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Wavelet and Multiresolution
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Image Processing

Wavelet and Multiresolution 
Processing

Introduction
• Unlike Fourier transform, whose basis functions are 

sinusoids, wavelet transforms are based on small waves, 
called wavelets, of limited duration.

• Fourier transform provides only frequency information, 
but wavelet transform provides time-frequency 
information. 
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• Wavelets lead to a multiresolution analysis of signals.
• Multiresolution analysis: representation of a signal (e.g., 

an images) in more than one resolution/scale.
• Features that might go undetected at one resolution may 

be easy to spot in another.

Multiresolution
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Image Pyramids
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Image pyramids 
• At each level we have an approximation image and a 

residual image.
• The original image (which is at the base of pyramid) 

and its P approximation form the approximation 
pyramid.
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• The residual outputs form the residual pyramid.
• Approximation and residual pyramids are computed 

in an iterative fashion. 
• A P+1 level pyramid is build by executing the 

operations in the block diagram P times.

Image pyramids

• During the first iteration, the original 2Jx2J image is 
applied as the input image.

• This produces the level J-1 approximate and level J 
prediction residual results
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prediction residual results
• For iterations j=J-1, J-2, …, J-p+1, the previous 

iteration’s level j-1 approximation output is used as 
the input. 
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Image pyramids
• Each iteration is composed of three sequential steps: 
1. Compute a reduced resolution approximation of the 

input image. This is done by filtering the input and 
downsampling (subsampling) the filtered result by a 
factor of 2. 
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– Filter: neighborhood averaging, Gaussian 
filtering 

– The quality of the generated approximation is a 
function of the filter selected

Image pyramids
2. Upsample output of the previous step by a factor of 

2 and filter the result. This creates a prediction 
image with the same resolution as the input. 
– By interpolating intensities between the pixels of 

step 1, the interpolation filter determines how 
t l th di ti i t th i t

8

accurately the prediction approximates the input 
to step 1. 

3. Compute the difference between the prediction of 
step 2 and the input to step 1. This difference can be 
later used to reconstruct progressively the original 
image

9

Subband coding
• In subband coding, an image is decomposed into a set of 

bandlimited components, called subbands. 
• Since the bandwidth of the resulting subbands is smaller than 

that of the original image, the subbands can be downsampled 
without loss of information. 
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Perfect Reconstruction Filter

[ ]1ˆ ( ) ( ) ( ) ( ) ( ) ( )X z H z G z H z G z X z= +Z transform:
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ˆ( ) ( )x n x n=

Goal: find H0, H1, G0 and G1 so that 

[ ]

[ ]

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) ( ) ( )
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H z G z H z G z X z

= +
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Z transform:

( )ˆ. . ( ) ( )i e X z X z=

Perfect Reconstruction Filter: Conditions

⎧
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Then

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 2

H z G z H z G z
H z G z H z G z
− + − =⎧

⎨ + =⎩
If

ˆ( ) ( )X z X z=
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Perfect Reconstruction Filter Families
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QMF: quadrature mirror filters

CQF: conjugate mirror filters

2-D 
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Example of Filters
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The Haar Transform

• Haar proposed the Haar Transform in 1910, more 
than 70 years before the wavelet theory was born. 

• Actually, Haar Transform employs the Haar wavelet 
filters but is expressed in a matrix form.

• Haar wavelet is the oldest and simplest wavelet basis
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Haar wavelet is the oldest and simplest wavelet basis.
• Haar wavelet is the only one wavelet basis, which 

holds the properties of orthogonal, (anti-)symmetric 
and compactly supported.

The Haar Wavelet Filters
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{ }0 2 2, 2 2h =

{ }0 2 2, 2 2g =

{ }1 2 2, 2 2h = −

{ }0 2 2, 2 2g = −
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Multiresolution Expansions
• Series Expansions

A function can be expressed as

where

( ) ( )k k
k

f x xα ϕ=∑
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where 
*( ), ( ) ( ) ( )k k kx f x x f x dxα ϕ ϕ= = ∫� �

Dual function of ( )k xϕ� ( )k xϕ
Complex conjugate operation*

Multiresolution Expansions
• Series Expansions

Orthonormal basis
( ) ( )k kx xϕ ϕ= �

0
( ), ( )

1j k

j k
x x

j k
ϕ ϕ

≠⎧
= ⎨
⎩
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biorthogonal 
1j j k=⎩

( ), ( ) 0j kx x j kϕ ϕ = ≠
0

( ), ( )
1j k

j k
x x

j k
ϕ ϕ

≠⎧
= ⎨ =⎩

�

Multiresolution Expansions
• Scaling functions

Integer translations and dyadic scalings of a 
scaling function 

/ 2
, ( ) 2 (2 )j j

j k x x kϕ ϕ= −

( )xϕ
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Express          as the combination of    

0 ,( ) ( )k j k
k

f x xα ϕ=∑

( )f x 0 , ( )j k xϕ

0 0 1
( )

1
x

x
otherwise

ϕ
≤ <⎧

= ⎨
⎩

0, 1,2

1 2 1

1( ) ( )
2
1 ( )

k k

k

x x

x

ϕ ϕ

ϕ +

=

+
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1,2 1( )
2 kϕ +

1,0

1,1 1,4

( ) 0.5 ( )
( ) 0.25 ( )

f x x
x x

ϕ
ϕ ϕ

=

+ −

Multiresolution Expansions
• Scaling functions

Dilation equation for scaling function

ll d li f ti ffi i t

( ) ( ) 2 (2 )
n

x h n x nϕϕ ϕ= −∑
( )xϕ

( )h n
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are called scaling function coefficients  
Example: Haar wavelet,   

( )h nϕ

1 1( ) 2 (2 ) 2 (2 1)
2 2

x x xϕ ϕ ϕ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

(0) (1) 1 2h hϕ ϕ= =
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Multiresolution Expansions
• Wavelet functions

are called wavelet function coefficients  
Translation and scaling of    

( ) ( ) 2 (2 )
n

x h n x nψψ ϕ= −∑
( )h nψ

( )xψ
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condition for orthogonal wavelets

/ 2
, ( ) 2 (2 )j j

j k x x kψ ψ= −

( ) ( 1) (1 )nh n h nψ ϕ= − −
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1 0 0.5
( ) 1 0.5 1

0

x
x x

elsewhere
ϕ

≤ <⎧
⎪= − ≤ <⎨
⎪
⎩

Haar Wavelet
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Wavelet Transform: 1-D
• Wavelet series expansion

h

0 0

0

, ,( ) ( ) ( ) ( )j j k j j k
k j j k

f x c x d k xϕ ψ
∞

=

= +∑ ∑∑
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where    

0 0 0, ,( ) ( ), ( ) ( ) ( )j j k j kc k f x x f x x dxϕ ϕ= = ∫
, ,( ) ( ), ( ) ( ) ( )j j k j kd k f x x f x x dxψ ψ= = ∫

0,0

0,0

1( ) ( )
3
1 ( )
4

2 ( )

y x x

x

x

ϕ

ψ

ψ

=

−

−
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1,0

1,1

( )
32
3 2 ( )
32

......

x

x

ψ

ψ−

+

Wavelet Transform: 1-D
• Discrete Wavelet Transform

00 ,

,

1( ) ( , ) ( )

1 ( , ) ( )

j k
k

j k
j j k

f x W j k x
M

W j k x
M

ϕ

ψ

ϕ

ψ
∞

=

+

∑

∑∑
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where    0j j kM =

00 ,
1( , ) ( ) ( )j k

x
W j k f x x

Mϕ ϕ= ∑

,
1( , ) ( ) ( )j k

x
W j k f x x

Mψ ψ= ∑

Approximation 
coefficients

Detail 
coefficients
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Fast Wavelet Transform: Decomposition

2 , 0( , ) ( ) ( 1, ) n k kW j k h n W j nϕ ϕ ϕ = ≥= − ∗ +

2 , 0( , ) ( ) ( 1, ) n k kW j k h n W j nψ ψ ϕ = ≥= − ∗ +
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Fast Wavelet Transform: Decomposition
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1/ 2 0,1( )
0

nh n
otherwiseϕ

⎧ =⎪= ⎨
⎪⎩

1 2 0

( ) 1 2 1
0

n

h n n
otherwise

ψ

⎧ =
⎪⎪= − =⎨
⎪
⎪⎩

Example: Haar Wavelet
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Fast Wavelet Transform: Reconstruction

0( 1, ) ( ) ( , ) ( ) ( , )up up
kW j k h k W j k h k W j kϕ ϕ ϕ ψ ψ ≥+ = ∗ + ∗
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Fast Wavelet Transform: Reconstruction

35

Fast Wavelet Transform: Reconstruction
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Wavelet Transform vs. Fourier Transform 
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Wavelet Transform: 2-D

Scaling function:

( , ) ( ) ( )x y x yϕ ϕ ϕ=

Wavelet functions:
H
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( , ) ( ) ( )H x y x yψ ψ ϕ= Horizontal direction

( , ) ( ) ( )V x y x yψ ϕ ψ= Vertical direction

( , ) ( ) ( )D x y x yψ ψ ψ= Diagonal direction

2-D Wavelet Transform: Decomposition
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2-D Wavelet Transform: Reconstruction
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41

42
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Fig. 7.24 (g)

43

Image Processing by Wavelet Transform

• Three Steps:
Decompose the image into wavelet domain
Alter the wavelet coefficients, according to 
your applications such as denoising
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your applications such as denoising, 
compression, edge enhancement, etc.
Reconstruct the image with the altered 
wavelet coefficients.
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Wavelet Transform based Denoising
• Three Steps:

Decompose the image into several scales.
For each wavelet coefficient y:

Hard thresholding:
0
y y t

y
⎧ ≥⎪= ⎨
⎪⎩
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Soft thresholding:

Reconstruct the image with the altered 
wavelet coefficients.

0
y

y t⎨ <⎪⎩
( ) ( )

0
sign y y t y t

y
y t

⎧ − ≥⎪= ⎨ <⎪⎩

i
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Assignment 

• Get familiar with the Matlab Wavelet 
Toolbox.

• By using the Wavelet Toolbox functions, 
write a program to realize the soft-
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p g
thresholding denoising on a noisy MRI image.
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End of the lecture
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