
Extreme Programming in Perl

Robert Nagler

June 18, 2009

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

Contents

Preface ix

1 The Problem 1
1.1 Some Statistics . 2
1.2 Risk Averse Methodologies 2
1.3 Fostering Failure . 3
1.4 Get Me a Rock . 4
1.5 Requirements Risk . 5
1.6 Let’s Rock And Roll . 6

2 Extreme Programming 7
2.1 Core Values . 8
2.2 Communication . 9
2.3 Simplicity . 9
2.4 Feedback . 11
2.5 Courage . 12
2.6 The Practices . 13
2.7 Adopting XP . 14

3 Perl 17
3.1 Core Values . 17
3.2 Customer-Orientation . 18
3.3 Testing . 19
3.4 CPAN . 19
3.5 Organizing Your Workshop 19

4 Release Planning 21
4.1 Planning Game . 22
4.2 Roles . 22
4.3 Stories . 23

iii

4.4 On-site Customer . 23
4.5 Story Cards . 24
4.6 Dead Wood . 26
4.7 Estimation . 28
4.8 Easing Estimation . 28
4.9 Spike Solutions . 29
4.10 Prioritization . 30
4.11 All the Facts . 31
4.12 Small Releases . 31

5 Iteration Planning 33
5.1 Tasks . 33
5.2 The Meeting . 34
5.3 Get Me a Bucket . 35
5.4 Velocity . 35
5.5 Watch Your Speed . 36
5.6 Customer Priorities . 36
5.7 Taking Care of Business . 37
5.8 The Beat Goes on . 37

6 Pair Programming 39
6.1 Quality . 39
6.2 How It Works . 40
6.3 Ease on down the Road . 41
6.4 Rest & Relaxation . 41
6.5 People Problems . 41
6.6 Different Strokes . 43
6.7 Yea, Whatever . 44
6.8 Gumption Traps . 44
6.9 Reducing Risk Through Knowledge Transfer 45

7 Tracking 47
7.1 Iteration Tracking . 48
7.2 Don’t Slip the Date . 48
7.3 Adding Tasks . 49
7.4 The Tracker . 49
7.5 Release Tracking . 50
7.6 What Goes Wrong? . 51
7.7 Fixing Troubled Projects . 54
7.8 Meetings . 55

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

iv

7.9 Show Your Stuff . 55
7.10 Sign Off . 56
7.11 Here and Now . 56

8 Acceptance Testing 57
8.1 Acceptance Tests . 57
8.2 Automation . 58
58section.8.3
8.4 Group Multiple Paths . 60
8.5 Without Deviation, Testing Is Incomplete 61
8.6 Subject Matter Oriented Programming 63
8.7 Data-Driven Testing . 64
8.8 Empower The Customer to Test 66

9 Coding Style 67
9.1 There’s More Than One Way To Do It 68
9.2 Give Me Consistency or Give Me Death 68
9.3 Team Colors . 69
9.4 An Example . 70
9.5 You Say, “if else”, And I Say, “? :” 72
9.6 Once And Only Once . 73
9.7 Refactored Example . 73
9.8 Change Log . 75
9.9 Refactoring . 78
9.10 Input Validation . 78
9.11 You’d Rather Die . 79

10 Logistics 81

11 Test-Driven Design 83
11.1 Unit Tests . 84
11.2 Test First, By Intention . 84
11.3 Exponential Moving Average 86
11.4 Test Things That Might Break 86
11.5 Satisfy The Test, Don’t Trick It 87
11.6 Test Base Cases First . 88
11.7 Choose Self-Evident Data . 89
11.8 Use The Algorithm, Luke! . 90
11.9 Fail Fast . 91
11.10Deviance Testing . 92

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

v

11.11Only Test The New API . 93
11.12Solid Foundation . 94

12 Continuous Design 95
12.1 Refactoring . 96
12.2 Simple Moving Average . 97
12.3 SMA Unit Test . 97
12.4 SMA Implementation . 98
12.5 Move Common Features to a Base Class 100
12.6 Refactor the Unit Tests . 102
12.7 Fixing a Defect . 103
12.8 Global Refactoring . 105
12.9 Continuous Rennovation in the Real World 108
12.10Simplify Accessors . 109
12.11Change Happens . 110

13 Unit Testing 111
13.1 Testing Isn’t Hard . 111
13.2 Mail::POP3Client . 112
13.3 Make Assumptions . 112
13.4 Test Data Dependent Algorithms 113
13.5 Validate Basic Assumptions First 114
13.6 Validate Using Implementation Knowledge 115
13.7 Distinguish Error Cases Uniquely 116
13.8 Avoid Context Sensitive Returns 117
13.9 Use IO::Scalar for Files . 118
13.10Perturb One Parameter per Deviance Case 118
13.11Relate Results When You Need To 119
13.12Order Dependencies to Minimize Test Length 120
13.13Consistent APIs Ease Testing 121
13.14Inject Failures . 122
13.15Mock Objects . 123
13.16Does It Work? . 125

14 Refactoring 127
14.1 Design on Demand . 128
14.2 Mail::POP3Client . 128
14.3 Remove Unused Code . 128
14.4 Refactor Then Fix . 129
14.5 Consistent Names Ease Refactoring 131

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

vi

14.6 Generate Repetitive Code . 132
14.7 Fix Once and Only Once . 133
14.8 Stylin’ . 134
14.9 Tactics Versus Strategy . 134
14.10Refactor With a Partner . 135
14.11Sharing with Code References 138
14.12Refactoring Illuminates Fixes 139
14.13Brush and Floss Regularly . 141

15 It’s a SMOP 143
15.1 The Problem . 143
15.2 Planning Game . 144
15.3 Dividing the Story into Tasks 145
15.4 Coding Style . 146
15.5 Simple Design . 146
15.6 Imperative versus Declarative 147
15.7 Pair Programming . 149
15.8 Test First, By Intention . 149
15.9 Statelessness . 150
15.10XML::Parser . 151
15.11First SMOP . 152
15.12First Interpreter . 153
15.13Functional Programming . 154
15.14Outside In . 155
15.15May I, Please? . 155
15.16Second Task . 156
15.17Unit Test Maintenance . 157
15.18Second SMOP . 158
15.19Second SMOP Interpreter . 159
15.20Spike Solutions . 160
15.21Third Task . 160
15.22Third SMOP . 162
15.23Third SMOP Interpreter . 162
15.24The Metaphor . 164
15.25Fourth Task . 164
15.26Fourth SMOP . 166
15.27Fourth SMOP Interpreter . 167
15.28Object-Oriented Programming 168
15.29Success! . 169
15.30Virtual Pair Programming . 169

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

vii

15.31Open Source Development with XP 170
15.32Deviance Testing . 171
15.33Final Implementation . 172
15.34Separate Concerns . 177
15.35 Travel Light . 178

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

viii

Preface

Have fun, and build something cool.

– Pete Bonham

This book is about a marriage of two compatible yet unlikely partners.
Extreme Programming (XP) is a software development methodology that
enables users, business people, programmers, and computers to communi-
cate effectively. Perl is a dynamic programming language that lets an XP
team embrace the inevitable change caused by effective communication. Perl
is the fixer and doer of the pair, and XP is the organizer and facilitator. To-
gether they help you build robust software applications efficiently.

Like any good marriage, the partners of Extreme Perl support each other.
For example, XP asks business people to write acceptance tests, and Perl lets
the business people use their own language and tools for the tests. Much
of Perl only happens when the program runs, and XP asks programmers
to define what is supposed to happen in unit tests before they write the
program. In this book, you’ll see other examples where Perl reinforces XP
and vice versa. This mutual support system is what makes Extreme Perl
applications robust.

This book invites Perl programmers and their customers to take a fresh
look at software development. Customers, and business people in general,
will learn how XP enables customer-programmer communication for efficient
and flexible requirements gathering. Programmers will see how XP’s focus
on teamwork, incremental testing, and continuous design allows them to take
pride in their craft. The numerous examples demonstrate Extreme Perl in
action, including the development of a complete, end-to-end application in
the last chapter.

ix

To Business People and Users

XP combines your project responsibilities into a single official role: the
customer. That’s the extent of the formalism. You don’t need to learn use-
case modeling, object modeling, or even fashion modeling. You write your
requirements on a piece of paper with pen. You even get to draw pictures,
although the programmers would prefer you didn’t use crayon.

As the customer, you have the responsibility to speak in one voice. You
can discuss the requirements as much as you like, but in the end, you write
down a simple, clear requirement in your own language, called a story. Any
disagreements need to be settled during the planning game, where you and
the programmers hash out what needs to get done and how long it is going
to take.

XP lets you change your mind. That means you have to hang around the
programmers–something that may take getting used to. Programmers are
terrible mind readers, and your immediate feedback is necessary when they
get the requirements wrong or you realize a requirement isn’t quite right.

Best of all, you get to see progress right away. The programmers do the
simplest thing that could possibly work, and believe it or not, this actually
produces a working program in a matter of weeks. There’s nothing better
than seeing your requirements embodied in software to ensure you are getting
what you want, and that you get what you are paying for. Everybody is
motivated by a working product in use.

To Programmers and Their Managers

The programming role is quite broad in XP. Programmers are responsible
for listening to the customer, and reacting to the dynamic requirements of
the customer’s world.

With XP, you get to be real. No more fudged estimates or wild guesses.
If the customer adds a complex requirement, like internationalization, right
in the middle of the project, it’s clearly not for free, and you get to say how
long it will take.

XP managers are coaches and trackers. The programmers do all the
work, and the coach gives sage advice while sipping martinis. If all goes
well, the tracker has a passive role, too. XP’s 12 simple practices add up to
a lot of checks and balances. Sometimes the coach and tracker must remind
the programmers how to use the practices effectively, however.

Code is the core artifact of an XP project. You have to like to code to

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

x

do XP. Fortunately, Perl is fun and easy to code. XP adds a modicum of
discipline to Perl coding practices that enables you to code faster and better.

XP is reflective. The code gets better, because you refactor it frequently.
This means you get to fix the bad code in the project that usually everybody
is afraid to touch. With XP, you might not be so afraid. You and your pair
programming partner have lots of tests to ensure you don’t break anything
while refactoring.

The goal of refactoring is to represent concepts once and only once. Perl
lets us do this more easily than other languages. Extreme Perl code can
be quite compact without obfuscation–rather the opposite. The code often
evolves into what I call a subject matter oriented program (SMOP).

Subject matter oriented programming distills the essence of the prob-
lem into a little language. The SMOPs in this book are plain old Perl.
There’s no need to invent new syntax. Sometimes you may need to think
differently to understand a SMOP unless you already are familiar with
declarative programming, which is quite different than traditional imper-
ative programming–what most programmers learn in school.

You need to know Perl fairly well to read many of the examples. I
explain the examples without going into much detail about the Perl syntax
and semantics. You may need to keep your favorite Perl reference book
within reach, for example, to undertand how map works.

One last thing: the some of test examples use the bivio OLTP Platform
(bOP), an open source application framework developed by my company (
http://www.bivio.biz). If you write a lot of tests, you need tools to help you
write them quickly and clearly. bOP employs SMOP to simplify unit and
acceptance tests. I’m not trying to sell bOP to you–it’s free anyway–but to
demonstrate SMOP in testing. This book explains just enough of bOP to
read the examples.

How to Read This Book

This book explains Extreme Perl to both programmers and business people.
I also attempt to convey the Extreme Perl experience through examples and
personal anecdotes. The book covers Extreme Programming (XP) in detail,
so no prior experience is necessary.

The first part of this book is about the non-programming aspects of
Extreme Perl: the why (The Problem), the what (Extreme Programming
and Perl) and the how (Release Planning, Iteration Planning, Acceptance
Testing, Tracking, and Pair Programming). There is some code in Accep-

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

xi

tance Testing, but everybody should be able to read it. The last chapter
(It’s a SMOP) is an end-to-end Extreme Perl example that combines XP,
Perl, and SMOP. Non-programmers may want to scan this chapter and read
the conclusions at the end.

The second part of this book contains numerous programming examples
from the real world. The following chapters show you what it is like to
do Extreme Perl: Coding Style, Logistics, Test-Driven Design, Continuous
Design, Unit Testing, Refactoring, and It’s a SMOP.

If you are a top-down thinker, I recommend you read this book front to
back. Bottom-up thinkers may want to start at the last chapter and work
backwards.

As noted in the previous section, the Perl code in this book is advanced.
The programming examples are not complex, that is, they are short and
contain only a few concepts. However, the code may appear complicated to
some programmers. If you are familiar with functional programming and
object-oriented Perl, the examples should be clear. If not, you may want
to peek at the last chapter which describes functional programming. The
references throughout the book may be helpful, too. The object-oriented
aspects are not all that important, so you should be able to understand the
examples without object-oriented experience.

Typographical notes: I note acronyms that are used in the XP and Perl
communities throughout this book, but I use their expansions so you don’t
have to memorize them.

Acknowledgments

This book was a collaborative project. Many people contributed to make
this book better. Any errors and omissions are my own despite the barrage
of corrections from the from the following people. If I left out your name,
please accept my apologies.

To Joanne, thank you for your love, support, knowledge, active partic-
ipation, and editing skills. This book would not have happened without
you.

To Ben and Aidan, thanks for accepting the million just a minute’s, for
manufacturing thousands of story cards, and for teaching me about life and
people in the process. Living with children and practicing XP have much in
common.

To Paul Moeller, thank you for being a brilliant business partner, friend,
and programmer. Thanks for teaching me why there is no busy work in

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

xii

programming, and for saying and not saying what you thought about this
book.

To Ion Yadigaroglu, thank you for the thousand conversations, your
support, and for believing in me. And, for having the courage to leave the
programming to the programmers.

To Martin Lichtin, thank you for explaining that every layer of indi-
rection creates a new software problem, and for helping me wade through
myriad software problems over the years.

Thanks to the bivions: Danny Ace, Annaliese Beery, Greg Compestine,
Eric Dobbs, Eric Schell, David Farber, Justin Schell, and Tom Vilot. You
took part in my crazy experiments, listened patiently to my lectures and
diatribes, and taught me much about programming, teamwork, and having
fun.

Thanks to Johannes Rukkers for teaching me about applications pro-
gramming in large organizations, and for the many enlightening conversa-
tions at the James Joyce and elsewhere.

Thanks to Rob Ward for gallantly giving up your true name at O&A, for
years of patient guidance and support, and for smashing through the illogic
and unEnglish in the many drafts of this book.

Thanks to Stas Bekman, Justin Schell, and Alex Viggio for pair pro-
gramming with me in the last chapter. You kept me on task, and helped
me avoid complexity.

Thanks to the many other reviewers who contributed the volumes of feed-
back that made my writing and examples more readable and correct. The
reviewers in alphabetical order were: Jim Baker, Kent Beck, Tom Brown,
David Bruhweiler, Sean Burke, chromatic, Phil Cooper, Ward Cunningham,
Bryan Dollery, Jeff Haemer, Ged Haywood, Joe Johnston, Walter Pienciak,
Chris Prather, Lewis Rowett, Michael Schwern, Jeremy Siegel, and Mike
Stok.

I’d also like to thank my many mentors over the years: Jon Bondy, Pete
Bonham, David Cheriton, Tom Lyon, Jim Madden, Richard Olsen, Andrew
Schofield, and Roger Sumner. Bits of your wisdom are contained herein; I
hope I got them right.

Finally, thanks and my deepest sympathies to the family of Pete Bon-
ham. You allowed me to enter your lives at such a difficult time. Pete’s death
was a driving factor in this book, and his life’s work guides me regularly.

Life and work are a series of successes. It just so happens that XP makes
them more visible, but you have to choose to celebrate them.
Rob Nagler
Boulder, CO, US

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

xiii

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

xiv

Chapter 1

The Problem

In spite of what your client may tell you, there’s always a prob-
lem.

– Gerald Weinberg

Software is a scarce resource, in that the demand for software greatly
outstrips the supply. We hear about huge shortages of IT staff required
to meet to this demand. Costs are rising, too. Some people believe the
way we can increase output is to outsource development to places where
qualified labor is cheap and plentiful. However, the problem with software
development lies elsewhere, and increasing the number of programmers and
separating them from the customer only makes the problem worse.

A programmer’s job is getting the details exactly right, exactly once.
This isn’t at all like physical manufacturing where the brunt of the cost is
in the process of making the exact copies of a product. Outsourced manu-
facturing works well, because the details have already been decided in the
design phase. The manufacturing process merely replicates this fixed de-
sign. With software, the cost of making copies is almost free, and it’s the
efficiency of design phase that governs its cost. Cheap and abundant labor
improves manufacturing efficiency, but this economy of scale does not make
software development more efficient.

The cost of programming is directly related to network effects. As you
add programmers to project, the communication costs increase proportion-
ally with the square of the total number of programmers. There are that
many more links over which the details must be communicated. And, as
the customer and programmers drift farther apart, the cost of the most im-
portant link increases. Reducing the cost of communication between the

1

programmers and the customer is crucial to getting the details right effi-
ciently. A time lag along this link multiplies the cost. To improve efficiency,
the customer needs instantaneous communication with the programmers,
and programmers need immediate feedback from the customer.

This chapter differentiates software development from physical manufac-
turing. We explain why traditional, plan-driven development methodologies
increase project risk, and how fostering failure reduces risk. The chapter
ends with a parable that shows the way to reduce both requirements and
implementation risk is to bring the customer closer to development.

1.1 Some Statistics

According to the Business Software Alliance, the software industry is grow-
ing rapidly to meet a seemingly unlimited demand. From 1990 to 1998, the
U.S. software industry’s revenue grew by 13% per year.1

Despite, or perhaps as a result of this rapid growth, the software industry
remains highly inefficient. While sales grew by 18% in 1998, an astounding
26% of U.S. software projects failed and another 46% were labeled as chal-
lenged by the Standish Group International.2 They also estimate 37% of
our resources are wasted on failed and challenged software projects.

We need to understand why software development is so inefficient and
why projects fail.

1.2 Risk Averse Methodologies

It’s not that failure is all bad. People learn from mistakes. However, we
don’t want to be driving on the mistake bridge builders learn from. We
don’t want to be flying in an engineering error, to live near a nuclear plant
failure, or even to stand near a pancake griddle meltdown.3

1 Business Software Alliance, Forecasting a Robust Future: An Economic Study
of the U.S. Software Industry, Business Software Alliance. June 16, 1999.
http://www.bsa.org/usa/globallib/econ/us econ study99.pdf

2 The Standish Group conducted a study of 23,000 software projects between 1994 and
1998. Failed means “The project was canceled before completion.” Challenged means
“The project is completed and operational, but over-budget, over the time estimate and
with fewer features and functions than initially specified.” See CHAOS: A Recipe for
Sucess, The Standish Group International, Inc., 1999.

3 Our breakfast suddenly turned into splattered, molten metal one Sunday. Fortunately,
no one was hurt.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

2

To reduce risk, engineering methodologies are plan-driven. The plans
help us ensure we catch mistakes as early as possible. The planning pro-
cess involves many redundant steps. Emerging plans must pass reviews and
consistency checks during the numerous phases of the project. The public
is protected by layers of methodology and in some cases government regu-
lations and laws.

Although public safety is certainly a concern, business probably evolved
these risk mitigation methodologies for another reason: to reduce the risk
of production failures. When you are manufacturing physical widgets, you
don’t want to find an error after you have produced one million widgets,
or even a thousand. The cost of the raw materials plus the time to fix the
error, to retool, and to rerun the job is usually high in comparison to the
cost of the extra procedures to catch errors during the planning and design
phases.

Software development is quite different from manufacturing. The cost of
producing the physical software package is nominal, especially considering
most software is developed for only one customer.4 Today, automated up-
dates via the Web further reduce the cost of software delivery. The cost of
software production is borne almost entirely by research, development, and
maintenance.

While software lacks the characteristics of physical products, we still
develop most software with the same implementation risk averse method-
ologies. We are told “If [a requirements] error is not corrected until the
maintenance phase, the correction involves a much larger inventory of spec-
ifications, code, user and maintenance manuals, and training material.”5

Mistakes are expensive, because we have “inventory” to update. Plan-driven
software development is firmly grounded in avoiding production failures,
which slows development in the name of implementation risk mitigation.

1.3 Fostering Failure

Implementation risk mitigation is expensive. The most obvious cost is the
bookkeeping material (documents defining requirements, specifications, ar-
chitecture, and detailed design) in addition to the code we need to maintain.

4 The Business Software Alliance report estimates 64% of software sales is in the
customized software and integrated system design services. This does not include internal
IT budgets.

5 Software Engineering Economics, Barry Boehm. Prentice-Hall, Inc. 1981, pp. 39-40.
This classical reference is old but unfortunately not outdated, viz., Get Ready for Agile
Methods with Care, Barry Boehm. IEEE Software. Jan, 2002, pp. 64-69.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

3

Less risk averse methodologies lower the cost of software production. Reduc-
ing redundancy in the planning process means there is less to change when
a requirements error is inevitably discovered. By not creating inventory in
the first place we further reduce our overhead and inefficiencies.

When we improve efficiency in one part of the process, we gain flexibility
in other areas. We have more resources and time to correct errors in all
phases of the project. The fewer errors, the better the chance the project
will succeed.

Implementation risk aversion is costly in other ways. We avoid change
later in the project even if that change is justified. The cost of change
is proportional to the amount of inventory. In plan-driven methodologies,
change is increasingly costly as the project progresses. Not only do we have
to update all the bookkeeping material, but it must pass the same manual
reviews and consistency checks that were used to validate the existing plan
and design.

And possibly the most important cost is risk aversion itself. Failure
is a natural part of creation. We don’t like to fail, but when we do, we
usually learn from the experience. According to management gurus Jim
Collins and Jerry Porras, “What looks in retrospect like brilliant foresight
and preplanning was often the result of “Let’s try a lot of stuff and keep
what works.””6

An interesting side-effect of reducing the cost of correcting errors is that
we reduce the risk associated with trying new and innovative solutions.

1.4 Get Me a Rock

Reducing the cost of correcting errors is one part of the problem. One reason
projects fail is that they do not satisfy the end-users’ needs. To help ensure
a project’s success, we need to mitigate requirements risk. The following
story about a manager and his subordinate demonstrates the difficulty of
specifying and satisfying requirements:
Boss: Get me a rock.
Peon: Yes, sir.

...a little while later...
Peon: Here’s your rock, sir.
Boss: This rock is all wrong. We need a big rock.

6 Built to Last, Jim Collins and Jerry Porras, HarperBusiness. 1997, p. 9.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

4

...another delay...
Peon: Here ya go, boss.
Boss: We can’t use this rock. It’s not smooth.

...yet another delay...
Peon: [panting] Smooth, big rock, sir.
Boss: The other rocks you brought were black,
but this one’s brown. Get a black one.

And the story goes on and on. We’ve all been there. Both roles are
difficult. It is hard to specify exactly what you want when you’re not sure
yourself, or even when you are sure, you may have difficulty explaining to
another person what you want. On the flip side, the subordinate probably
doesn’t speak the language of rocks, so he can’t elicit what the manager
wants in terms the manager understands.

The plan-driven lesson to be learned is: Customers must give precise
instructions (specifications). Programmers should not be expected to be
mind readers.

1.5 Requirements Risk

Most software projects are as ill-defined as the requirements in this story.7

The plan-driven approach is to spend a lot of time up front defining the
requirements in order to reduce the cost of the implementation. The theory
is that planning is cheap, and programming is expensive. Once we get
through the specification phase, we can ship the spec off to a source of
cheap labor whose job it is to translate the spec into working code. That
would work fine if the specification were exactly right, but it most likely is
missing a lot of important detail, and the details it identifies probably aren’t
exactly right either. The Rock example doesn’t do justice to the amount of
detail involved in software. Large programs contain hundreds of thousands
and sometimes millions of details that must be exactly right, or the software
contains faults.

The cumulative effect of software faults is what causes projects to fail.
It’s easy to fix a few faults but not thousands. When users throw up their

7 On page 310 of Software Engineering Economics, Barry Boehm states, “When we
first begin to evaluate alternative concepts for a new software application, the relative
range of our software cost estimates is roughly a factor of four on either the high or low
side. This range stems from the wide range of uncertainty we have at this time about the
actual nature of the product.”

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

5

hands and scream in exasperation, they’re saying the program misses the
mark by a mile. It’s insufficient to tell them the specification was right
or that the programmers simply misunderstood it. It’s the code users are
frustrated with, and it’s the code that is just plain wrong.

Planning and specification does not guarantee end-user satisfaction. Plan-
driven methodologies ignore requirements risk, that is, the risk that details
may be incorrect, missing, or somehow not quite what the customer wants.
When we gather requirements, write the specification, ship it off, and only
check the program against user expectations at the end, we are setting our-
selves up for failure. Requirements change in this scenario is very expensive.
This is what we see in the Rock example. The requirements risk is propor-
tional to this time lag. Given the predominance of plan-driven software
development, it’s likely that a large number of project failures are directly
attributable to too little requirements risk mitigation.

1.6 Let’s Rock And Roll

Fortunately, there is an alternative version of the Get Me a Rock story,
which solves the ill-defined requirements problem with greater efficiency:
Boss: Get me a rock.
Peon: Sure, boss. Let’s go for a ride to the quarry.

...a little while later...
Boss: Thanks for pointing out this rock.
I would have missed it if I went by myself.
Peon:You’re welcome, boss.

The moral of this story is: to increase efficiency and quality, bring the
customer as close as possible to a project’s implementation.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

6

Chapter 2

Extreme Programming

XP is the most important movement in our field today.

– Tom DeMarco

Extreme Programming (XP) is an agile software-development methodol-
ogy. XP helps you remain light on your feet by avoiding unnecessary baggage
and by incorporating feedback continuously. Changing requirements are an
expected and acceptable risk, because the customer sees the system being
developed in real-time. Mistakes are immediately visible and are corrected
while the feature’s implementation is fresh and pliable, much like a potter
reworks clay.

Programmers work and rework the code in XP projects. The customer
sees a system grow from layer upon layer of detail. The software is only as
effective as the details it embodies. A tax accounting system must round
computations correctly, or it can’t be used; it’s insufficient to get the formula
right without considering that taxes are collected in whole currency units.
Details matter, and XP programmers reflect back to the customer in the
only way that matters: working code.

All this working and reworking requires a stable base and good tools. To
throw pots effectively, you need to be seated comfortably at your potter’s
wheel, and your tools need to be within easy reach. In the world of idea
creation, people need comfort, too. They need to know what’s expected of
them and why. An XP team is expected to follow 12 simple practices. You
aren’t supposed to execute the practices blindly, however. XP gives us a
framework of four core values that lets us adjust the practices to suit our
particular project. The four core values are like a comfortable mental chair;

7

we work our code using the practices with the core values supporting our
every movement.

This chapter explains XP’s core values: communication, simplicity, feed-
back, and courage. We then enumerate XP’s 12 practices, and discuss how
to adopt them.

2.1 Core Values

XP is built on four core values: communication, simplicity, feedback, and
courage. The values reinforce each other to form a stable structure as shown
in the figure:

Core Values

The four values give the people in XP projects a firm foundation to
stand on, the why for the how. Unlike plan-driven software methodologies
mentioned in The Problem, XP is people-driven. We value people over
process.

The idea of giving people reasons (core values) for what they do (prac-
tices) is not new. For example, before XP was a twinkle in Kent Beck’s
eye, John Young, then CEO of Hewlett-Packard, stated, “We distinguish
between core values and practices; the core values don’t change, but the

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

8

practices might.”1 It’s important to trust people to judge the validity of a
practice for their particular job. They need a value system to frame their
judgments so that a person can change a practice without undermining the
goals of an organization.

The values relate to each other to form a framework. Without these
relationships, the values would not hold together, and people would be less
likely to accept and to work with them. The tetrahedron symbolizes the
importance of the bonds between the values. As you read through the
descriptions in the following sections, you’ll see how the values support each
other and the practices.

2.2 Communication

A little Consideration, a little Thought for Others, makes all the
difference.

– Eeyore (A. A. Milne)

Software is developed as quickly as the communication links in the
project allow. The customer communicates her requirements to program-
mers. The programmers communicate their interpretation of the require-
ments to the computer. The computer communicates with its users. The
users communicate their satisfaction with the software to the customer.

Communication in XP is bidirectional and is based on a system of small
feedback loops. The customer asks the users what they want. The program-
mers explain technical difficulties and ask questions about the requirements.
The computer notifies the programmers of program errors and test results.

In an XP project, the communication rules are simple: all channels
are open at all times. The customer is free to talk to the programmers.
Programmers talk to the customer and users. Unfettered communication
mitigates project risk by reducing false expectations. All stakeholders know
what they can expect from the rest of the team.

2.3 Simplicity

Pooh hasn’t much Brain, but he never comes to any harm. He
does silly things and they turn out right.

1 As cited in Built to Last, Jim Collins and Jerry Porras, HarperBusiness. 1997, p. 46.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

9

– Piglet (A. A. Milne)

We all want simple designs and simple implementations, but simple is
an abstract concept, difficult to attain in the face of complexities. XP takes
simplicity to the extreme with practical guidelines:

• Do the simplest thing that could possibly work (DTSTTCPW),

• Represent concepts once and only once (OAOO),

• You aren’t going to need it (YAGNI), and

• Remove unused function.

Do the simplest thing that could possibly work (DTSTTCPW) means
you implement the first idea that comes to mind. This can be scary. Rely
on your courage to try out the idea. Remember that failure is an important
part of creation. It is unlikely the simplest idea is what you will end up
with. However, it’s also unlikely you can anticipate what’s wrong with your
simple solution until you try it out. Let the feedback system guide your
implementation. DTSTTCPW is simplicity as in fast and easy.

Once and only once (OAOO) helps you maintain your agility by reducing
the size of your code base. If you let conceptual redundancy permeate your
system, you have to spend more and more time rooting out faults. Every
time you copy-and-paste, you take one more step closer to bloatware. Each
copy creates an implicit coupling, which must be communicated to the rest of
the team. Be courageous, just say no to your mouse. Say yes to refactoring
the code for re-use. OAOO is simplicity as in few interchangeable parts.

You aren’t going to need it (YAGNI) is a popular and fun expletive.
If you can solve the immediate problem without introducing some feature,
that’s YAGNI! And, you simplified your problem by omission. YAGNI is
a corollary of OAOO. If you don’t have to implement the feature in the
first place, your system just took a step away from bloatware. YAGNI is
simplicity as in basic.

Sometimes you add a function for good reason but later find out the
reason is no longer valid. At this point you should delete the function. It
is unnecessary complexity. It shouldn’t require much courage, because the
code is still there in your source repository. You can always pull it out if you
need it again. Removing dead code is simplicity as in pure and uncluttered.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

10

2.4 Feedback

Well, either a tail is or isn’t there. You can’t make a mistake
about it. And yours isn’t there!

– Pooh (A. A. Milne)

The more immediate feedback, the more efficiently a system functions. A
simple example can be found in the shower. Some showers respond instantly
to changes in the faucet handle. Other showers don’t. I’m sure you’ve ex-
perienced showers installed by Central Services engineers from the movie
Brazil.2 You turn on the shower, adjust the temperature, and hop into a
hailstorm or The Towering Inferno.3 After you peel yourself off the shower
wall, you adjust the temperature, and wait a bit longer before timidly step-
ping in again. The long delay in the system makes showering unpleasant
and inefficient.

For many customers, this is what software development is like. You
request a change, and it is delivered many months later in some big release.
Often the change fails to meet your expectations, which means another
change request with yet another long delay.

XP is like a well-designed shower. You request a change and out comes
software. Adjustments are visible immediately. The customer sees her re-
quirements or corrections implemented within weeks. Programmers inte-
grate their changes every few hours, and receive code reviews and test results
every few minutes. Users see new versions every month or two.4

The value of immediate, real world feedback should not be underesti-
mated. One of the reasons for the success of the Web is the abundance of
structured and immediate feedback from users. Developers see errors in real
time, and contract all input and output that causes Web application failures.
Users benefit from running the latest version of the software, and seemingly
on demand fault corrections. When people talk about the enduring value of
the Web in the distant future, I predict they will value the extreme acceler-
ation of user feedback and software releases. The impact of this feedback on
quality and development efficiency is what differentiates Web applications.

XP reduces project risk by taking iterative development to the extreme.
The customer’s involvement does not end at the planning phase, so re-

2 http://www.filmsite.org/braz.html
3 http://www.norcalmovies.com/TheToweringInferno
4 XP’s founders recommend multi-week iterations and releases to the customer every

three or four iterations. My experience with Extreme Perl is that an iteration per week
and one iteration per release works well, too. See Logistics for how to make this happen.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

11

quirements errors are reconciled almost immediately. The system’s internal
quality is maintained by programmers working in pairs who are striving for
simplicity. Automated testing gives everybody feedback on how well the
system is meeting expectations.

XP uses feedback to integrate towards a solution, rather than trying to
get it through a discontinuity.5

2.5 Courage

It is hard to be brave, when you’re only a Very Small Animal.

– Piglet (A. A. Milne)

Fear is a prime motivator, or as Napoleon Bonaparte put it, “There are
two levers for moving men: interest and fear.” With courage, our relation-
ships take on a new quality: trust. XP helps build the bonds of trust by
repeatedly exposing people to small successes.

Courage is required at all levels. Is this solution too simple? Is it too
complex? Does this test cover all the cases which could possibly break? Will
the programmers understand what I mean by the story? Will we make it to
Comdex without a detailed schedule?

We overcome fear, uncertainty, and doubt in XP with courage backed by
the other three values. A simple system is harder to break than a complex
one. Multilevel, rapid feedback lets us know quickly when our courageous
changes fail. Open communication means we don’t have to face our fears
alone. Our team members will support us. All we have to do is speak of our
fears as openly as Piglet did in the epigraph to this section. And, Rabbit
finds the right words to support him6:

“It is because you are a very small animal that you will be Useful
in the adventure before us.”

Piglet was so excited at the idea of being Useful that he forgot
to be frightened any more [...] he could hardly sit still, he was
so eager to begin being useful at once.

Sometimes we feel as small and ineffectual as Piglet. During these down-
times, it’s likely one or more of our team members feel as courageous as

5 Thanks to Johannes Rukkers for this excellent observation.
6 All A. A. Milne quotes in this chapter are from Winnie-the-Pooh, A. A. Milne,

Dutton’s Childrens Books, 1994.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

12

Rabbit or Pooh. XP accepts that people’s emotions vary, so XP uses team
interactions to keep the project stable and to provide emotional support in
those inevitable, difficult times.

Courage is a double-edged sword. You needed to overcome your fears,
but too much courage can be dangerous. XP uses small steps to promote
courage and keep it in check. Team members see a continuous flow of failures
and successes. XP uses small, regulated doses to discourage excess and
encourage success.

2.6 The Practices

XP’s practices embody the values described in the previous sections. In his
book Extreme Programming Explained Kent Beck defines the 12 practices
as follows (quoted verbatim):

The Planning Game Quickly determine the scope of the next release by
combining business priorities and technical estimates. As reality over-
takes the plan, update the plan.

Small releases Put a simple system into production quickly, then release
new versions on a very short cycle.

Metaphor Guide all development with a simple shared story of how the
whole system works.

Simple design The system should be designed as simply as possible at any
given moment. Extra complexity is removed as soon as it is discovered.

Testing Programmers continually write unit tests, which must run flaw-
lessly for development to continue. Customers write tests demonstrat-
ing the features are finished.

Refactoring Programmers restructure the system without changing its be-
havior to remove duplication, improve communication, simplify, or add
flexibility.

Pair programming All production code is written with two programmers
at one machine.

Collective ownership Anyone can change any code anywhere in the sys-
tem at any time.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

13

Continuous integration Integrate and build the system many times a
day, every time a task is completed.

40-hour week Work no more than 40 hours a week as a rule. Never work
overtime a second week in a row.

On-site customer Include a real, live user on the team, available full-time
to answer questions.

Coding standards Programmers write all code in accordance with rules
emphasizing communication through the code.

These 12 simple practices realize the four core values. The remainder of
this book explains how to implement the practices in detail. Before we get
into implementation, let’s briefly discusses how you might adopt XP in your
organization.

2.7 Adopting XP

Organizations have their own way of doing things. There are practices,
processes and probably even some core values. In order to adopt XP, you’ll
need to work within this framework, and accept the status quo. One way
to start is to use XP in a project composed of volunteers. The project may
even be important, which is good, because your success with XP should
be visible. Once that project succeeds, pick another and let another team
coalesce around it, possibly including a few members, but not all, from the
original XP team.

You may not be in a position to pick and choose projects, but you prob-
ably have some latitude in how you work on a daily basis. If this is the case,
try selecting a few practices that align with your existing methodology. For
example, if your organization values testing, try test first programming. Or,
organize your day around stories. I find this technique to be helpful for non-
software problems, too, as you’ll see in Release Planning. Keep the stories
on index cards, and work through them serially. Check off each card as you
complete it.

Once you see your productivity go up, discuss the practices you found
successful with a co-worker or your manager. Use the core values as your
guide. You’ll need courage to start the communication. Keep your expla-
nations simple, focusing on the practice, not the whole of XP. Be open to
feedback, and incorporate it immediately. And, as always in XP, take small
steps and iterate.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

14

As you read through this book, look at the practices from your organi-
zation’s perspective. You’ll see plenty of ways to integrate them. XP is an
evolutionary methodology that can be adopted incrementally and organi-
cally. Even if you are the head honcho, don’t install XP with a Big Bang.
Organizations and people have their own natural pace of change. XP can-
not accelerate this rate of change overnight. Change cannot be mandated.
Rather XP values feedback and communication to allow you to measure
your progress and to integrate change continuously.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

15

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

16

Chapter 3

Perl

Perl is a language for getting your job done.

– Larry Wall

Perl is a dynamic, object-oriented, interpreted, applications program-
ming language with a full complement of security features, syntax-directed
editors, debuggers, profilers and libraries. You can also write scripts in it.
Perl lets you program any way you want, and XP helps you choose which
way is the most effective for your project.

This chapter discusses how Perl shares similar values with XP, and how
the Perl culture uses XP programming practices. Finally, we note why XP
is needed to organize Perl’s exuberance.

3.1 Core Values

Perl and XP share a similar set of values. It’s rare for programming lan-
guages and methodologies to define values at all, so this basic fact puts
Perl and XP in a unique category. We discussed XP’s values in Extreme
Programming, so let’s compare Perl’s core values to XP’s:

• Laziness means you work hard to look for the simplest solution and
that you communicate efficiently. You don’t want to misunderstand
what someone said which might cause you to do more work than you
have to.

• Impatience encourages you to do the simplest thing that could possibly
work. You use the code to communicate your understanding of the

17

problem to the customer, because you don’t like sitting through long,
boring meetings.

• Hubris is courage born from the fear your code will be too complex
for others to understand. Hubris makes you strive for positive feed-
back and to react quickly to negative feedback from your peers, the
computer, and the customer.

Larry Wall, Perl’s inventor, calls these values the “three great virtues of
a programmer”.1 They tell us why Perl is the way it is: a language that
grows organically to meet the demands of its customers.

3.2 Customer-Orientation

Perl and XP were invented in the trenches. Larry Wall had to produce
reports for configuration management based on netnews.2 Kent Beck was
tasked with saving the Chrysler Comprehensive Compensation project. Nei-
ther Perl nor XP were designed in the ivory towers of academia. Both XP
and Perl were developed to solve a specific problem, and quickly so that
Kent and Larry would keep their jobs.

It’s too early to tell with XP, but Perl has remained true to its roots.
Perl continues to evolve based on feedback from its customers: the Perl
community. Features are added or changed if enough people clamor for
them.

This smorgasbord approach to programming languages is non-traditional,
much like XP’s focus on people over process is non-traditional in the de-
velopment methodology community. Perl gives you a wide variety of tools
without constraining how you use them. For example, Perl is object-oriented
but objects aren’t required to create modules or scripts. Perl programmers
aren’t forced to encapsulate all their code in objects to solve every problem,
especially when simpler alternatives exist.3 XP asks you to ignore what you
aren’t going to need, and Perl lets you put this principle into action.

1 Programming Perl, 3rd Edition by Larry Wall et al, p xix.
2 This wonderful story of doing the simplest thing that could possibly work is elaborated

in Programming Perl, p. 646.
3 See Object-Oriented Programming in It’s a SMOP for an example of when objects

obfuscate.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

18

3.3 Testing

Another parallel between XP and Perl is testing. The Perl culture is steeped
in testing, and in XP, we test to get feedback from the computer and the
customer. Perl comes with a complete test suite for the language, and
virtually every CPAN (Comprehensive Perl Archive Network) module comes
with unit tests. Testing in Perl is about impatience. It’s faster to get
accurate feedback from a unit test than by firing up the whole system to see
that it works.

It’s easy to write tests in Perl. The software quality assurance commu-
nity has long known this, and Perl is a favorite tool among testers.4 Perl
programmers are lazy, so sometimes on CPAN the only useful documenta-
tion for a package is its tests. Some programmers find it’s easier to write
tests than documents, and conveniently that’s the XP way of doing things
anyway. Unit tests communicate exactly how to use an API, and acceptance
tests demonstrate correctness and progress to the customer.

3.4 CPAN

In XP, we share code in a collective repository. CPAN is probably the largest
collection of Perl code on the Internet. There are over 3500 open source
packages available for download. It’s also the official repository for the Perl
core implementation. Any perl programmer can get the latest version of
Perl, and perl developers check in their changes directly to CPAN. The Perl
community shares openly, because they’re lazy, and want to solve problems
once and only once.

Hubris plays a role on CPAN and in the Perl community in general. For
example, type in xml parser into http://search.cpan.org, and you’ll get at
least six pages of results. It took some time for us to find the right XML
parsing package to use in It’s a SMOP. CPAN, like Perl, offers you many
more ways to do it than any one project needs.

3.5 Organizing Your Workshop

Perl is often called a Swiss Army Chainsaw. When you add in CPAN, it’s
really more like the world’s largest selection of hardware.5 You can get lost

4 Visit http://www.stickyminds.com, and search for Perl.
5 McGuckin Hardware in Boulder, Colorado (http://www.mcguckin.com) is the phys-

ical world equivalent of Perl.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

19

in the dizzying array of choices. Some programmers find Perl daunting.6

This is where XP comes to the rescue. XP is the organizer in the Extreme
Perl marriage that complements Perl, the doer and fixer. XP’s role is to keep
Perl from fixing the car when the kids need to be put to bed. XP gently
guides Perl to do the right thing for the customer.

The next few chapters show you how Extreme Perl is organized, and the
second half of this book shows you know Extreme Perl gets things done.

6 In a presentation at the 2002 PHP Conference, Michael J. Radwin lists Perl’s Motto,
“There Is More Than One Way To Do It”, as one of the three reasons Yahoo! was moving
away from Perl. Visit http://public.yahoo.com/˜radwin/talks/yahoo-phpcon2002.htm for
the complete presentation.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

20

Chapter 4

Release Planning

Man has an intense desire for assured knowledge.

– Albert Einstein1

We plan to communicate our intentions and to prepare for the unplanned.
In XP, the plan evolves with feedback from building and using the system.
We adjust our intentions as we see our ideas being realized. Sometimes
reality matches what we want. Other times we gain new insight and change
our plans accordingly. XP ensures we get our recommended daily allowance
of reality checks.

Planning is a three part process in XP:

Release Planning We decide on the course of action based on customer
desires and team capacity in the planning game. The result is the
release plan: a list of stories (requirements) prioritized by business
value. A release encompasses the next one to two months of work.

Iteration Planning We divvy up the stories based on individual program-
mer desires and capacity in an iteration planning meeting. An iteration
plan is a prioritized list of development tasks estimated by the people
who will be implementing them. Iterations are delivered every one to
three weeks.

Pair Programming We continuously balance between improving internal
quality and adding business function based on peer-to-peer discussions
and individual task commitments. A pair programming session lasts

1 Ideas and Opinions, Albert Einstein, Crown Publishers Inc., 1985, p. 22.

21

a few hours. The output is one or more unit tests and the software
that passes those tests.

This chapter covers release planning. The subsequent chapters discuss
the other two activities.

4.1 Planning Game

To start the ball rolling, the customer and programmers sit in a room to-
gether to define the requirements, priorities, and deadlines for the release.
We call this the planning game.

Planning is an interpersonal process, a game, if you will. The customer
wants a long list of features, and the team wants to implement them all.
Unfortunately, the team is limited in what it can accomplish in one release.
In XP, the planning game defines the rules, pieces, and roles. The objective
is clear communication of business objectives and technical constraints.

4.2 Roles

In XP, we speak about the customer as a single person, although several
people may fill this role simultaneously. It’s important that the people
acting as the customer speak in one voice. This ensures that the project
adds business value optimally–to the the best of the customer’s knowledge.
Obviously, no one knows the optimal path, that’s why XP encourages tight
feedback loops. However, the team cannot be divided in its goals, or the
project will fail. XP has no mechanisms to resolve disputes between the
people acting as the customer.

The role of the customer is played by people who represent the collective
business interests of the project. For example, product managers, users,
and clients act as the customer. The business requirements, priorities, and
deadlines are defined by the customer.

XP defines the roles of customer and programmer unambiguously. The
customer’s job is to identify what needs to get done, and the programmers’
job is to explain how it will get done. The customer is not allowed to
say an estimate is wrong or to contradict a technical statement made by
the programmers. And, conversely, programmers cannot say a feature is
unnecessary or the customer has her priorities wrong. The planning game
is based on mutual respect for these equal and distinct responsibilities.

If you are new to XP, you may want to have an impartial coach partici-
pate in your first few planning games. The planning game is non-adversarial,

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

22

and a coach may help to remind people that planning is about getting as
accurate a picture as possible given limited data.

4.3 Stories

A story is how the customer communicates a requirement in XP. The content
of a story is simple, usually one or two sentences. Here are some actual
stories:

GenderTags The questions and answers will be customized with the name
of the bride and groom where applicable.

InstallDisks Figure out which computer to use, and install disks. Make
available via Samba and NFS.

SubscriptionStartEnd Subscription start/end dates should not overlap.

DemoClubUpdate Update data in demo club. Include AccountSync en-
tries.

DBExportSplit file t is too large for a single export file. Need to figure
out how to split.

ECtoQB Convert EC payments to QuickBooks IIF format. Group checks
into deposits.

CloseChase Move account to Wells Fargo.

For the most part, the customer writes the stories. Note the incomplete-
ness of the stories in some cases. For example, DemoClubUpdate doesn’t
specify what data is required. If the programmer needs more info, he will
ask the customer when he starts implementing the story.

Some of these example stories were not written by the customer, for
example, DBExportSplit and InstallDisks. Technical stories come up during
implementation, but it is the customer who decides how important they are.
The programmers’ job is to note the technical need on a story card, and to
present the business case to the customer during the planning game.

4.4 On-site Customer

The customer does not write the stories and say, “get to it!” There is an
explicit trade-off with simple requirements; the customer must stick around

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

23

for the implementation. She must be available to the programmers to fill in
the details during execution of the plan.

A story is not sufficient criteria for acceptance. Part of the customer’s
job is to write the acceptance tests with the help of the programmers. Perl
makes this easy. Acceptance Testing explains how in detail.

4.5 Story Cards

The stories are written on story cards. Here’s the CloseChase story card:

Close Chase Story Card

I use story cards for almost everything. In this case, it’s an administra-
tion problem. The mechanism is always the same: when there is a problem
to solve, write it on a story card. It represents a work item, and all work
items need to be put in the queue.

It often is a good idea to prepare story cards before the planning game.
Everybody should keep a stack on their desks. The customer may think
of new stories while using the system. The programmers may encounter
internal quality problems while coding.

There is no officially-sanctioned XP story card. Each project may need
special customizations. This story card is one we have developed for our
company’s needs.2 Here’s the way we interpret the fields:

2 The source can be found at http://www.extremeperl.org.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

24

StoryTag This is a mixed-case identifier for the story. Giving a handle
to the story simplifies communication about it. In my experience,
customers tend to have trouble filling in this field in the beginning.
Programmers are used to naming things (subroutines, modules, etc.),
and they may be able to help the customer choose appropriate story
tags.

Release The date or name of the release. We use this field loosely to
categorize stories by release or project. We couldn’t predict when
CloseChase would be done, so we just put it in the Misc category.
Some teams work on several projects simultaneously, and this field
helps keep the story cards organized.

Priority After the customer physically orders the story cards, she writes
their numeric priority in this field. The numbering scheme is arbitrary.
Sometimes you need to insert a story card in the middle of a sequence.
We add a letter, for example, 5a, or use a dotted decimal notation,
5.1. If you drop the story cards, it’s important to be able to get them
back in priority order.

Author The person who wrote the story. You then know whom to ask for
the details.

on The date the story was written.

Accepted The date the story’s implementation is accepted by the cus-
tomer. We do this at the start of every planning game before we get
into the new stories. This helps remind the customer what has just
been accomplished, and, sometimes, lets the customer catch incom-
plete stories.

Description A few sentences and/or pictures explaining the requirement.
Be brief. If the description isn’t clear, rip up the card and start over.
This is the most important field, so you may want to fill it in first. See
examples in Stories.

Estimate The programmers write their best guess for the implementation
time. See discussion about the time scale in Estimation.

Considerations The programmers list the implementation risks and pre-
requisites in this section. This gives the customer more information
about the confidence of the estimate and helps her order dependent

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

25

stories. Don’t implement the story here. It’s tempting to write pseu-
docode or to outline the design. Save the design for when you are in
front of a computer with your programming partner.

Task The list of activities required to implement the story. If the list of
tasks grows to more than fits in a few lines, you probably need to split
the story. The original story estimate is probably wrong, too. We try
to avoid large, complex stories to ensure the software pipeline stays
full, and XP’s many feedback loops remain active. This field is filled
in during iteration planning, which is covered in Iteration Planning.

Who The person who is responsible for this task. Sometimes we add the
partner who helped implement the task. It can be useful when trying
to remember why the code was written in a particular way.

Est. The estimate for this task.

Done The date the task is finished. This field can also be used to record
the actual time to implement the task. We use it to help audit our
billable hours.

Acceptance Test This field reminds everybody that stories should have
acceptance tests. Ideally, the customer should be responsible for this
task, but a programmer probably ends up doing most of the work. See
Acceptance Testing for more detail.

4.6 Dead Wood

One important characteristic of story cards is their physical implementation.
They are real dead plant matter. You write on them with ink, not electrons.
PDAs and laptops are not recommended for planning meetings.3

The planning game is an interpersonal communication process. Story
cards are a simple communication medium, which enables people to have
as much face time as possible. You can read the cards from any angle, in
almost any lighting condition.

3 XP assumes the entire team, including the customer, share the same office. If the
customer or part of the team are not colocated, you may want to scan your story cards
after the planning game and store them in the collective repository. I’m not a fan of purely
electronic story cards, but some people like them. As with all things XP, try it by the
book and then season to your taste.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

26

The stories listed so far have been text. Sometimes text won’t do. Paper
is also an excellent medium for creating pictures on-the-fly. Here’s another
example that demonstrates the versatility of story cards to capture the story:

PaymentsInFiscalYear Story Card

And, here’s the final user interface:

PaymentsInFiscalYear User Interface

The simple picture was enough to get the point across.4

4 Cards are context sensitive, so you may not understand the details of the PaymentsIn-
FiscalYear story or implementation. The point is to demonstrate how little information
you need on a story card, and how closely a quick sketch matches the final implementation.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

27

4.7 Estimation

After a customer completes her portion of the story card, the programmers
can estimate its implementation, and note any special considerations, such
as, new hardware requirements or prerequisite stories. Estimation is an art,
where consistency is much more important than precision or accuracy. The
customer uses them to assess the relative cost of stories to aid prioritization.
Programmers use estimates to compute and compare velocities (velocity is
the sum of estimates for an iteration–see Velocity for details).

Stories are estimated in ideal programming days, not real-time. It’s hard
enough to forecast a story’s implementation without considering other fac-
tors such as, hardware failures, sick time, or activation of military reservists.
Not to mention unforeseeable refactorings required to accommodate the im-
plementation or changes requested by the customer as the implementation
evolves. Ideal day are the way we avoid thinking about such factors that we
can neither influence nor estimate.

Don’t be afraid of making incorrect estimates. By definition, estimates
are forecasts made with incomplete information. You should be concerned
when estimates end up matching reality exactly, because it’s likely due to
the effects of Parkinson’s Law: work expands so as to fill the time available
for its completion.

Plan-driven methodologies often succumb to Parkinson’s Law. Program-
mers are rewarded for making or beating their estimates. Over-estimation
is a great way to make sure this happens. In XP, if you over-esimate, you
simply get more work to do. You don’t get to go home early, because the
length of an iteration is measured in real-time, not ideal time. There is
always more business value to add, and the code can always be improved
through refactoring. Other XP feedback mechanisms, such as, small re-
leases, pair programming, and continuous integration, also help to combat
Parkinson’s Law.

So don’t worry about Parkinson, the weather, or politics. Just write
your best guess as to how many ideal days the story will take to implement,
and move on to the next card.

4.8 Easing Estimation

Sometimes you can’t come up with a number that you have any confidence
in. The typical problem is that the story is too large, and it needs to be
split up. As a rule of thumb if the story comprises more than one week’s

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

28

worth of work, decompose it into smaller stories.
For example, this is a story that was too large for me to estimate:

Create a web site with the ability to upload Microsoft Word
documents by me and viewed by anybody. The documents are
categorized by visitor (consumer, broker, etc.).

With the help of a customer, we split the story into four smaller, more easily
estimable stories:

• Create the web site home page and navigation scheme.

• Implement pages with Word document links and hand-installed docu-
ments.

• Allow site administrators to login.

• Implement upload page for Word documents accessible only by admin-
istrators.

We were able to deliver business value on the first story. After the second
story, the customer had a functional site from the end-user perspective. We
were able to populate the site using non-web-based file transfer tools. The
last two stories gave the customer full administrative control of the site,
which is business value, but not as important as having a site at all. Most
stories can be broken down this way. It’s quite similar to decomposing a
story into tasks (see Iteration Planning).

4.9 Spike Solutions

Some stories defy estimation or decomposition. The programmers knows
so little about the problem domain that they may not even know if it is
feasible to implement the story. Some fundamental research is required. In
XP, we call this a spike solution. Two programmers prototype, mockup, or
just explore the problem space in detail for a short time.

System integration is often important to spike. There are usually so
many variables that are out of the programmers’ control. For example, one
project we were involved in required us to download transactions from finan-
cial websites. Our first attempt was to use the Open Financial Exchange
(OFX) protocol. It turned out that OFX is not very open, and we hit a
non-technical roadblock. In parallel with talking to the OFX consortium,
we also spiked a web crawling solution for downloading transactions from

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

29

financial websites. We quickly learned that the algorithmic complexity was
not in the transaction download component but in the backend–integrating
the transactions into an existing accounting database. This was an unex-
pected and important discovery. The spike solution gave us the information
we needed to estimate our stories.

The spike solution should be estimated, too. This caps the time the
customer must pay for experimentation. The goal is to determine feasibility
and cost, not to implement a fully working solution. Spike solutions are
thrown away. The result of a spike solution is a new story or stories, which
can be estimated with confidence.

4.10 Prioritization

Once the stories that can be estimated have been estimated, the customer
groups and prioritizes them. The physical ordering process requires a large
table so the customer can see as many of the cards as possible. The customer
groups the stories in two piles: this release and subsequent releases.

The size of the release depends on the customer, although you should
avoid releases exceeding a few months. The team will divide this release
into iterations that last a few weeks at most (see Iteration Planning). From
the customer’s perspective each iteration is a partial but usable software
distribution. The size of a release is therefore a bit of a fuzzy concept.
The customer may choose to stop work on a release before all the stories
are implemented, and shall still have a working system albeit with fewer
features than planned.

This is why prioritization is so important, and can’t be left to the pro-
grammers. The customer should see a continuous flow of software distribu-
tions in order of decreasing business value. XP eschews big bang releases. A
working end-to-end system is available very early on in the implementation
of a release plan.

For this reason, programmers should avoid creating too many dependen-
cies between stories. It’s all too easy to control the prioritization through
unnecessary linking. If you find yourself saying, “We need to build the in-
frastructure for this story.” Remember XP’s guideline: you aren’t going
to need it (YAGNI). Infrastructure evolves from refactoring as you discover
what parts of the system need it.

When the planning game is over put the subsequent releases pile into
storage until the next planning game. The team may get done early in
which case pull them out mid-release and add enough stories to meet the

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

30

deadline for the current release. The nice thing with XP is that you can add
or rearrange stories at any time. The stories that are already implemented
have already been tested within the context of a working system. There’s
no end of release panic to integrate the parts into the whole. Indeed, the
system probably is already in use well before the end of the release.

4.11 All the Facts

The customer’s job is hard. She is managing other factors besides imple-
mention complexity, such as, time to market and resource acquisition. To
simplify the planning process, she has to have all the data from the pro-
grammers. Any work which consumes time and resources needs to be on
the planning game table.

The considerations of stories may be significant. If the story requires a
relational database to be implemented, you need to make this clear. Or, it
may be obvious that a story requires major code restructuring. If so, get it
on a card.

While you’re coding, you’ll notice problems. You may have to copy-and-
paste, because the refactoring required to make the pasted code reusable
may be lengthy.5 Write down the problem on a story card and bring it to
the next planning game or iteration planning meeting. The customer and
management are made aware of internal quality issues before they get out
of control.

4.12 Small Releases

Release planning is the way we communicate business objectives to the pro-
grammers and enable programmers to communicate technical constraints.
The planning game is a simple forum for effective communication that relies
on interactive feedback.

By limiting the length of releases to one or two months, we limit the
length of planning meetings. This means we have fewer objectives to dis-
cuss. It is easy to maintain the cohesion of small releases and to identify
dependencies and other potential problems. XP simplifies plan digestion by
encouraging us to take a small bite and chew it thoroughly before taking
the next bite.

5 Lengthy to me means anything that takes an hour or more. You may have completed
several refactorings already, and any more will blow your budget. For a complete discussion
on refactoring, see Refactoring.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

31

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

32

Chapter 5

Iteration Planning

Plans are useless, but planning is indispensable.

– Dwight D. Eisenhower

An iteration adds function to a system without breaking it. The new
features are delivered to the customer in a complete software distribution.
This way the customer can try out the story implementations, and the pro-
grammers can get feedback on the system every few weeks, before the entire
release is implemented.

While release planning sets the pace for the customer, iterations are the
heartbeat of the system’s implementation. By distributing the software on
a fixed schedule, typically from one to three weeks, the programmers stay
focused on delivering complete stories. This avoids the situation where the
system remains “95% done” until the entire release has been implemented.
XP programmers complete the most important story first before moving on
to the next one.

This chapter covers dividing stories into tasks during the iteration plan-
ning meeting, estimating tasks, grouping tasks into iterations, and tracking
team and individual velocity to schedule the next iteration’s work.

5.1 Tasks

A task is the basic unit of work of an iteration. The stories are broken down
into a list of tasks during the iteration planning meeting. For example, here
are the tasks for two of the stories from Release Planning:

PaymentsInFiscalYear • Mockup report.

33

• Implement year at a glance widget.

• Implement data model and report.

• Acceptance test: validate payments in months for members.

CloseChase • Compare rates and services at local banks.

• Open new account.

• Move automatic payments (FedEx, EarthLink)

• After last check clears, transfer remaining funds.

• Acceptance test: verify account is closed and automatic payments
working.

For reasons of simplicity, I write the tasks directly on the bottom of the
story cards. This keeps the motivation for the work (the story) and the list
of work items on one piece of paper. This helps me stay focused on the trees
without getting lost in the forest.

Alternatively, you might create separate task cards, one for each work
item. This allows you to divide up the work for an individual story among
several programmers. If you tend towards larger, multi-week stories, task
cards are probably the way to go.

5.2 The Meeting

Iteration planning involves the entire team. Somebody reads the stories
aloud, and everybody contributes to identifying the tasks, which are written
on whiteboards or flip charts for all to see. Another person writes the tasks
down on the cards once everyone agrees they are correct.

The meeting is a time for group design discussions. It isn’t always ob-
vious what tasks are required to implement a story. While ad hoc design
discussions pop up during programming, iteration planning is a time for
the whole team to discuss the system’s implementation. You might realize
that a global refactorings need scheduling. This may add dependencies and
possibly a new story for the customer to prioritize.

After all the tasks are listed on the board, people commit to imple-
menting them. Individuals take the cards and estimate the tasks they are
planning to implement. As with stories, estimate in ideal programming
days. Everybody’s ideal timescale is different, don’t expect the task and
story estimates to add up.

If a task is difficult to estimate, ask for help. Others may have a better
feeling for the problem and/or implementation. Sometimes a task is too

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

34

complex, and you’ll realize as a group that the risk factors were underes-
timated. Restructure the task list for this story. If you think this story’s
estimate is way off, discuss it with the person responsible for the story esti-
mate. It may need to be changed, and the customer should be informed of
the unforeseen considerations and the new estimate.

5.3 Get Me a Bucket

In plan-driven methodologies, the amount of work that goes into software
distribution is dictated by the plan. The schedule is extended as you ex-
perience the actual implementation time for the work items. A software
distribution only comes out when the entire release is complete. XP takes
another view. Software distributions flow out from the team in fixed time
iterations, much like water flowing through a water wheel.

The buckets on a water wheel1 are a fixed size, too, and only one bucket
is necessary to get the water wheel turning. If the bucket is too large, the
wheel won’t turn for awhile, and the water will flow in fits and starts. Tiny
buckets don’t supply enough energy to move the wheel at all. There’s a
reasonable range of sizes for efficient transfer of potential to kinetic energy.
Experience suggests that the most efficient range for XP iterations is one to
three weeks. Each team must decide, however, what works best.

5.4 Velocity

The rate at which the water flows through a water wheel is measured in
cubic feet or meters per second. The implementation flow rate in XP is called
velocity, and is the ratio of estimated ideal days to real implementation days.
Since the number of real days is fixed per iteration, we simply keep track
of the sum of the estimated ideal days for each iteration. The ideal time
budget for the next iteration is the velocity of the iteration just completed.

Our goal in XP iteration planning is to predictably fill an iteration with
exactly the right number of stories. This reduces planning time to a min-
imum, and keeps the software process flowing smoothly and reliably, just
like an efficiently designed water wheel.

Velocity is a relative measure, however. You can only compare like es-
timates. The team’s velocity is the sum of estimates for completed stories
per iteration. Likewise, your individual velocity is measured in your own

1 Overshot water wheels with horizontal axles are the subject of this analogy.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

35

estimation timescale, the sum of your task estimates completed per itera-
tion. You can’t compare the velocities of different individuals, and it doesn’t
matter if the sum of task estimates doesn’t add up to their story estimate.
It’s like comparing water wheel flow rates with the rate at which people flow
on an escalator. The denominators are the same, but the numerators are
different.

Your velocity should converge after the first few iterations. If it doesn’t,
something’s wrong, and in Tracking, I discuss what to do about it. The
starting budget for the first iteration is a guess. It’s likely to be way off.
At first, it’s reasonable to assume the ratio of ideal days to real days is 1:1.
Scheduling the first iteration is just the beginning. You’ll find you and your
team’s natural velocity converges rapidly no matter what the starting point
is.

5.5 Watch Your Speed

Velocity is a self-governing speed limit. The team limits the sum of its
story estimates to the velocity of the prior iteration. The sum of your task
estimates should not exceed your individual velocity. That is, you should
sign up for the same amount of estimated work that you completed last
iteration.

If you signed up for too many tasks, look for somebody with excess
capacity. Pick a simpler story if no one volunteers. We avoid splitting
stories across iterations, because it complicates tracking. All stories will be
implemented by release end, so you’ll be able to pick the story you dropped
next iteration, if it still interests you.

5.6 Customer Priorities

The priority on the story card expresses the customer’s expectation of busi-
ness value. Programmers work on the highest priority stories in each iter-
ation. In XP, we deliver as much business value as early as possible in the
release.

There’s no guarantee all stories can be implemented. The best way for
the customer to ensure a particular feature is added is to limit the scope
of the release. If the programmers get done early, you can add stories in a
mid-release planning game followed by an iteration planning meeting. And,
if you run out of work before the end of the iteration, grab the highest

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

36

priority story card, estimate the tasks, and implement them. This is how
you increase your individual velocity.

5.7 Taking Care of Business

XP was originally invented to solve an internal software devel-
opment problem. The idea of light requirements is more easily
accepted in internal projects than it is for consulting projects.
You can still use XP if your relationship with the customer is
contractual. My consulting company takes three approaches:

• We write small, fixed-price contracts after the planning
game. We scan the story cards and include them in the
contract.

• We write a general contract which promises fixed length
iterations for a fixed price. The planning game happens
before every iteration.

• We write a time and materials contract, and the customer
provides stories on an as needed basis.

The three cases are listed in order of increasing trust. We use the
first option with customers who are skeptical about our develop-
ment process. To help with this, we absorb the risk with a fixed
price iteration with a satisfaction guarantee. We know that the
sooner we get coding, the lower the risk of dissatisfaction. And, we
bypass many hours of unpaid work by circumventing protracted
negotiations on a detailed, legalistic specification.
After the first iteration, we usually slip into the second option.
The customer has seen a working end-to-end system, and she
has experienced our process. Functioning software has a way of
convincing even the most skeptical customers about XP.
Finally, we move into time and materials mode. By the second
or third iteration, XP has established a strong trust relationship
due to its intense focus on the customer and her priorities.

5.8 The Beat Goes on

From the first iteration to the last, an XP team cranks out a steady stream of
software distributions. Programming, like many other creative professions,

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

37

needs a regular beat.2 It’s all too easy to get distracted by an interesting
problem. Regular, high frequency deadlines help people to stay on track.

Every team has to find its own rhythm. Weekly iterations work well in
my experience, and they dovetail nicely with the 40-hour week practice of
XP. At the end of the week, we go home with a clean plate, and come back
with a fresh mind for the next iteration.

Whether you deliver every week or every few weeks, the goal is to keep
the software water wheel flowing to the customer. She sees steady progress,
and programmers get high frequency feedback about the quality of the sys-
tem.

2 I had a music teacher who believed this, too. He used to thwack my leg with his
baton to make sure I didn’t forget the beat. I recommend a kinder, gentler approach for
your team. Although some in XP advocate a RolledUpNewspaper, visit the XP Wiki at
http://c2.com/cgi/wiki?RolledUpNewspaper to learn more.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

38

Chapter 6

Pair Programming

When you’re stuck together like this, I figure small differences in
temperament are bound to show up.

– Robert Pirsig1

The last planning activity in XP is pair programming. Two programmers
discuss what they are about to program. They write a unit test which is a
formal specification. Only after their intention has been communicated to
each other, do they begin the implementation.

Pair programming is probably the most distinctive practice in XP. It
qualitatively differentiates XP from other software methodologies. Pair pro-
gramming is also the hardest practice to integrate. The payoff is that pair
programming will elevate your system’s quality to a new level. And, sur-
prisingly, your team’s overall efficiency will improve, too.

This chapter explains value of pair programming, how it works, and ways
to adopt the practice. A number of the human factors surrounding solitary
and pair programming are also covered.

6.1 Quality

We want to write quality software. Yet there are no rules that guarantee
quality. For example, some people think applying the once and only once
(OAOO) principle everywhere is a way to quality. Others think OAOO is
not always applicable.

1 Zen and The Art of Motorcycle Maintenance, Robert M. Pirsig, Bantam Books, 1989,
p. 40.

39

Yet we know quality when we see it. Two programmers often agree
about the quality of a solution, but they probably won’t agree on all the
characteristics that contribute to or detract from its quality. It’s particularly
hard to assess the quality of the code as you are writing it. We can recognize
quality, but it is not feasible to encode how to achieve it in all circumstances.

Your programming partner can tell you about the quality of what you
are writing. He acts as an alter ego. With gentle reminders about the team’s
coding standards or even fuzzy statements like “this doesn’t feel right”, your
partner improves the code before you invest too much energy into it. When
there is a disagreement about quality, you discuss it. There are no rules.
Your different experiences guide you.

Simply put, pair programming yields better software than solitary pro-
gramming. Or, as Eric Raymond says, “Given enough eyeballs, all bugs are
shallow.”2

6.2 How It Works

Pair programming is two programmers sitting at one computer working on
the same task. One person drives, and the other kibitzes.3 They switch roles
naturally when the driver gets stuck or when the kibitzer wants to express
his thoughts as code or just whenever it’s time to switch.

One programmer codes at a time. Just as the customer is supposed
to speak in one voice, a programming pair does the same. XP’s coding
standard practice eliminates discussions about minor details, such as, how
to align the statement braces.

The observer thinks strategically about the code with respect to the
whole. He’s likely to see more of the forest than the driver. For example,
the observer may be thinking of additional test cases as the code is being
written or seeing a pattern that was used elsewhere and should be carved
out so it can be reused.

The communication between the driver and the onlooker is continuous.
The feedback from the onlooker helps correct small errors in real-time before
they become big problems. The driver and onlooker code in unison with the
ultimate goal of not remembering who wrote which line of code. This won’t

2 The Cathedral & the Bazaar, Eric. S. Raymond, O’Reilly and Associates, 2001, p.
30. Available online at http://www.catb.org/˜esr/writings/cathedral-bazaar/. Thanks to
Joe Johnston for adding another connection between open source development and XP.
For others, see Deviance Testing

3 According to Webster’s New World Dictionary: “An onlooker at a card game, etc.,
esp. one who volunteers advice.”

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

40

happen at first, but when it does, you both know the code resulted from the
synergy of your experiences and skills.

6.3 Ease on down the Road

Your initial sessions should be short (two hours or less) with frequent breaks.
Adopt pairing gradually until all production code is written in pairs. In some
teams this is impossible, and that’s OK. XP values people over process.
Some people can’t pair program full-time (see sidebar).

Unlike marriage, you don’t try to pair with someone until death do you
part. And, even in marriage, it’s a rare couple that can sustain eight hours
working closely together, day in and day out. In XP, you switch partners
once or twice a day. It’s not like musical chairs, where everybody moves
to the next chair at the same time. You might seek out specific partner,
because he is knowledgeable about a particular problem or technique. Or,
somebody might ask you or your partner for help.

Don’t change partners too often, however. It takes time for a new partner
to develop the context necessary to be productive. As with all the XP
practices, you’ll find what works well for your team through trial and error.

6.4 Rest & Relaxation

Pair programming is a lot of work. Sharing is hard, as anybody who has
observed a preschool classroom will note. Working side by side taxes even
the most peaceful programmers. You will need to remember to take breaks
before tempers flare.

Pair programming is more intense than solitary programming, because
somebody is always driving. It’s like running in a relay race where you
hand off the baton and then hop on a bike to keep up with your partner.
One reason XP recommends you work only 40 hours a week is that pair
programming is hard. To be an effective partner, you need to be fresh and
rested. The 40 hour work week reminds us that most of XP’s practices were
devised to address the human side of software development.

6.5 People Problems

Software is written by people. We’re the source of all the ideas and errors
that go into the code and that makes us an important, if not the most
important, implementation risk factor of software projects. XP doesn’t try

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

41

to hide the people issues behind a veneer of methodology and technology to
protect us from each other. We don’t ignore risk factors; we face them with
courage.

Most of the XP practices are designed to force personal issues to the
surface so the team can address them. Software methodologists have long
known that human factors are the weakest links along the chain from project
conception to deployment. Gerry Weinberg sums this up in his second law
consulting: “No matter how it looks at first, it’s always a people problem.”4

One of the goals of XP is to help teams deal with personal issues by them-
selves before management hires a consultant to figure out it for them.

I’m not trying to paint a picture that programming is a constant struggle
with personal issues, rather the complexity of our everyday lives and past
experiences necessarily affects how we work. For example, have you ever
had a bad hair day? Your hair, your breakfast, and the code comes out all
wrong, and you just want to go home. Or, have you ever had a fight (excuse
me, technical debate) with a co-worker that couldn’t be resolved? You then
each go off to solve it your own way. Instead of burying the hatchet, you
end up burying the personal conflict in the project’s codebase.

XP’s safeguards help resolve personal issues like these. If you aren’t your
usual self one day, your partner will notice. He’ll drive until you snap out of
it. Everybody needs to coast sometimes. When you and your partner have
a conflict, you have to work it out. If you don’t, someone else on your team
will notice you wrestling the keyboard from each other. They’ll help you
resolve the conflict, because they don’t want to deal with battles embedded
in the code.5

Pair programming teaches us about sharing, good manners, and acknowl-
edging others’ feelings and opinions. It’s your average preschool curriculum.6

And, by the way, pair programming can be as much fun as preschool, too. I
find myself laughing and celebrating successes much more often than when
I’m programming by myself. Sharing is about getting more out of who we
are as individuals.

4 The Secrets of Consulting, Gerald Weinberg, Dorset House, 1985, p. 5.
5 Or, to have to dislodge the keyboard embedded from your partner’s skull. It’s bad

for your partner and the keyboard.
6 My son’s preschool teacher was a corporate trainer. She said both jobs require the

same skill set.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

42

6.6 Different Strokes

The first step to acknowledging emotions is accepting that people are dif-
ferent. It’s not as easy as it sounds. Over the years, we have developed
bad habits in response to emotional situations. Some people withdraw in
conflict situations. Others become more aggressive. Like most people, we
reuse these patterns without regard to the other people in the situation.

Psychologists can help us to handle and to resolve conflict easily. Robert
and Dorothy Bolton have developed a pragmatic approach to help people
work with each other. Their system, called style flex, teaches us how to
treat people differently based on our individual characteristics:7

Style flex involves tailoring your behavior so that your work fits
better with the other person’s style. Flexing your behaviors is
like a professional baseball player electing to swing differently
at a fastball, a slider, and a curve. [...] Style flex is a way of
adapting to another person’s process; it is not about conforming
to his or her point of view. It is about relating constructively
while appropriately disclosing your perspective on things as well
as listening empathetically to others. The better the interper-
sonal process, the more likely that people accurately hear each
other and creatively resolve conflicting opinions.

And, one of their most important tips is:8

When a relationship isn’t going well, don’t do more of the same;
try something different.

If you keep this rule in mind, you will not only program with a partner
better, you will also become more adept at dealing with your peers and
your customers. Pair programming is an all-around learning experience that
helps the team get the most out of each member, and everybody therefore
gets the most out of the project. And, you’ll also get help on bad hair days.

7 People Styles at Work, Robert and Dorothy Bolton, American Management Associ-
ation, 1996, p. 68.

8 Ibid, p. 72.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

43

6.7 Yea, Whatever

Not everybody in my company can sustain pair programming all
the time. We try to flex to each other’s styles when we can.
Sometimes it just doesn’t work.
One of my partners gets what I call the “yea whatevers” when
he’s had enough pair programming. He ends up saying, “yea,
whatever” whenever there’s some type of disagreement. The yea
whatevers only happen after too many conflicts in one session.
Our personalities would start hindering our efforts if we continued
pair programming so we know it’s time to stop.
XP promotes people over process first, and a set of best practices,
second. If the people dynamics aren’t right, I don’t recommend
forcing pair programming. It’s taken this programmer and me
years to figure out what works best for us. We didn’t start out
pair programming when we first started working together, and we
don’t pair continuously all the time now. Most of the time, we
pair when we run into a roadblock, and we know we need help.
This also turns out to be a good way to introduce pairing, that is,
waiting until you get a hard problem before you bring in a partner.
It may be something you do already, possibly at a whiteboard.
Next time, try sharing a keyboard instead. You will be surprised
how much more effective it is to communicate through the code
than in a conference room.
A whiteboard solution is theoretical, and code is being there. It’s
like the difference between planning to climb a mountain and hoot-
ing in unison when you both reach the top. Coding together
means helping each other with the inevitable wrong turns and
near falls. You gain mutual respect and learn to trust each other.
You can’t pair program effectively without these qualities, and
the best way to get there is by working side by side on a hard
problem.

6.8 Gumption Traps

Bad hair days are when nothing seems to go right. Robert Pirsig says this
happens when you run into a gumption trap, something that saps your
energy, discourages you, and causes you to make mistakes. Some examples

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

44

of gumption traps are:9

Intermittent Failure In this the thing that is wrong becomes right all of
a sudden just as you start to fix it.

Parts Setback It’s always a major gumption trap to get all the way home
and discover that a new part won’t work.

Value Rigidity The facts are there but you don’t see them.

Ego Traps When the facts show that you’ve just goofed, you’re not as
likely to admit it. When false information makes you look good, you’re
likely to believe it.

Pirsig defines these gumption traps in terms of motorcycle maintenance,
but they apply equally well to software development. Whether you are a
mechanic or programmer, gumption traps keep you from getting your job
done.

You can get out of gumption traps by yourself. Pirsig gives solutions for
each of these traps. The biggest problem is recognizing that you have fallen
into one. Even when you recognize you are in a trap, it can take you days
to get out of one, if you are working alone. With a partner you’ll probably
be out in a few hours or possibly even minutes.

You and your partner think differently. You have different backgrounds
and skills. When you are pair programming together, these differences bal-
ance each other out to help both of you avoid and recover from gumption
traps.

Each of you probably won’t fall into the same gumption traps. If you
both fall into the same trap, one of you will come out first and help the
other out. I’m sure you have had the experience of searching for a code
defect with another person. It would be a rare event for both of you to find
it at the exact same moment. It doesn’t matter who finds it first, because
both of you can continue coding once it is found.

6.9 Reducing Risk Through Knowledge Transfer

Programming pairs are not only better at finding defects, they produce bet-
ter code and learn more than solitary programmers. Programming partners
often come up with two different implementations for the same task. One

9 Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig, Bantam Books, 1989,
p. 277-283.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

45

or both of the implementations might contain ideas new to the other per-
son. You’ll discuss the differences, and possibly merge the solutions. In any
event, one or both of you have learned something.

One partner is likely to know more about the code or problem you both
are working on than the other. While you add business value to the project,
the more experienced partner transfers knowledge to the less experienced
partner. When all production code is written in pairs, no one person has
unique knowledge of the codebase. This reduces risk, and spreads experi-
ence. Everybody benefits from the continous learning that goes on in an XP
project. In addition, the customer benefits from the reduced risk and from
the increased quality that pair programming delivers.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

46

Chapter 7

Tracking

He achieves successes
he accomplishes his tasks
and the hundred clans all say: We are just being natural.

– Lao-Tze1

XP’s focus is on the here and now. The team knows how it is doing
by eliciting feedback through testing and frequent releases. Sometimes this
feedback is not enough to keep a project on track. Everybody strays from
the path now and then, and runs the risk of getting caught in a web made
by a big, hairy spider. That’s why every XP project needs a tracker.

Tracking in XP let’s us know if we’ve strayed off the path. Tracking
introduces feedback about how we are doing with respect to iteration and
release plans. The tracker is the team member who is responsible for asking
the team how far along they are with their tasks for the iteration. If the
iteration is behind schedule, the tracker asks the customer to drop tasks.
Intra-release feedback is generated by tracking the velocity trend. When
the velocity curve is unstable, it’s a sign of trouble.

The role of tracker is typicially filled by a manager, but can be anybody
who communicates well with the rest of the team. The tracker’s job is to
help find root causes as well as gather data about the project’s status. To be
effective, the tracker must be a perceptive listener to hear the subtle clues
that lead to root causes.

1 The Tao of The Tao Te Ching, Lao-Tze, translated by Michael LaFargue, SUNY
Press, 1992, p. 118.

47

This chapter explains how tracking works, what’s tracked, ways to keep
everybody informed, and most importantly, how to get back on track if
you’re lost battling big, hairy spiders.

7.1 Iteration Tracking

Iteration tracking is a polling activity. The tracker asks team members how
their work is going once or twice a week. These meetings are between the
tracker and one team member at a time. This keeps everyone at ease, and
allows the tracker to ask personal questions if need be.

To simplify tracking, try to limit task length to one ideal day. With
multi-day tasks, the tracker needs to ask how much time is left to get a
precise reading of the project’s status. With single day tasks, the tracker
need only ask whether the task is completed or not. This latter precision is
enough to provide an accurate picture of the iteration’s progress.

Iteration tracking is not micro-management. The tracker doesn’t try to
control how people do things. The purpose of tracking is to find out what is
happening using a simple, objective measure, such as, what tasks are done
and what are their estimates. If the tracker has to ask how close a task is
to being done, the measure is less objective, and the tracker may have to be
more intrusive into how the team member came up with the estimate. The
simple binary test (“is it done?”) avoids this extra level of detail, and keeps
the meetings shorter and more straightforward.

After the tracking meetings, the tracker sums the estimates of completed
tasks, divides the sum by the current velocity, and multiplies by 100. The
result is the percentage of planned work which has been completed for this
iteration. If the number is 60% and you are at the end of day three of a one
week iteration, the iteration is on track. If the number is lower, the tracker
needs to ask the customer to cut scope.

7.2 Don’t Slip the Date

Traditional project management tends towards adjusting the schedule to
meet reality, that is, scope is fixed, and it’s the date that needs to slip. XP’s
view is that scope is variable, and it’s more important to keep dates fixed.

If you change the date, the entire team has to be involved. The team
members who are on track will need new tasks (more communication). Their
flow will be disrupted by an extra meeting to figure out what tasks need to
be added.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

48

The cheaper alternative to slipping the date is to cut tasks. This is
less costly in terms of communication. The tracker already knows which
tasks are in trouble, and he is already are talking with the people who are
responsible for them. The tracker’s job is to make the customer aware of
the problems. The programmers who are on track needn’t be bothered.

The customer picks which stories to drop. The tracker gives the customer
the raw data (list of problematic stories) as well as your own interpretation
of the factors involved. Call in the programmers to help you explain the
details if need be. The better informed the customer is, the more easily she
can decide what to drop.

7.3 Adding Tasks

Believe it or not, there are times when stories need to be added to an itera-
tion. For example, the customer may see an important problem while using
the prior iteration or a programmer may have finished all his tasks before
the end of the iteration.

The customer decides what to add. The tracker only involves those
programmers who are available for the additional stories. Not that the
cusomter must stay within budget, so tasks may need to be dropped to
balance out the additions. The tracker gives the customer a list of tasks in
progress to help prevent unnecessary task switching.

7.4 The Tracker

The tracker must be someone who can speak directly to all team members.
He needs to be a perceptive listener, because tracking is more than just
numbers. It’s about finding root causes and resolving them. Most problems
you run into are related to the people, not the technology. And, people are
needed to solve them.

The role of tracker is best played by the project manager, in my opinion.
Alternatively, you may want to rotate the position of Tracker throughout
your project, or rotate the trackers between projects. Tracking, like man-
agement in general, needs to be understood by the whole team.2 Rotating
everybody through the position of tracker, gives the entire team the op-
porunity to see the forest for the trees.

2 If you want to know why management is important, pick up a copy of What Man-
agement Is: How it works and why it’s everyone’s business, Joan Magretta, Simon and
Schuster, Inc., 2002. It’s an excellent, slim book on management.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

49

7.5 Release Tracking

The simplest way to track release progress is with a graph of velocity. The
graph should quickly converge on a constant value, for example:

Typical Velocity Graph

Velocity converges when the task estimates align with actual capacity.
Once this happens, velocity should remain relatively constant.

Now let’s take a look at a graph from a troubled project:3

Troubled Project’s Velocity Graph

3 This data was taken from 10 week-long iterations from a project at my company.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

50

The project started out normally with velocity starting to converge
around the third and fourth iteration. By the fifth or sixth iteration ve-
locity started to drop off. The project was in serious trouble by the ninth
iteration. The next step is figuring out why.

7.6 What Goes Wrong?

Finding the root cause for a velocity trend change can be difficult. In this
project, we had a problem with quality which was indicated by an increase
in the number of stories to fix defects. This was obvious when reviewing
the story cards. When I went back to review the cards for this chapter, it
struck me that the task estimates seem shorter as the project progressed.
While I don’t recommend tracking average task length in general, the graph
illuminates the problem in this case:

Troubled Project’s Average Task Length Graph

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

51

The graph shows that the average task length started dropping around
the fourth iteration. In conjunction with the drop in velocity, this indicates
the tasks were shorter, and we were underestimating them. These symptoms
are indicative that change was harder, and were probably caused by quality
issues. The team was battling the big, hairy, low quality spider.

Low quality is not a root cause, rather it’s a symptom of not using best
practices. After reviewing the project, we attributed the poor quality to the
following root causes:

Customer Unavailable The customer didn’t start using the system until
the fifth iteration.

Too Few Acceptance Tests The team didn’t test end to end function.
It was thought there wasn’t enough time, and was partially related to
the team’s relative inexperience.

Inexperience The domain, development environment, Perl, and XP were
all new to the developers. The customer was new to XP. Doing too
many new things at once is rarely a good idea, and in this case, was a
significant weak point.

In the next section, you’ll see how we fixed these problems. For now, let’s
take a look at a few other problems you might encounter when developing
with XP:

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

52

Failing to Finish The customer does not stop making changes, and won’t
launch until all changes are done. This is a planning failure. With
XP, you need to pick dates, and stick to them. The tracker should
noticed that dates are slipping. In XP, we don’t slip dates, we cut
scope instead.

Too Little Refactoring Refactoring is put off until after launch. This re-
duces quality, which can be difficult to recover from, because the team
falls into the bug-fixing trap soon after launch. Too little refactor-
ing multiplies defects through copy-and-paste-itis: an inflammation of
defects caused by over use of the copy-and-paste function in editors.
The tracker should notice that the code base is growing too rapidly.
If the number of lines of code is growing linearly with the number of
ideal days, it means there’s not enough refactoring. It’s unlikely that
every programmer thinks up the right code abstraction for every task.
The programmers have to refactor to create the right abstractions, and
that will shrink the code base.

Too Much Refactoring The programmers are perfectionists, and they
won’t stop trying to improve the code. This greatly reduces the
amount of business value being added, and pushes off the launch date.
This one may be a bit tricky to notice with a simple velocity graph,
because the velocity may be constant. This is where the tracker needs
to use his sixth sense that velocity is simply too low.

Not Enough Unit Tests Finding the right balance on unit tests is not
easy, but it’s fairly clear when there aren’t enough: the team is afraid
to make changes. This happened on one of my first XP-like (or should
I say, XP-lite) projects. The project was successful enough, but now
we are living under the constant fear of change. We’re adding unit
tests slowly, but it takes time, and it’s hard to justify writing tests
when “everything is working fine”.

Too Little Pair Programming The programmers go off into their cor-
ners to get work done. The problem is that they don’t know what
everybody else is doing, and there’s probably a lot of duplicated ef-
fort. Solitary programming is visually obvious to the tracker. It may
even be mandated by management to save money. Velocity may be
constant. However, quality will soon suffer.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

53

7.7 Fixing Troubled Projects

All of these problems can be resolved. Sometimes the solutions take courage,
such as, writing unit tests for a large testless codebase or telling the customer
to launch now instead of waiting for one more change. The hardest part, I
find, is figuring out what is wrong in the first place. The solution in most
cases is simple: stop the counter-productive behavior.

Let’s return to our troubled project. The customer realized there was a
problem. We (the management) realized what was wrong, and the solutions
were obvious. We cut scope so we could focus on improving quality. We
substituted a senior developer into the project. We added some acceptance
tests. And, probably most importantly, we made sure the customer was
using the system. After four week-long iterations, we launched the system.
We encountered a few structural issues after launch, but the project was on
track, and the customer was much happier.

Probably one of the hardest problems to fix is when there has been too
little refactoring. Extreme Perl has a size advantage in this case. Part of the
reason we were able to fix our troubled project so quickly is that there was
very little code to fix. Just a few thousand lines is all we needed to solve a
fairly complicated problem in Perl.

If you are facing a mountain of code written in a relatively short time
frame, it’s likely to be bad code. Unfortunately, a mountain of code is often
associated with a dearth of tests. You may end up having to throw all the
code away, but the first step is to write tests to be sure you have documented
the expected behavior. Once you have tests, start whittling the mountain
away. The tests will make sure you don’t break anything, and whittling will
turn any code mountain into a codehill–pardon my metaphoritis.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

54

7.8 Meetings

XP puts people over processes. We don’t like wasting time in
group meetings. Formal meetings are limited to planning and
what we call, stand-up meetings.
A stand-up meeting occurs daily, usually in the morning. The
meetings are held standing up, hence the name. Standing helps
limit the meeting’s duration. The content of a stand-up is an-
nouncements and a brief status report from all team members.
As an alternative to stand-ups, you might consider status meet-
ings held over lunch once or twice a week. Lunch is a more relaxed
way than a stand-up to make announcements and discuss what
you are working on. The status lunch also gives the team a chance
to socialize.
The company should pay for the meal. At one company we hired
an Italian cook to prepare family-style meals three times a week.
Nobody was late to lunch when Dina was cooking!

7.9 Show Your Stuff

Up till now, being the tracker may not seem like a lot of fun. However, part
of the tracker’s job is encouraging people to celebrate their successes as well
as helping out with failures. Everybody wants to be praised for their work.
The tracker should encourage people to show off their completed work to
the entire team. Success is contagious. When you see the excitement from a
sweet demo, you’ll be motivated to work that much harder so you can demo
your cool stuff.

Demonstrations are great way to maintain team spirit and momentum.
Even a short e-mail explaining your result is enough. For example, you
introduce a cache and improve the performance by 10 times. Send out a
graph containing the performance test comparison.

The tracker should organize demonstrations if they don’t come about
naturally. Sometimes team members are reticent to show their work. Weekly
demonstrations are a good way to ensure everybody is praised for their ac-
complishments. Before or after lunch are good times for demos (see sidebar).

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

55

7.10 Sign Off

The main indicator for how much business value has been implemented is the
percentage of acceptance tests that are passing. Acceptance testing is the
way we validate stories have been implemented. While this is a great way to
measure where you are, it’s also nice to audit the cards themselves. I like my
customers to formally sign off acceptance on the story cards in an acceptance
meeting. The formality helps ensure the customer, the tracker, and the cards
are in sync. In large projects, there’s bound to be a problem with or a feature
missing from one of the stories. The customer and the tracker should read
the story cards again to make sure they really are complete.

7.11 Here and Now

Rather than trying to predict the future, XP focuses on the present with an
eye on the past. We know where we are and from whence we have come. The
unit tests tell the programmer if his changes are valid. The acceptance tests
validate the system as a whole. The tracker knows which tasks are done and
which are not. These feedback mechanisms keep everybody informed about
the project’s state.

It’s normal to have unfinished tasks at the end of an iteration. Don’t
worry. You’ll complete them next iteration. No amount of charting, analysis,
and/or forecasting will magically complete the tasks for you. If there is a
pervasive planning problem, it’s almost always related to the people on the
project, not some technological issue. XP’s practices are designed to prevent
people issues from remaining hidden. The tracker’s main job is to remind
people what those best practices are.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

56

Chapter 8

Acceptance Testing

For defect removal, the most prominent attribute of a require-
ments specification is its testability.1

– Robert Dunn

Acceptance tests are the functional specifications of XP. Each story card
is elaborated in one or more scripts by the customer. The test suite is run
regularly on the entire application, and the programmers can use the scripts
to diagnose implementation defects.

The purpose of this chapter is to demonstrate how the customer can cre-
ate automated acceptance tests. Acceptance tests are explained in general
and with example test scripts. An alternative approach called, data-driven
testing, is presented that allows the customer to generate tests using ordi-
nary office software, such as, spreadsheets and word processors.

8.1 Acceptance Tests

Acceptance tests, also known as, customer tests and functional tests, val-
idate the customer’s view of the application. They are distinct from unit
tests, which validate the programmer’s view of the software internals. The
programmers help write acceptance tests, but as with writing story cards,
the customer needs to be involved directly. Otherwise, customer expecta-
tions probably won’t be met by the application.

When writing tests, the customer fills in the details the story cards leave
out. Each test encodes one or more specific user scenarios. When the test

1 Software Defect Removal, Robert Dunn, McGraw-Hill, Inc., 1984, p. 28.

57

runs, it performs the same actions a user would, and, ideally, validates what
the user would see. An acceptance test simulates the user automatically.

8.2 Automation

Acceptance tests need to be automated to be effective XP tools. You can
write manual tests, that is, tests where a person acts as the simulated user.
However, manual tests don’t fit well with XP, because they don’t provide
the consistent, instantaneous feedback that XPers crave. Manual tests have
their place, and the existing literature covers them well.2 This book is about
empowering teams to use XP, and manual tests are not tools in a typical
XP project.3

The trade-off between a manual and automated test is cost. Automation
has a higher up front cost, but in XP the cost is amortized quickly. Ac-
ceptance tests are run nightly or more frequently in an XP project. When
dealing with physical devices, such as printers, automation is expensive. For
typical Perl applications, however, inertia is a greater barrier to automation
than cost.

I take a top-down approach to overcome automation inertia. Let the
customer write or specify the test, and then figure out how to implement it.
Tests can be implemented partially yet still be valuable. As always in XP,
take it one step at a time, and do the simplest thing that could possibly
work.

8.3 I’m Gonna Buy Me a Dog4

The examples that follow test PetShop, a demonstration, open source, online
pet store.5 The specifics of the scripts could apply to most online stores so
you don’t need to try PetShop to read the examples. Potential buyers add
items to a shopping cart while they browse or search a hierarchical catalog.
To complete the check out, they must login or register.

2 Testing Computer Software by Cem Kaner et al is an excellent book about classical
testing and quality assurance.

3 In Testing Extreme Programming, Lisa Crispin and Tip House state that “All ac-
ceptance tests on an Extreme Programming project must be automated” and devote an
entire chapter to explain why.

4 I want to go on record that I do not promote buying animals in stores. Buy animals
from a reputable breeder, or better yet, adopt a pet from your local animal shelter.

5 Visit http://petshop.bivio.biz to see it live and to browse the source. The idea was
inspired by Sun Microsystems, Inc.’s J2EE Blueprint Pet Store.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

58

This first script tests several ways to find a Corgi, a small herding dog.
The stories tested by the script are:

• Organize catalog hierarchically by category, breed, and animal for sale.

• Allow buyers to search for animals by keyword(s).

The test script in Perl syntax is:

test_setup('PetShop');

home_page();
follow_link('Dogs');
follow_link('Corgi');
add_to_cart('Female Puppy Corgi');

search_for('corgi');
add_to_cart('Female Puppy Corgi');
search_for('CORGI');
add_to_cart('Female Puppy Corgi');
search_for('dogs wales');
add_to_cart('Female Puppy Corgi');

The first line in the script tells the test framework6 what we are test-
ing. test setup establishes the functions, or actions, used by the test.
Since this is an online store, the actions include: home page, follow link,
search for, and add to cart.

Acceptance test scripts are similar to the script to a movie or play. The
roles are the user and the computer. The script shows the user role, or
what the user does and expects to see. For example, the second section of
the script follows the site’s hierarchy to put a dog in the cart. It goes to
the home page, selects the Dogs animal category, drills down to the Corgi
breed, and, finally, puts a Female Puppy Corgi into the cart. These are the
actions of an ordinary user.

The test script is run through an interpreter, a program that trans-
lates the functions into interactions with the application. The programmers

6 Programmers: This chapter is devoted to explaining to the customer’s view of ac-
ceptance testing, not the programmer’s. The test script interpreter consists of a few lines
of Perl, and uses eval and AUTOLOAD. You could write this yourself, or download my
company’s open source implementation from http://www.bivio.biz.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

59

implement the functions on demand for the customer. The functions are
responsible for checking the computer’s role in the script. For example, this
test script states that the user clicks on the Dogs link on the home page.
If the Dogs link is missing from the home page or spelled incorrectly, the
follow link action stops and indicates that the test script has failed. This
approach is called fast fail, and makes it easy to write and maintain test
scripts. In keeping with the movie script analogy, it’s like when the director
sees computer screwing up its lines, and yells, “cut!”. Everybody stops. The
director corrects what’s wrong, and the actors start over again.

The next section tests the search facility. We should be able to find our
dog by searching for corgi, CORGI, and dogs wales. We aren’t particularly
interested in Corgis7, rather our goal is to test that the search mechanism
is case-insensitive and supports multiple words. And, most importantly, the
list of search results allows the buyer to place found animals in their cart
easily. Shoppers should be given an opportunity to buy what they find.

8.4 Group Multiple Paths
8.4. GROUP MULTIPLE PATHS

The previous example demonstrated testing multiple paths, that is, different
ways of doing the same thing. In one case, we searched for a Female Puppy
Corgi hierarchically, and then we used the search box to find the same dog
using different keywords. Here is another example that demonstrates mul-
tiple paths:

test_setup('PetShop');
home_page();
follow_link('Reptiles');
follow_link('Rattlesnake');
add_to_cart('Rattleless Rattlesnake');
remove_from_cart('Rattleless Rattlesnake');

search_for('Angelfish');
add_to_cart('Large Angelfish');
update_cart('Large Angelfish', 0);

7 Or other high-energy small dogs.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

60

This example tests the two ways you can remove animals from the cart.
remove from cart uses a button labeled Remove to delete the item from the
cart. update cart allows buyers to change the quantity desired. Setting it
to zero should have the same effect as remove from cart.

Most applications allow you to do something in more than one way, like
in this example. Grouping similar functions in the same test is another
organizational technique for your acceptance test suite. It also provides an
opportunity to talk about an application cross-functionally. The creation of
test scripts is a collaborative effort, much like pair programming. This sort
of detailed matters, and probably won’t come up during the planning game.
The details emerge when the stories and their acceptance tests are being
implemented. The test suite opens a communication channel between the
programmers and the customer to discuss application consistency and other
technical details, such as what to do when the user enters an unexpected
value.

8.5 Without Deviation, Testing Is Incomplete
8.5. WITHOUT DEVIATION, TESTING IS INCOMPLETE

The acceptance test suite also checks that the application handles unex-
pected input gracefully. For example, if the user enters an incorrect login
name, the application should tell the user not found or something simi-
lar. The technical term for this is deviance testing. It’s like kicking the
tires or slamming the car into reverse while driving on the highway. The
previous examples are conformance tests, because they only validate using
the application for its intended purpose. When you write a deviance test,
you break the rules in order to ensure the application doesn’t do the wrong
thing, such as displaying a stack trace instead of an error message or allowing
unauthorized access.

For example, here’s how we test login conformance and deviance of the
PetShop:

test_setup('PetShop');
home_page();
login_as('demo', 'password');
login_as('DEMO', 'password');
login_as('demo@bivio.biz', 'password');
login_as('Demo@Bivio.Biz', 'password');

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

61

test_deviance('does not match');
login_as('demo', 'PASSWORD');

test_deviance('must supply a value');
login_as('demo', '');
login_as('', 'password');

test_deviance('not found');
login_as('notuser', 'password');
login_as("demo'||'", 'password');
login_as('%demo%', 'password');

The first section tests conformance. We login as demo and DEMO to test
that user names can be case insensitive. The PetShop allows you to login
with an email address, case insensitively.

Passwords are case sensitive, however. The next section expects the ap-
plication to return an error message that contains does not match when
given a password in the wrong case. This is a deviance test, and the
test deviance that begins the next section tells the test framework that
the subsequent statements should fail and what the expected output should
contain. This is an example where the test script specifies the computer’s
role as well as the user’s.

The application should ask the user to supply a value, if either the login
name or password fields on the form are blank. The next section tests this.
This case might be something a programmer would suggest to the customer.
The customer might decide that must supply a value is too computer-like,
and ask the programmer to change the application to say something like,
Please enter your login ID or email address.

In the last section, we test a variety of not found cases. The first
case assumes that notuser is not a user in the system. The test suite
database is constructed so that this is the case. The last two cases are highly
technical, and are based on the programmer’s knowledge of the application
internals, that is, SQL, a database programming language, is used to find the
user. Some applications do not correctly validate application input, which
can allows the user unauthorized access to system internals. This is how
computer virii and worms work. This test case validates that the user name
is checked by the application before it is used in a low-level SQL statement.
If the user name syntax is not checked by the application, one of the last
two cases might allow the user to login, and the deviance test would fail.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

62

Note that we didn’t test notuser without a password. It’s not likely that
an invalid user could login without a password when a valid user couldn’t.
In testing parlance, the two tests are in the same equivalence class. This
means we only need to test one case or the other but not both.

We use equivalence classes to reduce the size of the test suite. A large
application test suite will have thousands of cases and take hours to run.
It’s important to keep the runtime as short as possible to allow for frequent
testing. And, as always, the less code to do what needs to get done, the
better.

8.6 Subject Matter Oriented Programming
8.6. SUBJECT MATTER ORIENTED PROGRAMMING

Another way to minimize test length is letting the problem, also known as
subject matter, guide the development of the functions used by the scripts.
The customer is probably not a programmer. Moreover, the customer’s
terminology has probably been refined to match her subject matter. The
programmers should let the customer choose the function names, and the
order and type of the function parameters. The language she uses is probably
near optimal for the subject and workflow.

The process of bringing the program to the problem is what I call, subject
matter oriented programming (SMOP). It is what XP strives for: creating
an application that speaks the customer’s language. The acceptance test
suite is probably the customer’s most important design artifact, because
it encodes the detailed knowledge of what the application is supposed to
do. If she or her co-workers can’t read the tests, the suite’s value is greatly
diminished.

The design and implementation of the acceptance test suite evolves as
the customer encodes her knowledge. The programmer may need to help the
customer to identify the vocabulary of the subject matter. Subject matter
experts sometimes have difficulty expressing what they do succinctly. The
programmer needs to be part linguist, just like Larry Wall, Perl’s inventor.
Unlike other language designers, Larry lets the problems programmers face
dictate the solution (the programming language) they use. Perl is not pre-
scriptive, in linguistics terms, but descriptive, evolving to meet the language
used by programmers, not the other way around.

Enough theory. I’m in danger of getting lost in the solution myself.
If you are a programmer, you’ll learn how to implement a subject matter
oriented program in the It’s a SMOP chapter. I’ll get back to the customer,

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

63

and another method by which she can create the acceptance test suite.

8.7 Data-Driven Testing
8.7. DATA-DRIVEN TESTING

The test examples up to this point have been written in Perl syntax. While
I fully believe just about anybody can follow these simple syntactic conven-
tions, customers may balk at the idea. Ward Cunningham, a well-known
XPer, has taken subject matter oriented programming to a new level. His
framework for intergrated testing (FIT) lets customers write acceptance tests
in their own language using their own tools, office applications, such as, word
processors and spreadsheets. Here’s the login test translated as a FIT doc-
ument:

FIT Login

FIT ignores all text in the document except for tabular text. The tables
contain the text inputs and expected outputs. This allows the customer to
document the test, and to have one document which contains many tests.
The order of the columns and what they are for is worked out between the

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

64

customer and the programmer. Once that’s done, the framework does the
rest.8

Just like the Perl examples earlier, the customer must specify the test
language interpreter, PetShop. In this type of FIT test, the customer enters
actions (login) on a row-by-row basis. The programmer can create new
actions. The cells to the right of the action name are parameters. The
login action accepts a user name, a password, and an error message. If the
there’s no error message, login tests that the login was successful.

The subject matter may suggest a different organization for the tables.
For example, here’s a denser test format for a simple math module:9

FIT Math

As with the login test, the first line contains the test language interpreter,
SimpleMath. The next row lists the actions in a columnar format. The first
action sets an x value, the next sets y, and the last two columns test adding

8 Thanks to Brian Ingerson for implementing Test-FIT, and making it available on
CPAN.

9 SimpleMath and the test data were adapted from Test-FIT, version 0.11, on CPAN.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

65

(sum)) and subtracting (diff). The subsequent rows contain a test in each
cell of the table. The first row sets x and y to 1 and 2 and tests that sum
and diff return 3 and -1. As you can see, this kind of FIT test gives
the customer a clear overview of the acceptance test data using an ordinary
word processor. With this style of testing, customers can create spreadsheets
using formulas.

The general term for using documents as test inputs is called data-driven
testing. And, sometimes there’s no practical alternative to using tabular
data. On one project we developed, we needed to test the correctness of
a pre-marital evaluation tool. Each partner in a couple had to answer 350
questions. The scoring algorithm related the couple’s answers for compat-
ibility. The customer had supplied us with the questions, answers, scores,
and weights in tabular format. When we asked for acceptance test data,
he simply added the answers for test couples in another column, and we
generated the test suite by parsing out the data. As it turned out, the test
data uncovered several areas that were misunderstood by the programmers.
Without customer generated test data, the software would have contained
critical defects.

8.8 Empower The Customer to Test
8.8. EMPOWER THE CUSTOMER TO TEST

Whether the customer uses a spreadsheet, a word processor, or Perl, she can
write tests. And, she needs to. No one else on the team knows the subject
matter better than she does.

Getting started is the hardest part. Take the simplest and most straight-
forward part of the application. Write a test outline for it together on the
whiteboard. Implement that test, and run it together.

After the first steps, you’ll fill in more and more detail. As the suite
grows with the implementation, the application will benefit from the regular
exercise. The programmers will gain deeper insight into the subject matter.
The customer will see the quality improve firsthand. And, everybody will
benefit from the well-structured knowledge base encoded by your acceptance
test suite.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

66

Chapter 9

Coding Style

Language requires consensus.

– Larry Wall1

Code is the primary means of communication in an XP team. A uni-
form coding style greatly facilitates code comprehension, refactoring, pair
programming, collective ownership and testing. An XP team agrees on a
coding style before development starts.

Coding style is the first problem and XP team has to work out as a
group. The solution to the problem needs to be clear and unambiguous. It’s
amazing how far this can be, and with some teams it’s impossible.

Coding style discussions are like a lightning rod. If there’s a storm
brewing within the team, coding style will usually attract the first lightning
strike. If you can’t reach agreement on a style, your team is going to have
difficulty building an application together.

Tension around style choices is natural in some ways. We are all individ-
uals. Programmers take pride in their own work, further motivating their
own success, just as individual athletes value their own accomplishments.
However, not even the best pitcher, quarterback, or forward in the world
can win a game alone. It takes a team and teamwork to win a game or write
a large application. Programming is a team sport.2

If you are a programmer, you may find yourself gritting your teeth at
my coding style. It wouldn’t surprise me. Athletes and programmers on

1 Open Sources: Voices from the Open Source Revolution, DiBona et al, 1999, O’Reilly,
p. 127. Available online at http://www.oreilly.com/catalog/opensources/book/larry.html

2 And more generally, “Business is a team sport.” Rich Kid, Smart Kid, Kiyosaki et
al, Warner Books, 2001, p. 224-225.

67

different teams sometimes bristle at each other’s style. However, if we were
to join the same team, we’d work out a compromise on coding style to ensure
the success of the project.

This chapter explains the need for a coding style in XP and discusses
how to go about creating one. I also explain and demonstrate the coding
style used in this book through a comparative example.

9.1 There’s More Than One Way To Do It

Perl is a rich and complex language. If you ask a question about how to
do something in Perl on the Internet, you’ll probably get several different
answers. And, the answers will often include the caveat: TMTOWTDI. This
is the acronym for Perl’s motto: There’s more than one way to do it. The
solution you choose will depend on the way you program Perl.

So how do you program Perl? Larry Wall et al present a coding style in
the perlstyle man page.3 Yet there are myriad divergent styles on CPAN
and in the Perl literature. In the Perl community, diversity is seen as a
strength, and no one is going to tell you how to program Perl. Well, even if
they did, you wouldn’t listen to them.

9.2 Give Me Consistency or Give Me Death

Your team still needs to pick a style. This isn’t just XP dogma; it’s human
nature. In the anthropology classic, The Silent Language, Edward Hall
wrote, “The drive toward congruity would seem to be as strong a human
need as the will to physical survival.” I conclude from this that if you don’t
pick a Perl coding style, you’ll die. If that isn’t a good enough reason, stop
reading now.

Seriously, consistency is not an end in itself, it is the means to facilitate
testing, collective ownership, pair programming, and refactoring. If you are
developing a small application (a few thousand lines of Perl), it’s easy to
keep the code consistent, or to clean it up in an afternoon or two. For large
applications (tens or hundreds of thousands of lines spread over hundreds
or thousands of files), quick fixes are impossible. You would never have the
time to reformat the entire codebase.

The code changes too quickly. You don’t get to ask everybody working
on a large application to stop while you fix some style issue. However, for

3 http://www.perl.com/doc/manual/html/pod/perlstyle.html

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

68

some necessary refactorings, such as, a change in a widely used API, you
may have no choice but to dive into tens or possibly hundreds of files. You’ll
want this to happen as quickly as possible so you’ll automate the refactoring.
With a consistent style, you can probably do this fairly easily. If you have
to account for the many ways you can do things in Perl, you’ll probably
resort to hand editing each file. Not only is this labor intensive, but it’s
error prone, too.

Even when you aren’t making global changes, you and your partner still
have to read unfamiliar code. A programming pair’s ability to read and
to communicate through the code is affected directly by its consistency.
Communication is hard enough without you and your partner having to
wade through several code dialects. And, allowing for style variations when
writing code opens up too many unnecessary thoughts. Do I adapt to my
partner’s style? Should we adopt the style of the code we’re editing now?
Or perhaps, I should insist on my style. After all, it has worked well for me
over the years. Starting out with an agreed upon style, frees our minds of
such distractions and allows us to focus on the important bit: solving the
customer’s problem.

9.3 Team Colors

In Extreme Programming Explained, Kent Beck wrote, “The standard must
be adopted voluntarily by the whole team.” This may not be so simple.
Establishing consensus requires work on everybody’s part. If your team has
coded together before, you’ll probably have an easy time agreeing on a style.

For newly formed teams, use the style guide as a team building exercise.
Everyone should be encouraged to contribute. If a particular point is too
contentious, drop it until after the first iteration or so. The goal is to get full
consensus on the entire guide. If someone is particularly inflexible during the
discussions, it’s a warning sign that a team adjustment may be necessary.
Better sooner than later.

A style guide can be highly motivating, however. It’s like your team’s
colors. It’s something relatively insignificant which provides significant co-
hesion. If even one team member is coerced into agreement, the team isn’t
sticking together, and the rift may grow into a chasm. When everybody
voluntarily accepts the style choices, you are functioning as a team, and you
are ready to code.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

69

9.4 An Example

Rather than discuss style in the abstract, I’d like to demonstrate my opinion
of good style through a comparative example. Here’s an excerpt from the
popular Test package on CPAN: 4

package Test;
use strict;

sub plan {
croak "Test::plan(%args): odd number of arguments" if @_ & 1;
croak "Test::plan(): should not be called more than once" if $planned;

local($\, $,); # guard against -l and other things that screw with
print

_reset_globals();

_read_program((caller)[1]);

my $max=0;
for (my $x=0; $x < @_; $x+=2) {
my ($k,$v) = @_[$x,$x+1];
if ($k =~ /^test(s)?$/) { $max = $v; }
elsif ($k eq 'todo' or

$k eq 'failok') { for (@$v) { $todo{$_}=1; }; }
elsif ($k eq 'onfail') {
ref $v eq 'CODE' or croak "Test::plan(onfail => $v): must be CODE";
$ONFAIL = $v;

}
else { carp "Test::plan(): skipping unrecognized directive '$k'" }

}
my @todo = sort { $a <=> $b } keys %todo;
if (@todo) {
print $TESTOUT "1..$max todo ".join(' ', @todo).";\n";

} else {
print $TESTOUT "1..$max\n";

}

4 http://search.cpan.org/src/SBURKE/Test-1.22/lib/Test.pm

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

70

++$planned;
print $TESTOUT "# Running under perl version $] for $^O",
(chr(65) eq 'A') ? "\n" : " in a non-ASCII world\n";

print $TESTOUT "# Win32::BuildNumber ", &Win32::BuildNumber(), "\n"
if defined(&Win32::BuildNumber) and defined &Win32::BuildNumber();

print $TESTOUT "# MacPerl verison $MacPerl::Version\n"
if defined $MacPerl::Version;

printf $TESTOUT
"# Current time local: %s\n# Current time GMT: %s\n",
scalar(gmtime($^T)), scalar(localtime($^T));

print $TESTOUT "# Using Test.pm version $VERSION\n";

Retval never used:
return undef;

}

The routine plan is used to set up a unit test, for example:

use Test;
use strict;
BEGIN {

plan(tests => 2);
}
ok(1 + 1 == 2);
ok(2 * 2 == 4);

This unit test calls plan to declare that there are two test cases. The
ok function checks the result after each case executes, and prints success or
failure.

Here’s what I think is good about this implementation of plan. The
routine:

• is well-used and mature. We can be relatively sure it addresses the
needs of its users and is relatively stable.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

71

• has had several authors. The more eyes on a problem, the better the
solution.

• addresses type safety. Test has a broad user base, so it makes sense
to put extra effort into argument validation.

• fails fast, that is, if plan encounters an unexpected argument or state,
it terminates execution (calls croak) in all but one case. The sooner
a programming error is detected, the less damage the errant program
can do.

• is backwards compatible. The parameters test and failok are dep-
recated, that is, they shouldn’t be used in new tests, but existing tests
that use them still work.

• comes with a thorough unit test suite that describes expected behavior
and enables refactoring.

• uses fine-granularity, feature-driven portability. It uses narrow feature
checks (for example, defined $MacPerl::Version and chr(65) eq
’A’)) instead of broad general checks, such as, checking the operating
system (for example, $^0 eq ’MacOS’). Powerful and easy to use in-
trospection is one of the reasons Perl and CPAN packages are usable
on so many platforms.

9.5 You Say, “if else”, And I Say, “? :”

While indentation, lining up braces, or other formatting is important to ease
automated refactoring, you won’t find much discussion about them in this
book. However, the more strictly you follow your coding style, the more
easily you can automate refactorings. For example, if function arguments
are always surrounded by parentheses, you can rename functions or reorder
parameters using a simple editor macro.5

And speaking of editors, most programmers’ editors have style format-
ters. If yours doesn’t, you can always use perltidy, a very flexible Perl code
reformatter.6 Automatic formatters improve your team’s efficiency and ad-
herence to your style guidelines. That’s all I’m going to say about formatters

5 You can download some refactoring functions for Emacs from
http://www.bivio.biz/f/bOP/b-perl.el

6 Available for free from http://perltidy.sourceforge.net

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

72

and editors. The only thing worse than coding style discussions are editor
wars.

Like editors, style choice is defined by your experience and personal taste,
and the details matter. I follow the perlstyle man page for the most part,
but I disagree with some of their parentheses and alignment choices. You
may not like my style, so go ahead and indent by three spaces if you like.7

9.6 Once And Only Once

Parentheses and indentation aside, the important bit of my style is that I
refactor ruthlessly. I don’t like redundancy, especially in the form of single
use temporary variables and repetitive calls. In XP, we call this the once
and only once (OAOO) rule, and it’s what you do when you refactor.

For new code, I try to do the simplest thing that could possibly work
(DTSTTCPW). This is XP’s most important coding guideline. First I get
it working simply. I might have to copy and paste some code or create a
temporary variable. Once it passes the tests, I look at the design and simplify
it so that each concept is expressed once and only once. There are some time
and planning trade offs here, and the Refactoring chapter discusses them.
The relevant point is that once and only once is an overarching style guidline,
and one that I value highly. When concepts are expressed once and only
once, the code is more robust, more easily extensible, and performs better
than code with needless duplication.

9.7 Refactored Example

The code that follows has been changed to demonstrate once and only once
and other style choices I value. The formatting matches the style used in
this book. More importantly, the rewritten code is more cohesive. Not
only should each concept be expressed only once, but each routine should
implement only one concept. Strong cohesion allows people to comprehend
and to abstract code entities (routines and packages) easily. By isolating
and naming each behavior, we make it easy to understand what each piece
of the software puzzle does.

The four new routines are also loosely coupled. This means their inputs
and outputs are few and well-defined. Loose coupling is important when
isolating behavior, because it is difficult to understand and to test a routine

7 Even though it’s a sin.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

73

with many inputs and outputs. In effect, the routine’s identity is a combina-
tion of its name and its inputs and outputs, which is commonly know as its
signature. We remember shorter signatures and the behavior they identify
more easily than longer ones.

That’s enough theory for now, here’s the my version of plan:

package Test;
use strict;

sub plan {
my($args) = {@_};
Carp::croak('should not be called more than once')
if $_TODO;

_reset_globals();
_read_program((caller)[1]);
_plan_print(_plan_args($args));
return;

}

sub _plan_args {
my($args) = @_;
$_ONFAIL = _plan_arg_assert($args, ['onfail'], 'CODE');
my($max) = _plan_arg_assert($args, ['tests', 'test'], 'integer') || 0;
$_TODO is the initialization sentinel, so it's the last value set
$_TODO = {map {$_ => 1}
@{_plan_arg_assert($args, ['todo', 'failok'], 'ARRAY') || []}};

Carp::carp("@{[sort(keys(%$args))]}: skipping unrecognized or",
' deprecated directive(s)')
if %$args;

return $max;
}

sub _plan_arg_assert {
my($args, $names, $type) = @_;
foreach my $n (@$names) {
next unless exists($args->{$n});
Carp::croak("$n: parameter must not be undef")
unless defined($args->{$n});

Carp::croak("$args->{$n}: $n must be $type")
unless $type eq 'integer' ? $args->{$n} =~ /^\d+$/

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

74

: ref($args->{$n}) eq $type;
return delete($args->{$n})

}
return undef;

}

sub _plan_print {
my($max) = @_;
_print(join("\n# ",

"1..$max"
. (%$_TODO ne '' && " todo @{[sort {$a <=> $b} keys(%$_TODO)]};"),

"Running under perl version $] for $^O"
. (chr(65) ne 'A' && ' in a non-ASCII world'),

defined(&Win32::BuildNumber) && defined(Win32::BuildNumber())
? 'Win32::BuildNumber ' . Win32::BuildNumber() : (),

defined($MacPerl::Version)
? "MacPerl version $MacPerl::Version" : (),

'Current time local: ' . localtime($^T),
'Current time GMT: ' . gmtime($^T),
"Using Test.pm version $VERSION\n"));

return;
}

sub _print {
local($\, $,);
return print($TESTOUT @_);

}

9.8 Change Log

The following is a detailed list of changes, and why I made them. Most of
the changes are refactorings, that is, they do not modify the way plan works
from the caller’s perspective. A few changes improve the behavior ever so
slightly, and are noted below. This list is ordered from most important to
trivial:

• The four main behaviors: control flow, validating arguments, type

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

75

checking, and printing are contained in separate routines. Each routine
is responsible for one and only one behavior.

• The localtime and gmtime calls are now in the correct order. This
defect in the original version only became apparent to me when I
separated the two output lines.

• Argument type validation is consistent, because it has been isolated
into a single routine (plan arg assert) that is used for all three
parameters. Several new cases are caught. For example, passing undef
to tests or passing both tests and test (deprecated form) is not
allowed.

• Carp::croak unrecognized directive warning is printed once instead of
a warning per unrecognized directive. The check for unrecognized
directives still does not fail fast (croak or die). I would have liked
to correct this, because passing an invalid directives to plan probably
indicates a broken test. However, the broad user base of Test makes
this change infeasible. Somebody may be depending on the behavior
that this is only a warning.

• Two temporary variables (@todo and $x) were eliminated by using a
functional programming style. By avoiding temporary variables, we
simplify algorithms and eliminate ordering dependencies. See the It’s
a SMOP chapter for a longer example of functional programming.

• $planned was eliminated after $ TODO was converted to a reference.
$planned is known as a denormalization, because it can be computed
from another value ($ TODO in this case). Normal form is when data
structures and databases store the sources of all information once and
only once.

• plan print writes a single string. The seven calls print were unnec-
essary duplication. I often use logical operators instead of imperative
statements to avoid the use of temporary variables, which are another
form of duplication (denormalization).

• The return value from plan is better represented as an empty return,
because it handles list and scalar return contexts correctly. This is a
subtle point about return, and it actually involves an interface change.
The following use assigns an empty list:

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

76

my(@result) = Test::plan(tests => 1);

In the old version, @result would contain the list (undef), that is, a
list with a single element containing the value undef.

• The check for an odd number of arguments is unnecessary, because the
assignment to a hash will yield a warning and the argument parsing is
more rigorous (no argument may be undef, for example).

• print encapsulates the output function that is used throughout Test.
The concept that the output is directed to $TESTOUT is only expressed
once.

• The global variables are named consistently ($ ONFAIL and $ TODO).
I name global variables in uppercase. I use a leading underscore to
identify variables and routines which are to be used internally to the
package only.

$TESTOUT was not renamed, because it is exported from the package
Test. In general, variables should never be exported, but this would
be an interface change, not a refactoring.

• I fully qualify all names defined outside a package (Carp::carp and
Carp::croak). This helps the reader to know what is defined locally as
well as enabling him to find the implementation of or documentation
for external functions quickly. I apply this guideline to perl modules.
In specialized Perl scripts, such as, templates and tests, I prefer the
brevity of the unqualified form. For example, in the unit test example
above, I used ok, not Test::ok.

• carp and croak print the file and line number for you, so including
Test::plan in the error string is unnecessarily redundant.

• The spelling error (verison) in the $MacPerl::Version output string
was corrected.

• The two calls to sprintf and scalar are unnecessary. The concatena-
tion operator (dot) is sufficient, more succinct, and used consistently.

• The old style call syntax (&Win32::BuildNumber()) was eliminated,
because it was not used in all places (reset globals()).

• The comment # Retval never used: was removed, because it is su-
perfluous, and it indicates an unprovable assertion. You can’t know
that the return value won’t be used.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

77

• The comment # guard against -l and... was removed, because
the context of print is enough to explain why the local call is
needed.8 Even if you don’t know what $, and $\ are, you know they
are relevent only to the call to print, since that’s the only thing that
it could possibly affect.

9.9 Refactoring

Now kids, don’t try this at work. Refactorings and small corrections are
not an end to themselves. The do not add business value–unless you are
writing your coding style guideline as is the case here. Refactorings need to
be related to the task at hand. For example, if there I was given a story to
fix the minor defects in plan or to add automatic test case counting, then
I would have refactored the code to allow for those changes, and possibly
a bit more. However, random and extensive refactoring as I’ve done here
is worthless. The original version works just fine, and all the corrections
are minor. If you spend your days refactoring and making small corrections
without explicit customer approval, you’ll probably lose your job.

The new plan is also not just a refactoring. When an interface changes,
it’s only a refactoring if all its uses are changed simultaneously. For public
APIs like this one, that’s impossible to do. In this particular case, I took
a chance that the return value of plan was not used in this rather obscure
way, that is, expecting a single list containing undef.

9.10 Input Validation

Perl is a dynamically typed language. The routine plan contains a set of
type assertions, and the refactored version expanded on them. Is this the
best way to write dynamically typed code?

but It depends. In this case, explicit type checking is possibly overkill.
For example, the $ TODO and $ ONFAIL are dereferenced elsewhere in the
package. Dereferencing a non-reference terminates execution in Perl, so the
error will be caught anyway. Since Test is only used in test programs, it’s
probably sufficient to catch an error at any point.

On the other hand, Test is a very public API, which means it has a broad
and unknown user base. Explicit type checking almost always yields more

8 In XP, “we comment methods only after doing everything possible to make the
method not need a comment.” See http://xp.c2.com/ExtremeDocuments.html for a doc-
ument about documentation by XP’s founders.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

78

easily understood error messages than implicit error checks. This helps users
debug incorrect parameters. plan is only called once during a test execution
so the performance impact of the additional checking is insignificant.

Here are some guidelines we use to determine when to add type asser-
tions:

• Always validate data from untrusted sources, for example, users or
third party services. It’s important to give informative error messages
to end users. This type of validation occurs at the outermost level of
the system, where meaningful error messages can be returned with the
appropriate context.

• Add type assertions to low level modules that define the data types,
and leave them out at the middle levels where they would be redun-
dant. There may be a performance trade off here. In general, the more
public the API, the more important validation is. For example, plan
defines and asserts that the test count is positive integer.

• Assert what is likely to be wrong.

• Write deviance tests, that is, tests which result in exceptions or type
validation errors. Add assertions if the tests don’t pass. The appro-
priateness of a particular type assertion is often hard to assess. Don’t
sweat it. You’ll learn what’s appropriate as your system evolves.

• Don’t expect to get it right, and think about the consequences if you
get it wrong. The more that’s at stake, the more important assertions
are.9

Writing robust code is hard. If you add too many assertions, their sheer
volume will introduce more defects than they were intended to prevent. Add
too few assertions, and one day you’ll find a cracker who has compromised
your system, or worse. Expect the code to evolve as it gets used.

9.11 You’d Rather Die

Nothing is more boring than reading someone’s opinion about coding style.
Rather than kill off my readership, I’ll stop here. When you get up to stretch
your legs, I’d like you to walk away with five points:

• An XP team needs a consistent coding style.
9 Thanks to Ged Haywood for reminding me of this one.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

79

• It doesn’t matter what the style is, as long as everyone agrees to adhere
to it.

• Take refactoring into consideration when determining your coding
style.

• Do the simplest thing that could possibly work when writing new code.

• Simplify your design so that concepts are expressed once and only
once.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

80

Chapter 10

Logistics

Failure is not an option. It comes bundled with the software.

– Anonymous

This chapter is under construction.

81

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

82

Chapter 11

Test-Driven Design

The belief that a change will be easy to do correctly makes it
less likely that the change will be done correctly.

– Gerald Weinberg1

An XP programmer writes a unit test to clarify his intentions before
he makes a change. We call this test-driven design (TDD) or test-first
programming, because an API’s design and implementation are guided by
its test cases. The programmer writes the test the way he wants the API to
work, and he implements the API to fulfill the expectations set out by the
test.

Test-driven design helps us invent testable and usable interfaces. In
many ways, testability and usability are one in the same. If you can’t
write a test for an API, it’ll probably be difficult to use, and vice-versa.
Test-driven design gives feedback on usability before time is wasted on the
implementation of an awkward API. As a bonus, the test documents how
the API works, by example.

All of the above are good things, and few would argue with them. One
obvious concern is that test-driven design might slow down development. It
does take time to write tests, but by writing the tests first, you gain insight
into the implementation, which speeds development. Debugging the imple-
mentation is faster, too, thanks to immediate and reproducible feedback
that only an automated test can provide.

Perhaps the greatest time savings from unit testing comes a few months
or years after you write the test, when you need to extend the API. The

1 Quality Software Management: Vol. 1 Systems Thinking, Gerald Weinberg, Dorset
House, 1991, p. 236.

83

unit test not only provides you with reliable documentation for how the
API works, but it also validates the assumptions that went into the design
of the API. You can be fairly sure a change didn’t break anything if the
change passes all the unit tests written before it. Changes that fiddle with
fundamental API assumptions cause the costliest defects to debug. A com-
prehensive unit test suite is probably the most effective defense against such
unwanted changes.

This chapter introduces test-driven design through the implementation
of an exponential moving average (EMA), a simple but useful mathemat-
ical function. This chapter also explains how to use the CPAN modules
Test::More and Test::Exception.

11.1 Unit Tests

A unit test validates the programmer’s view of the application. This is quite
different from an acceptance test, which is written from the customer’s per-
spective and tests end-user functionality, usually through the same interface
that an ordinary user uses. In constrast, a unit test exercises an API, for-
mally known as a unit. Usually, we test an entire Perl package with a single
unit test.

Perl has a strong tradition of unit testing, and virtually every CPAN
module comes with one or more unit tests. There are also many test frame-
works available from CPAN. This and subsequent chapters use Test::More,
a popular and well documented test module.2 I also use Test::Exception
to test deviance cases that result in calls to die.3

11.2 Test First, By Intention

Test-driven design takes unit testing to the extreme. Before you write the
code, you write a unit test. For example, here’s the first test case for the
EMA (exponential moving average) module:

use strict;
use Test::More tests => 1;
BEGIN {

2 Part of the Test-Simple distribution, available at
http://search.cpan.org/search?query=Test-Simple I used version 0.47 for this book.

3 Version 0.15 used here. Available at http://search.cpan.org/search?query=Test-
Exception

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

84

use_ok('EMA');
}

This is the minimal Test::More test. You tell Test::More how many tests
to expect, and you import the module with use ok as the first test case. The
BEGIN ensures the module’s prototypes and functions are available during
compilation of the rest of the unit test.

The next step is to run this test to make sure that it fails:

% perl -w EMA.t
1..1
not ok 1 - use EMA;
Failed test (EMA.t at line 4)
Tried to use ’EMA’.
Error: Can’t locate EMA.pm in @INC [trimmed]
Looks like you failed 1 tests of 1.

At this stage, you might be thinking, “Duh! Of course, it fails.” Test-
driven design does involve lots of duhs in the beginning. The baby steps are
important, because they help to put you in the mindset of writing a small
test followed by just enough code to satisfy the test.

If you have maintenance programming experience, you may already be
familiar with this procedure. Maintenance programmers know they need a
test to be sure that their change fixes what they think is broken. They write
the test and run it before fixing anything to make sure they understand a
failure and that their fix works. Test-driven design takes this practice to the
extreme by clarifying your understanding of all changes before you make
them.

Now that we have clarified the need for a module called EMA (duh!), we
implement it:

package EMA;
use strict;
1;

And, duh, the test passes:

% perl -w EMA.t

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

85

1..1
ok 1 - use EMA;

Yeeha! Time to celebrate with a double cappuccino so we don’t fall asleep.
That’s all there is to the test-driven design loop: write a test, see it fail,

satisfy the test, and watch it pass. For brevity, the rest of the examples
leave out the test execution steps and the concomitant duhs and yeehas.
However, it’s important to remember to include these simple steps when
test-first programming. If you don’t remember, your programming partner
probably will.4

11.3 Exponential Moving Average

Our hypothetical customer for this example would like to maintain a running
average of closing stock prices for her website. An EMA is commonly used
for this purpose, because it is an efficient way to compute a running average.
You can see why if you look at the basic computation for an EMA:

today’s price x weight + yesterday’s average x (1 - weight)

This algorithm produces a weighted average that favors recent history. The
effect of a price on the average decays exponentially over time. It’s a simple
function that only needs to maintain two values: yesterday’s average and
the weight. Most other types of moving averages, require more data storage
and more complex computations.

The weight, commonly called alpha, is computed in terms of uniform
time periods (days, in this example):

2 / (number of days + 1)

For efficiency, alpha is usually computed once, and stored along with the
current value of the average. I chose to use an object to hold these data and
a single method to compute the average.

11.4 Test Things That Might Break

Since the first cut design calls for a stateful object, we need to instantiate
it to use it. The next case tests object creation:

4 Just a friendly reminder to program in pairs, especially when trying something new.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

86

ok(EMA->new(3));

I sometimes forget to return the instance ($self) so the test calls ok to
check that new returns some non-zero value. This case tests what I think
might break. An alternative, more extensive test is:

Not recommended: Don't test what is unlikely to break
ok(UNIVERSAL::isa(EMA->new(3), 'EMA'));

This case checks that new returns a blessed reference of class EMA. To me,
this test is unnecessarily complex. If new returns something, it’s probably
an instance. It’s reasonable to rely on the simpler case on that basis alone.
Additionally, there will be other test cases that will use the instance, and
those tests will fail if new doesn’t return an instance of class EMA.

This point is subtle but important, because the size of a unit test suite
matters. The larger and slower the suite, the less useful it will be. A slow
unit test suite means programmers will hesitate before running all the tests,
and there will be more checkins which break unit and/or acceptance tests.
Remember, programmers are lazy and impatient, and they don’t like being
held back by their programming environment. When you test only what
might break, your unit test suite will remain a lightweight and effective
development tool.

Please note that if you and your partner are new to test-driven design,
it’s probably better to err on the side of caution and to test too much. With
experience, you’ll learn which tests are redundant and which are especially
helpful. There are no magic formulas here. Testing is an art that takes time
to master.

11.5 Satisfy The Test, Don’t Trick It

Returning to our example, the implementation of new that satisfies this case
is:

sub new {
my($proto, $length) = @_;
return bless({}, ref($proto) || $proto);

}

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

87

This is the minimal code which satisfies the above test. $length doesn’t
need to be stored, and we don’t need to compute alpha. We’ll get to them
when we need to.

But wait, you say, wouldn’t the following code satisfy the test, too?

Not recommended: Don't fake the code to satisfy the test
sub new {
return 1;

}

Yes, you can trick any test. However, it’s nice to treat programmers like
grown-ups (even though we don’t always act that way). No one is going to
watch over your shoulder to make sure you aren’t cheating your own test.
The first implementation of new is the right amount of code, and the test is
sufficient to help guide that implementation. The design calls for an object
to hold state, and an object creation is what needed to be coded.

11.6 Test Base Cases First

What we’ve tested thus far are the base cases, that is, tests that validate
the basic assumptions of the API. When we test basic assumptions first, we
work our way towards the full complexity of the complete implementation,
and it also makes the test more readable. Test-first design works best when
the implementation grows along with the test cases.

There are two base cases for the compute function. The first base case
is that the initial value of the average is just the number itself. There’s also
the case of inputting a value equal to the average, which should leave the
average unchanged. These cases are coded as follows:

ok(my $ema = EMA->new(3));
is($ema->compute(1), 1);
is($ema->compute(1), 1);

The is function from Test::More lets us compare scalar values. Note the
change to the instantiation test case that allows us to use the instance ($ema)

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

88

for subsequent cases. Reusing results of previous tests shortens the test, and
makes it easier to understand.

The implementation that satisfies these cases is:

package EMA;
use strict;

sub new {
my($proto, $length) = @_;
return bless({

alpha => 2 / ($length + 1),
}, ref($proto) || $proto);

}

sub compute {
my($self, $value) = @_;
return $self->{avg} = defined($self->{avg})

? $value * $self->{alpha} + $self->{avg} * (1 - $self->{alpha})
: $value;

}

1;

The initialization of alpha was added to new, because compute needs the
value. new initializes the state of the object, and compute implements the
EMA algorithm. $self->{avg} is initially undef so that case can be de-
tected.

Even though the implementation looks finished, we aren’t done testing.
The above code might be defective. Both compute test cases use the same
value, and the test would pass even if, for example, $self->{avg} and
$value were accidentally switched. We also need to test that the average
changes when given different values. The test as it stands is too static, and
it doesn’t serve as a good example of how an EMA works.

11.7 Choose Self-Evident Data

In a test-driven environment, programmers use the tests to learn how the
API works. You may hear that XPers don’t like documentation. That’s not

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

89

quite true. What we prefer is self-validating documentation in the form of
tests. We take care to write tests that are readable and demonstrate how
to use the API.

One way to create readable tests is to pick good test data. However,
we have a little bootstrapping problem: To pick good test data, we need
valid values from the results of an EMA computation, but we need an EMA
implementation to give us those values. One solution is to calculate the EMA
values by hand. Or, we could use another EMA implementation to come up
with the values. While either of these choices would work, a programmer
reading the test cases would have to trust them or to recompute them to
verify they are correct. Not to mention that we’d have to get the precision
exactly right for our target platform.

11.8 Use The Algorithm, Luke!

A better alternative is to work backwards through the algorithm to figure
out some self-evident test data.5 To accomplish this, we treat the EMA
algorithm as two equations by fixing some values. Our goal is to have integer
values for the results so we avoid floating point precision issues. In addition,
integer values make it easier for the programmer to follow what is going on.

When we look at the equations, we see alpha is the most constrained
value:

today’s average = today’s price x alpha + yesterday’s average x
(1 - alpha)

where:

alpha = 2 / (length + 1)

Therefore it makes sense to try and figure out a value of alpha that can
produce integer results given integer prices.

Starting with length 1, the values of alpha decrease as follows: 1, 2/3,
1/2, 2/5, 1/3, 2/7, and 1/4. The values 1, 1/2, and 2/5 are good candidates,
because they can be represented exactly in binary floating point. 1 is a
degenerate case, the average of a single value is always itself. 1/2 is not ideal,
because alpha and 1 - alpha are identical, which creates a symmetry in
the first equation:

today’s average = today’s price x 0.5 + yesterday’s average x 0.5
5 Thanks to Ion Yadigaroglu for teaching me this technique.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

90

We want asymmetric weights so that defects, such as swapping today’s price
and yesterday’s average, will be detected. A length of 4 yields an alpha of
2/5 (0.4), and makes the equation asymmetric:

today’s average = today’s price x 0.4 + yesterday’s average x 0.6

With alpha fixed at 0.4, we can pick prices that make today’s average an
integer. Specifically, multiples of 5 work nicely. I like prices to go up, so I
chose 10 for today’s price and 5 for yesterday’s average. (the initial price).
This makes today’s average equal to 7, and our test becomes:

ok(my $ema = EMA->new(4));
is($ema->compute(5), 5);
is($ema->compute(5), 5);
is($ema->compute(10), 7);

Again, I revised the base cases to keep the test short. Any value in the
base cases will work so we might as well save testing time through reuse.

Our test and implementation are essentially complete. All paths through
the code are tested, and EMA could be used in production if it is used properly.
That is, EMA is complete if all we care about is conformant behavior. The
implementation currently ignores what happens when new is given an invalid
value for $length.

11.9 Fail Fast

Although EMA is a small part of the application, it can have a great impact on
quality. For example, if new is passed a $length of -1, Perl throws a divide-
by-zero exception when alpha is computed. For other invalid values for
$length, such as -2, new silently accepts the errant value, and compute faith-
fully produces non-sensical values (negative averages for positive prices). We
can’t simply ignore these cases. We need to make a decision about what to
do when $length is invalid.

One approach would be to assume garbage-in garbage-out. If a caller
supplies -2 for $length, it’s the caller’s problem. Yet this isn’t what Perl’s
divide function does, and it isn’t what happens, say, when you try to de-
reference a scalar which is not a reference. The Perl interpreter calls die,
and I’ve already mentioned in the Coding Style chapter that I prefer failing
fast rather than waiting until the program can do some real damage. In our

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

91

example, the customer’s web site would display an invalid moving average,
and one her customers might make an incorrect investment decision based on
this information. That would be bad. It is better for the web site to return
a server error page than to display misleading and incorrect information.

Nobody likes program crashes or server errors. Yet calling die is an
efficient way to communicate semantic limits (couplings) within the appli-
cation. The UI programmer, in our example, may not know that an EMA’s
length must be a positive integer. He’ll find out when the application dies.
He can then change the design of his code and the EMA class to make this
limit visible to the end user. Fail fast is an important feedback mechanism.
If we encounter an unexpected die, it tells us the application design needs
to be improved.

11.10 Deviance Testing

In order to test for an API that fails fast, we need to be able to catch calls
to die and then call ok to validate the call did indeed end in an exception.
The function dies ok in the module Test::Exception does this for us.

Since this is our last group of test cases in this chapter, here’s the entire
unit test with the changeds for the new deviance cases highlighted:

use strict;
use Test::More tests => 9; use Test::Exception;
BEGIN {

use_ok('EMA');
}
ok(my $ema = EMA->new(4));
is($ema->compute(5), 5);
is($ema->compute(5), 5);
is($ema->compute(10), 7); dies ok {EMA->new(-2)}; dies ok {EMA->new(0)};
lives ok {EMA->new(1)}; dies ok {EMA->new(2.5)};

There are now 9 cases in the unit test. The first deviance case validates
that $length can’t be negative. We already know -1 will die with a divide-
by-zero exception so -2 is a better choice. The zero case checks the boundary
condition. The first valid length is 1. Lengths must be integers, and 2.5 or
any other floating point number is not allowed. $length has no explicit
upper limit. Perl automatically converts integers to floating point numbers

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

92

if they are too large. The test already checks that floating point numbers
are not allowed so no explicit upper limit check is required.

The implementation that satisfies this test follows:

package EMA;
use strict;

sub new {
my($proto, $length) = @_; die("$length: length must be a positive

32-bit integer") unless $length =~ /^\d+$/ && $length >= 1 && $length
<= 0x7fff ffff;
return bless({

alpha => 2 / ($length + 1),
}, ref($proto) || $proto);

}

sub compute {
my($self, $value) = @_;
return $self->{avg} = defined($self->{avg})

? $value * $self->{alpha} + $self->{avg} * (1 - $self->{alpha})
: $value;

}
1;

The only change is the addition of a call to die with an unless clause.
This simple fail fast clause doesn’t complicate the code or slow down the
API, and yet it prevents subtle errors by converting an assumption into an
assertion.

11.11 Only Test The New API

One of the most difficult parts of testing is to know when to stop. Once
you have been test-infected, you may want to keep on adding cases to be
sure that the API is “perfect”. For example, a interesting test case would
be to pass a NaN (Not a Number) to compute, but that’s not a test of EMA.
The floating point implementation of Perl behaves in a particular way with

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

93

respect to NaNs6, and Bivio::Math::EMA will conform to that behavior.
Testing that NaNs are handled properly is a job for the Perl interpreter’s
test suite.

Every API relies on a tremendous amount of existing code. There isn’t
enough time to test all the existing APIs and your new API as well. Just as
an API should separate concerns so must a test. When testing a new API,
your concern should be that API and no others.

11.12 Solid Foundation

In XP, we do the simplest thing that could possibly work so we can deliver
business value as quickly as possible. Even as we write the test and im-
plementation, we’re sure the code will change. When we encounter a new
customer requirement, we refactor the code, if need be, to facilitate the ad-
ditional function. This iterative process is called continuous design, which
is the subject of the next chapter. It’s like renovating your house whenever
your needs change. 7

A system or house needs a solid foundation in order to support con-
tinuous renovation. Unit tests are the foundation of an XP project. When
designing continuously, we make sure the house doesn’t fall down by running
unit tests to validate all the assumptions about an implementation. We also
grow the foundation before adding new functions. Our test suite gives us
the confidence to embrace change.

6 In some implementations, use of NaNs will cause a run-time error. In others, they
will cause all subsequent results to be a NaN.

7 Don’t let the thought of continuous house renovation scare you off. Programmers are
much quieter and less messy than construction workers.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

94

Chapter 12

Continuous Design

In the beginning was simplicity.

– Richard Dawkins1

Software evolves. All systems are adapted to the needs of their users and
the circumstances in which they operate, even after years of planning.2 Some
people call this maintenance programming, implementing change requests,
or, simply, firefighting. In XP, it’s called continuous design, and it’s the only
way we design and build systems. Whatever you call it, change happens,
and it involves two activities: changing what the code does and improving
its internal structure.

In XP, these two activities have names: implementing stories and refac-
toring. Refactoring is the process of making code better without changing
its external behavior. The art of refactoring is a fundamental skill in pro-
gramming. It’s an important part of the programmer’s craft to initiate
refactorings to accommodate changes requested by the customer. In XP, we
use tests to be sure the behavior hasn’t changed.

As any implementation grows, it needs to be refactored as changes (new
features or defect fixes) are introduced. Sometimes we refactor before imple-
menting a story, for example, to expose an existing algorithm as its own API.
Other times, we refactor after adding a new feature, because we only see
how to eliminate unnecessary duplication, after the feature is implemented.
This to and fro of code expansion (implementing stories) and contraction
(refactoring) is how the design evolves continuously. And, by the way, this is

1 The Selfish Gene, Richard Dawkins, Oxford University Press, 1989, p. 12.
2 The most striking and recent example was the failure, debugging, and repair of the

Mars Exploration Rover Spirit.

95

how Perl was designed: on demand and continuously. It’s one of the reasons
Perl continues to grow and thrive while other languages whither and die.

This chapter evolves the design we started in Test-Driven Design. We
introduce refactoring by simplifying the EMA equation. We add a new class
(simple moving average) to satisfy a new story, and then we refactor the two
classes to share a common base class. Finally, we fix a defect by exposing
an API in both classes, and then we refactor the APIs into a single API in
the base class.

12.1 Refactoring

The first step in continous design is to be sure you have a test. You need
a test to add a story, and you use existing tests to be sure you don’t break
anything with a refactoring. This chapter picks up where Test-Driven Design
left off. We have a working exponentional moving average (EMA) module
with a working unit test.

The first improvement is a simple refactoring. The equation in compute
is more complex than it needs to be:

sub compute {
my($self, $value) = @_;
return $self->{avg} = defined($self->{avg})
? $value * $self->{alpha} + $self->{avg} * (1 - $self->{alpha})
: $value;

}

The refactored equation yields the same results and is simpler:

sub compute {
my($self, $value) = @_;
return $self->{avg} += defined($self->{avg})
? $self->{alpha} * ($value - $self->{avg})
: $value;

}

After the refactoring, we run our test, and it passes. That’s all there is
to refactoring. Change the code, run the test for the module(s) we are mod-

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

96

ifying, run the entire unit test suite, and then check in once all tests pass.
Well, it’s not always that easy, sometimes we make mistakes. That’s what
the tests are for, and tests are what simplifies refactoring.

12.2 Simple Moving Average

Our hypothetical customer would like to expand her website to compete
with Yahoo! Finance. The following graph shows that Yahoo! offers two
moving averages:

Yahoo! 20 day moving averages on 3 month graph from May 18,
20043

In order to provide the equivalent functionality, we need to implement
a simple moving average (SMA or MA in Yahoo!’s graph). An SMA is the
arithmetic mean of the last N periods of the price series. For a daily graph,
we add in the new day’s price and we remove the oldest price from the sum
before we take the average.

12.3 SMA Unit Test

The following test demonstrates the algorithm. The test was created by
starting with a copy of the EMA test from the Test-Driven Design chapter.
We replaced EMA with SMA, and changed the values to match the SMA

3 http://finance.yahoo.com/q/ta?s=RHAT&t=3m&p=e20,m20

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

97

algorithm:

use strict;
use Test::More tests => 11;
use Test::Exception;
BEGIN {

use_ok('SMA');
}
ok(my $sma = SMA->new(4));
is($sma->compute(5), 5);
is($sma->compute(5), 5);
is($sma->compute(11), 7);
is($sma->compute(11), 8);
is($sma->compute(13), 10);
dies_ok {SMA->new(-2)};
dies_ok {SMA->new(0)};
lives_ok {SMA->new(1)};
dies_ok {SMA->new(2.5)};

Like the EMA, the SMA stays constant (5) when the input values remain
constant (5). The deviance cases are identical, which gives us another clue
that the two algorithms have a lot in common. The difference is that average
value changes differently, and we need to test the boundary condition when
values “fall off the end” of the average.

12.4 SMA Implementation

The EMA and the SMA unit test are almost identical. It follows that the
implementations should be nearly identical. Some people might want to
create a base class so that SMA and EMA could share the common code.
However, at this stage, we don’t know what that code might be. That’s
why we do the simplest thing that could possibly work, and copy the EMA
class to the SMA class. And, let’s run the test to see what happens after we
change the package name from EMA to SMA:

1..11
ok 1 - use SMA;
ok 2

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

98

ok 3
ok 4
not ok 5
Failed test (SMA.t at line 10)
got: '7.4'
expected: '7'
not ok 6
Failed test (SMA.t at line 11)
got: '8.84'
expected: '8'
not ok 7
Failed test (SMA.t at line 12)
got: '10.504'
expected: '10'
ok 8
ok 9
ok 10
ok 11
Looks like you failed 3 tests of 11.

The test fails, because an EMA algorithm in an SMA’s clothing is still
an EMA. That’s good. Otherwise, this section would be way too short.
Without further ado, here’s the correct algorithm:

package SMA;
use strict;

sub new {
my($proto, $length) = @_;
die("$length: length must be a positive 32-bit integer")

unless $length =~ /^\d+$/ && $length >= 1 && $length <= 0x7fff_ffff;
return bless({

length => $length,
values => [],

}, ref($proto) || $proto);
}

sub compute {
my($self, $value) = @_;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

99

$self->{sum} -= shift(@{$self->{values}})
if $self->{length} eq @{$self->{values}};

return ($self->{sum} += $value) / push(@{$self->{values}}, $value);
}

1;

The sum calculation is different, but the basic structure is the same. The
new method checks to makes sure that length is reasonable. We need to
maintain a queue of all values in the sum, because an SMA is a FIFO al-
gorithm. When a value is more than length periods old, it has absolutely
no affect on the average. As an aside, the SMA algorithm pays a price for
that exactness, because it must retain length values where EMA requires
only one. That’s the main reason why EMAs are more popular than SMAs
in financial engineering applications.

For our application, what we care about is that this implementation
of SMA satisfies the unit test. We also note that EMA and SMA have
a lot in common. However, after satisfying the SMA test, we run all the
unit tests to be sure we didn’t inadvertently modify another file, and then
we checkin to be sure we have a working baseline. Frequent checkins is
important when designing continuously. Programmers have to be free to
make changes knowing that the source repository always holds a recent,
correct implementation.

12.5 Move Common Features to a Base Class

The SMA implementation is functionally correct, but it isn’t a good design.
The quick copy-and-paste job was necessary to start the implementation,
and now we need to go back and improve the design through a little refac-
toring. The classes SMA and EMA can and should share code. We want to
represent each concept once and only once so we only have to fix defects in
the implementation of the concepts once and only once.

The repetitive code is contained almost entirely in the new methods of
SMA and EMA. The obvious solution is to create a base class from which SMA
and EMA are derived. This is a very common refactoring, and it’s one you’ll
use over and over again.

Since this is a refactoring, we don’t write a new test. The refactoring
must not change the observable behavior. The existing unit tests validate

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

100

that the behavior hasn’t changed. That’s what differentiates a refactoring
from simply changing the code. Refactoring is the discipline of making
changes to improve the design of existing code without changing the external
behavior of that code.

The simple change we are making now is moving the common parts of
new into a base class called MABase:

package MABase;
use strict;

sub new {
my($proto, $length, $fields) = @_;
die("$length: length must be a positive 32-bit integer")

unless $length =~ /^\d+$/ && $length >= 1 && $length <= 0x7fff_ffff;
return bless($fields, ref($proto) || $proto);

}

1;

The corresponding change to SMA is:

use base 'MABase';
sub new {

my($proto, $length) = @_;
return $proto->SUPER::new($length, {

length => $length,
values => [],

});
}

For brevity, I left out the the EMA changes, which are similar to these. Note
that MABase doesn’t share fields between its two subclasses. The only com-
mon code is checking the length and blessing the instance is shared.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

101

12.6 Refactor the Unit Tests

After we move the common code into the base clase, we run all the existing
tests to be sure we didn’t break anything. However, we aren’t done. We
have a new class, which deserves its own unit test. EMA.t and SMA.t have
four cases in common. That’s unnecessary duplication, and here’s MABase.t
with the cases factored out:

use strict;
use Test::More tests => 5;
use Test::Exception;
BEGIN {
use_ok('MABase');

}
dies_ok {MABase->new(-2, {})};
dies_ok {MABase->new(0, {})};
lives_ok {MABase->new(1, {})};
dies_ok {MABase->new(2.5, {})};

After running the new test, we refactor EMA.t (and similarly SMA.t) as
follows:

use strict;
use Test::More tests => 5;
BEGIN {
use_ok('EMA');

}
ok(my $ema = EMA->new(4));
is($ema->compute(5), 5);
is($ema->compute(5), 5);
is($ema->compute(10), 7);

By removing the redundancy, we make the classes and their tests cohe-
sive. MABase and its test is concerned with validating $length. EMA and
SMA are responsible for computing moving averages. This conceptual clarity,
also known as cohesion, is what we strive for.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

102

12.7 Fixing a Defect

The design is better, but it’s wrong. The customer noticed the difference
between the Yahoo! graph and the one produced by the algorithms above:

Incorrect moving average graph

The lines on this graph start from the same point. On the Yahoo! graph
in the SMA Unit Test, you see that the moving averages don’t start at the
same value as the price. The problem is that a 20 day moving average
with one data point is not valid, because the single data point is weighted
incorrectly. The results are skewed towards the initial prices.

The solution to the problem is to “build up” the moving average data
before the initial display point. The build up period varies with the type of
moving average. For an SMA, the build up length is the same as the length
of the average minus one, that is, the average is correctly weighted on the
“length” price. For an EMA, the build up length is usually twice the length,
because the influence of a price doesn’t simply disappear from the average
after length days. Rather the price’s influence decays over time.

The general concept is essentially the same for both averages. The al-
gorithms themselves aren’t different. The build up period simply means
that we don’t want to display the prices. separate out compute and value.
Compute returns undef. value blows up. is ok or will compute ok? The
two calls are inefficent, but the design is simpler. Show the gnuplot code to
generate the graph. gnuplot reads from stdin? The only difference is that
the two algorithms have different build up lengths. The easiest solution is
therefore to add a field in the sub-classes which the base classes exposes via
a method called build up length. We need to expand our tests first:

use strict;
use Test::More tests => 6;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

103

BEGIN {
use_ok('EMA');

}
ok(my $ema = EMA->new(4)); is($ema->build up length, 8);
is($ema->compute(5), 5);
is($ema->compute(5), 5);
is($ema->compute(10), 7);

The correct answer for EMA is always two times length. It’s simple enough
that we only need one case to test it. The change to SMA.t is similar.

To satisfy these tests, we add build up length to MABase:

sub build_up_length {
return shift->{build_up_length};

}

The computation of the value of build up length requires a change to new
in EMA:

sub new {
my($proto, $length) = @_;
return $proto->SUPER::new($length, {
alpha => 2 / ($length + 1), build up length => $length * 2,

});
}

The change to SMA is similar, and left out for brevity. After we fix the
plotting code to reference build up length, we end up with the following
graph:

Moving average graph with correction for build up period

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

104

12.8 Global Refactoring

After releasing the build up fix, our customer is happy again. We also
have some breathing room to fix up the design again. When we added
build up length, we exposed a configuration value via the moving average
object. The plotting module also needs the value of length to print the
labels (“20-day EMA” and “20-day SMA”) on the graph. This configuration
value is passed to the moving average object, but isn’t exposed via the
MABase API. That’s bad, because length and build up length are related
configuration values. The plotting module needs both values.

To test this feature, we add a test to SMA.t (and similarly, to EMA.t):

use strict;
use Test::More tests => 8;
BEGIN {

use_ok('SMA');
}
ok(my $sma = SMA->new(4));
is($sma->build_up_length, 3); is($sma->length, 4);
is($sma->compute(5), 5);
is($sma->compute(5), 5);
is($sma->compute(11), 7);
is($sma->compute(11), 8);

We run the test to see that indeed length does not exist in MABase or
its subclasses. Then we add length to MABase:

sub length {

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

105

return shift->{length};
}

SMA already has a field called length so we only need to change EMA to
store the length:

sub new {
my($proto, $length) = @_;
return $proto->SUPER::new($length, {
alpha => 2 / ($length + 1),
build_up_length => $length * 2, length => $length,

});
}

This modification is a refactoring even though external behavior (the API)
is different. When an API and all its clients (importers) change, it’s called
a global refactoring. In this case, the global refactoring is backwards com-
patible, because we are adding new behavior. The clients were using a copy
of length implicitly. Adding an explicit length method to the API change
won’t break that behavior. However, this type of global refactoring can
cause problems down the road, because old implicit uses of length still will
work until the behavior of the length method changes. At which point,
we’ve got to know that the implicit coupling is no longer valid.

That’s why tests are so important with continuous design. Global refac-
torings are easy when each module has its own unit test and the application
has an acceptance test suite. The tests will more than likely catch the case
where implicit couplings go wrong either at the time of the refactoring or
some time later. Without tests, global refactorings are scary, and most pro-
grammers don’t attempt them. When an implicit coupling like this becomes
cast in stone, the code base is a bit more fragile, and continous design is a bit
harder. Without some type of remediation, the policy is “don’t change any-
thing”, and we head down the slippery slope that some people call Software
Entropy.4

4 Software Entropy is often defined as software that “loses its original design structure”
(http://www.webopedia.com/TERM/S/software entropy.html). Continuous design turns
the concept of software entropy right side up (and throws it right out the window) by
changing the focus from the code to what the software is supposed to do. Software entropy
is meaningless when there are tests that specify the expected behavior for all parts of an

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

106

application. The tests eliminate the fear of change inherent in non-test-driven software
methodologies.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

107

12.9 Continuous Rennovation in the Real
World

Programmers often use building buildings as a metaphor for cre-
ating software. It’s often the wrong model, because it’s not easy
to copy-and-paste. The physical world doesn’t allow easy replica-
tion beyond the gene level. However, continuous design is more
commonplace than many people might think. My company had
our office rennovated before we moved in. Here is a view of the
kitchen (and David Farber) before the upgrade:

Before rennovation

After the rennovation, the kitchen looked like this:

After rennovation

If a couple of general contractors can restructure an office in a
few weeks, imagine what you can do with your software in the
same time. The architectural plans did change continuously dur-
ing the implementation. The general contractors considered this
completely normal. After all, it’s impossible for the customer to
get a good idea what the office will look like until the walls start
going up.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

108

12.10 Simplify Accessors

Software entropy creeps in when the software fails to adapt to a change. For
example, we now have two accessors that are almost identical:

sub length {
return shift->{length};

}

sub build_up_length {
return shift->{build_up_length};

}

The code is repeated. That’s not a big problem in the specific, because
we’ve only done it twice. This subtle creep gets to be a bigger problem
when someone else copies what we’ve done here. Simple copy-and-paste is
probably the single biggest cause of software rot in any system. New pro-
grammers on the project think that’s how “we do things here”, and we’ve
got a standard practice for copying a single error all over the code. It’s not
that this particular code is wrong; it’s that the practice is wrong. This is
why it’s important to stamp out the practice when you can, and in this case
it’s very easy to do.

We can replace both accessors with a single new API called get. This
global refactoring is very easy, because we are removing an existing API.
That’s another reason to make couplings explicit: when the API changes,
all uses fail with method not found. The two unit test cases for EMA now
become:

is($ema->get('build_up_length'), 8);
is($ema->get('length'), 4);

And, we replace length and build up length with a single method:

sub get {
return shift->{shift(@_)};

}

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

109

We also refactor uses of build up length and length in the plotting mod-
ule. This is the nature of continuous rennovation: constant change every-
where. And, that’s the part that puts people off. They might ask why the
last two changes (adding length and refactoring get) were necessary.

12.11 Change Happens

Whether you like it or not, change happens. You can’t stop it. If you
ignore it, your software becomes brittle, and you have more (boring and
high stress) work to do playing catch up with the change. The proactive
practices of testing and refactoring seem unnecessary until you do hit that
defect that’s been copied all over the code, and you are forced to fix it. Not
only is it difficult to find all copies of an error, but you also have to find all
places in the code which unexpectedly depended on the behavior caused by
the defect. Errors multiply so that’s changing a single error into N-squared
errors It gets even worse when the practice of copy-and-pasting is copied.
That’s N-cubed, and that will make a mess of even the best starting code
base. Refactoring when you see replication is the only way to eliminate this
geometric effect.

Without tests, refactoring is no longer engineering, it’s hacking. Even
the best hackers hit a wall if they can’t validate a change hasn’t broken
something. They’ll create ad hoc tests if necessary. XP formalizes this
process. However, unit testing is still an art. The only way to get good at
it is by seeing more examples. The next chapter takes a deeper look at the
unit testing in a more realistic environment.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

110

Chapter 13

Unit Testing

A successful test case is one that detects an as-yet undiscovered
error.

– Glenford Myers1

The second and third examples test a post office protocol (POP3) client
available from CPAN. These two unit tests for Mail::POP3Client indicate
some design issues, which are addressed in the Refactoring chapter. The
third example also demonstrates how to use Test::MockObject, a CPAN
module that makes it easy to test those tricky paths through the code, such
as, error cases.

13.1 Testing Isn’t Hard

One of the common complaints I’ve heard about testing is that it is too hard
for complex APIs, and the return on investment is therefore too low. The
problem of course is the more complex the API, the more it needs to be
tested in isolation. The rest of the chapter demonstrates a few tricks that
simplify testing complex APIs. What I’ve found, however, the more testing
I do, the easier it is to write tests especially for complex APIs.

Testing is also infectious. As your suite grows, there are more examples
to learn from, and the harder it becomes to not test. Your test infrastructure
also evolves to better match the language of your APIs. Once and only once
applies to test software, too. This is how Bivio::Test came about. We
were tired of repeating ourselves. Bivio::Test lets us write subject matter
oriented programs, even for complex APIs.

1 Art of Software Testing, Glenford Myers, John Wiley & Sons, 1979, p. 16.

111

13.2 Mail::POP3Client

The POP3 protocol2 is a common way for mail user agents to retrieve mes-
sages from mail servers. As is often the case, there’s a CPAN module avail-
able that implements this protocol.

Mail::POP3Client3 has been around for a few years. The unit test
shown below was written in the spirit of test first programming. Some of
the test cases fail, and in Refactoring, we refactor Mail::POP3Client to
make it easier to fix some of the defects found here.

This unit test shows how to test an interface that uses sockets to connect
to a server and has APIs that write files. This test touches on a number of
test and API design issues.

To minimize page flipping the test is broken into pieces, one part per
section. The first two sections discuss initialization and data selection. In
Validate Basic Assumptions First and the next section, we test the server
capabilities and authentication mechanisms match our assumptions. We
test basic message retrieval starting in Distinguish Error Cases Uniquely
followed by retrieving to files. The List, ListArray, and Uidl methods are
tested in Relate Results When You Need To. Destructive tests (deletion)
occur next after we have finished testing retrieval and listing. We validate
the accessors (Host, Alive, etc.) in Consistent APIs Ease Testing. The final
test cases cover failure injection.

13.3 Make Assumptions

use strict;
use Test::More tests => 85;
use IO::File;
use IO::Scalar;
BEGIN {
use_ok('Mail::POP3Client');

}

2 The Post Office Protocol - Version 3 RFC can be found at
http://www.ietf.org/rfc/rfc1939.txt. The Mail::POP3Client also implements
the POP3 Extension Mechanism RFC, http://www.ietf.org/rfc/rfc2449.txt,
and IMAP/POP AUTHorize Extension for Simple Challenge/Response RFC
http://www.ietf.org/rfc/rfc2195.txt.

3 The version being tested here is 2.12, which can be found at
http://search.cpan.org/author/SDOWD/POP3Client-2.12.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

112

my($cfg) = {
HOST => 'localhost',
USER => 'pop3test',
PASSWORD => 'password',

};

To access a POP3 server, you need an account, password, and the name
of the host running the server. We made a number of assumptions to sim-
plify the test without compromising the quality of the test cases. The POP3
server on the local machine must have an account pop3test, and it must
support APOP, CRAM-MD5, CAPA, and UIDL.

The test that comes with Mail::POP3Client provides a way of configur-
ing the POP3 configuration via environment variables. This makes it easy
to run the test in a variety of environments. The purpose of that test is
to test the basic functions on any machine. For a CPAN module, you need
this to allow anybody to run the test. A CPAN test can’t make a lot of
assumptions about the execution environment.

In test-first programming, the most important step is writing the test.
Make all the assumptions you need to get the test written and working. Do
the simplest thing that could possibly work, and assume you aren’t going to
need to write a portable test. If you decide to release the code and test to
CPAN, relax the test constraints after your API works. Your first goal is to
create the API which solves your customer’s problem.

13.4 Test Data Dependent Algorithms

my($subject) = "Subject: Test Subject";
my($body) = <<'EOF';
Test Body
A line with a single dot follows
.
And a dot and a space
.
EOF

open(MSG, "| /usr/lib/sendmail -i -U $cfg->{USER}\@$cfg->{HOST}");
print(MSG $subject . "\n\n" . $body);
close(MSG)

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

113

or die("sendmail failed: $!");
sleep(1);

my($body_lines) = [split(/\n/, $body)];
$body = join("\r\n", @$body_lines, '');

The POP3 protocol uses a dot (.) to terminate multi-line responses. To
make sure Mail::POP3Client handles dots correctly, we put leading dots in
the message body. The message should be retrieved in its entirety, including
the lines with dots. It’s important to test data dependencies like this.

The test only sends one message. This is sufficient to validate the client
implementation. Testing the server, however, would be much more complex,
and would require multiple clients, messages, and message sizes.

The sleep(1) is used to give sendmail time to deliver the message
before the test starts.

13.5 Validate Basic Assumptions First

my($pop3) = Mail::POP3Client->new(HOST => $cfg->{HOST});
$pop3->Connect;
is($pop3->State, 'AUTHORIZATION');
like($pop3->Capa, qr/UIDL.*CRAM.*|CRAM.*UIDL/is);
ok($pop3->Close);

The first case group validates some assumptions used in the rest of the
cases. It’s important to put these first to aid debugging. If the entire test
fails catastrophically (due to a misconfigured server, for example), it’s much
easier to diagnose the errors when the basic assumptions fail first.

Bivio::Test allows you to ignore the return result of conformance cases
by specifying undef. The return value of Connect is not well-defined, so it’s
unimportant to test it, and the test documents the way the API works.

This case raises a design issue. Perl subroutines always return a value.
Connect does not have an explicit return statement, which means it returns
an arbitrary value. Perl has no implicit void context like C and Java do.
It’s always safe to put in an explicit return; in subroutines when you don’t
intend to return anything. This helps ensure predictable behavior in any

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

114

calling context, and improves testability.
The second case tests the server supports CAPA (capabilities), UIDL

(unique identifiers), and CRAM (challenge/response authentication). The
capability list is unordered so we check the list for UIDL then CRAM or the
reverse. Bivio::Test allows us to specify a Regexp instance (qr//) as the
expected value. The case passes if the expected regular expression matches
the actual return, which is serialized by Data::Dumper.

13.6 Validate Using Implementation Knowledge

foreach my $mode (qw(BEST APOP CRAM-MD5 PASS)) {
$pop3 = Mail::POP3Client->new(%$cfg, AUTH_MODE => $mode);
is_deeply([$pop3->Body(1)], $body_lines);
is($pop3->Close, 1);

}

$pop3 = Mail::POP3Client->new(%$cfg, AUTH_MODE => 'BAD-MODE');
like($pop3->Message, qr/BAD-MODE/);
is($pop3->State, 'AUTHORIZATION');
is($pop3->Close, 1);

$pop3 = Mail::POP3Client->new(
%$cfg, AUTH_MODE => 'BEST', PASSWORD => 'BAD-PASSWORD');

like($pop3->Message, qr/PASS failed/);
is($pop3->State, 'AUTHORIZATION');
is($pop3->Close, 1);

$pop3 = Mail::POP3Client->new(
%$cfg, AUTH_MODE => 'APOP', PASSWORD => 'BAD-PASSWORD');

like($pop3->Message, qr/APOP failed/);
is($pop3->Close, 1);

Once we have validated the server’s capabilities, we test the authentica-
tion interface. Mail::POP3Client defaults to AUTH MODE BEST, but we test
each mode explictly here. The other cases test the default mode. To be
sure authentication was successful, we download the body of the first mes-
sage and compare it with the value we sent. POP3 authentication implies

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

115

authorization to access your messages. We only know we are authorized if
we can access the mail user’s data.

In BEST mode the implementation tries all authentication modes with
PASS as the last resort. We use knowledge of the implementation to validate
that PASS is the last mode tried. The Message method returns PASS failed,
which gives the caller information about which AUTH MODE was used.

The test doesn’t know the details of the conversation between the server
and client, so it assumes the implementation doesn’t have two defects (using
PASS when it shouldn’t and returning incorrect Message values). We’ll see
in Mock Objects how to address this issue without such assumptions.

The authentication conformance cases are incomplete, because there
might be a defect in the authentication method selection logic. We’d like
know if we specify APOP that Mail::POP3Client doesn’t try PASS first. The
last case group in this section attempts to test this, and uses the knowledge
that Message returns APOP failed when APOP fails. Again, it’s unlikely
Message will return the wrong error message.

13.7 Distinguish Error Cases Uniquely

sub _is_match {
my($actual, $expect) = @_;
return ref($expect) eq 'Regexp'
? like(ref($actual) ? join('', @$actual) : $actual, $expect)
: is_deeply($actual, $expect);

}

$pop3 = Mail::POP3Client->new(%$cfg);
foreach my $params (

[Body => $body_lines],
[Head => qr/\Q$subject/],
[HeadAndBody => qr/\Q$subject\E.*\Q$body_lines->[0]/s],

) {
my($method, $expect) = @$params;
_is_match([$pop3->$method(1)], $expect);
is($pop3->Message(''), '');
is_deeply([$pop3->$method(999)], []);
like($pop3->Message, qr/No such message|Bad message number/i);

}

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

116

The Body method returns the message body, Head returns the message head,
and HeadAndBody returns the entire message. We assume that 999 is a valid
message number and that there aren’t 999 messages in the mailbox.

Body returns an empty array when a message is not found. Should Body
return something else or die in the deviance case? I think so. Otherwise,
an empty message body is indistinguishable from a message which isn’t
found. The deviance test identifies this design issue. That’s one reason why
deviance tests are so important.

To workaround this problem, we clear the last error Message saved in
the Mail::POP3Client instance before calling the download method. We
then validate that Message is set (non-blank) after the call.

The test case turned out to be successful unexpectedly. It detected a
defect in Message: You can’t clear an existing Message. This is a side-effect
of the current test, but a defect nonetheless. One advantage of validating
the results of every call is that you get bonuses like this without trying.

13.8 Avoid Context Sensitive Returns

foreach my $params (
[Body => $body],
[Head => qr/\Q$subject/],
[HeadAndBody => qr/\Q$subject\E.*\Q$body/s],

) {
my($method, $expect) = @$params;
_is_match(scalar($pop3->$method(1)), $expect);
is(scalar($pop3->$method(999)), undef);

}

When Body, Head, and HeadAndBody are invoked in a scalar context, the
result is a single string, and undef is returned on errors, which simplifies de-
viance testing. (Note that Bivio::Test distinguishes undef from [undef].
The former ignores the result, and the latter expects a single-valued result
of undef.)

Bivio::Test invokes methods in a list context by default. Setting
want scalar forces a scalar context. This feature was added to test non-

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

117

bOP classes like Mail::POP3Client.
In bOP, methods are invocation context insensitive. Context sensitive

returns like Body are problematic.4 We use wantarray to ensure methods
that return lists behave identically in scalar and list contexts. In general,
we avoid list returns, and return array references instead.

13.9 Use IO::Scalar for Files

foreach my $params (
[BodyToFile => $body],
[HeadAndBodyToFile => qr/\Q$subject\E.*\Q$body/s],

) {
my($method, $expect) = @$params;
my($buf) = '';
is($pop3->$method(IO::Scalar->new(\$buf), 1), 1);
_is_match($buf, $expect);

}

BodyToFile and HeadAndBodyToFile accept a file glob to write the mes-
sage parts. This API design is easily testable with the use of IO::Scalar,
an in-memory file object. It avoids file naming and disk clean up issues.

We create the IO::Scalar instance in compute params, which Bivio::Test
calls before each method invocation. check return validates that the method
returned true, and then calls actual return to set the return value to the
contents of the IO::Scalar instance. It’s convenient to let Bivio::Test
perform the structural comparison for us.

13.10 Perturb One Parameter per Deviance Case

foreach my $method (qw(BodyToFile HeadAndBodyToFile)) {
is($pop3->$method(IO::Scalar->new(\('')), 999), 0);
my($handle) = IO::File->new('> /dev/null');
$handle->close;
is($pop3->$method($handle, 1), 0);

}

4 The book Effective Perl Programming by Joseph Hall discusses the issues with
wantarray and list contexts in detail.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

118

We test an invalid message number and a closed file handle5 in two sep-
arate deviance cases. You shouldn’t perturb two unrelated parameters in
the same deviance case, because you won’t know which parameter causes
the error.

The second case uses a one-time compute params closure in place of a
list of parameters. Idioms like this simplify the programmer’s job. Subject
matter oriented programs use idioms to eliminate repetitious boilerplate
that obscures the subject matter. At the same time, idioms create a barrier
to understanding for outsiders. The myriad Bivio::Test may seem over-
whelming at first. For the test-first programmer, Bivio::Test clears away
the clutter so you can see the API in action.

13.11 Relate Results When You Need To

foreach my $method (qw(Uidl List ListArray)) {
my($first) = ($pop3->$method())[$method eq 'List' ? 0 : 1];
ok($first);
is_deeply([$pop3->$method(1)], [$first]);
is_deeply([$pop3->$method(999)], []);

}

Uidl (Unique ID List), List, and ListArray return lists of information
about messages. Uidl and ListArray lists are indexed by message number
(starting at one, so the zeroeth element is always undef). The values of
these lists are the message’s unique ID and size, respectively. List returns
a list of unparsed lines with the zeroeth being the first line. All three meth-
ods also accept a single message number as a parameter, and return the
corresponding value. There’s also a scalar return case which I didn’t include
for brevity in the book.

The first case retrieves the entire list, and saves the value for the first
message. As a sanity check, we make sure the value is non-zero (true). This
is all we can guarantee about the value in all three cases.

5 We use IO::File instead of IO::Scalar, because IO::Scalar does not check if the
instance is closed when Mail::POP3Client calls print.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

119

The second case requests the value for the first message from the POP3
server, and validates this value agrees with the value saved from the list
case. The one-time check return closure defers the evaluation of $ SAVE
until after the list case sets it.

We cross-validate the results, because the expected values are unpre-
dictable. Unique IDs are server specific, and message sizes include the head,
which also is server specific. By relating two results, we are ensuring two
different execution paths end in the same result. We assume the imple-
mentation is reasonable, and isn’t trying to trick the test. These are safe
assumptions in XP, since the programmers write both the test and imple-
mentation.

13.12 Order Dependencies to Minimize Test Length

my($count) = $pop3->Count();
ok($count >= 1);
is($pop3->Delete(1), 1);
is($pop3->Delete(999), 0);
$pop3->Reset;
is($pop3->Close, 1);
$pop3->Connect;
is($pop3->Count, $count);
Clear mailbox, which also cleans up aborted or bad test runs
foreach my $i (1 .. $count) {

$pop3->Delete($i);
};
is($pop3->Close, 1);
$pop3->Connect;
is($pop3->Count, 0);
is($pop3->Close, 1);

We put the destructive cases (Delete) near the end. The prior tests all
need a message in the mailbox. If we tested delete first, we’d have to resend
a message to test the retrieval and list methods. The case ordering reduces
test length and complexity.

Note that we cannot guarantee anything about Count except that is at
least one. A prior test run may have aborted prematurely and left another

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

120

message in the test mailbox. What we do know is that if we Delete all
messages from one to Count, the mailbox should be empty. The second half
of this case group tests this behavior.

The empty mailbox case is important to test, too. By deleting all mes-
sages and trying to login, we’ll see how Mail::POP3Client behaves in the
this case.

Yet another reason to delete all messages is to reset the mailbox to
a known state, so the next test run starts with a clean slate. This self-
maintaining property is important for tests that access persistent data. Re-
run the entire test twice in a row, and the second run should always be
correct.

The POP3 protocol doesn’t remove messages when Delete is called. The
messages are marked for deletion, and the server deletes them on successful
Close. Reset clears any deletion marks. We cross-validate the first Count
result with the second to verify Reset does what it is supposed to do.

13.13 Consistent APIs Ease Testing

$pop3 = Mail::POP3Client->new;
is($pop3->State, 'DEAD');
is($pop3->Alive, '');
is($pop3->Host($cfg->{HOST}), $cfg->{HOST});
is($pop3->Host, $cfg->{HOST});
$pop3->Connect;
is($pop3->Alive, 1);
is($pop3->State, 'AUTHORIZATION');
is($pop3->User($cfg->{USER}), $cfg->{USER});
is($pop3->User, $cfg->{USER});
is($pop3->Pass($cfg->{PASSWORD}), $cfg->{PASSWORD});
is($pop3->Pass, $cfg->{PASSWORD});
is($pop3->Login, 0);
is($pop3->State, 'TRANSACTION');
is($pop3->Alive, 1);
is($pop3->Close, 1);
is($pop3->Alive, '');
is($pop3->Close, 0);

$pop3 = Mail::POP3Client->new;
$pop3->Connect;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

121

is($pop3->Alive, '');
is($pop3->Login, 0);
is($pop3->State, 'DEAD');

This section not only tests the accessors, but also documents the State
and Alive transitions after calls to Connect and Login.

There’s a minor design issue to discuss. The accessor Pass does not
match its corresponding named parameter, PASSWORD, like the Host and
User do. The lack of uniformity makes using a map function for the accessor
tests cumbersome, so we didn’t bother.

Also the non-uniform return values between Alive and Close is clear.
While the empty list and zero (0) are both false in Perl, it makes testing for
exact results more difficult than it needs to be.

13.14 Inject Failures

$pop3 = Mail::POP3Client->new(%$cfg);
is($pop3->POPStat, 0);
$pop3->Socket->close;
is($pop3->POPStat, -1);
is($pop3->Close, 0);

The final (tada!) case group injects a failure before a normal operation.
Mail::POP3Client exports the socket that it uses. This makes failure in-
jection easy, because we simply close the socket before the next call to
POPStat. Subsequent calls should fail.

We assume error handling is centralized in the implementation, so we
don’t repeat all the previous tests with injected failures. That’s a big as-
sumption, and for Mail::POP3Client it isn’t true. Rather than adding
more cases to this test, we’ll revisit the issue of shared error handling in
Refactoring.

Failure injection is an important technique to test error handling. It is in
a different class from deviance testing, which tests the API. Instead, we use
extra-API entry points. It’s like coming in through the back door without
knockin’. It ain’t so polite but it’s sometimes necessary. It’s also hard to do

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

122

if there ain’t no backdoor as there is in Mail::POP3Client.

13.15 Mock Objects

Mock objects allow you to inject failures and to test alternative execution
paths by creating doors where they don’t normally exist. Test::MockObject6

allows you to replace subroutines and methods on the fly for any class or
package. You can manipulate calls to and return values from these faked
entry points.

Here’s a simple test that forces CRAM-MD5 authentication:

use strict;
use Test::More;
use Test::MockObject;
BEGIN {

plan(tests => 3);
}
my($socket) = Test::MockObject->new;
$socket->fake_module('IO::Socket::INET');
$socket->fake_new('IO::Socket::INET');
$socket->set_true('autoflush')

->set_false('connected')
->set_series(getline => map({"$_\r\n"}

Replace this line with '+OK POP3 <my-apop@secret-key>' for APOP
'+OK POP3',
'+OK Capability list follows:',
Remove this line to disable CRAM-MD5
'SASL CRAM-MD5 LOGIN',
'.',
'+ abcd',
'+OK Mailbox open',
'+OK 33 419',

))->mock(print => sub {
my(undef, @args) = @_;
die('invalid operation: ', @args)

if grep(/(PASS|APOP)/i, join('', @args));
return 1;

6 Version 0.9 used here is available at: http://search.cpan.org/author/CHROMATIC/Test-
MockObject-0.09/

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

123

});
use_ok('Mail::POP3Client');
my($pop3) = Mail::POP3Client->new(

HOST => 'x', USER => 'x', PASSWORD => 'keep-secret'
);
is($pop3->State, 'TRANSACTION');
is($pop3->Count, 33);

In BEST authentication mode, Mail::POP3Client tries APOP, CRAM-MD5, and
PASS. This test makes sure that if the server doesn’t support APOP that
CRAM-MD5 is used and PASS is not used. Most POP3 servers always support
APOP and CRAM-MD5 and you usually can’t enable one without the other.
Since Mail::POP3Client always tries APOP first, this test allows us to test
the CRAM-MD5 fallback logic without finding a server that conforms to this
unique case.

We use the Test::MockObject instance to fake the IO::Socket::INET
class, which Mail::POP3Client uses to talk to the server. The faking hap-
pens before Mail::POP3Client imports the faked module so that the real
IO::Socket::INET doesn’t load.

The first three methods mocked are: new, autoflush, and connected.
The mock new returns $socket, the mock object. We set autoflush to
always returns true. connected is set to return false, so Mail::POP3Client
doesn’t try to close the socket when its DESTROY is called.

We fake the return results of getline with the server responses Mail::POP3Client
expects to see when it tries to connect and login. To reduce coupling between
the test and implementation, keep the list of mock routines short. You can
do this by trial and error, because Test::MockObject lets you know when
a routine that isn’t mocked has been called.

The mock print asserts that neither APOP nor PASS is attempted by
Connect. By editing the lines as recommend by the comments, you can
inject failures to see that the test and Mail::POP3Client works.

There’s a lot more to Test::MockObject than I can present here. It can
make a seemingly impossible testing job almost trivial.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

124

13.16 Does It Work?

As noted, several of the Mail::POP3Client test cases were successful, that
is, they found defects in the implementation. In Refactoring, you’ll see the
fruits of this chapter’s labor. We’ll refactor the implementation to make it
easier to fix the defects the test uncovered. We’ll run the unit test after each
refactoring to be sure we didn’t break anything.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

125

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

126

Chapter 14

Refactoring

In refactoring, there is a premium on knowing when to quit.

– Kent Beck

Refactoring is an iterative design strategy. Each refactoring improves
an implementation in a small way without altering its observable behavior.
You refactor to make the implementation easier to repair and to extend.
The refactorings themselves add no business value.

Programming in XP is a four part process: listening, testing, coding,
and designing. Design comes after you have a test for what the customer
wants, and you have a simple implementation already coded. Of course,
your simple implementation is based on your definition of simple. Your first
cut may even be optimally coded in which the design is complete for the task
you are working on. Your next task may require you to copy some similar
code from another module, because there’s no API to get at it. Copying
code is usually the simplest way to see if that code actually works, that is,
passes your tests. Copying code is not good design. After you get the copy
working, you need to refactor the original module and your new code to use
a common API. And, that’s emergent design.

The designing emerges from the problem, completely naturally, like you
organize a kitchen. The figure out where to put things depending on how
frequently they are used. If you only use that fruitcake pan once a year, you
probably tuck it away in the back of a hard to reach cabinet. Similarly, if a
routine is used only in one place, you keep it private within a module. The
first time it is used elsewhere, you may copy it. If you find another use for
it, you refactor all three uses so that they call a single copy of the routine.

127

In XP, we call this the Rule of Three, 1 and basically it says you only know
some code is reusable if you copy it two times. Refactoring is the process
by which you make the code reusable.

This chapter demonstrates several refactorings in the context of a single
example, Mail::POP3Client. We discuss how and when to refactor and
why refactoring is a good design strategy. We show how refactoring makes
it easier to fix a couple of defects found by the unit test in Unit Testing.

14.1 Design on Demand

XP has no explicit design phase. We start coding right away. The design
evolves through expansions (adding or exposing function) and contractions
(eliminating redundant or unused code).

Refactoring occurs in both phases. During contraction, we clean up
excesses of the past, usually caused by copy-and-paste. During expansion,
we modularize function to make it accessible for the task at hand. Expansion
solves today’s problems. Contraction helps mitigate future problems.

14.2 Mail::POP3Client

The examples in this chapter use the foundation we laid in Unit Testing.
Mail::POP3Client2 is a CPAN class that implements the client side of the
POP3 mail retrieval protocol. Since refactoring does not change observable
behavior, you don’t need to understand how POP3 works to follow the
examples in this chapter.

I chose Mail::POP3Client, because it is well-written, mature, and solves
a real problem. Some of the code is complex. The meat of the example is
highlighted in the changed version, so skip ahead if code complexity inter-
feres with comprehension. I have included entire subroutines for complete-
ness, but the differences are just a few lines of code.

14.3 Remove Unused Code

We’ll warm up with a very simple refactoring. Here’s the Host accessor from
Mail::POP3Client:

1 Don Roberts came up with this rule, and it is noted in Refactoring: Improving the
Design of Existing Code, Martin Fowler, Addison Wesley, 1999, p. 58.

2 http://search.cpan.org/author/SDOWD/POP3Client-2.12

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

128

sub Host {
my $me = shift;
my $host = shift or return $me->{HOST};

$me->{INTERNET_ADDR} = inet_aton($host) or
$me->Message("Could not inet_aton: $host, $!") and return;

$me->{HOST} = $host;
}

This first refactoring removes the extraneous comment. Unused code and
comments distract the reader from the salient bits. Should we need to res-
urrect the dead code, it remains in a file’s history available from the source
repository. For now, we don’t need it, and the refactored version is shorter
and more readable:

sub Host {
my $me = shift;
my $host = shift or return $me->{HOST};
$me->{HOST} = $host;

}

After each refactoring, even as simple as this one, we run the unit test.
In this case, the test will tell us if we deleted too much. Before we check in
our changes, we run the entire unit test suite to make sure we didn’t break
anything.

How often to check in is a matter of preference. The more often you
check in, the easier it is to back out an individual change. The cost of
checking in is a function of the size of your test suite. Some people like to
check in after every refactoring. Others will wait till the task is complete.
I wouldn’t check in now unless this change was unrelated to the work I’m
doing. For example, I might have deleted the dead code while trying to
figure out how to use Mail::POP3Client in another class.

14.4 Refactor Then Fix

As discussed in Distinguish Error Cases Uniquely, the Message method has
a defect that doesn’t let us clear its value. Its implementation is identical

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

129

to Host and six other accessors:

sub Message {
my $me = shift;
my $msg = shift or return $me->{MESG};
$me->{MESG} = $msg;

}

The method tests the wrong condition: $msg being false. It should test
to see if $msg was passed at all: @ greater than 1. For most of the other
accessors, this isn’t a real problem. However, the Debug method only allows
you to turn on debugging output, since it only saves true values:

sub Debug
{
my $me = shift;
my $debug = shift or return $me->{DEBUG};
$me->{DEBUG} = $debug;
}

We could fix all the accessors with the global replacement, but the repe-
tition is noisy and distracting. It’s better to contract the code to improve
its design while fixing the defects.

We refactor first, so we can test the refactoring with the existing unit test.
Once we determine the refactoring hasn’t changed the observable behavior,
we fix the fault. Usually, refactoring first cuts down on the work, because
we only need to fix the fault in one place.

The first step is to split out the existing logic into a separate subroutine,
and update all accessors to use the new routine:

sub Debug {
return _access('DEBUG', @_);

}
sub Host {
return _access('HOST', @_);

}
sub LocalAddr {
return _access('LOCALADDR', @_);

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

130

}
sub Message {

return _access('MESG', @_);
}
sub Pass {

return _access('PASSWORD', @_);
}
sub Port {

return _access('PORT', @_);
}
sub State {

return _access('STATE', @_);
}
sub User {

return _access('USER', @_);
}
sub _access {

my $field = shift;
my $me = shift;
my $value = shift or return $me->{$field};
$me->{$field} = $value;

}

Perl allows us to pass on the actual parameters of a routine simply. Since the
$value parameter is optional, we put the new parameter $field before the
rest of the parameters. This simple trick reduces code complexity. By the
way, it’s not something I’d do if access were public. If access needed
to be overriddable by a subclass, it would have been called as a method
($me->access). However, the XP rule “you aren’t going to need it” applies
here. We’ll expose access to subclasses when there’s an explicit need to.

14.5 Consistent Names Ease Refactoring

The refactored accessors are repetitive. In Perl it’s common to generate
repetitive code, and we’ll do so here.3 First, we need to rename MESG to

3 There are numerous CPAN classes for generating accessors. The purpose of this
refactoring is to demonstrate the technique of generating code to reduced repetition. In
the real world, you’d use one of the CPAN classes or, better yet, eschew accessors in favor

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

131

MESSAGE to simplify generation. There are only two references in Mail::POP3Client
(one use not shown), so this refactoring is easy:

sub Message {
return _access('MESSAGE', @_);

}

Next, we refactor the Pass accessor. As noted in Consistent APIs Ease
Testing, the inconsistent naming (Pass method and PASSWORD configura-
tion parameter) made testing a bit more repetitive than it needed to be.
We don’t change the parameter and instance field from PASSWORD to PASS,
because abbreviations are less desirable. Rather, we refactor Pass as follows:

sub Pass {
return shift->Password(@_);

}
sub Password {

return _access('PASSWORD', @_);
}

As a part of this refactoring, we need document that Pass is deprecated
(will eventually go away). Mail::POP3Client is available on CPAN, so we
can’t fix all the code that uses it. Deprecation is an important refactoring
technique for very public APIs like this one.

14.6 Generate Repetitive Code

With the refactored names, we can now generate all eight accessors with
this simple loop:

foreach my $a (qw(
Debug
Host
LocalAddr
Message
Password

a super-class which implements accessors via get and put methods.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

132

Port
State
User

)) {
eval(qq{

sub $a {
return _access('@{[uc($a)]}', \@_);

}
1;

}) or die($@);
}

We check eval’s result to be sure the generator works correctly. The syntax
to insert the field name is a bit funky, but I prefer it to using a temporary
variable. The @{[any-expression]} idiom allows arbitrary Perl expressions
to be interpolated in double-quoted strings.

14.7 Fix Once and Only Once

With the refactoring complete, we can now fix all eight accessors with one
line of code. access should not check the value of its third argument, but
should instead use the argument count:

sub _access {
my $field = shift;
my $me = shift; @ or return $me->{$field};
$me->{$field} = shift;

}

This is not a refactoring. It changes the observable behavior. Our unit
test confirms this: three more test cases pass.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

133

14.8 Stylin’

Coding style is important to consider when refactoring. In this
chapter, I chose to maintain the style of the source.a To contrast,
here’s what access would look like in bOP style:

sub access my(field,self, value) = @; return @> = 3?self->field =value : self− > field;Thedifferencesbetweenthetwostylesaresubtle, butthebOPversionwouldstandoutinthecodeandbeanunnecessarydistraction.Noonecaresifyouuse$me, $self, or$ibaslongasyouareconsistent.Style updates are important, too. If for some reason, Mail::POP3Client were to be incorporated into bOP, we would consider updating the implementation to match bOP style. Refactoring coding style is fine as long as you refactor and test independently from other changes.

a There are some minor changes to whitespace, indentation, and brace
placement for consistency and brevity within this book.

b Except in FORTRAN, where the name of the variable can determine its
type.

14.9 Tactics Versus Strategy

When we begin a task, tactics are important. We want to add business value
as quickly as possible. Doing the simplest thing that could possibly work is
a tactic to reach our goal.

Copy-and-paste is the weapon of choice when task completion is our
only objective. Generalizations, such as the refactorings shown thus far, are
not easy to come up with when you’re under pressure to get the job done.
Besides, you don’t know if the code you copy solves the problem until the
implementation is finished. It’s much better to copy-and-paste to test an
idea than to invent, to implement, and to use the wrong abstraction.

As a design strategy, copy-and-paste poses problems. The code is more
difficult to comprehend, because it’s difficult to see subtle differences. Faults
fixed in one place do not propagate themselves automatically. For example,
there’s an alternative fix to the problem already embedded in two other ac-
cessors, Count and Size:

sub Count {
my $me = shift;
my $c = shift;
if (defined $c and length($c) > 0) {
$me->{COUNT} = $c;

} else {
return $me->{COUNT};

}
}

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

134

sub Size {
my $me = shift;
my $c = shift;
if (defined $c and length($c) > 0) {

$me->{SIZE} = $c;
} else {

return $me->{SIZE};
}

}

These accessors behave differently from the other eight that we refactored
and fixed above. Count and Size need to be resettable to zero (mailboxes
can be empty), which is why the accessors have an alternate implementation.

The thought and debugging that went into fixing Count and Size could
have also applied to the other accessors. Since the code wasn’t refactored at
the time of the fix, it was probably easier to leave the other accessors alone.
And, under the principle of “if it ain’t broke, don’t fix it” any change like
this is not justified.

XP legitimatizes fixing non-broke code. It’s something programmers do
anyway, so XP gives us some structure and guidelines to do it safely. We
can refactor Size and Count to use access without fear.4 The unit test
covers the empty mailbox case. If we didn’t have a test for this case, we
could add one. Again, XP saves us. Since the programmers are the testers,
we’re free to modify the test to suit our needs.

14.10 Refactor With a Partner

Pair programming supports refactoring, too. Two people are better than one
at assessing the need for, the side-effects of, and the difficulty of a change.
The tradeoffs between tactics versus strategy are hard, and discussing them
with a partner is both effective and natural. Switching partners often brings
new perspectives to old code, too.

Sometimes I look at code and don’t know where to begin refactoring.
The complexity overwhelms my ability to identify commonality. For exam-
ple, here’s some code which needs refactoring:

4 When making changes to CPAN modules, XP, nor any other methodology, helps to
validate uses in the (unknown) importers.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

135

sub List {
my $me = shift;
my $num = shift || '';
my $CMD = shift || 'LIST';
$CMD=~ tr/a-z/A-Z/;
$me->Alive() or return;
my @retarray = ();
my $ret = '';
$me->_checkstate('TRANSACTION', $CMD) or return;
$me->_sockprint($CMD, $num ? " $num" : '', $me->EOL());
my $line = $me->_sockread();
unless (defined $line) {
$me->Message("Socket read failed for LIST");
return;

}
$line =~ /^\+OK/ or $me->Message("$line") and return;
if ($num) {
$line =~ s/^\+OK\s*//;
return $line;

}
while (defined($line = $me->_sockread())) {
$line =~ /^\.\s*$/ and last;
$ret .= $line;
chomp $line;
push(@retarray, $line);

}
if ($ret) {
return wantarray ? @retarray : $ret;

}
}

sub ListArray {
my $me = shift;
my $num = shift || '';
my $CMD = shift || 'LIST';
$CMD=~ tr/a-z/A-Z/;
$me->Alive() or return;
my @retarray = ();
my $ret = '';
$me->_checkstate('TRANSACTION', $CMD) or return;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

136

$me->_sockprint($CMD, $num ? " $num" : '', $me->EOL());
my $line = $me->_sockread();
unless (defined $line) {

$me->Message("Socket read failed for LIST");
return;

}
$line =~ /^\+OK/ or $me->Message("$line") and return;
if ($num) {

$line =~ s/^\+OK\s*//;
return $line;

}
while (defined($line = $me->_sockread())) {

$line =~ /^\.\s*$/ and last;
$ret .= $line;
chomp $line;
my($num, $uidl) = split ' ', $line;
$retarray[$num] = $uidl;

}
if ($ret) {

return wantarray ? @retarray : $ret;
}

}

sub Uidl {
my $me = shift;
my $num = shift || '';
$me->Alive() or return;
my @retarray = ();
my $ret = '';
$me->_checkstate('TRANSACTION', 'UIDL') or return;
$me->_sockprint('UIDL', $num ? " $num" : '', $me->EOL());
my $line = $me->_sockread();
unless (defined $line) {

$me->Message("Socket read failed for UIDL");
return;

}
$line =~ /^\+OK/ or $me->Message($line) and return;
if ($num) {

$line =~ s/^\+OK\s*//;
return $line;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

137

}
while (defined($line = $me->_sockread())) {
$line =~ /^\.\s*$/ and last;
$ret .= $line;
chomp $line;
my($num, $uidl) = split ' ', $line;
$retarray[$num] = $uidl;

}
if ($ret) {
return wantarray ? @retarray : $ret;

}
}

Where are the differences? What’s the first step? With a fresh perspec-
tive, the following stood out:

sub Uidl {
my $me = shift;
my $num = shift;
return $me->ListArray($num, 'UIDL');

}

A partner helps you overcome familiarity and fear of change which make
it hard to see simplifications like this one.

14.11 Sharing with Code References

It’s clear that List and ListArray are almost identical. The problem is
that they differ in the middle of the loop. Perl code references are a great
way to factor out differences especially within loops:

sub List { return list(sub { my $line = shift; my $retarray =
shift; push(@$retarray, $line); return; }, @ ,); } sub ListArray
{ return list(sub { my($num, $value) = split ' ', shift;
my $retarray = shift; $retarray->[$num] = $value; return; }, @ ,
); } sub list { my $parse line = shift;

my $me = shift;

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

138

my $num = shift || '';
my $CMD = shift || 'LIST';
$CMD =~ tr/a-z/A-Z/;
$me->Alive() or return;
my @retarray = ();
my $ret = '';
$me->_checkstate('TRANSACTION', $CMD) or return;
$me->_sockprint($CMD, $num ? " $num" : '', $me->EOL());
my $line = $me->_sockread();
unless (defined $line) {

$me->Message("Socket read failed for $CMD");
return;

}
$line =~ /^\+OK/ or $me->Message("$line") and return;
if ($num) {

$line =~ s/^\+OK\s*//;
return $line;

}
while (defined($line = $me->_sockread())) {

$line =~ /^\.\s*$/ and last;
$ret .= $line;
chomp $line; $parse line->($line, \@retarray);

}
if ($ret) {

return wantarray ? @retarray : $ret;
}

}

We pass an anonymous subroutine as list’s first parameter, $parse line,
for the reason described in Refactor Then Fix.

14.12 Refactoring Illuminates Fixes

The List, ListArray, and Uidl methods are bimodal. When called without
arguments, they return a list of values. When passed a message number,
the value for that message number alone is returned. The message number
cases failed in our unit test.

The code reference refactoring shows us where the fault lies: $parse line

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

139

is not called when list is called with an argument. It also needs to chomp
the $line to match the behavior:

if ($num) {
$line =~ s/^\+OK\s*//; chomp $line; return $parse line->($line);

}

The anonymous subroutines in List and ListArray need to be bimodal
for this refactoring to work:

sub List {
return _list(
sub {
my $line = shift;
my $retarray = shift or return $line;
push(@$retarray, $line);
return;

},
@_,

);
}

sub ListArray {
return _list(
sub {
my($num, $value) = split ' ', shift; my $retarray

= shift or return $value;
$retarray->[$num] = $value;
return;

},
@_,

);
}

By compressing the business logic, its essence and errors become apparent.
Less code is almost always better than more code.

While advanced constructs like code references may be difficult to un-
derstand for those unfamiliar with them, dumbing down the code is not a

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

140

good option. Defaulting to the least common denominator produces dumb
code and ignorant programmers. In XP, change occurs not only the project
artifacts but also in ourselves. Learning and teaching are an integral part
of the XP methodology.

14.13 Brush and Floss Regularly

This chapter presents a glimpse of design on demand. Each refactoring was
implemented and tested separately. The trick to refactoring successfully is
taking baby steps.

I like to compare refactoring to brushing your teeth. Your best shot at
preventing tooth decay is to brush briefly after each meal and to floss daily.
Alternatively, you could just wait for cavities to appear and have them filled.
The short term cost in pain, money, and time is much greater if you do. In
the long term, too many fillings create structural problems and the tooth
has to be replaced.

Refactoring is preventative maintenance, like tooth brushing. Quick fixes
are like fillings. Eventually, they create structural problems and require the
implementation to be replaced. Like teeth, complete rewrites are unneces-
sarily painful and costly.

XP encourages you to do the simplest thing that could possibly work
(tactics) to address the immediate problem . You refactor your code to ex-
press concepts once and only once (strategy) to prevent structural problems.
And, don’t forget that brushing and flossing support pair programming.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

141

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

142

Chapter 15

It’s a SMOP

Representation is the essence of programming.

– Fred Brooks

Implementing Extreme Perl is a simple matter of programming. Prac-
ticing XP clarifies its values. Perl’s virtues come alive as you read and write
it. The subject matter language crystallizes as the subject matter oriented
program evolves along with the programmers’ mastery of the problem do-
main.

This chapter coalesces the book’s themes (XP, Perl, and SMOP) into a
single example: a DocBook XML to HTML translator. We walk through
the planning game, split the story into tasks, discuss coding style, design
simply, pair program, test first, and iterate. The subject matter oriented
program (SMOP) is a hash of XML to HTML tags interpreted by a declar-
ative algorithm. Along the way, declarative programming is defined and
related to other paradigms (object-oriented and imperative programming).

15.1 The Problem

The example in this chapter converts DocBook XML1 (the source form of
this book) to HTML. The example went beyond this chapter, and the version
here was enhanced to produce the review copies for the entire book.2

DocBook is a technical document description language. I described the
paragraphs, sections, terms, etc. of this book with tags as follows:

1 DocBook: The Definitive Guide by Norman Walsh and Leonard Muellner, available
online at http://www.docbook.org/tdg/en/html/docbook.html

2 The most recent version is available with bOP.

143

<blockquote><para>
To learn about <firstterm>XML</firstterm>, visit
<systemitem role="url">http://www.w3c.org/XML</systemitem>.
</para></blockquote>

It’s unreadable in source form, and my resident reviewer in chief pointed
this out after I asked her to review the first chapter in source form. She was
expecting something like this:

To learn about XML, visit http://www.w3c.org/XML.

Since eating your own dog food is a great way to make sure it’s palatable,
my resident reviewer in chief agreed to act as the on-site customer3 for a
DocBook to HTML translator.

I am happy to say she is satisfied with the output of the program.4

15.2 Planning Game

The planning game was brief. There was only one story card (shown com-
pleted):

The Story Card

3 To be sure, I added it to her wedding vows ex post facto.
4 One reviewer would have preferred Perl POD. However, XP only works when the

customer speaks in one voice, so I ignored him for the sake of matrimonial harmony.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

144

Note the simplicity of the story. One sentence is usually sufficient to
describe the problem.

During the planning game, we decided almost immediately the output
would be HTML. We briefly discussed simply stripping the XML tags to
produce a plain text document. We dropped this idea quickly, because
the output would not be very easy to read, for example, footnotes would
appear in the middle of the text. We touched on alternative formatting
languages, such as, Rich Text Format (RTF), but the simplicity of HTML
and its relatedness to XML made the decision for us. HTML provides enough
formatting to give a sense of the layout, which is all Joanne needed to read
and print the chapters.

15.3 Dividing the Story into Tasks

We already had a chapter as a sample input. This made it easy to define the
tasks. I needed the tasks to be bite-sized chunks, because my programming
partners were only available for brief periods.

The task split was simple. I scanned the chapter looking for problematic
tags. The first task specifies simple tags. The other tasks specify one prob-
lematic tag each. Only DocBook tags used in the chapter were included,
and each tag can be found in at least one test case.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

145

15.4 Coding Style

The story card does not mention declarative programming. It also doesn’t
specify what language, operating system, or hardware is to be used. The
customer simply wants readable and printable chapters. She doesn’t care
how we do it.

Too often we begin coding without an explicit discussion about how we’re
going to code, that is. what language and what style. For this project, we
chose Perl for the following reasons:

• XML maps naturally to Perl’s built-in data structures (lists and hashes),

• CPAN has several ready-to-use XML parsers,

• It’s easy to generate HTML in Perl, and

• I needed an example for this book.

The last reason is important to list. One of the core values of XP is
communication. By listing my personal motivation, I’m being honest with
my team. Miscommunication often comes from hidden agendas.

15.5 Simple Design

The problem lends itself to simplicity. XML and HTML are declarative
languages, and an important property of declarative languages is ease of
manipulation. For example, consider the following DocBook snippet:

<para>
<classname>XML::Parser</classname> parses XML into a tree.
</para>

The relationships are clear, and the mapping to HML is simply:

<p>
<tt>XML::Parser</tt> parses XML into a tree.
</p>

One could translate the tags with a simple tag for tag mapping, such as:

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

146

s{<(/?)para>}{<$1p>}g;
s{<(/?)classname>}{<$1tt>}g;

This design is too simple, however. It assumes the XML is well-formed,
which it often isn’t when I write it. For example, if I were to leave off
</classname>, the closing </tt> would be missing in the HTML, and the
output would be in tt font for the rest of the document. The classic re-
sponse to this is: garbage in, garbage out. However, we did better without
added complexity5, and the solution evolved with minimal changes.

We favored hubris and impatience over doing the simplest thing that
could possibly work. A little chutzpah is not bad every now and then as long
as you have benchmarks to measure your progress. If the implementation
size grew too rapidly, we would have backed off to the simpler solution. If
blew our task estimates, we’d have to ask if we didn’t under-estimate the
complexity of the more radical approach.

The design we chose starts with the output of the CPAN package, XML::Parser.
If the XML is not well-formed, XML::Parser dies. There is no output when
the input is garbage.

XML::Parser preserves the semantic structure of the input. The trans-
lation is an in-order tree traversal, so the output is likely to be well-formed
HTML, which also is a tree.

15.6 Imperative versus Declarative

To help understand the benefits of declarative languages, let’s consider an
alternate problem. Suppose I was writing this book in troff6, an impera-
tive text formatting language:

.PP
\fBXML::Parser\fR parses XML into a tree.

The commands in troff are not relational. The .PP does not bracket the
5 One of the reviewers implemented the simple approach, and the two solutions are of

comparable size and complexity.
6 troff is a text-formatting language for UNIX man pages and other doc-

uments. After 25 years, it’s still in use. For more information, visit
http://www.kohala.com/start/troff/troff.html.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

147

paragraph it introduces. troff interprets the .PP as a paragraph break, and
what follows need not be a paragraph at all. The command is imperative,
because it means do something right now irrespective of context.

The \fB and \fR commands do not relate to the value they surround,
either. \fB turns on bold output, and \fR turns off all emphasis statefully.
Drop one or the other, and the troff is still well-formed. troff commands
are unrelated to one another except by the order in which they appear in
the text.

Writing a troff parser is straightforward. The complete grammar is
not much more complicated than the example above. Translating troff to
HTML is much more difficult.7 For example, consider the following troff:

\fBXML::Parser\fI is sweet!\fR

The equivalent HTML is:

XML::Parser<i> is sweet!</i>

A simple command-to-tag translation is insufficient. The program must
maintain the state of the font in use, and output the corresponding closing
tag () when the font changes before appending the font tag (<i>). The
same is true for font sizes, indentation level, line spacing, and other stateful
troff commands. The program has to do two jobs: map commands to tags
and emulate the state management of troff.

As you’ll see, the XML to HTML translator does not maintain global
input state to perform its job. The XML tags are translated based on
minimal local context only. The only relational information required is the
parent of the current tag. The mapping is stateless and therefore simpler
due to XML’s declarativeness.

7 Eric Raymond’s doclifter performs an even more herculean task: the program con-
verts troff to DocBook. doclifter uses the implicit relations of common usage patterns
to extract higher-level semantics, such as, knowing that man page references usually match
the regular expression: /\w+\(\d+\)/. The 6,000 line program is written declaratively in
Python, and can be downloaded from http://www.tuxedo.org/˜esr/doclifter.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

148

15.7 Pair Programming

Programming courses rarely mention declarative programming. Imperative
programming is the norm. It is all too easy to use imperative forms out of
habit or as a quick fix, especially when working alone under pressure. You
may need to refactor several times to find appropriate declarative forms.

Dogmatic pursuit of declarative forms is not an end in itself, however.
Sometimes it’s downright counter-productive. Since Perl allows us to pro-
gram in multiple paradigms, its tricky to choose how when to program using
objects, imperatively, and declaratively.

For these reasons, it’s helpful to program in pairs when coding declarative
constructs. It takes time to learn how to code declaratively, just like it takes
time to test-first, code simply, and refactoring. The learning process is
accelerated when you program in pairs.

All tasks and tests in this chapter were implemented in pairs. I would
like to thank Alex Viggio for partnering with me on the last three tasks and
Justin Schell for helping with the first. Thanks to Stas Bekman for being
my virtual partner in the final refactoring-only iteration.

15.8 Test First, By Intention

The first task involves simple tags only. This allowed us to address the basic
problem: mapping XML tags to HTML tags. Each XML tag in the first
test case maps to zero, one, or two HTML tags.

The first test case input is the trivial DocBook file:

<chapter>
<title>Simple Chapter</title>
<simplesect>
<para>Some Text</para>
</simplesect>
</chapter>

Here’s the expected result:

<html><body>
<h1>Simple Chapter</h1>

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

149

<p>Some Text</p>

</body></html>

The test case input and expected result are stored in two files named 01.xml
and 01.html, respectively. In my experience, it pays to put the test cases
in a separate subdirectory (DocBook), and to check the test cases into the
collective repository. If the program runs amok and overwrites these files,
you can always retrieve them from the repository. Also, by storing all the
test data and programs in the repository, ensures programmer workstations
are stateless. This allows you to switch tasks and/or workplaces easily.

The unit test program is:

#!perl -w
use strict;
use Bivio::Test;
use Bivio::IO::File;
Bivio::Test->new('Bivio::XML::DocBook')->unit([
'Bivio::XML::DocBook' => [

to_html => [
['DocBook/01.xml'] => [Bivio::IO::File->read('DocBook/01.html')],

],
],

]);

The function to html takes a file name as an argument and returns a string
reference, which simplifies testing. There is no need to create a temporary
output file nor delete it when the test is over. A testable design is a natural
outcome of test-first programming.

Bivio::IO::File->read returns the contents of the file name passed to
it. The output is a scalar reference. If the file does not exist or an I/O error
occurs, the function dies.

15.9 Statelessness

Bivio::IO::File->read is stateless, or idempotent. It always does the
same thing given the same arguments. This isn’t to say the file that it reads
is stateless. Files and I/O are stateful. Rather, the operation retains no

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

150

state itself. If the underlying file does not change, exactly the same data is
returned after each call.

Many of Perl’s I/O functions are stateful. For example, Perl’s read
returns different values when called with the same arguments, because it
maintains an internal buffer and file pointer. Each call returns the current
buffer contents and advances an internal buffer index, possibly filling the
buffer if it is empty. If the underlying file changes between calls, the old
buffered contents are returned regardless. read buffers the file (uses state)
to improve performance (decrease time), and we pay a price: the data read
may not match a valid file state (old and new states may be mixed).

Bivio::IO::File->read cannot be used in all cases. Sometimes the file
is too large to fit in memory, or the file may be a device that needs to be
read/written alternately in a conversational mode. For our test program,
Bivio::IO::File->read meets our needs, and the declarative operation
simplifies the code and ensures data integrity.8

In terms of XP, stateless programming supports unit testing. It is easier
to test stateless than stateful operations. Internal state changes, such as
caching results in buffers, multiply the inputs and outputs implicitly. It’s
harder to keep track of what you are testing. Stateful test cases must take
ordering into account, and tests of implicit state changes make unit tests
harder to read.

Stateless APIs can be tested independently. You only need to consider
the explicit inputs and outputs for each case, and the cases can be written
in any order. The tests are easier to read and maintain.

15.10 XML::Parser

Before we dive into the implementation, we need to understand the output
of XML::Parser. It parses the XML into a tree that constrains our imple-
mentation choices. Given 01.xml, the following data structure is returned
by parsefile:

[
chapter => [

{},
0 => "\n",

8 For purists, the implementation of Bivio::IO::File->read does not lock the file,
although it could. But read can’t, because it is defined imperatively, and it cannot assume
the file can be read into the buffer in its entirety.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

151

title => [
{},
0 => 'Simple Chapter',

],
0 => "\n",
simplesect => [
{},
0 => "\n",
para => [

{},
0 => 'Some Text',

],
0 => "\n",

],
0 => "\n",

],
];

The tree structure is realized by nesting arrays. The first element in the
array is a hash of attribute tags, which we can ignore for this first imple-
mentation, because 01.xml doesn’t use XML attributes. The special tag 0
indicates raw text, that is, the literal strings bracketed by the XML tags.

15.11 First SMOP

The implementation of the first task begins with the map from DocBook to
HTML, which is the subject matter oriented program (SMOP):

my($_TO_HTML) = {
chapter => ['html', 'body'],
para => ['p'],
simplesect => [],
title => ['h1'],

};

The subject matter (tags and their relationships) is expressed succinctly

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

152

without much syntactic clutter.Perl’s simple quoting comma (=>) describes
the program’s intention to replace the tag on the left with the list of tags on
the right. As an exercise, try to translate this SMOP to another program-
ming language. You’ll find that Perl’s expressiveness is hard to beat.

15.12 First Interpreter

The SMOP above is known as descriptive declarativeness, just like HTML
and XML. The primary advantage of descriptive languages is that they are
easy to evaluate. The first interpreter is therefore quite short9:

sub to_html {
my($self, $xml_file) = @_;
return _to_html(XML::Parser->new(Style => 'Tree')->parsefile($xml_file));

}

sub _to_html {
my($tree) = @_;
my($res) = '';
$res .= _to_html_node(splice(@$tree, 0, 2))

while @$tree;
return \$res;

}

sub _to_html_node {
my($tag, $tree) = @_;
return HTML::Entities::encode($tree)

unless $tag;
die($tag, ': unhandled tag')

unless $_TO_HTML->{$tag};
We ignore the attributes for now.
shift(@$tree);
return _to_html_tags($_TO_HTML->{$tag}, '')

. ${_to_html($tree)}

. _to_html_tags([reverse(@{$_TO_HTML->{$tag}})], '/');
}

9 For brevity, I’ve excluded Perl boilerplate, such as package and use statements. The
final version is listed in full regalia including header comments for the subroutines.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

153

sub _to_html_tags {
my($names, $prefix) = @_;
return join('', map({"<$prefix$_>"} @$names));

}

The execution is driven by the XML, not our SMOP. to html starts the
recursive (in order tree traversal) algorithm by calling parsefile with the
appropriate arguments. The XML tree it returns is passed to to html. The
tags are translated by the SMOP as they are encountered by to html node,
the workhorse of the program. The tag names in the SMOP are converted
to HTML tags (surrounded by angle brackets, <>) by to html tags.

15.13 Functional Programming

The subroutine to html tags is a pure function, also known as a function
without side effects. A pure function is a declarative operation, which is
defined formally as follows 10:

A declarative operation is independent (does not depend on any
execution state outside itself), stateless (has no internal execu-
tion state that is remembered between calls), and deterministic
(always gives the same results when given the same arguments).

to html tags only depends on its inputs. Its output (the HTML tags) is
the only state change to the program. And, we expect it to do exactly the
same thing every time we call it.

Functional programming is the branch of declarative programming that
uses pure functions exclusively. One of Perl’s strengths is its functional
programming support. For example, map and join allowed us to implement
to html tags functionally.

Other Perl operations, such as foreach, support imperative program-
ming only. Code that uses foreach must rely on stateful side-effects for its
outputs. To illustrate this point, let’s look at to html tags implemented
with foreach:

sub _to_html_tags_imperatively {

10 From Concepts, Techniques, and Models of Computer Programming by Peter Van
Roy and Seif Haridi, draft version dated January 6, 2003, p. 109, available at
http://www.info.ucl.ac.be/people/PVR/book.pdf

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

154

my($names, $prefix) = @_;
my($res) = '';
foreach my $name (@$names) {

$res .= "<$prefix$name>";
}
return $res;

}

The foreach does its job of iterating through $names, and nothing more.
It abdicates any responsibility for achieving a result. The surrounding code
must introduce a variable ($res) to extract the output from inside the loop.
The variable adds complexity that is unnecessary in the functional version.

15.14 Outside In

Like most programmers, I was trained to think imperatively. It’s hard to
think declaratively after years of programming languages like C and Java.
For example, to html in our first interpreter uses the imperative while,
because a functional version didn’t spring to mind. This was the simplest
thing that could possibly work. It was Stas who suggested the functional
refactoring in Final Implementation.

Functional programming requires a paradigm shift from traditional im-
perative thinking. to html tags imperatively concatenates its result on
the inside of the foreach. The functional to html tags concatenates the
result on the outside of the map. Functional programming is like turning an
imperative program inside out.11 Or, as some of my co-workers have noted,
it’s like programming while standing on your head.

15.15 May I, Please?

The inside out analogy helps us refactor. We can use it to simplify imperative
programs. To program functionally from the outset, a different analogy may
help: think in terms of requests, not demands. Paul Graham states this
eloquently, “A functional program tells you what it wants; an imperative

11 In On Lisp, Paul Graham explains and demonstrates this inside-out con-
cept (page 34). The book is out of print, but you can download it from
http://www.paulgraham.com/onlisp.html.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

155

program tells you what to do.”12

When we apply this analogy to the example, we see that to html tags imperatively
tells us it formats tag names one at a time, and it appends them to the end
of a string. When its done with that, it’ll return the result.

The functional to html tags has a list of tag names and wants a string
to return, so it asks join, a function that conatenates a list into a string.
join asks for a separator and a list of tags to concatenate. map wants to
format tag names, so it asks for a formatter ({"<$prefix$ >"}) and a list
of tag names.

All we’re missing is some polite phrases like please and may I, and we
can expand this analogy to familial relationships. Imperative kids tell their
parents, “I’m taking the car.” Declarative kids politely ask, “May I bor-
row the car, please?”. By communicating their desires instead of demands,
declarative kids give their parents more leeway to implement their requests.

Pure functions, and declarative programs in general, are more flexible
than their imperative cousins. Instead of demanding a calling order that is
implicitly glued together with state (variables), declarative programs define
relationships syntactically. This reduces the problem of refactoring from an
implicit global problem of maintaining state transitions to an explicit local
one of preserving syntactic relationships. Functional programs are easier to
refactor.

15.16 Second Task

The second task introduces asymmetric output. The test case input file
(02.html) is:

<chapter>
<title>Chapter with Epigraph</title>
<epigraph>
<para>
Representation <emphasis>is</emphasis> the essence of programming.
</para> <attribution>Fred Brooks</attribution>
</epigraph>
<simplesect>
<para>Some Text</para>
</simplesect>
</chapter>

12 On Lisp, Paul Graham, p. 33.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

156

The output file (02.xml) we expect is:

<html><body>
<h1>Chapter with Epigraph</h1>

<p>
Representation is the essence of programming.
</p> <div align=right>-- Fred Brooks</div>

<p>Some Text</p>

</body></html>

The XML attribute tag doesn’t map to a simple HTML div tag, so the
existing SMOP language didn’t work. But first we had to update the unit
test.

15.17 Unit Test Maintenance

To add the new case to the unit test, we copied the line containing the first
test case, and changed the the filenames:

#!perl -w
use strict;
use Bivio::Test;
use Bivio::IO::File;
Bivio::Test->new('Bivio::XML::DocBook')->unit([

'Bivio::XML::DocBook' => [
to_html => [

['DocBook/01.xml'] => [Bivio::IO::File->read('DocBook/01.html')],
['DocBook/02.xml'] => [Bivio::IO::File->read('DocBook/02.html')],

],
],

]);

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

157

Woops! We fell into the dreaded copy-and-paste trap. The new line is
identical to the old except for two characters out of 65. That’s too much
redundancy (97% fat and 3% meat). It’s hard to tell the difference between
the two lines, and as we add more tests it will be even harder. This makes
it easy to forget to add a test, or we might copy-and-paste a line and forget
to change it.

We factored out the common code to reduce redundancy:

#!perl -w
use strict;
use Bivio::Test;
use Bivio::IO::File;
Bivio::Test->new('Bivio::XML::DocBook')->unit([

'Bivio::XML::DocBook' => [
to_html => [map({ my($html) = $; $html =~ s/xml$/html/; [$]

=> [Bivio::IO::File->read($html)]; } sort(<DocBook/*.xml>))
],

],
]);

This version of the unit test is maintenance free. The test converts all
.xml files in the DocBook subdirectory. All we need to do is declare them,
i.e., create the .xml and .html files. We can execute the cases in any order,
so we chose to sort them to ease test case identification.

15.18 Second SMOP

We extended the SMOP grammar to accommodate asymmetric output. The
new mappings are shown below:

my($_TO_HTML) = to html compile({ attribution => { prefix => '<div
align=right>-- ', suffix => '</div>', },

chapter => ['html', 'body'], emphasis => ['b'],
epigraph => [],

para => ['p'],
simplesect => [],

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

158

title => ['h1'],
});

attribution maps to a hash that defines the prefix and suffix. For the
other tags, the prefix and suffix is computed from a simple name. We added
to html compile which is called once at initialization to convert the simple
tag mappings (arrays) into the more general prefix/suffix form (hashes) for
efficiency.

15.19 Second SMOP Interpreter

We extended to html node to handle asymmetric prefixes and suffixes. The
relevant bits of code are:

sub to html compile { my($config) = @ ; while (my($xml, $html)
= each(%$config)) { $config->{$xml} = { prefix => to html tags($html,
''), suffix => to html tags([reverse(@$html)], '/'),
} if ref($html) eq 'ARRAY'; } return $config; }

sub _to_html_node {
my($tag, $tree) = @_;
return HTML::Entities::encode($tree)

unless $tag;
die($tag, ': unhandled tag')

unless $_TO_HTML->{$tag};
We ignore the attributes for now.
shift(@$tree);
return $ TO HTML->{$tag}->{prefix} . ${ to html($tree)} . $ TO HTML->{$tag}->{suffix};

}

to html compile makes to html node simpler and more efficient, because
it no longer calls to html tags with the ordered and reversed HTML tag
name lists. Well, I thought it was more efficient. After performance testing,
the version in Final Implementation turned out to be just as fast.13

The unnecessary compilation step adds complexity without improving

13 Thanks to Greg Compestine for asking the questions: What are the alternatives, and
how do you know is faster?

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

159

performance. We added it at my insistence. I remember saying to Alex,
“We might as well add the compilation step now, since we’ll need it later
anyway.” Yikes! Bad programmer! Write “I’m not going to need it” one
hundred times in your PDA. Even in pairs, it’s hard to avoid the evils of
pre-optimization.

15.20 Spike Solutions

As long as I am playing true confessions, I might as well note that I imple-
mented a spike solution to this problem before involving my programming
partners. A spike solution in XP is a prototype that you intend to throw
away. I wrote a spike to see how easy it was to translate DocBook to HTML.
Some of my partners knew about it, but none of them saw it.

The spike solution affected my judgement. It had a compilation step,
too. Programming alone led to the pre-optimization. I was too confident
that it was necessary when pairing with Alex.

Spike solutions are useful, despite my experience in this case. You use
them to shore up confidence in estimates and feasibility of a story. You write
a story card for the spike, which estimates the cost to research possibilities.
Spike solutions reduce risk through exploratory programming.

15.21 Third Task

The third task introduces contextually related XML tags. The DocBook
title tag is interpreted differently depending on its enclosing tag. The test
case input file (03.xml) is:

<chapter> <title>Chapter with Section Title</title>
<simplesect>
<programlisting>
print(values(%{{1..8}}));
</programlisting>

<para>
Some other tags:
<literal>literal value</literal>,
<function>function_name</function>, and
<command>command-name</command>.
</para>

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

160

<blockquote><para>
A quoted paragraph.
</para></blockquote>
</simplesect>

<sect1> <title>Statelessness Is Next to Godliness</title>
<para>
A new section.
</para>
</sect1>
</chapter>

The expected output file (03.html) is:

<html><body> <h1>Chapter with Section Title</h1>

<blockquote><pre>
print(values(%{{1..8}}));
</pre></blockquote>

<p>
Some other tags:
<tt>literal value</tt>,
<tt>function_name</tt>, and
<tt>command-name</tt>.
</p>

<blockquote><p>
A quoted paragraph.
</p></blockquote>

<h2>Statelessness Is Next to Godliness</h2>
<p>
A new section.
</p>

</body></html>

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

161

The chapter title translates to an HTML h1 tag. The section title
translates to an h2 tag. We extended our SMOP language to handle these
two contextually different renderings of title.

15.22 Third SMOP

We discussed a number of ways to declare the contextual relationships in our
SMOP. We could have added a parent attribute to the hashes (on the right)
or nested title within a hash pointed to by the chapter tag. The syntax
we settled on is similar to the one used by XSLT.14 The XML tag names can
be prefixed with a parent tag name, for example, "chapter/title". The
SMOP became:

my($ XML TO HTML PROGRAM) = compile program({
attribution => {
prefix => '<div align=right>-- ',
suffix => '</div>',

}, blockquote => ['blockquote'], 'chapter/title'
=> ['h1'],

chapter => ['html', 'body'], command => ['tt'],
emphasis => ['b'],
epigraph => [], function => ['tt'], literal => ['tt'],
para => ['p'], programlisting => ['blockquote',

'pre'], sect1 => [], 'sect1/title' => ['h2'],
simplesect => [],

});

15.23 Third SMOP Interpreter

We refactored the code a bit to encapsulate the contextual lookup in its own
subroutine:

14 The XML Stylesheet Language Translation is an XML programming language for
translating XML into XML and other output formats (e.g., PDF and HTML). For more
info, see http://www.w3.org/Style/XSL/

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

162

sub to_html {
my($self, $xml_file) = @_;
return _to_html('',

XML::Parser->new(Style => 'Tree')->parsefile($xml_file));
}

sub eval child {
my($tag, $children, $parent tag) = @_;
return HTML::Entities::encode($children)

unless $tag;
We ignore the attributes for now.
shift(@$children);
return eval op(lookup op($tag, $parent tag), to html($tag, $children));

}

sub eval op { my($op, $html) = @ ; return $op->{prefix} . $$html
. $op->{suffix}; } sub lookup op { my($tag, $parent tag) = @ ; return
$ XML TO HTML PROGRAM->{"$parent tag/$tag"} || $ XML TO HTML PROGRAM->{$tag}
|| die("$parent tag/$tag: unhandled tag"); }

sub _to_html {
my($tag, $children) = @_;
my($res) = '';
$res .= eval child(splice(@$children, 0, 2), $tag)

while @$children;
return \$res;

}
Renamed compile program and compile tags to html not shown for
brevity.

The algorithmic change is centralized in lookup op, which wants a tag
and its parent to find the correct relation in the SMOP. Precedence is given
to contextually related tags ("$parent tag/$tag") over simple XML tags
($tag). Note that the root tag in to html is the empty string (’’). We
defined it to avoid complexity in the lower layers. lookup op need not be
specially coded to handle the empty parent tag case.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

163

15.24 The Metaphor

This task implementation includes several name changes. Alex didn’t feel
the former names were descriptive enough, and they lacked coherency. To
help think up good names, Alex suggested that our program was similar
to a compiler, because it translates a high-level language (DocBook) to a
low-level language (HTML).

We refactored the names to reflect this new metaphor. $ TO HML became
$ XML TO HTML PROGRAM, and to html compile to compile program. and
so on. An $op is the implementation of an operator, and lookup op parallels
a compiler’s symbol table lookup. eval child evokes a compiler’s recursive
descent algorithm.

The compiler metaphor helped guide our new name choices. In an
XP project, the metaphor subsitutes for an architectural overview docu-
ment. Continuous design means that the architecture evolves with each
iteration, sometimes dramatically, but a project still needs to be coherent.
The metaphor brings consistency without straitjacketing the implementa-
tion. In my opinion, you don’t need a metaphor at the start of a project.
Too little is known about the code or the problem. As the code base grows,
the metaphor may present itself naturally as it did here.

15.25 Fourth Task

The fourth and final task introduces state to generate the HTML for Doc-
Book footnotes. The test case input file (04.xml) is:

<chapter>
<title>Chapter with Footnotes</title>
<simplesect>

<para>
Needs further clarification. <footnote><para> Should appear at the
end of the chapter. </para></footnote>
</para>

<itemizedlist>
<listitem><para>
First item
</para></listitem>

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

164

<listitem><para>
Second item
</para></listitem>
</itemizedlist>

<para>
Something about XML. <footnote><para> Click here <systemitem role="url">http://www.w3c.org/XML/</systemitem>
</para></footnote>
</para>

<para>
<classname>SomeClass</classname>
<varname>$some_var</varname>
<property>a_property</property>
<filename>my/file/name.PL</filename>
<citetitle>War & Peace</citetitle>
<quote>I do declare!</quote>
</para>

</simplesect>
</chapter>

The expected output file (04.html) is:

<html><body>
<h1>Chapter with Footnotes</h1>

<p>
Needs further clarification. [1]
</p>

<p>
First item
</p>
<p>
Second item
</p>

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

165

<p>
Something about XML. [2]
</p>

<p>
<tt>SomeClass</tt>
<tt>$some_var</tt>
<tt>a_property</tt>
<tt>my/file/name.PL</tt>
<i>War & Peace</i>
"I do declare!"
</p>

<h2>Footnotes</h2> <p> Should appear at
the end of the chapter. </p> <p> Click
here http://www.w3c.org/XML/
</p>
</body></html>

The footnotes are compiled at the end in a Footnotes section. Each foot-
note is linked through HTML anchor tags (#1 and #2). Incremental indexes
and relocatable output were the new challenges in this implementation.

15.26 Fourth SMOP

We pulled another blade out of our Swiss Army chainsaw for this task. Perl’s
anonymous subroutines were used to solve the footnote problem. The sub-
routines bound to chapter and footnote use variables to glue the footnotes
to their indices and the footnotes section to the end of the chapter. Here
are the additions to the SMOP:

chapter => sub { my($html, $clipboard) = @ ; $$html .= "<h2>Footnotes</h2>\n$clipboard->{footnotes}\n"
if $clipboard->{footnotes}; return "<html><body>$$html</body></html>";
}, citetitle => ['i'], classname => ['tt'], footnote
=> sub { my($html, $clipboard) = @ ; $clipboard->{footnote idx}++;
$clipboard->{footnotes} .= qq({footnote idx}">$$html\n);
return qq({footnote idx}">) . "[$clipboard->{footnote idx}]";

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

166

}, itemizedlist => ['ul'], listitem => ['li'], property
=> ['tt'], quote => { prefix => '"', suffix => '"',
}, systemitem => sub { my($html) = @ ; return qq($$html);
}, varname => ['tt'],

We didn’t see a simple functional solution. Although it’s certainly possi-
ble to avoid the introduction of $clipboard, we let laziness win out over
dogma. There was no point in smashing our collective head against a brick
wall when an obvious solution was staring right at us. Besides, you’ve got
enough functional programming examples already, so you can stop standing
on your head and read this code right side up.

15.27 Fourth SMOP Interpreter

The interpreter changed minimally:

sub to_html {
my($self, $xml_file) = @_;
return _to_html(

'',
XML::Parser->new(Style => 'Tree')->parsefile($xml_file),

{});
}

sub _eval_op {
my($op, $html, $clipboard) = @_; return $op->($html, $clipboard)

if ref($op) eq 'CODE';
return $op->{prefix} . $$html . $op->{suffix};

}

$clipboard is initialized as a reference to an empty hash by to html. If
$op is a CODE reference, eval op invokes the subroutine with $clipboard
and the html generated by the children of the current tag. The anonymous
subroutines bound to the tags can then use all of Perl to fulfill their mapping
obligation.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

167

15.28 Object-Oriented Programming

$clipboard is a reference to a simple hash. An alternative solution would
be to instantiate Bivio::DocBook::XML, and to store footnote idx and
footnotes in its object fields.

Objects are very useful, but they would be overkill here. To instantiate
Bivio::DocBook::XML in Perl, it’s traditional to declare a factory method
called new to construct the object. This would clutter the interface with
another method. We also have the option in Perl to bless a hash reference
inline to instantiate the object. In either case, an objectified hash reference is
more complex than a simple hash, and does not add value. The semantics are
not attached to the hash but are embedded in the anonymous subroutines.
Objects as simple state containers are unnecessarily complex.

Additionally, object field values are less private than those stored in
$clipboard. An object has fields to enable communication between exter-
nal calls, for example, a file handle has an internal buffer and an index so
that successive read calls know what to return. However, it’s common to
abuse object fields for intra-call communication, just like global variables are
abused in structured languages (C, FORTRAN, Pascal, etc.). In most pure
object-oriented languages, there’s no practical alternative to object fields to
pass multiple temporary values to private methods. Choice is one of Perl’s
strengths, and a simple hash localizes the temporary variable references to
the subroutines that need them.

Hashes and lists are the building blocks of functional programming. Perl
and most functional languages include them as primitive data types. It’s
the simple syntax of a Perl hash that makes the SMOPs in this chapter easy
to read. In many languages, constructing and using a hash is cumbersome,
and SMOP languages like this one are unnatural and hard to read, defeating
their purpose.

In object-oriented programming, state and function are inextricably bound
together. Encapsulating state and function in objects is useful. However, if
all you’ve got is a hammer, every problem looks like a nail. In functional
programming, state and function are distinct entities. Functional languages
decouple function reuse from state sharing, giving programmers two inde-
pendent tools instead of one.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

168

15.29 Success!

The first iteration is complete. We added all the business value the customer
has asked for. The customer can translate a complete chapter. Time for a
victory dance! Yeeha!

Now sit down and stop hooting. We’re not through yet. The customer
gave us some time to clean up our code for this book. It’s time for a little
refactoring. We missed a couple of things, and the code could be more
functional.

15.30 Virtual Pair Programming

The second iteration evolved from some review comments by Stas. I wran-
gled him into partnering with me after he suggested the code could be more
functional. The one hitch was that Stas lives in Australia, and I live in the
U.S.

Pair programming with someone you’ve never met and who lives on
the other side of the world is challenging. Stas was patient with me, and
he paired remotely before.15 His contribution was worth the hassle, and I
learned a lot from the experience. The fact that he lived in Australia was
an added bonus. After all, he was already standing on his head from my
perspective, and he was always a day ahead of me.

15 Stas Bekman co-wrote the book Practical mod perl with Eric Cholet who lives in
France. Stas is also an active contributor to the mod perl code base and documentation (
http://perl.apache.org).

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

169

15.31 Open Source Development with XP

Correspondence coding is quite common. Many open source
projects, such as GNU, Apache, and Linux, are developed by peo-
ple who live apart and sometimes have never met, as was the case
with Stas and me. Open source development is on the rise as
result of our increased communications capabilities. The Internet
and the global telecommunication network enables us to practice
XP remotely almost as easily as we can locally.
Huge collective repositories, such as http://www.sourceforge.net
and http://www.cpan.org, enable geographically challenged
teams to share code as easily as groups of developers working
in the same building. Sometimes it’s easier to share on the Inter-
net than within some corporate development environments I’ve
worked in! Open source encourages developers to program ego-
lessly. You have to expect feedback when you share your code.
More importantly, open source projects are initiated, are used,
and improve, because a problem needs to be solved, often quickly.
Resources are usually limited, so a simple story is all that is re-
quired to begin development.
Open source and XP are a natural fit. As I’ve noted before, Perl–
one of the oldest open source projects–shares many of XP’s values.
CPAN is Perl’s collective repository. Testing is a core practice in
the Perl community. Simplicity is what makes Perl so accessible
to beginners. Feedback is what makes Perl so robust. And so on.
Open source customers may not speak in one voice, so you need
to listen to them carefully, and unify their requests. But, pair
programming is possible with practice.
Geographically challenged programmers can communicate as ef-
fectively as two programmers sitting at the same computer. It’s
our attitude that affects the quality of the communication. Stas
and I wanted to work together, and we communicated well despite
our physical separation and lack of common experience. Open
source works for the same reason: programmers want it to.
To learn more about the open source development, read the book
Open Sources: Voices from the Open Source Revolution, edited
by Chris DiBona et al. available in paperback and also online at
http://www.oreilly.com/catalog/opensources.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

170

15.32 Deviance Testing

We forgot to test for deviance in the prior iteration. XML::Parser handles
missing or incomplete tags, so we don’t need to test for them here. The
unit test should avoid testing other APIs to keep the overall test suite size
as small as possible. However, XML::Parser treats all tags equally, and
Bivio::XML::DocBook should die if a tag is not in the SMOP. We added
the following test (05-dev.xml) to validate this case:

<chapter>
<unknowntag></unknowntag>
</chapter>

The case tests that lookup op throws an exception when it encounters
unknowntag.

The unit test had to change to expect a die for deviance cases. We also
made the code more functional:

#!perl -w
use strict;
use Bivio::Test;
use Bivio::IO::File;
Bivio::Test->new('Bivio::XML::DocBook')->unit([

'Bivio::XML::DocBook' => [
to_html => [map({ ["$.xml"] => $ =~ /dev/ ? Bivio::DieCode->DIE

: [Bivio::IO::File->read("$.html")]; } sort(map(/(.*)\.xml$/, <DocBook/*.xml>))),
],

],
]);

The map inside the sort returns the case base names (DocBook/01, DocBook/05-dev,
etc.), and the outer map reconstructs the filenames from them. This purely
functional solution is shorter than the previous version.

If the case file name matches the /dev/ regular expression, the map
declares the deviance case by returning a Bivio::DieCode as the expected
value. Otherwise, the input file is conformant, and the map returns the
expected HTML wrapped in an array.

Bivio::Test lets us declare deviance and conformance cases similarly.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

171

When picking or building your test infrastructure, make sure deviance case
handling is built in. If it’s hard to test APIs that die, you’ll probably write
fewer tests for the many error branches in your code.

15.33 Final Implementation

The final SMOP and interpreter are shown together with comments, and
POD, and changes highlighted:

package Bivio::XML::DocBook;
use strict;
our($VERSION) = sprintf('%d.%02d', q$Revision: 1.10 $ =~ /\d+/g);

=head1 NAME

Bivio::XML::DocBook - converts DocBook XML files to HTML

=head1 SYNOPSIS

use Bivio::XML::DocBook;
my($html_ref) = Bivio::XML::DocBook->to_html($xml_file);

=head1 DESCRIPTION

C<Bivio::XML::DocBook> converts DocBook XML files to HTML. The mapping is only
partially implemented. It's good enough to convert a simple chapter.

=cut

#=IMPORTS
use Bivio::IO::File ();
use HTML::Entities ();
use XML::Parser ();

#=VARIABLES
my($_XML_TO_HTML_PROGRAM) = {
attribution => {

prefix => '<div align="right">-- ',
suffix => '</div>',

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

172

},
blockquote => ['blockquote'],
'chapter/title' => ['h1'],
chapter => sub {

my($html, $clipboard) = @_;
$$html .= "<h2>Footnotes</h2>\n$clipboard->{footnotes}\n"

if $clipboard->{footnotes};
return "<html><body>$$html</body></html>";

},
citetitle => ['i'],
classname => ['tt'],
command => ['tt'],
emphasis => ['b'],
epigraph => [],
filename => ['tt'],
footnote => sub {

my($html, $clipboard) = @_;
$clipboard->{footnote_idx}++;
$clipboard->{footnotes}

.= qq({footnote_idx}">$$html\n);
return qq({footnote_idx}">)

. "[$clipboard->{footnote_idx}]";
},
function => ['tt'],
itemizedlist => ['ul'],
listitem => ['li'],
literal => ['tt'],
para => ['p'],
programlisting => ['blockquote', 'pre'],
property => ['tt'],
quote => {

prefix => '"',
suffix => '"',

},
sect1 => [],
'sect1/title' => ['h2'],
simplesect => [],
systemitem => sub {

my($html) = @_;
return qq($$html);

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

173

},
varname => ['tt'],

};

=head1 METHODS

=cut

=for html

=head2 to_html(string xml_file) : string_ref

Converts I<xml_file> from XML to HTML. Dies if the XML is not well-formed or
if a tag is not handled by the mapping. See the initialization of
$_XML_TO_HTML_PROGRAM for the list of handled tags.

=cut

sub to_html {
my($self, $xml_file) = @_;
return _to_html(
'',
XML::Parser->new(Style => 'Tree')->parsefile($xml_file),
{});

}

#=PRIVATE SUBROUTINES

_eval_child(string tag, array_ref children, string parent_tag, hash_ref clipboard) : string
#
Look up $tag in context of $parent_tag to find operator, evaluate $children,
and then evaluate the found operator. Returns the result of _eval_op.
Modifies $children so this routine is not idempotent.
#
sub _eval_child {

my($tag, $children, $parent_tag, $clipboard) = @_;
return HTML::Entities::encode($children)
unless $tag;

We ignore the attributes for now.
shift(@$children);

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

174

return _eval_op(
_lookup_op($tag, $parent_tag),
_to_html($tag, $children, $clipboard),
$clipboard);

}

_eval_op(any op, string_ref html, hash_ref clipboard) : string
#
Wraps $html in HTML tags defined by $op. If $op is a ARRAY, call
_to_tags() to convert the simple tag names to form the prefix and
suffix. If $op is a HASH, use the explicit prefix and suffix. If $op
is CODE, call the subroutine with $html and $clipboard. Dies if
$op's type is not handled (program error in $_XML_TO_HTML_PROGRAM).
#
sub _eval_op {

my($op, $html, $clipboard) = @_; return 'ARRAY' eq ref($op)
? to tags($op, '') . $$html . to tags([reverse(@$op)],
'/') : 'HASH' eq ref($op) ? $op->{prefix} . $$html
. $op->{suffix} : 'CODE' eq ref($op) ? $op->($html, $clipboard)
: die(ref($op) || $op, ': invalid $ XML TO HTML PROGRAM op');
}

_lookup_op(string tag, string parent_tag) : hash_ref
#
Lookup $parent_tag/$tag or $tag in $_XML_TO_HTML_PROGRAM and return.
Dies if not found.
#
sub _lookup_op {

my($tag, $parent_tag) = @_;
return $_XML_TO_HTML_PROGRAM->{"$parent_tag/$tag"}

|| $_XML_TO_HTML_PROGRAM->{$tag}
|| die("$parent_tag/$tag: unhandled tag");

}

_to_html(string tag, array_ref children, hash_ref clipboard) : string_ref
#
Concatenate evaluation of $children and return the resultant HTML.
#
sub _to_html {

my($tag, $children, $clipboard) = @_; return \(join('',

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

175

map({ eval child(@$children[2 * $.. 2 * $ + 1], $tag, $clipboard);
} 0 .. @$children / 2 - 1),));
}

_to_tags(array_ref names, string prefix) : string
#
Converts @$names to HTML tags with prefix ('/' or ''), and concatenates
the tags into a string.
#
sub to tags {

my($names, $prefix) = @_;
return join('', map({"<$prefix$_>"} @$names));

}

1;

To keep the explanation brief and your attention longer, here are the list of
changes we made in the order they appear above:

• The attribution mapping was not fully compliant HTML. Values
must be surrounded by quotes.

• The compilation of $ XML TO HTML PROGRAM was eliminated. This ver-
sion is less complex, and is not perceptibly slower.

• eval op implements the SMOP operator based on its type. Stas
and I had a (too) long discussion about the formatting and statement
choices. Do you prefer the version above or would you like to see
a if/elsif/else construct? The former is functional, and the latter is
imperative.

• to html was refactored to be a pure function by replacing the while
and $res with a join and a map. The implementation is no longer
destructive. The splice in the previous version modified $children.
eval child is still destructive, however.

• to tags was renamed from compile tags to html.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

176

15.34 Separate Concerns

This completes the second and final iteration of our DocBook XML to HTML
translator. The second iteration didn’t change anything the customer would
notice, but it improved the program’s quality. Pride of craftsmanship is a
motivating factor for most people. The customer benefits directly when
programmers are giving the freedom to fix up their code like this. Quality
is the intangible output of motivated people.

Craftsmanship plays a role in many professions. For example, one of my
favorite pastimes is baking bread. It’s hard to bake well. There are so many
variables, such as, ambient temperature, humidity, and altitude. A skilled
baker knows how to balance them all.

Anybody can bake bread by following a recipe. Just buy the ingredi-
ents, and follow the step-by-step instructions. These days even inexpen-
sive kitchen appliances can do it. While fresh bread from a bread machine
tastes fine, it wouldn’t win a competition against a skilled baker. My bread
wouldn’t either, but I might beat out a bread machine.

Becoming a skilled baker takes practice. Following a recipe isn’t enough.
Indeed, most good bakers instinctively adjust the recipe for temperature,
humidity, altitude, and so on. They probably won’t follow the instructions
exactly as written either. A simple recipe tells them what the customer
wants, that is, the ingredient combination, but the know how of a good
baker would fill a book.

When you separate the what from the how, you get qualitative differences
that are impossible to specify. In the case of our translator, the SMOP is
the what and the interpreter is the how. The quality is the succinctness of
the mapping from DocBook to HTML. The program is less than 100 lines of
Perl without documentation, and we can add new mappings with just one
line. You can’t get more concise than that.

XP achieves quality by asking the customer what she wants and allowing
programmers to implement it the best they know how. The feedback built
in to XP gives the customer confidence that she’s getting what she wants,
much like the feedback from testing tells the programmers the code does
what they want.

In plan-driven methodologies, the lines between the what and the how are
blurred. Specifications are often an excuse for the customers and analysts
to attempt to control how the programmers code. While the aim is to
ensure quality, the result is often the opposite. The programmers act like
unthinking automatons following the specifications to the letter, even when
they know the spec is wrong.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

177

The programmers are craftsmen, and XP respects their knowledge and
experience. The customer is also a craftsmen, and XP teaches programmers
to respect her skills, too. XP separates concerns to allow people to excel at
their jobs.

15.35 Travel Light

When two craftsmen communicate, you don’t hear much. Acronyms abound.
Their common experience lets them skip over the details lay people need
spelled out for them, like a recipe.

Perl, XP, and SMOP are terse. In Perl, you don’t call the regular expression
function, you say //. A skilled Perl programmer reads and writes // instinc-
tively. An XP customer writes brief story cards without a thought about
whether the programmers will understand them. She knows the program-
mers will ask for elaboration. There’s no need for big fat stateful specifi-
cations and programs to slow down the pipeline from the customer to the
programmers to the computer to deliver value to the users.

An experienced traveler knows that the more baggage you carry, the
harder it is to change planes, switch trains, and climb mountains. Extreme
Perl works best when you drop those bags, and hit the ground running. Brief
plans change easily when reality happens. Concise code adapts to changed
plans rapidly. Travel light, and get there faster.

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

178

Index

base cases, 88
bivio OLTP Platform, vii

coaches, vi
cohesion, 102
conformance tests, 61
conformant, 91
continuous design, 94, 95
customer tests, 57

data-driven testing, 66
declarative operation, 154
declarative programming, vii
denormalization, 76
descriptive declarativeness, 153
deviance, 92
deviance testing, 61
do the simplest thing that could

possibly work, vi

emergent design, 127
equivalence class, 63

fails fast, 72
Functional programming, 154
functional tests, 57

global refactoring, 106
gumption trap, 44

Hubris, 18

idempotent, 150
Impatience, 17

imperative programming, vii
implementation risk, 3
interpreter, 59

Laziness, 17
loosely coupled, 73

metaphor, 164
Mock objects, 123

Normal form, 76

once and only once, vii

pair programming, vii
plan-driven, 3
planning game, vi, 22
pure function, 154

refactor, vii
Refactoring, 95
requirements risk, 4
Rule of Three, 128

separate concerns, 94
signature, 74
Software Entropy, 106
spike solution, 29, 160
stand-up meetings, 55
story, vi, 23
Strong cohesion, 73
style flex, 43
subject matter oriented program,

vii

179

subject matter oriented program-
ming, 63

Swiss Army Chainsaw, 19

task, 33
test-driven design, 83
test-first programming, 83
the customer, vi, 22
trackers, vi
type assertions, 78

XML, 144

Copyright c© 2004 Robert Nagler
All rights reserved nagler@extremeperl.org

180

	Preface
	The Problem
	Some Statistics
	Risk Averse Methodologies
	Fostering Failure
	Get Me a Rock
	Requirements Risk
	Let's Rock And Roll

	Extreme Programming
	Core Values
	Communication
	Simplicity
	Feedback
	Courage
	The Practices
	Adopting XP

	Perl
	Core Values
	Customer-Orientation
	Testing
	CPAN
	Organizing Your Workshop

	Release Planning
	Planning Game
	Roles
	Stories
	On-site Customer
	Story Cards
	Dead Wood
	Estimation
	Easing Estimation
	Spike Solutions
	Prioritization
	All the Facts
	Small Releases

	Iteration Planning
	Tasks
	The Meeting
	Get Me a Bucket
	Velocity
	Watch Your Speed
	Customer Priorities
	Taking Care of Business
	The Beat Goes on

	Pair Programming
	Quality
	How It Works
	Ease on down the Road
	Rest & Relaxation
	People Problems
	Different Strokes
	Yea, Whatever
	Gumption Traps
	Reducing Risk Through Knowledge Transfer

	Tracking
	Iteration Tracking
	Don't Slip the Date
	Adding Tasks
	The Tracker
	Release Tracking
	What Goes Wrong?
	Fixing Troubled Projects
	Meetings
	Show Your Stuff
	Sign Off
	Here and Now

	Acceptance Testing
	Acceptance Tests
	Automation
	I'm Gonna Buy Me a Dog I want to go on record that I do not promote buying animals in stores. Buy animals from a reputable breeder, or better yet, adopt a pet from your local animal shelter.
	Group Multiple Paths
	Without Deviation, Testing Is Incomplete
	Subject Matter Oriented Programming
	Data-Driven Testing
	Empower The Customer to Test

	Coding Style
	There's More Than One Way To Do It
	Give Me Consistency or Give Me Death
	Team Colors
	An Example
	You Say, ``if else'', And I Say, ``? :''
	Once And Only Once
	Refactored Example
	Change Log
	Refactoring
	Input Validation
	You'd Rather Die

	Logistics
	Test-Driven Design
	Unit Tests
	Test First, By Intention
	Exponential Moving Average
	Test Things That Might Break
	Satisfy The Test, Don't Trick It
	Test Base Cases First
	Choose Self-Evident Data
	Use The Algorithm, Luke!
	Fail Fast
	Deviance Testing
	Only Test The New API
	Solid Foundation

	Continuous Design
	Refactoring
	Simple Moving Average
	SMA Unit Test
	SMA Implementation
	Move Common Features to a Base Class
	Refactor the Unit Tests
	Fixing a Defect
	Global Refactoring
	Continuous Rennovation in the Real World
	Simplify Accessors
	Change Happens

	Unit Testing
	Testing Isn't Hard
	Mail::POP3Client
	Make Assumptions
	Test Data Dependent Algorithms
	Validate Basic Assumptions First
	Validate Using Implementation Knowledge
	Distinguish Error Cases Uniquely
	Avoid Context Sensitive Returns
	Use IO::Scalar for Files
	Perturb One Parameter per Deviance Case
	Relate Results When You Need To
	Order Dependencies to Minimize Test Length
	Consistent APIs Ease Testing
	Inject Failures
	Mock Objects
	Does It Work?

	Refactoring
	Design on Demand
	Mail::POP3Client
	Remove Unused Code
	Refactor Then Fix
	Consistent Names Ease Refactoring
	Generate Repetitive Code
	Fix Once and Only Once
	Stylin'
	Tactics Versus Strategy
	Refactor With a Partner
	Sharing with Code References
	Refactoring Illuminates Fixes
	Brush and Floss Regularly

	It's a SMOP
	The Problem
	Planning Game
	Dividing the Story into Tasks
	Coding Style
	Simple Design
	Imperative versus Declarative
	Pair Programming
	Test First, By Intention
	Statelessness
	XML::Parser
	First SMOP
	First Interpreter
	Functional Programming
	Outside In
	May I, Please?
	Second Task
	Unit Test Maintenance
	Second SMOP
	Second SMOP Interpreter
	Spike Solutions
	Third Task
	Third SMOP
	Third SMOP Interpreter
	The Metaphor
	Fourth Task
	Fourth SMOP
	Fourth SMOP Interpreter
	Object-Oriented Programming
	Success!
	Virtual Pair Programming
	Open Source Development with XP
	Deviance Testing
	Final Implementation
	Separate Concerns
	 Travel Light

