
Linear Prediction Algorithms

Mohit Garg (00D07015)
http : //www.ee.iitb.ac.in/uma/̃mohit

Indian Institute of Technology, Bombay,India

April 24, 2003

Abstract

Estimating a variable given some other variables, is one of the most
commonly occuring problems in real life. More specifically, estimation
or prediction is one of the most celebrated problems in time series
analysis. This report is a MATLAB implementation of two algorithms
for the same - Levinson-Durbin Algorithm and the Weighted Least
Squares Error Algorithm.

Keywords: Linear Prediction, Levinson-Durbin, Least Squares

1 Introduction

One of the most celebrated problems in time series analysis is that of predic-
tion i.e. given a series of sample values of a stationary discrete-time process
(e.g. a signal), we need to predict its future samples. Specifically, given
x(n− 1), x(n− 2)....., x(n−M), we need to predict the value of x(n).

In general, we may express this predicted value as a function of the given
M past samples. i.e. i

x̂(n|n− 1, n− 2, ..., n−M) = Ψ(x(n− 1), x(n− 2), ..., x(n−m)) (1)

Now, if this function Ψ is a linear function of the variables x(n−1), x(n−
2), ..., x(n−M) , we say that the prediction is linear. We can visualize this

1

in a M − dimensional space spanned by x(n − 1), x(n − 2), ..., x(n −M).
Hence, we can write

x̂(n|n− 1, n− 2, ..., n−M) =
M∑

k=1

akx(n− k) (2)

where ak are constant coefficients. Such a predictor can be realised by
using a Tapped-Delay Line filter (Fig.1) .The prediction error is defined as

fM(n) = x(n)− x̂(n|n− 1, n− 2, ..., n−M) (3)

Here, the subscript M in fM(n) denotes the order of the prediction. i.e.
the number of past samples that are used to predict the next sample.

Hence, the problem of Linear Prediction, that we are interested in, reduces
to determining these coefficients subject to some condition. Different algo-
rithms and conditions on a′ks have been proposed and are used. We will
consider two common ones in this report: Minimum Mean Square Error and
Weighted Least Square Error.

Figure 1: Tapped-Delay Line Realisation of the Linear Predictor(source [7])

2 Minimun Mean Square Estimate (MMSE)

Obviously, we would like to minimise the error in the predicted value and
the actual value. But since, the sequence of variables is probabilistic, we
will need to define some measure of equality or error. A commonly used

2

measure for this is probability theory is the RMS Error, i.e., Root Mean
Square Error.1. RMS error is defined as

PM = E(|fM(n)|2) (4)

Minimising the prediction RMS error (PM), we get the Weiner-Hopf equa-
tions (refer [5]) i.e.

Ra = r (5)

where,

a =
[
a1 a2 a3 . . aM

]T

r =
[
RXX(1) RXX(2) RXX(3) . . RXX(M)

]T

R =




RXX(0) RXX(−1) RXX(−2) ... RXX(1−M)
RXX(1) RXX(0) RXX(−1) ... RXX(2−M)
RXX(2) RXX(1) RXX(0) ... RXX(3−M)

.

.
RXX(M − 1) RXX(M − 2) RXX(M − 3) ... RXX(0)




Here, RXX(k) denotes the autocorrelation function (E(x(n)x(n− k))) of
the sequence x(n) for a lag k. Note that RXX(−k) = RXX(k) for real sig-
nals(which we are interested in), since the process is assumed to be stationary.
In order to solve for the coeff. ak, we need to

• First, determine the autocorrelation function upto order M for the
input process x(n).

• Then, solve the above equations.

Determination of the autocorrelation function is addressed at the end of
the section. Here we proceed assuming that the autocorrelation function
upto order M is available.

1An estimate found by minimising the Root Mean Square Error is often referred to as
the MMSE estimate

3

2.1 The Levinson-Durbin Recursion

Assuming we have already found out the autocorrelation functions for the
input process x(n), we need to solve the M × M system of equations to
get the desired coefficients (ak). One can use standard methods for solving
linear equations, but the structure of the R matrix gives us some very unique
advantages. The Levinson-Durbin Recursion2, named in recognition of its
use first by Levinson(1947) and then its independednt reformulation at a
later date by Durbin (1960), is a direct recursive method for solving for the
coefficients of the prediction filter. It makes particular use of the Toeplitz
structure[3] of the matrix R. A detailed derivation and proof of the method
can be found in [2].

Here we outline the basic steps involved in the algorithm. The algorithm
uses, the prediction filter coefficients of orderm−1 to compute the coefficients
of the filter of order m.
For m = 1 to M

1. Calculate mth order reflection coefficient Γm = −∆m−1

Pm−1

2. Calculate the coefficients for the mth order prediction-error filter, given
by

âm,k = âm−1,k + Γmâ
∗
m−1,m−k, k = 0, 1, ...m

where,

âM,k =

{
1 k = 0
−aM,k k = 1, 2, ...,M

3. Calculate the RMS error for the mth order filter as Pm = Pm−1(1 −
|Γm|2)

4. Calculate ∆m = rBTm am−1. Here rBTm =
[
RXX(m) RXX(m− 1) ... RXX(1)

]
.

The algorithm is initialised by setting â0 = 1, P0 = RXX(0),∆0 = RXX(1).

2.2 Calculation of the Autocorrelation coefficients

Tha autocorrelation function of the input process may not be know apriori.
Hence, we will need to estimate it based on the input process itself. In

2The Levinson-Durbin algorithm is also applicable when we donot know the autocor-
relation function beforehand[2]

4

this implementation, I have replaced the expectations by the time averages
(assuming ergodic process) and found out the autocorrelation function for
lags k = 1, 2, ..M . i.e.

RXX(k) =
1

N − k
N∑

l=1

x(l)x∗(l − k)

This estimation of the autocorrelation function is not practical since it
assumes the apriori knowledge of the entire process. There are other algo-
rithms3 for determining RXX(k), but have not been considered here. It is be-
cause of this practical problem, that we get motivated to go for the Weighted
Least Squares Error Algorithm which does not suffer from this shortcoming
and is adaptive in nature.

3 Weighted Least Squares Error (WLSE)

In the MMSE based prediction, we were minimising the RMS error in the
predicted and actual values. In the WLSE Algorithm, we minimise another
definition of the error. Here we take the weighted sum of the error and
minimise it for a given set of weights. Note that we will be finding out a
new set of filter coefficients at each instant ot timt t = k, and using those
coefficients to predict the value at the next instant of time t = k + 1. In
other words, we will be adaptively changing the coefficients in order to meet
our minimum WLSE criterion. i.e.

β(a) =
1

2

k∑

i=1

αi[a
T
Mu(i)− x(i)]2 (6)

where αi are the weights and u(k) is the input to the filter at time t = k i.e.

u(k) =
[
x(k − 1) x(k − 2) ... x(k −M)

]T

Also,

x̂(k) = aTM(k − 1)u(k)

The weighting should de-emphasise the old data points since, in real life
practical implementation of the algorithm, storage capacity will be limited

3e.g. Burg’s Algorithm

5

and if we store all past data samples, we may run out of memory. Hence, we
need to decrease the weights of the older samples and this can be acheived by
selecting the weights in an appropriate way. We take αk = αk−1 where α < 1.
The variable is sometimes also referred to as the forgetting factor. The value
of α depends on the nature of the input process. Usually α = 0.99 is used
and it acts as a trade-off between storing all past samples (after sufficient
time, αk−1 << 1 and hence, can be neglected altogether) and also allowing
global optimisation to occur.
Due to the adaptive nature of the WLSE algorithm, the error between the
predicted and actual values initially is large and starts falling as t = k in-
creases. The rate of convergence is relatively fast. A detailed mathematical
treatment of the WLSE algorithm is given in [1]. Skipping the maths, we
outline the algorithm below.

For k = 2 to ∞

1. Calculate the current predicted output x̂(k) = aTM(k − 1)u(k)

2. Update the coefficient vector

aM(k) = aM(k − 1) +
P(k − 1)u(k)

α + uT (k)P(k − 1)u(k)
[x(k)− x̂(k)]

3. Update the P matrix

P(k) =
1

α

{
P(k − 1)− P(k − 1)u(k)uT (k)P(k − 1)

α + uT (k)P(k − 1)u(k)

}

We start the algorithm with aM = [1, 0, 0,, 0]T and P(1) = I, the
M ×M Identity Matrix. Hence, we can adaptively estimate the next sample
of the input process. This method can be used for a real time implementation
of a Linear Predictor and does not require us to calculate the autocorrelation
function of the input process.

6

4 Results

4.1 Sinusoidal Input

Figure 2: Sinusoidal Input to the Filters

(a) (b)

Figure 3: Output and Error for MMSE predictor

7

(a) (b)

Figure 4: Output and Error for WLSE predictor with alpha = 0.99

4.2 Image as input

Figure 5: Image Input to the Filters

8

(a) (b)

Figure 6: Output and Error for MMSE predictor

(a) (b)

Figure 7: Output and Error for WLSE predictor with alpha = 0.99

4.3 Another Image

Figure 8: Image Input to the Filters

9

(a) (b)

Figure 9: Output and Error for MMSE predictor

(a) (b)

Figure 10: Output and Error for WLSE predictor with alpha = 0.99

5 Conclusion

The MMSE estimator and the WLSE estimator were simulated successfully.
The amount of computation effort required was reduced especially in the

case of the MMSE estimator by using the Levinson-Durbin algorithm and
hence avoiding relatively computationally expensive Gaussian Elimination.

The WLSE estimator is more applicabe to real life situations than the
MMSE predictor (in the form studied) since it avoids calculation of the au-
tocorrelation function.

We also see from the results that the predicted output closely matches
with the input process especially in case of signals like images which we
encounter in real life.

Linear Prediction is very useful in lots of applications especially signal
processing. A whole class of coding schemes, especially for speech signals,
called Linear Prediction Coding (LPC) exist. Linear Prediction is also used
in Digial Communication systems e.g. Differential Pulse Code Modulation

10

(DPCM) which give a very good data compression and hence improve the
multiplexing ability of the channel.

References

[1] Robert A. Monzingo, Thomas W. Miller, Introduction to Adaptive Ar-
rays, John Wiley & Sons, 1980

[2] S. Haykin, Adaptive Filter Theory, Prentice Hall, New Jersey, 1986

[3] www.ulib.org/webRoot/Books/Numerical Recipes/bookcpdf/c2-8.pdf

[4] P. Strobach, Linear Prediction Theory-A Mathematical Basis for Adap-
tive Systems, Springer-Verlag, 1990

[5] S. Haykin, Communication Systems, 4th Ed., John Wiley & Sons,2001

[6] http://www.ensc.sfu.ca/people/faculty/cavers/ENSC810/classnotes/classnotes810.htm

[7] http://hitchcock.dlt.asu.edu/media3/a spanias/eee506-s02/PDF-
506/EEE506-LECT09.pdf

11

Appendix

Here is the listing of the MATLAB code.

Code for the MMSE predictor using the Levinson-Durbin Algorithm
**

M=5; % order of the predictor

x=input(’Enter the signal(row vector): ’);

%for M=1:200

r=zeros(M+1,1); % Column matrix of the autocorrelation

%Calculating the autocorrelation functions upto order M

for k=0:M

for l=1:length(x)

if((l-k)>=1)

r(k+1)=r(k+1)+(x(l)*conj(x(l-k)));

end

end

r(k+1)=r(k+1)/(length(x)-k);

end

r0=r(1);

r=r(2:M+1,1); % remove r(0) from the matrix

% Now compute the coeff. (here we are using direct matlab inv. function)

%a=inv(R)*r % the coefficients

% Levinson-Durbin Recursion to get the coefficients

a=1; % a0 (start)

P=r0; % Power in error

D=r(1);

for m=1:M

Gamma=-D/P; % The reflection coeff. for mth order filter

a=[a;0] + Gamma.* conj(flipud([a;0])); % The coeff. for the mth order

% filter

12

P=P*(1-(abs(Gamma))^2); % Power of the error for mth filter

if(m+1<=M)

D=(flipud(r(1:m+1))’)*a; % calculate Delta(D)(m)

end

end

a=-a(2:M+1); % remove the first element of the Prediction-error filter

% coeff. vector (since it is equal to 1 and we donot

% need it here) also we need to put a negative sign

% as the prediction-error-filter has a -ve sign for

% prediction-filter coeff.

P

% Now we need to estimate the signal

s=zeros(size(x)); % estimate of x

s(1)=x(1);

for k=2:length(s)

for l=1:M

if(k-l>=1)

s(k)=s(k)+a(l)*x(k-l);

end

end

end

%end

figure;

plot(1:length(x),x,’r-’,1:length(s),s,’b-’);

figure;

plot(1:length(s),abs(fft(s-x)))

13

Code for the WLSE adaptive-predictor
**

M=5; % order of the predictor

alpha=0.99; % forgetting factor

x=input(’Enter the signal(row vector): ’);

% initialise the coeff. vector

a=zeros(M,1);

a(1)=1;

% initialise the P matrix

P=eye(M); % init. to idenity matrix

% initialise the output vector

s=zeros(size(x));

s(1)=x(1);

for k=2:length(x) % prediction starts at t=2;

currin=zeros(M,1);

% current input vector

if(k-M>=1)

currin=flipud(x(k-M:k-1)’); % converted to column vector

else

for z=1:M

if(k-z>=1)

currin(z)=x(k-z);

end

end

end

% calculate the predictor output at time t=k

s(k)=a’*currin;

% update coeff. for next iteration

14

a=a+((P*currin)./(alpha+(currin’)*P*currin))*(x(k)- s(k));

P=1/(alpha).*(P-((P*currin*(currin’)*P)./(alpha+(currin’)*P*currin)));

end

figure;

plot(1:length(x),x,’r-’,1:length(s),s,’b-’);

figure;

plot(1:length(s),abs(fft(s-x)))

15

