3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 69

Tteration | Error

1 0.001014100351829362328076440339
2 0.000000007376250992035108851841
3 0.000000000000000000183130608478

Table 3.1: Errors in Calculating 7

“tail.” However, most of the probability is concentrated in the interval
[0,t1]. Hence, we might choose to set the run-time limit at t1, rather than
at the worst-case execution time.

If a primary version completes successfully, we do not need its corre-
sponding alternative for that period. This time can thus be reclaimed.
Such reclamation can result in time becoming available for other primaries
to be executed, which were not part of the original schedule. The algorithm
for doing so is quite a simple modification of what we have seen above, and
is left to the reader as an exercise.

3.3 Uniprocessor Scheduling of IRIS Tasks

Thus far in this chapter, we have assumed that to obtain acceptable output,
a task had to be run to completion. Put another way, if the task is not
run to completion, we get zero reward from it (i.e., it may as well not have
been run). However, there is a large number of tasks for which this is not
true. These are iterative algorithms. The longer they run, the higher is the
quality of their output (up to some maximum runtime).

Example 32 Figure 3.32 contains an algorithm to compute the value of w.
The greater the number of times that step 2 is executed, the more accurate
is P as an approzimation of w (subject, of course, to limitations due to
finite numerical precision).

The error from the actual value of © as a function of the iteration num-
ber is provided in Table 3.1. The error is greatest for the first iteration; it
diminishes rapidly after that.

Search algorithms for finding the minimum of some complicated function
are also another example of such tasks. The longer we search the parameter
space, the greater is the chance that we will obtain the optimum value, or
something close to it.

70 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

1. Set A=+v2, B=+/2, P=2+2.

Repeat Step 2 as long as necessary.

2. Compute
4 VA+1/VA
B 2

A+1

P = P|l——

(5+1)
BVA+1/VA
B ovaerTiva

B+1

B is an approximation of w.

Figure 3.32: Algorithm for Calculating =

Example 33 Chessplaying algorithms evaluate the goodness of moves by
looking ahead several moves. The more time they have, the further they can
look, and the more accurate will be the evaluation.

Tasks of this type are known as Increased Reward with Increased Service
(IRIS) tasks. The reward function associated with an IRIS task increases
with the amount of service given to it.

Typically, the reward function is of the form

0 ifx<m
R(z) =< r(z) ifm<zr<o+m (3.82)
rlo+m) ifz>o0+m

where r(z) is monotonically nondecreasing in z. The reward is 0 up to
some time m: if the task is not executed up to that point, it produces no
useful output. Tasks with this reward function can be regarded as having
a mandatory and an optional component. The mandatory portion (with
execution time m) must be completed by the deadline if the task is critical;
the optional portion can be done if time permits. The optional portion

3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 71

requires a total of o time to complete. In each case, the execution of a task
must be stopped by its deadline, d.

The scheduling task can be described as the following optimization prob-
lem:

Schedule the tasks so that the reward is mazximized, subject to
the requirement that the mandatory portions of all the tasks are
completed.

It can be shown that this optimization problem is NP-complete when there
is no restriction on the release times, deadlines, and reward functions. How-
ever, for some special cases, we do have scheduling algorithms. We now turn
to studying these. In what follows, m; and o; denote the execution time of
the mandatory and optional parts, respectively of T;.

3.3.1 Identical, Linear Reward Functions

For task Tj;, the reward function is given by

0 if z <m;
Ri(z)=< z—m; ifm;<z<o0;+m; (3.83)
0; if x > m; + o;

That is, the reward from executing a unit of optional work is one unit. A
schedule is said to be optimal if the reward is maximized subject to all tasks
completing at least their mandatory portions by the task deadline.

Theorem 13 The EDF algorithm is optimal if the mandatory parts of all
tasks are 0.

Proof: If the mandatory portions are zero, then we can exrecute as little
of any task as we please. It is easy to see that reward is mazrimized if the
processor is kept busy for as much time as possible. But this is exactly what
the EDF algorithm does: if the processor is idle at some time t, that is
because (a) all the previously released tasks have either completed or their
deadlines have expired by time t, and (b) no other tasks have been released.
Q.E.D.

We can use this result to obtain an optimal scheduling algorithm for the
case when the mandatory portions are not all zero. The tasks Ty,---,T,

72 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

have mandatory portions Mj,---, M,, and optional portions O1,---,O,.
Define

M = {Mb T Mn}

0o = {017 ToT JO’E}

T = {Tla e aTn}

The optimal algorithm, TRIS1, is shown in Figure 3.33. Although it looks
a little forbidding, the basic idea behind it is quite simple. First, since we
receive one unit of reward for each unit of the optional portion completed
(for any task), the highest reward, subject to the constraint that all manda-
tory portions are completed, is obtained when the processor carries out as
much execution as possible.

We begin by running the EDF algorithm for the total run time of each
task. Call the resulting schedule S;. S; maximizes the total processor
busy time. If S; is a feasible schedule, we are clearly done: we have given
each task as much time as it needs to finish executing both its mandatory
and optional portions, and still met each task deadline. Suppose we do
not obtain a feasible schedule. That is, some task cannot be given its full
execution time and still meet its deadline. In that case, we run the EDF
algorithm on the mandatory portions of each task, to yield schedule S,,. If
this results in an infeasible schedule, then we must stop since we can’t even
execute the mandatory portions of each task. Suppose that S,, is feasible.
Then, we adjust Sy to ensure that each task receives at least its mandatory
portion of service.

Example 34 Consider the set of four tasks with parameters shown in the
following table.

Task Number | m; | o; | r; | D;
1 1| 4| 0| 10
2 11 2| 1| 12
3 3| 8| 1] 15
4 6| 2| 2| 19

In Step 1 of IRIS1, we run the EDF algorithm with task execution times 5,
3, 6, and 8, respectively (for tasks 1 to 4), to produce Sy, in Figure 3.34.
It is impossible to meet the deadline of task 4. Hence, we go to step 2.
Running the EDF algorithm on the task set M produces the feasible
schedule S,, shown in Figure 3.84. All the deadlines are met, so we can

3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 73

1. Run the EDF algorithm on the task set T to generate a schedule, S;.
If this is feasible,
An optimal schedule has been found: sTOP.
Else,
go to step 2.
end if

2. Run the EDF algorithm on the task set M, to generate a schedule S,,.
If this set is not feasible,
T cannot be feasibly scheduled: sToP.
Else,
Define a; as the i'th instant in S,,, when either the scheduled task
changes, or the processor becomes idle, i = 1,2,---.
Let k& be the total number of these instants.
Define ag as when the first task begins executing in S,,.
Define 7(j) as the task that executes in Sy, in [a;,a;j41],
Define L;(j) and L,,(j) as the total execution time given to
task 7(j) in S¢(j) and Sp.(j) respectively, after time a;.
Go to step 3.
end if

3. j=k-1

do whlle k—1)
L(j)) then

ify Si by
(a) assigning L, (j) — L¢(j) of processor time in [a;, aj4+1] to 7(j), and
(b) reducing the processor time assigned to other tasks in
[ajaaj-i-l] by Lm (4) — Le(5)-
Update Ly(1),---, L(j) appropriately.

end if

j=i-1
end do

(0<j<
(L()>
Mod

end

Figure 3.33: Algorithm IRIS1

74 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

S ’ T, | T, T, T,

Sn ’ My | M, | M3 | M, ‘

Su ’ T, | T, | T, | T, T,
l Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ 1 Il Il Il ‘
0 5 10 15 20

Figure 3.34: Schedules produced by IRIS1 for Example 34

proceed to Step 8. We have ag = 0,a1 = 1,a2 = 2,a3 = 5,a4 = 11. Also,
k=4.

Now, we move to Step 3 of the algorithm. Let us start with as. We have
task Ty scheduled in Sy, over the interval [as,a4], and given 6 units of time.
In schedule Sy, Ty is given only 5 units of time. Hence, we modify Syo by
adding 6—5 = 1 unit of time to Ty in the interval [as, a4), and taking away 1
unit from the task originally scheduled at az in Sy, namely T>. This results
in task Ty being scheduled for o total of 6 units beyond asz. The resultant
schedule is Sy1. Let us now move to the interval [az,a3). T3 is scheduled
beyond that time in S,,, for a total of 8 units. In Sy, T3 has been scheduled
for a total of 6 units beyond as. So, no modifications are needed: T3 has
enough time to meet its mandatory portion. Next, we consider [ai,az).
T, is scheduled for that interval in S,,. Let us consider the time given to
T> beyond a; in Sy. It is 2 units, which is greater than the mandatory
requirement. So, no modifications are needed. Finally, consider [ap,a1).
Ty is scheduled there in schedule Sy, for one unit. In Sy, T1 is scheduled
for & units, which exceeds the time given in S,,. So, no modifications are
needed, and the optimal schedule is Sy .

Theorem 14 For IRIS tasks with reward functions of the type being con-
sidered in this section, Algorithm IRIS1 is optimal.

Proof: We leave a formal proof to the reader. Here, we will merely sketch
the ideas behind the proof. If a feasible schedule is generated in Step 1,
then each task has been run to completion, and we are done. If not, then

3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 75

from Theorem 13, we know that the EDF algorithm is optimal when none
of the tasks has any mandatory portion: in that case, the schedule we would
obtain would be Sy in step 1. But, the transformations that we do in step 3
does not change the total time for which the processor runs: it only ensures
that all mandatory portions are completed. This completes the proof sketch.
Q.E.D.

3.3.2 Nonidentical, Linear Reward Functions

The reward function for task Tj is given by

0 if £ <my
Ri(z) =< wi(z—m;) ifm;<z<m;+o; (3.84)
w;0; if x> m; + 04

Each task has a weight, w;, associated with it. Assume that the tasks are
numbered in non-increasing order of weights, i.e., wy > we > -+ > wy,.
The procedure for optimally scheduling such tasks is obvious: always run
the available task with the greatest weight, subject to the need to execute
the mandatory portions of all tasks by their respective deadlines. This is
done by algorithm, TRIS2, which is shown in Figure 3.35.

The idea behind this algorithm is the following. As with IRIS1, we
check to see if we can feasibly schedule all the mandatory portions. If
not, we stop right away. If we succeed, we proceed by running IRIS1 with
mandatory task set equal to the mandatory portions of the tasks and the
set of optional portions equal only to optional portion of task 7;. That is,
the optional portions of the other tasks are considered not to exist. IRIS1
is executed. It provides as much time as possible to 7T}, consistent with the
need to meet the mandatory portions of all the tasks.

We now take this schedule, and label as mandatory the part of the
optional portion of 77 that was scheduled by IRIS1. Next, we run the IRIS1
algorithm with this revised mandatory portion and the optional portion of
T,, and continue in this way for the remaining tasks. .

Theorem 15 If the reward functions are as defined in this section, algo-
rithm IRIS2 is optimal.

Proof: Once again, we will leave the formal proof as an exercise and merely
provide a brief sketch. We know from Theorem 14 that O, is the mazimum

76 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

1. Set M’ to be the set of mandatory portions of all the tasks, and O’ = .
Run the EDF algorithm.

2. If S, is not feasible,
the task set T is not schedulable: STOP.
else
1=1
do while (1 <i <mn)
Set O' = O’ U {0;}, and use IRIS1 to find an optimal schedule
Define O} to be the part of O; scheduled by IRISI.
Set M' = M' U {0}}
i=1+1
end do
end if
end

Figure 3.35: Algorithm IRIS2

3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 7

amount of service that can be given to O,, (which is the task with the great-
est weight) if all the mandatory tasks are to meet their deadlines. Similarly,
we have that O),_, is the mazimum amount of service that can be given to
On_1, subject to the constraint that all mandatory tasks must meet their
deadlines and that as much of O,, as possible should be executed. In gen-
eral, for i < n, we have that O} is the mazimum amount of service that
can be given to O;, subject to the constraint that all mandatory tasks must
meet their deadlines and that as much of O;11,--+,0, as possible should
be executed. The result follows from this observation. Q.E.D.

3.3.3 0/1 Reward Functions

We assume here that for any task, 4, the reward function is given by

Ri(z) =

{ 0 if x <m;+ o; (3.85)

1 ifz>m;+o0;

That is, we get no reward for executing the optional portion partially. If
we run the optional portion to completion, we obtain one unit of reward,
else nothing.

The optimal strategy would therefore be to complete as many optional
portions as possible, subject to the constraint that the deadlines of all the
mandatory portions must be met. Unfortunately, when the execution times
are arbitrary, the problem of obtaining an optimal schedule can be shown
to be NP-complete.

Finding an efficient optimal scheduling algorithm under the 0/1 case is
therefore a hopeless task. We must therefore make do with heuristics. One
rather obvious heuristic is shown in Figure 3.36. The algorithm is based
on the following reasoning. Since we get the same reward for completing
the optional portion of any task, it is best to run the tasks with the shorter
optional portions. So, we assign weights according to the inverse of the
duration of the optional portions, and run IRIS2. If an optional part is not
run to completion in the resultant schedule, we remove its optional portion
from consideration and rerun IRIS2. We continue in this manner until
each optional portion has been either scheduled to completion or dropped
altogether.

78 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

1. Run the EDF algorithm on the set M of mandatory tasks.
If M is not EDF-schedulable, then
Task set T cannot be feasibly scheduled: sToP.
else
Go to Step 2.
end if

2. O is the set of optional portions.
Assign w; = 1/o0; for i =1,---,n.
Renumber the tasks so that their weights are in a non-ascending sequence, i.e.,
W 2wy 2 2 Wne

3. Run algorithm IRIS2 on a task set composed of
the mandatory set M and optional set O to obtain schedule S,.

4. If all the optional tasks in O are executed to completion in S,,

Return S, and STOP.

else
Let 4,,5n be the smallest index 4 such that

0; is not run to completion in S,.

Redefine O = O — {o;,,.. }.
Go to Step 3.

end if

end

Figure 3.36: Algorithm TRIS3: A Simple Heuristic for the 0/1 Case

3.3. UNIPROCESSOR SCHEDULING OF IRIS TASKS 79

3.3.4 Identical Concave Reward Functions; No Manda-
tory Portions

In this section, we consider tasks with identical release times, and whose
mandatory portions are zero. We assume that the reward function of T; is
given by

f(z) f0<z<o;
Ri(z) = { fgoi)) N (3.86)

where the function f is one-to-one and concave. Recall that a function f(x)
is concave iff for all z1,22 and 0 < a <1,

flazy +[1 = a]zz) > af(z1) + (1 — a) f(z2) (3.87)

Geometrically, this condition can be expressed by saying that, for any two
points on a concave curve, the straight line joining them must never be
above the curve. An example of a concave function is 1 — e~ 7.

We will also assume that the functions f(z) are differentiable, and define
g(z) = df (z)/dz. We will assume that the inverse function g ! of g exists
for all i = 1,---,n. This will happen if the functions g be monotonically
decreasing: we assume that to be the case. The tasks are numbered in
non-decreasing order of their absolute deadlines, i.e., D1 < Dy < --- < D,,.
For notational convenience, define dy = 0.

Since f is a concave function, we have nonincreasing marginal returns,
and so the optimum is obtained by balancing the execution times as much
as possible. If all the deadlines were equal, i.e., if D; = --- = D,, = §,
then the algorithm would be trivial: just allocate to each task a total of
d/n of execution time before its deadline. If the deadlines are not all equal,
the algorithm is a little more complicated. We will leave to the reader the
problem of writing out the algorithm, IRIS4, formally. Here is an informal
description.

The basic idea behind this algorithm is to equalize, as much as possible,
the execution times of the tasks. The algorithm starts at the latest deadline
and works backwards. In the interval [D,_;,D,], only task T;, can be
executed: it is allocated up to a, = max{D,, — D,_1,e;} units of time in
that interval. Next, move to the interval [D,,_3, Dy,_1]. Over this interval,
tasks T, 1 and T,, can be executed. In this interval, we try to allocate
time to Tj,—1 and T, so that in the interval [D,_2, D,], the execution time
these tasks receive is equalized as much as possible (subject to the obvious

80 CHAPTER 3. TASK ASSIGNMENT AND SCHEDULING

constraints). We then go on to the interval [D,,_3, D,_2], over which tasks
Tn—2,Tp_1,T, are available, and so on until the beginning.

Example 35 We have a five-task aperiodic system with the following dead-
lines: D1 =2, Dy =6, D3 =8, Dy =10, D5 = 20, and each task having
ezecution time of 8.

Let us begin with the interval (10,20]. Only task Ts can be scheduled in
that interval, and we can give to it its entire execution time of 8. So, the al-

T | T | T3

T,

location of execution times so far is: 0T o 0

Next, we move to the interval (8,10]. Tasks Ty, Ts can be scheduled in that
interval, but we have already given full execution time to Ts, so we don’t
consider that task here. We devote this entire interval to Ty. The execution
time allocations are now:

T, | Ty | T3 | Ty | Ty
0| 0| 0| 2| 8
Now, consider (6,8]. T3,Ty,T5 are eligible to run in that interval. As
before, we don’t have to consider Ts. We give 2 units to T3 so that it
is equalized with Ty. (This is the best possible balancing of the execution
times). The execution time allocation are now:
Ty | T | T3 | Ty | Ty
0| 0| 2| 2| 8
Move on to (2,6]. Tz, T3,Ty, Ts are eligible to run in this interval. Add
2 units to Ty so that Ty, T5,Ty are each allocated 2 units. This leaves 2
units which we can allocate equally to each of these tasks over that interval.
The execution time allocation is now:
T1 T2 T3 T4 T5
0| 2.66 | 2.66 | 2.66 | 8
Finally, consider (0,2]. Here, we must clearly allocate 2 units to Ti,
and the final allocation is:
T, T T3 T, | Ty
2| 2.66 | 2.66 | 2.66 | 8
It is easy to check that the execution times have been balanced as much
as possible, under deadline and execution time constraints. The schedule is
shown in Figure 3.37.

Theorem 16 Algorithm IRIS) is optimal under the conditions listed in
this section.

