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Abstract

In this document, we set out the constrained optimisation with inequality constraints and
state the Kuhn-Tucker necessary conditions for a solution; after an example, we state the Kuhn-
Tucker sufficient conditions for a maximum.

1 The Problem

Suppose we have a function f , which we wish to maximise, together with some constraints, gi ≤ ci,
which must be satisfied. This leads us to the problem:

max f(x) subject to

g1(x) ≤ c1

g2(x) ≤ c2

...
gm(x) ≤ cm

xi ≥ 0

We have seen how to solve this problem with equality constraints; we introduce a number of mul-
tipliers λ1,. . . ,λm and form the Lagrangian which we partially differentiate with respect to each xi

and each λj and set equal to 0, to get a system of m + n equations with nm variables.
For the inequality case, we do a similar thing. First we form the Lagrangian, L:

L = f(x) + λ1(c1 − g1(x)) + · · ·+ λm(cm − gm(x))

Result 1 The Kuhn-Tucker conditions, which are necessary (but not sufficient) for a point to be
a maximum are:

∂L
∂xi

≤ 0 xi ≥ 0 xi
∂L
∂xi

= 0 for all i = 1 . . . n

gj(x) ≤ cj λj ≥ 0 λj(c− gj(x)) = 0 for all j = 1 . . .m

So, for each variable xi we have 3 conditions which must be met; similarly for each constraint (and
hence λ), we have 3 conditions which must be met. Each point that is a solution to this equation
system is a possible candidate for the maximum. Once we have established all the points, we need
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to check them individually to see which is the real maximum.

The conditions are called the complementary slackness conditions. This is because for each set
of three conditions, either the first or the second condition can be slack (i.e. not equal to zero), but
the third condition ensures that they cannot both be non-zero.

Notes: This is a maximum only problem. To do a minimisation, you need to maximise the function
−f(x). Secondly, notation in books varies, so some state the constrant conditions as gj(x) ≥ cj , in
which case the signs of some of the terms in the Lagrangian are altered.

Example 1 max f(x1, x2) = 4x1 + 3x2 subject to g(x1, x2) = 2x1 + x2 ≤ 10 and x1, x2 ≥ 0. We
first form the Lagrangian:

L = 4x1 + 3x2 + λ(10− 2x1 − x2)

Hence, the necessary conditions for a point to be a maximum are:

Lx1 = 4− 2λ ≤ 0 x1 ≥ 0 x1(4− 2λ) = 0
Lx2 = 3− λ ≤ 0 x2 ≥ 0 x2(3− λ) = 0

2x1 + x2 − 10 ≤ 0 λ ≥ 0 λ(10− 2x1 − x2) = 0

We solve this set of inequalities and equations to find points which may be maxima. Let 1 (ii)
denote the second condition on the first line etc.

1 (iii): x1(4− 2λ) = 0 ⇒ x1 = 0 or λ = 2

Suppose λ = 2. Then:
2 (i): 3− λ ≤ 0 ⇒ 1 ≤ 0

which is clearly false. Hence, we must have that x1 = 0. Then:

2 (iii): x2(3− λ) = 0 ⇒ x2 = 0 or λ = 3

We can see that, if x2 = 0 (together with x1 = 0):

3 (iii): 10λ = 0 ⇒ λ = 0

But this contradicts 1 (i). So, we have x1 = 0 and λ = 3. Hence:

3 (iii): 3(10− x2) = 0 ⇒ x2 = 10

So, we have solved the system and found the only solution, which is x1 = 0, x2 = 10, λ = 3 and
hence f(x1, x2) = 30. As before with equality constraints, λ measures the increase in f(x1, x2) for
a one unit increase in the constraint (i.e. increasing c1 = 10 by 1).

In general, solving such systems can be very tedious (although not difficult) if there are more than
4 variables and constraints in total. What you need to do is just plug away at every possible combi-
nation and eliminate those that do not fit the conditions. When you have eliminated all impossible
points, you will be left with a few candidate points which you must then check by substitution into
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f(x) to find whether they are the maximum.

For certain types of systems, we can assume the point(s) we find are maxima. This occurs if the
function f and the functions gi satisfy some more conditions, known as the Kuhn-Tucker sufficiency
conditions.

Result 2 If the following conditions are satisfied:

1. f(x) is differentiable and concave in the nonnegative orthant

2. each constraint function gi(x) is differentiable and convex in the nonnegative orthant

3. a point x0 satisfies the Kuhn-Tucker conditions

then the point x0 is a maximum. [The nonnegative orthant is the region where each xi ≥ 0]

Example 2 Suppose f(x, y) = 2x + 3y and g(x, y) = x2 + y2 ≤ 2. Show that f and g satisfy the
Kuhn-Tucker sufficiency conditions and hence find the maxima of f(x, y).

Well, all linear functions are both convex and concave, so f is certainly concave, and is clearly
differentiable. As for g(x, y): we can show g is convex by showing the differential d2g is positive
definite. The Hessian matrix associated with g is:

H =

[
2 0
0 2

]

So clearly |H1|, |H2| > 0, so g is convex. Hence, any candidate points we find will automatically be
maxima. As before, we form the Lagrangian:

L = 2x + 3y + λ(2− x2 − y2)

The Kuhn-Tucker conditions imply that:

(1) Lx = 2− 2λx ≤ 0 x ≥ 0 x(2− 2λx) = 0
(2) Ly = 3− 2λy ≤ 0 y ≥ 0 y(3− 2λy) = 0
(3) x2 + y2 ≤ 2 λ ≥ 0 λ(2− x2 − y2) = 0

1 (iii) implies that either x = 0 or λx = 1. If x = 0, then 1 (i) cannot be satisfied, hence λx = 1.
Similarly, λy = 2

3 from 2 (iii) (and clearly x, y, λ > 0). Substituting these values for x and y in 3
(iii), and noting that λ > 0, we get:

2− x2 − y2 = 0 ⇒ 2−
(

1
λ

)2

−
(

2
3λ

)2

= 0 ⇒ λ = ±
√

13
18

As λ > 0, we must have λ =
√

13
18 , hence y =

√
8
13 and x =

√
18
13 , and we have a maximum at this

point.
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