
)

−
(

bT 0
)





B−T 0

−RTB−T I









I

0



 =

(

0
)

−
(

bTB−T 0
)





I

0



 =
(

−βT

)

iff β ≥ 0

For all 1 ≤ p ≤ m, wkp is not dual improving iff βp ≥ 0

Dual optimality is primal feasibility!
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Improving a Non-Optimal Solution (1)

Let p (1 ≤ p ≤ m) be such that βp < 0 ⇔ bTB−T ep < 0

Let ρp = B−T ep, so bTρp = βp. If wkp takes value t ≥ 0:
(

y(t)

wR(t)

)

= B̂−1c− B̂−1tep =

(

B−T cB

dR

)

−

(

B−T 0

−RTB−T I

)(

tep

0

)

=

(

B−T cB − tρp

dR + tRTρp

)

Dual objective value improvement is

∆Z = bT y(t)− bT y(0) = −tbTρp = −tβp
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Improving a Non-Optimal Solution (2)

Only w variables need to be ≥ 0: for j ∈ R

wj(t) = dj + taTj ρp = dj + tρTp aj =

dj + teTpB
−1aj = dj + teTp αj = dj + tα

p
j

wj(t) ≥ 0 ⇐⇒ dj + tα
p
j ≥ 0

If αp
j ≥ 0 the constraint is satisfied for all t ≥ 0

If αp
j < 0 we need dj

−α
p

j

≥ t

Best improvement achieved with

ΘD := min{ dj
−α

p

j

| αp
j < 0}

Variable wq is blocking when ΘD = dq
−α

p
q
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Improving a Non-Optimal Solution (3)

1. If ΘD = +∞ (there is no j such that j ∈ R and α
p
j < 0):

Value of dual objective can be increased infinitely.
Dual LP is unbounded.
Primal LP is infeasible.

2. If ΘD < +∞ and wq is blocking:
When setting wkp = ΘD sign of dual slack basic vars
(primal reduced costs of non-basic vars) is respected

In particular, wq(ΘD) = dq +ΘDα
p
q = dq + ( dq

−α
p
q
)αp

q = 0

We can make a basis change:
• In dual: wkp enters B̂ and wq leaves
• In primal: xkp leaves B and xq enters

Session 4 – p.30/34



Update

We forget about dual LP and work only with primal LP

New basic indices: B̄ = B − {kp} ∪ {q}

New objective value: Z̄ = Z −ΘDβp

New dual basic sol: ȳ = y −ΘDρp

d̄j = dj +ΘDα
p
j if j ∈ R, d̄kp = ΘD

New primal basic sol: β̄p = ΘP , β̄i = βi −ΘPα
i
q if i 6= p

where ΘP = βp

α
p
q

New basis inverse: B̄−1 = EB−1

where E = (e1, . . . , ep−1, η, ep+1, . . . , em) and

ηT =
((

−α1
q

α
p
q

)

, . . . ,

(

−αp−1
q

α
p
q

)

, 1

α
p
q

(

−αp+1
q

α
p
q

)

, . . . ,

(

−αm
q

α
p
q

))T
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Algorithmic Description (1)

1. Initialization: Find an initial dual feasible basis B

Compute B−1, β = B−1b,
yT = cT

B
B−1, dT

R
= cT

R
− yTR, Z = bT y

2. Dual Pricing:
If for all i ∈ B, βi ≥ 0 then return OPTIMAL
Else let p be such that βp < 0.

Compute ρTp = eTpB
−1 and α

p
j = ρTp aj for j ∈ R

3. Dual Ratio test: Compute J = {j | j ∈ R, α
p
j < 0}.

If J = ∅ then return INFEASIBLE
Else compute ΘD = minj∈J (

dj
−α

p

j

) and q st. ΘD = dq
−α

p
q
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Algorithmic Description (2)

4. Update:

B̄ = B − {kp} ∪ {q}

Z̄ = Z −ΘDβp

Dual solution

ȳ = y −ΘDρp

d̄j = dj +ΘDα
p
j if j ∈ R, d̄kp = ΘD

Primal solution

Compute αq = B−1aq and ΘP = βp

α
p
q

β̄p = ΘP , β̄i = βi −ΘPα
i
q if i 6= p

B̄−1 = EB−1

Go to 2.
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Primal vs. Dual Simplex

PRIMAL

Ratio test: O(m) divs

Can handle bounds
efficiently

Many years of research
and implementation

There are classes of LP’s
for which it is the best

Not suitable for solving
LP’s with integer variables

DUAL

Ratio test: O(n−m) divs

Can handle bounds
efficiently
(not explained here)

Developments in the 90’s
made it an alternative

Nowadays on average it
gives better performance

Suitable for solving LP’s
with integer variables
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