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Definitions

◮ Mixed Integer Programming Problem.

min x0 = cTx

subject to

Ax = b

xj ≥ 0 for j ∈ N = {1, . . . , n}

xj ∈ Z for j ∈ Z ⊆ N.

Note: xj ∈ N \ Z are continuous, as before.

◮ Pure Integer Programming Problem. Z = N ∪ {x0}, i.e.,
all variables (including slack and objective value) are integral.
Can be achieved by scaling.



Contents of this Lecture

Mixed and Pure Integer Programming Problems
Definitions
Obtaining a Pure Integer Progamming Problem

Examples
Capital Budgeting
Depot Location

Further Uses of Integer Variables
Finite-Valued Variables
Logical Operations

Solving IP Problems: Cutting Plane Algorithm
Outline: Cutting Plane Algorithm
Gomory Cuts
Example



Obtaining a Pure Integer Progamming Problem

Consider the following problem:

min x0 = −
1

3
x1 −

1

2
x2

subject to

2

3
x1 +

1

3
x2 ≤

4

3
1

2
x1 −

3

2
x2 ≤

2

3
x1, x2 ≥ 0

x1, x2 ∈ Z.

This is not a pure integer programming problem:

◮ x0 not integral.

◮ Slack variables not integral.



Obtaining a Pure Integer Progamming Problem

Step 1. Scale the equations of the model.

min x ′

0 = −2x1 − 3x2 (∗6)

subject to

2x1 + x2 ≤ 4 (∗3)

3x1 − 9x2 ≤ 4 (∗6)

x1, x2 ≥ 0

x1, x2 ∈ Z.



Obtaining a Pure Integer Progamming Problem

Step 2. Insert (integral) slack variables:

min x ′

0 = −2x1 − 3x2

subject to

2x1 + x2 + x3 = 4

3x1 − 9x2 + x4 = 4

x1, x2, x3, x4 ≥ 0

x1, x2, x3, x4 ∈ Z.
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Capital Budgeting

◮ Company has resources i ∈ {1, . . . ,m}. Resource i has limited
availability bi .

◮ Company can undertake projects j ∈ {1, . . . , n}. Project j

requires aij units of resource i and gives revenues cj .

◮ Which projects should be undertaken such that the resource
availabilities are observed and the revenues maximised?

max
x

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≤ bi ∀ i ∈ {1, . . . ,m}

xj ∈ {0, 1} ∀ j ∈ {1, . . . , n}
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Depot Location (1)

◮ Company has m potential distribution sites i ∈ {1, . . . ,m}.
Building a distribution centre at site i costs fi .

◮ There are n customers j ∈ {1, . . . , n}, each of whose demands
need to be satisfied from one or more distribution centres.
Satisfying fraction xij of customer j ’s demand from
distribution centre i costs cij , given that centre i is built.

◮ Which distribution centres should be built, and how should
the customer demand’s be satisfied, to minimise costs?



Depot Location (2)

min
x ,y

m∑

i=1

fiyi +

m∑

i=1

n∑

j=1

cijxij

subject to

m∑

i=1

xij = 1 ∀ j ∈ {1, . . . , n}

xij ≤ yi ∀ i ∈ {1, . . . ,m} , j ∈ {1, . . . , n}

xij ≥ 0 ∀ i ∈ {1, . . . ,m} , j ∈ {1, . . . , n}

yi ∈ {0, 1} ∀ i ∈ {1, . . . ,m}



Contents of this Lecture

Mixed and Pure Integer Programming Problems
Definitions
Obtaining a Pure Integer Progamming Problem

Examples
Capital Budgeting
Depot Location

Further Uses of Integer Variables
Finite-Valued Variables
Logical Operations

Solving IP Problems: Cutting Plane Algorithm
Outline: Cutting Plane Algorithm
Gomory Cuts
Example



Finite-Valued Variables

Assume a variable xj can only take a finite number of values:

xj ∈ {p1, . . . , pm} .

We can introduce variables z1

j , . . . , zm
j ∈ {0, 1} and add the

constraint

z1

j + . . . + zm
j = 1.

Now, we can substiute xj with

p1z
1

j + . . . + pmzm
j

in the objective function and all constraints.



Finite-Valued Variables

Example. xj ∈ {1, 3, 11} can be modeled as

z1

j + z2

j + z3

j = 1

z1

j , z2

j , z3

j ∈ {0, 1} .

We then substitute xj everywhere by

1z1

j + 3z2

j + 11z3

j .

Exercise. Is it possible to save variables here?
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Logical Operations

We can model logical operations on the constraints via integer
variables. For example, the expression

aTx ≤ b ∨ dTx ≤ e

can be expressed by:

aTx − Mδ ≤ b

dTx − M(1 − δ) ≤ e

δ ∈ {0, 1} ,

where M is a large number.



Logical Operations

Example. We want to model the following problem:

min x

subject to
x ∈ [0, 1] ∨ x ≥ 2.

Solution. This can be expressed as:

min x

subject to

x ≤ 1 + Mδ

x ≥ 2 − M(1 − δ)

x ≥ 0.



Logical Operations

Example. We want to model the following problem:

min x1 − x2

subject to

x1 + x2 ≤ 4

x1 ≥ 1 ∨ x2 ≥ 1 but not both x1, x2 > 1

x1, x2 ≥ 0.



Logical Operations

Solution. This can be expressed as:

min x1 + x2

subject to

x1 + x2 ≤ 4

x1 ≥ 1 − Mδ

x2 ≥ 1 − M(1 − δ)

x1 ≤ 1 + M(1 − δ)

x2 ≤ 1 + Mδ

x1, x2 ≥ 0.
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The Big Picture

Want to solve a pure IP problem:

◮ Don’t know how to solve IP problems.

◮ Know how to solve continuous problems (Simplex).

Outline of a solution procedure:

◮ Solve a continuous relaxation.
◮ Contains all originally feasible solutions, plus others.

◮ If optimal solution is integral, we are done.

◮ Otherwise, tighten the relaxation and repeat.

Continuous relaxation: xj ∈ Z  xj ∈ R.
Tightening: Add cutting planes (cut off current optimum).



The Big Picture

A cutting plane algorithm to solve pure integer programming
problems works as follows.

1. Solve the IP problem with continuous variables instead of
discrete ones.

2. If the resulting optimal solution x∗ is integral, stop ⇒ optimal
solution found.

3. Generate a cut, i.e., a constraint which is satisfied by all
feasible integer solutions but not by x∗.

4. Add this new constraint, resolve problem, and go back to (2).

Terminates after finite number of iterations in (2). Resulting x∗ is
integral and optimal.



Example

Consider the following problem:

max x0 = 5x1 + 8x2

subject to

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

x1, x2 ∈ Z.



Example

Step 1. Solve the IP problem with continuous variables instead of
discrete ones.
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Example

Step 2. If the resulting optimal solution x∗ is integral, stop ⇒
optimal solution found.
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Resulting solution is x∗ = (2.25, 3.75) and hence not integral.



Example

Step 3. Generate a cut, i.e., a constraint which is satisfied by all
feasible integer solutions but not by x∗.
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We generate cut 2x1 + 3x2 ≤ 15.



Example

Step 4. Add this new constraint, resolve problem, and go back to
(2).
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New optimal solution is x∗ = (3, 3).
Note: previous x∗ is not feasible anymore.



Example

Step 2. If the resulting optimal solution x∗ is integral, stop ⇒
optimal solution found.
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x∗ = (3, 3) is integral ⇒ optimal solution found.



Example

Remark. The cut we introduced only removed non-integral

solutions. Cuts never cut off feasible solutions of the original IP
problem!
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Ralph E. Gomory (* 1929)

“Outline of an Algorithm for Integer Solutions to Linear Programs”
Bulletin of the American Mathematical Society, Vol. 64,

pp. 275-278, 1958.



Gomory Cut

Assume x1, . . . , xn ≥ 0 and integral. We show how to construct a
Gomory Cut for

a1x1 + . . . + anxn = b,

where aj , b ∈ R (not necessarily integral). Note that this can be
written as

(⌊a1⌋+[a1 − ⌊a1⌋]
︸ ︷︷ ︸

f1

)x1+. . .+(⌊an⌋+[an − ⌊an⌋]
︸ ︷︷ ︸

fn

)xn = ⌊b⌋+[b − ⌊b⌋]
︸ ︷︷ ︸

f

,

where ⌊β⌋ = max {α ∈ Z : α ≤ β} (largest integer smaller than or
equal to β).



Gomory Cut

We separate fractional and integral terms:

(⌊a1⌋ + f1)x1 + . . . + (⌊an⌋ + fn)xn = ⌊b⌋ + f

⇔ f1x1 + . . . + fnxn − f = ⌊b⌋ − ⌊a1⌋ x1 − . . . − ⌊an⌋ xn.

Observations.

1. As xj ∈ Z for all feasible x , right-hand side is integral.

2. Thus, for all feasible x , left-hand side must be integral, too.

3. As 0 ≤ f < 1, x ≥ 0 and left-hand side integral, left-hand side
must be non-negative.

Consequence. f1x1 + . . . + fnxn − f ≥ 0 ⇔ f1x1 + . . . + fnxn ≥ f

for every feasible x .



Gomory Cut

Suppose Step 1 of our cutting plane algorithm gives non-integral
x∗. Then there is row in Simplex tableau with

x∗

i +
∑

j /∈I

yijx
∗

j = yi0

with yi0 /∈ Z.
Gomory Cut. Setting fj := yij − ⌊yij⌋, f := yi0 − ⌊yi0⌋, we get:

∑

j /∈I

fjxj ≥ f . (∗)

(∗) is fulfilled for all feasible x but not for x∗:
∑

j /∈I fjx
∗

j = 0 < f .



Contents of this Lecture

Mixed and Pure Integer Programming Problems
Definitions
Obtaining a Pure Integer Progamming Problem

Examples
Capital Budgeting
Depot Location

Further Uses of Integer Variables
Finite-Valued Variables
Logical Operations

Solving IP Problems: Cutting Plane Algorithm
Outline: Cutting Plane Algorithm
Gomory Cuts
Example



Example

Consider the following problem:

max 3x1 + 4x2

subject to

2

5
x1 + x2 ≤ 3

2

5
x1 −

2

5
x2 ≤ 1

x1, x2 ≥ 0

x1, x2 ∈ Z.



Example

Step 1. Convert maximisation objective into minimisation.

min x0 = −3x1 − 4x2

subject to

2

5
x1 + x2 ≤ 3

2

5
x1 −

2

5
x2 ≤ 1

x1, x2 ≥ 0

x1, x2 ∈ Z.



Example

Step 1. Scale the equations of the problem.

min x0 = −3x1 − 4x2

subject to

2

5
x1 + x2 ≤ 3 (∗5)

2

5
x1 −

2

5
x2 ≤ 1 (∗5)

x1, x2 ≥ 0

x1, x2 ∈ Z.



Example

Step 1. Scale the equations of the problem.

min x0 = −3x1 − 4x2

subject to

2x1 + 5x2≤ 15

2x1 − 2x2≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z.



Example

Step 1. Insert integral slack variables.

min x0 = −3x1 − 4x2

subject to

2x1 + 5x2 + x3 = 15

2x1 − 2x2 + x4 = 5

x1, x2, x3, x4 ≥ 0

x1, x2, x3, x4 ∈ Z.



Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 RHS

x0 3 4 0
x3 2 5 1 15
x4 2 -2 1 5
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 RHS

x0 3 4 0
x3 2 5 1 15
x4 2 -2 1 5
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 RHS

x0
7

5
−4

5
-12

x2
2

5
1 1

5
3

x4
14

5

2

5
1 11



Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 RHS

x0
7

5
−4

5
-12

x2
2

5
1 1

5
3

x4
14

5

2

5
1 11

x0 -1 −1

2
-35

2

x2 1 1

7
−1

7

10

7

x1 1 1

7

5

14

55

14

Solution optimal; Simplex stops.



Example

Step 3. Generate cut based on x1 row.

1

7
x3 +

5

14
x4 ≥

13

14

⇔
1

7
(15 − 2x1 − 5x2) +

5

14
(5 − 2x1 − 2x2) ≥

13

14

⇔ x1 ≤ 3

Introduce new variable x5 with

x5 = −
13

14
+

1

7
x3 +

5

14
x4 = 3 − x1.

Add this cut to the problem and go back to Step (1).



Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 RHS
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 RHS

x0 -1 −1
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 RHS

x0 -1 −1

2
-35

2

x2 1 1

7
−1

7

10

7

x1 1 1

7

5

14

55

14

ζ 1

7

5

14
-1 13

14

x0 −4

5
−7

5
−81

5

x2 1 1

5
−2

5

9

5

x1 1 1 3

x4
2

5
1 −14

5

13

5

Solution optimal; Simplex stops.



Example

Step 3. Generate cut based on x2 row.

1

5
x3 +

3

5
x5 ≥

4

5

⇔
1

5
(15 − 2x1 − 5x2) +

3

5
(3 − x1) ≥

4

5

⇔ x1 + x2 ≤ 4

Introduce new variable x6 with

x6 =
1

5
x3 +

3

5
x5 −

4

5
= 4 − x1 − x2

Add this cut to the problem and go back to Step (1).



Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 RHS

x0 −4
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 RHS

x0 −4

5
−7

5
−81

5

x2 1 1

5
−2

5

9

5

x1 1 1 3

x4
2

5
1 −14

5

13

5

ζ 1

5

3

5
-1 4

5



Example
Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 RHS

x0
4

5

7

5

81

5

x2 1 1

5
−2

5

9

5

x1 1 1 3

x4
2

5
1 −14

5

13

5

ζ 1

5

3

5
-1 4

5

x0 −1

3
−7

3
−43

3

x2 1 1

3
−2

3

7

3

x1 1 −1

3

5

3

5

3

x4
4

3
1 −14

3

19

3

x5
1

3
1 −5

3

4

3

Solution optimal; Simplex stops.



Example

Step 3. Generate cut based on x2 row.

1

3
x3 +

1

3
x6 ≥

1

3

⇔
1

3
(15 − 2x1 − 5x2) +

1

3
(4 − x1 − x2) ≥

1

3

⇔ x1 + 2x2 ≤ 6

Introduce new variable x7 with

x7 =
1

3
x3 +

1

3
x6 −

1

3
= 6 − x1 − 2x2

Add this cut to the problem and go back to Step (1).



Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 x7 RHS

x0 −1
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3
−43

3

x2 1 1

3
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3

7

3
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3
1 −14
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Example

Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 x7 RHS
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Example
Step 1. Solve continuous relaxation of problem.

BV x1 x2 x3 x4 x5 x6 x7 RHS

x0 −

1

3
−

7

3
−

43

3

x2 1
1

3
−

2

3

7

3

x1 1 −

1

3

5

3

5

3

x4
4

3
1 −

14

3

19

3

x5
1

3
1 −

5

3

4

3

ζ 1

3

1

3
-1

1

3

x0 -2 -1 -14

x2 1 -1 1 2

x1 1 2 -1 2

x4 1 -6 4 5

x5 1 -2 1 1

x3 1 1 -3 1
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