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3
Kinematic Analysis

The kinematic constraint equations corresponding to the natural coordinates
were explained in detail in Chapter 2, both for planar and three-dimensional
multibody systems. They were then compared to other types of coordinates.
Attention was also given to the main sources of constraint equations with natural
coordinates: rigid body constraints, joint constraints, and the optional definition
of relative or joint coordinates.

In this chapter we will make use of those constraint equations to solve what is
usually called kinematic problems, namely, the initial position or assembly
problem, the finite displacement problem, and the velocity and acceleration
analysis. The first two problems require an iterative solution of a system of
nonlinear equations. Some special techniques to improve the convergence will
be explained. Special attention will be addressed to the important case of over
constrained multibody systems or, in general, to systems with non-independent
constraint equations. The last section of this chapter is devoted to the case of
non-holonomic joints.

3.1  Initial Position Problem

The initial position problem was defined in Section 1.3. It basically consists of
determining the position of all the bodies in the system by knowing the positions
of the fixed and the input bodies which can also be called guided or driven ele-
ments. Mathematically, the initial position problem is reduced to determining
from the known coordinates corresponding to the input elements the vector of
dependent coordinates that satisfies the nonlinear system of constraint equa-
tions. Note that the input can also be specified as the externally guided or driven
linear or angular coordinates corresponding to several joints (as many joints as
there are degrees of freedom) on which mixed coordinates have been defined.
This basic notion is explained by means of the following examples:
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Figure 3.1.  Four-bar mechanism modeled
with natural coordinates.

Figure 3.2.  Four-bar mechanism modeled
with mixed coordinates.

Example 3.1

As a first example, the four-bar mechanism of Figure 3.1 will be considered. This sys-
tem has four natural coordinates (x1,y1,x2,y2).

The constraint equations corresponding to this mechanism are following constant
distance conditions:

x 1 Ð x A
2 + y 1 Ð y A

2 Ð L2
2 = 0

x 2 Ð x 1
2 + y 2 Ð y 1

2 Ð L3
2 = 0

x 2 Ð x B
2 + y 2 Ð y B

2 Ð L4
2 = 0

These three equations are not sufficient to determine the four unknown variables of
the problem. In fact, it is still necessary to enter the condition that the position of the
input element (element 2) is known. If both coordinates of point 1 are known, then
only two unknown variables are left. In this case, it is obvious that the first constraint
equation which establishes the constant length condition of element 2 no longer makes
any sense, because it does not contain any unknown variable. Consequently the prob-
lem reduces to the finding of x2 and y2, using the last two nonlinear quadratic con-
straint conditions.

Example 3.2

Let us consider the four-bar mechanism shown in Figure 3.2, which uses mixed coor-
dinates; that is, the same coordinates as in example 3.1 plus the angle y between ele-
ments 2 and 3 at joint 1. Let's assume that, instead of the position of the input element,
one knows the angle y. In this case the constraint equations will be as follows
(assuming a suitable value for y to be able to use the scalar product):

x 1 Ð x A
2 + y 1 Ð y A

2 Ð L2
2 = 0

x 2 Ð x 1
2 + y 2 Ð y 1

2 Ð L3
2 = 0

x 2 Ð x B
2 + y 2 Ð y B

2 Ð L4
2 = 0

x 1 Ð x A  x 2 Ð x 1  + y 1 Ð y A  y 2 Ð y 1  Ð L2 L3 cos y  = 0
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Figure 3.3.  RSCR mechanism modeled with natural coordinates.

which is a system with four equations and four unknown variables, assuming that the
externally driven angle y is known.

Example 3.3

Figure 3.3 depicts a three-dimensional four-bar mechanism RSCR (Revolute-
Spherical-Cylindrical-Revolute) modeled with natural coordinates. This mechanism
has three movable points and one movable unit vector; that is, twelve dependent
Cartesian coordinates and one degree of freedom. Also the input angle y has been in-
troduced as an additional externally driven coordinate. The constraint equations corre-
sponding to this mechanism are the following:

1. x 1 Ð xA  x 0 Ð xA  + y 1 Ð yA  y 0 Ð yA  + z1 Ð zA  z0 Ð zA  Ð k1 cos y = 0

2. x 1 Ð xA
2 + y 1 Ð yA

2 + z1 Ð zA
2 Ð k2 = 0

3. x 1 Ð xA  uAx + y 1 Ð yA   uAy + z1 Ð zA  uAz Ð k3 = 0

4. x 2 Ð x1
2 + y 2 Ð y1

2 + z2 Ð z1
2 Ð k4 = 0

5. x 2 Ð x1  u1x + y 2 Ð y1  u1y + z2 Ð z1  u1z Ð k5 = 0 

6. u1x
2  + u1y

2  + u1z
2  Ð 1= 0

7. x 3 - xB
2 + y 3 - yB

2 + z3 - zB
2 Ð k6 = 0

8. x 3 Ð xB  u1x + y 3 Ð yB  u1y + z3 Ð zB  u1z Ð k7 = 0

9. x 3 Ð xB  uBx + y 3 Ð yB  uBy + z3 Ð zB  uBz Ð k8 = 0

10.  uBx u1x + uBy u1y + uBz u1z Ð k9 = 0

11. y 3 Ð y2  u1z Ð z3 Ð z2  u1y = 0

12. z3 Ð z2  u1x Ð x 3 Ð x2  u1z = 0

13. x 3 Ð x2  u1y Ð y 3 Ð y2  u1x = 0

This is the system of nonlinear equations that governs the position problem for the
RSCR mechanism. The first equation corresponds to the input angle definition; equa-



74     3. Kinematic Analysis

tions 2 and 3 represent rigid body condition for element 2; equations 4 to 6 represent
rigid body constraints for element 3; equations 6 to 10 represent the same for element
4, and equations 11 to 13 (only two of them are independent) contribute to define the
cylindrical joint. Finally, ki (i=1,...,9) represents constant values.

The above examples clearly indicate that irrespective of the multibody sys-
tems being considered, the position problem is always based on solving the con-
straint equations, which make up the following set of equations:

FFFF(q, t ) = 0 (3.1)

where q is the vector of the system dependent coordinates. It will be assumed
that there are at least as many equations as there are unknown variables or coor-
dinates. To solve systems of nonlinear equations such as (3.1), it is customary to
resort to the well-known Newton-Raphson method which has quadratic conver-
gence in the neighborhood of the solution (the error in each iteration is propor-
tional to the square of the error in the previous iteration) and does not usually
cause serious difficulties if one starts with a good initial approximation.

The Newton-Raphson method is based on a linearization of the system (3.1)
and consists in replacing this system of equations with the first two terms of its
expansion in a Taylor series around a certain approximation qi to the desired
solution. Once the substitution has been made, the system (3.1) becomes

FFFF(q, t) @ FFFF(qi) + FFFFq(qi) (q Ð qi) = 0 (3.2)

where the time variable has not been accounted for, so that in this problem has a
constant value. Matrix FFFFq is the Jacobian matrix for constraint equations; that is
to say, the matrix of partial derivatives of these equations with respect to the de-
pendent coordinates. This matrix takes the following form:

FFFFq  = 

¶f1

¶q1

¶f1

¶q2

....... ¶f1

¶qn

¶f2

¶q1

¶f2

¶q2

....... ¶f2

¶qn

. . . . . . . . ....... . . . .

¶fm

¶q1

¶fm

¶q2

....... ¶fm

¶qn

(3.3)

In equation (3.3), m is the number of constraint equations and n the number
of dependent coordinates. If the constraint equations are independent, f=n-m is
the number of degrees of freedom of the multibody system.

Equation (3.2) represents a system of linear equations constituting an approx-
imation to the nonlinear system (3.1). The vector q, obtained from the solution
of equation (3.2), will be an approximation of the solution in (3.1). By calling
this approximate solution qi+1, a recursive formula is obtained as follows:

FFFF(qi) + FFFFq(qi) (qi+1 Ð qi) = 0 (3.4)
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Figure 3.4.  Iteration process of the Newton-Raphson method.

which can be used repeatedly until the error in the system of equations (3.1) is
insignificant, or until the difference between the results of two successive itera-
tions is smaller than a pre-specified tolerance. Figure 3.4 shows the geometric
representation of the Newton-Raphson method for the case of a nonlinear equa-
tion with one unknown. The function FFFF(q) is linearized at point qi, i.e. substi-
tuted by its tangent linear space, which are the first two terms of the Taylor ex-
pansion formula. The point where the tangent space intersects the horizontal axis
is the approximate solution qi+1. The function FFFF(q) is again replaced at point
qi+1 by the new tangent space and a new approximate solution qi+2 is found. One
arrives ultimately within the desired accuracy to the exact solution q.

Note that the Newton-Raphson iteration will not always converge to a solu-
tion. It has been pointed out that if the initial approximation is not close enough
to a solution, the algorithm may diverge. There is still another source of difficul-
ties. If the values of the input variables do not correspond to a possible physical
solution, the mathematical algorithm will fail irrespective of how the initial ap-
proximation has been chosen.

The Jacobian matrix of the constraint equations, defined by means of equa-
tion (3.3), plays an extremely important role in all kinematic and dynamic analy-
sis problems. In the equation (3.4), the Jacobian matrix determines the linear
equation system used to find the successive approximations for solving the ini-
tial position problem. Evaluating and triangularizing this matrix easily and
quickly are characteristics of all good multibody system analysis methods. The
natural coordinates permit the performance of these operations in the best
possible way.

In Section 1.2, it was stated that the initial position problem had multiple so-
lutions, and this is indeed the case. Depending on the vector qo where the itera-
tion begins, some solution will be attained.

Example 3.4

To complete this section on the initial position problem, the equations (3.4) corre-
sponding to the four-bar mechanism studied in Examples 3.1 and 3.2 will be com-
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a) b)

Figure 3.5.  Iteration process of the Newton-Raphson method in a four-bar mechanism.

pletely developed. The constraint equations of this case were presented in Example
3.1, and consequently the equation (3.4) takes the following form:

2 
x 1 Ð x A y 1 Ð y A 0 0
x 1 Ð x 2 y 1 Ð y 2 x 2 Ð x 1 y 2 Ð y 1

0 0 x 2 Ð x B y 2 Ð y B i

  

x 1

y 1

x 2

y 2 i+1

Ð 

x 1

y 1

x 2

y 2 i

 =

 

= Ð 
x 1 Ð x A

2 + y 1 Ð y A
2 Ð L2

2

x 2 Ð x 1
2 + y 2 Ð y 1

2 Ð L3
2

x 2 Ð x B
2 + y 2 Ð y B

2 Ð L4
2

i

In this system of equations, at least one of the four unknown coordinates must be
known ahead of time in order to be able to solve the problem. If, for example, x1 is
known, then:

(x 1)i+1 Ð (x 1)i = 0

and the first column of the Jacobian matrix is multiplied by zero, meaning that it can
be eliminated.

In the case of the four-bar mechanism of Figure 3.2, modeled with mixed coordi-
nates and whose constraint equations are presented in Example 3.2, equation (3.4) be-
comes:

2(x 1 Ð x A) 2(y 1 Ð y A) 0 0 0

2(x 1 Ð x 2) 2(y 1 Ð y 2) 2(x 2 Ð x 1) 2(y 2 Ð y 1) 0

0 0 2(x 2 Ð x B) 2(y 2 Ð y B) 0

(x 2Ðx 1+x AÐx 1) (y 2Ðy 1+y AÐy 1) (x 1 Ð x A) (y 1 Ð y A) (L2 L3 siny) i

 . 

. 

x 1

y 1

x 2

y 2

y i+1

 Ð 

x 1

y 1

x 2

y 2

y i

 = 

(x 1Ðx A)2
 + (y 1Ðy A)2

 Ð L2
2

(x 2Ðx 1)
2
 + (y 2Ðy 1)

2
 Ð L3

2

(x 2Ðx B)2
 + (y 2Ðy B)2

 Ð L4
2

(x 1Ðx A) (x 2Ðx 1) + (y 1Ðy A) (y 2Ðy 1) Ð L2 L3 cosy i
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Figure 3.6.  Possible divergence in the Newton-Raphson iteration

Usually, the angle y is known; therefore, the last unknown variable (yi+1 Ð yi) has
a zero value. Thus the fifth column of the Jacobian matrix can be eliminated.

One characteristic common to the Jacobians matrices shown in this example (and
in all the Jacobians matrices calculated with natural coordinates) is that they are linear
functions of the dependent variables. For example, Figures 3.5a and 3.5b include
drawings of the initial approximation, the first iterations, and the final solution of the
initial position problem in the two four-bar mechanisms of Figures 3.1 and 3.2 com-
puted according to the above expressions.

The Newton-Raphson method, explained in this section, converges rather
quickly (quadratic convergence) when it is close to the desired solution. At
times, and during the first iterations, it can give very abrupt jumps as a result of
not having started from a sufficiently good initial approximation. Figure 3.6
shows what could happen in this case. The approximate solution qi+1 is further
away from the true solution q, than the previous approximation qi. It is even
possible that the value of function FFFF(q), a function that should be equal to zero,
could increase when moving from qi to qi+1.

This problem is not easy to solve without resorting to much more compli-
cated numerical methods. In general, one should do everything possible to start
from good initial approximations. If this cannot be achieved, then one should try
to apply a reduction to the coordinates modification given by equation (3.4) and
to apply it to the previous approximate solution qi. As this often works, a cor-
rection factor of 1/2 or 1/3 is recommended. Finally, one should always make
sure that the module of FFFF(q) decreases when going from point qi to qi+1.

Some authors have solved the position problem at times by calculating differ-
ent solutions numerically by means of the so-called continuation methods (Tsai
and Morgan (1985)). Continuation methods start out from a position where the
multibody system complies with all the constraint equations, although the input
elements might not be at the desired position and the fixed joints might not be at
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their final position. With relaxed conditions regarding the input elements and the
fixed element, it is not difficult to find a position on the multibody system that
satisfies the constraint equations. Then, by means of small finite displacements
whose convergence is guaranteed by the Newton-Raphson method, an attempt is
made to move the input elements and the fixed joints to their correct position. At
times, the bifurcation points (points at which two or more possible movements
can occur) provide a way of finding different solutions to the position problem.

3.2  Velocity and Acceleration Analysis

3.2.1  Velocity Analysis

The equations that permit solving the velocity problem originate after one dif-
ferentiates with respect to time the constraint equations. If these equations are
represented symbolically as

FFFF(q, t) = 0 (3.5)

by differentiating with respect to time, the following equation is obtained:

FFFFq q, t  q = Ð FFFFt º b (3.6)

where FFFF q is the Jacobian matrix defined by means of equation (3.3). Vector q is
the vector of dependent velocities (derivative with respect to the time of the vec-
tor of dependent coordinates or position variables). Vector (ÐFFFFt = b) is the par-
tial derivative of the constraint equations with respect to time. If all the con-
straints are scleronomous, meaning that there are no rheonomous or time depen-
dent constraints, this derivative will be zero) If the position of the multibody
system is known, equation (3.6) allows us to determine the velocities of the
multibody system by starting from the velocity of the input elements. Just as in
the position problem, the matrix that controls the velocity problem is the
Jacobian matrix of the constraint equations. The essential difference between
both problems is that where the position problem is nonlinear, the equations
governing the velocity problem are linear. This means that the equations do not
have to be iterated, and there is only one solution to a properly posed problem.
The following example illustrates these concepts:

Example 3.5

As an example of this, the velocity equations of the four-bar mechanism of Figure 3.1
will be determined below by using: a) relative coordinates, b) reference point coordi-
nates, c) natural coordinates, and d) mixed coordinates.

a) Using relative coordinates, the constraint equations are given by (See Section
2.1.1),

L1 cos Y1 + L2 cos (Y1 + Y2) + L3 cos (Y1 + Y2 + Y3) Ð OD = 0
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L1 sin Y1 + L2 sin (Y1 + Y2) + L3 sin (Y1 +Y2 +Y3) = 0

Differentiating these equations with respect to time, we obtain:

ÐL1 sin y1 y1 Ð L2 sin (y1+y2) (y1+y2) Ð
Ð L3 sin (y1+y2+y3) (y1+y2+y3) = 0

L1 cos y1 y1 + L2 cos (y1+y2) (y1+y2) +
+ L3 cos (y1+y2+y3) (y1+y2+y3) = 0

and by rearranging these equations, we arrive at:

Ð L1 s1 Ð L2 s12 Ð L3 s123     Ð L2 s12 Ð L3 s123     Ð L 3 s123

L1 c1 + L2 c12 + L3 c123      L2 c12 + L3 c123       L3 c123

 

y1

y2

y3

 = 0
0

where s1 = sin y1, s12 = sin (y1 + y2), and so forth.
If one of the three velocities in the previous equation is known such as the one cor-

responding to the input coordinate) the corresponding column of the Jacobian matrix
can be moved to the right-hand side of the equation. This results in a system of two
linear equations with two unknown velocities that can be solved with no difficulties.

b) Using reference point coordinates, the constraint equations are represented by (See
Section 2.1.2):

x 1 Ð x 0  Ð L1 2 cosY1 = 0

y 1 Ð y 0  Ð L1 2 sinY1 = 0

x 2 Ð x 1  Ð L1 2 cosY1 Ð L2 2 cosY2 = 0

y 2 Ð y 1  Ð L1 2 sinY1 Ð L2 2 sinY2 = 0

x 3 Ð x 2  Ð L2 2 cosY2 Ð L3 2 cosY3 = 0

y 3 Ð y 2  Ð L2 2 sinY2 Ð L3 2 sinY3 = 0

x 3 Ð x D  Ð L3 2 cosY3  = 0

y 3 Ð y D  Ð L3 2 sinY3  = 0

and the time derivatives are:

x 1 + L1/2 Y1 sinY1 = 0

y 1 Ð L1/2 Y1 cosY1 = 0

x 2 Ð x 1 + L1 2 Y1 sinY1 + L2 2 Y2 sinY2 = 0

y 2 Ð y 1 Ð L1 2 Y1 cosY1 Ð L2 2 Y2 cosY2 = 0

x 3 Ð x 2 + L2 2 Y2 sinY2 + L3 2 Y3 sinY3 = 0

y 3 Ð y 2 Ð L2 2 Y2 cosY2 Ð L3 2 Y3 cosY3 = 0

x 3 + L3 2 y3 sinY3 = 0

y 3 Ð L3 2 Y3 cosY3 = 0
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These equations can be expressed in matrix form as follows:

FFFFq  q = 0
where the matrix FFFFq is

1 0 s1 L1/2 0 0 0 0 0 0
0 1 Ðc1 L1/2 0 0 0 0 0 0
Ð1 0 s1 L1/2 1 0 s2 L2/2 0 0 0
0 Ð1 Ðc1 L1/2 0 1 Ðc2 L2/2 0 0 0
0 0 0 Ð1 0 s2 L2/2 1 0 s3 L3/2
0 0 0 0 Ð1 Ðc2 L2/2 0 1 Ðc3 L3/2
0 0 0 0 0 0 1 0 s3 L3/2
0 0 0 0 0 0 0 1 Ðc3 L3/2

      

which is a system of eight equations with nine unknown velocities. If the angular ve-
locity y1 is known for element 2, the third column of the Jacobian matrix will be
moved to the right side member. The result will be a system of eight linear equations
with eight unknown velocities.

c) With natural coordinates the constraint equations (Section 2.1.3) are represented
by:

(x 1 Ð x A)2
 + (y 1 Ð y A)2

 Ð L2
2
 = 0

(x 2 Ð x 1)
2
 + (y 2 Ð y 1)

2
 Ð L3

2
 = 0

(x 3 Ð x B)2
 + (y 3 Ð y B)2

 Ð L4
2
 = 0

whose time derivatives are:

(x 1 Ð x A) x 1 + (y 1 Ð y A) y 1 = 0

(x 2 Ð x 1) (x 2 Ð x 1) + (y 2 Ð y 1) (y 2 Ð y 1) = 0

(x 2 Ð x B) x 2 + (y 2 Ð y B) y 2 = 0

and in matrix form yields:

(x 1Ðx A) (y 1Ðy A) 0 0
(x 1Ðx 2) (y 1Ðy 2) (x 2Ðx 1) (y 2Ðy 1)

0 0 (x 2Ðx B) (y 2Ðy B)

  

x 1

y 1

x 2

y 2

 = 
0
0
0

By knowing one of the four natural velocities and by moving the corresponding
column to the right-hand side of this equation, one can find the remaining velocities
with the resulting set of three linear equations and three unknown variables.

d) Using mixed coordinates, the constraint equations (Section 2.1.4) are:

(x 1 Ð x A)2
 + (y 1 Ð y A)2

 Ð L2
2
 = 0

(x 2 Ð x 1)
2
 + (y 2 Ð y 1)

2
 Ð L3

2
 = 0

(x 3 Ð x B)2
 + (y 3 Ð y B)2

 Ð L4
2
 = 0

(x 1 Ð x A) (x 2 Ð x 1) + (y 1 Ð y A) (y 2 Ð y 1) Ð L2 L3 cosY = 0
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Figure 3.7.  Results of a velocity analysis in a four-bar mechanism.

differentiating with respect to time:

x 1Ðx A  x 1 + y 1Ðy A  y 1 = 0

x 2Ðx 1  x 2Ðx 1  + y 2Ðy 1  y 2Ðy 1  = 0

x 2Ðx B  x 2 + y 2Ðy B  y 2 = 0

x 2Ðx 1  x 1 + x 1Ðx A  x 2Ðx 1  + y 2Ðy 1  y 1 +

+ y 1Ðy A  y 2Ðy 1  + L2 L3 siny y = 0

which can be expressed in matrix form as

x 1Ðx A y 1Ðy A 0 0 0

x 1Ðx 2 y 1Ðy 2 x 2Ðx 1 y 2Ðy 1 0

0 0 x 2Ðx B y 2Ðy B 0

x 2Ð2x 1+xA y 2Ð2y 1+yA x 1Ðx A y 1Ðy A L2L3siny

  

x 1

y 1

x 2

y 2

y

 = 

0
0
0
0

If y is known, the fifth column will be moved to the right-hand side and will leave
four equations with four unknowns. Figure 3.7 shows the result of a velocity analysis
in accordance with an input velocity of y =1.

3.2.2 Acceleration Analysis

The finding of the dependent acceleration vector q becomes apparent by simply
differentiating with respect to time the velocity equation (3.6). This yields the
following result:

 FFFFq q, t  q = Ð FFFFt Ð FFFFq q º c (3.7)

If the position vector q and the velocity vector q are known, by solving the
system of linear equations (3.7), one can find the dependent acceleration vector
q. Note that the leading matrix of the systems of linear equations (3.6) and (3.7)
is exactly the same. As a consequence, if it has been formed and triangularized
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Figure 3.8.  Results of an acceleration analysis in a four-bar mechanism.

to solve the velocity problem, the acceleration analysis can be carried out by
simply forming the right-hand side and by performing a forward reduction and
backward substitution. When there are no rheonomous or time-dependent con-
straints, the velocity problem is homogeneous; whereas the acceleration problem
is always non-homogeneous as long as the velocities are not equal to zero.

Equation (3.7) can be differentiated once again to obtain the jerk or over ac-
celeration equation:

FFFFq  d
dt

 q  = Ð FFFFt Ð 2 FFFFq q Ð FFFFq q (3.8)

Once again a system of linear equations has been obtained whose leading
matrix is the Jacobian matrix of the constraint equations.

Example 3.6

Included below are the acceleration equations for the four-bar mechanism of Example
3.5d modeled with mixed coordinates. These equations are obtained by differentiating
the corresponding velocity equations:

x 1Ðx A y 1Ðy A 0 0 0

x 1Ðx 2 y 1Ðy 2 x 2Ðx 1 y 2Ðy 1 0

0 0 x 2Ðx B y 2Ðy B 0

x 2Ð2x 1+xA y 2Ð2y 1+yA x 1Ðx A y 1Ðy A L2 L3 siny

  

x 1

y 1

x 2

y 2

y

 = 

=   Ð   

x 1 y 1 0 0 0

x 1Ðx 2 y 1Ðy 2 x 2Ðx 1 y 2Ðy 1 0

0 0 x 2 y 2 0

x 2Ð2x 1 y 2Ð2y 1 x 1 y 1 L2 L3 cosy y

  

x 1

y 1

x 2

y 2

y
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If all the velocities q and input accelerations y are known, the remaining accelera-
tions q can be calculated by means of the four equations with four unknowns resulting
from moving the fifth column, multiplied by y, to the RHS of the acceleration equa-
tion. Figure 3.8 graphically shows the result of an acceleration analysis that corre-
sponds to the expression developed in this example.

3.3  Finite Displacement Analysis

The finite displacement analysis is closely related to the initial position problem,
and is controlled by the same system of nonlinear equations (the kinematic
constraint equations). The velocity and acceleration analyses are used at times in
finite displacement analysis to improve the initial approximation with which the
iterative process begin, which explains the reason for including it here and not
immediately after the initial position problem.

3.3.1  Newton-Raphson Iteration

As explained in Section 1.2, once one knows a position of the multibody system
where all the constraint equations are satisfied, the finite displacement problem
consists of finding  the new position that the system takes when a finite displace-
ment is applied to each one of the input elements or externally driven relative
coordinates. Finite displacement is understood to be any movement other than
infinitesimal.

The main problem dealt with in this section is of the same nature and conse-
quently controlled by the same equations of the position problem. Therefore, the
Newton-Raphson method can be used for solving it. The difference between
both problems lies in the fact that the finite displacement problem usually relies
on a good initial approximation which is obtained from a previous exact posi-
tion where all the elements satisfy the constraints. It is possible to improve upon
the approximation by means of a velocity and acceleration analysis, as will be
described in the next section.

These advantages do away with many of the convergence problems encoun-
tered in the initial position problem. In addition, the problem of multiple solu-
tions becomes marginal. If the displacement of the input elements is small
enough, then of all the possible solutions for the constraint equations, the correct
one will be the closest to the starting position. This is precisely the one obtained
by the Newton-Raphson iterations. However, there still remains the possibility
of driving or trying to drive the multibody system to unfeasible positions, that is,
positions that cannot be reached without violating some constraints equations.
Trying to move the end-effector of a robot out of its workspace is an example of
a finite displacement problem where the Newton-Raphson method will necessar-
ily fail to find a correct solution.
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Figure 3.9.  Improving the initial approximation.
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Figure 3.10.  Better estimate for an initial approximation.

3.3.2  Improved Initial Approximation

In order to determine and improve the initial or starting approximation, the ex-
ample of the four-bar mechanism will be used once again. This will clearly de-
scribe the method without any loss of generality.

Figure 3.9 shows a four-bar mechanism, in which the input element has been
rotated a finite angle. One possible way of generating an initial approximation is
by not varying the remaining natural coordinates as in the starting position
shown in Figure 3.9. This approximation leads to a severe violation of the con-
straint equations.

The initial approximation shown in Figure 3.9 can be improved upon by
means of velocity analysis, as indicated in Figure 3.10. The velocity analysis is
carried out by imposing a velocity at the input element so that the endpoint 1' of
the velocity vector of 1 is the closest point to 1" over the perpendicular to A-1
(1'-1" is parallel to A-1).
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Since 1" is known, it is not difficult to determine the velocity of the input el-
ement such that the end of the velocity vector at point 1 is 1'. Using this velocity
as input, a velocity analysis is performed, and the ends of the velocity vectors
are determined for all the basic points of the mechanism (in Figure 3.10, 2' is the
end of the velocity vector of point 2).

The initial approximation used to start the iterations for the Newton-Raphson
method is indicated by the dotted lines in Figure 3.10 It is an improvement over
the one in Figure 3.9. Note that the initial approximation is (A-1"-2'-B) and not
(A-1'-2'-B). The exact position 1" of point 1 is known because it belongs to the
input element and this exact position should be used.

It is not essential that point 1' be the closest one to 1" on the tangent to the
trajectory of 1. Another simpler possibility for calculating point 1' and the
velocity of the input element, is to assume that point 1 changes to position 1" in
an arbitrary period of time such as 1 second. Next, calculate the angular velocity
of the input element by dividing angle 1-1" (in radians) by the said amount of
time where the quotient is the said angular velocity. The position at the initial
approximation of any point P can be calculated by means of the following
expression:

 q = qo  + q D t (3.9)

Equation (3.9) is an approximate integral of velocities starting from the previ-
ous position. An approximate integration which also causes the accelerations to
intervene can be obtained in a similar manner:

q = qo  + q D t + 1
2

 q D t 2 (3.10)

This formula suggests that the initial approximation can be constructed start-
ing from a velocity analysis and an acceleration analysis. To calculate the veloc-
ity and acceleration of the input element one may proceed as follows:

1. Apply one of the previously studied methods and determine the velocity of
the input elements.

2. Knowing the initial and final position of the input elements and their veloc-
ity,  determine the acceleration to be applied to them applying equation (3.10)
to the input elements

Determination of the initial approximation by means of velocity and accelera-
tion analysis allows the iterations to begin with a better approximation to the fi-
nal solution. The cost of an acceleration analysis is small if a velocity analysis
has already been performed. The matrix for both systems of equations is the
same, and one only needs to form it and triangularize it once. Based on the expe-
rience gained through numerical experiments performed by the authors, the ini-
tial approximation constructed with velocities and accelerations does not always
give better results than the one determined from velocities only.
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Figure 3.11.  Iteration process of the Modified Newton-Raphson method.

Figure 3.12.  Kinematic simulation of a four-bar mechanism.

3.3.3 Modified Newton-Raphson Iteration

The Newton-Raphson method of solving systems of nonlinear equations pro-
ceeds as indicated in equation (3.4) and in Figure 3.4. It has already been men-
tioned that this iterative scheme has second order convergence in the neighbor-
hood of the solution. The most important computational burden in the solution
of equation (3.4) is the factorization of the Jacobian matrix.

The idea behind the modified Newton-Raphson method consists of applying
the same iterative scheme but with a constant Jacobian matrix (See Figure 3.11),

 FFFF(qi) + FFFFq(qo) (qi+1 Ð qi) = 0 (3.11)

The main advantage of the modified Newton-Raphson method is the reduced
computational cost of each iteration. More iterations may be necessary to satisfy
the convergence criterion, but in general the total CPU time can be reduced.
However, if the motion increments (finite displacements of the input elements)
are not small, the modified Newton-Raphson method is bound to have more
convergence difficulties than the standard Newton-Raphson method. Sometimes,
a mixed strategy such as a new Jacobian factorization every few iterations may
give the best results.
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Figure 3.13.  Spatial robotic manipulator modeled with natural coordinates.

Table 3.1.  CPU time in seconds for 1000 finite displacement analyses of the robot in
Figure 3.13.

(SNR) Standard
Newton Raphson

(MNR) Modified
Newton Raphson

MNR with improved
initial approx.

53.1 21.7 15.5

3.3.4  Kinematic Simulation

Kinematic simulation is merely a repetition of the finite displacement problem,
with the object of generating a sequence of positions that represent its movement
in a specific time period or range of the input variables. This sequence of posi-
tions can later be depicted in animated form on the computer screen, as long as a
system with sufficiently fast graphics is available.

The only problem with kinematic simulation is to find easy and general
means of defining the movement of the input elements for the time interval in
which one wants to simulate the motion of the multibody system. The increment
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between two consecutive positions depends on the speed with which one wants
to visualize the motion afterwards.

Kinematic simulation may simply involve the animated display of the sys-
tem's motion, or it may also deal with the study of trajectories, possible colli-
sions or geometrical interferences between solid models of the mechanism ele-
ments, and even the necessary driving forces and reactions that occur in a spe-
cific movement. This last problem is truly dynamic (an inverse dynamic prob-
lem) even though it may seem to be just a kinematic problem, since no dynamic
differential equations need to be integrated.

All data previously stated for the finite displacement problem and the kine-
matic simulation is basically valid only when the displacements of the input el-
ements are small. If the input displacements are very large, then it is desirable to
split them into a�series of smaller ones and to solve them sequentially. As an ex -
ample Figure 3.12 shows the kinematic simulation of a four-bar mechanism
where there are various consecutive positions of the system.

Example 3.7

Figure 3.13 shows a spatial 6R robot modeled with natural coordinates. It has four
movable points and three movable vectors, with a total number of 21 dependent coor-
dinates and six degrees of freedom. The kinematic simulation consists of imposing an
end-effector translation on an elliptic path contained in a plane perpendicular to the
robot initial position plane. One thousand finite increments in the end-effector position
have been imposed. The corresponding CPU times on an HP 9000/834 computer (14
Mips and 1.8 DP Linpack Mflops) are shown in Table 3.1 for different conditions:
standard Newton-Raphson method, modified Newton-Raphson method, and modified
Newton-Raphson method with initial approximation obtained from a velocity analysis.
In this case the improvements that result from using modified Newton-Raphson
method and the velocity approximation are quite important. These figures could be
modified for other computers according to the DP Linpack megaflops ratio.

3.4  Redundant Constraints

It has been seen in the previous sections of this chapter that the nonlinear kine-
matic constraint equations that govern the initial position or finite displacement
problems can be formulated as,

FFFF(q, t) = 0 (3.12)

In order to solve the previously mentioned kinematic problems departing
from equation (3.12), such as initial position and finite displacement problems
using Newton-Raphson iterations, or velocity and acceleration analysis, it is
necessary to solve linear systems of equations in the form:

FFFFq (q, t) x = d (3.13)
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Figure 3.14.  Slider-crank mechanism modeled with mixed coordinates.

The vector x may represent incremental displacements, velocities, or acceler-
ations, depending on the type of problem being analyzed. The corresponding
RHS term is d.

In practice, the multibody software developer and the engineer analyst very
often face the problem of an excess of equations (more equations than the
strictly necessary number) in (3.12), reflected by the fact that some of these
equations are not independent from the remaining ones. This lack of equation
independence in system (3.12) may lead to the following troubles in the solution
of the linear system of equations (3.13):

a) a rank deficiency in the Jacobian matrix FFFFq, if an inadequate subset of equa-
tions is chosen,  and

b) an over-constrained system of linear equations (more equations than un-
knowns) which will not have a solution that satisfy all the equations.

This section is addressed to consider the ways on which redundant equations
appear in system (3.12), the consequences that this fact has on the system of lin-
ear equations (3.13) and the practical solutions or numerical strategies that can
be followed to eliminate the resulting difficulties. Some very simple examples
will be used to explain these points.

Multibody systems with n dependent coordinates and f degrees of freedom
will be considered in the sequel. If the analyst is able to find m=nÐf independent
constraint equations, no redundant constraints appear in the formulation and the
standard formulations of previous sections in this chapter have full validity.

However, if m>nÐf consistent constraint equations are found, it is clear that
there are mÐ(nÐf) redundant constraint equations. The following examples illus-
trate two possible origins for this situation.

Example 3.8

Figure 3.14 shows a planar slider-crank mechanism driven by the angle y. The con-
straint equations corresponding to the rigid body condition and the prismatic joint are

x 1Ðx A
2 + y 1Ðy A

2 Ð L2
2 = 0 (i)
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Figure 3.15.  Spherical mechanism with natural coordinates.

x 2Ðx 1
2 + y 2Ðy 1

2 Ð L3
2 = 0 (ii)

y 2 = 0 (iii)

It remains to formulate the constraint equation corresponding to the driven angle
y. If angle y is near 90o or (Ð90o) the cosine equation that can be used is

x 1 Ð x A  Ð L2 cosy = 0 (iv)

However, if angle y is near 0o or 180o, this equation is not valid (See Section
2.1.4) and the sine function that shall be used instead is

y 1 Ð y A  Ð L2 siny = 0 (v)

After these facts we arrive at the following situation. There are four dependent co-
ordinates (four unknown ones (x1, y1, x2, y2) and one externally driven y) and four
equations ((i), (ii), (iii), and (iv) or (v) depending on y value). If the user takes care of
switching between equations (iv) and (v) according to the value of y, then the relation
m=nÐf is always met and there is no problem. However, the user can decide to include
always both equations (iv) and (v) with m>nÐf , leaving to the equation solver the re-
sponsibility of disregarding the less appropriate equation in each position. Note that
equations (i)-(v) constitute a system of nonlinear redundant but compatible equations:
If equations (iv) and (v) are squared and added together, equation (i) is obtained.

Example 3.9

Consider the spherical four-bar mechanisms of Figure 3.15. It is well known that
spherical mechanisms (all the revolute joint axes pass on a common point) are excep-
tions to the Gr�bler criterion, because they have more degrees of freedom than fore-
seen by the Gr�bler formula. In particular, the mechanism of Figure 3.15 has one de-
gree of freedom, but the Gr�bler formula predicts (Ð2). This is due to the particular
orientation of joint axes. Note that for arbitrary joint orientations the Gr�bler result
has full sense.

Consider this mechanism in terms of natural coordinates. There are two movable
points and two movable unit vectors; hence there are n=12 dependent coordinates. The
following constraint equations shall be formulated:
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Ð Unit module conditions:

1.- u1x
2  + u1y

2  + u1z
2  Ð 1 = 0

2.- u2x
2  + u2y

2  + u2z
2  Ð 1 = 0

Ð Constant distance conditions:

3.-  x 1Ðx A
2 + y 1Ðy A

2 + z1ÐzA
2  Ð L2

2 = 0

4.-  x 2Ðx 1
2 + y 2Ðy 1

2 + z2Ðz1
2  Ð L3

2 = 0

5.-  x 2Ðx B
2 + y 2Ðy B

2 + z2ÐzB
2  Ð L4

2 = 0

Ð Constant angle conditions:

6.-  x 1Ðx A  uAx + y 1Ðy A  uAy + z1ÐzA  uAz Ð k 1 = 0

7.- x 2Ðx 1  u1x + y 2Ðy 1  u1y + z2Ðz1  u1z Ð k 2 = 0

8.- x 2Ðx B  uBx + y 2Ðy B  uBy + z2ÐzB  uBz Ð k 3 = 0

Ð Linear combination conditions:

9., 10., 11.-  u1  Ð k 4 uA Ð k 5 r1  Ð rA  = 0

12., 13., 14.-  u2  Ð k 6 u1 Ð k 7 r2  Ð r1  = 0

15., 16., 17.- u2  Ð k 8 uB Ð k 9 r2  Ð rB  = 0

There are 17 equations. Taking into account that vectors u1 and u2 have unit
length, only two of each three linear combination conditions are necessary. This gives
a total number of 14 constraint equations on 12 dependent coordinates.

There is another way to arrive at the same result. Each element with two points and
two unit vectors generates six rigid body constraint equations, including two unit
module conditions. This gives a total number of 18 equations. If it is taken into ac-
count that vectors uA and uB are constant, that is no unit module conditions for them
are necessary and the unit module condition for vectors u1 and u2 has been considered
twice because they belong to two different elements, one arrives again to a total num-
ber of constraint equations m=14.

Then, this mechanism has 12 dependent coordinates, one degree of freedom, and
14 constraint equations, which gives an excess of three constraint equations, in accor-
dance with the wrong prediction of Gr�bler criterion (Ð2 instead of 1). Of these 14
constraint equations, only 11 are independent.

The two previous examples demonstrate without any lack of generality the
two ways from which redundant constraint equations arise:

a) Due to convenience of implementation, as in Example 3.8.
b) In over constrained multibody systems that are exceptions to the Gr�bler cri-

terion, as in Example 3.9.

Once a system has been characterized using systems of redundant constraint
equations, the search of solutions can follow two different avenues:

1. Systems of equations (3.12) and (3.13) can be preprocessed with the aim of
determining and eliminating the dependent equations, to keep only m=nÐf in-
dependent constraint equations, and then to use the standard formulations of
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Sections 3.1-3.3. The main disadvantage of this method is the need to repeat
the dependent equation elimination process each time the multibody system
changes its configuration or, in the case of Example 3.7, after large changes
in the position of the multibody system. Thus this procedure is not suitable
for real-time applications (there is no time to repeat the dependent equations
elimination process) or even for interactive simulation.

2. The second possibility is to solve system (3.12) directly, with a procedure
capable of directly tackling redundant constraints on a strictly standard form.
This way will be explained next.

Let us assume that system (3.12) has m nonlinear equations, of which only
(nÐf)<m are independent. As a consequence, one may be tempted to think that
the redundant equations in (3.12) just produce an excess of compatible equations
in the linear system (3.13). If this were true no particular difficulties would ap-
pear during the solution, because there are a lot of ways and numerical routines
to solve linear systems of equations with an excess of compatible equations.
However, the problem is a little more complicated than assumed previously.

The redundant but compatible nonlinear equations in system (3.12) can in-
duce an excess of non-compatible linear equations in system (3.13). This does
not happen in velocity or acceleration analysis, because in these cases the
Jacobian matrix is evaluated in the exact position q, a position in which all con-
straint equations (3.12) are satisfied.

However, in the initial position and finite displacement problems, the follow-
ing Newton-Raphson iteration formula is used:

FFFFq i qi+1 Ð qi  = Ð FFFF i (3.14)

In this expression the Jacobian matrix FFFFq is evaluated at an intermediate ap-
proximate position qi at which the constraint equations (3.12) are not fulfilled.
This makes the linear system (3.14) over-constrained and non-compatible which
does not have an exact solution that satisfies every equation. There are again two
ways to circumvent this difficulty:

a) Sometimes this problem can be solved using Gaussian elimination with col-
umn pivoting and row scaling. Then, as long as qi is approaching the true so-
lution at which the constraint equations are fulfilled, the algorithm tends to
disregard automatically the dependent equations. However, this procedure
can not be considered in general sufficiently robust and reliable.

b) A reliable algorithm to solve the redundant system of linear equations (3.14)
is the least-square formulation (Strang (1980)). Let us consider the normal
equations corresponding to system (3.14):

FFFFq
T
 FFFFq i qi+1 Ð qi  = Ð FFFFq

T
i FFFF i (3.15)

This algorithm converges on a very reliable way to the exact solution of all
constraint equations. It has been gathered from numerous simulations that it
allows large displacements in the input coordinates with fast and reliable
convergence.
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It can be argued that the solution of system (3.15) is less efficient than the so-
lution of equation (3.14), mainly because the product (FFFFq

T
 FFFFq)i needs to be per-

formed prior to the solution. However, practical experience has shown that even
for non-redundant systems, equation (3.15) can be more efficient than its coun-
terpart (3.14). In large multibody systems, matrix FFFFq tends to be very sparse, and
then the product (FFFFq

T
 FFFFq)i can be carried out very efficiently. System (3.15), al-

though perhaps less sparse than system (3.14), has the advantage of being sym-
metric with the possibility of saving storage and using simpler pivoting strate-
gies.

3.5  Subspace of Allowable Motions

In kinematic problems, the motion of the input elements or driven degrees of
freedom is already known. From this knowledge the motion of the remaining
bodies (or elements) is calculated. In the case of the direct or forward dynamic
problem, the motion of the input elements is not known, or at least, it is not
known for all of them, and the motion is obtained as a solution to the dynamic
differential equations. Before entering the study of the dynamic problems treated
in Chapters 4 and 5, we will study in this section the possible or allowable mo-
tions that the multibody system may have in accordance with the constraint
equations. The study of these possible motions and the methods of expressing
them is a purely kinematic problem that has important implications in the formu-
lation of the differential equations of motion. These allowable motions will be
studied next, and it will be distinguished, in order to introduce the subject pro-
gressively, between scleronomous and rheonomous constraints.

We will see in this section that the actual velocity vector q of a constrained
multibody system is always a vector that belongs to a very particular vector
space called the space of allowable motions. The term motions should actually
be velocities. The study of this vector space and the ability to find a basis for it
constitute very important points for both kinematics and dynamics multibody
formulations. Many authors have been explicitly or implicitly referring to it. See
for instance: Kamman and Huston (1984), Kim and Vanderploeg (1986), Many
et al. (1985), Agrawal (1984), Kane and Levinson (1985), Ider and Amirouche
(1988), Huston (1990), and others. However, we find that the concept of the
space of allowable motions allows for a simpler and more general way to ex-
plain, on a unified background, many different ideas and formulations that have
been introduced in the last years. This concept is also the key towards the under-
standing of the improved real time dynamic formulations that will be studied in
Chapters 5 and 8.



94     3. Kinematic Analysis

3.5.1  Scleronomous Systems

Consider a system with m constraint equations that do not depend explicitly on
the time variable t, n dependent coordinates, and f=nÐm degrees of freedom. The
constraint equations only depend on the dependent coordinates vector q, and can
be formulated as

FFFF(q) = 0 (3.16)

The velocity and acceleration equations are obtained by differentiating (3.16)
with respect to time:

FFFFq (q) q = 0 (3.17)

FFFFq (q) q = Ð FFFFq q (3.18)

Equation (3.17) indicates that the velocity vector q of a multibody system, at
a specific position, belongs to the nullspace of the Jacobian matrix FFFF q of the
constraint equations. The theory of linear systems of equations (Strang (1980))
establishes that if the matrix FFFFq has m independent rows and n columns
(m+f=n), (it is of rank m, because the rank is equal to the number of rows), then
the nullspace of FFFF q is the subspace of the possible or allowable motions
(velocities), in the sense that any possible velocity vector (compatible with the
constraint equations) must belong to this subspace. The dimension of the space
of allowable motions is the number of degrees of freedom f=nÐm of the multi-
body system.

Example 3.10

Consider again the four-bar mechanism with four dependent coordinates and one de-
gree of freedom of Figure 3.1; thus, it has three constraint equations corresponding to
the three constant distance conditions. The Jacobian matrix of the constraint equations
for this mechanism (as already shown in Example 3.1) is :

FFFFq = 
x 1Ðx A y 1Ðy A 0 0
x 1Ðx 2 y 1Ðy 2 x 2Ðx 1 y 2Ðy 1

0 0 x 2Ðx B y 2Ðy B

By symbolically performing a Gaussian elimination of this matrix, it can easily be
demonstrated that its nullspace is defined by the following column vector:

r =  

 y 1Ðy A  y 2Ðy 1  x 2Ðx B  Ð x 2Ðx 1  y 2Ðy B

Ð x 1Ðx A  y 2Ðy 1  x 2Ðx B  Ð x 2Ðx 1  y 2Ðy B

 y 2Ðy B  y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

 x 2Ðx B  y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

Since in this case the nullspace has dimension 1, the vector r completely defines
this subspace. In other words, any possible velocity vector q shall be equal to the vec-
tor r multiplied by a specific factor.
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Figure 3.16.  Planar robotic manipulator modeled with natural coordinates.

Example 3.11

Figure 3.16 shows a planar robot arm with four dependent natural coordinates and two
degrees of freedom. There must be two independent constraint equations, which in
this case are the corresponding constant distance equations. Their Jacobian matrix is
similar to that of Example 3.10, except for the last row which is in this case elimi-
nated,

 FFFFq = 
x 1Ðx A  y 1Ðy A 0 0
x 1Ðx 2  y 1Ðy 2 x 2Ðx 1  y 2Ðy 1

The velocity equation will be

 x 1Ðx A y 1Ðy A 0 0
x 1Ðx 2 y 1Ðy 2 x 2Ðx 1 y 2Ðy 1

 

x 1

y 1

x 2

y 2

 = 0
0

In order to find a basis of the nullspace of this matrix, one may find two linearly
independent vectors that belong to the said subspace.

This can be done as follows: by making, x 2 = 1, y 2 = 0 the following vector is ob-
tained:
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r1 = 

Ð x 2Ðx 1  x 1Ðx A

y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

x 2Ðx 1  y 1Ðy A

y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

1

0

Similarly, making x 2 = 0, y 2 = 1, the following vector is obtained:

r2 = 

y 2Ðy 1  y 1Ðy A

y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

Ð y 2Ðy 1  x 1Ðx A

y 1Ðy 2  x 1Ðx A  Ð x 1Ðx 2  y 1Ðy A

0

1

It is evident that vectors r1 and r2 are independent in that one of them can never be
obtained by multiplying the other by a constant. Therefore, a basis of the subspace of
allowable motions can be formed. Any possible velocity vector of the mechanism in
Figure 3.16 can be expressed as a linear combination of r1 and r2 as follows:

q = r1 z1 + r2 z2

where z1 and z2  are the coefficients of the linear combination, namely, the indepen-
dent velocities of the mechanism.

An attempt will be made further on to generalize all that stated in the previous
examples. The vector q characterizes the velocity of the system with n dependent
coordinates. To represent the velocity of the multibody system with a lower
number of variables, one should construct a basis for the nullspace, so that the
velocity of the system can be represented by means of a new vector z, whose
components are those of the vector q on the chosen nullspace basis. Vector z
will have only f=nÐm components which will be independent.

Let ri (i=1, 2, ..., f) be a set of f linearly independent vectors that constitute a
basis of the nullspace of FFFFq. Any dependent velocity vector q can be expressed
as a linear combination of this basis as follows:

q = r1 z1 + r2 z2 + ... + rf zf (3.19)

Introducing an (n´f) matrix R, whose columns are the vectors ri, this expres-
sion can be written as

q = R z (3.20)
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Figure 3.17.  Hydraulically driven four-bar mechanism.

Matrix R thus defined plays a very important role in some of the most effi-
cient formulations for dynamic analysis. Since vectors ri are the components of a
basis of the nullspace of the Jacobian matrix, it can be verified that,

FFFFq q  ri = 0        (i = 1, 2, ..., f) (3.21)

and consequently

FFFFq q  R = 0 (3.22)

The previous expression is a reminder that the matrix R depends on the posi-
tion vector q, and therefore there is a different matrix R for each of the positions
of the multibody system.

The results obtained for the velocities can also be extended to the accelera-
tions. We must search for a way of expressing the dependent accelerations q in
terms of f independent accelerations z. Differentiating (3.20) with respect to time
we arrive at the following expression:

q = R z + R z (3.23)

Note that now both matrices R and R  are needed for the acceleration trans-
formation. The calculation method for matrix R  depends on the method adopted
to form R and will be seen later on in this chapter.

Even though in the simple examples presented in this section the matrix R
has been calculated symbolically. In practice, this matrix needs to be calculated
numerically. However, both the concepts and applications concerning the matrix
R remain of general validity.

3.5.2  Rheonomous Systems

Rheonomous systems are characterized by the fact that some of the constraint
equations depend on the time variable. This general case will be used to general-
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ize the concepts and ideas introduced previously. For rheonomous systems the
analytical expression for the constraint equations become:

FFFF q, t  = 0 (3.24)

The velocity and acceleration equations are obtained by differentiating this
equation with respect to time once and twice, respectively:

FFFFq q, t  q = Ð FFFFt  º b (3.25)

FFFFq q, t  q = Ð FFFFt  Ð FFFFq q  º c (3.26)

where the dot indicates total derivative; and the sub index t, the partial derivative
with respect to time. Equations (3.25) and (3.26) serve as definitions for the
right-hand side vectors b and c, which will be extensively used in the dynamic
formulations of Chapter 5.

If all the degrees of freedom of the multibody system are controlled kinemati-
cally, that is, if the motion of all the input elements is known as a function of
time, equations (3.25) and (3.26) constitute two systems of m equations with m
unknowns controlled by rank m matrices. The solution of these equation systems
is perfectly determined, and there should be no problem in finding this solution.

Example 3.12

Such is the case with all the mechanismÕs degrees of freedom controlled kinematically
in the hydraulically driven four-bar mechanism shown in Figure 3.17, whose con-
straint equations are:

x 1Ðx A
2 + y 1Ðy A

2 Ð L2
2 = 0

x 2Ðx 1
2 + y 2Ðy 1

2 Ð L3
2 = 0

x 2Ðx B
2 + y 2Ðy B

2 Ð L4
2 = 0

x 1Ðx B
2 + y 1Ðy B

2 Ð f(t)2 = 0

It may be seen that the last constraint is time dependent, thus rheonomous.

It is noted that the general case, where some of the input elements can be
controlled kinematically (their motions prescribed by means of rheonomous con-
straint equations), and others have their motion kinematically undetermined,
constitutes a dynamic problem determined by the differential equations of mo-
tion. From here on, it will be assumed that the equation (3.25) has a total number
of m independent constraint equations, corresponding to the constraints of rigid
body, joints, and degrees of freedom kinematically controlled by means of
rheonomous equations. If there are n dependent coordinates, there will be (n-m)
free or kinematically undetermined degrees of freedom.

We will introduce now a large family of methods in which the independent
velocities z can be defined as the projection of the dependent velocities q on the
rows of a constant (not time or position dependent) matrix B

z = B q (3.27)
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Equation (3.26) can be augmented by equation (3.27) to yield

FFFFq

B
 q = b

z
(3.28)

Let us assume at this point that matrix B, in addition to being constant, also
fulfills the condition of having f=nÐm rows that are linearly independent from
one another and also linearly independent of the m rows of FFFFq.

With these assumptions, the matrix in equation (3.28) can be inverted, and
finding the vector q involves the solution of the following equation:

 q = 
 FFFFq 
B

Ð1

 b
z

 º S b + R z (3.29)

where S is a matrix constituted by the m first columns of the inverse matrix of
equation (3.29), and R is the matrix constituted by the f=nÐm last columns of the
said inverse matrix. It can be verified that

 FFFFq 
B

  
 FFFFq 
B

Ð1

 = 
 FFFFq 
B

  S R  = 
FFFFq S  FFFFq R
B S  B R

 =  I 0
0 I

(3.30)

which demonstrates that the columns of matrix R pertain to and generate the
nullspace of FFFFq.

Regarding the linear equation system (3.25) which is undetermined as long as
a value is not given to the input velocities, equation (3.29) indicates that the
general solution of the system is obtained as the sum of a particular solution of
the complete equation (term Sb) in addition to the general solution of the homo-
geneous equation (term Rz).

The result of equation (3.29) may be compared with the terminology com-
monly used in Kane's method (Kane and Levinson (1985)). The columns of ma-
trix R are the partial velocities with respect to the generalized coordinates z, and
the term Sb constitutes the partial velocities with respect to time. However, the
approach presented herein includes a more general algebraic method to compute
these partial velocities for all kind of multibody systems: open or closed chains,
overconstrained, singular positions, and so forth.

The acceleration equation can be obtained in a similar manner. Augmenting
equation (3.26) with the derivative with respect to time of equation (3.27), we
obtain:

 FFFFq 
B

 q  = c
z

(3.31)

and the inversion of this matrix:

q = 
 FFFFq 
B

Ð1

 c
z

 = S c + R z (3.32)

This expression, analogous to expression (3.29), indicates that matrix R can
be calculated by triangularizing the leading matrix of systems (3.28) or (3.31),
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and performing f successive forward and backward substitutions with the f last
columns of unit matrix I as the RHS terms.

Some of the dynamic formulations that will be seen in Chapter 5 require the
calculation of the term (Sc) in expression (3.32). This term generalizes the role
of the term (Rz) in equation (3.23). In order to determine (Sc), one possibility is
to calculate the matrix S by the same method used to calculate R and then multi-
ply by the known vector c. This way is valid but not very efficient. It is not nec-
essary to calculate matrix S, but just to calculate the product (Sc). From expres-
sion (3.32), it is concluded that the product (Sc) is q when z is zero. By making
z equal to zero in expression (3.31) and finding q, one can arrive at the desired
term. Since the leading matrix of system (3.31) has been previously triangular-
ized when finding matrix R, the calculation of the term being considered re-
quires very little additional effort.

During the preceding development one has been able to see that the inclusion
of rheonomous links in the analysis can be carried out very simply and effi-
ciently. The methods currently used to determine a basis of the subspace of al-
lowable motions (matrix R) are divided into two large groups, the projection
methods and the orthogonalization methods, which will be studied in the follow-
ing sections.

3.5.3  Calculation of Matrix R: Projection Methods

Projection methods are based on defining the independent velocities z as the
projection of the dependent velocities q on the rows of a known constant matrix
B:

z = B q (3.33)

Following the mathematical formulation of Section 3.5.2 for the general case
of rheonomous systems, the following expressions have been obtained:

 FFFFq 
B

 q = b
z

(3.34)

q = 
 FFFFq 
B

Ð1

 b
z

 = S b + R z (3.35)

 FFFFq 
B

 q = c
z

(3.36)

q = 
 FFFFq 
B

Ð1

 c
z

 = S c + R z (3.37)
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Figure 3.18.  Singular Value Decomposition of the matrix FFFFq.

It is clear that these expressions completely define the transformation be-
tween dependent and independent variables.

This only leaves matrix B to be determined. Once this matrix is calculated, it
remains constant during a large range of motion of the multibody system. The
condition with which matrix B must comply in order for the inverse matrix in
expressions (3.35) and (3.37) to exist, its nÐm rows must be independent from
one another and independent from the m rows of matrix FFFFq. We can identify and
describe in this context three methods that have been proposed in the literature
to construct the matrix B. These will be reviewed below.

1.  Method based on the Singular Value decomposition. Singular Value decom-
position (SV) is a generalization of the eigenvalue and eigenvector concept ap-
plicable to rectangular matrices. The SV decomposes a rectangular matrix such
as FFFFq, as indicated in the sketch of Figure 3.18, or shortly:

FFFFq = UT D V (3.38)

where matrix U is orthogonal (its inverse is equal to its transpose and its rows
are mutually orthogonal) of size (m´m). Matrix D is composed of a diagonal
matrix of size (m´m) that contains the singular values and a zero matrix given by
f=nÐm last columns. Matrix V is orthogonal of size (n´n) and can be decom-
posed into two sub-matrices Vd and Vi of sizes (m´n) and (f´n) respectively, ac-
cording to the partition in D. The most important property of the SV decomposi-
tion that pertains to the problem at hand is that the rows of the matrix Vi consti-
tute an orthogonal basis of the nullspace of matrix FFFFq. In other words, it is veri-
fied that

FFFFq V i
T = 0 (3.39)

In view of this expression, Singh and Likins (1985) proposed constructing the
matrix R directly from the SV decomposition. The problem is that the SVD is
essentially an iterative process in some ways similar to the calculation of all the
eigenvalues and eigenvectors of a matrix. This process consumes a great deal of
computer time, and it is absolutely impractical to carry out at each position q of
the system. Other authors (Mani, Haug, and Atkinson (1985)) have proposed us-
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ing the SV decomposition to calculate the matrix B. This operation only needs to
be performed once or at most a few times throughout the entire range of the mo-
tion of the multibody system. Bear in mind that many matrices R, corresponding
to different positions q of the multibody system, can be calculated from only one
matrix B. Matrix B continues to be valid as long as its rows are independent
from those of FFFFq(q).

Equation (3.39) indicates that the rows of matrix Vi are orthogonal to the
rows of FFFFq at the position q, for which the SV decomposition has been per-
formed. This means that matrix Vi complies with the conditions required for ma-
trix B, so long as no large changes are produced in the positions q and, thus in
matrix FFFFq, that the linear independence condition between the rows of the said
matrix and those of matrix B is lost. The following example helps to clarify this
point.

Example 3.13

Demonstrate that after performing the singular value decomposition of FFFFq, under the
condition that  R = Vi

T, the following relation B = Vi is satisfied.
After the singular value decomposition FFFFq is orthogonal to V i

T, we can take R =
Vi

T, and also
q = R z

and
z = B q = B R z 

Therefore B R = I. Since R = V i
T and Vi is an orthogonal matrix, the following re-

lationship: B = Vi immediately follows.

This method of calculating the matrix R has a very simple geometric interpre-
tation that can be seen in Figure 3.19. Let's assume that bar OA is fixed at O by
means of a spherical pair. If the rotation around the axis OA is not considered,
this mechanism has two degrees of freedom and three natural coordinates, the
Cartesian coordinates of point A. Thus, it will have one constraint equation
which will be the constant distance condition between points O and A. In this
case m=1, n=3 and f=2.
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A

A'
O

r2
r1

Figure 3.19.  Graphical representation of the columns of the matrix B.

The subspace of the possible movements has a dimension 2, and is formed by
the plane perpendicular to OA through A, since in fact all the possible velocity
vectors of point A are contained in the said plane. Vectors r1 and r2 constitute an
orthogonal basis of the subspace. It has been possible to calculate them by
means of the SV decomposition of matrix FFFFq at the position OA.

Now it can be assumed that the mechanism moves and changes to a new
position OA'. Matrix B continues being defined by vectors r1 and r2, calculated
at the position OA. The independent velocities z1 and z2 are the projections of
the velocity of A' on the axes r1 and r2, respectively. Note that the velocity of A'
is no longer contained in the tangent plane at A but can be easily determined
from its projections on r1 and r2, and by the condition that it is perpendicular to
OA' (constraint condition for velocities).

2.  Method based on the QR decomposition. This method of constructing matrix
B is similar to the previous one, but it uses the QR instead of the SV decomposi-
tion. The main advantage is that QR decomposition is a direct, not iterative, pro-
cess which requires considerably fewer arithmetical operations as indicated by
Kim and Vanderploeg (1986).

The QR method decomposes the matrix FFFF q
T as indicated in the sketch of fig-

ure 3.20, or briefly,

FFFFq
T = Q R (3.40)

where Q is an orthogonal (n´n) matrix, and R  is a rectangular (n´m) matrix
formed by an upper triangular matrix (m´m) and a zero matrix of order (f´m).
Note that a tilde has been used to distinguish the result of the QR decomposition
from the matrix Q that symbolizes the forcing vector in dynamic analysis
(Chapter 4) and the matrix R (basis of the nullspace of the Jacobian matrix). The
application of this decomposition to the problem at hand is straightforward when
considering that the f last columns of Q which define the sub-matrix Qi consti-

=

m

n

m f

0

m

f

m

nFq
T Qd Qi R

Figure 3.20.  QR Decomposition of the matrix FFFFq.
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tute an orthogonal basis of the nullspace of the matrix FFFF q. This matrix can be
written as

B = Qi
T

(3.41)

and likewise verified that
FFFFq(q) Qi = 0 (3.42)

This matrix B is used in exactly the same way as that calculated by means of
the SV decomposition. The QR decomposition is carried out at a determined po-
sition q of the multibody system. The matrix B is formed, and the matrix R  is
calculated for the successive positions of the multibody system using equation
(3.35), without recalculating the matrix B. This recalculation will have to be
done when its rows become a linear combination of those of FFFFq.

The geometric interpretation of the method based on QR decomposition is
similar to that of the SV decomposition. Returning to Figure 3.19, matrix B
formed by vectors r1 and r2 gives inadequate results when the bar moves to a
position perpendicular to OA and therefore, parallel to the plane defined by r1

and r2. At this position the derivative of the constant distance condition in ma-
trix FFFFq is a linear combination of r1 and r2 and the matrix of equations (3.34)
and (3.36) cannot be inverted.

Both the QR and SV decomposition can be carried out by means of standard
Fortran or C subroutines, contained in the readily available IMSL, Harwell,
NAG, and other mathematical libraries.

3. Method based on Gaussian triangularization. This method, described by
Serna et al. (1982), is based on the triangularization of matrix FFFFq by means of
the Gauss method with total pivoting. This triangularization implies decomposi-
tion of the Jacobian matrix in sub-matrices, as shown below:

FFFFq º FFFFq
d  FFFFq

i (3.43)

where matrix FFFF q
d  is a square matrix (m´m) that contains the columns of FFFFq in

which the pivots have appeared. Matrix FFFF q
i  contains the columns in which the

pivots have not appeared and has the size (m´f). In the theory of linear equation
systems, the variables associated with columns FFFF q

i  are called independent vari-
ables, and those associated with columns FFFF q

d  are called dependent variables.
The reason for this nomenclature is that to solve a system of m equations with n
unknowns, with a matrix such as that in equation (3.43), it is necessary to assign
a value to the independent variables and then, with matrix FFFF q

d  reduced to trian-
gular form, calculate the dependent variables with the corresponding forward
and backward substitutions.

Once matrix FFFFq is triangularized as shown in equation (3.43), matrix B is a
Boolean matrix constructed as follows:

B º   0  |   I   (3.44)

whereupon the matrix from which the inverse of matrix R is calculated is
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 FFFFq 
B

 = 
 FFFFq

d  

0
 
 FFFFq

i  

I
(3.45)

The rows of matrix B defined in this way are formed by ones and zeros. Since
matrix FFFF q

d  is triangularizable, it is guaranteed that the rows of matrix B are inde-
pendent from those of FFFFq. Note that the triangularization of matrix (3.45) is sim-
pler than with the SV or QR decomposition. In the part corresponding to matrix
B, no additional work is necessary, since the zeros have already been obtained.
With this method, matrix R is calculated more easily and with fewer arithmetical
operations.

Other repercussions from choosing matrix B, in accordance with equation
(3.44), will be analyzed below. Particularizing equation (3.27) for this case,

z =  0  |   I  q (3.46)

This expression indicates that the independent velocities z are chosen as a
subset or extraction of the dependent velocities q.  In other words, f elements of
q have been chosen to form vector z.

Example 3.14

Let as consider a planar mechanism with five bars and two degrees of freedom, as
shown in Figure 3.21. The independent coordinates are a subset of the dependent co-
ordinates. Let's assume that the independent velocities are

 z1 º y 2

 z2 º x 3

According to expression (3.35), matrix R can be formed thusly The first column of
matrix R (vector r1) is the velocity vector of the mechanism, when the independent
velocities have the following value:

 y 2 = 1      x 3 = 0
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Figure 3.21.  Five bar mechanism.

The second column of matrix R (vector r2) is the velocity vector of the mechanism,
when the independent velocities are:

 y 2 = 0      x 3 = 1

Thus in this case and with this type of matrix B, matrix R is especially easy to con-
struct. It will suffice to alternatively give value 1 to each of the independent velocities,
keeping all the others at the value 0. Therefore, the partition of matrix R, which corre-
sponds to the independent velocities, becomes the unit matrix I.

This geometrical interpretation and significance of the independent velocities con-
trasts with that carried out for the SVD, starting from Figure 3.19.

3.5.4. Orthogonalization Methods

One can use the orthogonalization methods to try to obtain a matrix R, whose
columns are in some way orthogonal to one another at all times. The method that
will be explained here was developed by Liang and Lance (1985) and is based
on the previously considered matrix:

P º  
 FFFFq 

B
(3.47)

where the matrix B can be constructed by means of any of the methods shown in
previous sections, but preferably by means of the third method. This produces a
Boolean matrix B in accordance with the partition of FFFFq, and determined by the
Gaussian triangularization method with total pivoting.

The first step in this method consists of orthogonalizing the n rows of matrix
P by means of the Gram-Schmidt orthogonalization method. This yields an (nxn)
matrix as follows:
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V º  Vd 
Vi

(3.48)

where the rows of Vd are the rows of FFFFq with each of them orthogonalized in re-
lation to the previous ones, and where the rows of Vi are the rows of matrix B
with each one of them orthogonalized in relation to the rows of Vi and to the
previous rows of Vd.

According to the standard Gram-Schmidt orthogonalization process, all the
orthonormal vectors vi are calculated by means of the general expressions:

vi = ai pi Ð (vj × pi) vjå
1

iÐ1

 (3.49)

and

ai = 1 / pi Ð vj × pi  vjå
1

iÐ1

 (3.50)

The f last vectors obtained in this way correspond to the rows of matrix B,
orthogonalized with respect to those of FFFFq and in relation to the previous rows
of B. These f rows form matrix Vi (See equation (3.48)). This matrix is orthogo-
nal to FFFFq . In addition, the rows of Vi are independent and mutually orthogonal.
By the first condition, the rows of Vi pertain to the FFFFq nullspace, and by the sec-
ond condition, they constitute a basis. Thus, matrix ViT can be taken as matrix R.

The final step is the calculation of the term (Rz) or (Sc) is calculated. Liang
and Lance (1985) calculate matrix R  explicitly, differentiating equations (3.49)
and (3.50) with respect to time:

vi = ai pi Ð vj × pi  vjå
1

iÐ1

 +

+ ai p
i
 Ð v

j
 × pi + vj × piå

1

iÐ1

 vj Ð vj × pi  v
jå

1

iÐ1
(3.51)

and

ai = Ð pi × pi Ð vi × pi 2å
1

iÐ1 Ð 3
2
 p

i
 × pi Ð vj × piå

1

iÐ1

 v
j
 × pi + vj × p

i
(3.52)

In these expressions, the derivatives of the P rows are obtained from the
derivatives of the rows of FFFFq. The derivatives or the B rows are zero.

The calculation of matrix R by means of equations (3.49) and (3.50) and of
matrix R  by means of equations (3.51) and (3.52) requires an enormous compu-
tational effort, which is far greater than that required for the previously ex-
plained projection methods. Another important feature of this method is that the
matrix R obtained depends on the order in which rows FFFFq and B are considered,
since the Gram-Schmidt orthogonalization depends on this order. The effect of
this order is not yet known.
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Figure 3.22.  Disc modeled with two basic points, in contact with a surface.

3.6  Multibody Systems with Non-Holonomic Joints

Non-holonomic pairs or joints are those whose constraint equation (joint con-
straint equations) do not depend on the dependent coordinates only but also on
the dependent velocities by means of non-integrable equations. The rolling of a
disc or wheel on a surface is a typical example of the non-holonomic constraint
It is the only one that will be discussed here. A distinction will be made between
the planar case and the three-dimensional one.

3.6.1  Wheel Element in the Planar Case: First Method.

Figure 3.22 shows a disc in contact with a surface. In principle, there can be two
types of movement between the surface of the wheel and that of the track:
rolling and rolling plus sliding (simply referred to as sliding).

The fact that the movement is one type or the other depends on the dynamic
conditions of the problem (coefficient of friction and contact force), which will
not be studied here. In this section, only those constraint equations correspond-
ing to the rolling and sliding conditions will be studied.

There are at least two ways of establishing the constraint equations of the sys-
tem shown in Figure 3.22. One way is to directly establish the non-holonomic
constraint equations in terms of dependent velocities. The second way is to sub-
stitute the non-holonomic joint with one or more equivalent holonomic joints for
that position of the multibody system. Both ways will be seen further on. In ei-
ther case, it will be assumed that the wheel is modeled by means of two basic
points, one at the center and the other at the end of a radius. The movement of
both points completely defines the movement of the wheel.

The constraint equations of non-holonomic joints are directly generated in
terms of the velocities. Therefore, there are no constraint equations for the posi-
tion problem. To solve the position problem with wheels and tracks, it is neces-
sary to dispense with the wheels and find the position of their centers. It is
known that they are located on a curve, as shown in Figure 3.23, which is the
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wheel center
path

track

Figure 3.23.  Wheel center path.

geometric place of the possible positions of the wheel center. Once the position
of the center of the wheel is known, the wheel can be placed at the desired angu-
lar position.

Rolling. In the case that there is a rolling motion between the wheel and the
track, the joint kinematic constraint equation establishes that the velocity of the
wheel point in contact with the track shall be zero. If the track moves, the condi-
tion is that the velocity of the two points in contact is the same. From here on, it
will be assumed that the track is stationary and all that stated previously will be
applicable to the relative movement between the rolling wheel and the track.

Depending on the velocities of the basic points O and A, the condition that
the velocity of point P be zero is equivalent to the conditions that the velocities
of O and A be perpendicular to PO and PA respectively. When the coordinates
of P, O, and A are known, these conditions are easily established by means of
the scalar product of vectors:

xO Ð xP  xO + yO Ð yP  yO = 0 (3.53)

xA Ð xP  xA + yA Ð yP  yA = 0 (3.54)

Point P can be determined by means of the normal line traced from point O to
the track.

Sliding. In the case that there is a sliding motion, the constraint condition estab-
lishes that point P does not have any velocity in the direction normal to the sur-
faces in contact. This condition is equivalent to equation (3.53), which estab-
lishes that the velocity of point O is perpendicular to PO. Note that in this case
the equation (3.54) is no longer valid. It should be noted that when there is a
rolling movement, two degrees of freedom are restricted. If there is sliding, only
one degree of freedom is restricted. This is in accordance with the number of
equations that should be satisfied.
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Figure 3.24.  Description of the center of curvature of the wheel.
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Figure 3.25.  Substituting a non-holonomic constraint by a holonomic ones.

To derive equations (3.53) and (3.54) and to find the equations corresponding
to the accelerations, one should bear in mind that in order for the equations to be
valid at all times, point P must not belong to either the wheel or to the rolling
track, but should be the mathematical point that always coincides with the pole
(center of velocities). If equations (3.53) and (3.54) are differentiated with re-
spect to the time, one obtains

xOÐxP  xO + xOÐxP  xO + yOÐyP  yO + yOÐyP  yO = 0 (3.55)

xAÐxP  xA + xAÐxP  xA + yAÐyP  yA + yAÐyP  yA = 0 (3.56)

In these equations, (xP, yP) are the components of the pole velocity which
must be calculated, since equations (3.55) and (3.56) should not have unknowns
other than the natural accelerations.

To calculate the pole velocity rp, one discovers the only solution is to con-
sider the geometry of the trajectory. If O« is the center of curvature of the wheel
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center O trajectory (See Figure 3.24), points P and O are always aligned with O«.
The ends of the corresponding velocity vectors are aligned also. From this it may
be deduced that:

rP = O ¢P O ¢O  × rO (3.57)

By decomposing this expression into its Cartesian coordinates and substitut-
ing them in equations (3.55) and (3.56), the constraint equations corresponding
to the accelerations can be obtained.

3.6.2  Wheel Element in the Planar Case: Second Method.

Another way of entering the rolling and sliding conditions is by substituting the
non-holonomic joint for one or more equivalent holonomic joints.

In Figure 3.25, the said substitution is being carried out and is based on
knowledge of the centers of curvature of the trajectories of the basic points O
and A. The center of curvature of the trajectory of O is the center of curvature of
the track at the point of contact P. The center of curvature of the trajectory of A
can be calculated using the Euler-Savary formula:

1
PA

 + 1
PA ¢

 sinY = 1
PO 

 + 1
PO ¢

(3.58)

Rolling. In the case of a rolling motion, the non-holonomic joint is replaced by
the articulated quadrilateral A«AOO«, since the distance between the point and
the center of curvature of its trajectory is constant and has first and second con-
stant derivatives. Therefore, this equivalence is instantaneously valid for veloci-
ties and accelerations. Note that at another time, the equivalent four-bar mecha-
nism will be different. For the position of Figure 3.25, the constraint equations
are

xAÐxA¢
2
 + yAÐyA¢

2
 Ð LAA¢

2
 = 0 (3.59)

xOÐxO¢
2
 + yOÐyO¢

2
 Ð LOO¢

2
 = 0 (3.60)

Sliding.  In the case of a sliding movement, only the constant distance condition
between points O and O« should be imposed. The equations corresponding to
velocities and accelerations are obtained by differentiating equations (3.59) and
(3.60) and considering A« and O« as fixed points.

3.6.3  Wheel Element in the Three-Dimensional Case.

Consider the three-dimensional wheel element shown in Figure 3.26, which is
formed by two basic points O and A and a unit vector u perpendicular to the
plane of the wheel and associated to point O.
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Figure 3.26.  Modeling of a three dimensional wheel with natural coordinates.

Rolling. The constraint equations corresponding to this non-holonomic joint are
defined by the condition that the velocity of material point P (pertaining to the
wheel) is zero:

rP = 0 (3.61)

The vector equation (3.61) represents three algebraic equations. Therefore
three degrees of freedom are restricted by this joint when there is a rolling
movement, thus only permitting the three rotations about point P. It is necessary
now to consider equation (3.61), in accordance with the natural velocities and
coordinates. The velocities of points O and A can be expressed in terms of the
angular velocity vector wwww:

rO = wwww Ù rO Ð rP (3.62)

rA = wwww Ù rA Ð rP (3.63)

which can be expanded to yield

xO = wy  zOÐzP  Ð wz yOÐyP (3.64)

yO = wz xOÐxP  Ð wx  zOÐzP (3.65)

zO = wx  yOÐyP  Ð wy  xOÐxP (3.66)

xA = wy  zAÐzP  Ð wz yAÐyP (3.67)

yA = wz xAÐxP  Ð wx  zAÐzP (3.68)

zA = wx  yAÐyP  Ð wy  xAÐxP (3.69)

Three conveniently selected equations among the previous ones, which are
two corresponding to one point and one to the other, permit determining the vec-



3.6  Multibody Systems with Non-Holonomic Constraints     113

tor wwww. For example, by selecting equations (3.64), (3.65), and (3.69), the follow-
ing matrix equation can be written:

O zOÐzP Ð yOÐyP

Ð zOÐzP O xOÐxP

yAÐyP Ð xAÐx P O

  
wx

wy

wz

 = 
xO

yO

zA

(3.70)

If the matrix of this system is not singular, one can find the angular velocity
vector wwww and substitute its value in the remaining equations (3.66), (3.67), and
(3.68), which are those not used to determine the angular velocity vector.
Consequently

zO

xA

yA

 =

= 
yOÐyP Ð xOÐxP 0

0 zAÐzP Ð yAÐyP

Ð zAÐzP 0 Ð xAÐx P

 
0 zOÐzP Ð yOÐyP

Ð zOÐzP O Ð xOÐxP

yAÐyP Ð xAÐx P 0

Ð1
xO

yO

zA

(3.71)

This equation can be considered as the constraint equation in velocities for
the rolling joint. In practice, these equations must be numerically evaluated.

In the case of accelerations, it is necessary to differentiate equations (3.64)-
(3.69), considering that P is the mathematical point of contact:

x0 = wy  z0ÐzP  Ð wz y0ÐyP  + wy  z0ÐzP  Ð wz y0ÐyP (3.72)

y0 = wz x0ÐxP  Ð wx  z0ÐzP  + wz x0ÐxP  Ð wx  z0ÐzP (3.73)

z0 = wx  y0ÐyP  Ð wy  x0ÐxP  + wx  y0ÐyP  Ð wy  x0ÐxP (3.74)

xA = wy  zAÐzP  Ð wz yAÐyP  + wy  zAÐzP  Ð wz yAÐyP (3.75)

yA = wz xAÐxP  Ð wx  zAÐzP  + wz xAÐxP  Ð wx  zAÐzP (3.76)

zA = wx  yAÐyP  Ð wy  xAÐxP  + wx  yAÐyP  Ð wy  xAÐxP (3.77)

From equations (3.72), (3.73), and (3.77), the angular acceleration vector wwww
can be found. It will be a function of the coordinates, the velocities, and vector
wwww.... By substituting in the three remaining equations, one obtains three ratios be-
tween the natural accelerations of points A and O. Vector wwww, which can be re-
placed by the equation (3.70), intervenes in these ratios. In the resulting equa-
tion, the only unknown term is the pole velocity rp. Point O« is the center of cur-
vature of the intersection of the disc plane with the contact surface (line (a) in
Figure 3.26). Point P is a mathematical point that instantaneously moves along
the line of intersection. Of the three components of vector wwww at point P, only one
perpendicular to the disc plane produces a velocity at this point. This velocity
will be:
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rP = rO Ð rO × u  u  PO¢
PO

(3.78)

All the ratios are defined. The only thing left to do is to formulate the con-
straint equations for the three-dimensional wheel. These equations are more
complicated than in the planar case, and they should be numerically formulated.

Sliding. In the case that there is sliding, only the component of the velocity of
material point P in a direction normal to the surfaces in contact should be can-
celled. In this case, the joint permits five degrees of freedom. One way of enter-
ing this constraint equation is by expressing the equations in a local system of
coordinates located at the point of contact and only cancelling the normal com-
ponent. Another possibility is to project the previous equations by means of their
scalar product for a unit vector in the direction normal to the surfaces at the
point of contact. As this value does not depend on the natural coordinates, it
does not increase the degree of the polynomial equations obtained.

For the three-dimensional wheel, the problem is more complicated than in the
planar case and should be solved by considering the center of the wheel, the unit
vector normal to the wheel on which it is located, and the contact surface.

Likewise, in the case of the three-dimensional wheel, it is possible to substi-
tute the rolling or sliding joint for one or more equivalent holonomic joints, re-
membering the differential geometry of the surfaces in contact and the three-di-
mensional generalization of the Euler-Savary formula. This approach is more
complicated than in the planar case, and will not be developed here.
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Problems

3/1 Starting from the constraint equations resulting from Problem 2/1, write the velocity
equations of the mechanism shown in the Figure P3/1 when modeled with:
a) Relative coordinates. b) Reference point coordinates. c) Natural coordinates. d)
Mixed coordinates, with relative coordinates in all the pairs.

3/2 Write the velocity and acceleration equations for the mechanism shown in the
Figure.

0
2

1

D

L2L1

L3

D1

2

a

b

3
0

Figure P3/1. Figure P3/2.

3/3 Assuming that there is rolling with no slipping between the disk and the rod and
using the set of mixed coordinates chosen in Problem 2/2 (natural and relative),
write the Newton-Raphson iteration equations for the finite displacement problem.
Write the driving constraint equations for the cases when the rotation of the disk
and the relative rotation in joint 1 are the externally driven variables.
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Figure P3/3. Figure P3/4.

3/4 Write the velocity equations for the mechanism of the figure.
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Figure P3/5. Figure P3/6

3/5 The wheel on the figure rolls without slipping. Use mixed coordinates (natural and
relative) and find the velocity equations. It is suggested that the contact between the
wheel and the ground be modeled by means of a rack and pinion type of kinematic
joint.

3/6 The figure shows a slider-crank mechanism with the two elements of equal length.
Write the velocity equations of this mechanism when the driven velocity is:
a) x-velocity of point 1. b) x-velocity of point 2.
What will happen to the rank of the Jacobian matrix when both bars are in the verti-
cal position?

3/7 For the slider-crank mechanism of Problem 3/6, find analytically the matrix R (null-
space of the Jacobian matrix without driving constraints) both for the general posi-
tion and for the case when both bars are placed vertically (singular position).

3/8 Find the velocity equations of the quick return mechanism of the figure when using
mixed coordinates, so that the input angle j is directly related to the output distance
s.
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Figure P3/8. Figure P3/9.

3/9 The centers of the two gears shown in the figure are connected by means of a rod
with point A being fixed. Considering mixed coordinates and using the constraint
equations of Problem 2/6, find the equations that relate the angular velocities
(relative or absolute) of the three elements.

3/10 Consider the mechanism in the figure and find the constraint equations that relate
the velocities and accelerations of the angles j1 and j 2 with the parameter s, that
measures the relative position between elements 3 and 4 and its derivatives with re-
spect to time.
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Figure P3/10. Figure P3/11.

3/11 Consider the mechanism shown (See Problem 2/8 for the constraint equations) to be
modeled with natural coordinates. Rods 2 and 4 are attached to the gears with radius
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r3 and r5 whose centers are connected by means of rod 3. Write the velocity equa-
tions for the complete system in terms of the input angle j1.

3/12 Determine in the mechanism shown the constraint equations that relate the veloci-
ties and accelerations of coordinate s with the angle j.
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j

j1
j2

Figure P3/12. Figure P3/13.

3/13 Consider the Geneva wheel of the figure. Using natural coordinates, find the equa-
tions that relate the velocities of input angle j1 with the output angle j2.

3/14 Find for the clam-shell bucket of the figure the equations that relate the speed of the
control cable v with the angle q.

3/15 The figure shows the frame A12B that can rotate about the fixed axis AB by the ac-
tion of the string attached to point 2 that goes through a pulley located at C (See
Problem 2/16). Find the equations that allow one to relate the angular velocity y
with the cable speed s at the pulley.
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Figure P3/14. Figure P3/15.
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3/16 The ends of a slender rod of length 2 move on the sides of a cube with sides of
unit length. Find the equation that relates the speed of both ends of the rod.
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Figure P3/16. Figure P3/17.

3/17 Use natural coordinates and the result of Problem 2/18 to find the Jacobian matrix
of the RSSR mechanism shown in the figure. How many arithmetic operations are
necessary to evaluate this Jacobian matrix?

3/18 The mechanism shown has a revolute joint, a spherical joint, and a composite joint
RC. Find the constraint equations that relate the time derivatives of angle j and dis-
tance s.

R

S

RC

s
j

Z

X
Y

u1 u21

2

v

P

Figure P3/18. Figure P3/19.

3/19 For the 3-D planar joint shown in the figure, find the constraint equations for posi-
tions, velocities, and accelerations. The plane is defined by point P and its normal
unit vector v, and the body is defined by points 1 and 2, and unit vectors u1 and u2.
Discuss what difficulties may arise with other possible body positions and/or con-
figurations.

3/20 Find the velocity constraint equations of the gyroscope shown, considering the an-
gles of relative motion (See Problem 2/20).
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Figure P3/20. Figure P3/21.

3/21 Find the six kinematic constraint equations (and their derivatives) that allow one to
guide kinematically the three translational displacements and the three roll, pitch
and yaw rotations (in the local reference frame) of the rigid body of the figure.

3/22 A six degree of freedom spatial manipulator is depicted in Figure 3.13 (See also
Problem 2/21). Use natural coordinates to find the finite displacement Newton-
Raphson iteration equations.


