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Introduction

Symmetric encryption algorithms are divided into two main categories,
block ciphers and stream ciphers.
Block ciphers tend to encrypt a block of characters of a plaintext
message using a fixed encryption transformation
A stream cipher encrypt individual characters of the plaintext using an
encryption transformation that varies with time.

A stream cipher built around LFSRs and producing one bit output on each
clock = classic stream cipher design.
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A stream cipher

Design goal is to efficiently produce random-looking sequences that
are as “indistinguishable” as possible from truly random sequences.
Recall the unbreakable Vernam cipher.
For a synchronous stream cipher, a known-plaintext attack (or
chosen-plaintext or chosen-ciphertext) is equivalent to having access
to the keystream z = z1, z2, . . . , zN .
We assume that an output sequence z of length N from the
keystream generator is known to Eve.
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Type of attacks

Key recovery attack: Eve tries to recover the secret key K.
Distinguishing attack: Eve tries to determine whether a given
sequence z = z1, z2, . . . , zN is likely to have been generated from the
considered stream cipher or whether it is just a truly random sequence.

Distinguishing attack is a much weaker attack
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Distinguishing attack

Let D(z) be an algorithm that takes as input a length N sequence z
and as output gives either “X” or “RANDOM”.
With probability 1/2 the sequence z is produced by generator X and
with probability 1/2 it is a purely random sequence.
The probability that D(z) correctly determines the origin of z is
written 1/2 + ε.
If ε is not very close to zero we say that D(z) is a distinguisher for
generator X.
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Distinguishing attack - example

Assume that Alice sends one of N public images {I1, I2, . . . , IN} to Bob.

Eve observes the ciphertext c.

Guess that the plaintext is the image I1, i.e., m = I1.
Calculate ẑ = m + c and compute D(ẑ).
If the guess m = I1 was correct then D(ẑ) = X. If not,
D(ẑ) =“RANDOM”.
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More on attacks

Building a (synchronous) stream cipher reduces to the problem of
building a generator that is resistant to all distinguishing attacks.
There are essentially always both distinguishing attacks and key
recovery attacks on a cipher.
Exhaustive keysearch; complexity 2k

An attack is considered successful only if the complexity of performing
it is considerably lower than 2k key tests.
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Building blocks for stream ciphers

MEMORY

linear feedback shift registers, or LFSRs for short.
tables (arrays)

Combinatorial function

Nonlinear Boolean functions, S-boxes
XOR, Modular addition, (cyclic) rotations, (multiplications)
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Example of a stream cipher design
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Linear feedback shift registers

sj-L sj-L+1
sj-2 sj-1s0,s1,... sj. . .

. . .-cL
-cL-1 -c2 -c1

A register of L delay (storage) elements each capable of storing one
element from Fq, and a clock signal.

Clocking, the register of delay elements is shifted one step and the new
value of the last delay element is calculated as a linear function of the
content of the register.
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LFSR sequences

The linear function is described through the coefficients
c1, c2, . . . , cL ∈ Fq and the recurrence relation is

sj = −c1sj−1 − c2sj−2 − · · · cLsj−L,

for j = L,L + 1, . . ..
With c0 = 1 we can write

L∑
i=0

cisj−i = 0, for j = L,L + 1, . . . .

The shift register equation.
The first L symbols s0, s1, . . . , sL−1 form the initial state.
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LFSR sequences

The coefficients c0, c1, . . . , cL are summarized in the connection
polynomial C(D) defined by

C(D) = 1 + c1D + c2D
2 + · · ·+ cLDL.

Write < C(D), L > to denote the LFSR with connection polynomial
C(D) and length L.
D-transform of a sequence s = s0, s1, s2 . . . as

S(D) = s0 + s1D + s2D
2 + · · · ,

assuming si ∈ Fq.
The indeterminate D is the “delay” and its exponent indicate time.
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LFSR sequences

We assume si = 0 for i < 0. The set of all such sequences having the
form

f(D) =
∞∑
i=0

fiD
i,

fi ∈ Fq, is denoted Fq[[D]] and called the ring of formal power series.
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Theorem
The set of sequences generated by the LFSR with connection polynomial
C(D) is the set of sequences that have D-transform

S(D) =
P (D)
C(D)

,

where P (D) is an arbitrary polynomial of degree at most L− 1,

P (D) = p0 + p1D + . . . + pL−1D
L−1.

Furthermore, the relation between the initial state of the LFSR and the
P (D) polynomial is given by the linear relation

p0

p1
...

pL−1

 =


1 0 · · · 0
c1 1 . . . 0
...

...
...

...
cL−1 cL−2 . . . 1




s0

s1
...

sL−1

 .
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LFSR sequences and extension fields

Let π(x) be an irreducible polynomial over Fq and assume that its
coefficients are

π(x) = xL + c1x
L−1 + · · ·+ cL.

This means that π(x) is the reciprocal polynomial of C(D).
Construct the extension field FqL through π(α) = 0.
β from FqL can be expressed in a polynomial basis as

β = β0 + β1α + · · ·+ βL−1α
L−1,

where β0, β1, . . . βL−1 ∈ Fq.
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LFSR sequences and extension fields

Assume that the (unknown) element β is multiplied by the fixed element α.
The result is

αβ = β0α + β1α
2 + · · ·+ βL−1α

L.

Reducing αL using π(α) = 0 gives

αβ = −cLβL−1 + (β0 − cL−1βL−1)α + · · ·+ (βL−2 − c1βL−1)αL−1.

. . .

-c1 -c2 -cL-1 -cL
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LFSR sequences and extension fields

. . .

-c1 -c2 -cL-1 -cL

It is quickly checked that

sj = −c1sj−1 − c2sj−2 − · · · cLsj−L,

when j ≥ L.
p0 = s0, p1 = s1 + c1s0, etc, where p0, p1, . . . , pL−1 is the initial state
The sequence fulfills the shift register equation, but uses
p0, p1, . . . pL−1 as initial state.
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LFSR sequences and extension fields

The set of LFSR sequences, when C(D) is irreducible, is exactly
the set of sequences possible to produce by the implementation
of multiplication of an element β by the fixed element α in FqL.
For a specific sequence specified as S(D) = P (D)/C(D) the initial
state is the first L symbols whereas the same sequence is produced in
the figure if the initial state is p0, p1, . . . , pL−1.
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Properties of LFSR sequences

A sequence s = . . . , s0, s1, . . . is called periodic if there is a positive
integer T such that si = si+T , for all i ≥ 0.
The period is the least such positive integer T for which si = si+T , for
all i ≥ 0.
The LFSR state runs through different values. The initial state will
appear again after visiting a number of states. If deg C(D) = L, the
period of a sequence is the same as the number of different states
visited, before returning to the initial state.
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Properties of LFSR sequences

C(D) irreducible: the state corresponds to an element in FqL , say β.
The sequence of different states that we are entering is then

β, αβ, α2β, . . . , αT−1β, αT β = β,

where T is the order or α.
If α is a primitive element (its order is qL − 1), then obviously we will
go trough all qL − 1 different states and the sequence will have period
qL − 1. Such sequences are called m-sequences and they appear if and
only if the polynomial π(x) is a primitive polynomial.
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Example

Length 4 LFSR with connection polynomial
C(D) = 1 + D + D2 + D3 + D4 in F2.
Starting in (0001), we return after 5 clockings of the LFSR.
There are three cycles of length 5 and one of length one.
Explanation: F24 , we get through
π(x) = xLC(x−1) = x4 + x3 + x2 + x + 1 and π(α) = 0.
α5 = 1 and ord(α) = 5. So starting in any nonzero state β ∈ F24 , we
will jump between the states

β, αβ, α2β, α3β, α4β, α5β = β.
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Example

Length 4 LFSR with connection polynomial C(D) = 1+D +D4 in F2.
Starting in (0001), we return after 15 clockings of the LFSR.
Explanation: F24 , we get through π(x) = xLC(x−1) = x4 + x3 + 1
and π(α) = 0.
α15 = 1 and ord(α) = 15. π(x) primitive polynomial.
So starting in any nonzero state β ∈ F24 , we will jump between all
nnzero states before returning.
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Properties of LFSR sequences

The different state cycles that will appear for an arbitrary LFSR.

[s0, s1, . . . , sT−1]∞ denote the periodic and causal sequence

s0, s1, . . . , sT−1, s0, s1, . . . , sT−1, s0, . . . ,

where si ∈ Fq, i = 0, 1, . . . , T − 1.
(s0, s1, . . . , sN−1) denote a sequence where the first N symbols are
s0, s1, . . . , sN−1 (and the upcoming symbols are not defined), where
si ∈ Fq, i = 0, 1, . . . , N − 1.
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Properties of LFSR sequences

If s = [1, 0, 0, . . . , 0]∞ then

S(D) = 1 + DT + D2T + · · · = 1
1−DT

.

iI s = [0, 1, 0, . . . , 0]∞ then

S(D) = D + DT+1 + D2T+1 + · · · = D

1−DT

In general, if s = [s0, s1, . . . , sT−1]∞ then

S(D) =
s0

1−DT
+

s1D

1−DT
+. . . =

s0 + s1D + s2D
2 + . . . sT−1D

T−1

1−DT
.

(1)
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Properties of LFSR sequences

Definition
The period of a polynomial C(D) is the least positive number T such that
C(D)|(1−DT ).

Calculated by division of 1 by C(D) and continuing until the we
receive the first remainder of the form 1 ·DN . Then the period is
T = N .

(example)
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Properties of LFSR sequences

Theorem
If gcd(C(D), P (D)) = 1 then the connection polynomial C(D) and the
sequence s with D-transform

S(D) =
P (D)
C(D)

have the same period (the period of s is the same as the period of the
polynomial C(D)).

Note: This C(D) gives the shortest LFSR generating s. Any other
connection polynomial generating s must be a multiple of C(D).

(example)
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Properties of LFSR sequences

Theorem
If two sequences, sA and sB, with periods TA and TB have D-transforms

SA(D) =
PA(D)
CA(D)

, SB(D) =
PB(D)
CB(D)

,

then the sum of the sequences s = sA + sB has D-transform
S(D) = SA(D) + SB(D) and period lcm(TA, TB), assuming
gcd(PA(D), CA(D)) = 1, gcd(PB(D), CB(D)) = 1,
gcd(CA(D), CB(D)) = 1.

(example)
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LFSR cycle sets

Introduce the cycle set for C(D) (assuming L = deg C(D)).
Written in the form n1(T1)⊕ n2(T2)⊕ . . ..
1(1)⊕ 3(5), one cycle of length one and three cycles of length 5.
n1(T )⊕ n2(T ) = (n1 + n2)(T ).
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LFSR cycle sets

Already established facts:

If C(D) is a primitive polynomial of degree L over Fq then the cycle
set is

1(1)⊕ (1)(qL − 1).

If C(D) is an irreducible polynomial then the cycle set is

1(1)⊕ (qL − 1)
T

(T ),

where T is the period of the polynomial C(D) (or the order of α when
π(α) = 0).
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LFSR cycle sets - remaining cases

Theorem

If C(D) = C1(D)n then the cycle set of C(D) is

1(1)⊕ (qL1 − 1)
T1

(T1)⊕
qL1(qL1 − 1)

T2
(T2)⊕ · · · q

(n−1)L1(qL1 − 1)
Tn

(Tn),

where deg C(D) = L and Tj is the period of the polynomial C1(D)j .

Theorem
If C1(D) is irreducible with period T1, then the period of the polynomial
C1(D)j is Tj = pmT1 where p is the characteristic of the field and m the
integer satisfying pm−1 < j ≤ pm.

(example)
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LFSR cycle sets - remaining cases

Theorem
For a connection polynomial C(D) factoring like

C(D) = C1(D)n1C2(D)n2 · · ·Cm(D)nm ,

Ci(D) irreducible, has cycle set S1 × S2 × · · ·Sm, where Si is the cycle set
for Cni

i , and

(n1)T1 × (n2)(T2) = (n1n2 · gcd(T1, T2)(lcm(T1, T2))

and the distributive law holds for × and ⊕.

(example)
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Decimation

An m-sequence s = s0, s1, s2, . . .

Define the sequence s′ obtained through decimation by k, defined as
the sequence

s′ = s0, sk, s2k, s3k, . . . .

s correspond to multiplication of β by the fixed element α. It is clear
that s′ corresponds to multiplication of β by the fixed element αk, i.e,
the cycle of different states correspond to the sequence

β, αkβ, α2kβ, . . . , α(T−1)kβ, αTkβ = β.

the period of s′ is ord(αk) and ord(αk) = qL − 1/ gcd(qL − 1, k).
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Decimation - advanced

FqL through a degree L polynomial π(x) ∈ Fq[x] with π(α) = 0.

Let β ∈ Fq and consider the set of polynomials

F(β) = {f(x) ∈ Fq[x] : f(β) = 0}.

The set will contain at least one polynomial of degree ≤ L.
Let f0(x) be the polynomial in F(β) of lowest degree. Any other
polynomial f(x) in F(β) can be written as f(x) = q(x)f0(x) + r(x),
deg r(x) < deg f0(x) and

0 = f(β) = q(β)f0(β) + r(β) = r(β).

So r(β) = 0 and this means that f0(x)|f(x) for all polynomials f(x)
in F(β).
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Decimation - minimal polynomial

The polynomial f0(x) is called the minimal polynomial of the element
β.
The minimal polynomial to β, now denoted πβ(x), can be calculated
as

πβ(x) = (x− β)(x− βq)(x− βq2
) · · · (x− βqd−1

),

where d is the smallest integer such that qd ≡ 1 mod ord(β) (d is the
number of conjugates of β).
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The reciprocal of the minimal polynomial πβ(x) gives the connection
polynomial for a minimal LFSR producing a sequence corresponding to
the state sequence

β, αkβ, α2kβ, . . . , α(T−1)kβ, αTkβ = β.

The decimated sequence s′ can be generated by an LFSR with a
connection polynomial being the reciprocal of παk(x).

(example)
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Statistical properties of LFSR sequences

The importance of LFSR sequences in general and m-sequences in
particular is due to their pseudo randomness properties.

s = s0, s1, . . . is an m-sequence, recall that an r-gram is a
subsequence of length r,

(st, st + 1, . . . , st+r−1),

for t = 0, 1, . . ..

Theorem
Among the qL − 1 L-grams that can be constructed for
t = 0, 1, . . . , qL − 2, every nonzero vector appears exactly once.
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Statistical properties of LFSR sequences

Run-distribution properties of m-sequences.

A run of length r in a sequence s is a subsequence of exactly r zeros
(or ones). This means that the r zeros must have a one before.
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Statistical properties of LFSR sequences

Theorem
The run distribution of any m-sequence of length 2L − 1 is given as

length 0-runs 1-runs
1 2L−3 2L−3

2 2L−4 2L−4

...
...

...
L− 2 1 1
L− 1 1 0

L 0 1
Total 2L−2 2L−2
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Statistical properties of LFSR sequences

The autocorrelation function.

Let x,y be two binary sequences of the same length n.
The correlation C(x,y) between the two sequences is defined as the
number of positions of agreements minus the number of
disagreements.
The autocorrelation function C(τ) is defined to be the correlation
between a sequence x and its τ th cyclic shift, i.e.,

C(τ) =
n∑

i=1

(−1)xi+xi+τ , (2)

where subscripts are taken modulo n and addition in the exponent is
mod 2 addition.
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Statistical properties of LFSR sequences

Theorem
If s is an m-sequence of length 2L − 1, then

C(τ) =
{

2L − 1 if τ ≡ 0 (mod n)
−1 otherwise

T. Johansson (Lund University) 41 / 42



Statistical properties of LFSR sequences

More comments:

The decimation of an m-sequence or the sum of two different
m-sequences are (under some assumptions) again m-sequences.
One property is completely away from random sequences. Let the
binary m-sequence be generated by the recursion sj =

∑L
i=1 cisj−i.

By forming a set of random variables Xj =
∑L

i=0 cisj−i, j ≤ L we see
that P (Xj = 0) = 1. An extreme point of nonrandomness.
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