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� what do we really know about earliest deadline scheduling,� what is known about uni-processor real-time scheduling problems,� what is known about multiprocessing real-time scheduling problems,� what anomalous behavior can occur and can it be avoided,� where is the boundary between polynomial and NP-hard scheduling problems,� what task set characteristics cause NP-hardness,� what type of bounds analysis is useful for real-time systems,� what is the impact of overloads on the scheduling results,� how does the metric used in the theory impact the usefulness of the result in a real-timecomputing system, and� what di�erent results exist for static and dynamic scheduling?There are so many dimensions to the scheduling problem that there is no accepted tax-onomy. In this paper we divide the scheduling theory between uni-processor (section 2) andmultiprocessor (section 3) results. In the uni-processor section we begin with independenttasks, then consider precedence constraints, shared resources, and overload. In the multipro-cessor case, since most results address precedence and shared resources together, we divide thework between static and dynamic algorithms.2 PreliminariesBefore presenting the major scheduling results a few basic concepts must be clearly understood.Here we discuss the di�erences between static, dynamic, o�-line and on-line scheduling as wellas various metrics and their implications. NP-complete and NP-hard, terms used throughoutthe paper, are de�ned.2.1 Static versus Dynamic SchedulingMost classical scheduling theory deals with static scheduling. Static scheduling refers to thefact that the scheduling algorithm has complete knowledge regarding the task set and itsconstraints such as deadlines, computation times, precedence constraints, and future releasetimes. This set of assumptions is realistic for many real-time systems. For example, real-timecontrol of a simple laboratory experiment or a simple process control application might have a�xed set of sensors and actuators, and a well de�ned environment and processing requirements.In these types of real-time systems, the static scheduling algorithm operates on this set of tasksand produces a single schedule that is �xed for all time. Sometimes there is confusion regardingfuture release times. If all future release times are known when the algorithm is developingthe schedule then it is still a static algorithm. 2



In contrast, a dynamic scheduling algorithm (in the context of this paper) has completeknowledge of the currently active set of tasks, but new arrivals may occur in the future, notknown to the algorithm at the time it is scheduling the current set. The schedule thereforechanges over time. Dynamic scheduling is required for real-time systems such as teams ofrobots cleaning up a chemical spill or in military command and control applications. As wewill see in this paper very few theoretical results are known about real-time dynamic schedulingalgorithms.O�-line scheduling is often equated to static scheduling, but this is wrong. In buildingany real-time system, o�-line scheduling (analysis) should always be done regardless of whetherthe �nal runtime algorithm is static or dynamic. In many real-time systems, the designerscan identify the maximum set of tasks with their worst case assumptions and apply a staticscheduling algorithm to produce a static schedule. This schedule is then �xed and used on-linewith well understood properties such as, given that all the assumptions remain true, all taskswill meet the deadlines. In other cases, the o�-line analysis might produce a static set ofpriorities to use at run time. The schedule itself is not �xed, but the priorities that drive theschedule are �xed. This is common in the rate monotonic approach (to be discussed later).If the real-time system is operating in a more dynamic environment, then it is not feasibleto meet the assumptions of static scheduling (i.e., everything is known a priori). In this case analgorithm is chosen and analyzed o�-line for the expected dynamic environmental conditions.Usually, less precise statements about the overall performance can be made. On-line, this samedynamic algorithm executes.Generally, a scheduling algorithm (possibly with some modi�cations) can be applied tostatic scheduling or dynamic scheduling and used o�-line or on-line. The important di�erenceis what is known about the performance of the algorithm in each of these cases. As an example,consider earliest deadline �rst (EDF) scheduling. When applied to static scheduling we knowthat it is optimal in many situations (to be enumerated below), but when applied to dynamicscheduling on multiprocessors it is not optimal, in fact, it is known that no algorithm can beoptimal.2.2 MetricsClassical scheduling theory typically uses metrics such as minimizing the sum of completiontimes, minimizing the weighted sum of completion times, minimizing schedule length, minimiz-ing the number of processors required, or minimizing the maximum lateness. In most cases,deadlines are not even considered in these results. When deadlines are considered, they areusually added as constraints, where, for example, one creates a minimum schedule length, sub-ject to the constraint that all tasks must meet their respective deadline. If one or more tasksmiss their deadlines, then there is no feasible solution. Which of these classical metrics (wheredeadlines are not included as constraints) are of most interest to real-time systems designers?The sum of completion times is generally not of interest because there is no direct assessmentof timing properties (deadlines or periods). However, the weighted sum is very important whentasks have di�erent values that they impart to the system upon completion. Using value isoften overlooked in many real-time systems where the focus is simply on deadlines and not acombination of value and deadline. Minimizing schedule length has secondary importance inpossibly helping minimize the resources required for a system, but does not directly address3



the fact that individual tasks have deadlines. The same is true for minimizing the number ofprocessors required. Minimizing the maximum lateness metric can be useful at design timewhere resources can be continually added until the maximum lateness is less than or equal tozero. In this case no tasks miss their deadlines. On the other hand, the metric is not alwaysuseful because minimizing the maximum lateness doesn't necessarily prevent one, many, oreven ALL tasks from missing their deadlines. See Figure 1.
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deadlinesFigure 1: Minimizing Maximum Lateness ExampleRather than these above mentioned metrics much real-time computing work minimizesthe number of tasks that miss deadlines or looks for optimal algorithms de�ned in the followingmanner: An optimal scheduling algorithm is one which may fail to meet a deadline only if noother scheduling algorithm can. In this paper, all of the above metrics will be mentioned,either because they are directly applicable to real-time systems, or to show where even thougha nice theoretical result exists, there is limited applicability to real-time systems.Related to metrics is the complexity of the various scheduling problems themselves. Aswe shall see, many scheduling results are NP-complete or NP-hard. NP is the class of alldecision problems that can be solved in polynomial time by a nondeterministic machine. Arecognition problem R is NP-complete if R 2 NP and all other problems inNP are polynomialtransformable to R. A recognition or optimization problem R is NP-hard if all problems inNP are polynomial transformable to R, but we can't show that R 2 NP .3 Uni-processor SystemsIn general we follow the notation of [18], in which the problem de�nition has the form � j � j ,where � indicates the machine environment (in this section of the paper � = 1, indicatinga uni-processor machine), � indicates the job characteristics (preemptable, nonpreemptable,independent, precedence constrained, deadline, etc.) and  indicates the optimality criterion(maximum lateness, total tardiness, etc.). Note that the optimality criterion depends on themetric chosen, which strongly relies on the system objectives and the task model.4



3.1 Preemption vs NonPreemption: Jackson's RuleSuppose there are n independent jobs (the words job, process and task will be used inter-changeably just as they are throughout the scheduling literature), with each job j having aprocessing time pj and a due date dj. For any given sequence of scheduling, each job will have ade�ned completion time Cj too. Let us de�ne the lateness of a job j as Lj = Cj � dj. Supposewe want to minimize the maximum lateness assuming the jobs are executed nonpreemptively,that is we want to solve the problem 1 j nopmtn j Lmaxwhere \1" stands for single machine, \nopmtn" stands for nonpreemption and the objectivefunction to minimize is Lmax = maxj fLjg:A very simple solution to this problem, the earliest due date (EDD) algorithm is as follows:Theorem 3.1 (Jackson's Rule [16]). Any sequence is optimal that puts the jobs in order ofnondecreasing due dates. 2The proof of the theorem can be given by a simple interchange argument [18], butpresenting that argument here is beyond the scope of this paper. At �rst, this result may notseem too useful to a real-time systems designer because we often require that no task miss itsdeadline. But, since this is a static scheduling algorithm and if the maximum lateness is greaterthan zero, then the designer knows that he must increase the computing power of his systemto meet the requirements of missing no deadlines. Further, as we shall see, EDD is optimal inmany other situations also. Note that since all tasks are known and ready to execute at timezero, preemption would not improve the situation.If our real-time system requires a more sophisticated programming model, one of the�rst extensions to consider is the introduction of release times. We say that a job j has releasetime rj if its execution cannot start before time rj. Unfortunately, the problem above extendedwith release times, that is 1 j nopmtn; rj j Lmaxis NP-hard [19].In this case we obtain a great bene�t if we permit jobs to be preempted at any instant.In fact, the problem 1 j pmtn; rj j Lmaxis easy, that is, an algorithm for its solution exists and has polynomial complexity. Again thealgorithm is based on the Jackson's rule, slightly modi�ed in order to take the release timesinto account:Theorem 3.2 Any sequence that at any instant schedules the job with the earliest due dateamong all the eligible jobs (i.e., those whose release time is less then or equal to the currenttime) is optimal with respect to minimizing maximum lateness. 25



The result again can be easily proven by an interchange argument. The proof obtainedin this way is very similar to the \time slice swapping" technique used in [9] and [24] to showthe optimality of the earliest deadline �rst (EDF from now on) and the least laxity �rst (LLF)algorithms, respectively.One implication of these results is that when practical considerations do not preventus from using it, preemption usually gives greater bene�t than nonpreemption in terms ofscheduling complexity. Unfortunately, when we deal with shared resources in real-time systemswe have to address critical sections and one technique is to create nonpreemptable code; thisagain creates an NP-hard problem.Another implication of these theorems is that the minimization of maximum latenessimplies optimality even when all deadlines must be met, because the maximum lateness canbe required to be less than or equal to zero. In fact, the very well-known paper by Liuand Layland [21] focussed on this aspect of EDF scheduling for a set of independent periodicprocesses, showing that a full processor utilization is always achievable and giving a very simplenecessary and su�cient condition for the schedulability of the tasks:Xj pjTj � 1where Tj is the period of the task j.The EDF algorithm has also been shown to be optimal under various stochastic condi-tions. All of these results imply that EDF works well under many di�erent situations. Recently,variations of EDF are being used in multimedia applications, robotics, and real-time databases.Note, however, that in none of the above classical results for EDF is precedence constraints,shared resources, or overloads taken into account. We address these aspects in subsequentsections.Another very important and common area for real-time scheduling is the scheduling ofperiodic tasks. Here the rate monotonic algorithm is often used. This algorithm assigns toeach task a static priority inversely proportional to its period, i.e., tasks with the shortestperiods get the highest priority. For a �xed set of independent periodic tasks with deadlinesthe same as the periods, we know:Theorem 3.3 (Liu and Layland [21]) A set of n independent periodic jobs can be scheduledby the rate monotonic policy if Pni=1 pi=Ti � n � (21=n � 1) where Ti and pi are the period andworst case execution time, respectively.For large n we obtain the utilization bound of 69% meaning that as long as the CPUutilization is less than 69% all tasks will make their deadlines. This is often referred to as theschedulability test. If deadlines of periodic tasks can be less than the period the above rule isno longer optimal. Rather we must use a deadline monotonic policy [20] where the periodicprocess with the shortest deadline is assigned the highest priority. This scheme is optimal inthe sense that if any static priority scheme can schedule this set of periodic processes then thedeadline monotonic algorithm can. Note that deadline monotonic is not the same as pure EDFscheduling because tasks may have di�erent periods and the assigned priorities are �xed. Therate monotonic algorithm has been extended in many ways the most important of which deals6



with shared resources (see Section 3.3), and schedulability tests have been formulated for thedeadline monotonic algorithm [1].The rate monotonic scheduling algorithm has been chosen for the Space Station FreedomProject, the FAA Advanced Automation System (AAS), and has inuenced the speci�cationof the IEEE Futurebus+. The DoD's 1991 Software Technology Strategy says that the RateMonotonic Scheduling is a \major payo�" and \system designers can use this theory to predictwhether task deadlines will be met long before the costly implementation phase of a projectbegins." In 1992 the Acting Deputy Administrator of NASA stated, \Through the developmentof Rate Monotonic Scheduling, we now have a system that will allow (Space Station) Freedom'scomputers to budget their time, to choose between a variety of tasks, and decide not only whichone to do �rst but how much time to spend in the process." Rate monotonic is also useful forsimple applications, such as the real-time control of a simple experiment that might contain20 sensors whose data must be processed periodically, or a chemical plant that has a largenumber of periodic tasks and a few alarms. These alarms can be treated as periodic taskswhose minimum interarrival time is equal to its period, and then static scheduling, using therate monotonic algorithm, can be applied.3.2 Precedence ConstraintsIn many systems of practical interest we do not expect tasks to be independent, but rathercooperate to achieve the goal of the application. Cooperation among tasks is achieved byvarious types of communication semantics. Depending on the chosen semantics, applicationtasks experience precedence constraints or blocking, or both, while accessing shared resources.A precedence relation among tasks makes the scheduling problem more complex. Since not alltasks are ready to be scheduled at the same time, the simple EDF rule is no longer optimal.In the following, precedence constraints will be expressed with the notation i ! j, orwith their associated digraph G(V,E) where V is the set of tasks and E the set of edges, anedge connecting tasks i,j if task i precedes task j.The simple scheduling problem of a set of tasks with no-preemption, identical arrivaltime and a precedence relation among them, described as,1 j prec; nopmtn j Lmaxwas solved by Lawler [17] with an EDF{like algorithm that works backwards, starting fromthe leaf tasks in the precedence graph.The algorithm works as follows: the scheduling list is built starting from the bottom inreverse topological order, and adding to the list on each step, the task having the minimumvalue for the chosen metric and whose successors have been scheduled. Lawler's algorithm isoptimal, and runs in O(n2).Lawler's algorithm gives a solution for tasks having identical start time. Unfortunately,this is not su�cient for all systems of practical interest where periodic tasks or dynamicallyarising tasks do not have a common start time. The problem of non-preemptive schedulingof jobs with di�erent release times and general precedence constraints is not a simple one, infact, the problem 1 j nopmtn; ri j Lmax7



and the corresponding 1 j prec; nopmtn; ri j Lmaxwere proven to be NP-hard by Lenstra [19].The NP hardness of the general precedence constrained problem is a major obstacle fornon-preemptive scheduling, in spite of the fact that optimal results or polynomial algorithmsexist for similar problems, where some of the general assumptions are constrained. For example,a polynomial algorithm was found for unit computation time tasks and arbitrary precedenceconstraints.The most interesting results related to precedence constraints are those obtained workingon sub-classes of the general precedence relation. Polynomial algorithms have been found forprecedence relations in the form of intrees, that is when every task has no more than onepredecessor, or outtrees, when tasks have no more than one successor, or when the precedencerelation is a series-parallel graph. It is easy to show how the intree and outtree cases areincluded in the more general class of series-parallel graphs. The series-parallel graph is themost interesting subset of the general precedence relation for which optimality results havebeen found. A series-parallel graph is de�ned recursively this way:� G(fj,g,0) is a series - parallel graph� if G1(V1; A1) and G2(V2; A2) are series-parallel graphs thanG1 ! G2 = (V1 [ V2; A1 [ A2 [ (V1 � V2)) andG1 jj G2 = (V1 [ V2; A1 [A2) are series - parallel graphsor alternatively, a graph is a series-parallel graph only if its transitive closure does not containthe Z graph. A Z graph is a graph that contains as a subgraph 4 nodes f i,j,k,l g with onlythe following edges i! j; i! k; l! k:Figure 2 graphically depicts intrees and outtrees (series-parallel graphs) and a Z graph(not a series parallel graph). E�cient solutions exist for series-parallel graphs, but they do notexist for a Z graph. Unfortunately, Z graphs arise in practice. Details on these results follow.Theorem 3.4 (Lawler [18]) Given any set of tasks related by a series-parallel precedence graphan optimal solution exists for every cost function that admits a string interchange relation. 2Formally, a cost function has a string interchange relation if, given two strings of jobs �and � and a quasi total order � among them, the following relation holds:f(�) � f(�)) f(a::��::b)� f(a::��::b)Intuitively, this formula means that a cost function admits a string interchange relationwhen a lower value is obtained when individual tasks of lower value are scheduled �rst. Thetheorem says that if we are interested in minimizing or maximizing a cost function that admits a8



Intree Outtree Z-graphFigure 2: Precedence Relationsstring interchange relation (e.g., minimizing lateness), it is possible to �nd an optimal schedulein polynomial time for every set of tasks related by a series-parallel precedence graph.The algorithm which solves this problem works with a decomposition tree, that is thetree that shows how sub-graphs are connected by the series or parallel relation to form theglobal precedence graph. The decomposition tree can be found in O(j N j + j A j) where N isthe number of nodes and A the number of edges. The algorithm starts from the tasks havingno successor in the decomposition tree, and, for every node, calculates a string sequence bycombining the strings of jobs coming from the sons. The �nal node, representing the originalgraph, is reached when the whole optimal scheduling list has been computed.A common feature of this algorithm, as is also found in other similar algorithms from theliterature dealing with intrees or outtrees, is that they work on the precedence graph (or onthe related decomposition tree), starting from jobs with no successors or no predecessors, andbuild a sequence of sub-optimal schedules. This technique can be useful in various schedulingheuristics.To what extent can Lawler's optimal algorithm for series-parallel graphs, and even otheroptimal algorithms which work only on intrees or outtrees, help us in real-time systems?Unfortunately, some high level communication semantics found in programming languages,give rise to precedence constrained jobs with Z graphs, meaning that these optimal algorithmsdon't apply and heuristics need to be used. One example of how a Z graph arises is a simplepair of tasks linked by an asynchronous send with synchronous receive. See Figure 3. Notethat remote procedure calls (RPC) do not give rise to Z graphs.If preemption is allowed, classical results go further in providing solutions for generalprecedence constraints. Preemption reduces the complexity of the scheduling problem of prece-dence related tasks with di�erent arrival times. The problem is, in fact, solvable in O(n2) byBaker's algorithm [2] 9
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Figure 3: Program Example That Gives Rise to Z Graph1 j prec; pmtn; ri j Lmax:Baker's procedure is recursive and because of its computational complexity it seemssuited for o�-line scheduling. Due to the di�culty of describing the algorithm and spacelimitations, we do not describe the algorithm here. However, an important feature of thealgorithm is that the number of preemptions is limited to n-1 where n is the number of jobs,thus making the preemption overhead bounded. In all practical situations the scheduling andpreemption overheads must be bounded and taken into account. We rarely see this issueaddressed in classical scheduling theory.In the above solutions, a scheduling list is explicitly created. Another technique is toencode the precedence relations into the parameters used by the scheduling algorithm, forexample, into deadlines and release times.Blazewicz [4] shows how to adjust deadlines so that precedence constraints are encodedin the deadlines a priori, and at run time you simply use EDF scheduling. His result comesfrom the fact that task deadlines depend on their deadlines and successors' deadlines, whiletask start times depend on their own start time and predecessors' start times. The theoremassumes no shared resources among tasks.Theorem 3.5 (Blazewicz [4]) EDF is optimal for tasks that have a general precedence relationand di�erent release dates if deadlines and start times are revised according to the followingformulas: d�i = minfdi;min(d�j � pj ;Si ! Sj)gstarting from the tasks having no successor and processing on every step those tasks whosesuccessors have been processedr�i = maxfri;max(r�j + pj;Sj ! Si)g10



starting from the tasks having no predecessor. 2This result allows us to transform a set of dependent tasks into a set of independent onesobtaining an equivalent problem under the EDF policy. The optimality of the technique of therevised deadlines and arrival dates has been used in both on-line [7] and o�-line algorithms[24]. Unfortunately, the optimality of this technique is again lost if tasks with precedenceconstraints also share resources in an exclusive way. Moreover, if arbitrary protocols areused to access shared resources, the revision of tasks' deadlines and release times is no longersu�cient to guarantee the correct ordering of jobs without additional constraints. The generalproblem of scheduling a set of tasks with precedence constraints and arbitrary resource conictsis NP-hard.Some o�-line algorithms face the NP hardness of the general problem trying to �ndacceptable solutions by means of heuristics, branch and bound techniques and so on. Anexample is given by the algorithm by Xu and Parnas [32] where on every step a sub-optimalschedule is obtained. There are even examples of on-line systems driven by heuristics as theSpring system [26] where the scheduling list is built on-line.3.3 Shared ResourcesShared resources are commonly used in multitasking applications. While in general purposesystems this is a well-known problem solved, for example, with mutual exclusion primitives,in real-time systems a straightforward application of this solution does not hold. De�ning arun-time scheduler as totally on-line if it has no knowledge about the future arrival times ofthe tasks, the following has been proven:Theorem 3.6 (Mok [24]). When there are mutual exclusion constraints, it is impossible to�nd a totally on-line optimal run-time scheduler. 2The proof is simply given by an adversary argument. Furthermore, the same authorshowed a much more negative result:Theorem 3.7 (Mok [24]). The problem of deciding whether it is possible to schedule a set ofperiodic processes which use semaphores only to enforce mutual exclusion is NP-hard. 2A transformation of the 3-partition problem to this scheduling problem is shown to provethe theorem.In Mok's opinion \the reason for the NP-hardness of the above scheduling problem liesin the possibility that there are mutually exclusive scheduling blocks which have di�erentcomputation times." A con�rmation of this point of view is that the problem of minimizingthe maximum lateness of n independent unit-time jobs with arbitrary release times, that is,1 j nopmtn; rj; pj = 1 j Lmax;is easy [18]. Moreover, if we add precedence constraints and we want to minimize the maximumcompletion time (makespan), that is, we want to solve1 j nopmtn; prec; rj; pj = 1 j Cmax;11



the problem is still easy [11]. The algorithm that solves it makes use of forbidden regions,intervals of time during which no task can start if the schedule is to be feasible. The idea isthat because of the nonpreemption, scheduling a task at a certain point in time could forcesome other late task to miss its deadline.At this point several choices are possible. One of them, followed by Mok, is to enforce theuse of mutually exclusive scheduling blocks having the same computation time, and another,followed, for example, by Sha et al. [27] and Baker [2], is to e�ciently �nd a suboptimalsolution with a clever allocation policy, guaranteeing at the same time a minimum level ofperformance.The former solution is called Kernelized Monitor. The key idea is to assign the processorin time quantums of length q such thatq � maxi fl(CSi)g;where l(CSi) is the length of the i-th critical section. In other words the grain of the system ismade coarser. Furthermore, the ready times and the deadlines of the tasks can be previouslymodi�ed according to some partial order on the tasks. Adjusting the EDF scheduler with thetechnique of the forbidden regions mentioned above, the following theorem can be proven:Theorem 3.8 (Mok [24]). If a feasible schedule exists for an instance of the process modelwith precedence constraints and critical sections, then the kernelized monitor scheduler can beused to produce a feasible schedule. 2In [27] Sha et al. introduce the Priority Ceiling Protocol (PCP), an allocation policy forshared resources which works with a Rate Monotonic scheduler. Successively Chen and Lin [5]extend the utilization of the protocol to an EDF scheduler.The main goal of this, as other similar protocols, is to bound the usually uncontrolledpriority inversion, a situation in which a higher priority job is blocked by lower priority jobsfor an inde�nite period of time (recall that a block can occur if a job tries to enter a criticalsection already locked by some other job). Finding a bound to priority inversion allows toevaluate the worst case blocking times eventually experienced by the jobs, so that they canbe accounted for in the schedulability guaranteeing formulas. In other words this means toevaluate the worst case loss of performance.The key ideas behind the PCP is to prevent multiple priority inversions by means of earlyblocking of tasks that could cause priority inversion, and to minimize as much as possible thelength of the same priority inversion allowing a temporary rise of the priority of the blockingtask. This is done in the following way: de�ne the ceiling of a critical section as the priorityof the highest priority task that currently locks or could lock the critical section, and allowthe locking of a critical section only if the priority of the requesting task is higher than theceiling of all critical sections currently locked. In case of blocking, the task that holds the lockinherits the priority of the requesting task until it leaves the critical section.The following properties have been shown:� A job can be blocked at most once before it enters its �rst critical section.� The PCP prevents the occurrence of deadlocks.12



Of course, the former property is used to evaluate the worst case blocking times of thejobs. In [2] Baker describes a similar protocol, the Stack Resource Policy (SRP), that han-dles a more general situation in which multiunit resources, both static and dynamic priorityschemes, and sharing of runtime stacks are all allowed. The protocol relies on the followingtwo conditions:� To prevent deadlocks, a job should not be permitted to start until the resources currentlyavailable are su�cient to meet its maximum requirements.� To prevent multiple priority inversion, a job should not be permitted to start until theresources currently available are su�cient to meet the maximum requirement of anysingle job that might preempt it.The key idea behind this protocol is that when a job needs a resource not available, it isblocked at the time it attempts to preempt, rather than later, when it actually may need theshared resource. The main advantages of this earlier blocking are to save unnecessary contextswitches and the possibility of a simple and e�cient implementation of the SRP by means ofa stack.In summary, dealing with shared resources in a real-time system is of utmost importance.The classical results given in this section provide a good means for handling resources in a uni-processor. Many researchers feel that these techniques do not work well in multiprocessors norin distributed systems. For such systems shared resources are typically addressed by on-lineplanning algorithms [26, 28, 33], or by static schedules developed with o�-line heuristics. Bothof these alternative approaches avoid blocking over shared resources by scheduling competingtasks at di�erent points in time.3.4 Overload and ValueEDF and LLF algorithms have been shown to be optimal with respect to di�erent metrics.However, in overload conditions, these algorithms perform very poorly. Experiments carriedout by Locke [22] and others have shown that both EDF and LLF rapidly degrade theirperformance during overload intervals. This is due to the fact that such algorithms give thehighest priority to those processes that are close to missing their deadlines.A typical phenomenon that may happen with EDF when the system is overloaded is the\domino e�ect," since the �rst task that misses its deadline may cause all subsequent tasksto miss their deadlines. In such a situation, EDF does not provide any type of guarantee onwhich tasks will meet their timing constraints. This is a very undesirable behavior in practicalsystems, since in real-world applications intermittent overloads may occur due to exceptionalsituations, such as modi�cations in the environment, arrival of a burst of tasks, or cascades ofsystem failures. As a real world example, this situation could cause a exible manufacturingapplication to produce no completed products by their deadlines.In order to gain control over the tardy tasks in overload conditions, a value is usuallyassociated with each task, reecting the importance of that task within the set. When dealingwith task sets with values, tasks can be scheduled by the Smith' rule.13



Theorem 3.9 (Smith's rule [29]) Finding an optimal schedule for1 jjXwjCjis given by any sequence that puts jobs in order of non decreasing ratios �j = pj=wj.Smith's rule resembles the common shortest processing time �rst (SPT) rule and isequivalent to it when all tasks have equal weights. However, it is not su�cient to solve theproblem of scheduling with general precedence constraints. The problems1 j prec jXwjCj1 j dj jXwjCjturn out to be NP complete [19] and the same is true even for the simpler ones1 j prec jXCj1 j prec; pj = 1 jXwjCj:Interesting solutions had been found for particular kind of precedence relations, in fact, optimalpolynomial algorithm had been found for the problems1 j chain jXCj1 j series � parallel jXCj1 j dj jXCj:Unfortunately, in real-time systems the precedence constraints imposed on tasks are oftenmore general. A heuristic was proposed in the Spring project, where deadline and cost drivenalgorithms are combined together with rules to dynamically revise values and deadlines inaccordance with the precedence relations [6].A number of heuristic algorithms have also been proposed to deal with overloads [30][13] which improve the performance of EDF.Baruah, et al. [3] have shown that there exists an upper bound on the performance ofany on-line (preemptive) algorithm working in overload conditions. The \goodness" of an on-line algorithm is measured with respect to a clairvoyant scheduler (one that knows the future),by means of the competitive factor, which is the ratio r of the cumulative value achieved bythe on-line algorithm to the cumulative value achieved by the clairvoyant schedule. The valueassociated with each task is equal to the task's execution time if the task request is successfullyscheduled to completion; a value of zero is given to tasks that do not terminate within theirdeadline. According to this metric, they proved the following theorem:Theorem 3.10 (Baruah, et. al. [3]) There does not exist an on-line scheduling algorithmwith a competitive factor greater than 0.25. 14



What the theorem says is that no on{line scheduling algorithm can guarantee a cumu-lative value greater than 1=4th the value obtainable by a clairvoyant scheduler. These boundsare true for any load, but can be re�ned for a given load. For example, if the load is less than1 then the bound is 1, as the load just surpasses 1 then the bound drops immediately to .385,for loads from greater than 1 up to 2 the bound gradually drops from .385 to .25, and then forall loads greater than 2 the bound is .25.It is worth pointing out that the above bound is achieved under very restrictive assump-tions, such as all tasks in the set have zero laxity, the overload can have an arbitrary (but �nite)duration, task's execution time can be arbitrarily small, and task value is equal to computationtime. Since in most real world applications tasks characteristics are much less restrictive, the1=4th bound has only a theoretical validity and more work is needed to derive other boundsbased on more knowledge of the task set.3.5 Summary of Uni-processor ResultsMany basic algorithms and theoretical results have been developed for scheduling on uni-processors. Many of these are based on earliest deadline scheduling or rate monotonic schedul-ing. Extensions of these results to handle precedence and resource sharing have occurred.Because of this work, designers of real-time systems have a wealth of information concerninguni-processor scheduling. What is still required are more results on scheduling in overload andfor fault tolerance (although fault tolerance usually requires multiple processors as well). Itis also necessary to develop a more integrated and comprehensive scheduling approach thataddresses periodic and aperiodic tasks, preemptive and non-preemptive tasks in the same sys-tem, tasks with values, and combined CPU and I/O scheduling, to name a few issues. As anexample, the operational ight program of the A-7E aircraft has 75 periodic and 172 aperiodicprocesses with signi�cant synchronization requirements. Extensions to rate monotonic thatintegrate periodic and aperiodic tasks could be used for such an application.4 Multi-processor Real-Time SchedulingMore and more real-time systems are relying on multiprocessors. Unfortunately, less is knownabout how to schedule multiprocessor based real-time systems than for uni-processors. This ispartly due to the fact that complexity results show that almost all real-time multiprocessingscheduling is NP-hard, and partly due to the minimal actual experience that exists with suchsystems so even the number of heuristics that exist is relatively low. In spite of the negativeimplications that complexity analysis provides, it is important to understand these complexityresults because� understanding the boundary between polynomial and NP-hard problems can provideinsights into developing useful heuristics that can be used as a design tool or as anon-line scheduling algorithm,� understanding the algorithms that achieve some of the polynomial results can againprovide a basis upon which to base such heuristics,15



� fundamental limitations of on-line algorithms must be understood to better create robustsystems and to avoid operating under misconceptions, and� serious scheduling anomalies can be avoided.In this section we present multiprocessing scheduling results for deterministic (static)scheduling both with and without preemption, for dynamic on-line scheduling with and withoutpreemption, identify various anomalies, and briey discuss the similarity of this problem tobin packing. Important implications of the theory are stressed throughout the section and asummary of the global picture of multiprocessor real-time scheduling is given.4.1 Deterministic (Static) Scheduling4.1.1 Non-preemptive Multiprocessing ResultsLet our model of multiprocessing be that there are a set of P processors, T tasks, and Rresources. The processors are identical. Each task has a worst case execution time of � , isnon-preemptive, and tasks may be related by a partial order indicating that, e.g., task T(i)must complete before task T(j). It is important to note that in most of the scheduling theoryresults, tasks are considered to have constant execution time. For most computer applicationstasks never have constant execution time so we must understand the implication of this fact.For example, this fact gives rise to one of the interesting multiprocessing anomalies of real-timescheduling (see section 4.3). For each resource R(k) there is a number which indicates howmuchof it exists. Tasks can then require a portion of that resource. This directly models a resourcelike main memory. It can also model a mutually exclusive resource by requiring the task toaccess 100% of the resource. The complexity results from deterministic scheduling theory formultiprocessing where tasks are non-preemptive, have a partial order among themselves, haveresource constraints (even a single resource constraint), and have a single deadline show thatalmost all the problems are NP-complete. To delineate the boundary between polynomial andNP-hard problems and to present basic results that every real-time designer should know, welist the following theorems without proof and compare them in Table 1. The metric used inthe following theorems is the amount of computation time required for determining a schedulewhich satis�es the partial order and resource constraints, and completes all required processingbefore a given �xed deadline.Theorem 4.1 (Co�man and Graham [8]). The multiprocessor scheduling problem with 2processors, no resources, arbitrary partial order relations, and every task has unit computationtime is polynomial. 2Theorem 4.2 (Garey and Johnson [10]). The multiprocessor scheduling problem with 2 pro-cessors, no resources, independent tasks, and arbitrary computation times is NP-complete. 2Theorem 4.3 (Garey and Johnson [10]). The multiprocessor scheduling problem with 2 pro-cessors, no resources, arbitrary partial order, and task computation times are either 1 or 2units of time is NP-complete. 216



Proc. Res. Ordering Comp T. Complexity2 0 Arbitrary Unit Polynomial2 0 Independ. Arbitrary NP-Comp2 0 Arbitrary 1 or 2 Units NP-Comp2 1 Forest Unit NP-Comp3 1 Independ. Unit NP-CompN 0 Forest Unit PolynomialN 0 Arbitrary Unit NP-CompTable 1: Summary of Basic Multiprocessor Scheduling TheoremsTheorem 4.4 (Garey and Johnson [10]). The multiprocessor scheduling problem with 2 pro-cessors, 1 resource, a forest partial order, and each computation time of every task equal to 1is NP-complete. 2Theorem 4.5 (Garey and Johnson [10]). The multiprocessor scheduling problem with 3 ormore processors, one resource, all independent tasks, and each tasks computation time equalto 1 is NP-complete. 2Theorem 4.6 (Hu [15]). The multiprocessor scheduling problem with n processors, no re-sources, a forest partial order, and each task having a unit computation time is polynomial.2Theorem 4.7 (Ullman [31]). The multiprocessing scheduling problem with n processors, noresources, arbitrary partial order, and each task having a unit computation time is NP-complete.2 From these theorems we can see that for non-preemptive multiprocessing schedulingalmost all problems are NP-complete implying that heuristics must be used for such problems.Basically, we see that non-uniform task computation time and resource requirements causeNP-completeness immediately. An implication of these results is that designs which use onlylocal resources (such as object based systems and functional language based systems) andschedule based on a unit time slot have signi�cant advantages as far as scheduling complexityis concerned. Of course, few if any real-time systems have unit tasks and any attempt tocarve up a process into unit times creates di�cult maintenance problems and possibly wastedprocessing cycles when tasks consume less than the allocated unit of time. Note that theabove results refer to a single deadline for all tasks. If each task has a deadline the problem isexacerbated.4.1.2 Preemptive Multiprocessing Real-Time SchedulingIt is generally true that if the tasks to be scheduled are preemptable, then the schedulingproblem is easier, but in certain situations there is no advantage to preemption. The followingclassical results pertain to multiprocessing scheduling where tasks are preemptable, i.e.,P j pmtn jXj wjCj:17



Theorem 4.8 (McNaughton [23]). For any instance of the multiprocessing scheduling problemwith P identical machines, preemption allowed, and minimizing the weighted sum of completiontimes, there exists a schedule with no preemption for which the value of the sum of computationtimes is as small as for any schedule with a �nite number of preemptions. 2So here we see an example, for a given metric, that there may be no advantage topreemption. However, to �nd such a schedule with or without preemption is NP-hard. Notethat if the metric is the sum of completion times, then the shortest processing time �rst greedyapproach solves the problem and is not NP. Here again, there is no advantage to preemption.This result can have an important implication when creating a static schedule; we certainlyprefer to minimize preemption for practical reasons at run time, so knowing that there is noadvantage to preemption, a designer would not create a static schedule with any preemptions.Theorem 4.9 (Lawler [18]). The multiprocessing problem of scheduling P processors, withtask preemption allowed and where we try to minimize the number of late tasks is NP-hard. 2This theorem indicates that one of the most common forms of real-time multiprocessingscheduling, i.e., P j pmtn jXUjwhere Uj are the late tasks, requires heuristics.4.2 Dynamic Multiprocessor SchedulingThere are so few real-time classical scheduling results for dynamic multiprocessing schedulingthat we treat preemptive and non-preemptive cases together.First, consider that under certain conditions in a uni-processor, dynamic earliest deadlinescheduling is optimal. Is this algorithm optimal in a multiprocessor? The answer is no.Theorem 4.10 (Mok [24]). Earliest deadline scheduling is not optimal in the multiprocessorcase. 2To illustrate why this is true consider the following example. We have 3 tasks to executeon 2 processors. The task characteristics are given by task-number(computation time, dead-line): T1(1; 1), T2(1; 2), and T3(3; 3:5). Scheduling by earliest deadline would execute T1 on P1and T2 on P2 and then T3 misses its deadline. However, if we schedule T3 �rst, on P1, then T1and T2 on P2, all tasks make their deadlines. An optimal algorithm does exist for the staticversion of this problem (all tasks exist at the same time) if one considers both deadlines andcomputation time [14], but this algorithm is too complicated to present here.Now, if dynamic earliest deadline scheduling for multiprocessors is not optimal, the nextquestion is whether any dynamic algorithm is optimal, in general. Again, the answer is no.Theorem 4.11 (Mok [24]). For two or more processors, no deadline scheduling algorithm canbe optimal without complete a priori knowledge of 1) deadlines, 2) computation times, and 3)start times of the tasks. 218



This implies that any of the classical scheduling theory algorithms which requires knowl-edge of start times can not be optimal if used on-line. This also points out that we cannot hopeto develop an optimal on-line algorithm for the general case. But, optimal algorithms mayexist for a given set of conditions. One important example of this situation is assuming thatall worst case situations exist simultaneously. If this scenario is schedulable, then it will alsobe schedulable at run time even if the arrival times are di�erent because those later arrivalscan't make conditions any worse. When such a worst case analysis approach is not possiblefor a given system, usually because such su�cient conditions cannot be developed or becauseensuring such conditions are too costly, more probabilistic approaches are needed. A number ofgood heuristics exist for dynamic multiprocessor scheduling and we are beginning to see muchneeded stochastic analysis of these conditions. It is especially valuable to be able to create al-gorithms that operate with levels of guarantee. For example, even though the system operatesstochastically and non-optimally, it might be able to provide a minimum level of guaranteedperformance.As mentioned, various heuristics exist for real-time multiprocessor scheduling with re-source constraints [26]. However, in general, these heuristics use a non-preemptive model. Theadvantages of a non-preemptive model are few context switches, higher understandability andeasier testing than for the preemptive model, and avoidance of blocking is possible. The maindisadvantage of the non-preemptive model is the (usually) less e�cient utilization of the pro-cessor. Heuristics also exist for a preemptive model [33]. The advantages of a preemptive modelare high utilizations and low latency at reacting to newly invoked work. The disadvantages aremany context switches, di�culty in understanding the run time execution and its testing, andblocking is common. All these heuristics, whether for the preemptive or non-preemptive cases,are fairly expensive in terms of absolute on-line computation time compared to very simplealgorithms such as EDF, so this sometimes requires additional hardware support in terms ofa scheduling chip.As mentioned earlier overload and performance bounds analysis are important issues.Now assume we have a situation with sporadic tasks, preemption permitted, and if the taskmeets its deadline then a value equal to the execution time is obtained, else no value is obtained.Let the system operate in both normal and overload conditions. Let there be 2 processors.Theorem 4.12 (Baruah, et. al. [3]). No on-line scheduling algorithm can guarantee a cumu-lative value greater than one-half for the dual processor case. 2As for the bounds results for the uni-processor case (presented in Section 3.4), the impli-cations of this theorem are very pessimistic. As before, some of the pessimism arises becauseof the assumptions made concerning the lack of knowledge of the task set. In reality, we dohave signi�cant knowledge (such as we know the arrival of new instances of periodic tasks,or because of ow control we may know that the maximum arrival rate is capped, or knowthe minimum laxity of any task in the system is greater than some value). If we can exploitthis knowledge, then the bounds may not be so pessimistic. We require more algorithms thatdirectly address the performance of a multiprocessing system in overload conditions.19



4.3 Multiprocessing AnomaliesDesigners must be aware of several important anomalies, called Richard's anomalies, that canoccur in multiprocessing scheduling so that they can be avoided. Assume that a set of tasks arescheduled optimally on a multiprocessor with some priority order, a �xed number of processors,�xed execution times, and precedence constraints.Theorem 4.13 (Graham [12]). For the stated problem, changing the priority list, increasingthe number of processors, reducing execution times, or weakening the precedence constraintscan increase the schedule length. 2An implication of this result means that if tasks have deadlines, then the accompanyingincrease in schedule length due to the anomaly can cause a previously valid schedule to becomeinvalid, i.e., tasks can now miss deadlines. It is initially counter intuitive to think that addingresources such as an extra processor, or relaxing constraints such as less precedence amongtasks, or less execution time requirements can make things worse. But, this is the insidiousnature of timing constraints and multiprocessing scheduling. An example can best illustratewhy this theorem is true. Consider an optimal schedule where we now reduce the time requiredfor the �rst task T1 on the �rst processor. This means that the second task T2 on that processorcan begin earlier. However, doing this may now cause some task on another processor to blockover a shared resource and miss its deadline, where had T2 not executed earlier then no blockingwould have occurred and all tasks would have made their deadlines (because it was originallyan optimal schedule). See Figure 4.
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Figure 4: One Example of Richard's AnomaliesIt is especially important to note that for most on-line scheduling algorithms we mustdeal with the problem of tasks completing before their worst case times. A simple solution20



that avoids the anomaly is to have tasks that complete early simply idle, but this can often bevery ine�cient. However, algorithms such as [28] strive to reclaim this idle time, but carefullyaddress the anomalies so that they will not occur.4.4 Similarity to Bin PackingAnother tremendously active area of scheduling research is in bin packing algorithms. Eachbin (processor) has a maximum capacity and boxes (jobs or tasks) placed in the bins requiresome percentage of the capacity. The goal is either, given a �xed number of bins, pack themwith jobs so as to minimize the maximum length of any bin, or rather �ll the bins to capacityminimizing the number of bins required. The bins are the computers of a multiprocessor whichprovide a computing capacity up to the deadline of the set of jobs. Jobs require some amountof processing time. In real-time scheduling it is usually assumed that memory requirementsare implicitly met. The common algorithms are best �t (BF), �rst �t (FF), �rst �t decreasing(FFD), and best �t decreasing (BFD). The latter two algorithms arrange the list of jobs intoa nonincreasing list with respect to capacity requirements, and then apply �rst �t or best �t,respectively. Theoretical bounds exist to describe, e.g., the minimum number of bins required.The worst case bounds for FF and BF for large task sets are (17=10)L� where L� is theoptimal (minimum) number of bins [12]. For FFD the bound is (11=9)L� and it is known thatthe bound of BFD is less than or equal to the FFD bound [12]. This work is of limited valuefor real-time systems since we have only a single deadline and other issues such as precedenceconstraints and other real considerations are not taken into account. However, some usefulimplications are� we can know about the worst case and avoid it by design,� we can obtain an estimate on the number of processors required for our application, and� since average behavior is also important and since we are doing this analysis o�-line,if good packing is not achieved then we can permute the packing using average caseinformation, put constraints on job sizes, etc. Bin packing results should be extendedand incorporated into real-time design tools.4.5 Summary of Multiprocessor ResultsMost multiprocessor scheduling problems are NP, but for deterministic scheduling this is nota major problem because either the speci�c problem is not NP-complete and we can use apolynomial algorithm and develop an optimal schedule, or we can use o�-line heuristic searchtechniques based on what classical theory implies. These o�-line techniques usually only have to�nd feasible schedules not optimal ones. Many heuristics perform well in the average case andonly deteriorate to exponential complexity in the worst (rare) case. Good design tools wouldallow users to provide feedback and redesign the task set to avoid the rare case. So the static,multiprocessor, scheduling problem is largely solved in the sense that we know how to proceed.We must point out, however, good tools with implemented heuristics are still necessary andmany extensions that treat more sophisticated sets of task and system characteristics are stillpossible. On-line multiprocessing scheduling must rely on heuristics and would be substantially21



helped by special scheduling chips. Any such heuristics must avoid Richard's anomalies [28].Better results for operation in overloads, better bounds which account for typical a prioriknowledge found in real-time systems, and algorithms which can guarantee various levels ofperformance are required. Dynamic multiprocessing scheduling is in its infancy.5 ConclusionClassical scheduling theory provides a basic set of results of use to real-time systems designers.Many results are known for uni-processors and very few for multi-processors. Complexity,fundamental limits, and performance bounds for important scheduling problems are known.Anomalies that must be avoided have been identi�ed. It is still necessary for real-time designersto take these basic facts and apply them to their problem { a di�cult engineering problem inmany cases. Many new results are needed that deal more directly with metrics of interest toreal-time applications and with more realistic task set characteristics than is typical for muchof the theory presented here.Many issues are outside the scope of this paper including distributed scheduling, integra-tion of cpu scheduling with communication scheduling, with I/O scheduling, groups of taskswith a single deadline, placement constraints and the impact of this placement on the run timescheduling, fault tolerance needs, other kinds of timing requirements besides simple deadlinesand periods, integration of critical and non-critical tasks, and the interaction of schedulingalgorithms with the system design and implementation including run time overhead. Most ofthese areas are wide open areas for research.References[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings, \Hard Real-Time Scheduling: TheDeadline Monotonic Approach," IEEE Workshop on Real-Time Operating Systems, 1992.[2] T.P. Baker, \Stack-Based Scheduling of Real-time Processes," Journal of Real-Time Sys-tems, 3, 1991.[3] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F.Wang, \On the Competitiveness of On-Line Real-Time Task Scheduling," Proceedings ofReal-Time Systems Symposium, December 1991.[4] J. Blazewicz, \Scheduling Dependent Tasks with Di�erent Arrival Times to Meet Dead-lines," In E. Gelenbe, H. Beilner (eds), Modeling and Performance Evaluation of ComputerSystems, Amsterdam, North-Holland, 1976.[5] M. Chen and K. Lin, \Dynamic Priority Ceilings: A Concurrency Control Protocol forReal-Time Systems," Journal of Real-Time Systems, 2, 1990.[6] S. Cheng, J. Stankovic, and K. Ramamritham, \Dynamic Scheduling of Groups of Taskswith Precedence Constraints in Distributed Hard Real-Time Systems, " Real-Time Sys-tems Symposium, December 1986. 22
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