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Abstract— We propose a novel solution to the problem of
inverse kinematics for redundant robotic manipulators for the
purposes of goal selection for path planning. We unify the
calculation of the goal configuration with searching for a path
in order to avoid the uncertainties inherent to selecting goal
configurations which may be unreachable because they currently
lie in components of the free configuration space disconnected
from the initial configuration. We adopt workspace heuristic
functions that implicitly define goal regions of the configuration
space and guide the extension of Rapidly-exploring Random
Trees (RRTs), which are used to search for these regions. The
algorithm has successfully been used to efficiently plan reaching
and grasping motions for a humanoid robot equipped with
redundant manipulator arms.

I. INVERSE KINEMATICS AND PATH PLANNING

Service robots and especially humanoid robots are expected
to perform complex manipulation tasks in dynamic environ-
ments. This precludes the use of preprogrammed trajectories,
and instead necessitates general and flexible techniques for
autonomous manipulation planning. Solving a manipulation
planning problem involves computing some sequence of grasp-
ing, regrasping, and manipulation operations applied to a set
of movable objects [1]–[4].

In this paper, we focus on the reaching subtask, which
involves computing a trajectory for the manipulator arm to
move from some initial configuration to a goal configuration
with the end-effector in a position to grasp the object. Reach-
ing subtasks have traditionally been further subdivided into
the problems of grasp selection, arm configuration selection,
and arm trajectory planning. This division of the computation
exists for both historical and practical reasons. Conventional
path planning algorithms require a specific goal configuration
as input. Thus, a method for calculating the joint angles
that correspond to the desired workspace posture of the end-
effector is needed. This is the classic inverse kinematics (IK)
problem, which has a long history in the robotics literature.

Apart from special cases, there currently exist no known
analytical methods for solving the inverse kinematics of a
general redundant mechanism (greater than six degrees of
freedom) [5]. Iterative, numerical techniques based on the
calculation of the pseudo-inverse of the Jacobian J+ [6],
[7] are typically used instead. These methods have several
drawbacks:

Fig. 1. Motion planning for a 7-DOF manipulator: Taking a plate out of a
dishwasher. (Experiment Dishwasher)

• Iterative methods can suffer from poor performance or
non-convergence depending upon the quality of the initial
guess, the distribution of singularities in the mechanism
configuration space, or a combination of these effects.

• While there usually is a wide range of possible workspace
end-effector poses for grasping an object, existing IK
algorithms typically require selecting exactly one such
pose in order to compute a corresponding arm joint
configuration.

• When a given workspace position and orientation admits
a continuous range of solutions in the joint space, iterative
methods are usually only able to return a single solution,
as opposed to multiple solutions or a family of solutions.

The conventional path planning problem formulation in-
volves searching the configuration space (C-space) of a robotic
system for a collision-free path that connects a start configu-
ration qinit to a goal configuration qgoal [8]. For a complete
treatment of motion planning, the reader is referred to [9], [10].
Approaches to the path planning problem can be divided into
the two classes of single-query and multiple-query planning.
For single-query planning, it is assumed that a single planning
problem should be solved quickly, without any pre-processing.
The class of multiple-query planning problems encompasses
cases where many path planning problems are to be solved in
the exact same environment, making extensive pre-processing
viable (e.g. [11]). Since humanoids and other service robots
are intended to operate in dynamic environments, most motion



planning problems for such robots can be assumed to fit into
the class of single-query planning.

When only a limited set of goals (as in [12]) or only a
single qgoal is computed, the following problems can occur
when attempting to plan a path:

1) qgoal may not be collision-free with respect to obstacles
in the environment.

2) qgoal may not represent the best choice available in terms
of joint distance or planned path length from the current
arm configuration.

3) qgoal may be unreachable from the current arm config-
uration (i.e. no collision-free path exists), causing the
planner to fail, even when easily reachable, collision-
free alternative inverse kinematic solutions exist.

In section II, we will present an example where these problems
occur using the traditional approach to path planning and
inverse kinematics.

II. INTUITION REGARDING CONFIGURATION SPACE

The configuration space of a redundant manipulator exists
in a high-dimensional space corresponding to the number of
degrees of freedom of the manipulator minus the constraints
imposed on the motion of the end-effector.

Figure 2 shows a simple redundant robot arm that has three
revolute joints with parallel axes, each with a range of motion
of (−π, π) radians. This system has three degrees of freedom
(DOF). Because the end-effector of the robot can only reach
positions in a plane, the arm is redundant in this plane. The
C-space can be visualized as a cube with edges of length 2π.
Figure 2 shows two IK solutions (a) and (b) plotted both in the
workspace and in the configuration space for a given position
of the end-effector.

(a) (b)

Fig. 2. Two inverse kinematics solutions for the same end-effector posture.

Obstacles in the workspace map to regions in the C-
space called C-obstacles, which represent the set of all joint
configurations of the robot that cause the geometry of the robot
to intersect (overlap) the geometry of the obstacle. These C-
obstacles can cause a complete disconnection between dif-
ferent regions of the free configuration space. In this case,
there will exist no valid path between two joint configurations
lying in two disconnected components of the free space. A
simple example for such a C-space is given in Figure 3: The
C-obstacle forms a “wall” of complex shape that is parallel to
the θ2-θ3-axis.

Fig. 3. 3-DOF robot and configuration space with a C-obstacle creating two
disconnected components of free space.

In the context of inverse kinematics, this implies that there
may be multiple candidate solutions which lie in disconnected
components of the free space, and may be unreachable from
the current initial joint configuration of the robot. Adding the
obstacle from Figure 3 to the workspace shown in Figure 2
causes one of the two IK solutions to become disconnected
from the initial configuration of the robot as shown in Figure 4.
Using a traditional approach to IK, configuration (b) may be
selected as the goal. Unfortunately, this blind selection of an
IK goal without consideration of its reachability guarantees
that the subsequent path planning search will fail.

Fig. 4. Two IK solutions (a) and (b) lying in disconnected components of
the configuration space.

As mentioned in section I, another problem is that even if it
were possible to compute and plan for all possible IK solutions
to a single end-effector posture, there may actually be a wide
continuous range of end-effector positions which allow solving
the task. Consider the task of grasping a cylindrical object. The
two configurations shown in Figure 2 are possible solutions but
in addition, there are infinitely many more configurations that
enable the robot to grasp the object. This set of configurations
corresponds to a symmetric region in the C-space illustrated
in Figure 5.



Fig. 5. Solution region for grasping a cylindrical object.

III. AN ALTERNATIVE METHOD: INTEGRATED PLANNING
AND INVERSE KINEMATICS

We propose to avoid these difficulties by integrating the
search for inverse kinematics solutions directly into the plan-
ning process. Currently, an efficient path planning method
based on Rapidly-exploring Random Trees [13] is used to
compute collision-free paths. We made the following modi-
fications to the RRT search algorithm [14]:

• No explicit goal configuration is computed. Instead, the
planner evaluates workspace goal criteria for configura-
tions generated during the search. This allows for the
possibility of discovering any valid goal joint configura-
tion (inverse kinematic solution) that is part of the goal
region.

• We grow only a single tree in the configuration space
rooted at the current (initial) arm joint configuration,
since there is no explicit goal configuration from which
a second tree could be grown.

• Appropriate distance metrics and heuristics have been
developed for the workspace goal criteria in order to
naturally increase the probability of finding solutions that
are easily reachable from the current arm configuration.

• Workspace obstacle distance information is used to im-
prove overall performance.

IV. ALGORITHM

A. Overview

The algorithm consists of several parts which are shown in
Figure 6. The robot initial joint configuration qinit is given as
input to initialize the RRT search tree. For every configuration
q added as a node to the RRT, obstacle distance information
is used to ensure that the new branch is collision-free.

Progress towards the goal is measured via a heuristic
workspace goal function Γ(q) 7→ < based on the input
workspace goal position and orientation along with any ad-
ditional grasping constraints. If the goal is reached, then a
solution trajectory connecting qinitand the discovered IK goal
configuration is returned.

B. Heuristic Workspace Goal Functions

To implicitly define the region of goal configurations in the
C-space, we use a heuristic workspace metric Γ(q) 7→ < that
maps the pose of the end-effector to a scalar value representing
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Fig. 6. Overview of Integrated Inverse Kinematics and Planning Algorithm.

proximity to the goal. Forward kinematics is used to compute
the relevant information about the end-effectors posture from
a configuration q. Our current implementation uses a weighted
sum of several factors to achieve a simple characterization of
the goal region. The main factor is the difference d of the
Euclidean distance between the origin of the end-effector’s
coordinate system and the center of the target object ‖G−H‖.

Depending on the target object, different penalty terms are
added to constrain the orientation of the end-effector. These
terms typically consist of the dot-product of one or more of the
coordinate system axes xH , yH , zH and a vector v to which it
should be aligned either parallel or vertical, within a tolerance
specified by the weight w1 of the term:

w1 ·
∣∣|xH · v| − 1

∣∣
One common special penalty term aligns the vector G −

H to xH , thus causing the end-effector to point towards the
center of the target object. Another possibility is to make G−
H vertical to one of the axes of the target object coordinate
system xG, yG, zG, thus causing the end-effector to be aligned
parallel to one of the coordinate planes:

w2 ·
(∣∣(G−H) · xH

∣∣− 1
)

w3 ·
∣∣(G−H) · yG

∣∣
Using these components, goal function templates for a

variety of target objects, such as cylindrical, box-shaped,
spherical and planar shapes, have been defined. For example,
a goal function for a spherical object as depicted in Figure 7
might be defined as follows:

φsphere = ‖G−H‖ + 50
∣∣(G−H) · xH − 1

∣∣
To model the goal region, a threshold value g needs to be

defined for the goal function. A value below g implies that
the given configuration is a part of the goal region.



Fig. 7. Grasping a spherical object

While goal functions following the scheme presented above
are easily defined and produced good results in our exper-
iments, careful tuning of the penalty weights is necessary
to ensure that the resulting function is largely free of local
minima. Determining alternative methods for modeling the
goal region that are local-minima free is likely to improve
the planning algorithm.

C. Search Tree Branch Scaling

In [15], a method is proposed for computing collision-free
bubbles around configurations of manipulators with revolute
joints. This method essentially gives an upper bound for the
distance any point on the geometry of the manipulator can
travel for a given change in the configuration. This upper
bound is a weighted sum of the differences of the joint angles,
with the weights ri corresponding to the positional change
that the i-th joint can effect in the workspace. It can be
regarded as a metric δ(q1, q2) 7→ < in the C-space. For a
given configuration q, the bubble is then defined as follows:

B(q) = q∗ : δ(q, q∗) ≤ d

where d is the distance from the manipulator in configuration
q to the nearest obstacle in the workspace.

When adding a branch extending from a configuration q to a
new configuration qnew to the RRT, it has to be guaranteed to
be collision-free. To this end, the direction vector representing
the branch qnew− q has to be scaled so that it lies completely
within the collision-free bubble of its parent configuration. A
modified scaling method from [16] is used to achieve this.

Let qd denote the normalized direction vector of the new
branch. A scale factor s is needed such that δ(q, qnew) = d,
with qnew = q + sqd. Because

δ(q, q + sqd) =
n∑

i=1

ri|sqd| it follows that

s = d/
n∑

i=1

ri|qd| or

s = d/δ(0, qd)

The resulting branch is guaranteed to be collision-free, without
the need to run a collision check to confirm. This approach to
collision avoidance significantly improves performance. Only
in cases where the bubble is so small that a branch inside it
would only result in insignificant changes in the end-effector’s
posture, the branch is extended beyond the boundaries of

the bubble and then checked for collision. This is done by
enforcing a minimum for the scale factor s:

s =

{
d/δ(0, qd) if d/δ(0, qd) > smin

smin otherwise

D. Search Tree Heuristics

The general extension algorithm of the RRT, as described
in [14], is biased towards exploring the empty regions of the
C-space. While this is a desirable property, since it guarantees
that the tree converges to uniform coverage of the entire
space, it is also desirable to partly bias the search towards the
goal region. To achieve this, an alternate extension procedure
that implements a best-first search strategy was developed.
The function EXTEND is replaced by the new Procedure
EXTEND HEURISTIC in a certain fraction of the extension
steps during the search.

Procedure EXTEND HEURISTIC(T , qrand)
Extends RRT T from the highest ranked node, in the
direction of configuration qrand.

Data: ranking: list of configurations, sorted by their
chance of reaching the goal region;
f : extension failure threshold

Result: qnew: the new configuration;
qnear: if extension unsuccessful

qnear ← ranking.front();
if NEW CONFIG(q, qnear, qnew) ∧1

(GOAL DIST(qnew) < GOAL DIST(qnear)) then
T .add branch(qnew);2

return qnew;3

end
INCREASE FAILURECOUNT(qnear, 1);4

if FAILURECOUNT(qnear) > f then5

ranking.remove(qnear);6

qparent ← PARENT(qnear);7

INCREASE FAILURECOUNT(qparent, f);8

end
return qnear;9

Procedure EXTEND HEURISTIC has the following key
features:

• A ranking of all nodes in the RRT is created according
to their chance of extending into the goal region. The
measure used by the ranking is a weighted sum of the
goal distance and the distance to the nearest obstacle. The
obstacle distance component typically receives a negative
weight, since a low goal distance combined with a high
clearance is the optimal state for a node in the search
tree.

• Instead of selecting a random configuration and trying
to extend in its direction from the nearest node of the
RRT, the heuristic extension algorithm selects the node
with the best ranking and tries to extend in a random



direction from there. The new branch is only added if it
achieves a lower goal distance than the parent node. This
heuristic implements a best-first search strategy and can
therefore get stuck in local minima, e.g. if it continuously
tries to directly extend towards a part of the goal region
that is obstructed by an obstacle.

• To detect and resolve local minima situations, extension
failures are counted for nodes, similar to the method
proposed in [17]. When a node exceeds a certain fail-
ure threshold, it is removed from the ranking and will
therefore not be selected for heuristic extension again. It
can, however, still be used in random extension.

• The failure count of a node is incremented when an
attempt to add a new branch fails because the new
branch is not collision-free or does not yield a lower goal
distance than the parent node.

• A node’s failure count is set to the maximum when one
of its child nodes is removed from the ranking. This rule
is necessary to prevent the heuristic from continuously
extending into the same local minimum region. Setting
the node’s failure count to the maximum ensures that it
will be removed from the ranking as soon as it produces
another failure. This allows nodes that are not in the
vicinity of the local minimum to get the best ranking,
causing the tree to avoid the region.

• Whenever an extension is made that reduces the goal
distance, the tree continues to extend the same direction
until the goal distance stops improving. This rule is
similar to the RRT-Connect heuristic proposed in [14].

The RRT-Connect search algorithm has been shown to be
probabilistically complete in [14]. Since our new algorithm
shares the randomized portion of RRT-Connect, it is also
probabilistically complete. Because of the randomness of
extension directions and the wide variety of situations that
can arise in the C-space, it is difficult to make any accu-
rate prediction regarding the rate of convergence. Applying
the heuristic extension algorithm to about 50 percent of all
extension attempts, however, has been observed to yield good
performance for a variety of planning tasks.

V. EXPERIMENTS

The proposed algorithm was used to solve a number of
grasping problems of varying difficulty. All experiments were
conducted using a simulation of the humanoid robot ARMAR
[18], which is equipped with two 7-DOF manipulator arms,
in a kitchen environment. All tests were run 100 times on a
AMD Athlon 2600+ clocked at 2.0 GHz. The Proximity Query
Package [19] was used for obstacle distance computation.

The first two tasks involve grasping a sphere and a plate
floating in the workspace, without any additional obstacles.
Note, however, that the target object itself is frequently the
most difficult obstacle in a grasping problem. The workspaces
of the experiments Sphere and Plate are shown in Figure 8.
The average computation time was 0.4 seconds for grasping
the sphere and 2.1 seconds for the plate.

Fig. 8. Experiments Sphere and Plate

The third workspace, shown in Figure 9, consists of the
kitchen environment; the task is to grasp a spherical object in
a drawer. The average computation time was 0.7 seconds. The
second workspace shown in Figure 9 shows a difficult grasping
problem: An object is to be grasped in the confined space of a
cabinet. Note that the initial configuration has the end-effector
of the robot’s arm placed under the cabinet, so that the arm
has to fold to get around the cabinet. The average computation
time for 100 trials in this experiment was approximately 17.6
seconds.

Another difficult workspace is shown in Figure 1. Here
the task is to take a plate out of the dishwasher. The dish-
washer basket has highly complex geometry, consisting of
about 30, 000 triangles, which makes distance computation
expensive. This task was solved in an average of 4.3 seconds.
Table I summarizes the results of all of our experiments.

Fig. 9. Experiments Drawer and Cabinet

Experiment DOF triangles Avg. nodes Avg. comp.
in tree time (seconds)

Sphere 7 5578 71 0.44
Plate 7 7016 268 2.09
Drawer 7 53138 167 0.74
Dishwasher 7 54576 311 4.29
Cabinet 7 53138 2396 17.58

TABLE I
SUMMARY OF EXPERIMENTS.

The examples presented and the fact that all test runs con-
verged demonstrate that our new algorithm is already capable
of solving typical planning problems with high reliability.
When comparing the performance to other planning systems,
it is important to keep in mind that our approach solves the



problem of grasp selection in addition to path planning. The
computation time needed for inverse kinematics is usually
disregarded when analyzing the performance of traditional
planners. While such a planner might yield better performance
when a reachable IK solution is known, this knowledge is
unnecessary in our approach.

VI. CONCLUSION

In the preceding we have proposed a novel, integrated ap-
proach to inverse kinematics and single-query motion planning
for manipulation tasks. In contrast to traditional approaches,
it can consider any reachable configuration as the goal con-
figuration during the search. Our approach is inspired by
an intuitive understanding of the structure of the C-space,
consisting of disconnected goal and obstacle regions. It is
based on exploring a connected free component of the config-
uration space with a single Rapidly-exploring Random Tree
(RRT). Candidate configurations are evaluated by a heuristic
workspace metric that measures the manipulator’s ability to
achieve a desired pose of the target object. This goal distance,
as well as obstacle distance information, is used to guide the
search of the configuration space.

Our proposed approach has several key advantages over
traditional motion planning algorithms:

• No explicit inverse kinematics computation is needed for
planning.

• Only reachable, collision-free IK solutions are discovered
during the search. Solutions that cause collisions or lie in
disconnected components of the C-space are disregarded.

• Given a suitable goal function, our approach yields
reliable planning performance that is probabilistically
complete.

• Due to the purely local extension of the RRT, generated
paths tend to belong to the same topological class as the
shortest possible path.

Although our new planning algorithm has been shown to
be capable of solving complex planning problems, several
possible improvements have been identified:

• The rate of convergence greatly depends on the accuracy
of the goal function. Since we used a relatively sim-
ple model, a more analytical approach to modeling the
distance to the goal region may speed up convergence
significantly.

• Using more efficient collision detection / minimum dis-
tance computation algorithms, such as the one proposed
in [20] will improve performance, as distance computa-
tion contributes a sizable portion of the computation time
per RRT node.

• Using an efficient approximate nearest neighbor algo-
rithm for the random extension of the RRT should sig-
nificantly reduce the computation time needed for RRTs
containing a large number of nodes.

• Dynamically modifying the parameters of the algorithm
according to the state of the search might enable more
consistent behavior across different planning problems.

Exploring these implementation issues, and conducting fur-
ther analysis forms the basis of our future work.

ACKNOWLEDGMENTS

We thank the InterACT program [21] for making this joint
research project possible. James Kuffner thanks Steve LaValle,
Shintaro Yoshizawa and Yutaka Hirano for helpful discussions,
and for partial support from NSF grants ECS-0325383, ECS-
0326095, and ANI-0224419.

REFERENCES

[1] G. Wilfong, “Motion panning in the presence of movable obstacles,” in
Proc. ACM Symp. Computat. Geometry, 1988, pp. 279–288.

[2] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach to
planning manipulation tasks,” in 5th Int. Symp. Robot. Res., 1989, pp.
113–119.

[3] R. Alami, J.-P. Laumond, and T. Simeon, Two manipulation planning
algorithms. Wellesley, MA: A.K. Peters, 1997, ch. Algorithms for
Robotic Motion and Manipulation.

[4] T. Simon, J.-P. Laumond, J. Corts, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” International Journal of Robotics
Research, vol. 23, no. 7, pp. 729–746, 2004.

[5] J. J. Craig, Introduction to Robotics : Mechanics and Control. Addison-
Wesley, 1989.

[6] C. Klein and C. Huang, “Review on Pseudoinverse Control for Use with
Kinematically Redundant Manipulators,” IEEE Transactions on System,
Man and Cybernetics, vol. 13, no. 3, pp. 245–250, 1983.

[7] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinemat-
ics,” in Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
2001.

[8] T. Lozano-Perez, “Spatial planning: a configuration space approach,”
IEEE Trans. Comput., pp. 108–120, 1983.

[9] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[10] S. M. LaValle, Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006, to be published in
2006.
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