
Hyperglue: Designing High-Level Agent Communication
for Distributed Applications

Stephen Peters, Gary Look, Kevin Quigley, Howard Shrobe, Krzysztof Gajos
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA, USA

{slp,quig,garyl,hes}@ai.mit.edu,kgajos@cs.washington.edu

ABSTRACT
We1 are building a new communication model and discov-
ery system which will allow agent-based intelligent spaces
to interact with one another. This new infrastructure layer,
called Hyperglue, coordinates agent actions at a higher level
than most agent communication does, providing an interface
for communication at the level of “real-world” entities such
as people, places, organizations, and information sources.
The resulting structure is one which allows these agent com-
munities to interact, while preserving the privacy, privileges,
and preferences of the entities they represent. In this paper
we describe the rationale for Hyperglue, and present the
initial design as an extension of the existing Metaglue agent
framework developed at the MIT AI Lab.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distributed
Systems—distributed applications ; I.2.11 [Artificial Intel-
ligence]: Distributed Artificial Intelligence—intelligent agents,
multi-agent systems

General Terms
Design

Keywords
distributed agent systems, wide-area networks, service dis-
covery

1. INTRODUCTION
Multi-agent systems for intelligent environments typically

involve several smaller components working in concert. As
the fields of ubiquitous and pervasive computing have grown

1Both Stephen Peters and Gary Look are currently Ph.D.
students at MIT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03 Melbourne, Australia
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

in size, more and more of these systems have been brought
into being, often integrating widely disparate devices such
as hand-held PDAs, Bluetooth-enabled cell phones, laptops,
speakers, microphones, huge wall displays, interactive ta-
bles, and the like. Most of these systems, including our own
previous work in the field, have approached the interface
and communication problems from either a device-centered
approach, or have limited their focus to tying together many
devices into a single environment. These limited scenarios
fail to address the issues that arise when trying to coor-
dinate among many spaces and many potential users. We
believe that many of the existing multi-agent systems for
smart environments do not possess the necessary architec-
ture to handle these situations gracefully.

We begin this paper by presenting a short scenario, and
exploring some of the problems inherent in even simple inter-
actions involving multiple spaces and people. After present-
ing the current state of multi-agent systems in smart spaces,
we will describe our approach to extending an existing agent
framework with a new communication model that can bet-
ter address these issues, based on resource management and
a simple global discovery system.

2. SCENARIO
Consider a straightforward application of agent systems in

augmented environments, similar in appearance to the world
envisioned by Weiser [11] or Dertouzos’ vision of Project
Oxygen [4]:

Alan is sitting in his office, reading his e-mail
and perusing articles over the Internet. Beth, his
co-worker, is sitting in one of her office’s work-
rooms, and her current task is shown on one of
the room’s two large displays. Beth also has her
handheld computer with her.

Alan comes across an article that he wants to
bring to Beth’s attention, so he asks his office’s
agent system to open a communication channel
to her. Beth’s communication agents inform her
that Alan wishes to talk, and asks if she wants to
accept the request. When she agrees to a video
connection, it displays Alan’s image on the un-
used display. After a brief discussion, Alan asks
his office to forward the article to Beth, at which
point the information appears on her handheld.

3. THE PROBLEMS
Although the preceding scenario seems simple, it gives

rise to complex questions about how such agent systems
communicate, especially when Beth might not be sitting in
a nice workroom, but in her office, in her car, or even taking
a pleasant stroll through a neighborhood park with a PDA
in her pocket. Alan’s desire to communicate and transfer
information to Beth does not change based on her location,
although the methods by which information is conveyed may
change based on the devices currently available to the two of
them. In order for an agent operating on behalf of Alan to
communicate to Beth, several questions must be addressed:

1. What devices are available in Beth’s vicinity? Several
methods have been proposed for answering this ques-
tion, but they often fall broadly into two categories. In
systems that operate on a single-request model, such
as MIT’s Intentional Naming System [1], all devices
that are in some way associated with Beth advertise
that association to a global network, so that a single
request can retrieve all of the appropriate recipients.
Alternately, the methods can use two or more requests
to get the information – Beth’s software constantly ad-
vertises her location to the network, and Alan’s agents
must first look up her location, and then perform a sep-
arate search to find a set of candidate devices. Both
of these methods require that all devices be advertised
globally, and that Beth’s location be advertised and
updated to reflect Beth’s current situation.

2. How can Alan and Beth share control of the interac-
tion? Once the agents working for Alan have located
a device for the communication, we still need to make
sure that Beth, or agents working on her behalf, can
maintain some control over the interaction. Just as
we accept an incoming phone call by picking up the
receiver (or by pushing a button in this more cellular
age), Beth must have the ability to decide whether or
not to accept an intrusion into her work. This ability
should also extend to the point of being able to auto-
matically refuse all interruptions for a period of time.
In a device-centric model of the world, Beth would
need to broadcast her preferences to the local devices,
so that they would know whether to allow an incoming
connection.

3. How do we avoid conflicts with Beth’s work? Note in
the scenario that Alan’s image appears on the unused
display, so as not to overwrite the work that Beth is
doing, and thus allowing Beth to make the transition
from work to the conversation at her own pace. In
addition, when Alan transfers the news item, it gets
sent to the last remaining display in Beth’s locale, her
handheld. But how can Alan’s agents discover which
display is available for use? If the agents are using
a global directory service to find the available display
devices, then Beth’s display devices must be constantly
updating their availability status so that Alan’s agents
can choose the correct resource. And what if Beth’s
handheld is unavailable? How can Alan’s agents decide
where to display the news item?

4. Who decides how information is presented to Beth?
She may have strong preferences about how she pro-
cesses information; for example, a short text sentence

might best be conveyed as spoken utterances rather
than through a display. If she’s in her car, she may
prefer that all information be emailed to her destina-
tion where she can peruse it once she’s arrived safely.
Alan’s agents would need to be able to discover these
preferences, and alter their behavior accordingly. Do-
ing so would require that Beth make those preferences
publicly available to any agent system making commu-
nication requests.

5. How does the agent system take into account the envi-
ronment’s access control issues? Irrespective of what
the agents for Alan and Beth wish to do, the shared
workroom will need to have mechanisms in place to
prevent unauthorized access to the devices by mali-
cious agents. Imagine the intelligent environment’s
equivalent of junk mail in which marketers are per-
fectly content to pop up advertisements on any avail-
able display space. The agent system needs to be able
to filter out any unwanted requests, while at the same
time giving Beth the necessary privileges to do her
work and accept connections and data from Alan.

Privilege is a double-edged sword; the data Alan is
sending might be confidential or otherwise protected,
and thus should not be displayed on the walls of a pub-
lic, shared workspace like Beth’s. In this case, Alan’s
agents must be able to mark the information as being
removed from public consumption, and then have that
request respected by the devices on the far side.

As can be plainly seen, there are numerous issues that
need to be addressed in even the most simplistic pervasive
computing application. Many of these issues can be ad-
dressed within existing agent infrastructures that rely on a
global directory service or shared blackboard architecture.
However, to do so requires that nearly all of the above in-
formation must be registered in the directory, and then up-
dated constantly to adapt to changing conditions. In ad-
dition, such an approach could have rather substantial pri-
vacy and security implications, as seen above. Finally, any
centralized directory will eventually need to overcome scal-
ability issues when it is extended to large numbers of people
and spaces, since the directory would have to maintain in-
formation on every person, space, display, PDA, projector,
speaker system, and basically any other device that can be
integrated into the agent network. Sifting through this list
to find the best fit for a given situation becomes more and
more expensive as the magnitude of the directory grows.

4. EXISTING MULTI-AGENT SYSTEMS
The Open Agent Architecture [9] one of the more ven-

erable agent systems available, is designed specifically for
agent-based interactions in smart spaces. Within OAA, all
communication is funneled through a central agent called
the facilitator, which acts as a coordinator for cooperative
problem-solving. Agents register their capabilities with this
central agent, and make requests in the form of “tasks,”
which the facilitator can break down into subtasks and farm
them out to client agents that can perform the required ac-
tions. OAA lacks mechanisms for resource reservation or for
arbitration among conflicting requests, which could make it
hard for an OAA system to address the issues inherent in
avoiding clashes with ongoing work.

The SmartPlatform infrastructure is currently being used
by the Smart Classroom project [12]. This project origi-
nally was based on OAA, but recently moved to a new ap-
proach, featuring a hybrid communication scheme: short
messages are sent through a central broker (the “DS”, or di-
rectory service) using a publish/subscribe mechanism, but
peer-to-peer connections can be created when higher band-
width requirements are necessary. SmartPlatform consoli-
dates all messages into two kinds of speech acts: “inform”
and “query”, for asynchronous and synchronous messages
respectively. SmartPlatform itself does not contain facilities
for handling or processing resource conflicts, and is begin-
ning to work on gateways to other agent systems (such as
Metaglue, described below), to help address some of the
scalability issues.

The IHome project at UMass [8] was a simulated agent
architectures for intelligent environmental control, empha-
sizing resource coordination. High-level agents were capable
of recognizing resource conflicts, and prioritizing allocations
according to the user’s preferences. IHome’s agents, how-
ever, are designed to work with one space, and there does
not seem to have an easy way of coordinating operations
across multiple environments or users, making it problem-
atic for use as a communication substrate between intelligent
spaces.

one.world [7] is a system architecture developed at the
University of Washington, designed to provide programmers
with services for writing pervasive applications. The dis-
tributed components use remote event passing for commu-
nications, and perform discovery operations to locate re-
sources for the components. The discovery server is central-
ized, but is elected in an ad-hoc manner from all the partic-
ipating nodes, with the elections waited to favor candidates
with the best response times. Once an election has taken
place, all the nodes pass service information into the discov-
ery server, and use this single point for most communication
handling. one.world includes support for low-level resource
allocation, but does not appear to have a generic way for
modeling higher-level resources or handling conflicts. Be-
cause all components are also sharing the discovery server,
there is a requirement for participating components to share
information so that they can be discovered properly.

4.1 Metaglue
Metaglue [3] is our multi-agent system implemented in

Java, developed and used by the Intelligent Room project.
It also contains some of the problems of the previous ap-
proaches, in that all agents must use a centralized directory
service called the catalog in order to locate other agents and
communicate with them. Metaglue is based on peer-to-peer
method calls between remote agents, using Java’s RMI (Re-
mote Method Invocation) mechanism. All agent-to-agent
communication is further channelled through special proxy
objects [10], which can be used to handle failover conditions
when an agent goes down or moves to another location in
the network. The looser coupling of agents that feature pro-
vides allows agents to handle changing network situations,
without requiring all agents to explicitly support that fea-
ture.

In addition to these synchronous method calls, Metaglue
also provides mechanisms for publish/subscribe communica-
tion with many of the same features provided by the proxies,
persistent storage, multimodal input and output, user cus-

tomization, and automatic restarting of failed components.
Metaglue also provides the means to segment agents into
small communities called “societies,” which can serve as a
convenient way to divide large agent networks into smaller,
separate groups of agents coordinating on a task. As we
see below, we use this capability to separate agents accord-
ing to the real-world “entity” on whose behalf they operate,
whether that entity be a person, a place, or even a less con-
crete notion like an organizational group.

Metaglue’s architecture also allows for a “plug-in” resource
management system, under which agents can forward all
agent requests through a broker that can translate the re-
quest and locate a service agent or set of agents that sat-
isfy the request. Resource managers can determine the best
agent for the request, and even put an service on “reserve”
so that other agents can’t make requests of it. They can
also make use of the agent-swapping ability mentioned ear-
lier to alter the resources that an agent is using (for ex-
ample, switching an agent’s output connection from spoken
utterances to text on a display.) The resource management
system has proven to be a real boon to agent development,
allowing agent authors to worry only about the broad in-
terfaces required by their agents, and less about the details
about which agent will be retrieved by a given request.

Since the resource management system is only loosely cou-
pled to the agents, different agent societies can use different
resource management subsystems. Resource managers can
even coordinate together by forwarding an agent request on
to another resource management system, and then merg-
ing the result with its own agent decisions before passing
them back to the original requester. Resource management
systems can also provide the basis for a strict access con-
trol model, since they can coordinate with a local security
agent when making decisions, without introducing unneces-
sary complexity in the agent code.

The Metaglue system has been deployed in a number of
locations around the MIT AI Lab, including a small confer-
ence room, a living room, and a set of student and faculty
offices. Trying to integrate these rooms together, so that
users could have control over their environment while deal-
ing with issues of scalability, privacy, personal preference,
et cetera, raised a number of issues with the Metaglue com-
munication architecture, whose centralized catalog made it
difficult to separate out these concerns properly. Indeed, it
was this need for integration that was the impetus behind
the effort to extend Metaglue into the Hyperglue framework.

5. HYPERGLUE
The Hyperglue communication model provides a commu-

nication interface between agents, situated at the level of
“real-world” entities such as people, places, and organiza-
tions. In this section, we illustrate how an agent that is a
member of one agent community might use resource man-
agement systems and Hyperglue’s entity discovery capabil-
ity to communicate with an agent in a different agent com-
munity. Subsequent sections will provide a more detailed
description of Hyperglue’s discovery mechanism.

Take two agent societies, which need to communicate with
each other (see Figure 1). These can be operating on behalf
of two users trying to share information, or a person try-
ing to gain access to the devices in a shared environment,
or any of a number of other scenarios. When an agent in
one society needs to request an agent in another society, it

A. A.

RM
A. A.

RM

agent1

agent2Hyperglue
Entity
Directory

1

2

4

8
5

67
3

Figure 1: Hyperglue in operation, coordinating between two societies. 1. An agent (Agent1) makes a request
for a service agent that is unavailable in the current society. 2. The resource manager (RMA) receives the
request, and forwards it on to the local Ambassador agent (AAA). 3. AAA queries the Hyperglue Entity
Directory (HED) to find the remote society’s Ambassador (AAB), and receives a handle for communicating
to it. 4. AAA forwards the request to AAB. 5. AAB then sends the request on to its local resource manager
(RMB). 6. RMB takes into account all agents that can handle the request, taking into account any preference
information, and also consulting with the local security manager. 7. If the security and preference systems
authorize the connection, RMB returns a stub to AAB. 8. AAB returns the stub to the AAA, which can then
pass it on to the original requester.

first will contact a local resource manager. Note that even
though the request is for an agent in a different society, the
local agent still views the remote agent as merely another
necessary resource, and can delegate the task of finding the
appropriate component to the local resource manager.

The resource manager will then determine that the re-
quest involves the remote society (perhaps simply because
it doesn’t have any information on the kind of agents being
requested), and will then forward the request on to the Am-
bassador for the local society. The Ambassador agent acts
as a proxy for its society to other agent societies, and is reg-
istered on startup with a global directory system called the
Hyperglue Entity Directory (HED). Like real-world ambas-
sadors, the Ambassador’s function is to represent the agents
in its society to other societies of agents. This includes send-
ing out requests for handles of agents in other societies as
well as receiving requests for handles to agents in its society.

When the local Ambassador receives the request, it con-
sults the HED for the location of the Ambassador agent for
the remote society. It can then contact the remote Am-
bassador and pass on the request. The remote Ambassador
can then pass the request on to its own resource manager,
which can make the determination about how to fulfill the
requirements (if at all), and pass back a handle for any found
resources to the local side through the Ambassadors’ con-
nection, and finally back to the original requester.

One of the nice features of this approach is that agents
treat inter-society requests the same way that they treat re-
quests within the society, easing agent programming greatly.
The entire process of requesting remote agents is hidden be-
hind the call to the local resource manager, so the Hyperglue
system’s inner workings are behind the “abstraction barrier”
presented by the resource management framework. In addi-
tion, the inner workings of agent societies are encapsulated
into the higher-level societies, easing the burdens put on the
HED during the discovery phase.

5.1 Benefits and Applicability
Let us briefly return to our earlier scenario, and the ques-

tions asked in section 3. In our scenario, when Alan requests
a communication channel to Beth, his software agents first
reserve the necessary devices in his office so that he can be
heard and seen. They then request from Alan’s resource
manager a connection to Beth, preferably one with audio
and video capabilities. Alan’s resource manager will then
forward the request to the Ambassador, which will perform
a discovery operation and locate Beth’s Ambassador. The
Ambassador agents forward the request to Beth’s resource
manager, which can then return any agents that are suitable
(taking into account Beth’s preferences). If it’s allowable,
Beth’s resource manager can return a handler to a commu-
nication manager operating in Beth’s society.

Alan’s agents can then talk to Beth’s communication man-
ager agent, which in turn would talk to Beth’s resource
manager to request audio and video devices for Beth. Her
resource manager, realizing that it only has a PDA with
limited audio and video bandwidth within its own society,
could then take advantage of the fact that it has knowledge
of Beth’s location, and forward the device request to the
workroom’s society. The workroom’s resource management
system can make similar determinations about Beth’s ac-
cess rights, and eventually decides to pass a handler for the
remaining free display back to Beth’s agents.

Later, when Alan is trying to show the news item to Beth,
her resource manager would again check with the workroom
for available resources, but be unable to receive any since
both displays are now taken. In this case, Beth’s resource
manager might decide that the limited video on the hand-
held was suitable for the information and use it.

We can now turn to the previous set of problems, and
examine how well this approach handles them:

1. What devices are available in Beth’s vicinity? Alan’s
agents now do not need to have this knowledge at all.
All his agents need to do is discover the entry-way

into Beth’s society; once this is accomplished it is the
responsibility of Beth’s agents to discover where Beth
is located and the various devices that are available to
her.

2. How do Alan and Beth share control of the interac-
tion? Since the request for an interaction now goes
directly from Alan’s agents to Beth’s, the agent soft-
ware operating on their behalf has total control over
the connection. Beth can tell her agents to ignore all
incoming requests for a period of time, or her agents
can respond to any incoming interaction request with
a confirmation request, all according to Beth’s pref-
erences. Beth does not need to broadcast a “hold all
calls” request to her current environment.

3. How do we avoid conflicts with Beth’s work? The re-
source management systems oversee the devices that
Beth is currently using, and can use this information
to decide which devices are available and decide on the
best option for Beth.

4. Who decides how information is presented to Beth?
Again, this ability is mostly in Beth’s hands (or the
“hands” of her agents, rather). Her resource manager
can decide whether to use her personal devices for dis-
plays, or whether to contact the environment for other
possibilities. The communication agent in her society
can decide whether to accept the communication with
Alan, and even decide how to handle the communica-
tion – perhaps by using only an audio connection in-
stead of both audio and video. In addition, her agents
could decide whether the news item was displayed, or
could have decided to just speak the text aloud if that
were preferable.

5. How does the agent system take into account the envi-
ronment’s access control issues? Alan has no connec-
tion to the workroom’s devices; they are all processed
through Beth’s agents and requested on her behalf, not
Alan’s. The workroom’s resource manager and secu-
rity manager can decide on its own whether to accept
the request without having to worry about whether
Alan should be given access, since only the trusted
Beth is performing requests.

5.2 Current Implementation Details
The current implementation of Hyperglue uses the Inten-

tional Naming System for its entity discovery component.
INS is a global resource discovery system, in which partici-
pating resources advertise capabilities and identity informa-
tion as opposed to just network addresses. For example, a
printer could advertise its location, basic capabilities, and
current queue length to the INS, which can then use this in-
formation to route queries such as “find me a lightly-loaded
color printer nearby.” The system should, in principle, be
able to scale past a single organization; however, the ver-
sion of INS we were using advertises all devices throughout
the entire network, and thus raised privacy and scalability
concerns.

As noted before, INS is not viable as the sole resource
discovery mechanism, but is successful in its use here as a
dynamic, wide-scale system for locating the ambassadors of
entity-based societies.

The resource management system being engineered for
Hyperglue is Rascal [6], a knowledge-based system that is
capable of making high-level arbitration decisions among
service requests. It includes a constraint satisfaction en-
gine (CSE), so that once a service has been requested by an
agent, it is capable of maintaining that connection until it
is either canceled or until a higher-priority request overrides
it.

When Rascal starts up in a given society, it loads informa-
tion about all the society’s local devices and services into its
knowledge base. This information is dynamically updated as
more resource information becomes available. Agents that
provide services can also describe what other resources they,
in turn, will need – for example, the Messenger agent which
can deliver information to the local user needs to have one
or more agents capable of providing text output (through
speech, LED screens, cell-phone displays, or whatever else
is available). Agents can also specify startup needs as well,
such as noting that the PowerPointDisplay agent is going
to need a computer with the appropriate software available.

Rascal uses its knowledge base to find all possible candi-
date agents for the requests, and then uses the CSE to decide
which of those requests is “best” for the current situation.
Part of this decision is performed by assigning ordered values
for a service’s utility (how useful it is for the given request)
and for its cost to others. This is a simple model, sufficient
for the current incarnation of Rascal, but could eventually
be replaced with a market-based system (such as that de-
scribed in [2]) if the need arose. The value calculations de-
pend on the assumption that each candidate resource has a
utility to the requester, based on how badly the requester
needs the request fulfilled, and on how well the candidate
matches the request. Since resources that are already al-
located have similar utility values to their own requesters,
there is a proportional cost associated with switching the
resource to another agent, which gets factored into the con-
straint satisfaction system when evaluating the candidates.

5.3 Future Work
We are currently working on implementing the second ver-

sion of the Hyperglue Entity Directory service. This will
entail the plan described above, including slots available for
resource management and security, filling out the Hyperglue
trio. There are several organization models currently under
consideration.

1. The Intentional Naming System was used in the first
version of Hyperglue with mixed results. It would be
good at providing the society discovery component ro-
bustly. By only providing the societies’ locations, or
more specifically the location of each society’s Ambas-
sador, we can avoid the problem of resources being
broadcast without restriction.

2. A hierarchical structure modeled after the Domain Name
System (DNS) used in associating the name of a com-
puter with the IP address. This has been shown to
be both robust and widely scalable. With this archi-
tecture, each sub-level Hyperglue layer would appear
as a single entity (similar to a society) to the current
Hyperglue level. Such a stacking would produce a tree
structure that is easily traversable.

3. A data-driven model where the requests for resources
and communication are labeled with descriptions about

the intended recipients and Hyperglue would route them
through the network. Data-centric networking is de-
scribed in papers on the Portolano project [5].

Each of these models has strengths and weaknesses so it
may be that none alone can provide a robust and rich enough
environment to support Hyperglue. INS requires that the
societies constantly refresh the alive status or be dropped
which is a waste of computational resources for a static
structure like a Hyperglue enabled building. A DNS-like
lattice would provide a more static structure which in turn
would have trouble modeling social groupings which change
frequently as people move and groups form and break. It
should become apparent that several models (graph based,
tree based, publish-subscribe) will make the grouping of so-
cieties easier. This does increase the complexity by having
multiple parent nodes to query, but as long as the correct
society is found, it doesn’t matter which node returns the
information first.

An intriguing result of the current design for Hyperglue
is that the details of the agent society are abstracted away
through the Ambassador agents. Conceivably, it should be
straightforward to integrate a network utilizing a different
agent system, like one.world, OAA, or the like into the Hy-
perglue model, simply by creating an appropriate ambas-
sador that can consult the HED for remote societies and
translate requests and agent handles into the local frame-
work. Such a setup would allow totally different agent net-
works to still communicate with each other. An effort is
currently underway to allow a CORBA interface into the
agent model, which would simplify any effort along these
lines.

6. CONTRIBUTIONS
We have pointed out a number of ways in which many

existing architectures for agent systems in smart environ-
ments have difficulty in fulfilling their promise. In partic-
ular, we have noted the problems associated with privacy,
access rights, and personal preferences that arise when these
systems take too much of a device-centric focus, or focus
too much on the needs of a single-user, single-environment
model.

In addition, we have proposed a framework that can be
built on top of existing agent systems, and can, we submit,
be used to address these problems. The framework design
is based on the use of resource management and a simple
high-level discovery system for locating agent networks that
operate on behalf of real-world entities such as people or
environments. Our current work in developing this system
suggests that it is a viable approach to these systems, and
we will be continuing to develop and refine this project in
the future.

7. ACKNOWLEDGMENTS
We’d like to thank the members of the AIRE project at the

MIT AI Lab for their ever-present assistance and construc-
tive suggestions, and in particular Krzysztof Gajos, who
helped describe many of the necessary attributes of scalable
agent systems.

8. REFERENCES
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an

intentional naming system. In 17th ACM Symposium
on Operating Systems Principles (SOSP), Kiawah
Island, SC, December 1999.

[2] J. Bredin, D. Kotz, D. R. R. T. Maheswaran, Çagri
Imer, and T. Basar. A market-based model for
resource allocation in agent systems. In F. Zambonelli,
editor, Coordination of Internet Agents.
Springer-Verlag, 2000.

[3] M. Coen, B. Phillips, N. Warshawsky, L. Weisman,
S. Peters, and P. Finin. Meeting the computational
needs of intelligent environments: The Metaglue
system. In Proceedings of MANSE’99, Dublin, Ireland,
1999.

[4] M. Dertouzos. The future of computing. Scientific
American, 282(3):52–63, August 1999.

[5] M. Esler, J. Hightower, T. Anderson, and G. Borriello.
Next century challenges: Data-centric networking for
invisible computing. In Mobile Computing and
Networking, pages 256–262, 1999.

[6] K. Gajos. Rascal - a resource manager for multi agent
systems in smart spaces. In Proceedings of CEEMAS
2001 (LNAI 2296), pages 111–120. Springer-Verlag,
2001.

[7] R. Grimm, J. Davis, E. Lemar, A. MacBeth,
S. Swanson, T. Anderson, B. Bershad, G. Borriello,
S. Gribble, and D. Wetherall. Programming for
pervasive computing environments. Technical Report
UW-CSE-01-06-01, University of Washington,
Department of Computer Science and Engineering,
2001.

[8] V. Lesser, M. Atighetechi, B. Benyo, B. Horling,
A. Raja, R. Vincent, T. Wagner, P. Xuan, and S. X.
Zhang. A multi-agent system for intelligent
environment control. In Proceedings of the Third
International Conference on Autonomous Agents
(Agents99), Seattle, WA, 1999.

[9] D. L. Martin, A. J. Cheyer, and D. B. Moran. The
Open Agent Architecture: A framework for building
distributed software systems. Applied Artificial
Intelligence, 13(1-2):91–128, January-March 1999.

[10] N. Warshawsky. Extending the Metaglue multi agent
system. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1999.

[11] M. Weiser. The computer for the 21st century.
Scientific American, 265(3):66–75, January 1991.

[12] W. Xie, Y. Shi, G. Xu, and Y. Mao. Smart Platform –
a software infrastructure for smart space (SISS). In
Submission.

