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Why Is Time Interesting?

• Ordering of events: what happened first?

‣ Storage of data in memory, file, database, ...

‣ Requests for exclusive access - who asked first?

‣ Interactive exchanges - who answered first?

‣ Debugging - what could have caused the fault?

• Causality is linked to temporal ordering: 
if ei causes ej, it must happen before ej
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Distributed System Model

• We consider the following asynchronous distributed system:

‣ N processes pi, i = 1, ..., N

‣ each process executes on a single processor

‣ processors do not share memory --> processes communicate only by 
message passing

‣ Actions of a process pi: communicating actions (Send or Receive) or state 
transforming actions (such as changing the value of a variable)

• Event: occurrence of a single action that a process carries out as it executes
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What Do We Know About Time?

• We cannot synchronize clocks perfectly across a distributed system 

➡ We cannot in general use physical time to find out the order of any arbitrary 
pair of events occurring within a distributed system. [Lamport, 1978]
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• The sequence of events within a single process pi can be placed in a total 
ordering, denoted by the relation →i (“occurs before)” between the events.

e →i e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they 
occurred in the order in which pi observes them.
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• The sequence of events within a single process pi can be placed in a total 
ordering, denoted by the relation →i (“occurs before)” between the events.

e →i e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they 
occurred in the order in which pi observes them.

• Whenever a message is sent between two processes, the event of sending 
the message occurred before the event of receiving the message.
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Happened-Before Relation (➝)

• Lamport’s happened-before relation ➝ (or causal ordering):

HB1:     If ∃ process pi : e ➝i e’, then e ➝ e’.

HB2:     For any message m, send(m) ➝ receive(m)

HB3:     If e, e’, e’’ are events such that e ➝ e’ and e’ ➝ e’’ then e ➝ e’’.
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• Thus, if e and e’ are events, and if e ➝ e’, then we can find a series of events 
e1, e2, ..., en occurring at one or more processes such that 

‣ e = e1 

‣ e’ = en 

‣ for i = 1, 2, ..., N-1 either HB1 or HB2 applies between ei and ei+1.

In other words: either they occur in succession at the same process, or there 
is a message m such that ei = send(m) and ei+1 = receive(m).
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[Happened Before Relation] Example

• a ➝ b, since the events occur in this order at process p1 (a ➝1 b).

• c ➝ d.

• b ➝ c, since these events are the sending and reception of message m1.

• d ➝ f, similarly.

• Combining these relations, we may also say that, for example, a ➝ f.
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Happened-Before Relation (➝)

• Note that the ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set 
of all events in the distributed system.

‣ Irreflexivity: ¬(a ➝ a).

‣ Partial ordering: not all the events can be related by ➝.
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• ¬(a ➝ e) and ¬(e ➝ a) since they occur at different processes, and there is no 
chain of messages intervening between them.

• We say that a and e are not ordered by ➝; a and b are concurrent (a || b).
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Logical Clocks

• Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

• Intuition: a logical clock is a monotonically increasing software counter, which 
associates a value in an ordered domain with each event in a system.

• Ordering relation: ➝
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Definition: local logical clock Li in process pi is a function which associates a 
value, Li(e), in an ordered set V with each event e in pi.
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called Lamport timestamps to events.

• Intuition: a logical clock is a monotonically increasing software counter, which 
associates a value in an ordered domain with each event in a system.
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Definition: local logical clock Li in process pi is a function which associates a 
value, Li(e), in an ordered set V with each event e in pi.

• Note that values of a logical clock need bear no particular relationship to any 
physical clock.
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Logical Clocks Rules

• To match the definition of ➝, we require the following clock rules:

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’).

CR2: If a is the sending of a message by pi and b is the receipt of the same 
message by pj, then Li(a) < Lj(b).

CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then L
(e) < L(e’’).

9

Ok, but how to do that 
in practice?
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Logical Clocks in Practice

10

• To capture the ➝ relation, processes update their logical clocks and transmit 
the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).
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• Although we increment clocks by 1, we could have chosen any positive value.
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Logical Clocks in Practice
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• To capture the ➝ relation, processes update their logical clocks and transmit 
the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).

• Clocks which follow these rules are known as LAMPORT LOGICAL CLOCKS.

e ➝ e’ ⇒ L(e) < L(e’)

• Although we increment clocks by 1, we could have chosen any positive value.
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[Lamport Clocks] Example 1
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LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).
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[Lamport Clocks] Example 2
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LOGICAL CLOCKS
NORMAL BEHAVIOUR:

Time1 2 5 6 7

1 2 7

1 3 4 5 6 7

P

Q

R

2

6

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM ) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).
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[Lamport Clocks] Example 3
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LOGICAL CLOCKS
NORMAL BEHAVIOUR (2):

Time1 2 3 6 7

1 2 3 4 5 6 7

1 2 3 5 6 7

P

Q

R

1

511

4 2

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM ) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).
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[Lamport Clocks] Example 4
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LOGICAL CLOCKS
LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM:

Time1 11 21 31 41

1 2 32 33

1 3 4 5 6 34

P

Q

R

2

31

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM ) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

         (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then      
              applies LC1 before timestamping the event receive(m).

LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM
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Homework

• By considering a chain of zero or more messages connecting events e and e’ 
and using induction on the length of any sequence of events relating e and e’, 
show that e ➝ e’ ⇒ L(e) < L(e’). 
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Homework

• The ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set of all 
events in the distributed system.

‣ Irreflexivity: ¬(a ➝ a).

‣ Partial ordering: not all the events can be related by ➝.

Extend the definition of the ➝ relation to create a total ordering ⇒ on events 

(that is, one for which all pairs of distinct events are ordered).
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Shortcoming of Lamport clocks

17

A significant problem with Lamport clocks is that 
if L(e) < L(e’), then we cannot infer that e ➝ e’.

L(e) < L(b) but not e ➝ b
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Another Problematic Scenario

• The message arriving at time 6 in R breaks the usual rules of causal ordering:

‣ Event 1 in P causes event 5 in R

‣ Event 1 in P causes event 6 in R

18

A PROBLEM

AN UNFORTUNATE CASE:
Time1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

P

Q

R

2

4

1

NOT IN ACCORDANCE WITH CAUSAL ORDERING:
EVENT 1 in P causes EVENT 5 in R
but EVENT 1 in P causes EVENT 6 in R.

SO DID 5 CAUSE 6 OR vice versa?

. . . R CANNOT TELL!

Course 02222, DTU, Spring 2009. – p. 12/2
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The message appears to be able to 
cause or be caused by the event at 
time 5!!
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So... What Do We Need?

• This problem arises because only a single number is used to represent time.

• Idea: more info is needed to tell the receiving process what the sending 
process knew about the other clocks in the system when it sent the message.

• It would then become clear that the message arriving at time 6 in R was sent 
before the message arriving at time 5.
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Mattern and Fidge Vector Clocks

• Developed to overcome the shortcoming of Lamport clocks

• Lamport clocks: e ➝ f then L(e) < L(f)

• Vector clocks: e ➝ f iff V(e) < V(f)

• Intuition: Lamport clocks try to describe global time by a single number, which 
“hides” essential information.

• Idea: processes keep information on what they know about the other clocks in 
the system and use this information when sending a message

20
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Vector Clocks

• A vector clock for a system of N processes: array of N integers.

• Each process pi keeps its own vector clock Vi, which it uses to timestamp 
local events.

21

Vi

i j

• Then Vi[j] describes pi’s KNOWLEDGE of pj’s LOCAL LOGICAL CLOCK.
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Vector Clocks

• A vector clock for a system of N processes: array of N integers.

• Each process pi keeps its own vector clock Vi, which it uses to timestamp 
local events.

21

Vi

i j

• Then Vi[j] describes pi’s KNOWLEDGE of pj’s LOCAL LOGICAL CLOCK.

• Example: if an event of p2 is timestamped with (1, 1, 0) then p2 knows that the 
value of the logical clocks are: 1 for p1, 1 for p2, 0 for p3.
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Note that...

• Vi[j] (j ≠ i): 

‣ Latest clock value received by pi from process pj.

‣ Number of events that have occurred at pj that pi has potentially been 
affected by.

- Process pj may have timestamped more events by this point, but no 
information has flowed to pi about them in messages yet!

22

Vi

i j
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[Vector Clocks] Implementation Rules

VC1: Initially, Vi[j] := 0, for i, j = 1, 2, ...., N.

VC2: Just before pi timestamps an event, it sets Vi[i] := Vi[i] + 1.

VC3: pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp in a message, it sets   

         Vi[j] := max(Vi[j], t[j]) for j = 1, 2, ...., N

    and then applies VC2 before timestamping the event receive(m).

23
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[Vector Clocks] Example

24
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Ordering on Vectors

• For vector clocks using rules VC1-4, it follows that

• Ordering relation (≤) on vectors:

• In particular:

‣ V = V’ ⇔ V[j] = V’[j] for j = 1, 2, ..., N

‣ V < V’ ⇔ V ≤ V’ ∧ V ≠ V’

‣ V || V’ ⇔ ¬(V < V’) ∧ ¬(V’ < V)

25

V ≤ V’ ⇔ V[j] ≤ V’[j] for j = 1, 2, ..., N



DTU Informatics
Department of Informatics and Mathematical Modelling

Ordering on Vectors

• For vector clocks using rules VC1-4, it follows that

• Ordering relation (≤) on vectors:

• In particular:
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e ➝ e’ ⇔ V(e) < V(e’)

V ≤ V’ ⇔ V[j] ≤ V’[j] for j = 1, 2, ..., N
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[Vector Clocks Ordering] Example

• V(a) < V(f), reflecting the fact that a ➝ f.

• c || e because neither V(c) ≤ V(e) nor V(e) ≤ V(c).

26
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[Vector Clocks] Example

27
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[Vector Clocks] Violation of Causal Ordering

28

M-F CLOCKS: EXAMPLE 2
Time<1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,5,0>

<0,1,0><0,2,0>

<2,3,0>

<2,4,0>

<2,5,0>

<0,0,1> <0,0,2>

<0,0,3>

<0,0,4>

<2,4,5>

P

Q

R

<2,0,0>

<2,4,0>

<2,5,0><1,0,0>

<1,0,0>

VIOLATION OF CAUSAL ORDERING OCCURS IF MESSAGE
ARRIVES WITH:

V TM <V Ti

Here: V TM [1]<V TR[1]

Course 02222, DTU, Spring 2009. – p. 15/2

• Violation of causal ordering occurs if message M arrives with VM < Vi.

• Here:	VM[1] < VR[1]
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1) Show that Vj[i] ≤ Vi[i].

2) Show that e ➝ e’ ⇒ V(e) < V(e’).

3) Using the result of Exercise 1), show that if events e and e’ are concurrent 
then neither V(e) ≤ V(e’) nor V(e’) ≤ V(e). 
Hence show that if V(e) < V(e’) then e ➝ e’.

29

Homework
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Problem: Finding the Global State

• Problem: to find the global state of a distributed system in which data items 
can move from one part of the system to another.

• Why? There are innumerable uses for this, for instance:

‣ finding the total number of files in a distributed file system, where files may 
be moved from one file server to another

‣ finding the total space occupied by files in such a distributed file system

31
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• Solution: distributed snapshot algorithm 
               (Chandy and Lamport, 1985)
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[Distributed Snapshots] Global State

• Idea: global states are described by 

‣ the states of the participating PROCESSES, together with 

‣ the states of the CHANNELS through which data (i.e., the files) pass when 
being transferred between these processes.

32
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GLOBAL STATE: ∑Money = £235
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[Distributed Snapshots] Assumptions

• The algorithm relies on two main assumptions:

‣ Channels are ERROR-FREE and SEQUENCE PRESERVING (FIFO)

‣ Channels deliver transmitted msgs after UNKNOWN BUT FINITE DELAY

• Other assumptions:

‣ The only events in the system which can give rise to changes in the state 
are communicating events.

‣ Simultaneous events are assumed not to occur, i.e., THE BEHAVIOR OF A 
DISTRIBUTED SYSTEM IS DESCRIBED BY A SEQUENCE WITH A TOTAL 
ORDERING OF ALL EVENTS.

33
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[Distributed Snapshots] Events

34

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c
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[Distributed Snapshots] Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:

1.p’s state in S is just exactly s.

2. If c is directed towards p, then c’s state in S must be a sequence of 
messages with M at its head.

34
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[Distributed Snapshots] Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:

1.p’s state in S is just exactly s.

2. If c is directed towards p, then c’s state in S must be a sequence of 
messages with M at its head.

34

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c

• A possible computation of the system is a sequence of possible events, 
starting from the initial global state of the system.
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[Distributed Snapshots] Next Global State

• If e = <p, s, s’, M, c> takes place in global state S, then the following global 
state is next(S, e), where:

1.p’s state in next(S, e) is s’

2. If c is directed towards p, then c’s state in next(S, e) is c’s state in S, with 
M removed from the head of the message sequence

3. If c is directed away from p, then c’s state in next(S, e) is c’s state in S, 
with M added to the tail of the message sequence.

35
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Example: A Possible Computation

• cij denotes the channel which can carry messages from pi to pj.

• System:

36
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[Distributed Snapshots] The Question

Can we now find rules for 
when to take snapshots of 

the individual processes and channels 
so as to build up a consistent picture of 

the global state S?

37
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[Distributed Snapshots] Consistent Picture

• Let us consider the happened before relation.

• If e1 ➝ e2 then e1 happened before e2 and could have caused it.

• A consistent picture of the global state is obtained if we include in our 
computation a set of possible events, H, such that 

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• If e1 were in H, but ei were not, then the set of events would include the effect 
of an event (for instance, the receipt of a file), but not the event causing it (the 
sending of the file), and an inconsistent picture would arise.
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[Distributed Snapshots] Consistent Global State

• A consistent picture of the global state is obtained if we include in our 
computation a set of possible events, H, such that 

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• The consistent GLOBAL STATE is then defined by

GS(H) = The state of each process pi after pi’s last event in H
           + for each channel, the sequence of msgs sent in H but not received in 
              H.

• In the distributed systems jargon, we say that consistent global states are 
delimited by a “CUT” representing a consistent picture of the global state of 
the system.
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Example: A Possible Computation
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Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

41

H contains {e1, e2, e3}

e1

e2

e3e4
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Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

42

e2 e2

e1

e2

e3e4

H contains {e1, e3}
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Example: Inconsistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

43

H contains 
{e1, e3, e4}, but not e2, 

where e2 ➝ e4

e1

e2

e3e4
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How to Construct H?

• Idea: The CUT and associated (consistent) set of events, H, are constructed 
by including specific control messages (MARKERS) in the stream of ordinary 
messages.

• Remember that we assume that: 

‣ Channels are all FIFO channels.

‣ A transmitted marker will be received (and dealt with) within a FINITE 
TIME.
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Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules.

45

• SEND MARKERS

Record pi’s state
Before sending any more messages from pi, send a marker on each channel 
cij directed away from pi.
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Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules.

45

• SEND MARKERS

Record pi’s state
Before sending any more messages from pi, send a marker on each channel 
cij directed away from pi.

• RECEIVE MARKER

On arrival of a marker via channel cji: 

IF        pi has not recorded its state

THEN SEND MARKERS rule; record cji’s state as empty

ELSE  record cji’s state as the sequence of messages received on cji since pi 
           last noted its state.
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Chandy and Lamport’s Algorithm to Construct H

• The algorithm can be initiated by any process by executing the rule SEND 
MARKERS.

‣ Multiple processes can initiate the algorithm concurrently!

‣ Each initiation needs to be distinguished by using unique markers.

‣ Different initiations by a process are identified by a sequence number.

• The algorithm terminates after each process has received a marker on all of 
its incoming channels.

• Complexity of the algorithm: O(E) messages, where E is the number of edges 
in the network.
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Example: The Algorithm In Action...

47

The computation

Time
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Example: The Algorithm In Action...
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p1 initiates the algorithm

m1

m2
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Example: The Algorithm In Action...
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p1 initiates the algorithm

m1

m2

m3

m4
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Example: The Algorithm In Action...
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p1 initiates the algorithm

m1

m2

m3

m4
m5
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Example: The Algorithm In Action...
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p1 initiates the algorithm

CUT
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Example: The Algorithm In Action...
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p2 initiates the algorithm
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Example: The Algorithm In Action...
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p2 initiates the algorithm
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Example: The Algorithm In Action...
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p2 initiates the algorithm
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Example: The Algorithm In Action...
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p2 initiates the algorithm

CUT
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How the Global Snapshot is Then Created?

• In a practical implementation, the recorded local snapshots must be put 
together to create a global snapshot of the distributed system.

• How? Several policies:

‣ each process sends its local snapshot to the initiator of the algorithm

‣ each process sends the information it records along all outgoing channels 
and each process receiving such information for the first time propagates 
it along its outgoing channels
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How is That Possible?

57

CUT CUT

In both these possible runs of 
the algorithm, the recorded 

global states NEVER 
occurred in the execution!
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Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!

58
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• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!

58

We cannot determine what the 
true sequence of these events is!
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Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!
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We cannot determine what the 
true sequence of these events is!

• When we record a process’ state, we are unable to know whether the events 
which we have already seen in this process lay before or after incomparable 
events in other processes.
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What Does the Algorithm Find?

• Pre-recording events: events in a computation which take place BEFORE the 
process in which they occur records its own state.

• Post-recording events: all other events.

• The algorithm finds a global state which corresponds to a PERMUTATION of 
the actual order of the events, such that all pre-recording events come before 
all post-recording events.

• The recorded global state, S*, is the one which would be found after all the 
pre-recording events and before all the post-recording events.
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Example

60

pre-recording events: {e2, e5}

recorded 
global state
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Example

61

pre-recording events: {e1, e2, e5}

recorded 
global state
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Global State Could Possibly Have Occurred! 

• S* is a state which could possibly have occurred, in the sense that:

‣ It is possible to reach S* via a sequence of possible events starting from 
the initial state of the system, Si (in the previous example: <e1, e2, e5>)

‣ It is possible to reach the final state of the system, Sf, via a sequence of 
possible events starting from S* (in the previous example: <e3, e4, e6>)
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So... Why Recording Global State?

• Stable property: a property that persists, such as termination or deadlock.

• Idea: if a stable property holds in the system before the snapshot begins, it 
holds in the recorded global snapshot.

• A recorded global state is useful in DETECTING STABLE PROPERTIES.

• Examples:

‣ Failure recovery: a global state (checkpoint) is periodically saved and 
recovery from a process failure is done by restoring the system to the last 
saved global state.

‣ Debugging: the system is restored to a consistent global state and the 
execution resumes from there in a controlled manner.
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• Suppose Chandy and Lamport’s distributed snapshot algorithm is initiated by 
process p1 just after event e1 in the following computation.

64

Homework

• Sketch how markers would be exchanged 
during the execution of the algorithm in 
this case.

• Which events are included in the set H?

• Which state components are noted down 
in the various processes, as the execution 
of the algorithm proceeds?

• Which global state S* is discovered by the 
algorithm in this case?


