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Goals: 
1. To explain the quantum circuit model of computation.
2. To explain Deutsch’s algorithm.
3. To explain an alternate model of quantum computation 

based upon measurement.



What does it mean to compute?

Church-Turing thesis: An algorithmic process or
computation is what we can do on a Turing machine.

Deutsch (1985): 
Can we justify C-T thesis using laws of physics?

Quantum mechanics seems to be very hard to simulate
on a classical computer.

Might it be that computers exploiting quantum mechanics
are not efficiently simulatable on a Turing machine?

Violation of strong C-T thesis!
Might it be that such a computer can solve some problems
faster than a probabilistic Turing  machine?

Candidate universal computer: quantum computer



The Church-Turing-Deutsch principle

Church-Turing-Deutsch principle: Any physical process 
can be efficiently simulated on a quantum computer.

Research problem: Derive (or refute) the Church-
Turing-Deutsch principle, starting from the laws of
physics.



Models of quantum computation

There are many models of quantum computation.

Historically, the first was the quantum Turing machine,
based on classical Turing machines.

A more convenient model is the quantum circuit model.

The quantum circuit model is mathematically equivalent
to the quantum Turing machine model, but, so far,
human intuition has worked better in the quantum
circuit model.

There are also many other interesting alternate models
of quantum computation!



Quantum circuit model

Quantum

Unit: qubit
1. Prepare n-qubit input in 

the computational basis.
2. Unitary 1- and 2-qubit 

quantum logic gates
3. Readout partial information 

about qubits

1 2, ,..., nx x x
Classical

Unit: bit

1. Prepare n-bit input

2.  1- and 2-bit logic 
gates

3. Readout value of bits

External control by a classical computer.



Single-qubit quantum logic gates
Pauli gates

0 1 0 1 0
X ;   Y ;   Z

1 0 0 0 1
i

i
−     

= = =     −     

Hadamard gate

H

+ −  
= = =  − 

10 1 0 1 1 1
0 ;    1 ;    

1 122 2
H H H

Phase gate
ZP

= =0 0 ;  1 1P P i

P P =
1 0
0

P i
 

=  
 

2P Z=



Controlled-not gate
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Toffoli gate

Control qubit 1 1c1c

tTarget qubit

Control qubit 2
2c 2c

21 cct ⋅⊕

Worked Exercise: Show that all permutation matrices 
are unitary.  Use this to show that any classical 
reversible gate has a corresponding unitary quantum gate.

Cf. the classical case: it is not possible to build up a
Toffoli gate from reversible one- and two-bit gates.

Challenge exercise: Show that the Toffoli gate can be
built up from controlled-not and single-qubit gates.



How to compute classical functions 
on quantum computers

Use the quantum analogue of classical reversible
computation.

The quantum NAND The quantum fanout
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Removing garbage on quantum computers
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Canonical form:    x z x ( )z f x→ ⊕

Example:    x z x parity( )z x→ ⊕

Given an “easy to compute” classical function, there is
a routine procedure we can go through to translate
the classical circuit into a quantum circuit computing
the canonical form.



Example: Deutsch’s problem
{ } { }Given a  computing a function black : 0 box ,1 0,1f →

Our task is to determine wheth constaner  is  ort bala nced?f
 we need to evaClassically boluate (0) and .th (1)f f
 we need only use the black box for Quantumly once!( ) f •
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Putting information in the phase
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Quantum algorithm for Deutsch’s problem

0 0 1→ +
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Quantum parallelism
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Research problem: What 
makes quantum computers
powerful?

 constant  all amplitude in 0 .f ⇒

 balanced  all amplitude in 1 .f ⇒



Universality in the quantum circuit model

Classically, any function f(x) can be computed using just
nand and fanout; we say those operations are universal
for classical computation.
Suppose U is an arbitrary unitary transformation on
n qubits.
Then U can be composed from controlled-not gates
and single-qubit quantum gates.
Just as in the classical case, a counting argument can
be used to show that there are unitaries U that take
exponentially many gates to implement.
Research problem: Explicitly construct a class Un of
unitary operations taking exponentially many gates
to implement.



Summary of the quantum circuit model
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QP: The class of decision problems soluble by a quantum circuit
of polynomial size, with polynomial classical overhead.



Quantum complexity classes
How does QP compare with P?

BQP: The class of decision problems for which there is 
a polynomial quantum circuit which outputs the correct 
answer (“yes” or “no”) with probability at least ¾.

BPP: The analogous classical complexity class.

Research problem: Prove that BQP is strictly larger 
than BPP.

Research problem: What is the relationship of BQP 
to NP?

What is known: BPP BQP PSPACE⊆ ⊆



When will quantum computers be built?



Alternate models for quantum computation
Standard model: prepare a computational basis state, 
then do a sequence of one- and two-qubit unitary gates,
then measure in the computational basis.

Research problem: Find alternate models of quantum
computation.
Research problem: Study the relative power of the
alternate models.  Can we find one that is physically
realistic and more powerful than the standard model?
Research problem: Even if the alternate models
are no more powerful than the standard model, can
we use them to stimulate new approaches to
implementations, to error-correction, to algorithms
(“high-level programming languages”), or to quantum
computational complexity?



Overview: 
Alternate models for quantum computation

Topological quantum computer: One creates pairs of
“quasiparticles” in a lattice, moves those pairs around the
lattice, and then brings the pair together to annihilate. 
This results in a unitary operation being implemented
on the state of the lattice, an operation that depends 
only on the topology of the path traversed by the 
quasiparticles!

Quantum computation via entanglement and single-
qubit measurements: One first creates a particular,
fixed entangled state of a large lattice of qubits.  The
computation is then performed by doing a sequence of
single-qubit measurements.



Overview: 
Alternate models for quantum computation

Quantum computation as equation-solving: It can be
shown that quantum computation is actually equivalent
to counting the number of solutions to certain sets
of quadratic equations (modulo 8)!

Quantum computation via measurement alone:
A quantum computation can be done simply by a 
sequence of two-qubit measurements.  (No unitary
dynamics required, except quantum memory!)

Further reading on the last model:

D. W. Leung, http://xxx.lanl.gov/abs/quant-ph/0111122



Can we build a programmable quantum computer?
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Challenge exercise: Prove the no-programming theorem.



A stochastic programmable quantum computer
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Why it works
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How to do single-qubit gates 
using measurements alone
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Coping with failure

Action was ,  - known unitary erra .orjkU j kσ σ ≠
†Now attempt to apply the gate ( )  to the 

qubit, using a similar procedure based on 
measurements alone.
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How to do the controlled-not

Bell

Measurement
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Discussion
Measurement is now recognized as a powerful tool in many
schemes for the implementation of quantum computation.

Research problem: Is there a practical variant of 
this scheme?

Research problem: What sets of measurement are 
sufficient to do universal quantum computation?

Research problem: Later in the week I will talk 
about attempts to quantify the “power” of different 
entangled states.  Can a similar quantitative theory 
of the power of quantum measurements be 
developed?
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