Lecture 8: Stream ciphers - LFSR sequences
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Introduction

@ Symmetric encryption algorithms are divided into two main categories,
block ciphers and stream ciphers.

@ Block ciphers tend to encrypt a block of characters of a plaintext
message using a fixed encryption transformation

@ A stream cipher encrypt individual characters of the plaintext using an
encryption transformation that varies with time.

A stream cipher built around LFSRs and producing one bit output on each
clock = classic stream cipher design.
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A stream cipher
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A stream cipher

@ Design goal is to efficiently produce random-looking sequences that
are as “indistinguishable” as possible from truly random sequences.

@ Recall the unbreakable Vernam cipher.

e For a synchronous stream cipher, a known-plaintext attack (or
chosen-plaintext or chosen-ciphertext) is equivalent to having access
to the keystream z = z1, 29, ..., 2N.

o We assume that an output sequence z of length N from the
keystream generator is known to Eve.
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Type of attacks

@ Key recovery attack: Eve tries to recover the secret key K.

@ Distinguishing attack: Eve tries to determine whether a given
sequence z = 21, 29, ..., 2N is likely to have been generated from the
considered stream cipher or whether it is just a truly random sequence.

Distinguishing attack is a much weaker attack
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Distinguishing attack

e Let D(z) be an algorithm that takes as input a length N sequence z
and as output gives either “X" or “"RANDOM".

e With probability 1/2 the sequence z is produced by generator X and
with probability 1/2 it is a purely random sequence.

@ The probability that D(z) correctly determines the origin of z is
written 1/2 + €.

e If € is not very close to zero we say that D(z) is a distinguisher for
generator X.
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Distinguishing attack - example

Assume that Alice sends one of N public images {I1, I2,...,Ix} to Bob.

Eve observes the ciphertext c.

@ Guess that the plaintext is the image I, i.e., m = I7.
e Calculate Z = m + ¢ and compute D(Z).

o If the guess m = I; was correct then D(z) = X. If not,
D(z) ="RANDOM".
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More on attacks

@ Building a (synchronous) stream cipher reduces to the problem of
building a generator that is resistant to all distinguishing attacks.

@ There are essentially always both distinguishing attacks and key
recovery attacks on a cipher.

o Exhaustive keysearch; complexity 2F

@ An attack is considered successful only if the complexity of performing
it is considerably lower than 2% key tests.
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Building blocks for stream ciphers

MEMORY

o linear feedback shift registers, or LFSRs for short.

o tables (arrays)
Combinatorial function

@ Nonlinear Boolean functions, S-boxes

e XOR, Modular addition, (cyclic) rotations, (multiplications)
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Example of a stream cipher design

LFSR 1

LFSR 2

LFSR n
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Linear feedback shift registers

oS

L L+l

A register of L delay (storage) elements each capable of storing one
element from F,, and a clock signal.

Clocking, the register of delay elements is shifted one step and the new
value of the last delay element is calculated as a linear function of the
content of the register.
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LFSR sequences

@ The linear function is described through the coefficients

c1,¢2,...,cr, € Fy and the recurrence relation is
S5 = —C18j—1 — C25j—2 — - CLSJ',L,
forj=L,L+1,....
o With ¢y = 1 we can write
L
Zcisj—i =0, forj=L,L+1,....
i=0

The shift register equation.

@ The first L symbols sg, s1,...,s;_1 form the initial state.
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LFSR sequences

@ The coefficients cg, c1, ..., cr, are summarized in the connection
polynomial C (D) defined by

C(D) = 141D+ caD* + -+ ¢, D",

e Write < C(D), L > to denote the LFSR with connection polynomial
C(D) and length L.

@ D-transform of a sequence s = sg, s1,52... as
S(D) :So+81D+52D2+--~ s

assuming s; € [Fy.

@ The indeterminate D is the “delay” and its exponent indicate time.
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LFSR sequences

@ We assume s; = 0 for i < 0. The set of all such sequences having the
form

f(D)y=>_fD',
1=0

fi € Fy, is denoted F[[D]] and called the ring of formal power series.
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Theorem

The set of sequences generated by the LFSR with connection polynomial
C(D) is the set of sequences that have D-transform

P(D)
S(D) = )
(D) o)
where P(D) is an arbitrary polynomial of degree at most L — 1,

P(D)=py+pD+... +p,_1DFL.

Furthermore, the relation between the initial state of the LFSR and the
P (D) polynomial is given by the linear relation

Po 1 0 0 S0
p1 c1 1 0 51
PL-1 cL-1 ¢r—2 ... 1 Sr—1
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LFSR sequences and extension fields

@ Let m(x) be an irreducible polynomial over F, and assume that its
coefficients are

m(x) =al + ol 4. 4 ¢p.

This means that 7(z) is the reciprocal polynomial of C'(D).
o Construct the extension field F . through 7(a) = 0.

@ 3 from F . can be expressed in a polynomial basis as
B =00+ fiat--+fr1a"

where 5y, B1,...0L_1 € Fq.
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LFSR sequences and extension fields

Assume that the (unknown) element 3 is multiplied by the fixed element «.
The result is

af = Boa+ Bra® + -+ Br_1at.
Reducing o using 7(a) = 0 gives

af = —crBr-1+ (Bo —cL-18r-1)a+ -+ (Br—2 — c1fr—1)ar ™ .

A
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LFSR sequences and extension fields

A

@ It is quickly checked that
§j = —C18j-1 — C28j-2 — -+ " CLSj_L,

when j > L.
@ Py = Sg, P1 = 81 + c180, etc, where pg, p1,...,pr_1 is the initial state

@ The sequence fulfills the shift register equation, but uses
Do, D1, ---PL—1 as initial state.
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LFSR sequences and extension fields

e The set of LFSR sequences, when C(D) is irreducible, is exactly
the set of sequences possible to produce by the implementation
of multiplication of an element 3 by the fixed element a in F ..

e For a specific sequence specified as S(D) = P(D)/C(D) the initial
state is the first L symbols whereas the same sequence is produced in
the figure if the initial state is po, p1,...,Pr-1.
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Properties of LFSR sequences

o A sequence s =...,sq,s1,...Is called periodic if there is a positive
integer T such that s; = s;.p, for all i > 0.

@ The period is the least such positive integer T' for which s; = s; ., for
all ¢ > 0.

@ The LFSR state runs through different values. The initial state will
appear again after visiting a number of states. If deg C'(D) = L, the
period of a sequence is the same as the number of different states
visited, before returning to the initial state.
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Properties of LFSR sequences

e C(D) irreducible: the state corresponds to an element in F ., say 3.

@ The sequence of different states that we are entering is then

B,aB,08,...,a" 1g,a" g = p,

where T is the order or a.

o If o is a primitive element (its order is ¢ — 1), then obviously we will
go trough all g% — 1 different states and the sequence will have period
g — 1. Such sequences are called m-sequences and they appear if and
only if the polynomial 7(z) is a primitive polynomial.
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@ Length 4 LFSR with connection polynomial
C(D) =1+ D+ D?+ D?+ D* in F,.

e Starting in (0001), we return after 5 clockings of the LFSR.

@ There are three cycles of length 5 and one of length one.

e Explanation: Fy4, we get through
n(z) =2lCle™) =2* + 2> + 22 + 4+ 1 and 7(a) = 0.

e a® =1 and ord(a) = 5. So starting in any nonzero state 3 € Fy1, we
will jump between the states

f,aB,0°8,0°8,0*B,a°5 = .
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Length 4 LFSR with connection polynomial C(D) = 1+ D + D* in Fs.
Starting in (0001), we return after 15 clockings of the LFSR.
Explanation: Fy1, we get through 7(z) = 22C(z™!) = 2% + 23 + 1
and 7(a)) = 0.

e a'® =1 and ord(a) = 15. w(z) primitive polynomial.

@ So starting in any nonzero state § € Fy4, we will jump between all
nnzero states before returning.
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Properties of LFSR sequences

The different state cycles that will appear for an arbitrary LFSR.

® [s0,581,...,57—1]° denote the periodic and causal sequence

50581y« ++3ST—1,50yS1y+-+3ST—1,505- -,

where s; € Fy, i =0,1,..., 7T — 1.

® (s0,81,...,8nv—1) denote a sequence where the first N symbols are
50,81, - - -, SN—1 (and the upcoming symbols are not defined), where
s;i€Fgi=0,1,...,N—1.
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Properties of LFSR sequences

e If s=11,0,0,...,0]° then

1
S(D):1+DT+D2T+---:ﬁ.
e ils=1[0,1,0,...,0]° then
S(D):D+DT+1+D2T+1+---:L
1-DT
@ In general, if s = [sg, s1,...,87-1]° then
e i

(1)
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Properties of LFSR sequences

Definition

The period of a polynomial C(D) is the least positive number T such that
C(D)|(1 — DT).

@ Calculated by division of 1 by C'(D) and continuing until the we
receive the first remainder of the form 1- DV. Then the period is
T=N.

(example)
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Properties of LFSR sequences

Theorem

If gcd(C(D), P(D)) = 1 then the connection polynomial C(D) and the
sequence s with D-transform

have the same period (the period of s is the same as the period of the
polynomial C(D)).

e Note: This C(D) gives the shortest LFSR generating s. Any other
connection polynomial generating s must be a multiple of C (D).

(example)
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Properties of LFSR sequences

Theorem

If two sequences, s4 and sg, with periods T and T have D-transforms

Pa(D) _ Pp(D)
a0y P = G,y

Sa(D) =

then the sum of the sequences s = s + sp has D-transform
S(D) = Sa(D)+ Sg(D) and period lem(T s, Tg), assuming
gcd(Pa(D), Ca(D)) = 1, ged(Py(D), Cp(D)) = 1,
ged(Ca(D),Cp(D)) = 1.

(example)
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LFSR cycle sets

e Introduce the cycle set for C(D) (assuming L = deg C(D)).

e Written in the form ny(Th) ® na(Ts) & .. ..

e 1(1) @ 3(5), one cycle of length one and three cycles of length 5.
e n1(T) ®n2(T) = (n1 + na)(T).
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LFSR cycle sets

Already established facts:

e If C(D) is a primitive polynomial of degree L over [F, then the cycle
set is

1(1) @ (1)(¢" — 1)

e If C(D) is an irreducible polynomial then the cycle set is

where T' is the period of the polynomial C (D) (or the order of o when
m(a) = 0).
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LFSR cycle sets - remaining cases

Theorem
If C(D) = C1(D)"™ then the cycle set of C(D) is

L1 L1 _ (nfl)Ll Ll _
q~*(q 1 q q 1
1o =Yy U = Vme. =D,

where deg C(D) = L and Tj is the period of the polynomial Cy (D).

If C1(D) is irreducible with period Ty, then the period of the polynomial

C1(D)7 is Tj = p™T; where p is the characteristic of the field and m the
integer satisfying p™ 1 < j < p™.

(example)
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LFSR cycle sets - remaining cases

Theorem

For a connection polynomial C'(D) factoring like
C(D) = C1(D)" Co(D)™ - - - (D)™™,

C;(D) irreducible, has cycle set S1 x Sy X ---S,,, where S; is the cycle set
for C"', and

(nl)Tl X (ng)(Tg) = (77,177,2 . ng(Tl, TQ)(ICH](T]_, TQ))

and the distributive law holds for x and @.

(example)
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Decimation

An m-sequence s = sg, S1, S92, . . .

@ Define the sequence s’ obtained through decimation by k, defined as
the sequence
' = 50, 5k, S2k> S3k» -+ - -

@ s correspond to multiplication of 3 by the fixed element a. It is clear
that s’ corresponds to multiplication of 3 by the fixed element o, i.e,
the cycle of different states correspond to the sequence

B,a"8,0%8,...,aT=Vkg oThg = g,

o the period of 8’ is ord(a*) and ord(a*) = ¢ — 1/ ged(¢* — 1, k).
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Decimation - advanced

I, through a degree L polynomial 7(z) € Fy[z] with m(a) = 0.

o Let 3 € F, and consider the set of polynomials

F(B) = {f(z) € Fylz] : f(B) = 0}.

@ The set will contain at least one polynomial of degree < L.

o Let fo(x) be the polynomial in F(3) of lowest degree. Any other
polynomial f(z) in F(8) can be written as f(x) = q(x) fo(x) + r(x),
degr(z) < deg fo(x) and

0=f(B) =a(B)fo(B) +7(B) = r(B).

@ So () = 0 and this means that fo(z)|f(x) for all polynomials f(x)
in F(5).
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Decimation - minimal polynomial

@ The polynomial fy(x) is called the minimal polynomial of the element
B.
@ The minimal polynomial to 3, now denoted mg(z), can be calculated

as
1

m5(z) = (z — B)(x — f)(x — BT) -+ (x — 1),

where d is the smallest integer such that ¢ = 1 mod ord(f) (d is the
number of conjugates of f3).
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@ The reciprocal of the minimal polynomial wg(z) gives the connection
polynomial for a minimal LFSR producing a sequence corresponding to
the state sequence

B,0*3,0%3, ... aT=Vkg oThg = 3.

@ The decimated sequence s’ can be generated by an LFSR with a
connection polynomial being the reciprocal of k().

(example)
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Statistical properties of LFSR sequences

The importance of LFSR sequences in general and m-sequences in
particular is due to their pseudo randomness properties.

@ s = sp,81,... Is an m-sequence, recall that an r-gram is a
subsequence of length r,

(St7 St + 17 ... 7St+’r‘—1))

fort =0,1,....

Among the g% — 1 L-grams that can be constructed for
t=0,1,..., qL — 2, every nonzero vector appears exactly once.
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Statistical properties of LFSR sequences

Run-distribution properties of m-sequences.

@ A run of length r in a sequence s is a subsequence of exactly r zeros
(or ones). This means that the r zeros must have a one before.
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Statistical properties of LFSR sequences

The run distribution of any m-sequence of length 2° — 1 is given as

length  0O-runs 1-runs
1 2L—3 2L—3

9 2L—4 2L—4
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Statistical properties of LFSR sequences

The autocorrelation function.

o Let x,y be two binary sequences of the same length n.

@ The correlation C'(x,y) between the two sequences is defined as the
number of positions of agreements minus the number of
disagreements.

@ The autocorrelation function C(7) is defined to be the correlation
between a sequence x and its 7th cyclic shift, i.e.,

n

C(r) =) (~1)mtenr, (@)

i=1

where subscripts are taken modulo n and addition in the exponent is
mod 2 addition.
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Statistical properties of LFSR sequences

If s is an m-sequence of length 2% — 1, then

[ 2l—1 ifr=0 (mod n)
tlr) = { -1 otherwise
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Statistical properties of LFSR sequences

More comments:

@ The decimation of an m-sequence or the sum of two different
m-sequences are (under some assumptions) again m-sequences.
@ One property is completely away from random sequences. Let the
i : L
binary m-sequence be generated by the recursion s; = > ;" | ¢;s5_;.
By forming a set of random variables X; = ZiL:o ¢iSj—i,j < L we see
that P(X; = 0) = 1. An extreme point of nonrandomness.

T. Johansson (Lund University) 42 / 42



