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Abstract

Wavelet transform-based pitch period estimation is well known
in the literature. This approach to pitch estimation assumes that
the glottis closures are correlated with the maxima in the adja-
cent scales of the wavelet transform and for pitch period estima-
tion, one needs to detect these correlated maxima across these
scales, which is often prone to error especially in the case of
noisy signals. In this paper, we develop an optimization scheme
in the wavelet framework using a multipulse excitation model
for the speech signal and the pitch period is estimated as a re-
sult of this optimization. We report experiments on both clean
and noisy conditions and show that the proposed optimization
works better than wide used heuristic approach for maxima de-
tection.
Index Terms: Pitch period estimation, multipulse excitation,
dyadic wavelet transform.

1. Introduction
Pitch period estimation of speech and music signals is an essen-
tial component in various speech processing applications such
as speech coding, speaker identification and verification, and
speech segregation. The existing pitch detectors are broadly
classified into either event detection pitch detectors or nonevent
detection pitch detectors. Event detection pitch detectors esti-
mate the pitch period by locating the instant at which the glottis
closes (called an event) and then measuring the time interval be-
tween two such events. The non-event based pitch detectors es-
timate pitch period by a direct approach like autocorrelation or
cepstrum method. The estimation of pitch using wavelet trans-
form falls under the category of event detection pitch detec-
tors. The pitch detection based on classical wavelet transform
(CWT) in [1]-[3] estimates the pitch period by determining the
glottal closure instant (GCI) and measuring the time period be-
tween such two events. In [10], the proposed algorithm reduces
the computational load of those CWT based algorithms. They
demonstrate the suitability of these approaches for a wide range
of pitch periods and different speakers.

However, it should be noted that the wavelet transform is
appropriate for pitch period estimation based on the assumption
that the glottal closure causes sharp changes (discontinuities) in
the derivative of the air flow in the glottis and transients in the
speech signal [1], which results in maxima in the scales of the
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wavelet transform around the point of discontinuity [4]. In ad-
dition, one needs to detect the correlated maxima of the wavelet
coefficients at successive scales by heuristic algorithms. In this
paper, we demonstrate analytically, using multipulse model of
excitation that the glottal pulse positions are preserved in suc-
cessive scales of wavelet transform of speech signal and instead
of any heuristic approaches, we formulate an optimization prob-
lem for finding pitch period under the wavelet framework. We
model the speech signal using an excitation-filter model [5] as
follows:

x[n] = e[n] ? h[n] (1)

where ? denotes the convolution. h[n] is the vocal tract fil-
ter impulse response and e[n] is the glottal excitation, which
is modeled as a series of delta functions, spaced irregularly in
general, i.e.,

e[n] =
X

k

βkδ[n− nk] (2)

where βk are the amplitudes of the glottal excitation pulses and
nk are the pulse positions. This is the multipulse model of the
excitation signal, first proposed by Atal et al [6]. Thus from (1)
and (2),

x[n] =
X

k

βkh[n − nk] (3)

With this model of the speech signal, the signal at successive
scales of the wavelet transform can also be expressed in terms
of the pulse amplitude and pulse positions. Assuming that the
excitation pulse positions occur at an interval of the pitch pe-
riod, we minimize a suitable cost function with respect to pulse
positions. Minimization yields the optimum pulse positions and
thus, the desired pitch period is obtained.

2. Wavelet Transform
The wavelet transform (WT) could be classified as either contin-
uous wavelet transform or discrete wavelet transform (DWT). A
continuous wavelet transform of a signal x(t) ∈ L2(R) results
in:

WTx(λ, τ ) =
1√
λ

Z ∞

−∞

x(t)ψ∗

„

t− τ

λ

«

dt λ > 0 (4)

where the function ψ(t) is usually referred to as mother wavelet,
λ is the scaling factor, τ is the shift and ∗ stands for com-



plex conjugation. The DWT can be performed via the mul-
tiresolution analysis wavelet decomposition/reconstruction al-
gorithm developed by Mallat. At the mth level, the mul-
tiresolution space, Vm, is spanned by the basis functions
n

2m/2φ(2mt− n); n ∈ Z
o

and the space, Wm, orthogonal

to Vm in Vm−1 is spanned by
n

2m/2ψ(2mt− n); n ∈ Z
o

,
where φ(t) is called the scaling function and ψ(t) is called
the wavelet function. Mallat’s algorithm allows wavelet coef-
ficients (also called the detailed version of the signal), dm,n =
〈x(t), ψm,n〉 and scaling coefficients (also called the approx-
imation version) xm,n = 〈x(t), φm,n〉 at the mth scale to
be calculated recursively from the representation of the signal,
x(t), at the preceding, finer scale, xm−1,n, through the follow-
ing filtering operation:

xm,n =
X

k

a0(k − 2n)xm−1,k (5)

dm,n =
X

k

a1(k − 2n)xm−1,k (6)

where a0[n] = 〈φ1,0, φ0,n〉
a1[n] = 〈ψ1,0, ψ0,n〉

3. Proposed Optimization Technique
In this section, we show analytically how pulse positions in ad-
jacent scales are preserved and formulate the optimization prob-
lem for pitch period estimation. Let us denote xm[n] the ap-
proximation version of the input signal x[n] at the mth scale.
Thus using (5),

x
1[n] = (x[n] ? a0[n]) ↓2

(↓2 denotes downsampling by a factor of 2)

=

 

X

l

x[l]a0[n − l]

!

↓2

=

 

X

l

 

X

k

βkh[l − nk]

!

a0[n− l]

!

↓2

[using (3)]

=

 

X

k

βk

(

X

l

h[l − nk]a0[n − l]

)!

↓2

=
X

k

βk

 

X

l

h[l]a0[n− nk − l]

!

↓2

(l → l + nk)
=

X

k

βkh
1[n − nk] (7)

where, h
1[n] = (h[n] ? a0[n]) ↓2 (8)

Similarly1,
x

2[n] =
X

k

βkh
2[n − nk] (9)

where, h2[n] =
`

h
1[n] ? a0[n]

´

↓2 (10)

In general, the model for xm[n] is

x
m[n] =

X

k

βkh
m[n − nk] (11)

where, hm[n] =
`

h
m−1[n] ? a0[n]

´

↓2 (12)
1Note that h

1[n − nk] =
`
P

l h[l]a0[n − nk − l]
´

↓2

From (11), we see that the output at the mth scale has a
similar excitation pattern as in the original signal; only the filter
impulse response has been changed from h[n] to hm[n].

h[n] is estimated from the given finite length speech signal
{x[n]}N−1

n=0
in the following way:

h[n]
Z↔ H(z) =

1

1 +
Pp

k=1
akz−k

where {ak}p
k=1

are the optimum p-order linear prediction co-
efficients obtained from x[n] [7]. Once h[n] is obtained we
can compute hm[n] from (8) and (12). Thus, the signal domain
modeling error e[n] and the modeling error em[n] at the mth
scale decomposition are

e[n] = x[n] −
k=K
X

k=1

βkh[n − nk] (13)

e
m[n] = x

m[n] −
k=K
X

k=1

βkh
m[n − nk] (14)

wherem = 1, 2, ...,M ;M is the maximum level of wavelet de-
composition and K is the number of pulses in the given speech
segment.

We construct a cost function J which is the sum of the en-
ergy of the errors in the signal domain and in each scale of the
wavelet decomposition. Thus,

J(βk, nk, K) =
X

n

(e[n])2 +
m=M
X

m=1

X

n

(em[n])2

=
X

n

 

x[n] −
k=K
X

k=1

βkh[n− nk]

!2

+
m=M
X

m=1

X

n

 

x
m[n] −

k=K
X

k=1

βkh
m[n − nk]

!2

(15)

Assuming constant pitch period over the given voiced seg-
ment, we rewrite nk as follows

nk = kNp +N0 (16)

where Np is the constant pitch period over the signal segment
and N0 is the offset of the first pitch pulse in the segment.
Hence, the cost function becomes

J(βk, Np, N0, K) =
X

n

 

x[n] −
k=K
X

k=1

βkh[n − kNp −N0]

!2

+
m=M
X

m=1

X

n

 

x
m[n] −

k=K
X

k=1

βkh
m[n− kNp −N0]

!2

(17)

We minimize J(βk, Np, N0, K) and obtain the optimum values
of
˘

β
opt
k

¯K

k=1
, Nopt

p , N
opt
0 , Kopt.

4. Pitch period estimation by minimizing J

From (17), we see that the minimization of J with respect to
{βk} is straightforward. Once we know the Np, N0, K, we
can set the derivatives of J with respect to βk, 1 ≤ k ≤ K
equal to zero to obtain equations

k=K
X

k=1

βkcki = di, 1 ≤ i ≤ K (18)



where
cki =

X

n

h[n − kNp −N0]h[n − iNp −N0]

+

M
X

m=1

X

n

h
m[n − kNp −N0]h

m[n − iNp −N0]

di =
X

n

x[n]h[n − iNp −N0]

+
M
X

m=1

X

n

x
m[n]hm[n − iNp −N0]. (19)

The minimization of J with respect to the Np, N0, K is
a combinatorial problem and does not have a closed form solu-
tion. We exploit the advantage of wavelet decomposition here.
From (3) and (11), we observe that the quasi-periodic structure
of the signal is also maintained in adjacent scales of wavelet
transform. We estimate an initial value of N ini

p , Kini from the
2nd or 3rd scale coefficients of wavelet decomposition and per-
form a combinational search for Np, N0, K in the following
ranges:

Np ∈
h

N
ini
p − 20, N ini

p + 20
i

N0 ∈
h

1, 2N ini
p

i

K ∈
h

K
ini − 2, Kini + 2

i

The initial estimate of the above parameters from the wavelet
decomposition is effective specially in case of noisy condition,
when the estimates in the signal domain is very poor. In the
successive levels, the noise is reduced due to filtering, while
the periodic structure is maintained. We use the autocorrela-
tion and average magnitude difference function (AMDF) [11],
to estimate N ini

p . We follow an approach similar to what was
taken by Shimamura et al in [8], where the peak in the AMDF
weighted autocorrelation function is detected to estimate N ini

p .
FromN ini

p theKini is obtained by finding the possible number
of period of length N ini

p over the given signal of length N , i.e.
Kini =

l

N
Nini

p

m

2. For each combination of Np, N0 and K,

the {βk}K
k=1

are solved using (18) and the value of J is noted.
The optimum parameters are chosen for the smallest value of J
among all these combinations. The Nopt

p , obtained after mini-
mizing J is declared to be the pitch period of the given speech
segment. fopt

p = fs

N
opt
p

is called the pitch frequency, where fs

is the sampling frequency of the speech signal.
As a result of the optimization, we also get the pitch pulse

positions nopt
k = kNopt

p +N
opt
0 and their amplitudes βopt

k .

5. Evaluation
Given a speech segment, h[n] is obtained by linear prediction
of order p =10. We have used the Haar wavelet in all our exper-
iments for decomposing the input segment in successive levels.
Use of other wavelets did not change the result drastically. 3
levels of decomposition is used for all experiments, i.e. M=3.

The experiment is performed on voiced data from the
TIMIT database [9]. The test set contains 10 utterances from
each of the eight dialect regions of TIMIT (total of 80 utter-
ances), half spoken by male and half by female speakers. The
voiced segments for each utterance are detected based on short-
time energy using frame based analysis. A frame length of 20

2dxe is the smallest integer greater than x

Table 1: Coefficient of similarity

Method Praat Optimization
ρ .872 .878

msec is used for this and if the short-time energy of a frame is
more than 60% of the maximum short-time energy of an utter-
ance, that frame is decided to be a voiced frame. These voiced
frames are used in our optimization and pitch values are ob-
tained for all voiced frames.

To evaluate the performance of the optimization based pitch
period estimation for clean speech, we define an objective mea-
sure which avoids the knowledge of the ’true’ underlying pitch.
The optimization results in Kopt number of pitch periods in
a given speech segment. Let Sk denote the signal vector of
the kth period; we define the following coefficient of similarity
over all periods,

ρ =
1

Kopt − 2

Kopt−1
X

k=2

Cov
h

Sk,
Sk−1+Sk+1

2

i

r

Var[Sk]Var
h

Sk−1+Sk+1

2

i

(20)

where Cov[·] and Var[·] denote sample covariance and variance,
respectively. The closer ρ is to 1, the more the estimated periods
are correlated i.e. better is the pitch estimation. ρ is determined
for each frame and the resulting values are averaged to obtain
an overall value. As a reference method to our approach, we
chose the pitch marking algorithm of Praat [12], a state-of-the-
art event-based pitch estimation method. Table 1 shows ρ values
for Praat and our optimization algorithm. It is seen that in terms
of such an objective measure, the wavelet based optimization
method works almost as efficiently as that of fine-tuned modi-
fied autocorrelation based approach, used in Praat.

We now choose a critical speech segment to demonstrate
how heuristic approach for maxima detection fails whereas the
optimization scheme works well. Fig. 1(a) shows the origi-
nal speech segment and its wavelet (Haar) coefficients in 1st,
2nd and 3rd scales are shown in (b)-(d). These are repeated in
the right hand column, Fig. 1(e)-(h), where the maxima are de-
tected using algorithm3, reported in [1, 10]. For this speech seg-
ment it can seen that the maxima detected across scales does not
match always, which leads to a wrong estimate of the pitch pe-
riod. In contrast, the optimum pulse positions obtained through
optimization are shown in the left hand column Fig. 1(a) on the
original signal segment.

To evaluate the performance under noisy conditions, we
performed experiments on the same data set using additive
white Gaussian noise at 10 dB, 5 dB and 0 dB. The pitch value
obtained from Praat is taken as reference. The % relative error
(= (reference pitch - estimated pitch)/(reference pitch)X100) av-
eraged over all frames is shown in Table 2 for both optimization
based and maxima detection based pitch estimation. The opti-
mization based approach shows better performance in all noisy
conditions.

6. Conclusions
Through multipulse excitation based signal modeling in the
wavelet framework, we analytically show that the pseudo-
periodic structure of speech signal is maintained in adjacent
scales. The proposed optimization scheme for pitch estimation
is based on this analytical result and is shown to be robust by
experimental evaluation.

3The algorithm described in [1] picks the maxima which are above
the 0.8 of the global maxima in a scale. Two dash-dotted lines in Fig.
1(f)-(h) indicate the range between global maxima and its 80% value.
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Figure 1: Demonstration of the effectiveness of the optimization (left column) over maxima detection (right column). (a), (e) original
signal; (b)-(d), (f)-(h) are its wavelet coefficients in 1-3 scale. Optimum pulses obtained by optimization are shown in (a). The maxima
detected across scales are shown in (f)-(h). Two dash-dotted lines in each scale indicate the global maxima value and its 80% value.

Table 2: % relative error

Noise Level Maxima Detc. Optimization
clean 0.01 0.004
10 dB 0.519 0.367
5 dB 1.012 0.958
0 dB 1.897 1.673

In formulating the cost function (17), one can also use dif-
ferent weight factors for different scales based on the estimated
noise level in each scale. As a by-product of this optimization
the pulse amplitudes {βk} are also estimated, which further
could be useful for determining speaker characteristics. Vali-
dation of such ideas are part of future work.
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