

Tutorials Point, Simply Easy Learning

1 | P a g e

Javascript Tutorial

Tutorialspoint.com

Javascript is a scripting language produced by Netscape for use within HTML Web
pages.

JavaScript is loosely based on Java and it is built into all the major modern browsers.
This tutorial gives an initial push to start you with Javascript. For more detail kindly
check tutorialspoint.com/javascript

 What is JavaScript ?

JavaScript is:

 JavaScript is a lightweight, interpreted programming language

 Designed for creating network-centric applications

 Complementary to and integrated with Java

 Complementary to and integrated with HTML

 Open and cross-platform

JavaScript Syntax:

A JavaScript consists of JavaScript statements that are placed within the <script>... </script>
HTML tags in a web page.

You can place the <script> tag containing your JavaScript anywhere within you web page but it
is preferred way to keep it within the <head> tags.

The <script> tag alert the browser program to begin interpreting all the text between these
tags as a script. So simple syntax of your JavaScript will be as follows

<script ...>

 JavaScript code

</script>

The script tag takes two important attributes:

 language: This attribute specifies what scripting language you are using. Typically, its

value will be javascript. Although recent versions of HTML (and XHTML, its successor)
have phased out the use of this attribute.

 type: This attribute is what is now recommended to indicate the scripting language in
use and its value should be set to "text/javascript".

So your JavaScript segment will look like:

<script language="javascript" type="text/javascript">

 JavaScript code

</script>

Your First JavaScript Script:

Let us write our class example to print out "Hello World".

http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/javascript
http://www.tutorialspoint.com/javascript

Tutorials Point, Simply Easy Learning

2 | P a g e

<html>

<body>

<script language="javascript" type="text/javascript">

<!--

 document.write("Hello World!")

//-->

</script>

</body>

</html>

Above code will display following result:

Hello World!

Whitespace and Line Breaks:

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs.

Because you can use spaces, tabs, and newlines freely in your program so you are free to
format and indent your programs in a neat and consistent way that makes the code easy to
read and understand.

Semicolons are Optional:

Simple statements in JavaScript are generally followed by a semicolon character, just as they

are in C, C++, and Java. JavaScript, however, allows you to omit this semicolon if your
statements are each placed on a separate line. For example, the following code could be written
without semicolons

<script language="javascript" type="text/javascript">

<!--

 var1 = 10

 var2 = 20

//-->

</script>

But when formatted in a single line as follows, the semicolons are required:

<script language="javascript" type="text/javascript">

<!--

 var1 = 10; var2 = 20;

//-->

</script>

Note: It is a good programming practice to use semicolons.

Case Sensitivity:

JavaScript is a case-sensitive language. This means that language keywords, variables, function
names, and any other identifiers must always be typed with a consistent capitalization of letters.

So identifiers Time, TIme and TIME will have different meanings in JavaScript.

NOTE: Care should be taken while writing your variable and function names in JavaScript.

Tutorials Point, Simply Easy Learning

3 | P a g e

Comments in JavaScript:

JavaScript supports both C-style and C++-style comments, Thus:

 Any text between a // and the end of a line is treated as a comment and is ignored by

JavaScript.

 Any text between the characters /* and */ is treated as a comment. This may span

multiple lines.

 JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript treats
this as a single-line comment, just as it does the // comment.

 The HTML comment closing sequence --> is not recognized by JavaScript so it should
be written as //-->.

JavaScript Placement in HTML File:

There is a flexibility given to include JavaScript code anywhere in an HTML document. But there
are following most preferred ways to include JavaScript in your HTML file.

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections.

 Script in and external file and then include in <head>...</head> section.

JavaScript DataTypes:

JavaScript allows you to work with three primitive data types:

 Numbers eg. 123, 120.50 etc.

 Strings of text e.g. "This text string" etc.

 Boolean e.g. true or false.

JavaScript also defines two trivial data types, null and undefined, each of which defines only a
single value.

JavaScript Variables:

Like many other programming languages, JavaScript has variables. Variables can be thought of
as named containers. You can place data into these containers and then refer to the data simply
by naming the container.

Before you use a variable in a JavaScript program, you must declare it. Variables are declared
with the var keyword as follows:

<script type="text/javascript">

<!--

var money;

var name;

//-->

</script>

JavaScript Variable Scope:

The scope of a variable is the region of your program in which it is defined. JavaScript variable
will have only two scopes.

Tutorials Point, Simply Easy Learning

4 | P a g e

 Global Variables: A global variable has global scope which means it is defined

everywhere in your JavaScript code.

 Local Variables: A local variable will be visible only within a function where it is
defined. Function parameters are always local to that function.

JavaScript Variable Names:

While naming your variables in JavaScript keep following rules in mind.

 You should not use any of the JavaScript reserved keyword as variable name. These

keywords are mentioned in the next section. For example, break or boolean variable
names are not valid.

 JavaScript variable names should not start with a numeral (0-9). They must begin with

a letter or the underscore character. For example, 123test is an invalid variable name
but _123test is a valid one.

 JavaScript variable names are case sensitive. For example, Name and name are two
different variables.

JavaScript Reserved Words:

The following are reserved words in JavaScript. They cannot be used as JavaScript variables,
functions, methods, loop labels, or any object names.

abstract
boolean
break
byte
case
catch
char
class
const

continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for

function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private

protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof

var
void
volatile
while
with

The Arithmatic Operators:

There are following arithmatic operators supported by JavaScript language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of after an

integer division

B % A will give 0

Tutorials Point, Simply Easy Learning

5 | P a g e

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by
one

A-- will give 9

The Comparison Operators:

There are following comparison operators supported by JavaScript language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are equal or
not, if yes then condition becomes true.

(A == B) is not true.

!= Checks if the value of two operands are equal or
not, if values are not equal then condition becomes
true.

(A != B) is true.

> Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B) is true.

The Logical Operators:

There are following logical operators supported by JavaScript language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

&& Called Logical AND operator. If both the operands
are non zero then then condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of the two
operands are non zero then then condition
becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

!(A && B) is false.

The Bitwise Operators:

There are following bitwise operators supported by JavaScript language

Tutorials Point, Simply Easy Learning

6 | P a g e

Assume variable A holds 2 and variable B holds 3 then:

Operator Description Example

& Called Bitwise AND operator. It performs a Boolean

AND operation on each bit of its integer
arguments.

(A & B) is 2 .

| Called Bitwise OR Operator. It performs a Boolean

OR operation on each bit of its integer arguments.

(A | B) is 3.

^ Called Bitwise XOR Operator. It performs a

Boolean exclusive OR operation on each bit of its
integer arguments. Exclusive OR means that either
operand one is true or operand two is true, but not
both.

(A ^ B) is 1.

~ Called Bitwise NOT Operator. It is a is a unary
operator and operates by reversing all bits in the
operand.

(~B) is -4 .

<< Called Bitwise Shift Left Operator. It moves all bits
in its first operand to the left by the number of
places specified in the second operand. New bits
are filled with zeros. Shifting a value left by one
position is equivalent to multiplying by 2, shifting
two positions is equivalent to multiplying by 4, etc.

(A << 1) is 4.

>> Called Bitwise Shift Right with Sign Operator. It
moves all bits in its first operand to the right by
the number of places specified in the second
operand. The bits filled in on the left depend on the
sign bit of the original operand, in order to
preserve the sign of the result. If the first operand
is positive, the result has zeros placed in the high
bits; if the first operand is negative, the result has

ones placed in the high bits. Shifting a value right
one place is equivalent to dividing by 2 (discarding
the remainder), shifting right two places is
equivalent to integer division by 4, and so on.

(A >> 1) is 1.

>>> Called Bitwise Shift Right with Zero Operator. This
operator is just like the >> operator, except that
the bits shifted in on the left are always zero,

(A >>> 1) is 1.

The Assignment Operators:

There are following assignment operators supported by JavaScript language:

Operator Description Example

= Simple assignment operator, Assigns values from
right side operands to left side operand

C = A + B will assigne value of
A + B into C

+= Add AND assignment operator, It adds right
operand to the left operand and assign the result
to left operand

C += A is equivalent to C = C
+ A

-= Subtract AND assignment operator, It subtracts
right operand from the left operand and assign the
result to left operand

C -= A is equivalent to C = C -
A

*= Multiply AND assignment operator, It multiplies C *= A is equivalent to C = C *

Tutorials Point, Simply Easy Learning

7 | P a g e

right operand with the left operand and assign the
result to left operand

A

/= Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

C /= A is equivalent to C = C /
A

%= Modulus AND assignment operator, It takes
modulus using two operands and assign the result
to left operand

C %= A is equivalent to C = C
% A

Miscellaneous Operator

The Conditional Operator (? :)

There is an oprator called conditional operator. This first evaluates an expression for a true or

false value and then execute one of the two given statements depending upon the result of the
evaluation. The conditioanl operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X :
Otherwise value Y

The typeof Operator

The typeof is a unary operator that is placed before its single operand, which can be of any
type. Its value is a string indicating the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a number,
string, or boolean value and returns true or false based on the evaluation.

if statement:

The if statement is the fundamental control statement that allows JavaScript to make decisions
and execute statements conditionally.

Syntax:

if (expression){

 Statement(s) to be executed if expression is true

}

if...else statement:

The if...else statement is the next form of control statement that allows JavaScript to execute
statements in more controlled way.

Syntax:

if (expression){

 Statement(s) to be executed if expression is true

}else{

 Statement(s) to be executed if expression is false

}

Tutorials Point, Simply Easy Learning

8 | P a g e

if...else if... statement:

The if...else if... statement is the one level advance form of control statement that allows
JavaScript to make correct decision out of several conditions.

Syntax:

if (expression 1){

 Statement(s) to be executed if expression 1 is true

}else if (expression 2){

 Statement(s) to be executed if expression 2 is true

}else if (expression 3){

 Statement(s) to be executed if expression 3 is true

}else{

 Statement(s) to be executed if no expression is true

}

switch statement:

The basic syntax of the switch statement is to give an expression to evaluate and several
different statements to execute based on the value of the expression. The interpreter checks

each case against the value of the expression until a match is found. If nothing matches, a
default condition will be used.

switch (expression)

{

 case condition 1: statement(s)

 break;

 case condition 2: statement(s)

 break;

 ...

 case condition n: statement(s)

 break;

 default: statement(s)

}

The while Loop

The most basic loop in JavaScript is the while loop which would be discussed in this tutorial.

Syntax:

while (expression){

 Statement(s) to be executed if expression is true

}

The do...while Loop:

The do...while loop is similar to the while loop except that the condition check happens at the
end of the loop. This means that the loop will always be executed at least once, even if the
condition is false.

Syntax:

Tutorials Point, Simply Easy Learning

9 | P a g e

do{

 Statement(s) to be executed;

} while (expression);

The for Loop

The for loop is the most compact form of looping and includes the following three important
parts:

 The loop initialization where we initialize our counter to a starting value. The

initialization statement is executed before the loop begins.

 The test statement which will test if the given condition is true or not. If condition is
true then code given inside the loop will be executed otherwise loop will come out.

 The iteration statement where you can increase or decrease your counter.

You can put all the three parts in a single line separated by a semicolon.

Syntax:

for (initialization; test condition; iteration statement){

 Statement(s) to be executed if test condition is true

}

The for...in Loop
for (variablename in object){

 statement or block to execute

}

In each iteration one property from object is assigned to variablename and this loop continues
till all the properties of the object are exhausted.

The break Statement:

The break statement, which was briefly introduced with the switch statement, is used to exit a
loop early, breaking out of the enclosing curly braces.

The continue Statement:

The continue statement tells the interpreter to immediately start the next iteration of the loop
and skip remaining code block.

When a continue statement is encountered, program flow will move to the loop check
expression immediately and if condition remain true then it start next iteration otherwise control
comes out of the loop.

Function Definition:

Before we use a function we need to define that function. The most common way to define a

function in JavaScript is by using the function keyword, followed by a unique function name, a
list of parameters (that might be empty), and a statement block surrounded by curly braces.
The basic syntax is shown here:

<script type="text/javascript">

Tutorials Point, Simply Easy Learning

10 | P a g e

<!--

function functionname(parameter-list)

{

 statements

}

//-->

</script>

Calling a Function:

To invoke a function somewhere later in the script, you would simple need to write the name of
that function as follows:

<script type="text/javascript">

<!--

sayHello();

//-->

</script>

Exceptions

Exceptions can be handled with the common try/catch/finally block structure.

<script type="text/javascript">

<!--

try {

 statementsToTry

} catch (e) {

 catchStatements

} finally {

 finallyStatements

}

//-->

</script>

The try block must be followed by either exactly one catch block or one finally block (or one of
both). When an exception occurs in the catch block, the exception is placed in e and the catch
block is executed. The finally block executes unconditionally after try/catch.

Alert Dialog Box:

An alert dialog box is mostly used to give a warning message to the users. Like if one input field
requires to enter some text but user does not enter that field then as a part of validation you
can use alert box to give warning message as follows:

<head>

<script type="text/javascript">

<!--

 alert("Warning Message");

//-->

</script>

</head>

Tutorials Point, Simply Easy Learning

11 | P a g e

Confirmation Dialog Box:

A confirmation dialog box is mostly used to take user's consent on any option. It displays a
dialog box with two buttons: OK and Cancel.

You can use confirmation dialog box as follows:

<head>

<script type="text/javascript">

<!--

 var retVal = confirm("Do you want to continue ?");

 if(retVal == true){

 alert("User wants to continue!");

 return true;

 }else{

 alert("User does not want to continue!");

 return false;

 }

//-->

</script>

</head>

Prompt Dialog Box:

You can use prompt dialog box as follows:

<head>

<script type="text/javascript">

<!--

 var retVal = prompt("Enter your name : ", "your name here");

 alert("You have entered : " + retVal);

//-->

</script>

</head>

Page Re-direction

This is very simple to do a page redirect using JavaScript at client side. To redirect your site
visitors to a new page, you just need to add a line in your head section as follows:

<head>

<script type="text/javascript">

<!--

 window.location="http://www.newlocation.com";

//-->

</script>

</head>

The void Keyword:

The void is an important keyword in JavaScript which can be used as a unary operator that
appears before its single operand, which may be of any type.

This operator specifies an expression to be evaluated without returning a value. Its syntax could
be one of the following:

Tutorials Point, Simply Easy Learning

12 | P a g e

<head>

<script type="text/javascript">

<!--

void func()

javascript:void func()

or:

void(func())

javascript:void(func())

//-->

</script>

</head>

The Page Printing:

JavaScript helps you to implement this functionality using print function of window object.

The JavaScript print function window.print() will print the current web page when executed.
You can call this function directly using onclick event as follows:

<head>

<script type="text/javascript">

<!--

//-->

</script>

</head>

<body>

<form>

<input type="button" value="Print" onclick="window.print()" />

</form>

</body>

Storing Cookies:

The simplest way to create a cookie is to assign a string value to the document.cookie object,
which looks like this:

Syntax:

document.cookie = "key1=value1;key2=value2;expires=date";

Reading Cookies:

Reading a cookie is just as simple as writing one, because the value of the document.cookie
object is the cookie. So you can use this string whenever you want to access the cookie.

The document.cookie string will keep a list of name=value pairs separated by semicolons, where
name is the name of a cookie and value is its string value.

JavaScript - Page Redirection

What is page redirection ?

Tutorials Point, Simply Easy Learning

13 | P a g e

When you click a URL to reach to a page X but internally you are directed to another page Y that
simply happens because of page re-direction. This concept is different from JavaScript Page
Refresh.

There could be various reasons why you would like to redirect from original page. I'm listing
down few of the reasons:

 You did not like the name of your domain and you are moving to a new one. Same time

you want to direct your all visitors to new site. In such case you can maintain your old
domain but put a single page with a page re-direction so that your all old domain
visitors can come to your new domain.

 You have build-up various pages based on browser versions or their names or may be

based on different countries, then instead of using your server side page redirection you
can use client side page redirection to land your users on appropriate page.

 The Search Engines may have already indexed your pages. But while moving to another

domain then you would not like to lose your visitors coming through search engines. So
you can use client side page redirection. But keep in mind this should not be done to
make search engine a fool otherwise this could get your web site banned.

How Page Re-direction works ?

Example 1:

This is very simple to do a page redirect using JavaScript at client side. To redirect your site
visitors to a new page, you just need to add a line in your head section as follows:

<head>

<script type="text/javascript">

<!--

 window.location="http://www.newlocation.com";

//-->

</script>

</head>

To understand it in better way you can Try it yourself.

Example 2:

You can show an appropriate message to your site visitors before redirecting them to a new
page. This would need a bit time delay to load a new page. Following is the simple example to
implement the same:

<head>

<script type="text/javascript">

<!--

function Redirect()

{

 window.location="http://www.newlocation.com";

}

document.write("You will be redirected to main page in 10 sec.");

setTimeout('Redirect()', 10000);

//-->

</script>

</head>

http://www.tutorialspoint.com/javascript/javascript_page_refresh.htm
http://www.tutorialspoint.com/javascript/javascript_page_refresh.htm
http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_27

Tutorials Point, Simply Easy Learning

14 | P a g e

Here setTimeout() is a built-in JavaScript function which can be used to execute another
function after a given time interval.

To understand it in better way you can Try it yourself.

Example 3:

Following is the example to redirect site visitors on different pages based on their browsers :

<head>

<script type="text/javascript">

<!--

var browsername=navigator.appName;

if(browsername == "Netscape")

{

 window.location="http://www.location.com/ns.htm";

}

else if (browsername =="Microsoft Internet Explorer")

{

 window.location="http://www.location.com/ie.htm";

}

else

{

 window.location="http://www.location.com/other.htm";

}

//-->

</script>

</head>

JavaScript - Errors & Exceptions Handling

There are three types of errors in programming: (a) Syntax Errors and (b) Runtime Errors (c)
Logical Errors:

Syntax errors:

Syntax errors, also called parsing errors, occur at compile time for traditional programming
languages and at interpret time for JavaScript.

For example, the following line causes a syntax error because it is missing a closing
parenthesis:

<script type="text/javascript">

<!--

window.print(;

//-->

</script>

When a syntax error occurs in JavaScript, only the code contained within the same thread as
the syntax error is affected and code in other threads gets executed assuming nothing in them
depends on the code containing the error.

Runtime errors:

Runtime errors, also called exceptions, occur during execution (after compilation/interpretation).

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_28

Tutorials Point, Simply Easy Learning

15 | P a g e

For example, the following line causes a run time error because here syntax is correct but at run
time it is trying to call a non existed method:

<script type="text/javascript">

<!--

window.printme();

//-->

</script>

Exceptions also affect the thread in which they occur, allowing other JavaScript threads to
continue normal execution.

Logical errors:

Logic errors can be the most difficult type of errors to track down. These errors are not the
result of a syntax or runtime error. Instead, they occur when you make a mistake in the logic
that drives your script and you do not get the result you expected.

You can not catch those errors, because it depends on your business requirement what type of
logic you want to put in your program.

The try...catch...finally Statement:

The latest versions of JavaScript added exception handling capabilities. JavaScript implements
the try...catch...finally construct as well as the throw operator to handle exceptions.

You can catch programmer-generated and runtime exceptions, but you cannot catch JavaScript
syntax errors.

Here is the try...catch...finally block syntax:

<script type="text/javascript">

<!--

try {

 // Code to run

 [break;]

} catch (e) {

 // Code to run if an exception occurs

 [break;]

}[finally {

 // Code that is always executed regardless of

 // an exception occurring

}]

//-->

</script>

The try block must be followed by either exactly one catch block or one finally block (or one of

both). When an exception occurs in the try block, the exception is placed in e and the catch
block is executed. The optional finally block executes unconditionally after try/catch.

Examples:

Here is one example where we are trying to call a non existing function this is causing an
exception raise. Let us see how it behaves without with try...catch:

Tutorials Point, Simply Easy Learning

16 | P a g e

<html>

<head>

<script type="text/javascript">

<!--

function myFunc()

{

 var a = 100;

 alert("Value of variable a is : " + a);

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

To understand it in better way you can Try it yourself.

Now let us try to catch this exception using try...catch and display a user friendly message.
You can also suppress this message, if you want to hide this error from a user.

<html>

<head>

<script type="text/javascript">

<!--

function myFunc()

{

 var a = 100;

 try {

 alert("Value of variable a is : " + a);

 } catch (e) {

 alert("Error: " + e.description);

 }

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

To understand it in better way you can Try it yourself.

You can use finally block which will always execute unconditionally after try/catch. Here is an
example:

<html>

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_35
http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_36

Tutorials Point, Simply Easy Learning

17 | P a g e

<head>

<script type="text/javascript">

<!--

function myFunc()

{

 var a = 100;

 try {

 alert("Value of variable a is : " + a);

 }catch (e) {

 alert("Error: " + e.description);

 }finally {

 alert("Finally block will always execute!");

 }

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

To understand it in better way you can Try it yourself.

The throw Statement:

You can use throw statement to raise your built-in exceptions or your customized exceptions.
Later these exceptions can be captured and you can take an appropriate action.

Following is the example showing usage of throw statement.

<html>

<head>

<script type="text/javascript">

<!--

function myFunc()

{

 var a = 100;

 var b = 0;

 try{

 if (b == 0){

 throw("Divide by zero error.");

 }else{

 var c = a / b;

 }

 }catch (e) {

 alert("Error: " + e);

 }

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_37

Tutorials Point, Simply Easy Learning

18 | P a g e

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

To understand it in better way you can Try it yourself.

You can raise an exception in one function using a string, integer, Boolean or an object and then
you can capture that exception either in the same function as we did above, or in other function
using try...catch block.

The onerror() Method

The onerror event handler was the first feature to facilitate error handling for JavaScript. The
errorevent is fired on the window object whenever an exception occurs on the page. Example:

<html>

<head>

<script type="text/javascript">

<!--

window.onerror = function () {

 alert("An error occurred.");

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

To understand it in better way you can Try it yourself.

The onerror event handler provides three pieces of information to identify the exact nature of
the error:

 Error message . The same message that the browser would display for the given error

 URL . The file in which the error occurred

 Line number . The line number in the given URL that caused the error

Here is the example to show how to extract this information

<html>

<head>

<script type="text/javascript">

<!--

window.onerror = function (msg, url, line) {

 alert("Message : " + msg);

 alert("url : " + url);

 alert("Line number : " + line);

}

//-->

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_38
http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_39

Tutorials Point, Simply Easy Learning

19 | P a g e

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

</body>

</html>

You can display extracted information in whatever way you think it is better.

To understand it in better way you can Try it yourself.

You can use onerror method to show an error message in case there is any problem in loading
an image as follows:

<img src="myimage.gif"

 onerror="alert('An error occurred loading the image.')" />

You can use onerror with many HTML tags to display appropriate messages in case of errors.

JavaScript - Form Validation

Form validation used to occur at the server, after the client had entered all necessary data and
then pressed the Submit button. If some of the data that had been entered by the client had
been in the wrong form or was simply missing, the server would have to send all the data back

to the client and request that the form be resubmitted with correct information. This was really
a lengthy process and over burdening server.

JavaScript, provides a way to validate form's data on the client's computer before sending it to
the web server. Form validation generally performs two functions.

 Basic Validation - First of all, the form must be checked to make sure data was

entered into each form field that required it. This would need just loop through each
field in the form and check for data.

 Data Format Validation - Secondly, the data that is entered must be checked for
correct form and value. This would need to put more logic to test correctness of data.

We will take an example to understand the process of validation. Here is the simple form to
proceed :

<html>

<head>

<title>Form Validation</title>

<script type="text/javascript">

<!--

// Form validation code will come here.

//-->

</script>

</head>

<body>

 <form action="/cgi-bin/test.cgi" name="myForm"

 onsubmit="return(validate());">

 <table cellspacing="2" cellpadding="2" border="1">

 <tr>

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_40

Tutorials Point, Simply Easy Learning

20 | P a g e

 <td align="right">Name</td>

 <td><input type="text" name="Name" /></td>

 </tr>

 <tr>

 <td align="right">EMail</td>

 <td><input type="text" name="EMail" /></td>

 </tr>

 <tr>

 <td align="right">Zip Code</td>

 <td><input type="text" name="Zip" /></td>

 </tr>

 <tr>

 <td align="right">Country</td>

 <td>

 <select name="Country">

 <option value="-1" selected>[choose yours]</option>

 <option value="1">USA</option>

 <option value="2">UK</option>

 <option value="3">INDIA</option>

 </select>

 </td>

 </tr>

 <tr>

 <td align="right"></td>

 <td><input type="submit" value="Submit" /></td>

 </tr>

 </table>

 </form>

 </body>

 </html>

Basic Form Validation:

First we will show how to do a basic form validation. In the above form we are calling

validate() function to validate data when onsubmit event is occurring. Following is the
implementation of this validate() function:

<script type="text/javascript">

<!--

// Form validation code will come here.

function validate()

{

 if(document.myForm.Name.value == "")

 {

 alert("Please provide your name!");

 document.myForm.Name.focus() ;

 return false;

 }

 if(document.myForm.EMail.value == "")

 {

 alert("Please provide your Email!");

 document.myForm.EMail.focus() ;

 return false;

 }

 if(document.myForm.Zip.value == "" ||

 isNaN(document.myForm.Zip.value) ||

 document.myForm.Zip.value.length != 5)

 {

Tutorials Point, Simply Easy Learning

21 | P a g e

 alert("Please provide a zip in the format #####.");

 document.myForm.Zip.focus() ;

 return false;

 }

 if(document.myForm.Country.value == "-1")

 {

 alert("Please provide your country!");

 return false;

 }

 return(true);

}

//-->

</script>

To understand it in better way you can Try it yourself.

Data Format Validation:

Now we will see how we can validate our entered form data before submitting it to the web
server.

This example shows how to validate an entered email address which means email address must
contain at least an @ sign and a dot (.). Also, the @ must not be the first character of the email
address, and the last dot must at least be one character after the @ sign:

<script type="text/javascript">

<!--

function validateEmail()

{

 var emailID = document.myForm.EMail.value;

 atpos = emailID.indexOf("@");

 dotpos = emailID.lastIndexOf(".");

 if (atpos < 1 || (dotpos - atpos < 2))

 {

 alert("Please enter correct email ID")

 document.myForm.EMail.focus() ;

 return false;

 }

 return(true);

}

//-->

</script>

To understand it in better way you can Try it yourself.

Javascript - Browsers Compatibility

It is important to understand the differences between different browsers in order to handle each
in the way it is expected. So it is important to know which browser your Web page is running in.

To get information about the browser your Web page is currently running in, use the built-in
navigator object.

Navigator Properties:

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_42
http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_43

Tutorials Point, Simply Easy Learning

22 | P a g e

There are several Navigator related properties that you can use in your Web page. The following
is a list of the names and descriptions of each:

Property Description

appCodeName This property is a string that contains the code name of the browser, Netscape

for Netscape and Microsoft Internet Explorer for Internet Explorer.

appVersion This property is a string that contains the version of the browser as well as

other useful information such as its language and compatibility.

language This property contains the two-letter abbreviation for the language that is used

by the browser. Netscape only.

mimTypes[] This property is an array that contains all MIME types supported by the client.

Netscape only.

platform[] This property is a string that contains the platform for which the browser was

compiled."Win32" for 32-bit Windows operating systems

plugins[] This property is an array containing all the plug-ins that have been installed on

the client. Netscape only.

userAgent[] This property is a string that contains the code name and version of the

browser. This value is sent to the originating server to identify the client

Navigator Methods:

There are several Navigator-specific methods. Here is a list of their names and descriptions:

Method Description

javaEnabled() This method determines if JavaScript is enabled in the client. If

JavaScript is enabled, this method returns true; otherwise, it returns

false.

plugings.refresh This method makes newly installed plug-ins available and populates

the plugins array with all new plug-in names. Netscape only.

preference(name,value) This method allows a signed script to get and set some Netscape

preferences. If the second parameter is omitted, this method will

return the value of the specified preference; otherwise, it sets the

value. Netscape only.

taintEnabled() This method returns true if data tainting is enabled and false

otherwise.

Tutorials Point, Simply Easy Learning

23 | P a g e

Browser Detection:

There is a simple JavaScript which can be used to find out the name of a browser and then
accordingly an HTML page can be served to the user.

<html>

<head>

<title>Browser Detection Example</title>

</head>

<body>

<script type="text/javascript">

<!--

var userAgent = navigator.userAgent;

var opera = (userAgent.indexOf('Opera') != -1);

var ie = (userAgent.indexOf('MSIE') != -1);

var gecko = (userAgent.indexOf('Gecko') != -1);

var netscape = (userAgent.indexOf('Mozilla') != -1);

var version = navigator.appVersion;

if (opera){

 document.write("Opera based browser");

 // Keep your opera specific URL here.

}else if (gecko){

 document.write("Mozilla based browser");

 // Keep your gecko specific URL here.

}else if (ie){

 document.write("IE based browser");

 // Keep your IE specific URL here.

}else if (netscape){

 document.write("Netscape based browser");

 // Keep your Netscape specific URL here.

}else{

 document.write("Unknown browser");

}

// You can include version to along with any above condition.

document.write("
 Browser version info : " + version);

//-->

</script>

</body>

</html>

To understand it in better way you can Try it yourself.

Javascript - The String Object

The String object let's you work with a series of characters and wraps Javascript's string
primitive data type with a number of helper methods.

Because Javascript automatically converts between string primitives and String objects, you can
call any of the helper methods of the String object on a string primitive.

Syntax:

Creating a String object:

var val = new String(string);

http://www.tutorialspoint.com/cgi-bin/practice.cgi?file=javascript_49

Tutorials Point, Simply Easy Learning

24 | P a g e

The string parameter is series of characters that has been properly encoded.

String Properties:

Here is a list of each property and their description.

Property Description

constructor Returns a reference to the String function that created the object.

length Returns the length of the string.

prototype The prototype property allows you to add properties and methods to an

object.

String Methods

Here is a list of each method and its description.

Method Description

charAt() Returns the character at the specified index.

charCodeAt() Returns a number indicating the Unicode value of the character at the

given index.

concat() Combines the text of two strings and returns a new string.

indexOf() Returns the index within the calling String object of the first occurrence of

the specified value, or -1 if not found.

lastIndexOf() Returns the index within the calling String object of the last occurrence of

the specified value, or -1 if not found.

localeCompare() Returns a number indicating whether a reference string comes before or

after or is the same as the given string in sort order.

match() Used to match a regular expression against a string.

replace() Used to find a match between a regular expression and a string, and to

replace the matched substring with a new substring.

search() Executes the search for a match between a regular expression and a

specified string.

http://www.tutorialspoint.com/javascript/string_constructor.htm
http://www.tutorialspoint.com/javascript/string_length.htm
http://www.tutorialspoint.com/javascript/object_prototype.htm
http://www.tutorialspoint.com/javascript/string_charat.htm
http://www.tutorialspoint.com/javascript/string_charcodeat.htm
http://www.tutorialspoint.com/javascript/string_concat.htm
http://www.tutorialspoint.com/javascript/string_indexof.htm
http://www.tutorialspoint.com/javascript/string_lastindexof.htm
http://www.tutorialspoint.com/javascript/string_localecompare.htm
http://www.tutorialspoint.com/javascript/string_match.htm
http://www.tutorialspoint.com/javascript/string_replace.htm
http://www.tutorialspoint.com/javascript/string_search.htm

Tutorials Point, Simply Easy Learning

25 | P a g e

slice() Extracts a section of a string and returns a new string.

split() Splits a String object into an array of strings by separating the string into

substrings.

substr() Returns the characters in a string beginning at the specified location

through the specified number of characters.

substring() Returns the characters in a string between two indexes into the string.

toLocaleLowerCase() The characters within a string are converted to lower case while

respecting the current locale.

toLocaleUpperCase() The characters within a string are converted to upper case while

respecting the current locale.

toLowerCase() Returns the calling string value converted to lower case.

toString() Returns a string representing the specified object.

toUpperCase() Returns the calling string value converted to uppercase.

valueOf() Returns the primitive value of the specified object.

String HTML wrappers

Here is a list of each method which returns a copy of the string wrapped inside the appropriate
HTML tag.

Method Description

anchor() Creates an HTML anchor that is used as a hypertext target.

big() Creates a string to be displayed in a big font as if it were in a <big> tag.

blink() Creates a string to blink as if it were in a <blink> tag.

bold() Creates a string to be displayed as bold as if it were in a tag.

fixed() Causes a string to be displayed in fixed-pitch font as if it were in a <tt> tag

fontcolor() Causes a string to be displayed in the specified color as if it were in a <font

color="color"> tag.

http://www.tutorialspoint.com/javascript/string_slice.htm
http://www.tutorialspoint.com/javascript/string_split.htm
http://www.tutorialspoint.com/javascript/string_substr.htm
http://www.tutorialspoint.com/javascript/string_substring.htm
http://www.tutorialspoint.com/javascript/string_tolocalelowercase.htm
http://www.tutorialspoint.com/javascript/string_tolocaleuppercase.htm
http://www.tutorialspoint.com/javascript/string_tolowercase.htm
http://www.tutorialspoint.com/javascript/string_tostring.htm
http://www.tutorialspoint.com/javascript/string_touppercase.htm
http://www.tutorialspoint.com/javascript/string_valueof.htm
http://www.tutorialspoint.com/javascript/string_anchor.htm
http://www.tutorialspoint.com/javascript/string_big.htm
http://www.tutorialspoint.com/javascript/string_blink.htm
http://www.tutorialspoint.com/javascript/string_bold.htm
http://www.tutorialspoint.com/javascript/string_fixed.htm
http://www.tutorialspoint.com/javascript/string_fontcolor.htm

Tutorials Point, Simply Easy Learning

26 | P a g e

fontsize() Causes a string to be displayed in the specified font size as if it were in a

 tag.

italics() Causes a string to be italic, as if it were in an <i> tag.

link() Creates an HTML hypertext link that requests another URL.

small() Causes a string to be displayed in a small font, as if it were in a <small>

tag.

strike() Causes a string to be displayed as struck-out text, as if it were in a <strike>

tag.

sub() Causes a string to be displayed as a subscript, as if it were in a <sub> tag

sup() Causes a string to be displayed as a superscript, as if it were in a <sup> tag

Javascript - The Arrays Object

The Array object let's you store multiple values in a single variable.

Syntax:

Creating a Array object:

var fruits = new Array("apple", "orange", "mango");

The Array parameter is a list of strings or integers. When you specify a single numeric

parameter with the Array constructor, you specify the initial length of the array. The maximum
length allowed for an array is 4,294,967,295.

You can create array by simply assigning values as follows:

var fruits = ["apple", "orange", "mango"];

You will use ordinal numbers to access and to set values inside an array as follows:

 fruits[0] is the first element

 fruits[1] is the second element

 fruits[2] is the third element

Array Properties:

Here is a list of each property and their description.

http://www.tutorialspoint.com/javascript/string_fontsize.htm
http://www.tutorialspoint.com/javascript/string_italics.htm
http://www.tutorialspoint.com/javascript/string_link.htm
http://www.tutorialspoint.com/javascript/string_small.htm
http://www.tutorialspoint.com/javascript/string_strike.htm
http://www.tutorialspoint.com/javascript/string_sub.htm
http://www.tutorialspoint.com/javascript/string_sup.htm

Tutorials Point, Simply Easy Learning

27 | P a g e

Property Description

constructor Returns a reference to the array function that created the object.

index The property represents the zero-based index of the match in the string

input This property is only present in arrays created by regular expression

matches.

length Reflects the number of elements in an array.

prototype The prototype property allows you to add properties and methods to an

object.

Array Methods

Here is a list of each method and its description.

Method Description

concat() Returns a new array comprised of this array joined with other array(s)

and/or value(s).

every() Returns true if every element in this array satisfies the provided testing

function.

filter() Creates a new array with all of the elements of this array for which the

provided filtering function returns true.

forEach() Calls a function for each element in the array.

indexOf() Returns the first (least) index of an element within the array equal to the

specified value, or -1 if none is found.

join() Joins all elements of an array into a string.

lastIndexOf() Returns the last (greatest) index of an element within the array equal to the

specified value, or -1 if none is found.

map() Creates a new array with the results of calling a provided function on every

element in this array.

pop() Removes the last element from an array and returns that element.

http://www.tutorialspoint.com/javascript/array_constructor.htm
http://www.tutorialspoint.com/javascript/array_length.htm
http://www.tutorialspoint.com/javascript/object_prototype.htm
http://www.tutorialspoint.com/javascript/array_concat.htm
http://www.tutorialspoint.com/javascript/array_every.htm
http://www.tutorialspoint.com/javascript/array_filter.htm
http://www.tutorialspoint.com/javascript/array_foreach.htm
http://www.tutorialspoint.com/javascript/array_indexof.htm
http://www.tutorialspoint.com/javascript/array_join.htm
http://www.tutorialspoint.com/javascript/array_lastindexof.htm
http://www.tutorialspoint.com/javascript/array_map.htm
http://www.tutorialspoint.com/javascript/array_pop.htm

Tutorials Point, Simply Easy Learning

28 | P a g e

push() Adds one or more elements to the end of an array and returns the new

length of the array.

reduce() Apply a function simultaneously against two values of the array (from left-

to-right) as to reduce it to a single value.

reduceRight() Apply a function simultaneously against two values of the array (from right-

to-left) as to reduce it to a single value.

reverse() Reverses the order of the elements of an array -- the first becomes the last,

and the last becomes the first.

shift() Removes the first element from an array and returns that element.

slice() Extracts a section of an array and returns a new array.

some() Returns true if at least one element in this array satisfies the provided

testing function.

toSource() Represents the source code of an object

sort() Sorts the elements of an array.

splice() Adds and/or removes elements from an array.

toString() Returns a string representing the array and its elements.

unshift() Adds one or more elements to the front of an array and returns the new

length of the array.

JavaScript - The Date Object

The Date object is a datatype built into the JavaScript language. Date objects are created with
the new Date() as shown below.

Once a Date object is created, a number of methods allow you to operate on it. Most methods
simply allow you to get and set the year, month, day, hour, minute, second, and millisecond
fields of the object, using either local time or UTC (universal, or GMT) time.

The ECMAScript standard requires the Date object to be able to represent any date and time, to
millisecond precision, within 100 million days before or after 1/1/1970. This is a range of plus or
minus 273,785 years, so the JavaScript is able to represent date and time till year 275755.

Syntax:

Here are different variant of Date() constructor:

http://www.tutorialspoint.com/javascript/array_push.htm
http://www.tutorialspoint.com/javascript/array_reduce.htm
http://www.tutorialspoint.com/javascript/array_reduceright.htm
http://www.tutorialspoint.com/javascript/array_reverse.htm
http://www.tutorialspoint.com/javascript/array_shift.htm
http://www.tutorialspoint.com/javascript/array_slice.htm
http://www.tutorialspoint.com/javascript/array_some.htm
http://www.tutorialspoint.com/javascript/array_tosource.htm
http://www.tutorialspoint.com/javascript/array_sort.htm
http://www.tutorialspoint.com/javascript/array_splice.htm
http://www.tutorialspoint.com/javascript/array_tostring.htm
http://www.tutorialspoint.com/javascript/array_unshift.htm

Tutorials Point, Simply Easy Learning

29 | P a g e

new Date()

new Date(milliseconds)

new Date(datestring)

new Date(year,month,date[,hour,minute,second,millisecond])

Note: Paramters in the brackets are always optional

Here is the description of the parameters:

 No Argument: With no arguments, the Date() constructor creates a Date object set to

the current date and time.

 milliseconds: When one numeric argument is passed, it is taken as the internal

numeric representation of the date in milliseconds, as returned by the getTime()
method. For example, passing the argument 5000 creates a date that represents five
seconds past midnight on 1/1/70.

 datestring:When one string argument is passed, it is a string representation of a date,

in the format accepted by the Date.parse() method.

 7 agruments: To use the last form of constructor given above, Here is the description
of each argument:

1. year: Integer value representing the year. For compatibility (in order to avoid

the Y2K problem), you should always specify the year in full; use 1998, rather
than 98.

2. month: Integer value representing the month, beginning with 0 for January to
11 for December.

3. date: Integer value representing the day of the month.
4. hour: Integer value representing the hour of the day (24-hour scale).
5. minute: Integer value representing the minute segment of a time reading.
6. second: Integer value representing the second segment of a time reading.
7. millisecond: Integer value representing the millisecond segment of a time

reading.

Date Properties:

Here is a list of each property and their description.

Property Description

constructor Specifies the function that creates an object's prototype.

prototype The prototype property allows you to add properties and methods to an

object.

Date Methods:

Here is a list of each method and its description.

Method Description

Date() Returns today's date and time

getDate() Returns the day of the month for the specified date according to

http://www.tutorialspoint.com/javascript/date_constructor.htm
http://www.tutorialspoint.com/javascript/object_prototype.htm
http://www.tutorialspoint.com/javascript/date_date.htm
http://www.tutorialspoint.com/javascript/date_getdate.htm

Tutorials Point, Simply Easy Learning

30 | P a g e

local time.

getDay() Returns the day of the week for the specified date according to

local time.

getFullYear() Returns the year of the specified date according to local time.

getHours() Returns the hour in the specified date according to local time.

getMilliseconds() Returns the milliseconds in the specified date according to local

time.

getMinutes() Returns the minutes in the specified date according to local time.

getMonth() Returns the month in the specified date according to local time.

getSeconds() Returns the seconds in the specified date according to local time.

getTime() Returns the numeric value of the specified date as the number of

milliseconds since January 1, 1970, 00:00:00 UTC.

getTimezoneOffset() Returns the time-zone offset in minutes for the current locale.

getUTCDate() Returns the day (date) of the month in the specified date

according to universal time.

getUTCDay() Returns the day of the week in the specified date according to

universal time.

getUTCFullYear() Returns the year in the specified date according to universal time.

getUTCHours() Returns the hours in the specified date according to universal

time.

getUTCMilliseconds() Returns the milliseconds in the specified date according to

universal time.

getUTCMinutes() Returns the minutes in the specified date according to universal

time.

getUTCMonth() Returns the month in the specified date according to universal

time.

getUTCSeconds() Returns the seconds in the specified date according to universal

time.

http://www.tutorialspoint.com/javascript/date_getday.htm
http://www.tutorialspoint.com/javascript/date_getfullyear.htm
http://www.tutorialspoint.com/javascript/date_gethours.htm
http://www.tutorialspoint.com/javascript/date_getmilliseconds.htm
http://www.tutorialspoint.com/javascript/date_getminutes.htm
http://www.tutorialspoint.com/javascript/date_getmonth.htm
http://www.tutorialspoint.com/javascript/date_getseconds.htm
http://www.tutorialspoint.com/javascript/date_gettime.htm
http://www.tutorialspoint.com/javascript/date_gettimezoneoffset.htm
http://www.tutorialspoint.com/javascript/date_getutcdate.htm
http://www.tutorialspoint.com/javascript/date_getutcday.htm
http://www.tutorialspoint.com/javascript/date_getutcfullyear.htm
http://www.tutorialspoint.com/javascript/date_getutchours.htm
http://www.tutorialspoint.com/javascript/date_getutcmilliseconds.htm
http://www.tutorialspoint.com/javascript/date_getutcminutes.htm
http://www.tutorialspoint.com/javascript/date_getutcmonth.htm
http://www.tutorialspoint.com/javascript/date_getutcseconds.htm

Tutorials Point, Simply Easy Learning

31 | P a g e

getYear() Deprecated - Returns the year in the specified date according to

local time. Use getFullYear instead.

setDate() Sets the day of the month for a specified date according to local

time.

setFullYear() Sets the full year for a specified date according to local time.

setHours() Sets the hours for a specified date according to local time.

setMilliseconds() Sets the milliseconds for a specified date according to local time.

setMinutes() Sets the minutes for a specified date according to local time.

setMonth() Sets the month for a specified date according to local time.

setSeconds() Sets the seconds for a specified date according to local time.

setTime() Sets the Date object to the time represented by a number of

milliseconds since January 1, 1970, 00:00:00 UTC.

setUTCDate() Sets the day of the month for a specified date according to

universal time.

setUTCFullYear() Sets the full year for a specified date according to universal time.

setUTCHours() Sets the hour for a specified date according to universal time.

setUTCMilliseconds() Sets the milliseconds for a specified date according to universal

time.

setUTCMinutes() Sets the minutes for a specified date according to universal time.

setUTCMonth() Sets the month for a specified date according to universal time.

setUTCSeconds() Sets the seconds for a specified date according to universal time.

setYear() Deprecated - Sets the year for a specified date according to local

time. Use setFullYear instead.

toDateString() Returns the "date" portion of the Date as a human-readable string.

toGMTString() Deprecated - Converts a date to a string, using the Internet GMT

conventions. Use toUTCString instead.

http://www.tutorialspoint.com/javascript/date_getyear.htm
http://www.tutorialspoint.com/javascript/date_setdate.htm
http://www.tutorialspoint.com/javascript/date_setfullyear.htm
http://www.tutorialspoint.com/javascript/date_sethours.htm
http://www.tutorialspoint.com/javascript/date_setmilliseconds.htm
http://www.tutorialspoint.com/javascript/date_setminutes.htm
http://www.tutorialspoint.com/javascript/date_setmonth.htm
http://www.tutorialspoint.com/javascript/date_setseconds.htm
http://www.tutorialspoint.com/javascript/date_settime.htm
http://www.tutorialspoint.com/javascript/date_setutcdate.htm
http://www.tutorialspoint.com/javascript/date_setutcfullyear.htm
http://www.tutorialspoint.com/javascript/date_setutchours.htm
http://www.tutorialspoint.com/javascript/date_setutcmilliseconds.htm
http://www.tutorialspoint.com/javascript/date_setutcminutes.htm
http://www.tutorialspoint.com/javascript/date_setutcmonth.htm
http://www.tutorialspoint.com/javascript/date_setutcseconds.htm
http://www.tutorialspoint.com/javascript/date_setyear.htm
http://www.tutorialspoint.com/javascript/date_todatestring.htm
http://www.tutorialspoint.com/javascript/date_togmtstring.htm

Tutorials Point, Simply Easy Learning

32 | P a g e

toLocaleDateString() Returns the "date" portion of the Date as a string, using the

current locale's conventions.

toLocaleFormat() Converts a date to a string, using a format string.

toLocaleString() Converts a date to a string, using the current locale's conventions.

toLocaleTimeString() Returns the "time" portion of the Date as a string, using the

current locale's conventions.

toSource() Returns a string representing the source for an equivalent Date

object; you can use this value to create a new object.

toString() Returns a string representing the specified Date object.

toTimeString() Returns the "time" portion of the Date as a human-readable string.

toUTCString() Converts a date to a string, using the universal time convention.

valueOf() Returns the primitive value of a Date object.

Date Static Methods:

In addition to the many instance methods listed previously, the Date object also defines two
static methods. These methods are invoked through the Date() constructor itself:

Method Description

Date.parse() Parses a string representation of a date and time and returns the

internal millisecond representation of that date.

Date.UTC() Returns the millisecond representation of the specified UTC date

and time.

Javascript - The Math Object

The math object provides you properties and methods for mathematical constants and
functions.

Unlike the other global objects, Math is not a constructor. All properties and methods of Math
are static and can be called by using Math as an object without creating it.

Thus, you refer to the constant pi as Math.PI and you call the sine function as Math.sin(x),
where x is the method's argument.

Syntax:

http://www.tutorialspoint.com/javascript/date_tolocaledatestring.htm
http://www.tutorialspoint.com/javascript/date_tolocaleformat.htm
http://www.tutorialspoint.com/javascript/date_tolocalestring.htm
http://www.tutorialspoint.com/javascript/date_tolocaletimestring.htm
http://www.tutorialspoint.com/javascript/date_tosource.htm
http://www.tutorialspoint.com/javascript/date_tostring.htm
http://www.tutorialspoint.com/javascript/date_totimestring.htm
http://www.tutorialspoint.com/javascript/date_toutcstring.htm
http://www.tutorialspoint.com/javascript/date_valueof.htm
http://www.tutorialspoint.com/javascript/date_parse.htm
http://www.tutorialspoint.com/javascript/date_utc.htm

Tutorials Point, Simply Easy Learning

33 | P a g e

Here is the simple syntax to call properties and methods of Math.

var pi_val = Math.PI;

var sine_val = Math.sin(30);

Math Properties:

Here is a list of each property and their description.

Property Description

E Euler's constant and the base of natural logarithms, approximately 2.718.

LN2 Natural logarithm of 2, approximately 0.693.

LN10 Natural logarithm of 10, approximately 2.302.

LOG2E Base 2 logarithm of E, approximately 1.442.

LOG10E Base 10 logarithm of E, approximately 0.434.

PI Ratio of the circumference of a circle to its diameter, approximately

3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2, approximately

0.707.

SQRT2 Square root of 2, approximately 1.414.

Math Methods

Here is a list of each method and its description.

Method Description

abs() Returns the absolute value of a number.

acos() Returns the arccosine (in radians) of a number.

asin() Returns the arcsine (in radians) of a number.

atan() Returns the arctangent (in radians) of a number.

atan2() Returns the arctangent of the quotient of its arguments.

http://www.tutorialspoint.com/javascript/math_e.htm
http://www.tutorialspoint.com/javascript/math_ln2.htm
http://www.tutorialspoint.com/javascript/math_ln10.htm
http://www.tutorialspoint.com/javascript/math_log2e.htm
http://www.tutorialspoint.com/javascript/math_log10e.htm
http://www.tutorialspoint.com/javascript/math_pi.htm
http://www.tutorialspoint.com/javascript/math_sqrt1_2.htm
http://www.tutorialspoint.com/javascript/math_sqrt2.htm
http://www.tutorialspoint.com/javascript/math_abs.htm
http://www.tutorialspoint.com/javascript/math_acos.htm
http://www.tutorialspoint.com/javascript/math_asin.htm
http://www.tutorialspoint.com/javascript/math_atan.htm
http://www.tutorialspoint.com/javascript/math_atan2.htm

Tutorials Point, Simply Easy Learning

34 | P a g e

ceil() Returns the smallest integer greater than or equal to a number.

cos() Returns the cosine of a number.

exp() Returns EN, where N is the argument, and E is Euler's constant, the base of

the natural logarithm.

floor() Returns the largest integer less than or equal to a number.

log() Returns the natural logarithm (base E) of a number.

max() Returns the largest of zero or more numbers.

min() Returns the smallest of zero or more numbers.

pow() Returns base to the exponent power, that is, base exponent.

random() Returns a pseudo-random number between 0 and 1.

round() Returns the value of a number rounded to the nearest integer.

sin() Returns the sine of a number.

sqrt() Returns the square root of a number.

tan() Returns the tangent of a number.

toSource() Returns the string "Math".

Regular Expressions and RegExp Object

A regular expression is an object that describes a pattern of characters.

The JavaScript RegExp class represents regular expressions, and both String and RegExp
define methods that use regular expressions to perform powerful pattern-matching and search-
and-replace functions on text.

Syntax:

A regular expression could be defined with the RegExp() constructor like this:

var pattern = new RegExp(pattern, attributes);

or simply

var pattern = /pattern/attributes;

http://www.tutorialspoint.com/javascript/math_ceil.htm
http://www.tutorialspoint.com/javascript/math_cos.htm
http://www.tutorialspoint.com/javascript/math_exp.htm
http://www.tutorialspoint.com/javascript/math_floor.htm
http://www.tutorialspoint.com/javascript/math_log.htm
http://www.tutorialspoint.com/javascript/math_max.htm
http://www.tutorialspoint.com/javascript/math_min.htm
http://www.tutorialspoint.com/javascript/math_pow.htm
http://www.tutorialspoint.com/javascript/math_random.htm
http://www.tutorialspoint.com/javascript/math_round.htm
http://www.tutorialspoint.com/javascript/math_sin.htm
http://www.tutorialspoint.com/javascript/math_sqrt.htm
http://www.tutorialspoint.com/javascript/math_tan.htm
http://www.tutorialspoint.com/javascript/math_tosource.htm

Tutorials Point, Simply Easy Learning

35 | P a g e

Here is the description of the parameters:

 pattern: A string that specifies the pattern of the regular expression or another regular

expression.

 attributes: An optional string containing any of the "g", "i", and "m" attributes that
specify global, case-insensitive, and multiline matches, respectively.

Brackets:

Brackets ([]) have a special meaning when used in the context of regular expressions. They are
used to find a range of characters.

Expression Description

[...] Any one character between the brackets.

[^...] Any one character not between the brackets.

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through lowercase z.

[A-Z] It matches any character from uppercase A through uppercase Z.

[a-Z] It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any decimal

digit ranging from 0 through 3, or the range [b-v] to match any lowercase character ranging
from b through v.

Quantifiers:

The frequency or position of bracketed character sequences and single characters can be

denoted by a special character. Each pecial character having a specific connotation. The +, *, ?,
and $ flags all follow a character sequence.

Expression Description

p+ It matches any string containing at least one p.

p* It matches any string containing zero or more p's.

p? It matches any string containing one or more p's.

p{N} It matches any string containing a sequence of N p's

p{2,3} It matches any string containing a sequence of two or three p's.

Tutorials Point, Simply Easy Learning

36 | P a g e

p{2, } It matches any string containing a sequence of at least two p's.

p$ It matches any string with p at the end of it.

^p It matches any string with p at the beginning of it.

Examples:

Following examples will clear your concepts about matching chracters.

Expression Description

[^a-zA-Z] It matches any string not containing any of the characters ranging from a through

z and A through Z.

p.p It matches any string containing p, followed by any character, in turn followed by

another p.

^.{2}$ It matches any string containing exactly two characters.

<

b>(.*)

It matches any string enclosed within and .

p(hp)* It matches any string containing a p followed by zero or more instances of the

sequence hp.

Literal characters:

Character Description

Alphanumeric Itself

\0 The NUL character (\u0000)

\t Tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

Tutorials Point, Simply Easy Learning

37 | P a g e

\xnn The Latin character specified by the hexadecimal number nn; for example, \x0A

is the same as \n

\uxxxx The Unicode character specified by the hexadecimal number xxxx; for example,

\u0009 is the same as \t

\cX The control character ^X; for example, \cJ is equivalent to the newline character

\n

Metacharacters

A metacharacter is simply an alphabetical character preceded by a backslash that acts to give
the combination a special meaning.

For instance, you can search for large money sums using the '\d' metacharacter:
/([\d]+)000/, Here \d will search for any string of numerical character.

Following is the list of metacharacters which can be used in PERL Style Regular Expressions.

Character Description

. a single character

\s a whitespace character (space, tab, newline)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[\b] a literal backspace (special case).

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given set

(foo|bar|baz) matches any of the alternatives specified

Modifiers

Several modifiers are available that can make your work with regexps much easier, like case
sensitivity, searching in multiple lines etc.

Modifier Description

i Perform case-insensitive matching.

m Specifies that if the string has newline or carriage return characters, the ^ and $

operators will now match against a newline boundary, instead of a string boundary

g Perform a global matchthat is, find all matches rather than stopping after the first

match.

RegExp Properties:

Here is a list of each property and their description.

Tutorials Point, Simply Easy Learning

38 | P a g e

Property Description

constructor Specifies the function that creates an object's prototype.

global Specifies if the "g" modifier is set.

ignoreCase Specifies if the "i" modifier is set.

lastIndex The index at which to start the next match.

multiline Specifies if the "m" modifier is set.

source The text of the pattern.

RegExp Methods:

Here is a list of each method and its description.

Method Description

exec() Executes a search for a match in its string parameter.

test() Tests for a match in its string parameter.

toSource() Returns an object literal representing the specified object; you can use this

value to create a new object.

toString() Returns a string representing the specified object.

Further Detail:

Refer to the link http://www.tutorialspoint.com/javascript

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

http://www.tutorialspoint.com/javascript/regexp_constructor.htm
http://www.tutorialspoint.com/javascript/regexp_global.htm
http://www.tutorialspoint.com/javascript/regexp_ignorecase.htm
http://www.tutorialspoint.com/javascript/regexp_lastindex.htm
http://www.tutorialspoint.com/javascript/regexp_multiline.htm
http://www.tutorialspoint.com/javascript/regexp_source.htm
http://www.tutorialspoint.com/javascript/regexp_exec.htm
http://www.tutorialspoint.com/javascript/regexp_test.htm
http://www.tutorialspoint.com/javascript/regexp_tosource.htm
http://www.tutorialspoint.com/javascript/regexp_tostring.htm
http://www.tutorialspoint.com/javascript
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm

Tutorials Point, Simply Easy Learning

39 | P a g e

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn SQL

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

 Learn RADIUS

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

