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Wavelet and Multiresolution
Processing
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Image Pyramids

Introduction

* Unlike Fourier transform, whose basis functions are
sinusoids, wavelet transforms are based on small waves,
called wavelets, of limited duration.

« Fourier transform provides only frequency information,
but wavelet transform provides time-frequency
information.

» Wavelets lead to a multiresolution analysis of signals.

» Multiresolution analysis: representation of a signal (e.g.,
an images) in more than one resolution/scale.

* Features that might go undetected at one resolution may
be easy to spot in another.
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Image pyramids
At each level we have an approximation image and a
residual image.
The original image (which is at the base of pyramid)
and its P approximation form the approximation
pyramid.
The residual outputs form the residual pyramid.
Approximation and residual pyramids are computed
in an iterative fashion.
A P+1 level pyramid is build by executing the
operations in the block diagram P times.

vICIVIASTET

u

Multiresolution
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Image pyramids

During the first iteration, the original 2°x2’ image is
applied as the input image.

This produces the level J-1 approximate and level J
prediction residual results

For iterations j=J-1, J-2, ..., J-p+1, the previous
iteration’s level j-1 approximation output is used as
the input.




Image pyramids

» Each iteration is composed of three sequential steps:
1. Compute a reduced resolution approximation of the
input image. This is done by filtering the input and
downsampling (subsampling) the filtered result by a
factor of 2.
— Filter: neighborhood averaging, Gaussian
filtering
— The quality of the generated approximation is a
function of the filter selected
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Subband coding

* In subband coding, an image is decomposed into a set of

bandlimited components, called subbands.

« Since the bandwidth of the resulting subbands is smaller than

that of the original image, the subbands can be downsampled
without loss of information.
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Image pyramids

2. Upsample output of the previous step by a factor of
2 and filter the result. This creates a prediction
image with the same resolution as the input.

— By interpolating intensities between the pixels of
step 1, the interpolation filter determines how
accurately the prediction approximates the input
to step 1.

3. Compute the difference between the prediction of
step 2 and the input to step 1. This difference can be
later used to reconstruct progressively the original
image

McMaster

Perfect Reconstruction Filter
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Z transform: X (z) =%[HO(Z)GO(Z) +H,(2)G,(2)] X (2)
+2[Ho 26, (2)+ DG @] X ()

Goal: find Hy, H,, Gy and G; so that
x(n)=x(n) (ie.X(2)= X(z))
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Perfect Reconstruction Filter: Conditions

If Ho(-2)Gy(2) + H,(-2)G,(z) =0
{ H,(2)G,(2) + H,(2)G,(2) =2
Then {
X(2)=X ()
_‘\11._\.i,-_~..fi_-!

12




Perfect Reconstruction Filter Families

Filer  QMF COF Orihonormal
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QMF: quadrature mirror filters

CQF: conjugate mirror filters

TABLE 7.1
Perfect
reconstruction
filter families.
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The Haar Transform

» Haar proposed the Haar Transform in 1910, more

than 70 years before the wavelet theory was born.

Actually, Haar Transform employs the Haar wavelet

filters but is expressed in a matrix form.

e Haar wavelet is the oldest and simplest wavelet basis.

» Haar wavelet is the only one wavelet basis, which
holds the properties of orthogonal, (anti-)symmetric
and compactly supported.
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The Haar Wavelet Filters

*(n)

hy={v2/2.2/2} h={~2/2.72/2
9o :{‘/5/21\/5/2} 9 :{\/5/21_\/5/2}
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Multiresolution Expansions

« Scaling functions
» Integer translations and dyadic scalings of a
scaling function @(X)

Pix (x) =22 (2" x k)
>Express f (x) as the combination of @;  (X)

f(x)= Zak¢jo,k (¥)

+o, (x)— 0-25(91,4 (x)

@, (X) — Dual function of ¢, (X)
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* Series Expansions () :{0 0<x <.1 4 I 'i :
> A function can be expressed as 1 otherwise . J:—l;l I_:J_|_
f (X) :Zak(pk (X) %,k(x)_ﬁf/’mk(x) . .
k |
>where +%¢1‘zm(x) | H
ak = (@k (X)l f (X)> = @:(X) f (X)dx f (X) - 0.5¢)10(X) 0 7 W ! ] 0 T 3
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*  — Complex conjugate operation
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Multiresolution Expansions Multiresolution Expansions
* Series Expansions » Scaling functions
»Orthonormal basis > Dilation equation for scaling function ¢(X)
?(¥) = (x) _ P(x) = Z h, (N)2p(2x—n)
(0,00,0,00)=10 17
P 1 j=k >h,,(n) are called scaling function coefficients
> biorthogonal >Examp|e Haar wavelet, h (0) =h, (1) = :I/\/—
(#,00.0.00) =0 j=k . Jo(2x N
ik P(x) = f[ 20(2x) |+ ﬁ[ p(2x-1)]
(0,09.,0.00)=1. =~
McMastet -I - k McMastet
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Multiresolution Expansions

» Wavelet functions
w(x) =2 _h, (N2p(2x-n)

n
>h, (n) are called wavelet function coefficients
> Translation and scaling of w(X)

Vik (x) = 2j/2'//(2j x—k)
» condition for orthogonal wavelets
h,(n)=(-1"h,(1-n)

Wavelet Transform: 1-D

» Wavelet series expansion

10 =3c,0, 0+ 3 3d, (K, ()

i=io
> where

¢, () =( (2,0, . 00) = [ (g,  (x)lx
d; (k) = (£ (05, (0) = [ (0w ()l
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Y =L 0,5(x)

Haar Wavelet |_|—|
1 0<x<05 ' ' v
p(x)=9-1 05<x<1
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Wavelet Transform: 1-D
« Discrete Wavelet Transform
1 .
f(x)= —ZW¢(JO, K)p;, i (X)
W, (J, Ky (X)
. \/_ leo z .k
where
L . 1
Approximation = )
coefficients W¢(J°’ k) JM ZX: f (X)goloxk (x)
Detail . 1
coefficients WW(J’ k)= sz: f (X)V’j,k (x)
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Fast Wavelet Transform: Decomposition

W, (J.k) =h, (=n)*W, (j+1,n)

n=2k,k>0

W, (j,k) =h, (-n) =W, (j+1,n)

n=2k k>0

We.‘"(fa")
Wi+ 1,n)

FIGURE 7.15 An
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Fast Wavelet Transform: Reconstruction

W, (j+1 k)= h, (k) *W,” (j, k) +h, (k) *W,” (. k)| .0

Welj + 1,n)

FIGURE 7.18 The
FWT ' synthesis
filter bank.
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Fast Wavelet Transform: Decomposition
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Fast Wavelet Transform: Reconstruction

Wald = L,n) @ FIL W l

Wld = 2,n) x'! hyin) (+}owam
Wold = 1.n) e
l"*:.‘J—[ 2% :_'l h(n) }J

Woid = 2n) o | 1+| | h,[rr]|

FIGURE 7.19 A
twiestige or (wo-
sedle FWT
synthesis bank.

35

32
Example: Haar Wavelet
N2 n=0
hw(n):{llﬁ n=01 hm={-y¥2 n-1
0 otherwise 0  otherwise
T L 7 o "
.a. 1V, 17| —@ Wall.nh = [=3vE=3v3)
“;'f',:' r',",',:. 1 Wallal = [$nE-an T —-.| 1vIang f: Iy i—cw. (0.0) = [4]
— \: L=15}
INEAN ii‘E'
FIGURE 7.17 Computing & two-seale fnst wavelet tramsform of sequence |-| 4 .-I\_i|| using Haar scaling and
wavelet vectors 33
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FIGURE 7.20 ('omputing a two-scale inverse fast wavelet transform of sequence {14, 1547, - L3vT} with
Haar scaling and wavelet vectors
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Fast Wavelet Transform: Reconstruction

(=3 =3F )

Wailomh = [5/vL=30E)
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Wavelet Transform vs. Fourier Transform
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FIGURE 7.21 "Time-froquency tilings for (a) sampled data, (b) FET and {e) FWT basis
functions,
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2-D Wavelet Transform: Reconstruction
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Wavelet Transform: 2-D
Scaling function:
(X, y) = p(X)p(Yy)
Wavelet functions:
v (%) =w(X)e(y) Horizontal direction
v (X, ¥) = o(X)w(Y) Vertical direction
w° (X, Y) =w(X)w(y) Diagonal direction
:'\_]L':\_I_Li_.fli_'l'
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2-D Wavelet Transform: Decomposition
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Fig. 7.24 (g)

and (g) one of
three two-
dimensional
wavelets,

5 (x, ).
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Wavelet Transform based Denoising
 Three Steps:
»Decompose the image into several scales.
> For each wavelet coefficient y:
y |yl=t
0 |yl<t
sign(y)«(y|-t) |y|=t
0 |y <t

«“+Hard thresholding: 'y :{

«Soft thresholding: Y ={

»Reconstruct the image with the altered
wavelet coefficients.

MeMactar
-lL'\I'LH[i'II e

46

Image Processing by Wavelet Transform

 Three Steps:
»Decompose the image into wavelet domain
> Alter the wavelet coefficients, according to
your applications such as denoising,
compression, edge enhancement, etc.
»Reconstruct the image with the altered
wavelet coefficients.
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Assignment

* Get familiar with the Matlab Wavelet
Toolbox.

* By using the Wavelet Toolbox functions,
write a program to realize the soft-
thresholding denoising on a noisy MRI image.

McMaster
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End of the lecture
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