
Java GUI Builders 1

Java GUI Builders
By Mitch Stuart
Copyright 2005 FullSpan Software - Usage subject to license
Document Version: 1.4, 06-Apr-2005

Contents

1 Introduction.. 1

1.1 Discussion Thread... 1
1.2 Evaluation Scope and Methodology.. 1
1.3 Evaluation Criteria .. 2

2 GUI Builder Background ... 2
2.1 GUI Components: Swing vs. SWT.. 2
2.2 Layout Managers .. 3
2.3 Tool Types ... 4
2.4 GUI Definition Storage... 5

3 Recommended Products ... 5
4 Product Summary.. 6
5 Product Details.. 9

5.1 Swing Designer .. 9
5.2 NetBeans..11
5.3 JFormDesigner ..13
5.4 FormLayoutMaker ..14
5.5 Foam ...15
5.6 Jigloo ...16
5.7 JBuilder ..16
5.8 Eclipse Visual Editor ...17
5.9 Jvider...17

6 Wish List ...18
7 Example Code..18
8 Revision History ...18

1 Introduction
This article discusses and compares tools for building Graphical User Interfaces
(GUIs) in Java. It describes my experiences and results in trying to find tools for
rapid development of Java GUIs.

1.1 Discussion Thread
There is a JavaLobby discussion thread for this article, where you can view and post
comments and questions.

1.2 Evaluation Scope and Methodology
Using web searches, I identified more than 20 Java GUI builders to investigate. I
read each product web site to determine the feature set, licensing, and pricing. I did
other web searches to find existing reviews or opinions of the products, and also to

http://www.fullspan.com/
http://www.fullspan.com/shared/license.html
http://www.javalobby.org/java/forums/t17948

Java GUI Builders 2

discern vendor/community robustness. In this step, I eliminated some of the
products from further consideration (see the Product Summary for information on
why some of the products were not selected).

With the remaining set of finalist products, I downloaded and installed each one.
Then I tested them by creating panels with various sets of components.

1.3 Evaluation Criteria
I did not use a formal evaluation matrix or checklist. However, the following items
were considered when evaluating each tool:

• Quality of resulting GUI. Does it look professional and organized? For
example, do all the fields line up properly? Does the form behave
properly when resized (for example, expanding any growable fields as
appropriate).

• Development productivity for application development. How quickly can
you go from a "blank slate" to a working application?

• Development productivity for maintenance. For example, let's say you
have created an application with a form. Now you need to modify the
form to add a couple of new components (labels, text boxes, etc.). Is the
mechanism for maintenance / editing of the form consistent with the
original development? Or do you have to use different techniques when
modifying existing forms?

• Cost and other business considerations. Is the product commercial, free,
open source? Is it being actively developed / maintained? Is the vendor
and/or community robust?

2 GUI Builder Background
Before jumping into the product discussion, in this section I will present some
technical background that will be useful in understanding the similarities and
differences between the GUI builder products.

2.1 GUI Components: Swing vs. SWT
Swing is the "built-in" GUI component technology of the Java platform. Swing is the
successor to the AWT technology that was provided with the early releases of the
Java platform. In one sense, Swing replaces AWT. For example, in a Swing program
you would use javax.swing.JTextField instead of java.awt.TextField. In another
sense, Swing builds on AWT: JTextField is a descendant of java.awt.Container, and
many non-component AWT classes (such as layout managers) are used in Swing
programming.

SWT (the Standard Widget Toolkit) is an alternative (competing) GUI component
technology that is part of the Eclipse project. There is a large and growing
community that advocates SWT over Swing for Java GUI programming.

http://java.sun.com/products/jfc/
http://java.sun.com/products/jdk/awt/
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/TextField.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Container.html
http://www.eclipse.org/swt/
http://www.eclipse.org/

Java GUI Builders 3

In my own programming, I prefer using Swing, so this article focuses on tools that
work with Swing. If a tool happens to support SWT also, I will mention that fact (if
I'm aware of it), but I have not tested the SWT capabilities of any of these tools.

2.2 Layout Managers
One of the key decisions in determining how your forms will look, and how easy it
will be to create and maintain them, is what layout manager you use. It is quite
common to have multiple panels and nested panels within a single form and certainly
within a full application. So you may use several different layout managers. But for
your "mainstream" forms with labels, data entry fields, etc. that you need to layout
and line up, you will likely use a complex layout manager that allows you to layout
many components cleanly in relation to each other.

Here is an overview of some common layout managers:

• Simple layouts. BorderLayout, BoxLayout, CardLayout, FlowLayout, and
other similar layouts are simple layout managers that are suitable for
laying out a small number of components or nested panels. These are
very simple to use and tend to have only a small number of properties to
set. For example, for FlowLayout you can set the alignment, horizontal
gap, and vertical gap.

• GridBagLayout. A complex layout manager that is part of the standard
Java distribution. If you are building a complex Java GUI, and not using a
third-party layout manager, you will tend to end up using this layout. It is
very flexible but difficult to work with (there is an amusing animation
called Totally GridBag illustrating this). One of the key criteria for
evaluating a GUI builder is determining how much it simplifies the process
of working with GridBagLayout.

• SpringLayout. A simple but powerful layout manager that is part of the
standard Java distribution (as of Java 1.4.x). Sun's Java tutorial says:
"The SpringLayout class was added in v 1.4 to support layout in GUI
builders." However, of the GUI builders that I looked at, only Swing
Designer currently supports SpringLayout, as far as I can tell.

In an interview, NetBeans team member Tim Boudreau seemed to indicate
that there would be SpringLayout support in NetBeans 4.1. However, in a
chat session, NetBeans team member Larry Baron stated "The Form editor
from 4.0 will migrate unchanged to 4.1. We are looking at improvements
in releases past NB 4.1".

So although SpringLayout looks intriguing, it does not yet seem to have
sufficient support among GUI builders to have a major impact on the
evaluation here.

• FormLayout. A third-party open source layout manager from JGoodies.
FormLayout has capabilities similar to GridBagLayout, but is much simpler
to use. The JGoodies Forms package includes not only the FormLayout
layout manager itself, but also a set of "builders" (non-visual helper
classes) to assist in building panels. FormLayout seems to have the
broadest support among GUI builders of any of the third-party layout
managers.

http://madbean.com/blog/2004/17/totallygridbag.html
http://java.sun.com/docs/books/tutorial/uiswing/layout/spring.html
http://www.softwarereality.com/soapbox/boudreau_interview.jsp
http://java.sun.com/developer/community/chat/JavaLive/2004/jl1116.html
http://www.jgoodies.com/freeware/forms/

Java GUI Builders 4

• Other layouts. There are other layout managers capable of laying out
complex forms, like TableLayout, ExplicitLayout, RelativeLayout,
EasyLayout, and SGLayout. However, these do not have broad support
among the tools evaluated here, so these layout managers are not
considered in detail.

For me, the choice of the "main" layout manager for my applications comes down to
FormLayout vs. GridBagLayout. If I am building forms using pure code with no GUI
builder, there is no contest: FormLayout wins hands down. It gives the best results
and the highest productivity. If I am using a GUI builder, then the choice is not as
clear. I would still prefer to use FormLayout, but there are excellent GUI builders for
both FormLayout and GridBagLayout.

2.3 Tool Types
There are different types of GUI builders:

• Full IDE. A full integrated development environment for building the GUI,
developing the supporting code, and "wiring together" the GUI with event
handling and other related tasks. Examples include the Eclipse Visual
Editor, NetBeans, JBuilder, and JDeveloper.

• IDE plug-in. A GUI editor designed specifically to work within an IDE.
Examples include Swing Designer, Jigloo, and Jvider.

Strictly speaking, the Eclipse Visual Editor is also an IDE plug-in, since it is
not provided with the base Eclipse download, but must be downloaded
separately. However, I put it in the Full IDE category because it is
provided by the same "vendor" (eclipse.org) as the IDE itself.

• WYSIWYG editor. A panel builder that gives a "what you see is what you
get" editing view. Generally you drop components onto a panel and move
them around. After the panel looks right, you go through some code
generation or other integration step to make the panel available to your
Java code. Examples include JFormDesigner and Foam.

• Non-WYSIWYG editor. A panel builder that helps you build panels by
grouping components and setting properties, but without the immediate
visual feedback you get with a WYSIWYG editor. These tools usually have
a "preview" button so that as you are building your panel, you can view
the result without having to integrate the panel into a complete program.
Examples include FormLayoutMaker and SpeedJG.

• Pure code. A library intended to ease or improve GUI development,
without providing a visual tool. The focus of this article is to find a visual
tool, so such libraries are not covered in detail here. Although the pure
code approach sounds more primitive than using a visual designer, some
programmers feel that it is better than visual development, because the
common code can be factored out more easily, and you do not get the
code "bloat" that is typical with GUI code generators. An example of a
pure code approach is the PanelBuilder class provided with the JGoodies
Forms package.

http://www.clearthought.info/software/TableLayout/
http://www.zookitec.com/explicitlayout.html
http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html
http://easylayout.sohlman.com/index.html
http://www.javaworld.com/javaworld/javatips/jw-javatip129.html

Java GUI Builders 5

2.4 GUI Definition Storage
Once you have defined your GUI, in what format does the GUI builder save it?

• Pure code. The tool generates Java code to create the GUI, and parses
Java code to read it into the visual editor. It does not save any files other
than the Java code. Examples are the Swing Designer, the Eclipse Visual
Editor, and Jigloo. Sometimes a tool will include special comments in the
generated Java code to help it read back the code and display it in the
visual editor.

• Code and metadata. The tool generates metadata describing the forms,
as well as Java code to display the forms. An example is NetBeans, which
saves the form definition in .form files and generates code in .java files.
The .form files live in the same directory as the corresponding .java file.

Tools that use metadata differ on whether they depend on the metadata
at design time only, or at design time and run time. For example,
NetBeans uses its .form files only at design time; the runtime is pure Java
code. In contrast, Foam uses its .gui_xml files at design time and
runtime. As another example, JFormDesigner gives you a choice. It
creates .jfd files with the form design. You have a choice of whether to
deploy the .jfd files and a (royalty-free) runtime library to load the files, or
you can choose to generate runtime code that has no dependency on the
.jfd files.

3 Recommended Products
My evaluation resulted in me selecting one overall "best" tool for most of my Java
GUI work: Swing Designer. I also identified several other excellent tools that I would
be happy to use, depending on the requirements of the project in question.

I can summarize these recommended products as follows:

• Swing Designer: Best overall and best integrated solution.

• NetBeans: Very good overall and best free/open source integrated
solution.

• JFormDesigner: Best pure panel layout tool.

• FormLayoutMaker: Best free/open source pure panel layout tool.

• Foam: Most innovative tool.

Detailed information and pros/cons of these and the other tested products are given
in the Product Details section.

One common theme that emerged from my evaluation is: "integration is good". I
went into the project not particularly caring whether I used an IDE's native GUI
builder, an IDE plug-in, or a standalone product. As I spent time with the products, I
came to believe that tight IDE integration is essential to attain the highest
productivity. GUI application building is more than just panel building: it involves

Java GUI Builders 6

integrating the panels into the application, and dealing with component properties,
event handlers, and the "glue" between application logic and the GUI.

4 Product Summary
This table lists all of the products that I investigated. They are divided into 3
categories:

• Category A. Products that were tested hands-on, and are recommended
as my favorites among those tested.

• Category B. Products that were tested hands-on, but during testing were
found to be less suitable than those in Category A.

• Category C. Products that were briefly investigated but were not tested
hands-on, due to technical or business reasons.

Within each category, products are listed in estimated order of suitability to my
requirements. Please don't put too much weight on the "ranking" or ordering of the
products in the table. Instead, I suggest that you use my comments as a guide to
help you figure out which products are worth investigating, based on your own
requirements and preferences.

Product Comments

Category A: Tested hands-on and recommended

1 Instantiations Swing
Designer
$199 per developer

Related products: SWT
Designer ($199),
WindowBuilder Pro ($299)

Best overall and best integrated solution. See
Product Details.

2 NetBeans 4.0
Free, Open Source (Sun
Public License)

Very good overall and best free/open source
integrated solution. See Product Details.

3 JFormDesigner 1.0.2
$159 per developer for
commercial use

Best pure panel layout tool. See Product Details.

4 FormLayoutMaker rc7
Free, Open Source (BSD
license)

Best free/open source pure panel layout tool. See
Product Details.

5 Foam 1.2
$150 per developer

Most innovative tool. See Product Details.

Category B: Tested hands-on

6 Jigloo 3.1.0 (pre-release)
Free for non-commercial

Not as polished as the leading products. See
Product Details.

http://www.swing-designer.com/
http://www.swing-designer.com/
http://www.swt-designer.com/
http://www.swt-designer.com/
http://www.windowbuilderpro.com/
http://www.netbeans.org/
http://www.jformdesigner.com/
http://formlayoutmaker.sourceforge.net/
http://www.computersinmotion.com/products_foam.htm
http://cloudgarden.com/jigloo/

Java GUI Builders 7

use; $75 per developer
for commercial use

7 JBuilder 2005 Foundation
Foundation edition is free
(including for commercial
use). Developer edition
is $500 and Enterprise
edition is $3,500.

No compelling benefit over NetBeans. See Product
Details.

8 Eclipse Visual Editor 1.0.2
Free, Open Source
(Eclipse License)

Not ready for prime time. See Product Details.

9 Jvider 1.7
$69 per developer

Integration is not rich enough. See Product Details.

Category C: Not tested hands-on

10 IntelliJ IDEA
$499

A full IDE with an integrated GUI builder. At design
time, uses XY and Grid-based layouts for component
positioning. Stores form definitions in XML .form
files. Gives the option of generating compiled Java
classes for the GUI, or Java source code.

The website states "The GUI Designer does not
create a main frame for an application, nor does it
create menus". It seems strange that you would
have to manually create menus and a top-level
container such as a JFrame in an integrated product.

Appears to use its own layout manager(s) as
opposed to standard ones like GridBagLayout. This
is probably a good thing for development
productivity, but it may cause some concern about
code portability (for example, if you decided to
change IDEs, or if IntelliJ maintenance became
unavailable).

On the other hand, I have been informed that the
IDEA layout manager is open source (I have not
personally verified this). This would certainly ease
the concern about vendor "lock in". Also, there is a
third-party plug-in that can convert the .form files to
Java source code, including the option to use
GridBagLayout (again, I have not verified this
capability).

11 Abeille Forms Designer
Free, Open Source (LGPL
license for Designer, BSD
license for Runtime)

One of the better open source choices. Supports
JGoodies FormLayout. Comparing Abeille and
FormLayoutMaker, I gave a slight edge to
FormLayoutMaker, but I think Abeille would still be
worth investigating.

http://www.borland.com/jbuilder/
http://www.eclipse.org/vep/
http://www.jvider.com/
http://www.jetbrains.com/idea/
http://www.javalobby.org/java/forums/m91829214
http://plugins.intellij.net/plugins/view/?id=GuiSource
https://abeille.dev.java.net/

Java GUI Builders 8

I got some feedback stating that Abeille is actually
superior to FormLayoutMaker, but unfortunately I do
not currently have time to do a hands-on test of
Abeille.

12 SwingEmpire FormBuilder
Seems to be free, license
not clear; site states that
there will eventually be a
commercial version

GUI builder for JGoodies FormLayout. Not a
WYSIWYG editor, but a form builder with preview.

13 Radical
Free, Open Source
(Apache license for
standalone version; GPL
for jEdit plugin)

An open source WYSIWYG GUI builder that uses the
TableLayout layout engine. Has a dialog that
appears to provide full coverage for setting
component properties. Generates code.

Runs as either a standalone tool or a jEdit plugin.

I prefer to use FormLayout instead of TableLayout,
so I would tend to select FormLayoutMaker or
Abeille over Radical. Other than that, Radical looks
like it's worth investigating.

14 SpeedJG
$69 per developer

The approach is to build a GUI using XML as the
representation. It is not a WYSIWYG editor, you
create the XML using their easy-to-use IDE, then
click "Test" to see the generated GUI.

Looks intriguing and well done, but I did not test
because I am more interested in a visual editor.

15 Oracle JDeveloper
It is a bit confusing to
find pricing information.
At the Oracle Store, there
is a product called
"JDeveloper - Named
User Plus Perpetual" listed
at $995.

Originally based (circa 1997) on Borland's JBuilder,
similarities between the two products can still be
clearly seen in the GUI builder (e.g., support for
XYLayout).

There are many features that make JDeveloper
stand out, but from a pure GUI builder standpoint,
there is no compelling benefit over NetBeans. Since
the JDeveloper GUI builder was originally based on
JBuilder, see the comments about JBuilder in
Product Details.

16 Ribs
Could not find pricing

Looks like it was never officially released (still in
preview). Uses absolute positioning and sizes.

17 AbaGuiBuilder
Free, Open Source (GPL)

Claims to be "Under Development" but seems to be
actively worked on. Both design time and runtime
are GPL licensed. Design time GPL is OK, but
runtime GPL is a showstopper for me, so I did not
test.

18 LayoutBuilder
$99 per developer

Appears to support only "standard" layout managers
(GridBagLayout, FlowLayout, etc.). Thus it is less
interesting than standalone layout tools like

http://www.javalobby.org/java/forums/m91829430.html
http://www.swingempire.de/palace/FormBuilder/
http://radical.sourceforge.net/
http://www.wsoftware.de/SpeedJG/
http://www.oracle.com/technology/products/jdev/
http://oraclestore.oracle.com/
http://www.reportmill.com/ribs/
http://www.openabacus.org/
http://www.jdc-software.com/products.php

Java GUI Builders 9

JFormDesigner that support JGoodies FormLayout.

19 JFrameBuilder
$67 per developer

Generates code, seems to be one-way.

20 JBeaver
49 Euros

The site says "A free trial version of JBeaver is
downloadable from this website" but I could not find
the download link. The screenshot of the Design
view looks very nice. Supports JGoodies
FormLayout.

21 User Interface Compiler
Seems to be free, license
not clear

Uses Qt Designer as the designer, then compiles it
into (?) XML.

22 BX for Java
Pricing not clear, perhaps
$998 per developer

Too expensive for me.

23 Visaj
$995 per developer

Too expensive for me.

24 JEasy
780 Euros for
distributable Pro version

Too expensive for me.

5 Product Details
This section contains detailed information on all the products that I tested hands-on.

5.1 Swing Designer
Instantiations Swing Designer 4.0
Price/License: $199 per developer
Related products: SWT Designer for SWT developers ($199) and WindowBuilder Pro
with both Swing and SWT support ($299).

Swing Designer is an Eclipse plug-in. It operates by generating and parsing Java
code; there are no separate form definition files. Swing Designer supports standard
Java layouts including GridBagLayout and SpringLayout, and has recently introduced
support for JGoodies FormLayout.

There are some nice demos on the website.

When building a form in Swing Designer, the workflow is as follows:

• Create a class based on one of the supported visual classes (JPanel,
JFrame, etc.)

• Set the layout manager for the panel

• Drop components from the palette onto the panel; drag them around on
the panel to position them

http://www.mars3000.com/
https://www.ratundtat.com/produkte_eng/main.htm
http://uic.sourceforge.net/
http://doc.trolltech.com/3.3/designer-manual.html
http://www.ics.com/getbxjava/
http://www.ist-inc.com/visaj/
http://www.jeasy.de/
http://www.swing-designer.com/
http://www.swt-designer.com/
http://www.windowbuilderpro.com/
http://www.instantiations.com/swt-designer/demos.html

Java GUI Builders 10

• Use the Layout Assistant or other provided tools (described below), set
layout properties for the components

• Use the component properties editor to set the visual (e.g., font, color)
and code generation (e.g., variable name) properties

• Add event handlers (for example, handling button clicks)

The design view is WYSIWYG, and there is also a preview button to show the
designed panel in an example JFrame container.

Swing Designer has excellent support for JGoodies FormLayout. With FormLayout,
dropping and moving components is easy and precise. The row/column grid gives
you the overall context of the container. As you mouse over the cells in the grid,
they are highlighted to show which one you are over, and whether it is valid to drop
the component there.

Pasting components is especially nice: when you execute the Paste command, the
mouse cursor becomes an arrow with a + sign, and you can click on any valid cell to
paste the component. Imagine the common case where you have a new panel and
you need to quickly add 10 field labels. Just create one label, copy it, then paste it 9
times, edit the text and you're done. Swing Designer supports in-place editing of the
component text (e.g., the labels in this example).

All of the FormLayout constraints/layout properties are supported for rows, columns,
and cells. You can edit these properties in several ways, depending on which is most
convenient for any given situation:

• Use the Layout Assistant, a popup window that lets you set the row,
column, and cell properties for the currently selected component.
Because the Assistant is non-modal, you can set the properties for a
component, then click on another one and set its properties, and so on.
You can also select multiple components to set properties for all of them
at the same time.

• Use the Alignment Figures, small buttons that alllow you to quickly set the
vertical and horizontal alignment or fill.

• Use the Row/Column Editor, a dialog that shows all the rows or columns in
the layout so you can quickly edit them in a tabular fashion.

• Use the context (right-click) menu on row or column headers to insert
rows or columns, quickly adjust their properties, or invoke the
Row/Column editor.

• Use the component properties editor to set the layout constraints.

Swing Designer also has good support for GridBagLayout, although I did not spend
as much time testing it because I prefer to use FormLayout. When you drop or
move a component, the designer shows you the existing GridBag cells, plus new cells
where the component can be dropped. The new cells are not only along the edges of
the layout, but in between every existing row and column. This makes layout very
productive because you can add new rows and columns on the fly, without having to
manually "make room" by moving existing components.

Java GUI Builders 11

Components are created as local variables by default. You can tell Swing Designer to
create a member variable for a given component by using the "Expose component"
context menu option. Or you can set a preference to automatically create every
component as a field.

Creating event handlers is simple: for example, just double-click on a button to
create its event handler and view/edit the source. More generally, you can right-
click any component, select the Implement context menu, and then choose any
event supported by that component to implement its handler. You can set a
preference to specify the naming convention for generated event handler methods.

Swing Designer has good support for menus and toolbars. I was able to quickly add
these elements to the main JFrame of my test application, and automatically create
stubs for their actionPerformed handlers.

When to use Swing Designer
Swing Designer hits the mark perfectly for me: it is an Eclipse plug-in with tight IDE
integration; it has a fantastic visual designer; it has excellent support for JGoodies
FormLayout; and it is reasonably priced. Therefore, Swing Designer is my first
choice for my GUI work.

Pros

• The best visual designer (fast, flexible, and full-featured) of any IDE or
IDE plug-in that I tested.

• Excellent JGoodies FormLayout support, which leads to higher
development productivity and better user interfaces.

• Very broad and deep support for many different layouts and components.

• Seamless Eclipse integration: component properties, code generation, etc.

Cons

• The first time you launch the designer in a given Eclipse session, it is
rather slow to start (10 or 15 seconds on my machine). This is not much
of an issue because once the designer is started, it is very fast - I never
felt that it lagged behind during visual editing.

• I did encounter some rough edges (bugs and other issues). However, the
vendor provided excellent support, often with a same-day or next-day
patch or workaround.

• The documentation and website could use some polishing up - they don't
reflect the completeness and quality of the product.

5.2 NetBeans
NetBeans 4.0
Price/License: Free, Open Source (Sun Public License)

NetBeans is a competitor to Eclipse as a full featured open source IDE. I am an avid
Eclipse user, and I never considered trying NetBeans before this project. People
have strong feelings about which IDE is best, but this article is not a general IDE
discussion.

http://www.netbeans.org/

Java GUI Builders 12

In this article we are focusing on the GUI-building capability of the tools, and in this
respect, NetBeans is clearly superior to Eclipse. My comments (as with all the
product details in this section) apply to the specific versions that I tested: NetBeans
4.0 vs. Eclipse Visual Editor 1.0.2 running in Eclipse 3.0.1. These were the latest
production releases available at the time I tested.

When building a form in NetBeans, the workflow is very similar to the workflow
described above for Swing Designer. The main difference is how the components are
positioned on the panel (described in detail below). Also, what Swing Designer calls
the Layout Assistant is known as the Layout Customizer in NetBeans.

The design view is WYSIWYG, and there is also a preview button to show the
designed panel in a mock JFrame.

In NetBeans, when you drop a component on the form, you cannot control the
original placement of the component - no matter where you drop it, it will go into a
new cell. This is not as friendly as (for example) Swing Designer or Eclipse Visual
Editor, which allow you to place the component in any cell. There is a similar issue
when you copy and paste a component: the pasted component sits in the same cell
as the copied component. So, after dropping or pasting, you then need to use the
GridBag customizer to place the component where you want it. This is a major
hindrance to productivity because you need to switch between the design view and
the customizer view for each component you need to position. It is true that you can
drop or paste multiple components (say 5 of them) in design view, and then go to
the customizer and move those components. But this is still not ideal because it
would be better to drag-and-position or paste-and-position in the same view.

On the other hand, the NetBeans GridBag customizer is much better than the one in
the Eclipse Visual Editor. It has more properties that you can set and is easier to
use.

At one point, I had a problem when moving components in the customizer and going
back to the design view - the layout was garbled with overlapping components. But
then I just needed to expand the size of the container (a JPanel) so that everything
fit, then the layout looked correct again. This seems to be a common issue (not
specific to NetBeans) with the GridBagLayout at both design and run time: you need
to make sure your container is big enough. The way that I deal with this at runtime
is to calculate the minimum size needed to properly display each panel, and then
restrict the main JFrame so that the user cannot resize it smaller than this minimum.

A technique described in the NetBeans documentation is to start building a form
using the AbsoluteLayout, which allows positioning of each component. Then convert
to GridBagLayout for proper resizing behavior. I found this approach more
frustrating than just building with GridBagLayout from the start.

The NetBeans GUI builder is not as powerful as some of the other products, but its
tight integration with the overall IDE makes it convenient and productive to use.

When to use NetBeans
If I wanted to build a full application (panels, menus, toolbars) with an integrated
open source IDE, without adding any external plug-ins, NetBeans would be the best
choice.

Java GUI Builders 13

Pros

• Excellent integration betwen the form designer and the overall code
development process. In particular, setting properties, code generation
options, and event handling are very fast, easy, and complete.

• Good designer for GridBagLayout, although not as good as Swing Designer
or Eclipse Visual Editor.

• The best layout customizer for GridBagLayout.

Cons

• My perception is that NetBeans has been losing the open source market
share / mind share IDE battle with Eclipse (on the other hand, there is
some evidence of a NetBeans resurgence). My guess is that future
releases of the Eclipse Visual Editor may provide much stronger
competition. Still, I'm not worried about getting "locked in" with
NetBeans, because it is open source, and the generated code is standard
Java.

• Does not support FormLayout or other replacement for GridBagLayout
(i.e., you are pretty much forced to use GridBagLayout for complex forms
if you want to use NetBeans' integration).

• Cannot move components in design view using drag and drop, need to go
into customizer to move.

• No "undo" or "cancel" in GridBagLayout customizer.

5.3 JFormDesigner
JFormDesigner 1.0.2
Price/License: $159 per developer for commercial use

JFormDesigner is a very polished and professional tool. It does an absolutely
outstanding job of helping you layout panels. With the excellent FormLayout
support, it is almost trivial to drag your components into place and get your layout
looking good. However, once you save your files (.jfd form files and .java code files)
from JFormDesigner, you are "on your own" - there is no integration with
development environments like Eclipse or NetBeans.

There is a nice Flash demo available on the website.

JFormDesigner supports standard Swing layout managers plus the third-party
FormLayout and TableLayout. The support for JGoodies FormLayout (layout
manager) and JGoodies Looks (look and feels) is extensive. JGoodies FormLayout is
my favorite layout manager, and JGoodies Looks is my favorite look and feel, so
support for these is a big plus. You can build a really professional looking application
with JFormDesigner, JGoodies FormLayout, and JGoodies Looks.

In JFormDesigner, you create your form by dragging components in the design view.
The tool saves the form definition in .jfd files which live alongside Java code. Then
there is a generate code step that can translate the .jfd files to Java code. You have
a choice of whether to deploy your forms as .jfd files, which are parsed at runtime,

http://cld.blog-city.com/read/1126337.htm
http://www.javalobby.org/java/forums/m91828413
http://www.jformdesigner.com/
http://www.jformdesigner.com/demos/

Java GUI Builders 14

or as .java code. If you use .jfd files, you also need to deploy the JFD parser JAR file
with your product, however this is royalty-free.

Because the form editor (JFormDesigner) and code editor (Eclipse or vi or whatever
editor you use) are separate, you have to be careful about collisions when saving
files. The documentation says: "As long as you follow the following rule, you will
never have a problem: Save the Java file in the IDE before saving the form in
JFormDesigner."

When to use JFormDesigner
If I had to create a large number of panels quickly and productively, and I was not
concerned with IDE integration, I would use JFormDesigner with FormLayout.

Pros

• Supports standard layout managers (including GridBagLayout), plus
FormLayout and TableLayout.

• Has extensive additional support for JGoodies Forms (FormLayout and
related classes) and Looks (look and feels).

• The best visual designer for FormLayout.

Cons

• No IDE integration.

• No event handling code generation.

• No support for externalizing strings (e.g., label or button text).

5.4 FormLayoutMaker
FormLayoutMaker rc7
Price/License: Free, Open Source (BSD license)

FormLayoutMaker is a non-WYSIWYG designer specifically for the FormLayout layout
manager. You add components to a grid, which does not look like your final panel -
it is just a visual representation of the position of the components within the grid.
After you drop your components, you can hit the preview button to see what the
actual panel will look like. Once your panel is looking good, you can save the XML
layout file and the Java code.

Another open source panel builder worth looking at is Abeille Forms Designer; please
see the comments about Abeille in the Product Summary.

When to use FormLayoutMaker
If I wanted an open source tool to help me build panels using FormLayout.
FormLayoutMaker is not as polished as JFormDesigner, but it will probably hit the
sweet spot for a lot of open source developers.

Pros

• Good visualization of the structure of the layout with the grid view.

• Easy preview for visualization of the actual layout.

http://formlayoutmaker.sourceforge.net/
http://www.jgoodies.com/freeware/forms/
https://abeille.dev.java.net/

Java GUI Builders 15

• Good support for FormLayout (although the support is not as advanced as
in JFormDesigner).

Cons

• No IDE integration.

• No support for setting properties, event handling, etc.

5.5 Foam
Foam 1.2
Price/License: $150 per developer

Foam is a delight to use - it feels different than every other tool I evaluated. As I
was using it, I was thinking "this is easy!" and "this is fun!". It is probably the
fastest for laying out a panel of any tool that I tested. You drag a component from
the palette onto the design view, and it shows you crosshairs and anchor points so
you can align it and "snap" it to certain predefined points, like the edge or center of
other components. This was the most natural feeling designer I tried.

There are some excellent Flash demos available on the website.

The form design is saved in an XML file. A runtime JAR (royalty-free) parses the file
and renders the form.

My concern with Foam is the proprietary nature of the runtime engine: if the vendor
decides to no longer maintain the product, you are stuck with the latest release.
This is troublesome when compared to other products:

• For open source products, this is not a concern, because you can (in
theory at least) fix the bug yourself, or try to organize community support
with other users.

• For other commercial products, like JFormDesigner, it is true that the
designer is proprietary. But the runtime is "open" in the sense that
JFormDesigner can generate standard Java code that does not refer to the
form design metadata at runtime. Therefore, in the worst case, you could
hand-edit the generated code if support for the tool was no longer
available.

These options are not available with a proprietary runtime engine.

When to use Foam
If I had to quickly prototype a set of panels, for example for an application design
proposal, Foam would be the quickest way to do so.

Pros

• Probably the quickest for prototyping. Absolutely slick environment.

• Makes it simple to develop very structured and elegant panels without
knowing details of layout management.

http://www.computersinmotion.com/products_foam.htm
http://www.computersinmotion.com/cgi-bin/homeframeload.pl?formname=foamdemos

Java GUI Builders 16

Cons
• Proprietary runtime.

• No IDE integration.

• No copy and paste of components in the design view.

5.6 Jigloo
Jigloo 3.1.0 (pre-release)
Price/License: Free for non-commercial use; $75 per developer for commercial use

Jigloo works by generating and parsing Java code ("round trip code generation"). It
is an Eclipse plug-in, not a standalone product.

Jigloo supports both Swing and SWT. For Swing, it supports standard layout
managers, plus Jigloo AnchorLayout and JGoodies FormLayout. For SWT, it supports
standard SWT layouts including FormLayout (the SWT FormLayout is not related to
the JGoodies FormLayout, except that they unfortunately have the same name).

Visual editing was OK, but not as smooth and polished as Swing Designer or
JFormDesigner. It was hard to lay things out properly. The grid only appears when
mousing over the panel, and I found this grid harder to work with than (for example)
Swing Designer or the NetBeans GridBag customizer. JGoodies FormLayout support
is not as advanced as Swing Designer or JFormDesigner; for example, Jigloo does
not automatically insert spacer rows and columns.

5.7 JBuilder
JBuilder 2005 Foundation
Price/License: Foundation: free (including for commercial use); Developer: $500;
Enterprise: $3,500

The JBuilder GUI building support is roughly on a par with NetBeans and Eclipse.
Since it does not offer any compelling advantage over the open source alternatives, I
did not spend a lot of time with it.

The JBuilder docs suggest starting your layout with the included XYLayout, and then
after you get it looking right, convert it to GridBagLayout. Just as with NetBeans'
AbsoluteLayout, I found it simpler to just start with GridBagLayout from the
beginning.

Borland offers extensive documentation on GUI building in JBuilder. Even if you
don't use JBuilder, it is worth reading this documentation, especially if you are using
GridBagLayout. Here are some recommended links:

• Using layout managers

• GridBagLayout

• Using nested panels and layouts

http://cloudgarden.com/jigloo/
http://www.borland.com/jbuilder/
http://info.borland.com/techpubs/jbuilder/jbuilder2005/designui/contents.html
http://info.borland.com/techpubs/jbuilder/jbuilder2005/designui/i1_layouts.html
http://info.borland.com/techpubs/jbuilder/jbuilder2005/designui/i7_gridbaglayout.html
http://info.borland.com/techpubs/jbuilder/jbuilder2005/designui/k_nestedlayouts.html

Java GUI Builders 17

5.8 Eclipse Visual Editor
Eclipse Visual Editor 1.0.2
Price/License: Free, Open Source (Eclipse License)

On the Eclipse website, the overall Eclipse project is described as: "a kind of
universal tool platform - an open extensible IDE for anything and nothing in
particular". In that spirit, the Eclipse Visual Editor is described on the website not as
a GUI builder, but rather as "a framework for creating GUI builders". However, the
Visual Editor does come with "reference implementations" of Swing and SWT GUI
builders.

Eclipse VE uses Java code generation/parsing. It is slow to start up. Sometimes it
seems reasonably fast when editing. But other times, a simple task (like clicking on
a component in design view) could take 5 or 15 seconds. This can be very
frustrating.

In Eclipse VE, the process of dropping components is very nice. You have a grid in
the design view and you can drop the component into an existing cell, or into a new
cell between any existing cells or on any edge of the grid. The VE nicely highlights
the existing or new cell where the component will be dropped. However, once you
have components in the cells, it is not easy to tell which cell you are working with.

Property and constraint editing is not as smooth as with some other products. For
example, I found it hard to set minimum widths and spacing. The GridBagLayout
customizer is not as advanced as the one in NetBeans.

JSeparator is not on the control palette. I added one using the generic add JavaBean
feature. The designer accepted it, but I could not see it in the visual editor or the
running application.

I had a couple of situations where the layout in the design view did not match the
runtime. Also, somehow the layout got garbled, with components overlapping each
other (and I could not find a simple fix like I did in NetBeans).

The bottom line is, I found Eclipse VE to be not acceptable for these reasons:

• Response time inconsistent, sometimes frustratingly slow

• Visual design process not as clear as with other products tested

• Layout not reliable (design time not matching runtime, or layout garbled)

In fairness, Eclipse VE is a relatively new product, and I look forward to future
versions being much improved.

5.9 Jvider
Jvider 1.7
Price/License: $69 per developer

Jvider offers both standalone and Eclipse plugin versions. The same license can be
used for both. Jvider focuses on being a lightweight, flexible solution instead of a

http://www.eclipse.org/vep/
http://www.jvider.com/

Java GUI Builders 18

total solution. For example, not all properties can be set through a property editor,
you need to edit code. It focuses more on the layout of components than the details
of each component. Jvider uses GridBagLayout.

I found that Jvider was too lightweight for me, it did not provide enough properties
access. Since it is using GridBagLayout, I would prefer to use NetBeans which offers
a richer and more integrated experience.

6 Wish List
As I mentioned earlier, Swing Designer has the best combination of features for my
needs. Many of the other products have great features but are lacking in various
ways. Hopefully over time these products will continue to evolve and improve. For
example:

• Add design view component positioning (and ideally, FormLayout support
too!) to NetBeans.

• Add IDE integration to JFormDesigner.

• Supply more open licensing for Foam runtime.

• Improve Eclipse Visual Editor robustness.

7 Example Code
For an example of a GUI built with Eclipse, Swing Designer, and JGoodies
FormLayout, see my JMailSend project.

For an example of a GUI built with NetBeans and GridBagLayout, see my HashGUI
project.

For an example of a GUI built with hand coding (no GUI builder) using FormLayout,
see my PWKeep project. I wish that I had thought to look for a GUI builder when I
was writing PWKeep - it would have made the form creation process much smoother.

8 Revision History

• 1.4 (06-Apr-2005): Minor copy edits.

• 1.3 (06-Apr-2005): Added hands-on review of Swing Designer. Adjusted
comments on some other products based on the features of Swing
Designer. Updated IntelliJ IDEA listing with new information about layout
manager portability. Added some comments about how to interpret the
"rankings" of products in the table. Added link to JMailSend project.

• 1.2 (26-Mar-2005): Added link to JavaLobby discussion thread. Moved
Swing Designer up in the rankings and added a few comments due to new
release that supports JGoodies FormLayout. Added IntelliJ IDEA to
Product Listing. Added link to SGLayout. General copy editing.

http://www.fullspan.com/proj/jmailsend/
http://www.fullspan.com/proj/hashgui/
http://www.fullspan.com/proj/pwkeep/

Java GUI Builders 19

• 1.1 (24-Mar-2005): Added some layout managers to listing. General copy
editing.

• 1.0 (19-Mar-2005): Initial revision.

	Introduction
	Discussion Thread
	Evaluation Scope and Methodology
	Evaluation Criteria

	GUI Builder Background
	GUI Components: Swing vs. SWT
	Layout Managers
	Tool Types
	GUI Definition Storage

	Recommended Products
	Product Summary
	Product Details
	Swing Designer
	NetBeans
	JFormDesigner
	FormLayoutMaker
	Foam
	Jigloo
	JBuilder
	Eclipse Visual Editor
	Jvider

	Wish List
	Example Code
	Revision History

