Integer Programming

Wolfram Wiesemann

November 17, 2009

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

Outline: Cutting Plane Algorithm Gomory Cuts Example

Contents of this Lecture

Mixed and Pure Integer Programming Problems Definitions

Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Definitions

Mixed Integer Programming Problem.

min
$$x_0 = c^{\mathrm{T}}x$$

subject to

$$\begin{array}{ll} Ax = b \\ x_j \geq 0 & \text{for } j \in N = \{1, \dots, n\} \\ x_j \in \mathbb{Z} & \text{for } j \in Z \subseteq N. \end{array}$$

Note: $x_i \in N \setminus Z$ are continuous, as before.

▶ Pure Integer Programming Problem. Z = N ∪ {x₀}, i.e., all variables (including slack and objective value) are integral. Can be achieved by *scaling*.

Contents of this Lecture

Mixed and Pure Integer Programming Problems Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Obtaining a Pure Integer Progamming Problem

Consider the following problem:

min
$$x_0 = -\frac{1}{3}x_1 - \frac{1}{2}x_2$$

subject to

$$\begin{aligned} &\frac{2}{3}x_1 + \frac{1}{3}x_2 \leq \frac{4}{3} \\ &\frac{1}{2}x_1 - \frac{3}{2}x_2 \leq \frac{2}{3} \\ &x_1, x_2 \geq 0 \\ &x_1, x_2 \in \mathbb{Z}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

This is not a pure integer programming problem:

- ▶ x₀ not integral.
- Slack variables not integral.

Obtaining a Pure Integer Progamming Problem

Step 1. Scale the equations of the model.

min
$$x'_0 = -2x_1 - 3x_2$$
 (*6)

subject to

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Obtaining a Pure Integer Progamming Problem

Step 2. Insert (integral) slack variables:

min
$$x_0' = -2x_1 - 3x_2$$

subject to

$$2x_1 + x_2 + x_3 = 4$$

$$3x_1 - 9x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting

Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Capital Budgeting

- Company has resources i ∈ {1,...,m}. Resource i has limited availability b_i.
- ► Company can undertake projects j ∈ {1,...,n}. Project j requires a_{ij} units of resource i and gives revenues c_j.
- Which projects should be undertaken such that the resource availabilities are observed and the revenues maximised?

$$\max_{x} \sum_{j=1}^{n} c_j x_j$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad \forall i \in \{1, \dots, m\}$$
$$x_j \in \{0, 1\} \qquad \forall j \in \{1, \dots, n\}$$

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Depot Location (1)

- ▶ Company has m potential distribution sites i ∈ {1,...,m}. Building a distribution centre at site i costs f_i.
- ► There are *n* customers *j* ∈ {1,..., *n*}, each of whose demands need to be satisfied from one or more distribution centres. Satisfying fraction *x_{ij}* of customer *j*'s demand from distribution centre *i* costs *c_{ij}*, given that centre *i* is built.
- Which distribution centres should be built, and how should the customer demand's be satisfied, to minimise costs?

Depot Location (2)

$$\min_{x,y} \sum_{i=1}^{m} f_i y_i + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to

$$\sum_{i=1}^{m} x_{ij} = 1 \qquad \forall j \in \{1, \dots, n\}$$
$$x_{ij} \le y_i \qquad \forall i \in \{1, \dots, m\}, \ j \in \{1, \dots, n\}$$
$$x_{ij} \ge 0 \qquad \forall i \in \{1, \dots, m\}, \ j \in \{1, \dots, n\}$$
$$y_i \in \{0, 1\} \qquad \forall i \in \{1, \dots, m\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables Finite-Valued Variables

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Finite-Valued Variables

Assume a variable x_j can only take a finite number of values:

$$x_j \in \{p_1,\ldots,p_m\}$$
.

We can introduce variables $z_j^1, \ldots, z_j^m \in \{0, 1\}$ and add the constraint

$$z_j^1+\ldots+z_j^m=1.$$

Now, we can substitue x_i with

$$p_1 z_j^1 + \ldots + p_m z_j^m$$

in the objective function and all constraints.

Finite-Valued Variables

Example. $x_j \in \{1, 3, 11\}$ can be modeled as

$$egin{aligned} &z_j^1+z_j^2+z_j^3=1\ &z_j^1,z_j^2,z_j^3\in\{0,1\}\,. \end{aligned}$$

We then substitute x_i everywhere by

$$1z_j^1 + 3z_j^2 + 11z_j^3$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Exercise. Is it possible to save variables here?

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

We can model logical operations on the constraints via integer variables. For example, the expression

$$a^{\mathrm{T}}x \leq b \quad \lor \quad d^{\mathrm{T}}x \leq e$$

can be expressed by:

$$egin{aligned} & a^{\mathrm{T}}x - \mathrm{M}\delta \leq b \ & d^{\mathrm{T}}x - \mathrm{M}(1-\delta) \leq e \ & \delta \in \{0,1\}\,, \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

where ${\rm M}$ is a large number.

Example. We want to model the following problem:

min x

subject to

$$x \in [0,1] \quad \lor \quad x \ge 2.$$

Solution. This can be expressed as:

min x

subject to

$$\begin{split} & x \leq 1 + M\delta \\ & x \geq 2 - M(1 - \delta) \\ & x \geq 0. \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Example. We want to model the following problem:

subject to

$$x_1 + x_2 \le 4$$

 $x_1 \ge 1 \quad \lor \quad x_2 \ge 1 \quad \text{but not both } x_1, x_2 > 1$
 $x_1, x_2 \ge 0.$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Solution. This can be expressed as:

min $x_1 + x_2$

subject to

$$egin{aligned} & x_1+x_2 \leq 4 \ & x_1 \geq 1-\mathrm{M}\delta \ & x_2 \geq 1-\mathrm{M}(1-\delta) \ & x_1 \leq 1+\mathrm{M}(1-\delta) \ & x_2 \leq 1+\mathrm{M}\delta \ & x_1,x_2 \geq 0. \end{aligned}$$

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm Outline: Cutting Plane Algorithm Gomory Cuts

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example

The Big Picture

Want to solve a pure IP problem:

- Don't know how to solve IP problems.
- ► Know how to solve continuous problems (Simplex).

Outline of a solution procedure:

- Solve a continuous relaxation.
 - Contains all originally feasible solutions, plus others.
- If optimal solution is integral, we are done.
- Otherwise, *tighten* the relaxation and repeat.

Continuous relaxation: $x_j \in \mathbb{Z} \rightsquigarrow x_j \in \mathbb{R}$. **Tightening:** Add *cutting planes* (cut off current optimum).

The Big Picture

A *cutting plane algorithm* to solve pure integer programming problems works as follows.

- 1. Solve the IP problem with *continuous* variables instead of discrete ones.
- 2. If the resulting optimal solution x^* is integral, stop \Rightarrow optimal solution found.
- 3. Generate a *cut*, i.e., a constraint which is satisfied by all feasible integer solutions but not by x^* .
- 4. Add this new constraint, resolve problem, and go back to (2).

Terminates after finite number of iterations in (2). Resulting x^* is integral and optimal.

Consider the following problem:

max
$$x_0 = 5x_1 + 8x_2$$

subject to

$$egin{aligned} x_1 + x_2 &\leq 6 \ 5x_1 + 9x_2 &\leq 45 \ x_1, x_2 &\geq 0 \ x_1, x_2 &\in \mathbb{Z}. \end{aligned}$$

Step 1. Solve the IP problem with *continuous* variables instead of discrete ones.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Step 2. If the resulting optimal solution x^* is integral, stop \Rightarrow optimal solution found.

Resulting solution is $x^* = (2.25, 3.75)$ and hence *not* integral.

Step 3. Generate a *cut*, i.e., a constraint which is satisfied by all feasible integer solutions but not by x^* .

We generate cut $2x_1 + 3x_2 \le 15$.

Step 4. Add this new constraint, resolve problem, and go back to (2).

New optimal solution is $x^* = (3, 3)$. Note: previous x^* is not feasible anymore.

Step 2. If the resulting optimal solution x^* is integral, stop \Rightarrow optimal solution found.

 $x^* = (3,3)$ is integral \Rightarrow optimal solution found.

Remark. The cut we introduced only removed *non-integral* solutions. Cuts *never* cut off feasible solutions of the original IP problem!

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm

Gomory Cuts

Example

Ralph E. Gomory (* 1929)

"Outline of an Algorithm for Integer Solutions to Linear Programs" *Bulletin of the American Mathematical Society, Vol. 64, pp. 275-278,* **1958**.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Gomory Cut

Assume $x_1, \ldots, x_n \ge 0$ and integral. We show how to construct a Gomory Cut for

$$a_1x_1+\ldots+a_nx_n=b,$$

where $a_j, b \in \mathbb{R}$ (not necessarily integral). Note that this can be written as

$$(\lfloor a_1 \rfloor + \underbrace{[a_1 - \lfloor a_1 \rfloor]}_{f_1})x_1 + \ldots + (\lfloor a_n \rfloor + \underbrace{[a_n - \lfloor a_n \rfloor]}_{f_n})x_n = \lfloor b \rfloor + \underbrace{[b - \lfloor b \rfloor]}_{f},$$

where $\lfloor \beta \rfloor = \max \{ \alpha \in \mathbb{Z} : \alpha \leq \beta \}$ (largest integer smaller than or equal to β).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Gomory Cut

We separate fractional and integral terms:

$$(\lfloor a_1 \rfloor + f_1)x_1 + \ldots + (\lfloor a_n \rfloor + f_n)x_n = \lfloor b \rfloor + f$$

$$\Leftrightarrow \quad f_1x_1 + \ldots + f_nx_n - f = \lfloor b \rfloor - \lfloor a_1 \rfloor x_1 - \ldots - \lfloor a_n \rfloor x_n.$$

Observations.

- 1. As $x_j \in \mathbb{Z}$ for all feasible x, right-hand side is integral.
- 2. Thus, for all feasible x, left-hand side must be integral, too.
- 3. As $0 \le f < 1$, $x \ge 0$ and left-hand side integral, left-hand side must be non-negative.

Consequence. $f_1x_1 + \ldots + f_nx_n - f \ge 0 \iff f_1x_1 + \ldots + f_nx_n \ge f$ for every feasible *x*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gomory Cut

Suppose Step 1 of our cutting plane algorithm gives non-integral x^* . Then there is row in Simplex tableau with

$$x_i^* + \sum_{j \notin I} y_{ij} x_j^* = y_{i0}$$

with $y_{i0} \notin \mathbb{Z}$. **Gomory Cut.** Setting $f_j := y_{ij} - \lfloor y_{ij} \rfloor$, $f := y_{i0} - \lfloor y_{i0} \rfloor$, we get:

$$\sum_{j\notin I} f_j x_j \ge f. \qquad (*)$$

(*) is fulfilled for all feasible x but not for x^* : $\sum_{j \notin I} f_j x_j^* = 0 < f$.

Contents of this Lecture

Mixed and Pure Integer Programming Problems

Definitions Obtaining a Pure Integer Progamming Problem

Examples

Capital Budgeting Depot Location

Further Uses of Integer Variables

Finite-Valued Variables Logical Operations

Solving IP Problems: Cutting Plane Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline: Cutting Plane Algorithm Gomory Cuts Example

Consider the following problem:

max $3x_1 + 4x_2$

subject to

$$\begin{aligned} &\frac{2}{5}x_1 + x_2 \leq 3\\ &\frac{2}{5}x_1 - \frac{2}{5}x_2 \leq 1\\ &x_1, x_2 \geq 0\\ &x_1, x_2 \in \mathbb{Z}. \end{aligned}$$

Step 1. Convert maximisation objective into minimisation.

min $x_0 = -3x_1 - 4x_2$

subject to

$$\begin{aligned} &\frac{2}{5}x_1 + x_2 \leq 3\\ &\frac{2}{5}x_1 - \frac{2}{5}x_2 \leq 1\\ &x_1, x_2 \geq 0\\ &x_1, x_2 \in \mathbb{Z}. \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Step 1. Scale the equations of the problem.

min
$$x_0 = -3x_1 - 4x_2$$

subject to

$$\begin{aligned} &\frac{2}{5}x_1 + x_2 \leq 3 \qquad (*5) \\ &\frac{2}{5}x_1 - \frac{2}{5}x_2 \leq 1 \qquad (*5) \\ &x_1, x_2 \geq 0 \\ &x_1, x_2 \in \mathbb{Z}. \end{aligned}$$

Step 1. Scale the equations of the problem.

min
$$x_0 = -3x_1 - 4x_2$$

subject to

 $2x_1 + 5x_2 \le 15$ $2x_1 - 2x_2 \le 5$ $x_1, x_2 \ge 0$ $x_1, x_2 \in \mathbb{Z}.$

Step 1. Insert integral slack variables.

min
$$x_0 = -3x_1 - 4x_2$$

subject to

$$2x_1 + 5x_2 + x_3 = 15$$

$$2x_1 - 2x_2 + x_4 = 5$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}.$$

Step 1. Solve continuous relaxation of problem.

ΒV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	RHS
<i>x</i> 0	3	4			0
<i>x</i> 3	2	5	1		15
<i>x</i> ₄	2	-2		1	5

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	RHS
<i>x</i> ₀	3	4			0
<i>x</i> 3	2	5	1		15
<i>x</i> 4	2	-2		1	5

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	RHS
<i>x</i> 0	3	4			0
<i>x</i> 3	2	5	1		15
<i>x</i> ₄	2	-2		1	5

Step 1. Solve continuous relaxation of problem.

ΒV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	RHS
<i>x</i> 0	3	4			0
<i>x</i> 3	2	5	1		15
<i>x</i> ₄	2	-2		1	5
<i>x</i> 0	<u>7</u> 5	$-\frac{4}{5}$			-12
<i>x</i> ₂	<u>2</u> 5	1	$\frac{1}{5}$		3
<i>X</i> 4	<u>14</u> 5		<u>2</u> 5	1	11

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	RHS
<i>x</i> ₀	<u>7</u> 5	$-\frac{4}{5}$			-12
<i>x</i> ₂	<u>2</u> 5	1	$\frac{1}{5}$		3
<i>x</i> ₄	<u>14</u> 5		<u>2</u> 5	1	11

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	RHS
<i>x</i> 0	<u>7</u> 5	$-\frac{4}{5}$			-12
<i>x</i> ₂	<u>2</u> 5	1	$\frac{1}{5}$		3
<i>x</i> 4	$\frac{14}{5}$		$\frac{2}{5}$	1	11

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	RHS
<i>x</i> 0	<u>7</u> 5	$-\frac{4}{5}$			-12
<i>x</i> ₂	<u>2</u> 5	1	$\frac{1}{5}$		3
<i>x</i> 4	<u>14</u> 5		<u>2</u> 5	1	11

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	RHS
<i>x</i> ₀	<u>7</u> 5	$-\frac{4}{5}$			-12
<i>x</i> ₂	<u>2</u> 5	1	$\frac{1}{5}$		3
<i>x</i> 4	<u>14</u> 5		<u>2</u> 5	1	11
<i>x</i> ₀			-1	$-\frac{1}{2}$	$-\frac{35}{2}$
<i>x</i> ₂		1	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{10}{7}$
<i>x</i> ₁	1		$\frac{1}{7}$	$\frac{5}{14}$	<u>55</u> 14

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Solution optimal; Simplex stops.

Step 3. Generate cut based on x_1 row.

$$\begin{aligned} &\frac{1}{7}x_3 + \frac{5}{14}x_4 \geq \frac{13}{14} \\ \Leftrightarrow & \frac{1}{7}(15 - 2x_1 - 5x_2) + \frac{5}{14}(5 - 2x_1 - 2x_2) \geq \frac{13}{14} \\ \Leftrightarrow & x_1 \leq 3 \end{aligned}$$

Introduce new variable x_5 with

$$x_5 = -\frac{13}{14} + \frac{1}{7}x_3 + \frac{5}{14}x_4 = 3 - x_1.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Add this cut to the problem and go back to Step (1).

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	RHS
<i>x</i> 0			-1	$-\frac{1}{2}$		$-\frac{35}{2}$
<i>x</i> ₂		1	$\frac{1}{7}$	$-\frac{1}{7}$		<u>10</u> 7
x_1	1		$\frac{1}{7}$	$\frac{5}{14}$		<u>55</u> 14
ζ			$\frac{1}{7}$	$\frac{5}{14}$	-1	$\frac{13}{14}$

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	RHS	
<i>x</i> 0			-1	$-\frac{1}{2}$		$-\frac{35}{2}$	
<i>x</i> ₂		1	$\frac{1}{7}$	$-\frac{1}{7}$		$\frac{10}{7}$	
<i>x</i> ₁	1		$\frac{1}{7}$	$\frac{5}{14}$		<u>55</u> 14	
ζ			$\frac{1}{7}$	$\frac{5}{14}$	-1	<u>13</u> 14	

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	RHS
<i>x</i> ₀			-1	$-\frac{1}{2}$		$-\frac{35}{2}$
<i>x</i> ₂		1	$\frac{1}{7}$	$-\frac{1}{7}$		$\frac{10}{7}$
x_1	1		$\frac{1}{7}$	$\frac{5}{14}$		<u>55</u> 14
ζ			$\frac{1}{7}$	<u>5</u> 14	-1	$\frac{13}{14}$
<i>x</i> ₀			$-\frac{4}{5}$		$-\frac{7}{5}$	$-\frac{81}{5}$
<i>x</i> ₂		1	$\frac{1}{5}$		$-\frac{2}{5}$	<u>9</u> 5
<i>x</i> ₁	1				1	3
<i>x</i> 4			$\frac{2}{5}$	1	$-\frac{14}{5}$	<u>13</u> 5

Solution optimal; Simplex stops.

Step 3. Generate cut based on *x*₂ row.

$$\begin{aligned} &\frac{1}{5}x_3 + \frac{3}{5}x_5 \geq \frac{4}{5} \\ \Leftrightarrow & \frac{1}{5}(15 - 2x_1 - 5x_2) + \frac{3}{5}(3 - x_1) \geq \frac{4}{5} \\ \Leftrightarrow & x_1 + x_2 \leq 4 \end{aligned}$$

Introduce new variable x_6 with

$$x_6 = \frac{1}{5}x_3 + \frac{3}{5}x_5 - \frac{4}{5} = 4 - x_1 - x_2$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Add this cut to the problem and go back to Step (1).

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	RHS
<i>x</i> 0			$-\frac{4}{5}$		$-\frac{7}{5}$		$-\frac{81}{5}$
<i>x</i> ₂		1	$\frac{1}{5}$		$-\frac{2}{5}$		<u>9</u> 5
<i>x</i> ₁	1				1		3
<i>x</i> 4			<u>2</u> 5	1	$-\frac{14}{5}$		<u>13</u> 5
ζ			$\frac{1}{5}$		<u>3</u> 5	-1	<u>4</u> 5

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	RHS
<i>x</i> 0			$-\frac{4}{5}$		$-\frac{7}{5}$		$-\frac{81}{5}$
<i>x</i> ₂		1	$\frac{1}{5}$		$-\frac{2}{5}$		<u>9</u> 5
<i>x</i> ₁	1				1		3
<i>X</i> 4			<u>2</u> 5	1	$-\frac{14}{5}$		<u>13</u> 5
ζ			$\frac{1}{5}$		<u>3</u> 5	-1	<u>4</u> 5

Step 1. Solve continuous relaxation of problem.

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	RHS			
<i>x</i> ₀			<u>4</u> 5		<u>7</u> 5		<u>81</u> 5			
<i>x</i> ₂		1	$\frac{1}{5}$		$-\frac{2}{5}$		<u>9</u> 5			
<i>x</i> ₁	1				1		3			
<i>x</i> ₄			<u>2</u> 5	1	$-\frac{14}{5}$		$\frac{13}{5}$			
ζ			$\frac{1}{5}$		<u>3</u> 5	-1	<u>4</u> 5			
<i>x</i> ₀			$-\frac{1}{3}$			$-\frac{7}{3}$	$-\frac{43}{3}$			
<i>x</i> ₂		1	$\frac{1}{3}$			$-\frac{2}{3}$	$\frac{7}{3}$			
x_1	1		$-\frac{1}{3}$			<u>5</u> 3	<u>5</u> 3			
<i>x</i> 4			$\frac{4}{3}$	1		$-\frac{14}{3}$	$\frac{19}{3}$			
<i>x</i> 5			$\frac{1}{3}$		1	$-\frac{5}{3}$	$\frac{4}{3}$			
optima	l; Sii	mplex	stop	s.	< □ >	(日) (三)	 ◆ Ξ → 	æ	99.P	

Solution optimal; Simplex stops.

Step 3. Generate cut based on *x*₂ row.

$$\begin{aligned} &\frac{1}{3}x_3 + \frac{1}{3}x_6 \geq \frac{1}{3} \\ \Leftrightarrow & \frac{1}{3}(15 - 2x_1 - 5x_2) + \frac{1}{3}(4 - x_1 - x_2) \geq \frac{1}{3} \\ \Leftrightarrow & x_1 + 2x_2 \leq 6 \end{aligned}$$

Introduce new variable x_7 with

$$x_7 = \frac{1}{3}x_3 + \frac{1}{3}x_6 - \frac{1}{3} = 6 - x_1 - 2x_2$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Add this cut to the problem and go back to Step (1).

ΒV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>x</i> 7	RHS
<i>x</i> ₀			$-\frac{1}{3}$			$-\frac{7}{3}$		$-\frac{43}{3}$
<i>x</i> ₂		1	$\frac{1}{3}$			$-\frac{2}{3}$		$\frac{7}{3}$
x_1	1		$-\frac{1}{3}$			<u>5</u> 3		<u>5</u> 3
<i>x</i> 4			$\frac{4}{3}$	1		$-\frac{14}{3}$		$\frac{19}{3}$
<i>x</i> 5			$\frac{1}{3}$		1	$-\frac{5}{3}$		$\frac{4}{3}$
ζ			$\frac{1}{3}$			$\frac{1}{3}$	-1	$\frac{1}{3}$

Step 1. Solve continuous relaxation of problem.

-

BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	x_5	x ₆	<i>x</i> 7	RHS
<i>x</i> 0			$-\frac{1}{3}$			$-\frac{7}{3}$		$-\frac{43}{3}$
<i>x</i> ₂		1	$\frac{1}{3}$			$-\frac{2}{3}$		$\frac{7}{3}$
<i>x</i> ₁	1		$-\frac{1}{3}$			<u>5</u> 3		<u>5</u> 3
<i>x</i> 4			$\frac{4}{3}$	1		$-\frac{14}{3}$		$\frac{19}{3}$
<i>x</i> 5			$\frac{1}{3}$		1	$-\frac{5}{3}$		$\frac{4}{3}$
ζ			$\frac{1}{3}$			$\frac{1}{3}$	-1	$\frac{1}{3}$

Step 1. Solve continuous relaxation of problem.

Step 1. Solve continuous relaxation of problem.

BV	<i>x</i> 1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	RHS	
<i>x</i> ₀			$-\frac{1}{3}$			$-\frac{7}{3}$		$-\frac{43}{3}$	
<i>x</i> ₂		1	$\frac{1}{3}$			$-\frac{2}{3}$		$\frac{7}{3}$	
x_1	1		$-\frac{1}{3}$			<u>5</u> 3		<u>5</u> 3	
<i>X</i> 4			$\frac{4}{3}$	1		$-\frac{14}{3}$		$\frac{19}{3}$	
<i>x</i> 5			$\frac{1}{3}$		1	$-\frac{5}{3}$		$\frac{4}{3}$	
ζ			$\frac{1}{3}$			$\frac{1}{3}$	-1	$\frac{1}{3}$	
<i>x</i> ₀						-2	-1	-14	
<i>x</i> ₂		1				-1	1	2	
<i>x</i> ₁	1					2	-1	2	
<i>X</i> 4				1		-6	4	5	
<i>x</i> 5					1	-2	1	1	
<i>x</i> ₃			1			1	-3	1	