I DTU Informatics

Logical Time and Global States

Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

Introduction Robin Sharp
Clock, Events and Process States

Logical Clocks
Global States

BPsaWN1IQs= \

Principles of
Protocol Design

fourth edition

DISTRIBUTED SYSTEMS
CONCEPTS AND DESIGN
George Coulouris

Jean Dollimore
Tim Kindberg

I DTU Informatics

Why Is Time Interesting?

e Ordering of events: what happened first?

» Storage of data in memory, file, database, ...

» Requests for exclusive access - who asked first?

» Interactive exchanges - who answered first?

» Debugging - what could have caused the fault?

e Causality is linked to temporal ordering:
If e causes g;, it must happen before g

I DTU Informatics

Distributed System Model

¢ \We consider the following asynchronous distributed system:
» N processes pi, i=1, ..., N
» each process executes on a single processor

» processors do not share memory --> processes communicate only by
message passing

» Actions of a process pi: communicating actions (Send or Receive) or state
transforming actions (such as changing the value of a variable)

e Event: occurrence of a single action that a process carries out as it executes

I DTU Informatics

What Do We Know About Time?

¢ \Wle cannot synchronize clocks perfectly across a distributed system

= We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

I DTU Informatics

What Do We Know About Time?

¢ \Wle cannot synchronize clocks perfectly across a distributed system

= We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

® The sequence of events within a single process pi; can be placed in a total
ordering, denoted by the relation — (*occurs before)” between the events.

e —; e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they
occurred in the order in which pi observes them.

I DTU Informatics

What Do We Know About Time?

¢ \Wle cannot synchronize clocks perfectly across a distributed system

= We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

® The sequence of events within a single process pi; can be placed in a total
ordering, denoted by the relation — (*occurs before)” between the events.

e —; e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they
occurred in the order in which pi observes them.

e \Whenever a message is sent between two processes, the event of sending
the message occurred before the event of receiving the message.

I DTU Informatics

Happened-Before Relation (—)

e Lamport’s happened-before relation — (or causal ordering):
HB1: If d process pi: e —i€e’,thene —¢’.

HB2: For any message m, send(m) — receive(m)

HB3: Ife, e’, e” are events suchthate @ e’and e’ » e” thene — e”.

I DTU Informatics

Happened-Before Relation (—)

e Lamport’s happened-before relation — (or causal ordering):
HB1: If d process pi: e —i€e’,thene —¢’.

HB2: For any message m, send(m) — receive(m)

HB3: Ife, e’, e” are events suchthate @ e’and e’ » e” thene — e”.

e Thus, if e and e’ are events, and if e = €’, then we can find a series of events
e, €2, ..., €n 0ccurring at one or more processes such that

> € =¢e1
» € = en
» fori=1, 2, ..., N-1 either HB1 or HB2 applies between e; and ej.1.

In other words: either they occur in succession at the same process, or there
IS a message m such that ej = send(m) and ei.1 = receive(m).

I DTU Informatics

|Happened Before Relation]

P1

Physical
time

P3 & .
e

e a2 — b, since the events occur in this order at process p1 (a —1 b).

e Cc—d.
® b — C, since these events are the sending and reception of message ms.
e d — f, similarly.

e Combining these relations, we may also say that, for example, a — f.

I DTU Informatics

Happened-Before Relation (—)

¢ Note that the — relation is an IRREFLEXIVE PARTIAL ORDERING on the set
of all events in the distributed system.

» Irreflexivity: =(a — a).

» Partial ordering: not all the events can be related by —.

I DTU Informatics

Happened-Before Relation (—)

¢ Note that the — relation is an IRREFLEXIVE PARTIAL ORDERING on the set
of all events in the distributed system.

» Irreflexivity: ~(a — a).
» Partial ordering: not all the events can be related by —.

P1 @ L >

» Physical
time
(\

P3 ' >
f

e -(a — e) and —(e — a) since they occur at different processes, and there is no
chain of messages intervening between them.

e We say that a and e are not ordered by —; a and b are concurrent (a || b).

I DTU Informatics

Logical Clocks

e Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

¢ |Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

e Ordering relation: —

I DTU Informatics

Logical Clocks

e Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

e Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

e Ordering relation: —

Definition: local logical clock L; in process pi is a function which associates a
value, Li(e), in an ordered set V with each event e in p..

I DTU Informatics

Logical Clocks

e Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

e Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

e Ordering relation: —

Definition: local logical clock L; in process pi is a function which associates a
value, Li(e), in an ordered set V with each event e in p..

e Note that values of a logical clock need bear no particular relationship to any
physical clock.

I DTU Informatics

Logical Clocks Rules

e To match the definition of =, we require the following clock rules:
CR1: If d process pisuch that e = e’, then Li(e) < Li(e’).

CR2: If a is the sending of a message by pi and b is the receipt of the same
message by pj, then Lia) < L;j(b).

CR3: If e, €’, e” are three events such that L(e) < L(e’) and L(e’) < L(e”) then L
(e) < L(e”).

Ok, but how to do that
N practice?

I DTU Informatics

Logical Clocks in Practice

e To capture the — relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L,.

(b) On receiving (m, t), a process p; computes L, := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

I DTU Informatics

Logical Clocks in Practice

e To capture the — relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L,.

(b) On receiving (m, t), a process p; computes L, := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

e Although we increment clocks by 1, we could have chosen any positive value.

I DTU Informatics

Logical Clocks in Practice

e To capture the — relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L,.

(b) On receiving (m, t), a process p; computes L, := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

e Although we increment clocks by 1, we could have chosen any positive value.

¢ Clocks which follow these rules are known as LAMPORT LOGICAL CLOCKS.

e e’ =Lk <LE)

I DTU Informatics

[Lamport Clocks]

Physical
time

P3 ®
e

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L.

(b) On receiving (m, t), a process p; computes L; := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

I DTU Informatics

[Lamport Clocks]

6
®

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L.

(b) On receiving (m, t), a process p; computes L; := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

I DTU Informatics

[Lamport Clocks] Example 3

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L.

(b) On receiving (m, t), a process p; computes L; := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

I DTU Informatics

'Lamport Clocks] Example 4

LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM

21 31 41 -
p ° ° ° T11ne

A .
- 31

4 .
- 32 33
> o

1 3 45 6 (34
R O o—o O O O

>

LC1: L;is incremented before each event is issued at process pi: Li:=Li+ 1.
LC2: (a) When p; sends a msg m, it piggybacks on m the value t = L.

(b) On receiving (m, t), a process p; computes L; := max(L;, t) and then
applies LC1 before timestamping the event receive(m).

I DTU Informatics

Homework

e By considering a chain of zero or more messages connecting events e and e’
and using induction on the length of any sequence of events relating e and e’,
show thate 2 e’ = L(e) < L(e).

I DTU Informatics

Homework

e The — relation is an IRREFLEXIVE PARTIAL ORDERING on the set of all
events in the distributed system.

» Irreflexivity: ~(a — a).
» Partial ordering: not all the events can be related by —.

Extend the definition of the — relation to create a total ordering = on events

(that is, one for which all pairs of distinct events are ordered).

I DTU Informatics

Shortcoming of Lamport clocks

A significant problem with Lamport clocks is that
fL(e) < L(e’), then we cannot infer that e — ¢’

Physical
time

I DTU Informatics

Another Problematic Scenario

3
O

2
®

e The message arriving at time 6 in R breaks the usual rules of causal ordering:
» Event 1 in P causes event 5 in R

» Event 1 In P causes event 6 in R

I DTU Informatics

Another Problematic Scenario

3
O

2
®

e The message arriving at time 6 in R breaks the usual rules of causal ordering:

» Event 1 in P causes event 5in R |The message appears to be able to
cause or be caused by the event at

» Event 1 In P causes event 6 in R time 5!

I DTU Informatics

So... What Do We Need?

3
O

S
®

£
2 3 4 S .6
R oo o o P S

¢ This problem arises because only a single number is used to represent time.

e |[dea: more info is needed to tell the receiving process what the sending
process knew about the other clocks in the system when it sent the message.

¢ |t would then become clear that the message arriving at time 6 in R was sent
before the message arriving at time 5.

I DTU Informatics

Vi Y
j

Mattern and Fidge Vector Clocks

e Developed to overcome the shortcoming of Lamport clocks
e _amport clocks: e — fthen L(e) < L(f)

e \Vector clocks: e — fiff V(e) < V(1)

¢ |ntuition: Lamport clocks try to describe global time by a single number, which
“hides” essential information.

¢ |dea: processes keep information on what they know about the other clocks in
the system and use this information when sending a message

I DTU Informatics
Vector Clocks

e A vector clock for a system of N processes: array of N integers.

e Each process p; keeps its own vector clock Vi, which it uses to timestamp
local events.

N | 7
j j

e Then Vifj] describes pi’'s KNOWLEDGE of p/’'s LOCAL LOGICAL CLOCK.

I DTU Informatics
Vector Clocks

e A vector clock for a system of N processes: array of N integers.

e Each process p; keeps its own vector clock Vi, which it uses to timestamp
local events.

N | 7
j j

e Then Vifj] describes pi’'s KNOWLEDGE of p/’'s LOCAL LOGICAL CLOCK.

e Example: if an event of p2 is timestamped with (1, 1, 0) then p2 knows that the
value of the logical clocks are: 1 for p+, 1 for p2, O for ps.

I DTU Informatics

Note that...

/ /

o Vi[i] (1 #i):

» Latest clock value received by p; from process p,.

» Number of events that have occurred at p; that p; has potentially been
affected by.

- Process p; may have timestamped more events by this point, but no
Information has flowed to p; about them in messages yet!

I DTU Informatics

[Vector Clocks] Implementation

VC1: Initially, Vifj] := 0, fori,j=1, 2,, N.
VC2: Just before p; timestamps an event, it sets Vifi] := Vifi] + 1.
VC3: pi includes the value t = Vi in every message it sends.
VC4: When p; receives a timestamp in a message, it sets

Vi[i] := max(Vi[j], tfj]) forj=1, 2,, N

and then applies VC2 before timestamping the event receive(m).

I DTU Informatics

[Vector Clocks]

(1,0,0) (2,0,0)

(2,2,2)

g

f

» Physical

time

I DTU Informatics

Ordering on Vectors

e For vector clocks using rules VC1-4, it follows that

e Ordering relation (<) on vectors:

V<V o V< V]jforj=1,2 .., N

* |n particular:

» V=V e V]j=V]forj=1,2,..., N
» V<V e VsV AVzV

» V[V e(V<V)A(V <V)

I DTU Informatics

Ordering on Vectors

e For vector clocks using rules VC1-4, it follows that

e >e’ e Ve < VE)

e Ordering relation (<) on vectors:

V<V o V< V]jforj=1,2 .., N

* |n particular:

» V=V e V]j=V]forj=1,2,..., N
» V<V e VsV AVzV

» V[V e(V<V)A(V <V)

I DTU Informatics

[Vector Clocks Ordering]

(1,0,0) (2,0,0)
o
a

b m

g time

C

(2,2,2)

g

f

e \/(a) < V(f), reflecting the fact thata — 1.

e c || e because neither V(c) < V(e) nor V(e) < V(c).

I DTU Informatics

[Vector Clocks| Example

<19090> <23030> <35293> <43233> <5’2’3> Time
. >

P e o , o

<0,1,0><0,2,0>
@ @

020> !

<0,0,1> '« <0:2,3>
R o o—o &
<0,2,2> <0,2,4>

I DTU Informatics

[Vector Clocks] Violation of Causal Ordering

e Violation of causal ordering occurs if message M arrives with Vy < V..

<19090> <29090> <39090> <49090> <5959O> Time

4 - % % ()
~ 4

‘ '< 2)5)0 >

<-'06~>“ <. “§2,0,0>

<0,1,0><0,2,0> s
o o >
<2,3,0>

<2)4)0>“‘~~
<0,0,1> <0,0,2> <0,0,4>
R O o—o O
<0,0,3>

e Here: Vm[1] < VR[1]

I DTU Informatics

Homework

1) Show that Vjfi] < Vi[i].

2)Show thate @ e’ = V(e) < V().

3) Using the result of Exercise 1), show that if events e and e’ are concurrent
then neither V(e) < V(e’) nor V(€’) < V(e).
Hence show that if V(e) < V(e’) thene — e’.

I DTU Informatics

Logical Time and Global States

Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

Introduction Rabi harp
Clock, Events and Process States
Logical Time and Logical Clocks X B

Global States -
Principles of

Protocol Design

fourth edition

DISTRIBUTED SYSTEMS
CONCEPTS AND DESIGN
George Coulouris

Jean Dollimore
Tim Kindberg

I DTU Informatics

Problem: Finding the Global State

e Problem: to find the global state of a distributed system in which data items
can move from one part of the system to another.

e \Why? There are innumerable uses for this, for instance:

» finding the total number of files in a distributed file system, where files may
be moved from one file server to another

» finding the total space occupied by files in such a distributed file system

I DTU Informatics

Problem: Finding the Global State

e Problem: to find the global state of a distributed system in which data items
can move from one part of the system to another.

e \Why? There are innumerable uses for this, for instance:

» finding the total number of files in a distributed file system, where files may
be moved from one file server to another

» finding the total space occupied by files in such a distributed file system

e Solution: distributed snapshot algorithm
(Chandy and Lamport, 1985)

I DTU Informatics

[Distributed Snapshots] Global State

¢ |dea: global states are described by
» the states of the participating PROCESSES, together with

» the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

I DTU Informatics

[Distributed Snapshots] Global State

¢ |dea: global states are described by
» the states of the participating PROCESSES, together with

» the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

GLOBAL STATE:) Money = £235

I DTU Informatics

[Distributed Snapshots] Global State

¢ |dea: global states are described by
» the states of the participating PROCESSES, together with

» the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

GLOBAL STATE:) Money = £235

I DTU Informatics

[Distributed Snapshots] Global State

¢ |dea: global states are described by
» the states of the participating PROCESSES, together with

» the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

£50

GLOBAL STATE:) Money = £235

I DTU Informatics

[Distributed Snapshots] Global State

¢ |dea: global states are described by
» the states of the participating PROCESSES, together with

» the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

GLOBAL STATE:) Money = £235

I DTU Informatics

[Distributed Snapshots| Assumptions

® The algorithm relies on two main assumptions:

» Channels are ERROR-FREE and SEQUENCE PRESERVING (FIFO)

» Channels deliver transmitted msgs after UNKNOWN BUT FINITE DELAY
e Other assumptions:

» The only events in the system which can give rise to changes in the state
are communicating events.

» Simultaneous events are assumed not to occur, i.e., THE BEHAVIOR OF A
DISTRIBUTED SYSTEM IS DESCRIBED BY A SEQUENCE WITH A TOTAL
ORDERING OF ALL EVENTS.

I DTU Informatics

[Distributed Snapshots| Events

e Each event is described by 5 components: e = <p, s, s’, M, c>
» Process p goes from state s to state s’

» Message M is sent or received on channel ¢

I DTU Informatics

[Distributed Snapshots| Events

e Each event is described by 5 components: e = <p, s, s’, M, c>
» Process p goes from state s to state s’
» Message M is sent or received on channel ¢
e Evente = <p, s, s’, M, c> is only possible in global state S if:
1.p’s state in S is just exactly s.

2.1f ¢ is directed towards p, then c’s state in S must be a sequence of
messages with M at its head.

I DTU Informatics

[Distributed Snapshots| Events

e Each event is described by 5 components: e = <p, s, s’, M, c>
» Process p goes from state s to state s’
» Message M is sent or received on channel ¢
e Evente = <p, s, s’, M, c> is only possible in global state S if:
1.p’s state in S is just exactly s.

2.1f ¢ is directed towards p, then c’s state in S must be a sequence of
messages with M at its head.

e A possible computation of the system is a sequence of possible events,
starting from the initial global state of the system.

I DTU Informatics

[Distributed Snapshots| Next Global State

o If e = <p, s, s’, M, c> takes place in global state S, then the following global
state is next(S, €), where:

1.p’s state in next(S, e) is s’

2.1f c is directed towards p, then c’s state in next(S, e) is c’s state in S, with
M removed from the head of the message sequence

3.If ¢ is directed away from p, then c’s state in next(S, €) is c’s state in S,
with M added to the tail of the message sequence.

I DTU Informatics

—xample: A Possible Computation

¢ c; denotes the channel which can carry messages from p; to p;.

P4 C P2

C

21

P3

Cao

Event Global state S after event
P Py c1o ¢c1 ¢33 c3>

<P s § M c>=<P

<100 1
125
100
175
125

e1 <P 100 25 75 ci1p>=><25
er <P 125 100 25 c3> = < 25
ez <P, 100 175 75 c1p> = < 25
eqs <P> 175 125 50 ¢r1> = < 25
es <P; 10 35 25 cpn> = < 25

25

e <P1 25 75 50 cr1>=<75

10 <> <> <> <>>
10 (75) <> <> <>>
10 (75) <> (25) <>>
10 <> <> (25) <>>

10 <> (50) (25) <>>
125 35 <> (50) <> <>>
125 35 <> <> <> <>>

[

DTU Informatics

Distributed Snapshots| The Question

Can we now find rules for
when to take snapshots of
the individual processes and channels
so as to build up a consistent picture of
the global state S?

I DTU Informatics

[Distributed Snapshots] Consistent Picture

e | et us consider the happened before relation.
¢ |[f e; = e2 then e; happened before e2 and could have caused it.

e A consistent picture of the global state is obtained if we include in our
computation a set of possible events, H, such that

eeeHAre >ei=>e eH

¢ [f e; were in H, but e; were not, then the set of events would include the effect
of an event (for instance, the receipt of a file), but not the event causing it (the
sending of the file), and an inconsistent picture would arise.

I
[

DTU Informatics

Distributed Snapshots| Consistent Global State

e A consistent picture of the global state is obtained if we include in our

computation a set of possible events, H, such that

eeeHAre >ei=>e eH

e The consistent GLOBAL STATE is then defined by

GS(H) = The state of each process p; after pi’s last event in H
+ for each channel, the sequence of msgs sent in H but not received in
H.

e In the distributed systems jargon, we say that consistent global states are

delimited by a “CUT” representing a consistent picture of the global state of
the system.

C
O
et

®
e

D)

Q.

-

o
O
D
L

9P,

P,

o
A
<C
D

Q.

-

®

>

I DTU Informatics

I DTU Informatics

—xample: Consistent Cut

e REMEMBER: The CUT limiting H is defined by:eie HAaei > ei=¢e e H

P;

—h

Py
0~

H contains {e1, ez, es}

I DTU Informatics

—xample: Consistent Cut

e REMEMBER: The CUT limiting H is defined by:eie HAaei > ei=¢e e H

H contains {e1, es}

CONSISTEN
CUT

I DTU Informatics

—xample: Inconsistent Cut

e REMEMBER: The CUT limiting H is defined by:eie HAaei > ei=¢e e H
Ps

H contains
{e1, es, €4}, but not e,
where e> — ey

| AN
IMPROPER
'+ CUT

I DTU Informatics

How to Construct H?

e |[dea: The CUT and associated (consistent) set of events, H, are constructed
by including specific control messages (MARKERS) in the stream of ordinary
messages.

¢ Remember that we assume that:
» Channels are all FIFO channels.

» A transmitted marker will be received (and dealt with) within a FINITE
TIME.

I DTU Informatics

Chandy and Lamport’s Algorithm to Construct H

e Process p; follows two rules.

e SEND MARKERS

Record pi’s state
Before sending any more messages from p;, send a marker on each channel
cij directed away from p..

I DTU Informatics

Chandy and Lamport’s Algorithm to Construct H

e Process p; follows two rules.

e SEND MARKERS

Record pi’s state
Before sending any more messages from p;, send a marker on each channel
cii directed away from p;.

e RECEIVE MARKER
On arrival of a marker via channel c;:
IF pi has not recorded its state
THEN SEND MARKERS rule; record cj’s state as empty

ELSE record cj’s state as the sequence of messages received on cj since p;
last noted its state.

I DTU Informatics

Chandy and Lamport’s Algorithm to Construct H

e The algorithm can be initiated by any process by executing the rule SEND
MARKERS.

» Multiple processes can initiate the algorithm concurrently!
» Each initiation needs to be distinguished by using unigue markers.

» Different initiations by a process are identified by a sequence number.

e The algorithm terminates after each process has received a marker on all of
Its incoming channels.

e Complexity of the algorithm: O(E) messages, where E is the number of edges
In the network.

I DTU Informatics

—xample: The Algorithm In Action...

The computation

I DTU Informatics

—xample: The Algorithm In Action...

P71 initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

P71 initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

P71 initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

P71 initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

Pz initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

Pz initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

Pz initiates the algorithm

I DTU Informatics

—xample: The Algorithm In Action...

Pz initiates the algorithm

P

I DTU Informatics

How the Global Snapshot is Then Created?

® I[n a practical implementation, the recorded local snapshots must be put
together to create a global snapshot of the distributed system.

e How? Several policies:
» each process sends its local snapshot to the initiator of the algorithm

» each process sends the information it records along all outgoing channels
and each process receiving such information for the first time propagates
it along its outgoing channels

I DTU Informatics

How is That Possible?

In both these possible runs of
the algorithm, the recorded

global states NEVER
occurred in the execution!

I DTU Informatics

Incomparable Events!

* The algorithm finds a global state based on a partial ordering — of events.
Py
For instance, we know that e = esand e> — e5 1(f>0
BUT we have no knowledge about the timing e,
relationship of es and es. 2
WIth respect to —, ez and es are incomparable!

I DTU Informatics

Incomparable Events!

* The algorithm finds a global state based on a partial ordering — of events.
o Py
For instance, we know that e = esand e> — e5 1(E>0 '
BUT we have no knowledge about the timing e,

relationship of es and es. 2
WIth respect to —, ez and es are incomparable!

125

We cannot determine what the
true sequence of these events is!

I DTU Informatics

Incomparable Events!

* The algorithm finds a global state based on a partial ordering — of events.

o Py P3
For instance, we know that e = esand e> — e5 1(f>0 ' |
BUT we have no knowledge about the timing e,

relationship of es and es. 2
WIth respect to —, ez and es are incomparable!

125

We cannot determine what the
true sequence of these events is!

S
75

e |VVhen we record a process’ state, we are unable to know whether the events
which we have already seen in this process lay before or after incomparable
events in other processes.

I DTU Informatics

What Does the Algorithm Find"?

e Pre-recording events: events in a computation which take place BEFORE the
process in which they occur records its own state.

e Post-recording events: all other events.

e The algorithm finds a global state which corresponds to a PERMUTATION of
the actual order of the events, such that all pre-recording events come before
all post-recording events.

 The recorded global state, 57, is the one which would be found after all the
pre-recording events and before all the post-recording events.

I DTU Informatics

C12 =
C21
C23
C32

2 = 235

pre-recording events: {e», es}

SEQ — (81782783384785766>
seq = (e2,es|e1,e3,e4,e€6)

5™ recorded
global state

Coanren 02222 DT Sorina 2008 ¢

I DTU Informatics

Co1 <>
Co3 <>
C192 (75)
C39 <>

2 = 235

pre-recording events: {e1, ez, es}

SEQ — <81,82,63,84,85,66>
seq' = (e1,ea,es5|es,eq,€6)

5" recorded
global state

I DTU Informatics

Global State Could Possibly Have Occurred!

e 5" is a state which could possibly have occurred, in the sense that:

» It is possible to reach S* via a sequence of possible events starting from
the initial state of the system, S (in the previous example: <e1, ez, e5>)

» It is possible to reach the final state of the system, Sr, via a sequence of
possible events starting from S* (in the previous example: <es, €4, e5>)

seq/ <€1,€2,€5 €3, €4, €6)

recorded
global state

I DTU Informatics

So... Why Recording Global State”

e Stable property: a property that persists, such as termination or deadlock.

e |dea: if a stable property holds in the system before the snapshot begins, it
holds in the recorded global snapshot.

e A recorded global state is useful in DETECTING STABLE PROPERTIES.

e Examples:

» Failure recovery: a global state (checkpoint) is periodically saved and
recovery from a process failure is done by restoring the system to the last
saved global state.

» Debugging: the system is restored to a consistent global state and the
execution resumes from there in a controlled manner.

I DTU Informatics
Homework

e Suppose Chandy and Lamport’s distributed snapshot algorithm is initiated by
process p; just after event e; in the following computation.

Ps P3 e Sketch how markers would be exchanged
' during the execution of the algorithm in
10 this case.

e Which events are included in the set H?

In the various processes, as the execution

| ¢ \Which state components are noted down
of the algorithm proceeds?

¢ \Which global state S* is discovered by the

3585 algorithm in this case?

