
1

InheritanceInheritance

2

Agenda
● What is and Why Inheritance?
● How to derive a sub-class?
● Object class
● Constructor calling chain
● “super” keyword
● Overriding methods
● Hiding methods
● Hiding fields
● Type casting
● Final class and final methods

3

 What is What is
Inheritance?Inheritance?

4

What is Inheritance?

● Inheritance is the concept of a child class (sub class)
automatically inheriting the variables and methods
defined in its parent class (super class).

● A primary feature of object-oriented programming
along with encapsulation and polymorphism

5

Why Inheritance? Reusability
● Benefits of Inheritance in OOP : Reusability

– Once a behavior (method) is defined in a super class,
that behavior is automatically inherited by all subclasses
● Thus, you write a method only once and it can be used by

all subclasses.
– Once a set of properties (fields) are defined in a super

class, the same set of properties are inherited by all
subclasses
● A class and its children share common set of properties

– A subclass only needs to implement the differences
between itself and the parent.

6

 How to derive aHow to derive a
sub-class?sub-class?

7

extends keyword
● To derive a child class, we use the extends keyword.
● Suppose we have a parent class called Person.

public class Person {
protected String name;
protected String address;

/**
 * Default constructor
 */
public Person(){

System.out.println(“Inside Person:Constructor”);
name = ""; address = "";

}
. . . .

}

8

extends keyword

● Now, we want to create another class named Student
● Since a student is also a person, we decide to just

extend the class Person, so that we can inherit all the
properties and methods of the existing class Person.

● To do this, we write,

public class Student extends Person {
 public Student(){

System.out.println(“Inside Student:Constructor”);
}
. . . .

}

9

What You Can Do in a Sub-class

● A subclass inherits all of the “public” and “protected”
members (fields or methods) of its parent, no matter
what package the subclass is in

● If the subclass is in the same package as its parent,
it also inherits the package-private members (fields
or methods) of the parent

10

What You Can Do in a Sub-class
Regarding Fields

● The inherited fields can be used directly, just like any
other fields.

● You can declare new fields in the subclass that are
not in the super class

● You can declare a field in the subclass with the same
name as the one in the super class, thus hiding it
(not recommended).

● A subclass does not inherit the private members of
its parent class. However, if the super class has
public or protected methods for accessing its private
fields, these can also be used by the subclass.

11

What You Can Do in a Sub-class
Regarding Methods

● The inherited methods can be used directly as they are.
● You can write a new instance method in the subclass that

has the same signature as the one in the super class,
thus overriding it.

● You can write a new static method in the subclass that
has the same signature as the one in the super class,
thus hiding it.

● You can declare new methods in the subclass that are
not in the super class.

12

 Object ClassObject Class

13

Object Class
● Object class is mother of all classes

– In Java language, all classes are sub-classed (extended)
from the Object super class

– Object class is the only class that does not have a parent
class

● Defines and implements behavior common to all
classes including the ones that you write
– getClass()
– equals()
– toString()
– ...

14

Class Hierarchy
● A sample class hierarchy

15

Super class & Sub class
● Super class (Parent class)

– Any class above a specific class in the class hierarchy.
● Sub class (Child class)

– Any class below a specific class in the class hierarchy.

16

 Constructor CallingConstructor Calling
ChainChain

17

How Constructor method of a Super
class gets called

● A subclass constructor invokes the constructor of
the super class implicitly
– When a Student object, a subclass (child class), is

instantiated, the default constructor of its super class
(parent class), Person class, is invoked implicitly before
sub-class's constructor method is invoked

● A subclass constructor can invoke the constructor
of the super explicitly by using the “super” keyword
– The constructor of the Student class can explicitly invoke

the constructor of the Person class using “super”
keyword

– Used when passing parameters to the constructor of the
super class

18

Example: Constructor Calling Chain

● To illustrate this, consider the following code,

● In the code, we create an object of class Student.
The output of the program is,

public static void main(String[] args){
Student anna = new Student();

}

Inside Person:Constructor
Inside Student:Constructor

19

Example: Constructor Calling Chain

● The program flow is shown below.

20

 “ “super” keywordsuper” keyword

21

The “super” keyword

● A subclass can also explicitly call a constructor of
its immediate super class.

● This is done by using the super constructor call.

● A super constructor call in the constructor of a
subclass will result in the execution of relevant
constructor from the super class, based on the
arguments passed.

22

The “super” keyword

● For example, given our previous example classes
Person and Student, we show an example of a
super constructor call.

● Given the following code for Student,

public Student(){
super("SomeName", "SomeAddress");

 System.out.println("Inside Student:Constructor");
}

23

The “super” keyword

● Few things to remember when using the super
constructor call:
– The super() call must occur as the first statement in a

constructor
– The super() call can only be used in a constructor (not in

ordinary methods)

24

The “super” keyword

● Another use of super is to refer to members of the
super class (just like the this reference).

● For example,

public Student() {
super.name = “somename”;
super.address = “some address”;

}

25

 Overriding MethodsOverriding Methods

26

Overriding methods
● If a derived class needs to have a different

implementation of a certain instance method from
that of the super class, override that instance
method in the sub class
– Note that the scheme of overriding applies only to

instance methods
– For static methods, it is called hiding methods

● The overriding method has the same name,
number and type of parameters, and return type as
the method it overrides

● The overriding method can also return a subtype of
the type returned by the overridden method. This is
called a covariant return type

27

Example: Overriding Methods

● Suppose we have the following implementation for
the getName method in the Person super class,
public class Person {

:
:
public String getName(){

System.out.println("Parent: getName");
return name;

}
}

28

Example: Overriding Methods
● To override the getName method of the super class

Person in the subclass Student, reimplement the
method with the same signature

● Now, when we invoke the getName method of an
object of the subclass Student, the getName method of
the Student would be called, and the output would be,

public class Student extends Person{
:
public String getName(){

System.out.println("Student: getName");
return name;

}
:

}

Student: getName

29

Modifiers in the Overriding Methods

● The access specifier for an overriding method can
allow more, but not less, access than the overridden
method
– For example, a protected instance method in the super

class can be made public, but not private, in the subclass.
● You will get a compile-time error if you attempt to

change an instance method in the super class to a
class method in the subclass, and vice versa

30

 Runtime Runtime
Polymorphism with Polymorphism with
Overriding MethodsOverriding Methods

31

What is Polymorphism?

● Polymorphism in a Java program
– The ability of a reference variable to change

behavior according to what object instance it is
holding.

– This allows multiple objects of different subclasses
to be treated as objects of a single super class,
while automatically selecting the proper methods to
apply to a particular object based on the subclass it
belongs to

– (We will talk more on Polymorphism during our
Polymorphism presentation.)

32

Example: Runtime Polymorphism

Code:

 Person person2 = new Student();
 person2.myMethod("test4");

 Person person3 = new InternationalStudent();
 person3.myMethod("test5");

Result:

 myMethod(test4) in Student class is called
 myMethod(test5) in InternationalStudent class is called

33

 Hiding MethodsHiding Methods

34

Hiding Methods

● If a subclass defines a class method (static method)
with the same signature as a class method in the
super class, the method in the subclass “hides” the
one in the super class

35

Example: Coding of Hiding Static
Method

class Animal {
 public static void testClassMethod() {
 System.out.println("The class method in Animal.");
 }
}

// The testClassMethod() of the child class hides the one of the
// super class – it looks like overriding, doesn't it? But
// there is difference. We will talk about in the following slide.

class Cat extends Animal {
 public static void testClassMethod() {
 System.out.println("The class method in Cat.");
 }
}

36

Overriding Method vs. Hiding Method

● Hiding a static method of a super class looks like
overriding an instance method of a super class

● The difference comes during runtime
– When you override an instance method, you get the benefit

of run-time polymorphism
– When you override an static method, there is no runt-time

polymorphism

37

Example: Overriding Method vs. Hiding
Method during Runtime

 // Create object instance of Cat.
 Cat myCat = new Cat();

 // The object instance is Cat type
 // and assigned to Animal type variable.
 Animal myAnimal2 = myCat;

 // For static method, the static method of
 // the super class gets called.
 Animal.testClassMethod();

 // For instance method, the instance method
 // of the subclass is called even though
 // myAnimal2 is a super class type. This is
 // run-time polymorphism.
 myAnimal2.testInstanceMethod();

38

 Hiding FieldsHiding Fields

39

Hiding Fields

● Within a sub class, a field that has the same name as
a field in the super class hides the super class' field,
even if their types are different

● Within the subclass, the field in the super class
cannot be referenced by its simple name
– Instead, the field must be accessed through super keyword

● Generally speaking, hiding fields is not a
recommended programming practice as it makes
code difficult to read

40

 Type CastingType Casting

41

What is “Type”?

● When an object instance is created from a class, we
say the object instance is “type” of the class and its
super classes

● Example:
Student student1 = new Student();

– student1 object instance is the type of Student or it is
Student type

– student1 object instance is also type of Person if Student is
a child class of Person

– student1 object instance is also type of Object

42

What is Significance?

● An object instance of a particular type can be used in
any place where an instance of the type and its super
type is called for

● Example:
– student1 object instance is a “type” of TuftsStudent,

Student, and Peson
– student1 object can be used in any place where object

instance of the type of TuftsStudent, Student, or Person is
called for

● This enables polymorphism

43

Implicit Type Casting
● An object instance of a subclass can be assigned to a

variable (reference) of a parent class through implicit
type casting – this is safe since an object instance of a
subclass “is” also the type of the super class

● Example
– Let's assume Student class is a child class of Person class
– Let's assume TuftsStudent class is a child class of Student

class
TuftsStudent tuftstudent = new TuftsStudent();
Student student = tuftsstudent; // Implicit type casting
Person person = tuftsstudent; // Implicit type casting
Object object = tuftsstudent; // Implicit type casting

44

Type Casting between Objects

tuftsstudent

student

person

TuftsStudent
Object instance

45

Explicit Type Casting

● An object instance of a super class must be assigned to
a variable (reference) of a child class through explicit
type casting
– Not doing it will result in a compile error since the type

assignment is not safe
– Compiler wants to make sure you know what you are doing

● Example
– Let's assume Student class is a child class of Person class
Person person1 = new Student();
Student student1 = (Student) person1; // Explicit type casting

46

Runtime Type Mismatch Exception

● Even with explicit casting, you could still end up
having a runtime error

● Example
– Let's assume Student class is a child class of Person class
– Let's assume Teacher class is also a child class of Person

class
Person person1 = new Student();
Person person2 = new Teacher();
Student student1 = (Student) person1; // Explicit type casting
// No compile error, but runtime type mismatch exception
Student student2 = (Student) person2;

47

Use instanceof Operator to
Prevent Runtime Type Mismatch Error

● You can check the type of the object instance using
instanceof before the type casting

● Example
Person person1 = new Student();
Person person2 = new Teacher();

// Do the casting only when the type is verified
if (person2 instanceof Student) {
 Student student2 = (Student) person2;
}

48

 Final Class &Final Class &
Final MethodFinal Method

49

Final Classes
● Final Classes

– Classes that cannot be extended
– To declare final classes, we write,

public final ClassName{
. . .

}

● Example:

● Other examples of final classes are your wrapper
classes and String class
– You cannot create a subclass of String class

public final class Person {
. . .

}

50

Final Methods

● Final Methods
– Methods that cannot be overridden
– To declare final methods, we write,

public final [returnType] [methodName]([parameters]){
. . .

}

● Static methods are automatically final

51

Example: final Methods

public final String getName(){
 return name;
}

52

InheritanceInheritance

