
DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Time and Global States
Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

Introduction
Clock, Events and Process States
Logical Clocks
Global States

DTU Informatics
Department of Informatics and Mathematical Modelling

Why Is Time Interesting?

• Ordering of events: what happened first?

‣ Storage of data in memory, file, database, ...

‣ Requests for exclusive access - who asked first?

‣ Interactive exchanges - who answered first?

‣ Debugging - what could have caused the fault?

• Causality is linked to temporal ordering:
if ei causes ej, it must happen before ej

2

DTU Informatics
Department of Informatics and Mathematical Modelling

Distributed System Model

• We consider the following asynchronous distributed system:

‣ N processes pi, i = 1, ..., N

‣ each process executes on a single processor

‣ processors do not share memory --> processes communicate only by
message passing

‣ Actions of a process pi: communicating actions (Send or Receive) or state
transforming actions (such as changing the value of a variable)

• Event: occurrence of a single action that a process carries out as it executes

3

DTU Informatics
Department of Informatics and Mathematical Modelling

What Do We Know About Time?

• We cannot synchronize clocks perfectly across a distributed system

➡ We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

4

DTU Informatics
Department of Informatics and Mathematical Modelling

What Do We Know About Time?

• We cannot synchronize clocks perfectly across a distributed system

➡ We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

4

• The sequence of events within a single process pi can be placed in a total
ordering, denoted by the relation →i (“occurs before)” between the events.

e →i e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they
occurred in the order in which pi observes them.

DTU Informatics
Department of Informatics and Mathematical Modelling

What Do We Know About Time?

• We cannot synchronize clocks perfectly across a distributed system

➡ We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system. [Lamport, 1978]

4

• The sequence of events within a single process pi can be placed in a total
ordering, denoted by the relation →i (“occurs before)” between the events.

e →i e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they
occurred in the order in which pi observes them.

• Whenever a message is sent between two processes, the event of sending
the message occurred before the event of receiving the message.

DTU Informatics
Department of Informatics and Mathematical Modelling

Happened-Before Relation (➝)

• Lamport’s happened-before relation ➝ (or causal ordering):

HB1: If ∃ process pi : e ➝i e’, then e ➝ e’.

HB2: For any message m, send(m) ➝ receive(m)

HB3: If e, e’, e’’ are events such that e ➝ e’ and e’ ➝ e’’ then e ➝ e’’.

5

DTU Informatics
Department of Informatics and Mathematical Modelling

Happened-Before Relation (➝)

• Lamport’s happened-before relation ➝ (or causal ordering):

HB1: If ∃ process pi : e ➝i e’, then e ➝ e’.

HB2: For any message m, send(m) ➝ receive(m)

HB3: If e, e’, e’’ are events such that e ➝ e’ and e’ ➝ e’’ then e ➝ e’’.

5

• Thus, if e and e’ are events, and if e ➝ e’, then we can find a series of events
e1, e2, ..., en occurring at one or more processes such that

‣ e = e1

‣ e’ = en

‣ for i = 1, 2, ..., N-1 either HB1 or HB2 applies between ei and ei+1.

In other words: either they occur in succession at the same process, or there
is a message m such that ei = send(m) and ei+1 = receive(m).

DTU Informatics
Department of Informatics and Mathematical Modelling

[Happened Before Relation] Example

• a ➝ b, since the events occur in this order at process p1 (a ➝1 b).

• c ➝ d.

• b ➝ c, since these events are the sending and reception of message m1.

• d ➝ f, similarly.

• Combining these relations, we may also say that, for example, a ➝ f.

6

DTU Informatics
Department of Informatics and Mathematical Modelling

Happened-Before Relation (➝)

• Note that the ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set
of all events in the distributed system.

‣ Irreflexivity: ¬(a ➝ a).

‣ Partial ordering: not all the events can be related by ➝.

7

DTU Informatics
Department of Informatics and Mathematical Modelling

Happened-Before Relation (➝)

• Note that the ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set
of all events in the distributed system.

‣ Irreflexivity: ¬(a ➝ a).

‣ Partial ordering: not all the events can be related by ➝.

7

• ¬(a ➝ e) and ¬(e ➝ a) since they occur at different processes, and there is no
chain of messages intervening between them.

• We say that a and e are not ordered by ➝; a and b are concurrent (a || b).

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks

• Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

• Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

• Ordering relation: ➝

8

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks

• Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

• Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

• Ordering relation: ➝

8

Definition: local logical clock Li in process pi is a function which associates a
value, Li(e), in an ordered set V with each event e in pi.

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks

• Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events.

• Intuition: a logical clock is a monotonically increasing software counter, which
associates a value in an ordered domain with each event in a system.

• Ordering relation: ➝

8

Definition: local logical clock Li in process pi is a function which associates a
value, Li(e), in an ordered set V with each event e in pi.

• Note that values of a logical clock need bear no particular relationship to any
physical clock.

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks Rules

• To match the definition of ➝, we require the following clock rules:

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’).

CR2: If a is the sending of a message by pi and b is the receipt of the same
message by pj, then Li(a) < Lj(b).

CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then L
(e) < L(e’’).

9

Ok, but how to do that
in practice?

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks in Practice

10

• To capture the ➝ relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks in Practice

10

• To capture the ➝ relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

• Although we increment clocks by 1, we could have chosen any positive value.

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Clocks in Practice

10

• To capture the ➝ relation, processes update their logical clocks and transmit
the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

• Clocks which follow these rules are known as LAMPORT LOGICAL CLOCKS.

e ➝ e’ ⇒ L(e) < L(e’)

• Although we increment clocks by 1, we could have chosen any positive value.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Lamport Clocks] Example 1

11

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

DTU Informatics
Department of Informatics and Mathematical Modelling

[Lamport Clocks] Example 2

12

LOGICAL CLOCKS
NORMAL BEHAVIOUR:

Time1 2 5 6 7

1 2 7

1 3 4 5 6 7

P

Q

R

2

6

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

DTU Informatics
Department of Informatics and Mathematical Modelling

[Lamport Clocks] Example 3

13

LOGICAL CLOCKS
NORMAL BEHAVIOUR (2):

Time1 2 3 6 7

1 2 3 4 5 6 7

1 2 3 5 6 7

P

Q

R

1

511

4 2

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

DTU Informatics
Department of Informatics and Mathematical Modelling

[Lamport Clocks] Example 4

14

LOGICAL CLOCKS
LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM:

Time1 11 21 31 41

1 2 32 33

1 3 4 5 6 34

P

Q

R

2

31

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1.

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li.

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then
 applies LC1 before timestamping the event receive(m).

LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM

DTU Informatics
Department of Informatics and Mathematical Modelling

Homework

• By considering a chain of zero or more messages connecting events e and e’
and using induction on the length of any sequence of events relating e and e’,
show that e ➝ e’ ⇒ L(e) < L(e’).

15

DTU Informatics
Department of Informatics and Mathematical Modelling

Homework

• The ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set of all
events in the distributed system.

‣ Irreflexivity: ¬(a ➝ a).

‣ Partial ordering: not all the events can be related by ➝.

Extend the definition of the ➝ relation to create a total ordering ⇒ on events

(that is, one for which all pairs of distinct events are ordered).

16

DTU Informatics
Department of Informatics and Mathematical Modelling

Shortcoming of Lamport clocks

17

A significant problem with Lamport clocks is that
if L(e) < L(e’), then we cannot infer that e ➝ e’.

L(e) < L(b) but not e ➝ b

DTU Informatics
Department of Informatics and Mathematical Modelling

Another Problematic Scenario

• The message arriving at time 6 in R breaks the usual rules of causal ordering:

‣ Event 1 in P causes event 5 in R

‣ Event 1 in P causes event 6 in R

18

A PROBLEM

AN UNFORTUNATE CASE:
Time1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

P

Q

R

2

4

1

NOT IN ACCORDANCE WITH CAUSAL ORDERING:
EVENT 1 in P causes EVENT 5 in R
but EVENT 1 in P causes EVENT 6 in R.

SO DID 5 CAUSE 6 OR vice versa?

. . . R CANNOT TELL!

Course 02222, DTU, Spring 2009. – p. 12/2

DTU Informatics
Department of Informatics and Mathematical Modelling

Another Problematic Scenario

• The message arriving at time 6 in R breaks the usual rules of causal ordering:

‣ Event 1 in P causes event 5 in R

‣ Event 1 in P causes event 6 in R

18

A PROBLEM

AN UNFORTUNATE CASE:
Time1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

P

Q

R

2

4

1

NOT IN ACCORDANCE WITH CAUSAL ORDERING:
EVENT 1 in P causes EVENT 5 in R
but EVENT 1 in P causes EVENT 6 in R.

SO DID 5 CAUSE 6 OR vice versa?

. . . R CANNOT TELL!

Course 02222, DTU, Spring 2009. – p. 12/2

The message appears to be able to
cause or be caused by the event at
time 5!!

DTU Informatics
Department of Informatics and Mathematical Modelling

So... What Do We Need?

• This problem arises because only a single number is used to represent time.

• Idea: more info is needed to tell the receiving process what the sending
process knew about the other clocks in the system when it sent the message.

• It would then become clear that the message arriving at time 6 in R was sent
before the message arriving at time 5.

19

A PROBLEM

AN UNFORTUNATE CASE:
Time1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

P

Q

R

2

4

1

NOT IN ACCORDANCE WITH CAUSAL ORDERING:
EVENT 1 in P causes EVENT 5 in R
but EVENT 1 in P causes EVENT 6 in R.

SO DID 5 CAUSE 6 OR vice versa?

. . . R CANNOT TELL!

Course 02222, DTU, Spring 2009. – p. 12/2

DTU Informatics
Department of Informatics and Mathematical Modelling

Mattern and Fidge Vector Clocks

• Developed to overcome the shortcoming of Lamport clocks

• Lamport clocks: e ➝ f then L(e) < L(f)

• Vector clocks: e ➝ f iff V(e) < V(f)

• Intuition: Lamport clocks try to describe global time by a single number, which
“hides” essential information.

• Idea: processes keep information on what they know about the other clocks in
the system and use this information when sending a message

20

DTU Informatics
Department of Informatics and Mathematical Modelling

Vector Clocks

• A vector clock for a system of N processes: array of N integers.

• Each process pi keeps its own vector clock Vi, which it uses to timestamp
local events.

21

Vi

i j

• Then Vi[j] describes pi’s KNOWLEDGE of pj’s LOCAL LOGICAL CLOCK.

DTU Informatics
Department of Informatics and Mathematical Modelling

Vector Clocks

• A vector clock for a system of N processes: array of N integers.

• Each process pi keeps its own vector clock Vi, which it uses to timestamp
local events.

21

Vi

i j

• Then Vi[j] describes pi’s KNOWLEDGE of pj’s LOCAL LOGICAL CLOCK.

• Example: if an event of p2 is timestamped with (1, 1, 0) then p2 knows that the
value of the logical clocks are: 1 for p1, 1 for p2, 0 for p3.

DTU Informatics
Department of Informatics and Mathematical Modelling

Note that...

• Vi[j] (j ≠ i):

‣ Latest clock value received by pi from process pj.

‣ Number of events that have occurred at pj that pi has potentially been
affected by.

- Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages yet!

22

Vi

i j

DTU Informatics
Department of Informatics and Mathematical Modelling

[Vector Clocks] Implementation Rules

VC1: Initially, Vi[j] := 0, for i, j = 1, 2,, N.

VC2: Just before pi timestamps an event, it sets Vi[i] := Vi[i] + 1.

VC3: pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp in a message, it sets

 Vi[j] := max(Vi[j], t[j]) for j = 1, 2,, N

 and then applies VC2 before timestamping the event receive(m).

23

DTU Informatics
Department of Informatics and Mathematical Modelling

[Vector Clocks] Example

24

DTU Informatics
Department of Informatics and Mathematical Modelling

Ordering on Vectors

• For vector clocks using rules VC1-4, it follows that

• Ordering relation (≤) on vectors:

• In particular:

‣ V = V’ ⇔ V[j] = V’[j] for j = 1, 2, ..., N

‣ V < V’ ⇔ V ≤ V’ ∧ V ≠ V’

‣ V || V’ ⇔ ¬(V < V’) ∧ ¬(V’ < V)

25

V ≤ V’ ⇔ V[j] ≤ V’[j] for j = 1, 2, ..., N

DTU Informatics
Department of Informatics and Mathematical Modelling

Ordering on Vectors

• For vector clocks using rules VC1-4, it follows that

• Ordering relation (≤) on vectors:

• In particular:

‣ V = V’ ⇔ V[j] = V’[j] for j = 1, 2, ..., N

‣ V < V’ ⇔ V ≤ V’ ∧ V ≠ V’

‣ V || V’ ⇔ ¬(V < V’) ∧ ¬(V’ < V)

25

e ➝ e’ ⇔ V(e) < V(e’)

V ≤ V’ ⇔ V[j] ≤ V’[j] for j = 1, 2, ..., N

DTU Informatics
Department of Informatics and Mathematical Modelling

[Vector Clocks Ordering] Example

• V(a) < V(f), reflecting the fact that a ➝ f.

• c || e because neither V(c) ≤ V(e) nor V(e) ≤ V(c).

26

DTU Informatics
Department of Informatics and Mathematical Modelling

[Vector Clocks] Example

27

DTU Informatics
Department of Informatics and Mathematical Modelling

[Vector Clocks] Violation of Causal Ordering

28

M-F CLOCKS: EXAMPLE 2
Time<1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,5,0>

<0,1,0><0,2,0>

<2,3,0>

<2,4,0>

<2,5,0>

<0,0,1> <0,0,2>

<0,0,3>

<0,0,4>

<2,4,5>

P

Q

R

<2,0,0>

<2,4,0>

<2,5,0><1,0,0>

<1,0,0>

VIOLATION OF CAUSAL ORDERING OCCURS IF MESSAGE
ARRIVES WITH:

V TM <V Ti

Here: V TM [1]<V TR[1]

Course 02222, DTU, Spring 2009. – p. 15/2

• Violation of causal ordering occurs if message M arrives with VM < Vi.

• Here:	VM[1] < VR[1]

DTU Informatics
Department of Informatics and Mathematical Modelling

1) Show that Vj[i] ≤ Vi[i].

2) Show that e ➝ e’ ⇒ V(e) < V(e’).

3) Using the result of Exercise 1), show that if events e and e’ are concurrent
then neither V(e) ≤ V(e’) nor V(e’) ≤ V(e).
Hence show that if V(e) < V(e’) then e ➝ e’.

29

Homework

DTU Informatics
Department of Informatics and Mathematical Modelling

Logical Time and Global States
Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

Introduction
Clock, Events and Process States
Logical Time and Logical Clocks
Global States

DTU Informatics
Department of Informatics and Mathematical Modelling

Problem: Finding the Global State

• Problem: to find the global state of a distributed system in which data items
can move from one part of the system to another.

• Why? There are innumerable uses for this, for instance:

‣ finding the total number of files in a distributed file system, where files may
be moved from one file server to another

‣ finding the total space occupied by files in such a distributed file system

31

DTU Informatics
Department of Informatics and Mathematical Modelling

Problem: Finding the Global State

• Problem: to find the global state of a distributed system in which data items
can move from one part of the system to another.

• Why? There are innumerable uses for this, for instance:

‣ finding the total number of files in a distributed file system, where files may
be moved from one file server to another

‣ finding the total space occupied by files in such a distributed file system

31

• Solution: distributed snapshot algorithm
 (Chandy and Lamport, 1985)

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Global State

• Idea: global states are described by

‣ the states of the participating PROCESSES, together with

‣ the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

32

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Global State

• Idea: global states are described by

‣ the states of the participating PROCESSES, together with

‣ the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

32

GLOBAL STATE: ∑Money = £235

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Global State

• Idea: global states are described by

‣ the states of the participating PROCESSES, together with

‣ the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

32

GLOBAL STATE: ∑Money = £235

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Global State

• Idea: global states are described by

‣ the states of the participating PROCESSES, together with

‣ the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

32

GLOBAL STATE: ∑Money = £235

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Global State

• Idea: global states are described by

‣ the states of the participating PROCESSES, together with

‣ the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes.

32

GLOBAL STATE: ∑Money = £235

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Assumptions

• The algorithm relies on two main assumptions:

‣ Channels are ERROR-FREE and SEQUENCE PRESERVING (FIFO)

‣ Channels deliver transmitted msgs after UNKNOWN BUT FINITE DELAY

• Other assumptions:

‣ The only events in the system which can give rise to changes in the state
are communicating events.

‣ Simultaneous events are assumed not to occur, i.e., THE BEHAVIOR OF A
DISTRIBUTED SYSTEM IS DESCRIBED BY A SEQUENCE WITH A TOTAL
ORDERING OF ALL EVENTS.

33

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Events

34

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:

1.p’s state in S is just exactly s.

2. If c is directed towards p, then c’s state in S must be a sequence of
messages with M at its head.

34

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:

1.p’s state in S is just exactly s.

2. If c is directed towards p, then c’s state in S must be a sequence of
messages with M at its head.

34

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c

• A possible computation of the system is a sequence of possible events,
starting from the initial global state of the system.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Next Global State

• If e = <p, s, s’, M, c> takes place in global state S, then the following global
state is next(S, e), where:

1.p’s state in next(S, e) is s’

2. If c is directed towards p, then c’s state in next(S, e) is c’s state in S, with
M removed from the head of the message sequence

3. If c is directed away from p, then c’s state in next(S, e) is c’s state in S,
with M added to the tail of the message sequence.

35

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: A Possible Computation

• cij denotes the channel which can carry messages from pi to pj.

• System:

36

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] The Question

Can we now find rules for
when to take snapshots of

the individual processes and channels
so as to build up a consistent picture of

the global state S?

37

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Consistent Picture

• Let us consider the happened before relation.

• If e1 ➝ e2 then e1 happened before e2 and could have caused it.

• A consistent picture of the global state is obtained if we include in our
computation a set of possible events, H, such that

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• If e1 were in H, but ei were not, then the set of events would include the effect
of an event (for instance, the receipt of a file), but not the event causing it (the
sending of the file), and an inconsistent picture would arise.

38

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed Snapshots] Consistent Global State

• A consistent picture of the global state is obtained if we include in our
computation a set of possible events, H, such that

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• The consistent GLOBAL STATE is then defined by

GS(H) = The state of each process pi after pi’s last event in H
 + for each channel, the sequence of msgs sent in H but not received in
 H.

• In the distributed systems jargon, we say that consistent global states are
delimited by a “CUT” representing a consistent picture of the global state of
the system.

39

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: A Possible Computation

40

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

41

H contains {e1, e2, e3}

e1

e2

e3e4

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

42

e2 e2

e1

e2

e3e4

H contains {e1, e3}

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: Inconsistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

43

H contains
{e1, e3, e4}, but not e2,

where e2 ➝ e4

e1

e2

e3e4

DTU Informatics
Department of Informatics and Mathematical Modelling

How to Construct H?

• Idea: The CUT and associated (consistent) set of events, H, are constructed
by including specific control messages (MARKERS) in the stream of ordinary
messages.

• Remember that we assume that:

‣ Channels are all FIFO channels.

‣ A transmitted marker will be received (and dealt with) within a FINITE
TIME.

44

DTU Informatics
Department of Informatics and Mathematical Modelling

Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules.

45

• SEND MARKERS

Record pi’s state
Before sending any more messages from pi, send a marker on each channel
cij directed away from pi.

DTU Informatics
Department of Informatics and Mathematical Modelling

Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules.

45

• SEND MARKERS

Record pi’s state
Before sending any more messages from pi, send a marker on each channel
cij directed away from pi.

• RECEIVE MARKER

On arrival of a marker via channel cji:

IF pi has not recorded its state

THEN SEND MARKERS rule; record cji’s state as empty

ELSE record cji’s state as the sequence of messages received on cji since pi
 last noted its state.

DTU Informatics
Department of Informatics and Mathematical Modelling

Chandy and Lamport’s Algorithm to Construct H

• The algorithm can be initiated by any process by executing the rule SEND
MARKERS.

‣ Multiple processes can initiate the algorithm concurrently!

‣ Each initiation needs to be distinguished by using unique markers.

‣ Different initiations by a process are identified by a sequence number.

• The algorithm terminates after each process has received a marker on all of
its incoming channels.

• Complexity of the algorithm: O(E) messages, where E is the number of edges
in the network.

46

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

47

The computation

Time

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

48

p1 initiates the algorithm

m1

m2

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

49

p1 initiates the algorithm

m1

m2

m3

m4

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

50

p1 initiates the algorithm

m1

m2

m3

m4
m5

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

51

p1 initiates the algorithm

CUT

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

52

p2 initiates the algorithm

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

53

p2 initiates the algorithm

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

54

p2 initiates the algorithm

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: The Algorithm In Action...

55

p2 initiates the algorithm

CUT

DTU Informatics
Department of Informatics and Mathematical Modelling

How the Global Snapshot is Then Created?

• In a practical implementation, the recorded local snapshots must be put
together to create a global snapshot of the distributed system.

• How? Several policies:

‣ each process sends its local snapshot to the initiator of the algorithm

‣ each process sends the information it records along all outgoing channels
and each process receiving such information for the first time propagates
it along its outgoing channels

56

DTU Informatics
Department of Informatics and Mathematical Modelling

How is That Possible?

57

CUT CUT

In both these possible runs of
the algorithm, the recorded

global states NEVER
occurred in the execution!

DTU Informatics
Department of Informatics and Mathematical Modelling

Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!

58

DTU Informatics
Department of Informatics and Mathematical Modelling

Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!

58

We cannot determine what the
true sequence of these events is!

DTU Informatics
Department of Informatics and Mathematical Modelling

Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing
relationship of e3 and e5.
WIth respect to ➝, e3 and e5 are incomparable!

58

We cannot determine what the
true sequence of these events is!

• When we record a process’ state, we are unable to know whether the events
which we have already seen in this process lay before or after incomparable
events in other processes.

DTU Informatics
Department of Informatics and Mathematical Modelling

What Does the Algorithm Find?

• Pre-recording events: events in a computation which take place BEFORE the
process in which they occur records its own state.

• Post-recording events: all other events.

• The algorithm finds a global state which corresponds to a PERMUTATION of
the actual order of the events, such that all pre-recording events come before
all post-recording events.

• The recorded global state, S*, is the one which would be found after all the
pre-recording events and before all the post-recording events.

59

DTU Informatics
Department of Informatics and Mathematical Modelling

Example

60

pre-recording events: {e2, e5}

recorded
global state

DTU Informatics
Department of Informatics and Mathematical Modelling

Example

61

pre-recording events: {e1, e2, e5}

recorded
global state

DTU Informatics
Department of Informatics and Mathematical Modelling

Global State Could Possibly Have Occurred!

• S* is a state which could possibly have occurred, in the sense that:

‣ It is possible to reach S* via a sequence of possible events starting from
the initial state of the system, Si (in the previous example: <e1, e2, e5>)

‣ It is possible to reach the final state of the system, Sf, via a sequence of
possible events starting from S* (in the previous example: <e3, e4, e6>)

62

DTU Informatics
Department of Informatics and Mathematical Modelling

So... Why Recording Global State?

• Stable property: a property that persists, such as termination or deadlock.

• Idea: if a stable property holds in the system before the snapshot begins, it
holds in the recorded global snapshot.

• A recorded global state is useful in DETECTING STABLE PROPERTIES.

• Examples:

‣ Failure recovery: a global state (checkpoint) is periodically saved and
recovery from a process failure is done by restoring the system to the last
saved global state.

‣ Debugging: the system is restored to a consistent global state and the
execution resumes from there in a controlled manner.

63

DTU Informatics
Department of Informatics and Mathematical Modelling

• Suppose Chandy and Lamport’s distributed snapshot algorithm is initiated by
process p1 just after event e1 in the following computation.

64

Homework

• Sketch how markers would be exchanged
during the execution of the algorithm in
this case.

• Which events are included in the set H?

• Which state components are noted down
in the various processes, as the execution
of the algorithm proceeds?

• Which global state S* is discovered by the
algorithm in this case?

