
Fortran 90/95 and Computational
Physics

Jens Hjörleifur Bárðarson

jensba@raunvis.hi.is

University of Iceland

Fortran 90/95 and Computational Physics – p.1/22

Overview

What is Fortran?

Why Fortran?

Some Important Things

Summary

Fortran 90/95 and Computational Physics – p.2/22

What is Fortran 90?

Fortran 90/95 and Computational Physics – p.3/22

The Origin

A team lead by John Backus developed
Fortran, FORmula TRANslation System, in
1954, one of the earliest high-level langua-
ges.

1966: The first ever standard for a programming language:
Fortran 66

New standard 1978: Fortran 77

The need to modernise the language→ Fortran 90/95

Fortran 90/95 and Computational Physics – p.4/22

The Origin

A team lead by John Backus developed
Fortran, FORmula TRANslation System, in
1954, one of the earliest high-level langua-
ges.

1966: The first ever standard for a programming language:
Fortran 66

New standard 1978: Fortran 77

The need to modernise the language→ Fortran 90/95

Fortran 90/95 and Computational Physics – p.4/22

Fortran 90

http://csep1.phy.ornl.gov/pl/pl.html

Fortran 90/95 and Computational Physics – p.5/22

http://csep1.phy.ornl.gov/pl/pl.html

Why Fortran 90?

Fortran 90/95 and Computational Physics – p.6/22

How does F90 compare?

http://csep1.phy.ornl.gov/pl/pl.html

One of the ultimate goals of F90 is that the code must be
efficient

Fortran 90/95 and Computational Physics – p.7/22

http://csep1.phy.ornl.gov/pl/pl.html

Numerical Libraries

Fortran has been widely used by scientist and engineers for
many years and therfore many algorithms to use in
numerical calculations already exist.

These have been collected in number of numerical libraries,
some open (e.g. SLATEC http://www.netlib.org/slatec/ and
Numerical Recipes http://www.nr.com/)
and some that cost (e.g. NAG http://www.nag.co.uk).

Fortran 90/95 and Computational Physics – p.8/22

http://www.netlib.org/slatec/
http://www.nr.com/
http://www.nag.co.uk

Some F90 Features

Fortran 90/95 and Computational Physics – p.9/22

The Constructs

F90 has many familiar constructs:

IF (expr) ...

IF (expr) THEN
...
END IF

DO i = 1, n
...
END DO

Other forms of the DO construct

CASE

Fortran 90/95 and Computational Physics – p.10/22

The Constructs

F90 has many familiar constructs:

IF (expr) ...

IF (expr) THEN
...
END IF

DO i = 1, n
...
END DO

Other forms of the DO construct

CASE

Fortran 90/95 and Computational Physics – p.10/22

The Constructs

F90 has many familiar constructs:

IF (expr) ...

IF (expr) THEN
...
END IF

DO i = 1, n
...
END DO

Other forms of the DO construct

CASE

Fortran 90/95 and Computational Physics – p.10/22

The Constructs

F90 has many familiar constructs:

IF (expr) ...

IF (expr) THEN
...
END IF

DO i = 1, n
...
END DO

Other forms of the DO construct

CASE

Fortran 90/95 and Computational Physics – p.10/22

The Constructs

F90 has many familiar constructs:

IF (expr) ...

IF (expr) THEN
...
END IF

DO i = 1, n
...
END DO

Other forms of the DO construct

CASE

Fortran 90/95 and Computational Physics – p.10/22

Numeric Kind Parameterisation

Program test_kind

Implicit none

Real :: a

! selected_real_kind([p][,r]) p = precision, r = range

Integer, parameter :: long = selected_real_kind(9,99)

Real(long) :: b

a = 1.7; b = 1.7_long

Print *, a,kind(a), precision(a), range(a)

Print *, b,kind(b), precision(b), range(b)

b = 1.7; print *, b

b = 1.7D0; print *,b

End Program test_kind

Fortran 90/95 and Computational Physics – p.11/22

IMPLICIT NONE

Strong typing: all typed entities must have their types
specified explicitly

By default an entity in Fortran that has not been assigned a
type is implicitly typed, e.g. entities that begin with i,j, ... are
of type integer→ dangerous source of errors

(Legend has it that error of this type caused the crash of the American Space Shuttle)

The statement IMPLICIT NONE turns on strong typing and

its use is strongly recommended

Fortran 90/95 and Computational Physics – p.12/22

Modules - Simple Example

MODULE constants

IMPLICIT NONE

INTEGER, PARAMETER :: long = SELECTED_REAL_KIND(15,307)

REAL(long), PARAMETER :: pi = 3.14159265358979324D0

END MODULE constants

PROGRAM module_example

USE constants

IMPLICIT NONE

REAL(long) :: a

a = 2D0*pi

print*, a

END PROGRAM module_example

Fortran 90/95 and Computational Physics – p.13/22

Modules - Another Example

MODULE circle

USE constants

IMPLICIT NONE

CONTAINS

FUNCTION area(r)

REAL(long), INTENT(IN) :: r

REAL(long) :: area

area = 2D0*pi*r

END FUNCTION area

FUNCTION circumference(r)

REAL(long), INTENT(IN) :: r

REAL(long) :: circumference

circumference = pi*r**2

END FUNCTION circumference

END MODULE circle

Fortran 90/95 and Computational Physics – p.14/22

Modules - Another Example - cont.

PROGRAM module_example2

USE constants

USE circle

IMPLICIT NONE

REAL(long) :: r, A, C

r = 2

A = area(r)

C = circumference(r)

print*, A, C

END PROGRAM module_example2

Fortran 90/95 and Computational Physics – p.15/22

Array Features

PROGRAM array

USE constants

IMPLICIT NONE

REAL(long), DIMENSION(10,10) :: a

REAL(long), DIMENSION(5,5) :: b,c

REAL(long) :: d

a = 1D0; b = 2D0

c = MATMUL(a(1:5,6:10),b)

c = c + b

d = SUM(c)

print*, d

END PROGRAM array

Fortran 90/95 and Computational Physics – p.16/22

External Subroutines

SUBROUTINE area_rectangle(l,b,A)

USE constants

IMPLICIT NONE

REAL(long), DIMENSION(:,:), INTENT(IN) :: l,b

REAL(long), DIMENSION(size(l,1), size(l,2)) :: A

A = l*b

END SUBROUTINE area_rectangle

Fortran 90/95 and Computational Physics – p.17/22

External Subroutines - cont.

PROGRAM subr_example

USE constants

IMPLICIT NONE

INTERFACE

SUBROUTINE area_rectangle(l,b,A)

USE constants

IMPLICIT NONE

REAL(long), DIMENSION(:,:), INTENT(IN) :: l,b

REAL(long), DIMENSION(size(l,1), size(l,2)), INTENT(OUT) :: A

END SUBROUTINE area_rectangle

END INTERFACE

REAL(long), DIMENSION(2,2) :: l,b,A

l = 1D0; b = 2D0

CALL area_rectangle(l,b,A); print*, A

END PROGRAM subr_example

Fortran 90/95 and Computational Physics – p.18/22

External Subroutines - cont.

External subroutines are implicitly interfaced while
module subroutines are explicitly interfaced

External subroutines can be made explicitly interfaced
by the use of an interface block

Grouping related procedures and parameters into
modules is good programming

We imagine subprogram libraries being written as sets of external
subprograms together with modules holding interface blocks for
them. Metcalf & Reid

Fortran 90/95 and Computational Physics – p.19/22

External Subroutines - cont.

External subroutines are implicitly interfaced while
module subroutines are explicitly interfaced

External subroutines can be made explicitly interfaced
by the use of an interface block

Grouping related procedures and parameters into
modules is good programming

We imagine subprogram libraries being written as sets of external
subprograms together with modules holding interface blocks for
them. Metcalf & Reid

Fortran 90/95 and Computational Physics – p.19/22

External Subroutines - cont.

External subroutines are implicitly interfaced while
module subroutines are explicitly interfaced

External subroutines can be made explicitly interfaced
by the use of an interface block

Grouping related procedures and parameters into
modules is good programming

We imagine subprogram libraries being written as sets of external
subprograms together with modules holding interface blocks for
them. Metcalf & Reid

Fortran 90/95 and Computational Physics – p.19/22

External Subroutines - cont.

External subroutines are implicitly interfaced while
module subroutines are explicitly interfaced

External subroutines can be made explicitly interfaced
by the use of an interface block

Grouping related procedures and parameters into
modules is good programming

We imagine subprogram libraries being written as sets of external
subprograms together with modules holding interface blocks for
them. Metcalf & Reid

Fortran 90/95 and Computational Physics – p.19/22

Summary

Fortran 90/95 and Computational Physics – p.20/22

Summary

Fortran has from the beginning been designed for
numerical calculations

The Fortran 90 standard modernised the language

Array features make F90 especially attracting for
numerical work

Fortran is fast

Fortran 90/95 and Computational Physics – p.21/22

Resources

CSEP. Fortran 90 and Computational Science.
Technical report, Oak Ridge National Laboratory, 1994
http://csep1.phy.ornl.gov/CSEP/PL/PL.html

The Liverpool Fortran 90 courses homepage
http://www.liv.ac.uk/HPC/F90page.html

Michael Metcalf and John Reid. Fortran 90/95 explained,
second edition. Oxford, 1999

Chivers and Sleightholme. Introducing Fortran 95. Springer,
2000

Brainerd, Goldberg and Adams. Programmer’s Guide to
Fortran 90, third edition. Springer, 1996

dbforums.lang.fortran http://dbforums.com/f132/

Fortran 90/95 and Computational Physics – p.22/22

http://csep1.phy.ornl.gov/CSEP/PL/PL.html
http://www.liv.ac.uk/HPC/F90page.html
http://dbforums.com/f132/

	Overview
	What is Fortran 90?
	The Origin
	Fortran 90
	Why Fortran 90?
	How does F90 compare?
	Numerical Libraries
	Some F90 Features
	The Constructs
	Numeric {ed Kind} Parameterisation
	green IMPLICIT NONE
	Modules - Simple Example
	Modules - Another Example
	Modules - Another Example - cont.
	Array Features
	External Subroutines
	External Subroutines - cont.
	External Subroutines - cont.
	Summary
	Summary
	Resources

