Introduction to Real-Time Communications

Real-Time and Embedded Systems (M) Lecture 15

Lecture Outline

- Modelling real-time communications
 - Traffic and network models
 - Properties of networks
 - Throughput, delay and jitter
 - Clock skew
 - Congestion and loss
- Examples
 - Controller area networks
 - Ethernet

Material corresponds to chapter 11 of Liu's book

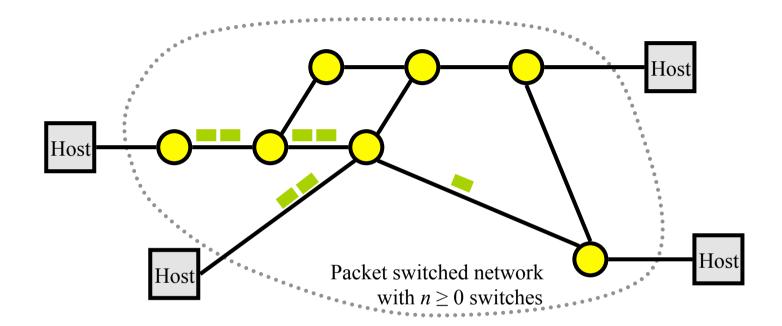
Real Time Communications

- In most data communications, important that data arrives reliably
 - Would like it to be fast, but prefer reliable
 - E.g. web, email, p2p, etc.
 - Often characterised as *elastic* applications
- In real time communications it is important that the message arrives in a timely manner
 - Timeliness may be *more* important than reliability
 - Messages may have priority
 - Examples:
 - A "drive by wire" system in a car
 - Packet voice and telephony applications


Modelling Real Time Traffic

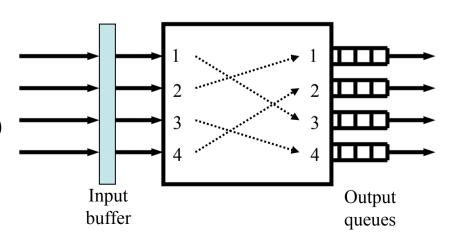
- Assume a packet-based network
 - Real-time traffic on circuit switched network trivial after connection setup
- Traffic falls into two categories:
 - Synchronous periodic flows
 - Produced and consumed in a continuous basis, according to some schedule
 - Generally require some performance guarantee
 - Can be generated by periodic tasks
 - Fixed rate ("isochronous") flows (e.g. sensor data, speech)
 - Characterise by inter-packet spacing, message length, reception deadline
 - Can be generated by sporadic tasks
 - Variable rate flows (e.g. MPEG-2 video, control traffic)
 - Characterise by average throughput + maximum burst size
 - Aperiodic (asynchronous) messages
 - No deadline, best effort delivery, but want to keep delays small
 - Characterise by average delivery time

Modelling Sources of Timing Variation


- Ideally the network delivers messages to receiver with no delay, preserving timing
- In reality there is:
 - Queuing delay at sender
 - Network not always ready to accept a packet when it becomes available; data may be queued if produced faster than the network can deliver it
 - Queuing delay at receiver
 - Application not always ready to accept packets arriving from network
 - Network may deliver data in bursts
 - Queuing delay in the network
 - Due to cross-traffic or bottleneck links
 - Network transit time
 - Fixed propagation delay

Model of Hosts

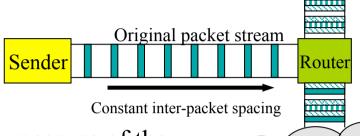
All rights reserved.


Model of Packet Switched Networks

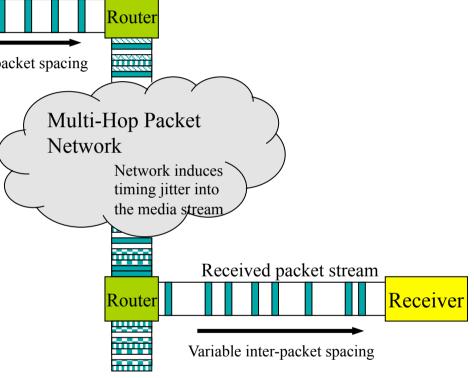
Links have constant propagation delay

Switches queue packets for transmission if output link busy (additional variable delay)

Choice of *job scheduling algorithm* on the output link is critical for real time traffic

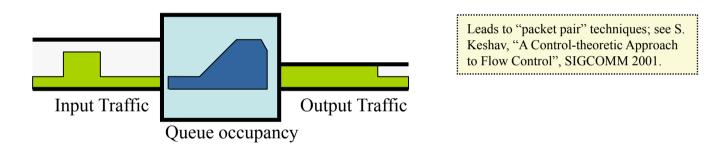


Copyright © 2006 University of Gia All rights reserved.


Performance Metrics and Constraints

- From these models, derive performance metrics:
 - Throughput and delay
 - Jitter and buffer requirements
 - Miss rates, when jitter causes a deadline to be missed
 - Packet loss and invalid rates
- Characterise traffic and network according to metrics to schedule communications
 - Need to meet application timing constraints

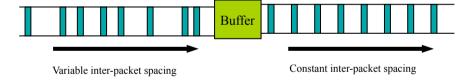
Throughput, Delay and Jitter


- The *throughput* is a measure of the number of packets that the network can deliver per unit time
- The *delay* (latency) is time taken to deliver a packet
 - Fixed minimum propagation delay due to speed of light
 - Variation due to queuing on path
- The *jitter* is variance of the delay

- Throughput, delay and jitter vary according to router scheduling algorithms
 - Possible to derive bounds for delay/jitter in some cases
 - Lecture 16

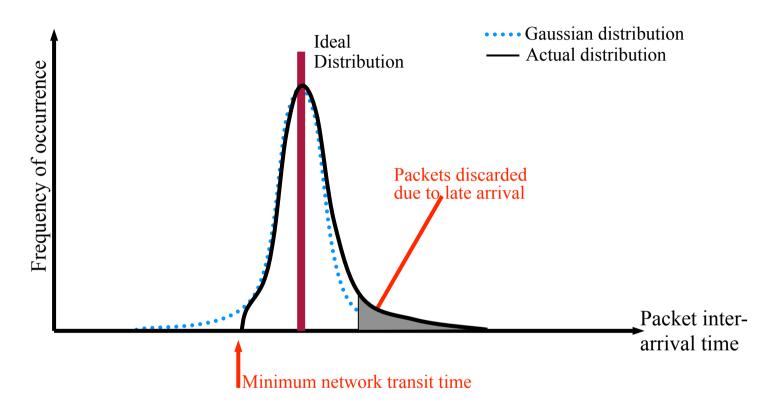
Throughput and Delay

- Clear that throughput and delay depend on the capacity of each link, and on the queuing delay at each hop
 - Queuing delay will vary based on the traffic
 - Throughput variation may cause queues to build up at bottleneck links


- Cross traffic will also affect queue occupancy
- Throughput may be limited by an intermediate link, which cannot be directly observed by sender and receiver
 - How to tell if the throughput is limited by the network, or by other traffic using the network?
 - Cannot know if capacity available, unless requirements signalled in advance

Throughput and Delay

- Delay matters for some applications, but not others
 - Interactive applications need low delay
 - Telephony, video conferencing and games
 - Control applications often need low delay in the sensor ⇒ controller ⇒ actuator loop
 - Limiting factor often propagation delay; queuing delay an important and controllable factor
 - Non-interactive applications are less delay sensitive
 - Video on demand, TV and radio distribution
- Throughput typically very important
 - Need to sustain a certain rate, to support the application
 - May wish to use scheduling algorithms to prioritise which packets are to be sent, and guarantee throughput


Jitter and Buffering Requirements

- Delay *jitter* is the variation in delay across a network path
 - For isochronous traffic, often talk about absolute value and standard deviation of packet inter-arrival time
 - Assumes we can characterise the jitter see examples later
- Jitter imposes requirement for receiver buffering
 - Isochronous applications must be fed data correctly spaced

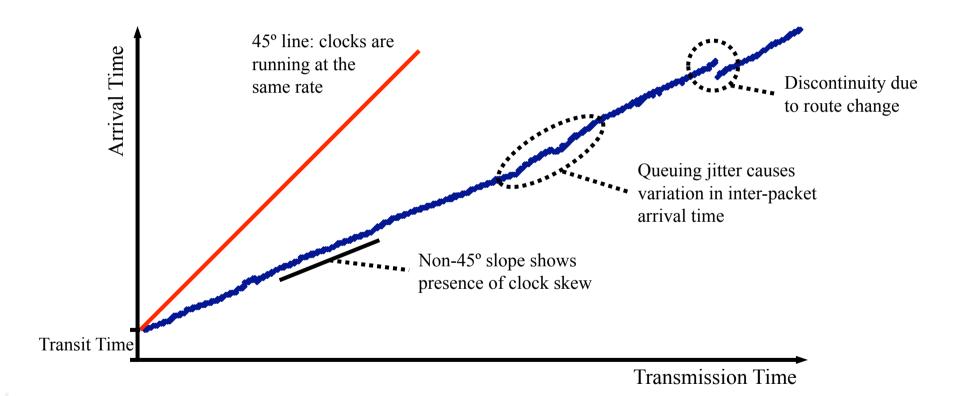
- Need buffer to smooth and reconstruct timing
- Larger jitter implies more buffering is needed
- Packet scheduling algorithms can bound jitter

Jitter and Miss Rate

- Want to characterise jitter distribution
 - Hope for something approximating a Gaussian distribution \Rightarrow simple statistics to derive the *miss rate*
 - Fraction of packets lost due to jitter
 - Actual distribution will be more complex

Clock Skew and Synchronisation

- Sender and receiver are typically widely distributed
 - Clocks are often free-running and unsynchronised
 - Results in a steady increase or decrease in the inter-packet spacing observed at the receiver
 - Problematic for isochronous applications:
 - Queues can build up in the receiver or in intermediate systems
 - Eventually buffer space will be exceeded
 - Some data will be dropped
 - Queues can empty in the receiver
 - Initial queue created, to buffer for jitter
 - Sender is slightly slower than receiver
 - Queue slowly empties, eventually there is no data to process
 - How to resolve?
 - May be able to tune clock frequency to match
 - May have to discard/generate data to compensate
 - Application knowledge needed

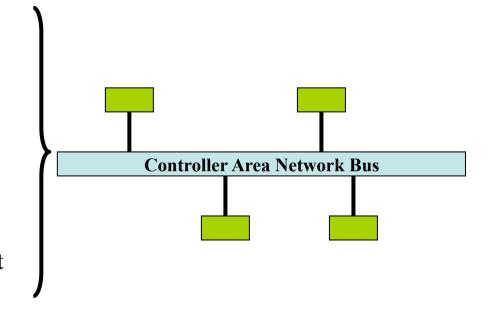

Congestion and Loss

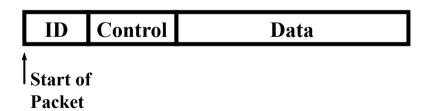
- Assumed that no traffic is ever blocked or lost because there is no space in the ready queue when it becomes available for execution
 - Usually valid for operating systems and LAN communication
 - Not valid for many wide-area communication systems
 - Too expensive to provision buffering in all routers
 - Provision for typical load plus a safety factor, not worst case
 - Queues may overflow, hence packets are dropped
 - The *loss rate* gives the fraction of packets that are dropped
 - Patterns of loss may also be important: affected by packet scheduling algorithms
- Packets may also be dropped due to corruption or other errors
 - Not discussed further, since not affected by scheduling

Congestion and Loss

- Implication: not only may we cause overloads and congestion, so might the cross traffic
 - Temporary congestion will cause queuing delays
 - Persistent congestion will result in queues that stay full, hence packets may be lost
- How to avoid this?
 - Control the amount of traffic at a bottleneck link
 - Applications need to signal their requirements
 - Network needs to perform admission control
 - Or prioritise traffic, to give preference to important flows
 - What scheduling algorithm to use?
 - May allow real-time traffic, but discard best effort data traffic when the network is overloaded

Visualising Disruption to Packet Timing




Characterisation of Networks

- Real-world performance constraints force us to characterise the timing behaviour of a network
 - Prove/demonstrate that throughput, latency, and jitter are within appropriate bounds for the application
- Some network technologies allow this, others do not
 - Examples: CAN, Ethernet

Example: Controller Area Networks

- Shared serial bus, send at 1Mbps, maximum bus length is 50 metres
- All stations hear transmissions within a fraction of a bit time
- Connections wired together as a logical AND function
 - Stations only see a 1 bit on the bus if all transmitters are sending a 1 bit
- Packets start with an ID, then control and data
- Slotted CSMA/CD: wait until start of slot, then begin to send with the ID field, but:
 - Stop if you hear a 0 on the bus when you are sending a 1
 - Packet with smallest ID is sent first;
 priority network protocol

Example: Controller Area Networks

- Widely used in automotive systems, for example
- Allows communications to be scheduled using the fixed priority scheduling algorithms we have discussed
 - Look at the communications patterns, assign deadlines to each message exchange
 - Use deadline monotonic scheduling to assign priorities
 - 11 bit ID field, implies 2048 priority levels
 - Treat sporadic messages as periodic messages, according to worse case assumptions
 - Waste capacity, but ensures schedulability
 - The CAN will not interrupt a message once it has started
 - Low utilisation, but can prove that all messages will be delivered before their deadlines and calculate jitter
 - Standard schedulability analysis, as for any set of jobs

Example: Ethernet

- Recall that Ethernet uses CSMA/CD with exponential back off
 - Try to transmit, listening for collision
 - If a collision occurs, stop sending, wait before retry
 - Random binary exponential back-off
 - After *i* collisions back-off by up to 2*i* slots, randomly chosen
- Potentially unbounded delay on busy network
 - Cannot schedule transmissions to avoid collision
- No prioritisation of messages
- Implications:
 - Cannot easily reason about timing properties
 - Difficult to schedule messages to ensure timely delivery

Summary

- What is real time communication
- Factors that affect real time communication
 - Throughput, delay and jitter
 - Clock skew
 - Congestion and loss
- Examples of networks and their timing properties
 - Some networks provide timing guarantees, others do not