
Integer Programming

9

The linear-programming models that have been discussed thus far all have beencontinuous, in the sense that
decision variables are allowed to be fractional. Often this is a realistic assumption. For instance, we might
easily produce 10234 gallons of a divisible good such as wine. It also might be reasonable to accept a solution
giving an hourly production of automobiles at 581

2 if the model were based upon average hourly production,
and the production had the interpretation ofproduction rates.

At other times, however, fractional solutions are not realistic, and we must consider the optimization
problem:

Maximize
n∑

j =1

c j x j ,

subject to:
n∑

j =1

ai j x j = bi (i = 1, 2, . . . , m),

x j ≥ 0 (j = 1, 2, . . . , n),

x j integer (for some or allj = 1, 2, . . . , n).

This problem is called the (linear)integer-programming problem. It is said to be amixedinteger program
when some, but not all, variables are restricted to be integer, and is called apure integer program whenall
decision variables must be integers. As we saw in the preceding chapter, if the constraints are of a network
nature, then an integer solution can be obtained by ignoring the integrality restrictions and solving the resulting
linear program. In general, though, variables will be fractional in the linear-programming solution, and further
measures must be taken to determine the integer-programming solution.

The purpose of this chapter is twofold. First, we will discuss integer-programming formulations. This
should provide insight into the scope of integer-programming applications and give some indication of
why many practitioners feel that the integer-programming model is one of the most important models in
management science. Second, we consider basic approaches that have been developed for solving integer
and mixed-integer programming problems.

9.1 SOME INTEGER-PROGRAMMING MODELS

Integer-programming models arise in practically every area of application of mathematical programming. To
develop a preliminary appreciation for the importance of these models, we introduce, in this section, three
areas where integer programming has played an important role in supporting managerial decisions. We do
not provide the most intricate available formulations in each case, but rather give basic models and suggest
possible extensions.

272

9.1 Some Integer-Programming Models 273

Capital Budgeting In a typical capital-budgeting problem, decisions involve the selection of a number of
potential investments. The investment decisions might be to choose among possible plant locations, to select
a configuration of capital equipment, or to settle upon a set of research-and-development projects. Often it
makes no sense to consider partial investments in these activities, and so the problem becomes ago–no-go
integer program, where the decision variables are taken to bex j = 0 or 1, indicating that thej th investment
is rejected or accepted. Assuming thatc j is the contribution resulting from thej th investment and thatai j is
the amount of resourcei , such as cash or manpower, used on thej th investment, we can state the problem
formally as:

Maximize
n∑

j =1

c j x j ,

subject to:
n∑

j =1

ai j x j ≤ bi (i = 1, 2, . . . , m),

x j = 0 or 1 (j = 1, 2, . . . , n).

The objective is to maximize total contribution from all investments without exceeding the limited availability
bi of any resource.

One important special scenario for the capital-budgeting problem involves cash-flow constraints. In this
case, the constraints

n∑
j =1

ai j xi ≤ bi

reflect incremental cash balance in each period. The coefficientsai j represent the net cash flow from in-
vestmentj in period i . If the investment requires additional cash in periodi , thenai j > 0, while if the
investmentgeneratescash in periodi , thenai j < 0. The righthand-side coefficientsbi represent the incre-
mental exogenous cash flows. If additional funds are made available in periodi , thenbi > 0, while if funds
are withdrawn in periodi , thenbi < 0. These constraints state that the funds required for investment must
be less than or equal to the funds generated from prior investments plus exogenous funds made available (or
minusexogenous funds withdrawn).

The capital-budgeting model can be made much richer by including logical considerations. Suppose, for
example, that investment in a new product line is contingent upon previous investment in a new plant. This
contingencyis modeled simply by the constraint

x j ≥ xi ,

which states that ifxi = 1 and projecti (new product development) is accepted, then necessarilyx j = 1 and
project j (construction of a new plant) must be accepted. Another example of this nature concerns conflicting
projects. The constraint

x1 + x2 + x3 + x4 ≤ 1,

for example, states that only one of the first four investments can be accepted. Constraints like this commonly
are calledmultiple-choice constraints. By combining these logical constraints, the model can incorporate
many complex interactions between projects, in addition to issues of resource allocation.

The simplest of all capital-budgeting models has just one resource constraint, but has attracted much
attention in the management-science literature. It is stated as:

Maximize
n∑

j =1

c j x j ,

274 Integer Programming 9.1

subject to:

n∑
j =1

a j x j ≤ b,

x j = 0 or 1 (j = 1, 2, . . . , n).

Usually, this problem is called the 0–1knapsackproblem, since it is analogous to a situation in which a
hiker must decide which goods to include on his trip. Herec j is the ‘‘value’’ or utility of including good j ,
which weighsa j > 0 pounds; the objective is to maximize the ‘‘pleasure of the trip,’’ subject to the weight
limitation that the hiker can carry no more thanb pounds. The model is altered somewhat by allowing more
than one unit of any good to be taken, by writingx j ≥ 0 andx j -integer in place of the 0–1 restrictions on
the variables. The knapsack model is important because a number of integer programs can be shown to be
equivalent to it, and further, because solution procedures for knapsack models have motivated procedures for
solving general integer programs.

Warehouse Location In modeling distribution systems, decisions must be made about tradeoffs between
transportation costs and costs for operating distribution centers. As an example, suppose that a manager must
decide which ofn warehouses to use for meeting the demands ofm customers for a good. The decisions to
be made are which warehouses to operate and how much to ship from any warehouse to any customer. Let

yi =

{
1 if warehousei is opened,
0 if warehousei is not opened;

xi j = Amount to be sent from warehousei to customerj .

The relevant costs are:
fi = Fixed operating cost for warehousei , ifopened (for example, a cost to

lease the warehouse),
ci j = Per-unit operating cost at warehousei plus the transportation cost for

shipping from warehousei to customerj .

There are two types of constraints for the model:

i) the demandd j of each customer must be filled from the warehouses; and

ii) goods can be shipped from a warehouse only if it is opened.

The model is:

Minimize
m∑

i =1

n∑
j =1

ci j xi j +

m∑
i =1

fi yi , (1)

subject to:
m∑

i =1

xi j = d j (j = 1, 2, . . . , n), (2)

n∑
j =1

xi j − yi

 n∑
j =1

d j

 ≤ 0 (i = 1, 2, . . . , m), (3)

xi j ≥ 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n),

yi = 0 or 1 (i = 1, 2, . . . , m).

9.1 Some Integer-Programming Models 275

The objective function incorporates transportation and variable warehousing costs, in addition to fixed
costs for operating warehouses. The constraints (2) indicate that each customer’s demand must be met. The
summation over the shipment variablesxi j in thei th constraint of (3) is the amount of the good shipped from
warehousei . When the warehouse is not opened,yi = 0 and the constraint specifies that nothing can be
shipped from the warehouse. On the other hand, when the warehouse is opened andyi = 1, the constraint
simply states that the amount to be shipped from warehousei can be no larger than the total demand, which
is always true. Consequently, constraints (3) imply restriction (ii) as proposed above.

Although oversimplified, this model forms the core for sophisticated and realistic distribution models
incorporating such features as:
1. multi-echelon distribution systems from plant to warehouse to customer;
2. capacity constraints on both plant production and warehouse throughput;
3. economies of scale in transportation and operating costs;
4. service considerations such as maximum distribution time from warehouses to customers;
5. multiple products; or
6. conditions preventing splitting of orders (in the model above, the demand for any customer can be supplied

from several warehouses).
These features can be included in the model by changing it in several ways. For example, warehouse

capacities are incorporated by replacing the term involvingyi in constraint (3) withyi K i , whereK i is the
throughput capacity of warehousei ; multi-echelon distribution may require triple-subscripted variablesxi jk
denoting the amount to be shipped, from planti to customerk through warehousej . Further examples of
how the simple warehousing model described here can be modified to incorporate the remaining features
mentioned in this list are given in the exercises at the end of the chapter.

Scheduling The entire class of problems referred to as sequencing, scheduling, and routing are inherently
integer programs. Consider, for example, the scheduling of students, faculty, and classrooms in such a way
that the number of students who cannot take their first choice of classes is minimized. There are constraints on
the number and size of classrooms available at any one time, the availability of faculty members at particular
times, and the preferences of the students for particular schedules. Clearly, then, thei th studentis scheduled
for the j th class during thenth time period ornot; hence, such a variable is either zero or one. Other
examples of this class of problems include line-balancing, critical-path scheduling with resource constraints,
and vehicle dispatching.

As a specific example, consider the scheduling of airline flight personnel. The airline has a number of
routing ‘‘legs’’ to be flown, such as 10 A.M. New York to Chicago, or 6 P.M.Chicago to Los Angeles. The
airline must schedule its personnel crews on routes to cover these flights. One crew, for example, might be
scheduled to fly a route containing the two legs just mentioned. The decision variables, then, specify the
scheduling of the crews to routes:

x j =

{
1 if a crew is assigned to routej,
0 otherwise.

Let

ai j =

{
1 if leg i is included on routej,
0 otherwise,

and
c j = Cost for assigning a crew to routej .

The coefficientsai j define the acceptable combinations of legs and routes, taking into account such charac-
teristics as sequencing of legs for making connections between flights and for including in the routes ground
time for maintenance. The model becomes:

Minimize
n∑

j =1

c j x j ,

276 Integer Programming 9.1

subject to:

n∑
j =1

ai j x j = 1 (i = 1, 2, . . . , m), (4)

x j = 0 or 1 (j = 1, 2, . . . , n).

The i th constraint requires that one crew must be assigned on a route to fly legi . An alternative formulation
permits a crew to ride as passengers on a leg. Then the constraints (4) become:

n∑
j =1

ai j x j ≥ 1 (i = 1, 2, . . . , m). (5)

If, for example,
n∑

j =1

a1 j x j = 3,

then two crews fly as passengers on leg 1, possibly to make connections to other legs to which they have been
assigned for duty.

These airline-crew scheduling models arise in many other settings, such as vehicle delivery problems,
political districting, and computer data processing. Often model (4) is called aset-partitioning problem, since
the set of legs will be divided, or partitioned, among the various crews. With constraints (5), it is called a
set-covering problem, since the crews then will cover the set of legs.

Another scheduling example is the so-calledtraveling salesman problem. Starting from his home, a
salesman wishes to visit each of(n− 1) other cities and return home at minimal cost. He must visit each city
exactly once and it costsci j to travel from cityi to city j . What route should he select? If we let

xi j =

{
1 if he goes from cityi to city j,
0 otherwise,

we may be tempted to formulate his problem as the assignment problem:

Minimize
n∑

i =1

n∑
j =1

ci j xi j ,

subject to:
n∑

i =1

xi j = 1 (j = 1, 2, . . . , n),

n∑
j =1

xi j = 1 (i = 1, 2, . . . , n),

xi j ≥ 0 (i = 1, 2, . . . , n; j = 1, 2, . . . , n).

The constraints require that the salesman must enter and leave each city exactly once. Unfortunately, the
assignment model can lead to infeasible solutions. It is possible in a six-city problem, for example, for the
assignment solution to route the salesman through two disjoint subtours of the cities instead of on a single
trip or tour. (See Fig. 9.1.)

Consequently, additional constraints must be included in order to eliminate subtour solutions. There are
a number of ways to accomplish this. In this example, we can avoid the subtour solution of Fig. 9.1 by
including the constraint:

x14 + x15 + x16 + x24 + x25 + x26 + x34 + x35 + x36 ≥ 1.

9.2 Formulating Integer Programs 277

Figure 9.1 Disjoint subtours.

This inequality ensures that at least one leg of the tour connects cities 1, 2, and 3 with cities 4, 5, and 6. In
general, if a constraint of this form is included for each way in which the cities can be divided into two groups,
then subtours will be eliminated. The problem with this and related approaches is that, withn cities,(2n

− 1)

constraints of this nature must be added, so that the formulation becomes a very large integer-programming
problem. For this reason the traveling salesman problem generally is regarded as difficult when there are
many cities.

The traveling salesman model is used as a central component of many vehicular routing and scheduling
models. It also arises in production scheduling. For example, suppose that we wish to sequence(n − 1)

jobs on a single machine, and thatci j is the cost for setting up the machine for jobj , given that jobi has
just been completed. What scheduling sequence for the jobs gives the lowest total setup costs? The problem
can be interpreted as a traveling salesman problem, in which the ‘‘salesman’’ corresponds to the machine
which must ‘‘visit’’ or perform each of the jobs. ‘‘Home’’ is the initial setup of the machine, and, in some
applications, the machine will have to be returned to this initial setup after completing all of the jobs. That
is, the ‘‘salesman’’ must return to ‘‘home’’ after visiting the ‘‘cities.’’

9.2 FORMULATING INTEGER PROGRAMS

The illustrations in the previous section not only have indicated specific integer-programming applications,
but also have suggested how integer variables can be used to provide broad modeling capabilities beyond those
available in linear programming. In many applications, integrality restrictions reflect natural indivisibilities
of the problem under study. For example, when deciding how many nuclear aircraft carriers to have in the
U.S. Navy, fractional solutions clearly are meaningless, since the optimal number is on the order of one or
two. In these situations, the decision variables are inherently integral by the nature of the decision-making
problem.

This is not necessarily the case in every integer-programming application, as illustrated by the capital-
budgeting and the warehouse-location models from the last section. In these models, integer variables arise
from (i) logical conditions, such asif a new product is developed,thena new plant must be constructed,
and from (ii) non-linearities such as fixed costs for opening a warehouse. Considerations of this nature
are so important for modeling that we devote this section to analyzing and consolidating specific integer-
programming formulation techniques, which can be used as tools for a broad range of applications.

Binary (0–1) Variables

Suppose that we are to determine whether or not to engage in the following activities: (i) to build a new plant,
(ii) to undertake an advertising campaign, or (iii) to develop a new product. In each case, we must make a
yes–noor so-calledgo–no–godecision. These choices are modeled easily by lettingx j = 1 if we engage in
the j th activity andx j = 0 otherwise. Variables that are restricted to 0 or 1 in this way are termedbinary,
bivalent, logical, or 0–1 variables. Binary variables are of great importance because they occur regularly in
many model formulations, particularly in problems addressing long-range and high-cost strategic decisions
associated with capital-investment planning.

If, further, management had decided thatat most oneof the above three activities can be pursued, the

278 Integer Programming 9.2

following constraint is appropriate:
3∑

j =1

x j ≤ 1.

As we have indicated in the capital-budgeting example in the previous section, this restriction usually is
referred to as amultiple-choiceconstraint, since it limits our choice of investments to beat most oneof the
three available alternatives.

Binary variables are useful whenever variables can assume one of two values, as in batch processing. For
example, suppose that a drug manufacturer must decide whether or not to use a fermentation tank. If he uses
the tank, the processing technology requires that he makeB units. Thus, his productiony must be 0 orB,
and the problem can be modeled with the binary variablex j = 0 or 1 by substitutingBxj for y everywhere
in the model.

Logical Constraints

Frequently, problem settings impose logical constraints on the decision variables (like timing restrictions,
contingencies, or conflicting alternatives), which lend themselves to integer-programming formulations. The
following discussion reviews the most important instances of these logical relationships.

Constraint Feasibility

Possibly the simplest logical question that can be asked in mathematical programming is whether a given
choice of the decision variables satisfies a constraint. More precisely,whenis the general constraint

f (x1, x2, . . . , xn) ≤ b (6)

satisfied?
We introduce a binary variabley with the interpretation:

y =

{
0 if the constraint is known to be satisfied,

1 otherwise,

and write
f (x1, x2, . . . , xn) − By ≤ b, (7)

where the constantB is chosen to be large enough so that the constraint always is satisfied ify = 1; that is,

f (x1, x2, . . . , xn) ≤ b + B,

for every possible choice of the decision variablesx1, x2, . . . , xn at our disposal. Whenevery = 0 gives a
feasible solution to constraint (7), we know that constraint (6) must be satisfied. In practice, it is usually very
easy to determine a large number to serve asB, although generally it is best to use the smallest possible value
of B in order to avoid numerical difficulties during computations.

Alternative Constraints

Consider a situation with thealternativeconstraints:

f1(x1, x2, . . . , xn) ≤ b1,

f2(x1, x2, . . . , xn) ≤ b2.

At least one, but not necessarily both, of these constraints must be satisfied. This restriction can be modeled
by combining the technique just introduced with a multiple-choice constraint as follows:

f1(x1, x2, . . . , xn) − B1y1 ≤ b1,

f2(x1, x2, . . . , xn) − B2y2 ≤ b2,

y1 + y2 ≤ 1,

y1, y2 binary.

9.2 Formulating Integer Programs 279

The variablesy1 and y2 and constantsB1 and B2 are chosen as above to indicate when the constraints are
satisfied. The multiple-choice constrainty1 + y2 ≤ 1 implies that at least one variabley j equals 0, so that,
as required, at least one constraint must be satisfied.

We can save one integer variable in this formulation by noting that the multiple-choice constraint can be
replaced byy1 + y2 = 1, or y2 = 1− y1, since this constraint also implies that eithery1 or y2 equals 0. The
resulting formulation is given by:

f1(x1, x2, . . . , xn) − B1y1 ≤ b1,

f2(x1, x2, . . . , xn) − B2(1 − y1) ≤ b2,

y1 = 0 or 1.

As an illustration of this technique, consider again the custom-molder example from Chapter 1. That
example included the constraint

6x1 + 5x2 ≤ 60, (8)

which represented the production capacity for producingx1 hundred cases of six-ounce glasses andx2 hundred
cases of ten-ounce glasses. Suppose that there were an alternative production process that could be used,
having the capacity constraint

4x1 + 5x2 ≤ 50. (9)

Then the decision variablesx1 andx2 must satisfyeither(8) or (9), depending upon which production process
is selected. The integer-programming formulation replaces (8) and (9) with the constraints:

6x1 + 5x2 − 100y ≤ 60,
4x1 + 5x2 − 100(1 − y) ≤ 50,

y = 0 or 1.

In this case, bothB1 andB2 are set to 100, which is large enough so that the constraint is not limiting for the
production processnotused.

Conditional Constraints

These constraints have the form:

f1(x1, x2, . . . , xn) > b1 implies that f2(x1, x2, . . . , xn) ≤ b2.

Since this implication is not satisfiedonly when both f1(x1, x2, . . . , xn) > b1 and
f2(x1, x2, . . . , xn) > b2, the conditional constraint is logically equivalent to the alternative constraints

f1(x1, x2, . . . , xn) ≤ b1 and/or f2(x1, x2, . . . , xn) ≤ b2,

whereat least onemust be satisfied. Hence, this situation can be modeled by alternative constraints as
indicated above.

k-Fold Alternatives

Suppose that we must satisfy at leastk of the constraints:

f j (x1, x2, . . . , xn) ≤ b j (j = 1, 2, . . . , p).

For example, these restrictions may correspond to manpower constraints forppotential inspection systems
for quality control in a production process. If management has decided to adopt at leastk inspection systems,
then thek constraints specifying the manpower restrictions for these systems must be satisfied, and the

280 Integer Programming 9.2

remaining constraints can be ignored. Assuming thatB j for j = 1, 2, . . . , p, are chosen so that the ignored
constraints will not be binding, the general problem can be formulated as follows:

f j (x1, x2, . . . , xn) − B j (1 − y j) ≤ b j (j = 1, 2, . . . , p),

p∑
j =1

y j ≥ k,

y j = 0 or 1 (j = 1, 2, . . . , p).

That is,y j = 1 if the j th constraint is to be satisfied, and at leastk of the constraints must be satisfied. If
we definey′

j ≡ 1 − y j , and substitute fory j in these constraints, the form of the resulting constraints is
analogous to that given previously for modeling alternative constraints.

Compound Alternatives

The feasible region shown in Fig. 9.2 consists of three disjoint regions, each specified by a system of
inequalities. The feasible region is defined by alternative sets of constraints, and can be modeled by the
system:

f1(x1, x2) − B1y1 ≤ b1
f2(x1, x2) − B2y1 ≤ b2

}
Region 1
constraints

f3(x1, x2) − B3y2 ≤ b3
f4(x1, x2) − B4y2 ≤ b4

}
Region 2
constraints

f5(x1, x2) − B5y3 ≤ b5
f6(x1, x2) − B6y3 ≤ b6
f7(x1, x2) − B7y3 ≤ b7

 Region 3
constraints

y1 + y2 + y3 ≤ 2,

x1 ≥ 0, x2 ≥ 0,

y1, y2, y3 binary.

Note that we use the same binary variabley j for eachconstraint defining one of the regions, and that the

Figure 9.2 An example of compound alternatives.

9.2 Formulating Integer Programs 281

Figure 9.3 Geometry of alternative constraints.

constrainty1 + y2 + y3 ≤ 2 implies that the decision variablesx1 andx2 lie in at least oneof the required
regions. Thus, for example, ify3 = 0, then each of the constraints

f5(x1, x2) ≤ b5, f6(x1, x2) ≤ b6, and f7(x1, x2) ≤ b7

is satisfied.
The regions do not have to be disjoint before we can apply this technique. Even the simple alternative

constraint
f1(x1, x2) ≤ b1 or f2(x1, x2) ≤ b2

shown in Fig. 9.3 contains overlapping regions.

Representing Nonlinear Functions

Nonlinear functions can be represented by integer-programming formulations. Let us analyze the most useful
representations of this type.

i) Fixed Costs
Frequently, the objective function for a minimization problem contains fixed costs (preliminary design costs,
fixed investment costs, fixed contracts, and so forth). For example, the cost of producingx units of a specific
product might consist of a fixed cost of setting up the equipment and a variable cost per unit produced on the
equipment. An example of this type of cost is given in Fig. 9.4.

Assume that the equipment has a capacity ofB units. Definey to be a binary variable that indicates when
the fixed cost is incurred, so thaty = 1 whenx > 0 andy = 0 whenx = 0. Then the contribution to cost
due tox may be written as

K y + cx,

with the constraints:

x ≤ By,

x ≥ 0,

y = 0 or 1.

As required, these constraints imply thatx = 0 when the fixed cost is not incurred, i.e., wheny = 0. The
constraints themselves do not imply thaty = 0 if x = 0. But whenx = 0, the minimization will clearly

282 Integer Programming 9.2

Figure 9.4 A fixed cost.

Figure 9.5 Modeling a piecewise linear curve.

selecty = 0, so that the fixed cost is not incurred. Finally, observe that ify = 1, then the added constraint
becomesx ≤ B, which reflects the capacity limit on the production equipment.

ii) Piecewise Linear Representation
Another type of nonlinear function that can be represented by integer variables is a piecewise linear curve.
Figure 9.5 illustrates a cost curve for plant expansion that contains three linear segments with variable costs
of 5, 1, and 3 million dollars per 1000 items of expansion.

To model the cost curve, we express any value ofx as the sum of three variablesδ1, δ2, δ3, so that the
cost for each of these variables is linear. Hence,

x = δ1 + δ2 + δ3,

where

0 ≤ δ1 ≤ 4,

0 ≤ δ2 ≤ 6, (10)

0 ≤ δ3 ≤ 5;

and the total variable cost is given by:

Cost= 5δ1 + δ2 + 3δ3.

9.2 Formulating Integer Programs 283

Note that we have defined the variables so that:

δ1 corresponds to the amount by whichx exceeds 0, but is less than or equal to 4;
δ2 is the amount by whichx exceeds 4, but is less than or equal to 10; and
δ3 is the amount by whichx exceeds 10, but is less than or equal to 15.

If this interpretation is to be valid, we must also require thatδ1 = 4 wheneverδ2 > 0 and thatδ2 = 6
wheneverδ3 > 0. Otherwise, whenx = 2, say, the cost would be minimized by selectingδ1 = δ3 = 0 and
δ2 = 2, since the variableδ2 has the smallest variable cost. However, these restrictions on the variables are
simply conditional constraints and can be modeled by introducing binary variables, as before.

If we let

w1 =

{
1 if δ1 is at its upper bound,
0 otherwise,

w2 =

{
1 if δ2 is at its upper bound,
0 otherwise,

then constraints (10) can be replaced by

4w1 ≤ δ1 ≤ 4,

6w2 ≤ δ2 ≤ 6w1,

0 ≤ δ3 ≤ 5w2, (11)

w1 and w2 binary,

to ensure that the proper conditional constraints hold. Note that ifw1 = 0, thenw2 = 0, to maintain feasibility
for the constraint imposed uponδ2, and (11) reduces to

0 ≤ δ1 ≤ 4, δ2 = 0, and δ3 = 0.

If w1 = 1 andw2 = 0, then (11) reduces to

δ1 = 4, 0 ≤ δ2 ≤ 6, and δ3 = 0.

Finally, if w1 = 1 andw2 = 1, then (11) reduces to

δ1 = 4, δ2 = 6, and 0≤ δ3 ≤ 5.

Hence, we observe that there are three feasible combinations for the values ofw1 andw2:

w1 = 0, w2 = 0 corresponding to 0≤ x ≤ 4 sinceδ2 = δ3 = 0;

w1 = 1, w2 = 0 corresponding to 4≤ x ≤ 10 sinceδ1 = 4 andδ3 = 0;

and

w1 = 1, w2 = 1 corresponding to 10≤ x ≤ 15 sinceδ1 = 4 andδ2 = 6.

The same general technique can be applied to piecewise linear curves with any number of segments. The
general constraint imposed upon the variableδ j for the j th segment will read:

L j w j ≤ δ j ≤ L j w j −1,

whereL j is the length of the segment.

284 Integer Programming 9.3

Figure 9.6 Diseconomies of scale.

iii) Diseconomies of Scale
An important special case for representing nonlinear functions arises when only diseconomies of scale apply—
that is, when marginal costs are increasing for a minimization problem or marginal returns are decreasing
for a maximization problem. Suppose that the expansion cost in the previous example now is specified by
Fig. 9.6.

In this case, the cost is represented by

Cost = δ1 + 3δ2 + 6δ3,

subject only to the linear constraints without integer variables,

0 ≤ δ1 ≤ 4

0 ≤ δ2 ≤ 6,

0 ≤ δ3 ≤ 5.

The conditional constraints involving binary variables in the previous formulation can be ignored if the
cost curve appears in a minimization objective function, since the coefficients ofδ1, δ2, andδ3 imply that it
is always best to setδ1 = 4 before takingδ2 > 0, and to setδ2 = 6 before takingδ3 > 0. As a consequence,
the integer variables have been avoided completely.

This representation without integer variables is not valid, however, if economies of scale are present; for
example, if the function given in Fig. 9.6 appears in a maximization problem. In such cases, it would be best
to select the third segment with variableδ3 before taking the first two segments, since the returns are higher
on this segment. In this instance, the model requires the binary-variable formulation of the previous section.

iv) Approximation of Nonlinear Functions
One of the most useful applications of the piecewise linear representation is for approximating nonlinear
functions. Suppose, for example, that the expansion cost in our illustration is given by the heavy curve in
Fig. 9.7.

If we draw linear segments joining selected points on the curve, we obtain apiecewise linear approx-
imation, which can be used instead of the curve in the model. The piecewise approximation, of course, is
represented by introducing integer variables as indicated above. By using more points on the curve, we can
make the approximation as close as we desire.

9.3 A Sample Formulation † 285

Figure 9.7 Approximation of a nonlinear curve.

9.3 A SAMPLE FORMULATION †

Proper placement of service facilities such as schools, hospitals, and recreational areas is essential to efficient
urban design. Here we will present a simplified model for firehouse location. Our purpose is to show
formulation devices of the previous section arising together in a meaningful context, rather than to give a
comprehensive model for the location problemper se. As a consequence, we shall ignore many relevant
issues, including uncertainty.

Assume that population is concentrated inI districts within the city and that districti containspi people.
Preliminary analysis (land surveys, politics, and so forth) has limited the potential location of firehouses to
J sites. Letdi j ≥ 0 be the distance from the center of districti to site j . We are to determine the ‘‘best’’ site
selection and assignment of districts to firehouses. Let

y j =

{
1 if site j is selected,
0 otherwise;

and

xi j =

{
1 if district i is assigned to sitej,
0 otherwise.

The basic constraints are that every district should be assigned to exactly one firehouse, that is,

J∑
j =1

xi j = 1 (i = 1, 2, . . . , I),

and that no district should be assigned to an unused site, that is,y j = 0 impliesxi j = 0 (i = 1, 2, . . . , I).
The latter restriction can be modeled as alternative constraints, or more simply as:

I∑
i =1

xi j ≤ y j I (j = 1, 2, . . . , J).

Sincexi j are binary variables, their sum never exceedsI , so that ify j = 1, then constraintj is nonbinding.
If y j = 0, thenxi j = 0 for all i .

† This section may be omitted without loss of continuity.

286 Integer Programming 9.3

Next note thatdi , the distance from districti to its assigned firehouse, is given by:

di =

J∑
j =1

di j xi j ,

since onexi j will be 1 and all others 0.
Also, the total population serviced by sitej is:

sj =

I∑
i =1

pi xi j .

Assume that a central district is particularly susceptible to fire and that either sites 1 and 2 or sites 3 and
4 can be used to protect this district. Then one of a number of similar restrictions might be:

y1 + y2 ≥ 2 or y3 + y4 ≥ 2.

We let y be a binary variable; then these alternative constraints become:

y1 + y2 ≥ 2y,

y3 + y4 ≥ 2(1 − y).

Next assume that it costsf j (sj) to build a firehouse at sitej to servicesj people and that a total budget
of B dollars has been allocated for firehouse construction. Then

J∑
j =1

f j (sj) ≤ B.

Finally, one possible social-welfare function might be to minimize the distance traveled to the district
farthest from its assigned firehouse, that is, to:

Minimize D,

where

D = maxdi ;

or, equivalently,‡ to

Minimize D,

subject to:

D ≥ di (i = 1, 2, . . . , I).

Collecting constraints and substituting above fordi in terms of its defining relationship

di =

J∑
j =1

di j xi j ,

we set up the full model as:

Minimize D,

‡ The inequalitiesD ≥ di imply that D ≥ maxdi . The minimization ofD then ensures that it will actually be the
maximum of thedi .

9.4 Some Characteristics Of Integer Programs—A Sample Problem 287

subject to:

D−

J∑
j =1

di j xi j ≥ 0 (i = 1, 2, . . . , I),

J∑
j =1

xi j = 1 (i = 1, 2, . . . , I),

I∑
i =1

xi j ≤ y j I (j = 1, 2, . . . , J),

Sj −

I∑
i =1

pi xi j = 0 (j = 1, 2, . . . , J),

J∑
j =1

f j (sj) ≤ B,

y1 + y2 − 2y ≥ 0,

y3 + y4 + 2y ≥ 2,

xi j , y j , y binary (i = 1, 2, . . . , I ; j = 1, 2, . . . , J).

At this point we might replace each functionf j (sj)by an integer-programming approximation to complete
the model. Details are left to the reader. Note that iff j (sj) contains a fixed cost, then new fixed-cost variables
need not be introduced—the variabley j serves this purpose.

The last comment, and the way in which the conditional constraint ‘‘y j = 0 implies xi j = 0 (i =

1, 2, . . . , I)’’ has been modeled above, indicate that the formulation techniques of Section 9.2 should not
be applied without thought. Rather, they provide a common framework for modeling and should be used in
conjunction with good modeling ‘‘common sense.’’ In general, it is best to introduce as few integer variables
as possible.

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM

Whereas the simplex method is effective for solving linear programs, there is no single technique for solving
integer programs. Instead, a number of procedures have been developed, and the performance of any particular
technique appears to be highly problem-dependent. Methods to date can be classified broadly as following
one of three approaches:

i) enumeration techniques, including the branch-and-bound procedure;
ii) cutting-plane techniques; and

iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which combine techniques using several of
these approaches. In fact, there is a trend in computer systems for integer programming to include a number
of approaches and possibly utilize them all when analyzing a given problem. In the sections to follow, we
shall consider the first two approaches in some detail. At this point, we shall introduce a specific problem
and indicate some features of integer programs. Later we will use this example to illustrate and motivate the
solution procedures. Many characteristics of this example are shared by the integer version of the custom-
molder problem presented in Chapter 1.

The problem is to determinez∗ where:

z∗
= maxz = 5x1 + 8x2,

288 Integer Programming 9.5

subject to:

x1 + x2 ≤ 6,

5x1 + 9x2 ≤ 45,

x1, x2 ≥ 0 and integer.

The feasible region is sketched in Fig. 9.8. Dots in the shaded region are feasible integer points.

Figure 9.8 An integer programming example.

If the integrality restrictions on variables are dropped, the resulting problem is a linear program. We will
call it theassociated linear program. We may easily determine its optimal solution graphically. Table 9.1
depicts some of the features of the problem.

Table 9.1 Problem features.
Nearest

Continuous Round feasible Integer
optimum off point optimum

x1
9
4 = 2.25 2 2 0

x2
15
4 = 3.75 4 3 5

z 41.25 Infeasible 34 40

Observe that the optimal integer-programming solution is not obtained byroundingthe linear-programming
solution. The closest point to the optimal linear-program solution is not even feasible. Also, note that the
nearest feasible integer point to the linear-program solution is far removed from the optimal integer point.
Thus, it is not sufficient simply to round linear-programming solutions. In fact, by scaling the righthand-side
and cost coefficients of this example properly, we can construct a problem for which the optimal integer-
programming solution lies as far as we like from the rounded linear-programming solution, in eitherz value
or distance on the plane.

In an example as simple as this, almost any solution procedure will be effective. For instance, we could
easily enumerate all the integer points withx1 ≤ 9, x2 ≤ 6, and select the best feasible point. In practice, the
number of points to be considered is likely to prohibit such an exhaustive enumeration of potentially feasible
points, and a more sophisticated procedure will have to be adopted.

9.5 Branch-And-Bound 289

Figure 9.9 Subdividing the feasible region.

9.5 BRANCH-AND-BOUND

Branch-and-boundis essentially a strategy of ‘‘divide and conquer.’’ The idea is to partition the feasible
region into more manageable subdivisions and then, if required, to further partition the subdivisions. In
general, there are a number of ways to divide the feasible region, and as a consequence there are a number of
branch-and-bound algorithms. We shall consider one such technique, for problems with only binary variables,
in Section 9.7. For historical reasons, the technique that will be described next usually is referred to asthe
branch-and-bound procedure.

Basic Procedure

An integer linear program is a linear program further constrained by the integrality restrictions. Thus, in a
maximization problem, the value of the objective function, at the linear-program optimum, will always be an
upper bound on the optimal integer-programming objective. In addition, any integer feasible point is always
a lower bound on the optimal linear-program objective value.

The idea of branch-and-bound is to utilize these observations to systematically subdivide the linear-
programming feasible region and make assessments of the integer-programming problem based upon these
subdivisions. The method can be described easily by considering the example from the previous section.
At first, the linear-programming region is not subdivided: The integrality restrictions are dropped and the
associated linear program is solved, giving an optimal valuez0. From our remark above, this gives the upper
bound onz∗, z∗

≤ z0
= 411

4. Since the coefficients in the objective function are integral,z∗ must be integral
and this implies thatz∗

≤ 41.
Next note that the linear-programming solution hasx1 = 21

4 andx2 = 33
4. Both of these variables must

be integer in the optimal solution, and we can divide the feasible region in an attempt tomakeeither integral.
We know that, in any integer programming solution,x2 must be either an integer≤ 3 or an integer≥ 4. Thus,
our first subdivision is into the regions wherex2 ≤ 3 andx2 ≥ 4 as displayed by the shaded regionsL1 and
L2 in Fig. 9.9. Observe that, by making the subdivisions, we have excluded the old linear-program solution.
(If we selectedx1 instead, the region would be subdivided withx1 ≤ 2 andx1 ≥ 3.)

The results up to this point are pictured conveniently in anenumeration tree(Fig. 9.10). HereL0
represents the associated linear program, whose optimal solution has been included within theL0 box, and
the upper bound onz∗ appears to the right of the box. The boxes below correspond to the new subdivisions;
the constraints that subdivideL0 are included next to the lines joining the boxes. Thus, the constraints ofL1
are those ofL0 together with the constraintx2 ≥ 4, while the constraints ofL2 are those ofL0 together with
the constraintx2 ≤ 3.

The strategy to be pursued now may be apparent: Simply treat each subdivision as we did the original
problem. ConsiderL1 first. Graphically, from Fig. 9.9 we see that the optimal linear-programming solution

290 Integer Programming 9.5

Figure 9.10 Enumeration tree.

Figure 9.11 Subdividing the regionL1.

lies on the second constraint withx2 = 4, giving x1 =
1
5(45 − 9(4)) =

9
5 and an objective valuez =

5
(9

5

)
+8(4) = 41. Sincex1 is not integer, we subdivideL1 further, into the regionsL3 with x1 ≥ 2 andL4 with

x1 ≤ 1. L3 is an infeasible problem and so this branch of the enumeration tree no longer needs to be considered.
The enumeration tree now becomes that shown in Fig. 9.12. Note that the constraints of any subdivision

are obtained by tracing back toL0. For example,L4 contains the original constraints together withx2 ≥ 4
andx1 ≤ 2. The asterisk (∗) below boxL3 indicates that the region need not be subdivided or, equivalently,
that the tree will not be extended from this box.

At this point, subdivisionsL2 and L4 must be considered. We may select one arbitrarily; however,
in practice, a number of useful heuristics are applied to make this choice. For simplicity, let us select the
subdivision most recently generated, hereL4. Analyzing the region, we find that its optimal solution has

x1 = 1, x2 =
1
9(45− 5) =

40
9 .

Sincex2 is not integer,L4 must be further subdivided intoL5 with x2 ≤ 4, andL6 with x2 ≥ 5, leavingL2,
L5 andL6 yet to be considered.

TreatingL5 first (see Fig. 9.13), we see that its optimum hasx1 = 1, x2 = 4, andz = 37. Since this is
the best linear-programming solution forL5 and the linear program contains every integer solution inL5, no
integer point in that subdivision can give a larger objective value than this point. Consequently, other points

9.5 Branch-And-Bound 291

Figure 9.12

Figure 9.13 Final subdivisions for the example.

in L5 need never be considered andL5 need not be subdivided further. In fact, sincex1 = 1, x2 = 4, z = 37,
is a feasible solution to the original problem,z∗

≥ 37 and we now have the bounds 37≤ z∗
≤ 41. Without

further analysis, we could terminate with the integer solutionx1 = 1, x2 = 4, knowing that the objective
value of this point is within 10 percent of the true optimum. For convenience, the lower boundz∗

≥ 37 just
determined has been appended to the right of theL5 box in the enumeration tree (Fig. 9.14).

Although x1 = 1, x2 = 4 is the best integer point inL5, the regionsL2 and L6 might contain better
feasible solutions, and we must continue the procedure by analyzing these regions. InL6, the only feasible
point isx1 = 0, x2 = 5, giving an objective valuez = +40. This is better than the previous integer point and
thus the lower bound onz∗ improves, so that 40≤ z∗

≤ 41. We could terminate with this integer solution
knowing that it is within 2.5 percent of the true optimum. However,L2 couldcontain an even better integer
solution.

The linear-programming solution inL2 hasx1 = x2 = 3 andz = 39. This is the best integer point in
L2 but is not as good asx1 = 0, x2 = 5, so the later point (inL6) must indeed be optimal. It is interesting
to note that, even if the solution toL2 did not givex1 and x2 integer, but hadz < 40, then no feasible
(and, in particular, no integer point) inL2 could be as good asx1 = 0, x2 = 5, with z = 40. Thus, again
x1 = 0, x2 = 5 would be known to be optimal. This observation has important computational implications,

292 Integer Programming 9.5

Figure 9.14

since it is not necessary to drive every branch in the enumeration tree to an integer or infeasible solution, but
only to an objective value below the best integer solution.

The problem now is solved and the entire solution procedure can be summarized by the enumeration tree
in Fig. 9.15.

Figure 9.15

Further Considerations

There are three points that have yet to be considered with respect to the branch-and-bound procedure:

i) Can the linear programs corresponding to the subdivisions be solved efficiently?
ii) What is the best way to subdivide a given region, and which unanalyzed subdivision should be considered

next?

9.5 Branch-And-Bound 293

iii) Can the upper bound (z= 41, in the example) on the optimal valuez∗ of the integer program be improved
while the problem is being solved?

The answer to the first question is an unqualifiedyes. When moving from a region to one of its subdivisions,
we add one constraint that is not satisfied by the optimal linear-programming solution over the parent region.
Moreover, this was one motivation for the dual simplex algorithm, and it is natural to adopt that algorithm
here.

Referring to the sample problem will illustrate the method. The first two subdivisionsL1 andL2 in that
example were generated by adding the following constraints to the original problem:

For subdivision 1: x2 ≥ 4 or x2 − s3 = 4 (s3 ≥ 0);

For subdivision 2: x2 ≤ 3 or x2 + s4 = 3 (s4 ≥ 0).

In either case we add the new constraint to the optimal linear-programming tableau. For subdivision 1, this
gives:

(−z) −
5
4s1 −

3
4s2 = −411

4

x1 +
9
4s1 −

1
4s2 =

9
4jx2 −

5
4s1 +

1
4s2 =

15
4

Constraints from the
optimal canonical
form

−x2 + s3 = −4, Added constraint
x1, x2, s1, s2, s3 ≥ 0,

wheres1 ands2 are slack variables for the two constraints in the original problem formulation. Note that
the new constraint has been multiplied by−1, so that the slack variables3 can be used as a basic variable.
Since the basic variablex2 appears with a nonzero coefficient in the new constraint, though, we must pivot
to isolate this variable in the second constraint to re-express the system as:

(−z) −
5
4s1 −

3
4s2 = −411

4,

x1 +
9
4s1 −

1
4s2 =

9
4,

x2 −
5
4s1 +

1
4s2 =

15
4 ,

��
��
−

5
4s1 +

1
4s2 +s3 = −

1
4,

x1, x2, s1, s2, s3 ≥ 0.

These constraints are expressed in the proper form for applying the dual simplex algorithm, which will pivot
next to makes1 the basic variable in the third constraint. The resulting system is given by:

(−z) − s2 − s3 = −41,
x1 +

1
5s2 +

9
5s3 =

9
5,

x2 − s3 = 4,

s1 −
1
5s2 −

4
5s3 =

1
5,

x1, x2, s1, s2, s3 ≥ 0.

This tableau is optimal and gives the optimal linear-programming solution over the regionL1 asx1 =
9
5, x2 =

4, andz = 41. The same procedure can be used to determine the optimal solution inL2.
When the linear-programming problem contains many constraints, this approach for recovering an optimal

solution is very effective. After adding a new constraint and making the slack variable for that constraint
basic, we always have a starting solution for the dual-simplex algorithm with only one basic variable negative.
Usually, only a few dual-simplex pivoting operations are required to obtain the optimal solution. Using the
primal-simplex algorithm generally would require many more computations.

294 Integer Programming 9.5

Figure 9.16

Issue (ii) raised above is very important since, if we can make our choice of subdivisions in such a way
as to rapidly obtain a good (with luck, near-optimal) integer solutionẑ, then we can eliminate many potential
subdivisions immediately. Indeed, if any region has its linear programming valuez ≤ ẑ, then the objective
value of no integer point in that region can exceedẑ and the region need not be subdivided. There is no
universal method for making the required choice, although several heuristic procedures have been suggested,
such as selecting the subdivision with the largest optimal linear-programming value.†

Rules for determining which fractional variables to use in constructing subdivisions are more subtle.
Recall that any fractional variable can be used to generate a subdivision. One procedure utilized is to look
ahead one step in the dual-simplex method for every possible subdivision to see which is most promising. The
details are somewhat involved and are omitted here. For expository purposes, we have selected the fractional
variable arbitrarily.

Finally, the upper boundzon the valuez∗ of the integer program can be improved as we solve the problem.
Suppose for example, that subdivisionL2 was analyzed before subdivisionsL5 or L6 in our sample problem.
The enumeration tree would be as shown in Fig. 9.16.

At this point, the optimal solution must lie in eitherL2 or L4. Since, however, the largest value for
any feasible point in either of these regions is 405

9, the optimal value for the problemz∗ cannotexceed405
9.

Becausez∗ must be integral, this implies thatz∗
≤ 40 and the upper bound has been improved from the value

41 provided by the solution to the linear program onL0. In general, the upper bound is given in this way as
the largest value of any ‘‘hanging’’ box (one that has not been divided) in the enumeration tree.

Summary

The essential idea of branch-and-bound is to subdivide the feasible region to developboundsz < z∗ < z on z∗.
For a maximization problem, the lower boundz is the highest value of any feasible integer point encountered.
The upper bound is given by the optimal value of the associated linear program or by the largest value for
the objective function at any ‘‘hanging’’ box. After considering a subdivision, we mustbranchto (move to)
another subdivision and analyze it. Also, ifeither

† One common method used in practice is to consider subdivisions on a last-generated–first-analyzed basis. We used
this rule in our previous example. Note that data to initiate the dual-simplex method mentioned above must be stored for
each subdivision that has yet to be analyzed. This data usually is stored in a list, with new information being added to the
top of the list. When required, data then is extracted from thetopof this list, leading to the last-generated–first-analyzed
rule. Observe that when we subdivide a region into two subdivisions, one of these subdivisions will be analyzed next.
The data required for this analysis already will be in the computer core and need not be extracted from the list.

9.6 Branch-And-Bound 295

i) the linear program overL j is infeasible;

ii) the optimal linear-programming solution overL j is integer;or

iii) the value of the linear-programming solutionz j overL j satisfiesz j
≤ z (if maximizing),

then L j need not be subdivided. In these cases, integer-programming terminology says thatL j has been
fathomed.† Case (i) is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) fathoming by
bounds.

The flow chart in Fig. 9.17 summarizes the general procedure.

Figure 9.17 Branch-and-bound for integer-programming maximization.

† To fathomis defined as ‘‘to get to the bottom of; to understand thoroughly.’’ In this chapter,fathomedmight be more
appropriately defined as ‘‘understood enough or already considered.’’

296 Integer Programming 9.7

Figure 9.18

9.6 BRANCH-AND-BOUND FOR MIXED-INTEGER PROGRAMS

The branch-and-bound approach just described is easily extended to solve problems in which some, but not
all, variables are constrained to be integral. Subdivisions then are generated solely by the integral variables.
In every other way, the procedure is the same as that specified above. A brief example will illustrate the
method.

z∗
= maxz = −3x1 − 2x2 + 10,

subject to:

x1 − 2x2+ x3 =
5
2,

2x1 + x2 + x4 =
3
2,

x j ≥ 0 (j = 1, 2, 3, 4),

x2 and x3 integer.

The problem, as stated, is in canonical form, withx3 andx4 optimal basic variables for the associated linear
program.

The continuous variablex4 cannot be used to generate subdivisions since any value ofx4 ≥ 0 potentially
can be optimal. Consequently, the subdivisions must be defined byx3 ≤ 2 andx3 ≥ 3. The complete
procedure is summarized by the enumeration tree in Fig. 9.18.

The solution inL1 satisfies the integrality restrictions, soz∗
≥ z = 81

2. The only integral variable with a
fractional value in the optimal solution ofL2 is x2, so subdivisionsL3 andL4 are generated from this variable.
Finally, the optimal linear-programming value ofL4 is 8, so no feasible mixed-integer solution in that region
can be better than the value 81

2 already generated. Consequently, that region need not be subdivided and the
solution inL1 is optimal.

The dual-simplex iterations that solve the linear programs inL1, L2, L3, and L4 are given below in
Tableau 1. The variablessj in the tableaus are the slack variables for the
constraints added to generate the subdivisions. The coefficients in the appended constraints are determined
as we mentioned in the last section, by eliminating the basic variablesx j from the new constraint that is
introduced. To follow the iterations, recall that in the dual-simplex method, pivots are made on negative
elements in the generating row; if all elements in this row arepositive, as in regionL3, then the problem is
infeasible.

9.7 Implicit Enumeration 297

9.7 IMPLICIT ENUMERATION

A special branch-and-bound procedure can be given for integer programs with only binary variables. The
algorithm has the advantage that it requires no linear-programming solutions. It is illustrated by the following
example:

z∗
= max z = −8x1 − 2x2 − 4x3 − 7x4 − 5x5 + 10,

subject to:
−3x1 − 3x2 + x3 + 2x4 + 3x5 ≤ −2,

−5x1 − 3x2 − 2x3 − x4 + x5 ≤ −4,

x j = 0 or 1 (j = 1, 2, . . . , 5).

One way to solve such problems is complete enumeration. List all possible binary combinations of the
variables and select the best such point that is feasible. The approach works very well on a small problem
such as this, where there are only a few potential 0–1 combinations for the variables, here 32. In general,
though, ann-variable problem contains 2n 0–1 combinations; for large values ofn, the exhaustive approach
is prohibitive. Instead, one might implicitly consider every binary combination, just as every integer point
was implicitlyconsidered, but not necessarily evaluated, for the general problem via branch-and-bound.

Recall that in the ordinary branch-and-bound procedure, subdivisions were analyzed by maintaining the
linear constraints and dropping the integrality restrictions. Here, we adopt the opposite tactic of always

298 Integer Programming 9.7

maintaining the 0–1 restrictions, but ignoring the linear inequalities.
The idea is to utilize a branch-and-bound (or subdivision) process to fix some of the variables at 0 or

1. The variables remaining to be specified are calledfree variables. Note that, if the inequality constraints
are ignored, the objective function is maximized by setting the free variables to zero, since their objective-
function coefficients are negative. For example, ifx1 andx4 are fixed at 1 andx5 at 0, then the free variables
arex2 andx3. Ignoring the inequality constraints, the resulting problem is:

max[−8(1) − 2x2 − 4x3 − 7(1) − 5(0) + 10] = max[−2x2 − 4x3 − 5],

subject to:
x2 and x3 binary.

Since the free variables have negative objective-function coefficients, the maximization setsx2 = x3 = 0.

The simplicity of this trivial optimization, as compared to a more formidable linear program, is what we
would like to exploit.

Returning to the example, we start withnofixed variables, and consequently every variable is free and set
to zero. The solution does not satisfy the inequality constraints, and we must subdivide to search for feasible
solutions. One subdivision choice might be:

For subdivision 1: x1 = 1,

For subdivision 2: x1 = 0.

Now variablex1 is fixed in each subdivision. By our observations above, if the inequalities are ignored, the
optimal solution over each subdivision hasx2 = x3 = x4 = x5 = 0. The resulting solution in subdivision 1
gives

z = −8(1) − 2(0) − 4(0) − 7(0) − 5(0) + 10 = 2,

9.7 Implicit Enumeration 299

and happens to satisfy the inequalities, so that the optimal solution to the original problem isat least2, z∗
≥ 2.

Also, subdivision 1 has been fathomed: The above solution is best among all 0–1 combinations withx1 = 1;
thus it must be best among those satisfying the inequalities. No other feasible 0–1 combination in subdivision
1 needs to be evaluated explicitly. These combinations have been considered implicitly.

The solution withx2 = x3 = x4 = x5 = 0 in subdivision 2 is the same as the original solution with
every variable at zero, and is infeasible. Consequently, the region must be subdivided further, say with
x2 = 1 or x2 = 0, giving:

For subdivision 3: x1 = 0, x2 = 1;

For subdivision 4: x1 = 0, x2 = 0.

The enumeration tree to this point is as given in Fig. 9.19.

Figure 9.19

Observe that this tree differs from the enumeration trees of the previous sections. For the earlier proce-
dures, the linear-programming solution used to analyze each subdivision was specified explicitly in a box.
Here the 0–1 solution (ignoring the inequalities) used to analyze subdivisions is not stated explicitly, since
it is known simply by setting free variables to zero. In subdivisioni3 , for example,x1 = 0 andx2 = 1 are
fixed, and the free variablesx3, x4 andx5 are set to zero.

Continuing to fix variables and subdivide in this fashion produces the complete tree shown in Fig. 9.20.
The tree is not extended after analyzing subdivisions 4, 5, 7, 9, and 10, for the following reasons.

i) At i5 , the solutionx1 = 0, x2 = x3 = 1 , with free variablesx4 = x5 = 0, is feasible, withz = 4 ,
thus providing an improved lower bound onz∗.

ii) At i7 , the solutionx1 = x3 = 0, x2 = x4 = 1, and free variablex5 = 0, hasz = 1 < 4, so that no
solution in that subdivision can be as good as that generated ati5 .

iii) At i9 and i10 , every free variable is fixed. In each case, the subdivisions contain only a single point,
which is infeasible, and further subdivision is not possible.

iv) At i4 , the second inequality (with fixed variablesx1 = x2 = 0) reads:

−2x3 − x4 + x5 ≤ −4.

No 0–1 values ofx3, x4, or x5 ‘‘completing’’ the fixed variablesx1 = x2 = 0 satisfy this constraint,
since the lowest value for the lefthand side of this equation is−3 whenx3 = x4 = 1 andx5 = 0. The
subdivision then has no feasible solution and need not be analyzed further.

The last observation is completely general. If, at any point after substituting for the fixed variables,
the sum of the remaining negative coefficients in any constraint exceeds the righthand side, then the region
defined by these fixed variables has no feasible solution. Due to the special nature of the 0–1 problem, there
are a number of other such tests that can be utilized to reduce the number of subdivisions generated. The
efficiency of these tests is measured by weighing the time needed to perform them against the time saved by
fewer subdivisions.

The techniques used here apply to any integer-programming problem involving only binary variables,
so that implicit enumeration is an alternative branch-and-bound procedure for this class of problems. In this
case, subdivisions are fathomed if any of three conditions hold:

300 Integer Programming 9.7

Figure 9.20

i) the integer program is known to be infeasible over the subdivision, for example, by the above infeasibility
test;

ii) the 0–1 solution obtained by setting free variables to zero satisfies the linear inequalities; or
iii) the objective value obtained by setting free variables to zero is no larger than the best feasible 0–1

solution previously generated.

These conditions correspond to the three stated earlier for fathoming in the usual branch-and-bound procedure.
If a region is not fathomed by one of these tests, implicit enumeration subdivides that region by selecting any
free variable and fixing its values to 0 or 1.

Our arguments leading to the algorithm were based upon stating the original 0–1 problem in the following
standard form:

1. the objective is a maximization with all coefficients negative; and
2. constraints are specified as ‘‘less than or equal to’’ inequalities.

As usual, minimization problems are transformed to maximization by multiplying cost coefficients by−1.
If x j appears in the maximization form with a positive coefficient, then the variable substitutionx j = 1− x′

j
everywhere in the model leaves the binary variablex′

j with a negative objective-function coefficient. Finally,
‘‘greater than or equal to’’ constraints can be multiplied by−1 to become ‘‘less than or equal to’’ constraints;
and general equality constraints are converted to inequalities by the special technique discussed in Exercise
17 of Chapter 2.

Like the branch-and-bound procedure for general integer programs, the way we choose to subdivide
regions can have a profound effect upon computations. In implicit enumeration, we begin with the zero
solutionx1 = x2 = · · · = xn = 0 and generate other solutions by setting variables to 1. One natural approach
is to subdivide based upon the variable with highest objective contribution. For the sample problem, this
would imply subdividing initially withx2 = 1 or x2 = 0.

Another approach often used in practice is to try to drive toward feasibility as soon as possible. For
instance, whenx1 = 0, x2 = 1, andx3 = 0 are fixed in the example problem, we could subdivide based
upon eitherx4 or x5. Settingx4 or x5 to 1 and substituting for the fixed variables, we find that the constraints
become:

9.8 Cutting Planes 301

x4 = 1, x5(free)= 0 : x5 = 1, x4(free)= 0 :

−3(0) − 3(1) + (0) + 2(1) + 3(0) ≤ −2, −3(0) − 3(1) + (0) + 2(0) + 3(1) ≤ −2,

−5(0) − 3(1) − 2(0) − 1(1) + (0) ≤ −4, −5(0) − 3(1) − 2(0) − 1(0) + (1) ≤ −4.

For x4 = 1, the first constraint is infeasible by 1 unit and the second constraint is feasible, giving 1 total unit
of infeasibility. Forx5 = 1, the first constraint is infeasible by 2 units and the second by 2 units, giving 4
total units of infeasibility. Thusx4 = 1 appears more favorable, and we would subdivide based upon that
variable. In general, the variable giving theleast total infeasibilitiesby this approach would be chosen next.
Reviewing the example problem the reader will see that this approach has been used in our solution.

9.8 CUTTING PLANES

The cutting-plane algorithm solves integer programs by modifying linear-programming solutions until the
integer solution is obtained. It does not partition the feasible region into subdivisions, as in branch-and-bound
approaches, but instead works with a single linear program, which it refines by adding new constraints. The
new constraints successively reduce the feasible region until an integer optimal solution is found.

In practice, the branch-and-bound procedures almost always outperform the cutting-plane algorithm.
Nevertheless, the algorithm has been important to the evolution of integer programming. Historically, it was
the first algorithm developed for integer programming that could be proved to converge in a finite number of
steps. In addition, even though the algorithm generally is considered to be very inefficient, it has provided
insights into integer programming that have led to other, more efficient, algorithms.

Again, we shall discuss the method by considering the sample problem of the previous sections:

z∗
= max 5x1 + 8x2,

subject to:

x1 + x2 + s1 = 6,

5x1 + 9x2 + s2 = 45,

x1, x2, s1, s2 ≥ 0.

(11)

s1 ands2 are, respectively, slack variables for the first and second constraints.
Solving the problem by the simplex method produces the following optimal tableau:

(−z) −
5
4s1 −

3
4s2 = −411

4,

x1 +
9
4s1 −

1
4s2 =

9
4,

x2 −
5
4s1 +

1
4s2 =

15
4 ,

x1, x2, s1, s2, s3 ≥ 0.

Let us rewrite these equations in an equivalent but somewhat altered form:

(−z) −2s1 −s2 +42 =
3
4 −

3
4s1 −

1
4s2,

x1 +2s1 −s2 − 2 =
1
4 −

1
4s1 −

3
4s2,

x2 −2s1 − 3 =
3
4 −

3
4s1 −

1
4s2,

x1, x2, s1, s2 ≥ 0.

These algebraic manipulations have isolated integer coefficients to one side of the equalities and fractions to
the other, in such a way that the constant terms on the righthand side are all nonnegative and the slack variable
coefficients on the righthand side are all nonpositive.

302 Integer Programming 9.8

In any integer solution, the lefthand side of each equation in the last tableau must be integer. Sinces1 and
s2 are nonnegative and appear to the right with negative coefficients, each righthand side necessarily must
be less than or equal to the fractional constant term. Taken together, these two observations show that both
sides of every equation must be an integer less than or equal to zero (if an integer is less than or equal to a
fraction, it necessarily must be 0 or negative). Thus, from the first equation, we may write:

3
4 −

3
4s1 −

1
4s2 ≤ 0 and integer,

or, introducing a slack variables3,

3
4 −

3
4s1 −

1
4s2 + s3 = 0, s3 ≥ 0 and integer. (C1)

Similarly, other conditions can be generated from the remaining constraints:

1
4 −

1
4s1 −

3
4s2 + s4 = 0, s4 ≥ 0 and integer (C2)

3
4 −

3
4s1 −

1
4s2 + s5 = 0, s5 ≥ 0 and integer. (C3)

Note that, in this case,(C1) and(C3) are identical.

The new equations(C1), (C2), and(C3) that have been derived are calledcutsfor the following reason:
Their derivation did not exclude any integer solutions to the problem, so that any integer feasible point to the
original problem must satisfy the cut constraints. The linear-programming solution hads1 = s2 = 0; clearly,
these donot satisfy the cut constraints. In each case, substitutings1 = s2 = 0 gives eithers3, s4, or s5 < 0.
Thus the net effect of a cut is to cut away the optimal linear-programming solution from the feasible region
without excluding any feasible integer points.

The geometry underlying the cuts can be established quite easily. Recall from (11) that slack variables
s1 ands2 are defined by:

s1 = 6 − x1 − x2,

s2 = 45 − 5x1 − 9x2.

Substituting these values in the cut constraints and rearranging, we may rewrite the cuts as:

2x1 + 3x2 ≤ 15, (C1 or C3)

4x1 + 7x2 ≤ 35. (C2)

In this form, the cuts are displayed in Fig. 9.21. Notethat they exhibit the features suggested above. In each
case, the added cut removes the linear-programming solutionx1 =

9
4, x2 =

15
4 , from the feasible region, at

the same time including every feasible integer solution.
The basic strategy of the cutting-plane technique is to add cuts (usually only one) to the constraints

defining the feasible region and then to solve the resulting linear program. If the optimal values for the
decision variables in the linear program are all integer, they are optimal; otherwise, a new cut is derived from
the new optimal linear-programming tableau and appended to the constraints.

Note from Fig. 9.21 that the cutC1 = C3 leads directly to the optimal solution. CutC2 does not, and
further iterations will be required if this cut is appended to the problem (without the cutC1 = C3). Also
note thatC1 cuts deeper into the feasible region than doesC2. For problems with many variables, it is
generally quite difficult to determine which cuts will be deep in this sense. Consequently, in applications, the
algorithm frequently generates cuts that shave very little from the feasible region, and hence the algorithm’s
poor performance.

A final point to be considered here is the way in which cuts are generated. The linear-programming
tableau for the above problem contained the constraint:

x1 +
9
4s1 −

1
4s2 =

9
4.

9.8 Cutting Planes 303

Figure 9.21 Cutting away the linear-programming solution.

Suppose that we rounddown the fractional coefficients to integers, that is,9
4 to 2, −1

4 to −1, and 9
4 to 2.

Writing these integers to the left of the equality and the remaining fractions to the right, we obtain as before,
the equivalent constraint:

x1 + 2s1 − s2 − 2 =
1
4 −

1
4s1 −

3
4s2.

By our previous arguments, the cut is:

1
4 −

1
4s1 −

3
4s2 ≤ 0 and integer.

Another example may help to clarify matters. Suppose that the final linear-programming tableau to a
problem has the constraint

x1 +
1
6x6 −

7
6x7 + 3x8 = 45

6.

Then the equivalent constraint is:

x1 − 2x7 + 3x8 − 4 =
5
6 −

1
6x6 −

5
6x7,

and the resulting cut is:
5
6 −

1
6x6 −

5
6x7 ≤ 0 and integer.

Observe the way that fractions are determined for negative coefficients. The fraction in the cut constraint
determined by thex7 coefficient−7

6 = −11
6 is not 1

6, but rather it is the fraction generated by rounding down
to −2; i.e., the fraction is−11

6 − (−2) =
5
6.

Tableau 2 shows the complete solution of the sample problem by the cutting-plane technique. Since cut
C1 = C3 leads directly to the optimal solution, we have chosen to start with cutC2. Note that, if the slack
variable for any newly generated cut is taken as the basic variable in that constraint, then the problem is in
the proper form for the dual-simplex algorithm. For instance, the cut in Tableau 2(b) generated from thex1
constraint

x1 +
7
3s1 −

1
3s2 =

7
3 or x1 + 2s1 − s2 − 2 =

1
3 −

1
3s1 −

2
3s2

is given by:
1
3 −

1
3s1 −

2
3s2 ≤ 0 and integer.

Lettings4 be the slack variable in the constraint, we obtain:

−
1
3s1 −

2
3s2 + s4 = −

1
3.

304 Integer Programming 9.8

Sinces1 ands2 are nonbasic variables, we may takes4 to be the basic variable isolated in this constraint (see
Tableau 2(b)).

By making slight modifications to the cutting-plane algorithm that has been described, we can show that
an optimal solution to the integer-programming problem will be obtained, as in this example, after adding
only a finite number of cuts. The proof of this fact by R. Gomory in 1958 was a very important theoretical
break-through, since it showed that integer programs can be solved bysomelinear program (the associated
linear program plus the added constraints). Unfortunately, the number of cuts to be added, though finite, is
usually quite large, so that this result does not have important practical ramifications.

9.8 Cutting Planes 305

EXERCISES

1. As the leader of an oil-exploration drilling venture, you must determine the least-cost selection of 5 out of 10 possible
sites. Label the sitesS1, S2, . . . , S10, and the exploration costs associated with each asC1, C2, . . . , C10.

Regional development restrictions are such that:

i) Evaluating sitesS1 and S7 will prevent you from exploring siteS8.

ii) Evaluating siteS3 or S4 prevents you from assessing siteS5.

iii) Of the groupS5, S6, S7, S8, only two sites may be assessed.

Formulate an integer program to determine the minimum-cost exploration scheme that satisfies these restrictions.

2. A company wishes to put together an academic ‘‘package’’ for an executive training program. There are five area
colleges, each offering courses in the six fields that the program is designed to touch upon.

The package consists of 10 courses; each of the six fields must be covered.

The tuition (basic charge), assessed when at least one course is taken, at collegei is Ti (independent of
the number of courses taken). Moreover, each college imposes an additional charge (covering course materials,
instructional aids, and so forth) foreachcourse, the charge depending on the college and the field of instructions.

Formulate an integer program that will provide the company with the minimum amount it must spend to meet
the requirements of the program.

3. The marketing group of A. J. Pitt Company is considering the options available for its next advertising campaign
program. After a great deal of work, the group has identified a selected number of options with the characteristics
shown in the accompanying table.

Total
Trade Popular Promotional resource

TV magazineNewspaper Radio magazinecampaign available

Customers
reached 1,000,000 200,000 300,000 400,000 450,000 450,000 −

Cost ($) 500,000 150,000 300,000 250,000 250,000 100,000 1,800,000

Designers

needed

(man-hours) 700 250 200 200 300 400 1,500

Salesmen

needed

(man-hours) 200 100 100 100 100 1,000 1,200

The objective of the advertising program is to maximize the number of customers reached, subject to the
limitation of resources (money, designers, and salesman) given in the table above. In addition, the following
constraints have to be met:

i) If the promotional campaign is undertaken, it needs either a radio or a popular magazine campaign effort to
support it.

ii) The firm cannot advertise in both the trade and popular magazines.

Formulate an integer-programming model that will assist the company to select an appropriate advertising campaign
strategy.

4. Three different items are to be routed through three machines. Each item must be processed first on machine 1, then
on machine 2, and finally on machine 3. The sequence of items may differ for each machine. Assume that the times
ti j required to perform the work on itemi by machinej are known and are integers. Our objective is to minimize
the total time necessary to process all the items.

a) Formulate the problem as an integer programming problem. [Hint. Let xi j be the starting time of processing
item i on machinej . Your model must prevent two items from occupying the same machine at the same time;
also, an item may not start processing on machine (j + 1) unless it has completed processing on machinej .]

306 Integer Programming 9.8

b) Suppose we want the items to be processed in the same sequence on each machine. Change the formulation in
part (a) accordingly.

5. Consider the problem:

Maximizez = x1 + 2x2,

subject to:

x1 + x2 ≤ 8,

−x1 + x2 ≤ 2,

x1 − x2 ≤ 4,

x2 ≥ 0 and integer,

x1 = 0, 1, 4, or 6.

a) Reformulate the problem as an equivalent integer linear program.
b) How would your answer to part (a) change if the objective function were changed to:

Maximizez = x2
1 + 2x2?

6. Formulate, butdo not solve,the following mathematical-programming problems. Also, indicate the type of algorithm
used in general to solve each.

a) A courier traveling to Europe can carry up to 50 kilograms of a commodity, all of which can be sold for $40 per
kilogram. The round-trip air fare is $450 plus $5 per kilogram of baggage in excess of 20 kilograms (one way).
Ignoring any possible profits on the return trip, should the courier travel to Europe and, if so, how much of the
commodity should be taken along in order to maximize his profits?

b) A copying service incurs machine operating costs of:

$0.10 for copies 1 to 4,
0.05 for copies 5 to 8,
0.025 for copies 9 and over,

and has a capacity of 1000 copies per hour. One hour has been reserved for copying a 10-page article to be sold
to MBA students. Assuming that all copies can be sold for $0.50 per article, how many copies of the article
should be made?

c) A petrochemical company wants to maximize profit on an item that sells for $0.30 per gallon. Suppose that
increased temperature increases output according to the graph in Fig. E9.1. Assuming that production costs are
directly proportional to temperature as $7.50 per degree centigrade, how many gallons of the item should be
produced?

7. Suppose that you are a ski buff and an entrepreneur. You own a set of hills, any or all of which can be developed.
Figure E9.2 illustrates the nature of the cost for putting ski runs on any hill.

The cost includes fixed charges for putting new trails on a hill. For each hillj , there is a limitd j on the number
of trails that can be constructed and a lower limitt j on the number of feet of trail that must be developed if the hill
is used.

Use a piecewise linear approximation to formulate a strategy based on cost minimization for locating the ski
runs, given that you desire to haveM total feet of developed ski trail in the area.

8. Consider the following word game. You are assigned a number of tiles, each containing a lettera, b, . . . , or z from
the alphabet. For any letterα from the alphabet, your assignment includesNα (a nonnegative integer) tiles with
the letterα. From the letters you are to construct any of the wordsw1, w2, . . . , wn. This list might, for example,
contain all words from a given dictionary.

You may construct any word at most once, and use any tile at most once. You receivev j ≥ 0 points for making
wordw j and an additional bonus ofbi j ≥ 0 points for makingbothwordswi andw j (i = 1, 2, …,n; j = 1, 2, …,
n).

a) Formulate alinear integer program to determine your optimal choice of words.

9.8 Cutting Planes 307

Figure E9.1

Figure E9.2

b) How does the formulation change if you are allowed to select 100 tiles with no restriction on your choice of
letters?

9. In Section 9.1 of the text, we presented the following simplified version of the warehouse-location problem:

Minimize
∑

i

∑
j

ci j xi j +

∑
i

fi yi ,

subject to: ∑
i

xi j = d j (j = 1, 2, . . . , n)

∑
j

xi j − yi

(∑
j

d j

)
≤ 0 (i = 1, 2, . . . , m)

xi j ≥ 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n)

yi = 0 or 1 (i = 1, 2, . . . , m).

a) The above model assumes only one product and two distribution stages (from warehouse to customer). Indicate
how the model would be modified if there were three distribution stages (from plant to warehouse to customer)
andL different products. [Hint. Define a new decision variablexi jkl equal to the amount to be sent from plant
i , through warehousej , to customerk, of product`.]

308 Integer Programming 9.8

b) Suppose there are maximum capacities for plants and size limits (both upper and lower bounds) for warehouses.
What is the relevant model now?

c) Assume that each customer has to be served from a single warehouse; i.e., no splitting of orders is allowed. How
should the warehousing model be modified? [Hint. Define a new variablez jk = fraction of demand of customer
k satisfied from warehousej .]

d) Assume that each warehousei experiences economies of scale when shipping above a certain threshold quantity
to an individual customer; i.e., the unit distribution cost isci j whenever the amount shipped is between 0 and
di j , andc′

i j (lower thanci j) whenever the amount shipped exceedsdi j . Formulate the warehouse location model
under these conditions.

10. Graph the following integer program:

Maximizez = x1 + 5x2,

subject to :

−4x1 + 3x2 ≤ 6,

3x1 + 2x2 ≤ 18,

x1, x2 ≥ 0 and integer.

Apply the branch-and-bound procedure, graphically solving each linear-programming problem encountered. Inter-
pret the branch-and-bound procedure graphically as well.

11. Solve the following integer program using the branch-and-bound technique:

Minimize z = 2x1 − 3x2 − 4x3,

subject to:

−x1 + x2 + 3x3 ≤ 8,

3x1 + 2x2 − x3 ≤ 10,

x1, x2, x3 ≥ 0 and integer.

The optimal tableau to the linear program associated with this problem is:

Basic Current

variables values x1 x2 x3 x4 x5

x3
6
7 −

5
7 1 2

7 −
1
7

x2
38
7

8
7 1 1

7
3
7

(−z) 138
7

18
7

11
7

5
7

The variablesx4 andx5 are slack variables for the two constraints.

12. Use branch-and-bound to solve the mixed-integer program:

Maximizez = −5x1 − x2 − 2x3 + 5,

subject to:

−2x1 + x2 − x3 + x4 =
7
2,

2x1 + x2 + x3 + x5 = 2,

x j ≥ 0 (j = 1, 2, . . . , 5)

x3 andx5 integer.

9.8 Cutting Planes 309

13. Solve the mixed-integer programming knapsack problem:

Maximizez = 6x1 + 4x2 + 4x3 + x4 + x5,

subject to:

2x1 + 2x2 + 3x3 + x4 + 2x5 = 7,

x j ≥ 0 (j = 1, 2, . . . , 5) ,

x1 andx2 integer.

14. Solve the following integer program using implicit enumeration:

Maximizez = 2x1 − x2 − x3 + 10,

subject to:
2x1 + 3x2 − x3 ≤ 9,

2x2 + x3 ≥ 4,

3x1 + 3x2 + 3x3 = 6,

x j = 0 or 1 (j = 1, 2, 3).

15. A college intramural four-man basketball team is trying to choose its starting line-up from a six-man roster so as to
maximize average height. The roster follows:

Player NumberHeight∗ Position

Dave 1 10 Center

John 2 9 Center

Mark 3 6 Forward

Rich 4 6 Forward

Ken 5 4 Guard

Jim 6 −1 Guard

∗ In inches over 5′ 6′′.

The starting line-up must satisfy the following constraints:

i) At least one guard must start.
ii) Either John or Ken must be held in reserve.

iii) Only one center can start.
iv) If John or Rich starts, then Jim cannot start.

a) Formulate this problem as an integer program.
b) Solve for the optimal starting line-up, using the implicit enumeration algorithm.

16. Suppose that one of the following constraints arises when applying the implicit enumeration algorithm to a 0−1
integer program:

−2x1 − 3x2 + x3 + 4x4 ≤ −6, (1)

−2x1 − 6x2 + x3 + 4x4 ≤ −5, (2)

−4x1 − 6x2 − x3 + 4x4 ≤ −3. (3)

In each case, the variables on the lefthand side of the inequalities are free variables and the righthand-side coefficients
include the contributions of the fixed variables.

310 Integer Programming 9.8

a) Use the feasibility test to show that constraint (1) contains no feasible completion.
b) Show thatx2 = 1 andx4 = 0 in any feasible completion to constraint (2). State a general rule that shows when a

variablex j , like x2 or x4 in constraint (2), must be either 0 or 1 in any feasible solution. [Hint. Apply the usual
feasibility test after settingx j to 1 or 0.]

c) Suppose that the objective function to minimize is:

z = 6x1 + 4x2 + 5x3 + x4 + 10,

and thatz = 17 is the value of an integer solution obtained previously. Show thatx3 = 0 in a feasible completion
to constraint (3) that is a potential improvement uponz with z < z. (Note that eitherx1 = 1 or x2 = 1 in any
feasible solution to constraint (3) havingx3 = 1.)

d) How could the tests described in parts (b) and (c) be used to reduce the size of the enumeration tree encountered
when applying implicit enumeration?

17. Although the constraint
x1 − x2 ≤ −1

and the constraint
−x1 + 2x2 ≤ −1

to a zero–one integer program both have feasible solutions, the system composed of both constraints is infeasible.
One way to exhibit the inconsistency in the system is to add the two constraints, producing the constraint

x2 ≤ −1,

which has no feasible solution withx2 = 0 or 1.

More generally, suppose that we multiply thei th constraint of a system

Multipliers
a11x1 + a12x2 + · · · + a1nxn ≤ b1, u1
...

...
...

ai 1x1 + ai 2x2 + · · · + ainxn ≤ bi , ui
...

...
...

am1x1 + am2x2 + · · · + amnxn ≤ bm, um

x j = 0 or 1 (j = 1, 2, . . . , n),

by nonnegative constraintsui and add to give the composite, orsurrogate, constraint:(
m∑

i =1

ui ai 1

)
x1 +

(
m∑

i =1

ui ai 2

)
x2 + · · · +

(
m∑

i =1

ui ain

)
xn ≤

m∑
i =1

ui bi .

a) Show that any feasible solutionx j = 0 or 1(j = 1, 2, . . . , n) for the system of constraints must also be feasible
to the surrogate constraint.

b) How might the fathoming tests discussed in the previous exercise be used in conjunction with surrogate constraints
in an implicit enumeration scheme?

c) A ‘‘best’’ surrogate constraint might be defined as one that eliminates as many nonoptimal solutionsx j = 0 or 1
as possible. Consider the objective value of the integer program when the system constraints are replaced by the
surrogate constraint; that is the problem:

v(u) = Min c1x1 + c2x2 + · · · + cnxn,

subject to: (
m∑

i =1

ui ai 1

)
x1 +

(
m∑

i =1

ui ai 2

)
x2 + · · · +

(
m∑

i =1

ui ain

)
xn ≤

m∑
i =1

ui bi ,

x j = 0 or 1 (j = 1, 2, . . . , n).

9.8 Cutting Planes 311

Let us say that a surrogate constraint with multipliersu1, u2 . . . , um is strongerthan another surrogate constraint
with multipliersu1, u2, . . . , um, if the valuev(u) of the surrogate constraint problem with multipliersu1, u2, . . . , um

is larger than the value ofv(u) with multipliers u1, u2, . . . , um. (The larger we makev(u), the more nonoptimal
solutions we might expect to eliminate.)

Suppose that we estimate the value ofv(u) defined above by replacingx j = 0 or 1 by 0 ≤ x j ≤ 1 for
j = 1, 2, . . . , n. Then, to estimate the strongest surrogate constraint, we would need to find those values of the
multipliersu1, u2, . . . , um to maximizev(u), where

v(u) = Min c1x1 + c2x2 + · · · + cnxn,

subject to:
0 ≤ x j ≤ 1 (1)

and the surrogate constraint.

Show that the optimal shadow prices to the linear program

Maximizec1x1 + c2x2 + · · · + cnxn,

subject to:

ai 1x1 + ai 2x2 + · · · + ainxn ≤ bi (i = 1, 2, . . . , m),

0 ≤ x j ≤ 1 (j = 1, 2, . . . , n),

solve the problem of maximizingv(u) in (1).

18. The following tableau specifies the solution to the linear program associated with the integer program presented
below.

Basic Current
variables values x1 x2 x3 x4

x1
16
5 1 2

5 −
1
5

x2
23
5 1 1

5
2
5

(−z) −
133
5 −

11
5 −

2
5

Maximizez = 4x1 + 3x2,

subject to:

2x1 + x2 + x3 = 11,
−x1 + 2x2 + x4 = 6,

x j ≥ 0 and integer (j = 1, 2, 3, 4).

a) Derive cuts from each of the rows in the optimal linear-programming tableau, including the objective function.
b) Express the cuts in terms of the variablesx1 andx2. Graph the feasible region forx1 andx2 and illustrate the

cuts on the graph.
c) Append the cut derived from the objective function to the linear program, and re-solve. Does the solution to this

new linear program solve the integer program? If not, how would you proceed to find the optimal solution to the
integer program?

19. Given the following integer linear program:

Maximizez = 5x1 + 2x2,

312 Integer Programming 9.8

subject to:

5x1 + 4x2 ≤ 21,
x1, x2 ≥ 0 and integer,

solve, using the cutting-plane algorithm. Illustrate the cuts on a graph of the feasible region.

20. The following knapsack problem:

Maximize
n∑

j =1

cxj ,

subject to:

n∑
j =1

2x j ≤ n,

x j = 0 or 1 (j = 1, 2, . . . , n),

which has the same ‘‘contribution’’ for each item under consideration, has proved to be rather difficult to solve for
most general-purpose integer-programming codes whenn is anoddnumber.

a) What is the optimal solution whenn is even? whenn is odd?
b) Comment specifically on why this problem might be difficult to solve on general integer-programming codes

whenn is odd.

21. Suppose that a firm hasN large rolls of paper, eachW inches wide. It is necessary to cutNi rolls of width Wi from
these rolls of paper. We can formulate this problem by defining variables

xi j = Number of smaller rolls of widthWi cut from large roll j .

We assume there arem different widthsWi . In order to cut all the required rolls of widthWi , we need constraints
of the form:

N∑
j =1

xi j = Ni (i = 1, 2, . . . , m).

Further, the number of smaller rolls cut from a large roll is limited by the widthW of the large roll. Assuming no
loss due to cutting, we have constraints of the form:

m∑
i =1

Wi xi j ≤ W (j = 1, 2, . . . , N).

a) Formulate an objective function to minimize the number of large rolls of widthW used to produce the smaller
rolls.

b) Reformulate the model to minimize the total trim loss resulting from cutting. Trim loss is defined to be that part
of a large roll that is unusable due to being smaller than any size needed.

c) Comment on the difficulty of solving each formulation by a branch-and-bound method.
d) Reformulate the problem in terms of the collection of possible patterns that can be cut from a given large roll.

(Hint. See Exercise 25 in Chapter 1.)
e) Comment on the difficulty of solving the formulation in (d), as opposed to the formulations in (a) or (b), by a

branch-and-bound method.

22. The Bradford Wire Company produces wire screening woven on looms in a process essentially identical to that of
weaving cloth. Recently, Bradford has been operating at full capacity and is giving serious consideration to a major
capital investment in additional looms. They currently have a total of 43 looms, which are in production all of their
available hours. In order to justify the investment in additional looms, they must analyze the utilization of their
existing capacity.

Of Bradford’s 43 looms, 28 are 50 inches wide, and 15 are 80 inches wide. Normally, one or two widths totaling
less than the width of the loom are made on a particular loom. With the use of a ‘‘center-tucker,’’ up to three widths

9.8 Cutting Planes 313

can be simultaneously produced on one loom; however, in this instance the effective capacities of the 50-inch and
80-inch looms are reduced to 49 inches and 79 inches, respectively. Under no circumstance is it possible to make
more than three widths simultaneously on any one loom.

Figure E9.3 gives a typical loom-loading configuration at one point in time. Loom #1, which is 50 inches wide,
has two 24-inch widths being produced on it, leaving 2 inches of unused or ‘‘wasted’’ capacity. Loom #12 has
only a 31-inch width on it, leaving 19 inches of the loom unused. If there were an order for a width of 19 inches or
less, then it could be produced at zero marginal machine cost along with the 31-inch width already being produced
on this loom. Note that loom #40 has widths of 24, 26, and 28 inches, totaling 78 inches. The ‘‘waste’’ here is
considered to be only 1 inch, due to the reduced effective capacity from the use of the center-tucker. Note also that
the combination of widths 24, 26, and 30 is not allowed, for similar reasons.

Figure E9.3

The total of 38334 inches of ‘‘wasted’’ loom capacity represents roughly seven and one-half 50-inch looms;
and members of Bradford’s management are sure that there must be a more efficient loom-loading configuration
that would save some of this ‘‘wasted’’ capacity. As there are always numerous additional orders to be produced,
any additional capacity can immediately be put to good use.

The two types of looms are run at different speeds and have different efficiencies. The 50-inch looms are
operated at 240 pics per second, while the 80-inch looms are operated at 214 pics per second. (There are 16 pics
to the inch). Further, the 50-inch looms are more efficient, since their ‘‘up time’’ is about 85% of the total time, as
compared to 65% for the 80-inch looms.

The problem of scheduling the various orders on the looms sequentially over time is difficult. However, as
a first cut at analyzing how efficiently the looms are currently operating, the company has decided to examine the
loom-loading configuration at one point in time as given in Fig. E9-3. If these same orders can be rearranged in

314 Integer Programming 9.8

such a way as to free up one or two looms, then it would be clear that a closer look at the utilization of existing
equipment would be warranted before additional equipment is purchased.

a) Since saving an 80-inch loom is not equivalent to saving a 50-inch loom, what is an appropriate objective function
to minimize?

b) Formulate an integer program to minimize the objective function suggested in part (a).

23. In the export division of Lowell Textile Mills, cloth is woven in lengths that are multiples of the piece-length required
by the customer. The major demand is for 18-meter piece-lengths, and the cloth is generally woven in 54-meter
lengths.

Cloth cannot be sold in lengths greater than the stipulated piece-length. Lengths falling short are classified into
four groups. For 18-meter piece-lengths, the categories and the contribution per meter are as follows:

Length Contribution/
Category Technical term (Meters) Meter

A First sort 18 1.00

B Seconds 11–17 0.90

C Short lengths 6–10 0.75

D Rags 1–5 0.60

J Joined parts∗ 18 0.90

∗ Joined parts consist of lengths obtained by joining two pieces
such that the shorter piece is at least 6 meters long.

The current cutting practice is as follows. Each woven length is inspected and defects are flagged prominently.
The cloth is cut at these defects and, since the cloth is folded in exact meter lengths, the lengths of each cut piece is
known. The cut pieces are then cut again, if necessary, to obtain as many pieces of first sort as possible. The short
lengths are joined wherever possible to make joined parts.

Since the process is continuous, it is impossible to pool all the woven lengths and then decide on a cutting
pattern. Each woven length has to be classified for cutting before it enters the cutting room.

As an example of the current practice, consider a woven length of 54 meters with two defects, one at 19 meters
and one at 44 meters. The woven length is first cut at the defects, giving three pieces of lengths 19, 25, and 10
meters each. Then further cuts are made as follows: The resulting contribution is

Piece length Further cuts

25 18 + 7

19 18 + 1
10 10

2 × 18× 1.00+ (7 + 10) × 0.75+ 1 × 0.60 = 49.35.

It is clear that this cutting procedure can be improved upon by the following alternative cutting plan: By joining 7

Piece length Further cuts

25 18 + 7

19 8 + 11

10 10

+ 11 and 8 + 10 to make two joined parts, the resulting contribution is:

18× 1.00+ 18× 2 × 0.90 = 50.40.

9.8 Cutting Planes 315

Thus with one woven length, contribution can be increased by $1.05 by merely changing the cutting pattern. With a
daily output of 1000 such woven lengths (two defects on average), substantial savings could be realized by improved
cutting procedures.

a) Formulate an integer program to maximize the contribution from cutting the woven length described above.
b) Formulate an integer program to maximize the contribution from cutting a general woven length with no more

than four defects. Assume that the defects occur at integral numbers of meters.
c) How does the formulation in (b) change when the defects arenotat integral numbers of meters?

24. Custom Pilot Chemical Company is a chemical manufacturer that produces batches of specialty chemicals to order.
Principal equipment consists of eight interchangeable reactor vessels, five interchangeable distillation columns, four
large interchangeable centrifuges, and a network of switchable piping and storage tanks. Customer demand comes
in the form of orders for batches of one or more (usually not more than three) specialty chemicals, normally to be
delivered simultaneously for further use by the customer. Customer Pilot Chemical fills these orders by means of a
sort of pilot plant for each specialty chemical formed by inter-connecting the appropriate quantities of equipment.
Sometimes a specialty chemical requires processing by more than one of these ‘‘pilot’’ plants, in which case one or
more batches of intermediate products may be produced for further processing. There is no shortage of piping and
holding tanks, but the expensive equipment (reactors, distillation columns, and centrifuges) is frequently inadequate
to meet the demand.

The company’s schedules are worked out in calendar weeks, with actual production always taking an integer
multiple of weeks. Whenever a new order comes in, the scheduler immediately makes up a precedence tree-chart for
it. The precedence tree-chart breaks down the order into ‘‘jobs.’’ For example, an order for two specialty chemicals,
of which one needs an intermediate stage, would be broken down into three jobs (Fig. E9.4). Each job requires
certain equipment, and each is assigned a preliminary time-in-process, or ‘‘duration.’’ The durations can always be
predicted with a high degree of accuracy.

Figure E9.4

Currently, Custom Pilot Chemical has three orders that need to be scheduled (see the accompanying table).
Orders can be started at the beginning of their arrival week and should be completed by the end of theirweek due.

Resource requirements
Order Job PrecedenceArrival Duration Week Distillation Centri-

numbernumber relations week in weeks due Reactors columns fuges
AK14 1 None 15 4 22 5 3 2

2 (1) 15 3 22 0 1 1
3 None 15 3 22 2 0 2

AK15 1 None 16 3 23 1 1 1
2 None 16 2 23 2 0 0
3 (1) 16 2 23 2 2 0

AK16 1 None 17 5 23 2 1 1
2 None 17 1 23 1 3 0

For example, AK14 consists of three jobs, where Job 2 cannot be started until Job 1 has been completed.
Figure E9-4 is an appropriate precedence tree for this order. Generally, the resources required are tied up for the
entire duration of a job. Assume that Custom Pilot Chemical is just finishing week 14.

a) Formulate an integer program that minimizes the total completion time for all orders.

316 Integer Programming 9.8

b) With a more complicated list of orders, what other objective functions might be appropriate? How would these
be formulated as integer programs?

25. A large electronics manufacturing firm that produces a single product is faced with rapid sales growth. Its planning
group is developing an overall capacity-expansion strategy, that would balance the cost of building new capacity,
the cost of operating the new and existing facilities, and the cost associated with unmet demand (that has to be
subcontracted outside at a higher cost).

The following model has been proposed to assist in defining an appropriate strategy for the firm.

Decision variables
Yi t A binary integer variable that will be 1 if a facility exists at site

i in periodt , and 0 otherwise.
(IY)i t A binary integer variable that will be 1 if facility is constructed

at sitei in periodt , and 0 otherwise.
Ai t Capacity (sq ft) at sitei in periodt .
(I A)i t The increase in capacity at sitei in periodt .
(D A)i t The decrease in capacity at sitei in periodt .
Pi t Total units produced at sitei in periodt .
Ut Total unmet demand (subcontracted) units in periodt .

Forecast parameters

Dt Demand in units in periodt .

Cost parameters–Capacity
si t Cost of operating a facility at sitei in periodt .
di t Cost of building a facility at sitei in periodt .
ai t Cost of occupying 1 sq ft of fully equipped capacity at sitei

in periodt .
bi t Cost of increasing capacity by 1 sq ft at sitei in periodt .
ci t Cost of decreasing capacity by 1 sq ft at sitei in periodt .

Cost parameters–Production
ot Cost of unmet demand (subcontracting+ opportunity cost)

for one unit in periodt .
vi t Tax-adjusted variable cost (material+ labor+ taxes) of

producing one unit at sitei in periodt .

Productivity parameters
(pa)i t Capacity needed (sq ft years) at sitei in periodt to produce

one unit of the product.

Policy parameters

F i t , F i t Maximum, minimum facility size at sitei in periodt (if the
site exists).

Gi t Maximum growth (sq ft) of sitei in periodt .

Objective function

The model’s objective function is to minimize total cost:

Min
T∑

t=1

N∑
i =1

si t Yi t + di t (IY)i t

+

T∑
t=1

N∑
i =1

ai t Ai t + bi t (I A)i t + sci t (D A)i t

+

T∑
t=1

N∑
i =1

vi t Pi t +

T∑
t=1

otUt

9.8 Cutting Planes 317

Description of constraints

1. Demand constraint
N∑

i =1

Pi t + Ut = Dt

2. Productivity constraint

(pa)i t Pi t ≤ Ai t

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

3. Facility-balance constraint

Yi t−1 + (IY)i t = Yi t

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

4. Area-balance constraint

Ai t−1 + (I A)i t − (D A)i t = Ai t

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

5. Facility-size limits

Ai t ≥ Yi t F i t
Ai t ≤ Yi t F i t

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

6. Growth constraint

(I A)i t − (D A)i t ≤ Gi t

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

7. Additional constraints

0 ≤ Yi t ≤ 1
Yi t integer

{
for i = 1, 2, . . . , N,

for t = 1, 2, . . . , T,

All variables nonnegative.

Explain the choice of decision variables, objective function, and constraints. Make a detailed discussion of the
model assumptions. Estimate the number of constraints, continuous variables, and integer variables in the model.
Is it feasible to solve the model by standard branch-and-bound procedures?

26. An investor is considering a total ofI possible investment opportunities(i = 1, 2, . . . , I), during a planning horizon
coveringT time periods(t = 1, 2, . . . , T). A total of bi t dollars is required to initiate investmenti in period t .
Investment in projecti at time periodt provides an income streamai, t + 1, ai, t + 2, . . . , ai, T in succeeding time
periods. This money is available for reinvestment in other projects. The total amount of money available to the
investor at the beginning of the planning period isB dollars.

a) Assume that the investor wants to maximize the net present value of the net stream of cash flows (ct is the
corresponding discount factor for periodt). Formulate an integer-programming model to assist in the investor’s
decision.

b) How should the model be modified to incorporate timing restrictions of the form:

i) Project j cannot be initiated until after projectk has been initiated; or
ii) Projects j andk cannot both be initiated in the same period?

c) If the returns to be derived from these projects are uncertain, how would you consider the risk attitudes of the
decision-maker? [Hint. See Exercises 22 and 23 in Chapter 3.]

27. The advertising manager of a magazine faces the following problem: For weekt, t = 1, 2 . . . , 13, she has been
allocated a maximum ofnt pages to use for advertising. She has received requestsr1, r2, . . . , r B for advertising,
bid rk indicating:

i) the initial weekik to run the ad,

318 Integer Programming 9.8

ii) the durationdk of the ad (in weeks),
iii) the page allocationak of the ad (half-, quarter-, or full-page),
iv) a price offerpk.

The manager must determine which bids to accept to maximize revenue, subject to the following restrictions:

i) Any ad that is accepted must be run in consecutive weeks throughout its duration.
ii) The manager cannot accept conflicting ads. Formally, subsetsTj and T̄j for j = 1, 2, . . . , n of the bids are

given, and she may not select an ad from bothTj andT̄j (j = 1, 2, . . . , n). For example, ifT1 = {r1, r2}, T̄1 =

{r3, r4, r5}, and bidr1 or r2 is accepted, then bidsr3, r4, or r5 must all be rejected; if bidr3, r4, or r5 is accepted,
then bidsr1 andr2 must both be rejected.

iii) The manager must meet the Federal Communication Commission’s balanced advertising requirements. Formally,
subsetsSj andS̄j for j = 1, 2, . . . , m of the bids are given; if she selects a bid fromSj , she must also select a
bid from S̄j (j = 1, 2, . . . , m). For example, ifS1 = {r1, r3, r8} andS2 = {r4, r6}, then either requestr4 or r6
must be accepted if any of the bidsr1, r3, or r8 are accepted.

Formulate as an integer program.

28. Them-traveling-salesman problem is a variant of the traveling-salesman problem in whichm salesmen stationed
at a home base, city 1, are to make tours to visit other cities, 2, 3, . . . , n. Each salesman must be routed through
some, but not all, of the cities and return to his (or her) home base; each city must be visited by one salesman. To
avoid redundancy, the sales coordinator requires that no city (other than the home base) be visited by more than one
salesman or that any salesman visit any city more than once.

Suppose that it costci j dollars for any salesman to travel from cityi to city j .

a) Formulate an integer program to determine the minimum-cost routing plan. Be sure that your formulation does
not permit subtour solutions for any salesman.

b) Them-traveling-salesman problem can be reformulated as a single-salesman problem as follows: We replace
the home base (city 1) bym fictitious cities denoted 1′, 2′, . . . , m′. We link each of these fictitious cities to each
other with an arc with high costM >

∑n
i =1

∑n
j =1 |ci j |, and we connect each fictitious cityi ′ to every city j at

costci ′ j = ci j . Figure E9.5 illustrates this construction form = 3.

Figure E9.5

Suppose that we solve this reformulation as a single-traveling-salesman problem, but identify each portion of
the tour that travels from one of the fictitious citiesi ′ through the original network and back to another fictitious city
j ′ as a tour for one of them salesmen. Show that these tours solve them-traveling-salesman problem. [Hint. Can
the solution to the single-salesman problem ever use any of the arcs with a high costM? How many times must the
single salesman leave from and return to one of the fictitious cities?]

29. Many practical problems, such as fuel-oil delivery, newspaper delivery, or school-bus routing, are special cases of
the generic vehicle-routing problem. In this problem, a fleet of vehicles must be routed to deliver (or pick up) goods
from a depot, node 0, ton drop-points,i = 1, 2, . . . , n.

Let

9.8 Cutting Planes 319

Qk = Loading capacity of thek th vehicle in the fleet(k = 1, 2, . . . , m);

di = Number of items to be left at drop-pointi (i = 1, 2, . . . , n);

tk
i = Time to unload vehiclek at drop-pointi (i = 1, 2, . . . n; k = 1, 2, . . . , m);

tk
i j = Time for vehiclek to travel from drop-pointi to drop-point

j (i = 0, 1, . . . , n; j = 0, 1, . . . , n; k = 1, 2, . . . , m)

ck
i j = Cost for vehiclek to travel from nodei to node j (i = 0, 1, . . . , n;

j = 0, 1, . . . , n; k = 1, 2, . . . , m).

If a vehicle visits drop-pointi , then it fulfills the entire demanddi at that drop-point. As in the traveling or
m-traveling salesman problem, only one vehicle can visit any drop-point, and no vehicle can visit the same drop-
point more than once. The routing pattern must satisfy the service restriction that vehiclek’s route take longer than
Tk time units to complete.

Define the decision variables for this problem as:

xk
i j =

{
1 if vehiclek travels from drop-pointi to drop-point j,
0 otherwise.

Formulate an integer program that determines the minimum-cost routing pattern to fulfill demand at the drop-points
that simultaneously meets the maximum routing-time constraints and loads no vehicle beyond its capacity. How
many constraints and variables does the model contain when there are 400 drop-points and 20 vehicles?

ACKNOWLEDGMENTS

Exercise 22 is based on the Bradford Wire Company case written by one of the authors. Exercise 23 is
extracted from the Muda Cotton Textiles case written by Munakshi Malya and one of the authors.
Exercise 24 is based on the Custom Pilot Chemical Co. case, written by Richard F. Meyer and Burton Rothberg,
which in turn is based on ‘‘Multiproject Scheduling with Limited Resources: A Zero–One Programming
Approach,’’Management Science1969, by A. A. B. Pritsken, L. J. Watters, and P. M. Wolfe.
In his master’s thesis (Sloan School of Management, MIT, 1976), entitled ‘‘A Capacity Expansion Planning
Model with Bender’s Decomposition,’’ M. Lipton presents a more intricate version of the model described
in Exercise 25.
The transformation used in Exercise 28 has been proposed by several researchers; it appears in the 1971 book
Distribution Managementby S. Eilson, C. Watson-Gandy, and N. Christofides, Hafner Publishing Co., 1971.

