Let's Build a Compiler!

Jack W. Crenshaw

Let's Build a Compiler!

Jack W. Crenshaw
Copyright © 1988, 1989, 1990, 1994, 1995 Jack W.Crenshaw, Ph.D.

This document is reformated version of Jack “Let's Build a Compiler!”

Table of Contents

NOLE FFOM EQITOr ...oouieiitii e et e e e e e e e viii
P e B .. e iX
I g o (1 1 o o PP 1
TRECIAAIE ... e 3
A o= o a1 = o 5
LT 11110 RS = 11 (o [5
SINGIE DIGITS ..ttt 5
BiNary EXPrESSIONScieeiiieieii ettt 6
GENENAl EXPrESSIONS ...ttt ettt e 8
USING ThE SEACK ...evieeee e e e e e e e 8
Multiplication @nd DIVISIONc.uuiiiiiiii e e e e e e e e e eaes 9
PArENtNESES ..ot e 11
UNGIY IMINUS ettt e et e et e e e et e e eaba e eeees 11
A Word About OptimiZationocceeueiiiiiie e 12
3. MOPE EXPIESSIONS ...ttt ettt ettt ettt e eaaas 15
VaTADIES ... e 15
FUNCEIONS ..ot e et e e e e et e e e e et e e e eeta e e e entenaeeees 16
More on Error HandlinNgooveeiiiiii e e e e e 17
ASSIGNMENE SEAEEMENTS ...eieii e 18
MUIi-CharaCter TOKENSciiii e 19
WHITE SPACE ... ettt et e e a e e e e 20
L1 0] [PP PP 26
LI L= L1 o= (= S 27
A Little PhilOSOPRYeeie e 30
LI @] g 11 0] I @0 1S o 34
T PlaN <. e 34
SOME GFOUNOWOIK ...ttt e et e et e eaa e eees 35
THE T SEAIEMENL ...t et e e eeaes 37
The WHILE SEALEMENEeeeeiiieieiiii et e e e e e e s 40
ThE LOOP SEAEEMENTuiieiiiiiee ettt e e et e et e e e ae s 411
REPEE - UNLIL ..o 42
THEFOR LOOP ettt ettt ettt ettt e et e e et e eeena s 43
The DO SEAEMENE ...ttt e e e e e e e et e e e e e eanaaeees 44
The BREAK SEEEMENTeuiiiiii et ean e eees 45
1000 Tex 1= Lo o [PP 48
6. BOOIEEN EXPIESSIONSevvuiiieieeii e et e e s e e e e e e e e e e e e e e e e et e e e e et e e e e e e eeannas 53
T PIaN e e 53
I (SY € =100 P 53
RE 0P .ttt 54
FiXiNg The GramIMarooouiiiiii e e e e e e e e e e een 56
L= = PP 57
Merging With Control CONSLIUCESveeeieei e e e e e e e e e e e 64
AdAiNG ASSIGNIMENES ...ttt e et eeeaa s 64
7. LeXICal SCANMNING ...ceeetie ettt ettt ettt et e et e e e e e et et e e e ena e e eenans 67
LeXiCal SCANNINGcuuiitiii et e et e et e et e e eb e ean s 67
State Machines and AITEMNELIVESooiiiiiii e 68
Some EXPeriments [N SCANNINGuuviieieiiieee e e e e e e e e eees 69
R AT T o o 7= o 70
StAE MACHINES ..oeeiiii e 71
LS Y] T =S PP 71
10 01< = (0] £ TN PP UP TP 73
Lists, Commas And CommMaNd LiNESccuuiiiuiiiiiiiiiiieeie e 74
LT 1110 1 =111 74

Let's Build a Compiler!

R (a0 AN O = - (= P 78
Distributed vs Centralized SCAaNNENSocoeuuiiieiiiiiie e 80
Merging SCaNNEr AN ParSEriiiiiiii e 81
100 aTox 111 o] o [PP 94

8. A Little PhilOSOPNY ... 95
TheROBA HOME ..o e 95

WHY ST SO SIMPIE? e e e e e s 96
10000 Tox 11 o] o [USSP 100

Q. A TOP VIBIW ettt e et e ettt e e e et a e 101
ThEe TOP LEVEL ...t 101

The StruCture Of PasCalc.uiiiiiiii e 102
(=S 1T To 1 O | PP 103

(D= o =T 0] L ORI 104

THE SITUCIUIE OF € ..o eeaaas 106

10. INtrodUCING "TINY M e ettt e e 111
GELEING SEAMEH ...eeee et et 111

D] o P 0] PP PT 114
Declarations And SYmbBOIScouiiiii 115
INIETIAIIZENS ..o 116

The SymbBOol Table ..o e e 117
EXECULabIe STAEMENESiveiii i 118
BOOIBANS .. oeeiiii i 123
CONEIOl SEIUCIUIES ... ettt ettt e et e e e e e et e e e e e e eennas 127
(o= RS o o 1 oo 129
Multi-Character Variable NamESuiviiiiiiieie e 134

Ko = = o o 135
INPUE/OULPUL .ttt e et e e et e e e aaa s 137
100 aTox 111 T o [TRPTPRN 139

11, Lexical SCaN REVISITEH ...uiiiiiii et e e e et e e e s 153
BaCKgroUndiii 153

THhEe PrODIEM .. 154

THE SOIULION ... et e eeaeas 155
Fixing Up The COMPITEY «...uuniiiii e 158
100 aTox 111 o] o [TPTPRN 159
Y = = = 0 PP 173
SEMICOIONS ...ttt et e e e e e e an s 173
1= o (oS o 174

Dealing With SEMICOIONScvveiiiiiiii e e 175

A COMPIOMISE ettt ettt et et e et e e et e eeeaaa s 177

L] 11111 1 PPN 178
Single-Character DeliMIters ... 178
Multi-Character DElIMITErSc..iiiiiiii e 180

ONE-Sided COMIMENES ...eevtiieiiiiiiee et e et e e e e e et e e et eeeere e eeees 181

10000 Tox U1 Lo o IO 181

L3 PrOCEAUIESceniiiiiieee e e e et e e e e e e e e e et e et eeans 183
ONE LESt DIGIESSION ...ceeiiieeiiii ettt ettt e et e et e e e ene e e e ena e eeees 183

TRE BASICS ...t e 184

A BasiSFOr EXPEITMENTS ..ot 184
Declaring A PrOCEAUIEccveiiiici et e e e e e e 190
Calling ThE PrOCEAUIEieveciii e e e e e e e e e anas 193
PaSSING ParamMELErS ... 195

The Semantics Of Parameterscciuiiiiiii e 197
PaSS-BY-VAIUEceuiiiiiiii et 199
WHE'SWIONG? .o e e e e e e ees 203
Call-BY-REFEIENCE ...uiiivciiieii et e e e e eees 207

LOCE VATADIES ... 208
(00 oTe: 111 T o [PSP PTEPPPPN 211

R Y o= PP PPTI 213

Let's Build a Compiler!

What's COMING NEXE? ...oiiniiii e e e e e e e e e e e eaes 213
The SymbBOol Tableceeee e 214
AdAiNG ENLIES .eeieieii e 218
AlTOCATING SLOrAOE ... ettt ettt e e e s 219
Do g o T Y o PR PT 219
=T o 1= £ 220
The Coward'SWay OULcc.uiiiiiieiie e ee e e e e e e e e e e e e e e e eaanaees 224
A More Reasonable SOIULIONuiiiiiiiiii e 225
Literal AFQUMENESuuuiiiii ettt e e e e e e aa s 227
AditiVE EXPrESSIONSoiieiiiieeeei ettt 228
Why SO Many ProCeAUIES?ceuiiiieii et 231
MUt PliCLIVE EXPIESSIONSieieiiieeei et et e e e aenas 231
0 T o= 1 o o 232
DRV 1= o] o [O SPPT 234
Brginning TOWINA DOWNcooiuiiiiiiii e 236
TO CoErce Or NOt TO COBITE ...ttt e e e ees 236
16700 o 11 o] o [P P 238
15.BaCK TO TREFULUIE ...ttt et e e e e 240
NeW Starts, Old DIFECHIONScevivie et e e 240
S 110 1 Y= 241
THhe INPUL UNIT .ot eeaans 242
THhe OUEPUL UNIT ...ttt eeeeas 243
TREEITOr UNIT .. et e e e e 245
SCANNING ANA ParSiNgvvniiiiei e e e e s 246
The SCANNEr UNIT ...t e et e eeeaeas 248
DECISIONS, DECISIONSciiiiieee et e ettt e et e e et e e e et e e e eaan s 249
PAISING ettt 250
e (= 1= 10T TP 253
16. UNIt CONSLIUCTION ...ttt e ettt et et e et et e et e et e e ean e e ean e aeaeaennaes 254
TS Y O =SS o 255
FIEShiNg OUL THE ParSercvuiiiici e e e e e e 257
LI IS AN a0 o] =SS T P 258
ASSIONMENES .ottt et e et e e et e e e 261
BOOIEANS ...t e aaas 262
BOOIEAN AND ...t e aa s 265

Vi

List of Examples

O O = o | 3
28 T S 1S VX O L 81
T2, KIS S e e s 87
JO.L TINY VEISION L0 oo e e et e e e e e e e e e ans 139
I O I 1 N D Y/= £ o T 0 TR 160

Vii

Note From Editor

Thisis reformated version of Jack Crenshaw original work “Let's Build a Compiler!”. | mangle the ori-
gina text using DTD DocBook XML tags and format it with the help of XSLT and Jade.

Jack name the parts Installments. Because of DocBook crodslink | rename it to chapters to be consistent
with DocBook.

| rename Installments to Chapters, to be consistent with DocBook. And publish it as a book.
All upercase WORDS are converted to words, and all _WORDS _are converted to words.

| carefully format this document using DocBook. Now it 1ook like a book and I'm able
to create PostScript file. So lets have alot fun reading it.
—Radek Hnilica<r adek@ni | i ca. cz>

http://www.embedded.com/staff/jackc.htm <j cr ens@art hl i nk. net >
Jack Crenshaw column [http://www.renewamerica.us/columns/crenshaw]
So you want to build a compiler in Euphoria. [http://ka9qlq.tripod.com/Euphorial]
The Compiler Desigh and Implementation [http://www.etek.chal mers.se/~e8johan/compiler/] by Jo-
han E. Thelin
* Sergei Kostygov [http://kostigoff.net/]
ol

viii

http://www.embedded.com/staff/jackc.htm
http://www.renewamerica.us/columns/crenshaw
http://ka9qlq.tripod.com/Euphoria/
http://www.etek.chalmers.se/~e8johan/compiler/
http://kostigoff.net/

Preface

$Header: /home/radek/cvs/lets build_a_compiler/preface.xml,v 1.3 2004/08/21 09:57:04 radek Exp $
preface

$ psselect -p1-8 lets_build_a_compiler.ps|foldprn -s8

presbyopic:remark$ psselect -p1-9 lets_build_a_compiler.psifoldprn -s12

Compared to original 2004-08-18.

Compared to original 2004-08-19. OK.

Thisfile contains all of the installments of Jack Crenshaw's tutorial on compiler construction, including
the new Chapter 15, Back To The Future. The intended audience is those folks who are not computer
scientists, but who enjoy computing and have always wanted to know how compilers work. A lot of
compiler theory has been left out, but the practical issues are covered. By the time you have completed
the series, you should be able to design and build your own working compiler. It will not be the world's
best, nor will it put out incredibly tight code. Your product will probably never put Borland or Mi-
croSoft out of business. But it will work, and it will be yours.

A word about the file format: The files were originally created using Borland's DOS editor, Sprint.
Sprint could write to atext file only if you formatted the file to go to the selected printer. | used the most
common printer | could think of, the Epson MX-80, but even then the files ended up with printer control
sequences at the beginning and end of each page.

To bring the files up to date and get myself positioned to continue the series, | recently (1994) converted
all the files to work with Microsoft Word for Windows™. Unlike Sprint, Word allows you to write the
file as a DOS text file. Unfortunately, this gave me a new problem, because when Word is writing to a
text file, it doesn't write hard page breaks or page numbers. In other words, in six years we've gone from
a file with page breaks and page numbers, but embedded escape sequences, to files with no embedded
escape sequences but no page breaks or page numbers. Isn't progress wonderful ?

Of coursg, it's possible for me to insert the page numbers as straight text, rather than asking the editor to
do it for me. But since Word won't allow me to write page breaks to the file, we would end up with files
with page numbers that may or may not fall at the ends of the pages, depending on your editor and your
printer. It seems to me that amost every file I've ever downloaded from CompuServe or BBS's that had
such page numbering was incompatible with my printer, and gave me pages that were one line short or
one line long, with the page numbers consequently walking up the page.

So perhaps this new format is, after all, the safest one for genera distribution. The files as they exist will
look just fineif read into any text editor capable of reading DOS text files. Since most editors these days
include rather sophisticated word processing capabilities, you should be able to get your editor to pagin-
ate for you, prior to printing.

| hope you like the tutorials. Much thought went into them.
—Jack W. Crenshaw, CompuServe 72325,1327

Chapter 1. Introduction

Installment published 24th July 1988

$Header: /home/radek/cve/lets build a compiler/introduction.xml,v 1.4 2004/08/21 09:57:04 radek
Exp $

chapter id="introduction"

Published on 24 July 1988

$ psselect -p9-12 lets_build_a_compiler.ps| foldprn -s4

presbyopic:remark$ psselect -p10-15 lets build_a compiler.ps| foldprn -s8

Compared to original 2004-08-19. OK.

This series of articles is a tutorial on the theory and practice of developing language parsers and com-
pilers. Before we are finished, we will have covered every aspect of compiler construction, designed a
new programming language, and built aworking compiler.

Though | am not a computer scientist by education (my Ph.D. isin a different field, Physics), | have
been interested in compilers for many years. | have bought and tried to digest the contents of virtually
every book on the subject ever written. | don't mind telling you that it was slow going. Compiler texts
are written for Computer Science majors, and are tough sledding for the rest of us. But over the years a
bit of it began to seep in. What really caused it to jell was when | began to branch off on my own and
begin to try things on my own computer. Now | plan to share with you what | have learned. At the end
of this series you will by no means be a computer scientist, nor will you know all the esoterics of com-
piler theory. | intend to completely ignore the more theoretical aspects of the subject. What you will
know is all the practical aspects that one needs to know to build aworking system.

Thisis a“learn-by-doing” series. In the course of the series | will be performing experiments on a com-
puter. You will be expected to follow along, repeating the experiments that | do, and performing some
on your own. | will be using Turbo Pascal 4.0 on a PC clone. | will periodically insert examples written
in TP. These will be executable code, which you will be expected to copy into your own computer and
run. If you don't have a copy of Turbo, you will be severely limited in how well you will be able to fol-
low what's going on. If you don't have a copy, | urge you to get one. After all, it's an excellent product,
good for many other uses!

Some articles on compilers show you examples, or show you (as in the case of Small-C) a finished
product, which you can then copy and use without a whole lot of understanding of how it works. | hope
to do much more than that. | hope to teach you how the things get done, so that you can go off on your
own and not only reproduce what | have done, but improve on it.

This is admittedly an ambitious undertaking, and it won't be done in one page. | expect to do it in the
course of a number of articles. Each article will cover a single aspect of compiler theory, and will pretty
much stand alone. If all you're interested in at a given time is one aspect, then you need to look only at
that one article. Each article will be uploaded as it is complete, so you will have to wait for the last one
before you can consider yourself finished. Please be patient.

The average text on compiler theory covers alot of ground that we won't be covering here. The typical
seguenceis:

» Anintroductory chapter describing what a compiler is.

» A chapter or two on syntax equations, using Backus-Naur Form (BNF).

» A chapter or two on lexical scanning, with emphasis on deterministic and non-deterministic finite
automata.

e Severa chapters on parsing theory, beginning with top-down recursive descent, and ending with
LALR parsers.

» A chapter on intermediate languages, with emphasis on P-code and similar reverse polish representa-
tions.

» Many chapters on aternative ways to handle subroutines and parameter passing, type declarations,
and such.

Introduction

e A chapter toward the end on code generation, usually for some imaginary CPU with a ssimple in-
struction set. Most readers (and in fact, most college classes) never make it this far.
» A fina chapter or two on optimization. This chapter often goes unread, too.

I'll be taking a much different approach in this series. To begin with, | won't dwell long on options. I'll
be giving you a way that works. If you want to explore options, well and good ... | encourage you to do
so ... but I'll be sticking to what | know. | also will skip over most of the theory that puts people to
deep. Don't get me wrong: | don't belittle the theory, and it's vitally important when it comes to dealing
with the more tricky parts of a given language. But | believe in putting first things first. Here well be
dealing with the 95% of compiler techniques that don't need alot of theory to handle.

| also will discuss only one approach to parsing: top-down, recursive descent parsing, which is the only
technique that's at all amenable to hand-crafting a compiler. The other approaches are only useful if you
have atool like YACC, and aso don't care how much memory space the final product uses.

| also take a page from the work of Ron Cain, the author of the origina Small C. Whereas aimost all
other compiler authors have historically used an intermediate language like P-code and divided the com-
piler into two parts (a front end that produces P-code, and a back end that processes P-code to produce
executable object code), Ron showed us that it is a straightforward matter to make a compiler directly
produce executable object code, in the form of assembler language statements. The code will not be the
world's tightest code ... producing optimized code is a much more difficult job. But it will work, and
work reasonably well. Just so that | don't leave you with the impression that our end product will be
worthless, | do intend to show you how to “soup up” the compiler with some optimization.

Finally, I'll be using some tricks that I've found to be most helpful in letting me understand what's going
on without wading through alot of boiler plate. Chief among these is the use of single-character tokens,
with no embedded spaces, for the early design work. | figure that if | can get a parser to recognize and
deal with I-T-L, | can get it to do the same with IF-THEN-ELSE. And | can. In the second “lesson”, I'll
show you just how easy it is to extend a simple parser to handle tokens of arbitrary length. As another
trick, I completely ignore file I/O, figuring that if | can read source from the keyboard and output object
to the screen, | can also do it from/to disk files. Experience has proven that once a translator is working
correctly, it's a straightforward matter to redirect the I/O to files. The last trick is that | make no attempt
to do error correction/recovery. The programs we'll be building will recognize errors, and will not crash,
but they will simply stop on the first error ... just like good ol' Turbo does. There will be other tricks
that you'll see asyou go. Most of them can't be found in any compiler textbook, but they work.

FIXME: Doplnit/vepsat odkazy (xref,link) na ostatni kapitoly.

A word about style and efficiency. Asyou will see, | tend to write programsin very small, easily under-
stood pieces. None of the procedures we'll be working with will be more than about 15-20 lines long.
I'm afervent devotee of the KISS (Keep It Simple, Sidney) school of software development. | try to nev-
er do something tricky or complex, when something simple will do. Inefficient? Perhaps, but you'll like
the results. As Brian Kernighan has said, first make it run, then make it run fast. If, later on, you want to
go back and tighten up the code in one of our products, you'll be able to do so, since the code will be
quite understandable. If you do so, however, | urge you to wait until the program is doing everything
you want it to.

| aso have a tendency to delay building a module until | discover that | need it. Trying to anticipate
every possible future contingency can drive you crazy, and you'll generally guess wrong anyway. In this
modern day of screen editors and fast compilers, | don't hesitate to change a module when | feel | need a
more powerful one. Until then, I'll write only what | need.

One final cavesat: One of the principles we'll be sticking to here is that we don't fool around with P-code
or imaginary CPUs, but that we will start out on day one producing working, executable object code, at
least in the form of assembler language source. However, you may not like my choice of assembler lan-
guage ... it's 68000 code, which is what works on my system (under SK*DOS™). | think you'll find,
though, that the tranglation to any other CPU such as the 80x86 will be quite obvious, though, so | don't
see a problem here. In fact, | hope someone out there who knows the '86 language better than | do will
offer us the equivalent object code fragments as we need them.

Introduction

The Cradle

section id="cradle" xreflabel="Cradl€e"

Every program needs some boiler plate ... 1/O routines, error message routines, etc. The programs we
develop here will be no exceptions. I've tried to hold this stuff to an absolute minimum, however, so that
we can concentrate on the important stuff without losing it among the trees. The code given below rep-
resents about the minimum that we need to get anything done. It consists of some I/O routines, an error-
handling routine and a skeleton, null main program. | call it our cradle. As we develop other routines,
welll add them to the cradle, and add the calls to them as we need to. Make a copy of the cradle and save
it, because we'll be using it more than once.

There are many different ways to organize the scanning activities of a parser. In Unix systems, authors
tend to use get ¢ and unget c. I've had very good luck with the approach shown here, whichisto usea
single, global, lookahead character. Part of the initialization procedure (the only part, so far!) serves to
“prime the pump” by reading the first character from the input stream. No other special techniques are
required with Turbo 4.0 ... each successive call to Get Char will read the next character in the stream.

Example1.1. Cradle

program Cr adl e;

{ Constant Declarations }
const TAB = I

{ Variable Declarations }
var Look: char; { Lookahead Character }

{ Read New Character From Input Stream}
procedure Get Char;

begi n

Read(Look) ;

end;

{ Report an Error }
procedure Error(s: string);
begi n
WitelLn;
WiteLn("G 'Error: ', s, '.');
end;

{ Report Error and Halt }
procedure Abort(s: string);
begi n

Error(s);

Hal t;
end;

{ Report \What WAs Expected }
procedure Expected(s: string);
begi n

Abort(s + ' Expected');
end;

{ Match a Specific Input Character }
procedure Match(x: char);
begi n

if Look = x then GetChar
el se Expected('"'" + x +"""");
end;

Introduction

{ Recogni ze an Al pha Character }
function IsAl pha(c: char): bool ean;
begi n

| sAl pha : = upcase(c) in['A.."Z];
end;

{ Recognize a Decimal Digit
function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9]7;

end;

{ Get an ldentifier }

function GetNane: char;

begi n
if not IsAl pha(Look) then Expected(' Nanme');
Get Nane : = UpCase(Look);

CGet Char;

end;

{ Get a Number }

function Get Num char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;

Cet Char

end;

{ Qutput a String with Tab }
procedure Emt(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }
procedure EmitLn(s: string);
begi n
Emt(s);
WiteLn;
end;

{ Initialize }
procedure Init;
begi n

Get Char

end;

{ Main Program}
begi n

Init;
end.

That's it for this introduction. Copy the code above into TP and compile it. Make sure that it compiles
and runs correctly. Then proceed to the first lesson, which is on expression parsing.

Chapter 2. Expression Parsing

Installment published 24th July 1988.

$Header: /home/radek/cvs/lets build a compiler/ch-expression-parsing.xml,v 1.5 2004/08/22 09:31:10
radek Exp $

chapter id="expression-parsing"

Published on 24 July 1988

$ psselect -p13-23 lets build_a_compiler.ps| foldprn -s12

presbyopic:remark$ psselect -p16-28 lets build_a _compiler.ps| foldprn -s16

Getting Started

Compared to original 2004-08-21. OK.

If you've read the introduction document to this series, you will already know what we're about. You
will also have copied the cradle software into your Turbo Pascal system, and have compiled it. So you
should be ready to go.

The purpose of this article is for us to learn how to parse and translate mathematical expressions. What
we would like to see as output is a series of assembler-language statements that perform the desired ac-
tions. For purposes of definition, an expression is the right-hand side of an equation, asin

X =2*y + 3/(4*2)

In the early going, I'll be taking thingsin very small steps. That's so that the beginners among you won't
get totally lost. There are also some very good lessons to be learned early on, that will serve us well
later. For the more experienced readers: bear with me. We'll get rolling soon enough.

Single Digits

Compared to original 2004-08-21. OK.

In keeping with the whole theme of this series (KISS, remember?), let's start with the absolutely most
simple case we can think of. That, to me, is an expression consisting of asingle digit.

Before starting to code, make sure you have a baseline copy of the cradle that | gave last time. We'll be
using it again for other experiments. Then add this code:

{ Parse and Translate a Math Expression }
procedure Expression;

begi n

EmtLn(' MOVE #' + GetNum + ', D0")

end;

And add the line “Expr essi on; ” to the main program so that it reads:
begi n

Init;

Expr essi on;
end.

Now run the program. Try any single-digit number as input. Y ou should get a single line of assembler-
language output. Now try any other character as input, and you'll see that the parser properly reports an
error.

Congratulations! Y ou have just written aworking translator!

OK, | grant you that it's pretty limited. But don't brush it off too lightly. Thislittle “compiler” does, on a

5

Expression Parsing

very limited scale, exactly what any larger compiler does: it correctly recognizes legal statementsin the
input “language” that we have defined for it, and it produces correct, executable assembler code, suitable
for assembling into object format. Just as importantly, it correctly recognizes statements that are not leg-
al, and gives a meaningful error message. Who could ask for more? As we expand our parser, we'd bet-
ter make sure those two characteristics aways hold true.

There are some other features of this tiny program worth mentioning. First, you can see that we don't
separate code generation from parsing ... as soon as the parser knows what we want done, it generates
the object code directly. In areal compiler, of course, the reads in Get Char would be from a disk file,
and the writes to another disk file, but this way is much easier to deal with while we're experimenting.

Also note that an expression must leave a result somewhere. I've chosen the 68000 register DO. | could
have made some other choices, but this one makes sense.

Binary Expressions

Compared to original 2004-08-21. OK.

Now that we have that under our belt, let's branch out a bit. Admittedly, an “expression” consisting of
only one character is not going to meet our needs for long, so let's see what we can do to extend it. Sup-
pose we want to handle expressions of the form:

1+2

or

4-3

or, in general,

<term> +/- <term>

Note
That's a bit of Backus-Naur Form, or BNF.

To do this we need a procedure that recognizes a term and leaves its result somewhere, and another that
recognizes and distinguishes between a + and a - and generates the appropriate code. But if Expr es-
si on is going to leave its result in DO, where should Ter mleave its result? Answer: the same place.
WEe're going to have to save the first result of Ter msomewhere before we get the next one.

OK, basicaly what we want to do is have procedure Ter mdo what Expr essi on was doing before. So
just rename procedure Expr essi on as Ter m and enter the following new version of Expr essi on:

{ Parse and Transl ate an Expression }
procedure Expression;
begi n

Term

Em tLn(' MOVE DO, D1');

case Look of

"+ Add;
'-': Subtract;
el se Expected(' Addop');

end;
end;

Next, just above Expr essi on enter these two procedures:

Expression Parsing

{ Recogni ze and Transl ate an Add }
procedur e Add;
begi n
Match(' +');
Term
Em tLn(' ADD D1, DO');
end;

{ Recognize and Translate a Subtract }
procedure Subtract;
begi n
Match('-");
Term
Em tLn(' SUB D1, DO');
end;

When you're finished with that, the order of the routines should be:

1. Term(Theold Expressi on)
2. Add

3. Subtract

4. Expression

Now run the program. Try any combination you can think of of two single digits, separated by a+ or a-.
You should get a series of four assembler-language instructions out of each run. Now try some expres-
sions with deliberate errorsin them. Does the parser catch the errors?

Take alook at the object code generated. There are two observations we can make. First, the code gener-
ated is not what we would write ourselves. The sequence

MOVE #n, DO
MOVE DO, D1

isinefficient. If we were writing this code by hand, we would probably just load the data directly to D1.

There is a message here: code generated by our parser is less efficient than the code we would write by
hand. Get used to it. That's going to be true throughout this series. It's true of all compilers to some ex-
tent. Computer scientists have devoted whole lifetimes to the issue of code optimization, and there are
indeed things that can be done to improve the quality of code output. Some compilers do quite well, but
there is a heavy price to pay in complexity, and it's alosing battle anyway ... there will probably never
come a time when a good assembler-language programmer can't out-program a compiler. Before this
session isover, I'll briefly mention some ways that we can do a little optimization, just to show you that
we can indeed improve things without too much trouble. But remember, we're here to learn, not to see
how tight we can make the object code. For now, and really throughout this series of articles, well studi-
ously ignore optimization and concentrate on getting out code that works.

Speaking of which: ours doesn't! The code is wrong! As things are working now, the subtraction pro-
cess subtracts D1 (which has the first argument in it) from DO (which has the second). That's the wrong
way, so we end up with the wrong sign for the result. So let's fix up procedure Subt r act with asign-
changer, so that it reads

{ Recogni ze and Translate a Subtract }
procedure Subtract;
begi n
Match('-');
Term
EnmitLn(' SUB D1, D0');
EmitLn(' NEG DO');
end;

Expression Parsing

Now our code is even less efficient, but at least it gives the right answer! Unfortunately, the rules that
give the meaning of math expressions require that the terms in an expression come out in an inconveni-
ent order for us. Again, thisisjust one of those facts of life you learn to live with. This one will come
back to haunt us when we get to division.

OK, at this point we have a parser that can recognize the sum or difference of two digits. Earlier, we
could only recognize a single digit. But real expressions can have either form (or an infinity of others).
For kicks, go back and run the program with the single input line.

1
Didn't work, did it? And why should it? We just finished telling our parser that the only kinds of expres-

sions that are legal are those with two terms. We must rewrite procedure Expression to be a lot more
broadminded, and this is where things start to take the shape of areal parser.

General Expressions

Compared to original 2004-08-21. OK.

In the real world, an expression can consist of one or more terms, separated by “addops’ (+ or -). In
BNF, thisiswritten

<expression> ::= <ternr [<addop> <ternp]*
We can accomodate this definition of an expression with the addition of a simple loop to procedure Ex-
pr ession:

{ Parse and Transl ate an Expression }
procedure Expression;

begi n
Term
while Look in['+', '-'] do begin

Em tLn(' MOVE DO, D1');
case Look of

"+ Add;
'-': Subtract;
el se Expected(' Addop');
end;
end;
end;

Now we're getting somewhere! This version handles any number of terms, and it only cost us two extra
lines of code. Aswe go on, you'll discover that thisis characteristic of top-down parsers ... it only takes
a few lines of code to accomodate extensions to the language. That's what makes our incremental ap-
proach possible. Notice, too, how well the code of procedure Expr essi on matches the BNF defini-
tion. That, too, is characteristic of the method. As you get proficient in the approach, you'll find that you
can turn BNF into parser code just about as fast as you can type!

OK, compile the new version of our parser, and give it atry. As usual, verify that the “compiler” can
handle any legal expression, and will give a meaningful error message for an illegal one. Neat, eh? You
might note that in our test version, any error message comes out sort of buried in whatever code had
already been generated. But remember, that's just because we are using the CRT as our “output file” for
this series of experiments. In a production version, the two outputs would be separated ... one to the out-
put file, and one to the screen.

Using the Stack

Expression Parsing

Compared to original 2004-08-21. OK.

At this point I'm going to violate my rule that we don't introduce any complexity until it's absolutely ne-
cessary, long enough to point out a problem with the code we're generating. As things stand now, the
parser uses DO for the “primary” register, and D1 as a place to store the partial sum. That works fine for
now, because as long as we deal with only the “addops’ + and -, any new term can be added in as soon
asitisfound. But in general that isn't true. Consider, for example, the expression

1+(2-(3+(4-5)))

If we put the'1" in D1, where do we put the '2'? Since a general expression can have any degree of com-
plexity, we're going to run out of registers fast!

Not mention, that some processors haven't enough register for simpler expression than written above.

Fortunately, there's a simple solution. Like every modern microprocessor, the 68000 has a stack, which
is the perfect place to save a variable number of items. So instead of moving the term in DO to D1, let's
just push it onto the stack. For the benefit of those unfamiliar with 68000 assembler language, a push is
written - (SP) and apop, (SP) +.
So let's changethe Emi t Ln in Expr essi on to read:

EmtLn(' MOVE DO, -(SP)");
and thetwo linesin Add and Subt r act to

Em tLn(' ADD (SP)+, DO")
and

EmtLn(' SUB (SP)+, DO")

respectively. Now try the parser again and make sure we haven't broken it.

Once again, the generated code is less efficient than before, but it's a necessary step, as you'll see.

Multiplication and Division

Compared to original 2004-08-21. OK.

Now let's get down to some really serious business. Asyou all know, there are other math operators than
“addops’ ... expressions can also have multiply and divide operations. Y ou also know that there is an
implied operator precedence, or hierarchy, associated with expressions, so that in an expression like
2+3%4

we know that we're supposed to multiply first, then add. (See why we needed the stack?)

In the early days of compiler technology, people used some rather complex techniques to insure that the
operator precedence rules were obeyed. It turns out, though, that none of this is necessary ... the rules
can be accommodated quite nicely by our top-down parsing technique. Up till now, the only form that
we've considered for aterm is that of asingle decimal digit.

More generally, we can define aterm as a product of factors; i.e.,

<termr ::= <factor> [<nmulop> <factor]*

What is afactor? For now, it'swhat aterm used to be ... asingle digit.

Notice the symmetry: aterm has the same form as an expression. As a matter of fact, we can add to our
parser with alittle judicious copying and renaming. But to avoid confusion, the listing below is the com-

9

Expression Parsing

plete set of parsing routines. (Note the way we handle the reversal of operandsin Divide.)

{ Parse and Translate a Math Factor }
procedure Factor;

begi n

EmtLn(' MOVE #' + GetNum + ', D0")
end;

{ Recognize and Translate a Miultiply }
procedure Multiply;
begi n
Match(' *');
Fact or;
EmtLn(' MULS (SP)+, D0");
end;

{ Recogni ze and Translate a Divide }
procedure Divide;
begi n
Match('/");
Fact or;
EmtLn(' MOVE (SP)+,D1");
EmtLn(' D VS D1, D0');
end;

{ Parse and Translate a Math Term}
procedure Term
begi n
Fact or;
while Look in ['"*", "/'] do begin
EmtLn(' MOVE DO, -(SP)");
case Look of

"rtoo Ml tioply;
"/': Divide;
el se Expected(' Mul op');
end;
end;
end;

{ Recogni ze and Transl ate an Add }
procedure Add;
begi n
Match(' +');
Term
Em tLn(' ADD (SP)+, D0O');
end;

{ Recogni ze and Translate a Subtract }
procedure Subtract;
begi n
Match('-');
Term
Em tLn('SUB (SP)+, D0");
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }
procedure Expression;

begi n
Term
while Look in['+', '-'] do begin

Emi tLn(' MOVE DO. - (SP)");
case Look of
"+ Add;

10

Expression Parsing

'-': Subtract;
el se Expected(' Addop');
end;
end;
end;

Hot dog! A nearly functiona parser/translator, in only 55 lines of Pascal! The output is starting to look
really useful, if you continue to overlook the inefficiency, which | hope you will. Remember, we're not
trying to produce tight code here.

Parentheses

Compared to original 2004-08-21. OK.

We can wrap up this part of the parser with the addition of parentheses with math expressions. As you
know, parentheses are a mechanism to force a desired operator precedence. So, for example, in the ex-
pression

2+ (3+4)

the parentheses force the addition before the multiply. Much more importantly, though, parentheses give
us amechanism for defining expressions of any degree of complexity, asin

(1+2)/((3+4)+(5-6))

The key to incorporating parentheses into our parser is to realize that no matter how complicated an ex-
pression enclosed by parentheses may be, to the rest of the world it looks like a simple factor. That is,
one of the formsfor afactor is:

<factor> ::= (<expression>)

Thisis where the recursion comesin. An expression can contain a factor which contains another expres-
sion which contains a factor, etc., ad infinitum.

Complicated or not, we can take care of this by adding just afew lines of Pascal to procedure Fact or :
{ Parse and Translate a Math Factor }

procedure Expression; Forward;
procedure Factor;

begi n
if Look ="' (" then begin
Mat ch(’ (") ;
Expr essi on;
Match(")");
end
el se

EmtLn(' MOVE #' + GetNum + ', D0");
end;
Note again how easily we can extend the parser, and how well the Pascal code matches the BNF syntax.

As usual, compile the new version and make sure that it correctly parses legal sentences, and flagsilleg-
al ones with an error message.

Unary Minus
Compared to original 2004-08-21. OK.

At this point, we have a parser that can handle just about any expression, right? OK, try this input sen-
tence:

11

Expression Parsing

-1

Woops! It doesn't work, does it? Procedure Expr essi on expects everything to start with an integer, so
it coughs up the leading minus sign. You'll find that +3 won't work either, nor will something like

-(3-2)

There are a couple of ways to fix the problem. The easiest (although not necessarily the best) way is to
stick an imaginary leading zero in front of expressions of this type, so that - 3 becomes 0- 3. We can
easily patch thisinto our existing version of Expr essi on:

{ Parse and Transl ate an Expression }
procedure Expression;
begi n
i f 1sAddop(Look) then
EmtLn(' CLR DO')
el se
Term
whi | e 1 sAddop(Look) do begin
EmtLn(' MOVE DO, -(SP)");
case Look of

"+ Add;
'-': Subtract;
el se Expected(' Addop');
end;
end;
end;

| told you that making changes was easy! This time it cost us only three new lines of Pascal. Note the
new reference to function | sAddop. Since the test for an addop appeared twice, | chose to embed it in
the new function. The form of | sAddop should be apparent from that for | SAl pha. Hereitis:

{ Recogni ze an Addop }

function IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ['"+, "-'];

end;

OK, make these changes to the program and recompile. Y ou should aso include | sAddop in your
baseline copy of the cradle. We'll be needing it again later. Now try the input - 1 again. Wow! The effi-
ciency of the code is pretty poor ... six lines of code just for loading a simple constant ... but at least it's
correct. Remember, we're not trying to replace Turbo Pascal here.

At this point we're just about finished with the structure of our expression parser. This version of the
program should correctly parse and compile just about any expression you care to throw at it. It's still
limited in that we can only handle factors involving single decimal digits. But | hope that by now you're
starting to get the message that we can accomodate further extensions with just some minor changes to
the parser. Y ou probably won't be surprised to hear that a variable or even afunction call is just another
kind of afactor.

In the next session, I'll show you just how easy it is to extend our parser to take care of these things too,

and I'll also show you just how easily we can accomodate multicharacter numbers and variable names.
So you see, we're not far at all from atruly useful parser.

A Word About Optimization

Compared to original 2004-08-21. OK.

12

Expression Parsing

Earlier in this session, | promised to give you some hints as to how we can improve the quality of the
generated code. As | said, the production of tight code is not the main purpose of this series of articles.
But you need to at least know that we aren't just wasting our time here ... that we can indeed modify the
parser further to make it produce better code, without throwing away everything we've done to date. As
usual, it turns out that some optimization is not that difficult to do ... it simply takes some extra code in
the parser.

There are two basic approaches we can take:

» Try tofix up the code after it's generated

This is the concept of “peephole”’ optimization. The general idea it that we know what combinations
of instructions the compiler is going to generate, and we also know which ones are pretty bad (such
asthe code for -1, above). So all we do isto scan the produced code, |ooking for those combinations,
and replacing them by better ones. It's sort of a macro expansion, in reverse, and afairly straightfor-
ward exercise in pattern-matching. The only complication, really, is that there may be alot of such
combinations to look for. It's called peephole optimization simply because it only looks at a small
group of instructions at a time. Peephole optimization can have a dramatic effect on the quality of
the code, with little change to the structure of the compiler itself. There is a price to pay, though, in
both the speed, size, and complexity of the compiler. Looking for al those combinations calls for a
lot of IF tests, each one of which isasource of error. And, of courseg, it takes time.

In the classical implementation of a peephole optimizer, it's done as a second pass to the compiler.
The output code is written to disk, and then the optimizer reads and processes the disk file again. As
amatter of fact, you can see that the optimizer could even be a separate program from the compiler
proper. Since the optimizer only looks at the code through a small “window” of instructions (hence
the name), a better implementation would be to simply buffer up a few lines of output, and scan the
buffer after each Emi t Ln.

» Try to generate better code in the first place

This approach calls for us to look for special cases before we Enmi t them. As atrivial example, we
should be able to identify a constant zero, and Enmi t a CLR instead of aload, or even do nothing at
al, asin an add of zero, for example. Closer to home, if we had chosen to recognize the unary minus
in Fact or instead of in Expr essi on, we could treat constants like - 1 as ordinary constants,
rather then generating them from positive ones. None of these things are difficult to dea with ...
they only add extra tests in the code, which iswhy | haven't included them in our program. The way
| seeit, once we get to the point that we have a working compiler, generating useful code that ex-
ecutes, we can always go back and tweak the thing to tighten up the code produced. That's why there
are Release 2.0'sin the world.

There is one more type of optimization worth mentioning, that seems to promise pretty tight code
without too much hassle. It's my “invention” in the sense that | haven't seen it suggested in print any-
where, though | have noillusions that it's original with me.

This is to avoid such a heavy use of the stack, by making better use of the CPU registers. Remember
back when we were doing only addition and subtraction, that we used registers DO and D1, rather than
the stack? It worked, because with only those two operations, the “stack” never needs more than two
entries.

WEell, the 68000 has eight data registers. Why not use them as a privately managed stack? The key is to
recognize that, at any point in its processing, the parser knows how many items are on the stack, so it can
indeed manage it properly. We can define a private “ stack pointer” that keeps track of which stack level
we're at, and addresses the corresponding register. Procedure Fact or, for example, would not cause
data to be loaded into register DO, but into whatever the current “top-of-stack” register happened to be.

What we're doing in effect is to replace the CPU's RAM stack with alocally managed stack made up of

13

Expression Parsing

registers. For most expressions, the stack level will never exceed eight, so welll get pretty good code out.
Of course, we also have to deal with those odd cases where the stack level does exceed eight, but that's
no problem either. We simply let the stack spill over into the CPU stack. For levels beyond eight, the
code is no worse than what we're generating now, and for levels less than eight, it's considerably better.

For the record, | have implemented this concept, just to make sure it works before | mentioned it to you.
It does. In practice, it turns out that you can't redly use all eight levels ... you need at least one register
free to reverse the operand order for division (sure wish the 68000 had an XTHL, like the 8080!). For ex-
pressions that include function calls, we would also need a register reserved for them. Still, there is a
nice improvement in code size for most expressions.

So, you see, getting better code isn't that difficult, but it does add complexity to the our translator ...
complexity we can do without at this point. For that reason, | strongly suggest that we continue to ignore
efficiency issues for the rest of this series, secure in the knowledge that we can indeed improve the code
quality without throwing away what we've done.

Next lesson, I'll show you how to deal with variables factors and function calls. I'll also show you just
how easy it isto handle multicharacter tokens and embedded white space.

14

Chapter 3. More Expressions

Installment published 4 Aug 1988.

$Header: /home/radek/cvdlets build _a compiler/ch-more-expressions.xml,v 1.4 2004/08/22 09:31:10
radek Exp $

chapter id="more-expressions’

Published on 4 Aug 1988

$ psselect -p24-35 lets_build_a_compiler.ps| foldprn -s12

presbyopic:remark$ psselect -p29-43 lets build_a _compiler.ps| foldprn -s16

Compared to original 2004-08-21.

In the last installment, we examined the techniques used to parse and trandate a general math expres-
sion. We ended up with a simple parser that could handle arbitrarily complex expressions, with two re-
gtrictions:

» No variables were allowed, only numeric factors
e The numeric factors were limited to single digits

In this chapter , we'll get rid of those restrictions. We'll also extend what we've done to include assign-
ment statements function calls and. Remember, though, that the second restriction was mainly self-
imposed ... achoice of convenience on our part, to make life easier and to let us concentrate on the fun-
damental concepts. As you'll see in a bit, it's an easy restriction to get rid of, so don't get too hung up
about it. We'll use the trick when it serves us to do so, confident that we can discard it when we're ready
to.

Variables

Compared to original 2004-08-21. OK.

Most expressions that we see in practice involve variables, such as

b*b+4*a*c

No parser is much good without being able to deal with them. Fortunately, it's a'so quite easy to do.

Remember that in our parser as it currently stands, there are two kinds of factors allowed: integer con-
stants and expressions within parentheses. In BNF notation,

<factor> ::= <nunber> | (<expression>)

The '|' stands for "or", meaning of course that either form is alegal form for a factor. Remember, too,
that we had no trouble knowing which was which ... the lookahead character is a left paren (in one
case, and adigit in the other.

It probably won't come as too much of a surprise that a variable is just another kind of factor. So we ex-
tend the BNF above to read:

<factor> ::= <nunber> | (<expression>) | <variable>

Again, thereis no ambiguity: if the lookahead character is aletter, we have avariable; if adigit, we have
a number. Back when we translated the number, we just issued code to load the number, as immediate
data, into DO. Now we do the same, only we load a variable.

A minor complication in the code generation arises from the fact that most 68000 operating systems, in-
cluding the SK*DOS™ that I'm using, require the code to be written in “position-independent” form,
which basically means that everything is PC-relative. The format for aload in this languageis

15

More Expressions

MOVE X(PC), DO

where X is, of course, the variable name. Armed with that, let's modify the current version of Fact or to
read:

{ Parse and Translate a Math Factor }
procedure Expression; Forward;
procedure Factor;
begi n
if Look ="' (' then begin
Match(' (")
Expr essi on;
Match(')');
end
el se if |sAl pha(Look) then
EmitLn(' MOVE ' + GetName + ' (PC), D0")
el se
EmtLn(' MOVE # + GetNum + ', D0");
end;

I've remarked before how easy it is to add extensions to the parser, because of the way it's structured.
Y ou can see that this still holds true here. Thistime it cost us all of two extralines of code. Notice, too,
how the if-else-else structure exactly parallels the BNF syntax equation.

OK, compile and test this new version of the parser. That didn't hurt too badly, did it?

Functions

Compared to original 2004-08-21. OK.

There isonly one other common kind of factor supported by most languages: the function call. It'sreally
too early for us to deal with functions well, because we haven't yet addressed the issue of parameter
passing. What's more, a“real” language would include a mechanism to support more than one type, one
of which should be a function type. We haven't gotten there yet, either. But I'd still like to deal with
functions now for a couple of reasons. First, it lets us finally wrap up the parser in something very close
toitsfinal form, and second, it brings up a new issue which is very much worth talking about.

Up till now, we've been able to write what is called a “predictive parser”. That means that at any point,
we can know by looking at the current lookahead character exactly what to do next. That isn't the case
when we add functions. Every language has some naming rules for what constitutes a legal identifier.
For the present, oursis simply that it is one of the letters a..z. The problem is that a variable name and a
function name obey the same rules. So how can we tell which is which? One way is to require that they
each be declared before they are used. Pascal takes that approach. The other is that we might require a
function to be followed by a (possibly empty) parameter list. That's the rule usedin C.

Since we don't yet have a mechanism for declaring types, let's use the C rule for now. Since we aso
don't have a mechanism to deal with parameters, we can only handle empty lists, so our function calls
will have the form

x()

Since we're not dealing with parameter lists yet, there is nothing to do but to call the function, so we
need only to issue a BSR (call) instead of a MOVE.

Now that there are two possibilities for the “I1 f | sAl pha” branch of the test in Fact or, let's treat
them in a separate procedure. Modify Fact or to read:

{ Parse and Translate a Math Factor }
procedur e Expression; Forward,;

16

More Expressions

procedure Factor;

begi n

if Look ="' (' then begin
Match(' (");
Expr essi on;
Match(")");
end

el se if |sAl pha(Look) then
| dent

el se

EmitLn(' MOVE #' + GetNum + ', DO0");
end;

and insert before it the new procedure

{ Parse and Translate an ldentifier }
procedure |dent;
var Name: char;
begi n
Name : = Cet Nane;
if Look ="' (' then begin
Match(' (')
Match(')');
EmtLn('BSR ' + Name);
end
el se
g EmtLn(' MOVE ' + Nane + ' (PC),D0")
end;

OK, compile and test this version. Does it parse al legal expressions? Does it correctly flag badly
formed ones?

The important thing to notice is that even though we no longer have a predictive parser, there is little or
no complication added with the recursive descent approach that we're using. At the point where
Fact or finds an identifier (Ietter), it doesn't know whether it's a variable name or a function name, nor
does it really care. It smply passes it on to | dent and leaves it up to that procedure to figure it out.
I dent, in turn, simply tucks away the identifier and then reads one more character to decide which
kind of identifier it's dealing with.

Keep this approach in mind. It's a very powerful concept, and it should be used whenever you encounter
an ambiguous situation requiring further lookahead. Even if you had to look several tokens ahead, the
principle would still work.

More on Error Handling

Compared to original 2004-08-21. OK.

As long as we're talking philosophy, there's another important issue to point out: error handling. Notice
that although the parser correctly rejects (almost) every malformed expression we can throw at it, with a
meaningful error message, we haven't really had to do much work to make that happen. In fact, in the
whole parser per se (from | dent through Expr essi on) there are only two calls to the error routine,
Expect ed. Even those aren't necessary ... if you'll look again in Ter mand Expr essi on, you'll see
that those statements can't be reached. | put them in early on as a bit of insurance, but they're no longer
needed. Why don't you delete them now?

So how did we get this nice error handling virtually for free? It's simply that I've carefully avoided read-
ing a character directly using Get Char . Instead, I've relied on the error handling in Get Nane, Get -
Num and Mat ch to do all the error checking for me. Astute readers will notice that some of the calls to
Mat ch (for example, the onesin Add and Subt r act) are also unnecessary ... we aready know what
the character is by the time we get there ... but it maintains a certain symmetry to leave them in, and the
genera rule to always use Mat ch instead of Get Char isagood one.

17

More Expressions

| mentioned an “amost” above. There is a case where our error handling leaves a bit to be desired. So
far we haven't told our parser what and end-of-line looks like, or what to do with embedded white space.
So a space character (or any other character not part of the recognized character set) simply causes the
parser to terminate, ignoring the unrecognized characters.

It could be argued that thisis reasonable behavior at this point. In a“real” compiler, there is usualy an-
other statement following the one we're working on, so any characters not treated as part of our expres-
sion will either be used for or rejected as part of the next one.

But it's al'so a very easy thing to fix up, even if it's only temporary. All we have to do is assert that the
expression should end with an end-of-line, i.e., a carriage return.

To see what I'm talking about, try the input line
1+2 <space> 3+4

See how the space was treated as a terminator? Now, to make the compiler properly flag this, add the
line

if Look <> CR then Expected(' Newline');

in the main program, just after the call to Expr essi on. That catches anything left over in the input
stream. Don't forget to define CRin the const statement:

CR ="M

Asusual, recompile the program and verify that it does what it's supposed to.

Assighment Statements

Compared to original 2004-08-21. OK.

OK, at this point we have a parser that works very nicely. I'd like to point out that we got it using only
88 lines of executable code, not counting what was in the cradle. The compiled object file is a whopping
4752 bytes. Not bad, considering we weren't trying very hard to save either source code or object size.
Wejust stuck to the KISS principle.

Of course, parsing an expression is hot much good without having something to do with it afterwards.
Expressions usually (but not always) appear in assignment statements, in the form

<ldent> = <Expression>

We're only a breath away from being able to parse an assignment statement, so let's take that last step.
Just after procedure Expr essi on, add the following new procedure:

{ Parse and Transl ate an Assignment Statenent }
procedure Assignnent;
var Nane: char;
begi n
Nanme : = Get Nane;
Match(' =");
Expr essi on;
EmtLn('LEA ' + Nane + ' (PC),A0");
Em tLn(' MOVE DO, (A0)")
end;

Note again that the code exactly parallels the BNF. And notice further that the error checking was pain-

18

More Expressions

less, handled by Get Nane and Mat ch.

The reason for the two lines of assembler has to do with a peculiarity in the 68000, which requires this
kind of construct for PC-relative code.

Now change the call to Expr essi on, in the main program, to oneto Assi gnnent . That's al thereis
toit.

Son of a gun! We are actually compiling assignment statements. If those were the only kind of state-
ments in alanguage, all we'd have to dois put thisin aloop and we'd have a full-fledged compiler!

Well, of course they're not the only kind. There are also little items like control statements (IFs and
loops), procedures, declarations, etc. But cheer up. The arithmetic expressions that we've been dealing
with are among the most challenging in alanguage. Compared to what we've already done, control state-
ments will be easy. I'll be covering them in the fifth installment. And the other statements will all fal in
line, aslong as we remember to KISS.

Multi-Character Tokens

Compared to original 2004-08-21. OK.

Throughout this series, I've been carefully restricting everything we do to single-character tokens, al the
while assuring you that it wouldn't be difficult to extend to multi-character ones. | don't know if you be-
lieved me or not ... | wouldn't really blame you if you were a bit skeptical. I'll continue to use that ap-
proach in the sessions which follow, because it helps keep complexity away. But I'd like to back up
those assurances, and wrap up this portion of the parser, by showing you just how easy that extension
really is. In the process, we'll also provide for embedded white space. Before you make the next few
changes, though, save the current version of the parser away under another name. | have some more uses
for it in the next installment, and we'll be working with the single-character version.

Most compilers separate out the handling of the input stream into a separate module called the lexical
scanner. The idea is that the scanner deals with all the character-by-character input, and returns the sep-
arate units (tokens) of the stream. There may come a time when we'll want to do something like that,
too, but for now there is no need. We can handle the multi-character tokens that we need by very dight
and very local modificationsto Get Nane and Get Num

The usual definition of an identifier is that the first character must be a letter, but the rest can be alpha
numeric (letters or numbers). To deal with this, we need one other recognizer function

{ Recogni ze an Al phanuneric }

function IsAl Num(c: char): bool ean;

begi n

dIsAI Num : = I sAl pha(c) or IsDigit(c);
end;

Add this function to your parser. | put mine just after | sDi gi t . While you're at it, might as well in-
clude it as a permanent member of Cradle, too.

Now, we need to modify function Get Nare to return a string instead of a character:

{ Get an ldentifier }
function GetNane: string;
var Token: string;
begi n
Token : = ;
if not IsAl pha(Look) then Expected(' Nane');
whil e |1 sAl Nun{Look) do begin
Token : = Token + UpCase(Look);
Get Char ;

19

More Expressions

end;
CGet Nane : = Token;
end;

Similarly, modify Get Numto read:

{ Get a Number }
function GetNum string;
var Val ue: string;
begi n
Val ue : = ;
if not IsDigit(Look) then Expected('Integer');
[

whil e 1sDigit(Look) do begin
Val ue : = Val ue + Look;
Cet Char;

end;

Get Num : = Val ue;
end;

Amazingly enough, that is virtually all the changes required to the parser! The local variable Name in
procedures | dent and Assi gnment was originally declared as char, and must now be declared
string[8]. (Clearly, we could make the string length longer if we chose, but most assemblers limit the
length anyhow.) Make this change, and then recompile and test. Now do you believe that it's a simple
change?

White Space

Compared to original 2004-08-21. OK.

Before we leave this parser for awhile, let's address the issue of white space. Asit stands now, the parser
will barf (or ssimply terminate) on a single space character embedded anywhere in the input stream.
That's pretty unfriendly behavior. So let's “productionize’ the thing a bit by eliminating this last restric-
tion.

The key to easy handling of white space is to come up with a simple rule for how the parser should treat
the input stream, and to enforce that rule everywhere. Up till now, because white space wasn't permitted,
we've been able to assume that after each parsing action, the lookahead character Look contains the
next meaningful character, so we could test it immediately. Our design was based upon this principle.

It still sounds like a good rule to me, so that's the one we'll use. This means that every routine that ad-
vances the input stream must skip over white space, and leave the next non-white character in Look.
Fortunately, because we've been careful to use Get Nane, Get Num and Mat ch for most of our input
processing, it isonly those three routines (plus | ni t) that we need to modify.

Not surprisingly, we start with yet another new recognizer routine:

{ Recogni ze Wiite Space }

function IsWite(c: char): bool ean;
begi n

IsWhite :=cin[" ', TAB];

end;

We also need aroutine that will eat white-space characters, until it finds a non-white one:

{ Skip Over Leading Wite Space }
procedure Ski pWite;
begi n
whil e 1 sWite(Look) do
CGet Char;

20

More Expressions

end;

Now, add callsto Ski pWhi t e to Mat ch, Get Nane, and Get Numas shown below:

{ Match a Specific Input Character }
procedure Match(x: char);
begi n
if Look <> x then Expected('''' + x + "'""")
el se begin
Get Char ;
Ski pwhi t e;
end;
end;

{ Get an Identifier }
function GetNane: string;
var Token: string;
begi n
Token :="'";
if not IsAl pha(Look) then Expected(' Nane');
whi | e 1 sAl Num(Look) do begin
Token : = Token + UpCase(Look);
CGet Char;
end;
Get Name : = Token;
Ski pWhi t e;
end;

{ Get a Nunber }
function GetNum string;
var Val ue: string;
begi n
Value :="";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
Val ue : = Val ue + Look;
Cet Char;
end;
Get Num : = Val ue;
Ski pWhi t e;
end;

Note

Note that | rearranged Mat ch ahit, without changing the functionality.
Finally, we need to skip over leading blanks where we “prime the pump” inl ni t :

{ Initialize }
procedure Init;
begi n

Get Char ;
Ski pWhi t e;
end;

Make these changes and recompile the program. Y ou will find that you will have to move Mat ch below
Ski pWhi t e, to avoid an error message from the Pascal compiler. Test the program as aways to make
sure it works properly.

Since we've made quite a few changes during this session, I'm reproducing the entire parser below:

21

More Expressions

pr ogr am par se;

{ Constant Declarations }
const TAB = ~Il;
CR = "M

{ Variable Declarations }
var Look: char; { Lookahead Character }

{ Read New Character From I nput Stream}
procedure GCet Char;

begi n

Read(Look) ;

end;

{ Report an Error }
procedure Error(s: string);
begi n
WiteLn;
WiteLn("G 'FError: ', s, '.');
end;

{ Report Error and Halt }
procedure Abort(s: string);
begi n

Error(s);
Hal t;
end;

{ Report \What WAs Expected }
procedure Expected(s: string);
begi n

Abort(s + ' Expected');
end;

{ Recogni ze an Al pha Character }
function IsAl pha(c: char): bool ean;
begi n

| sAl pha := UpCase(c) in['A.."Z'];
end;

{ Recognize a Decimal Digit
function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phanuneric }

function IsAl Num(c: char): bool ean;

begi n

dIsAI Num : = I sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function IsAddop(c: char): bool ean;
begi n

IsAddop :=cin ['"+, "-'];

end;

{ Recogni ze White Space }

function IsWiite(c: char): bool ean;
begi n

IsWhite :=cin [" ', TAB];

end;

22

More Expressions

{ Skip Over Leading Wite Space }
procedure Ski pWite;
begi n
whil e I sWite(Look) do
CGet Char;
end;

{ Match a Specific Input Character }
procedure Match(x: char);
begi n
if Look <> x then Expected('''' + x + ''"")
el se begin
Get Char ;
Ski pWi t e;
end;
end;

{ Get an ldentifier }
function GetNane: string;
var Token: string;
begi n
Token : = ;
i f not IsAl pha(Look) then Expected(' Nane');
whil e | sAl Nun{Look) do begin
Token : = Token + UpCase(Look);
Get Char;
end;
Get Narme : = Token
Ski pWhi t e;
end;

{ Get a Number }
function GetNum string;
var Val ue: string;
begi n
Value :="'";
if not IsDigit(Look) then Expected('Integer');
whil e IsDigit(Look) do begin
Val ue := Val ue + Look
Cet Char ;
end;
Get Num : = Val ue;
Ski pWhi t e;
end;

{ Qutput a String with Tab }
procedure Enmit(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }
procedure EmtLn(s: string);
begi n
Emt(s);
WitelLn;
end;

{ Parse and Translate a ldentifier }
procedure |dent;
var Nanme: string[8];
begi n
Nane: = Cet Nane;
if Look = ' (' then begin

23

More Expressions

Match(' (')
Match(')');
EmtLn('BSR ' + Nan®e);
end
el se
EmtLn(' MOVE ' + Nane + '(PC),D0");
end;

{ Parse and Translate a Math Factor }
procedure Expression; Forward,;
procedure Factor;

begi n

if Look ="' (" then begin
Match(' (");
Expr essi on;
Match(')");
end

el se if |sAl pha(Look) then
| dent

el se

EmitLn(' MOVE # + GetNum + ', D0");
end;

{ Recognize and Translate a Multiply }
procedure Multiply;
begi n
Match('*");
Fact or;
EmtLn(' MLS (SP)+,D0");
end;

{ Recogni ze and Translate a Divide }
procedure Divide;
begi n
Match('/");
Fact or;
EmtLn(' MOVE (SP)+,D1");
EmtLn(' EXS.L DO');
EmitLn(' DIVS D1, D0");
end;

{ Parse and Translate a Math Term}
procedure Term
begi n
Fact or;
while Look in ['"*", '"/'] do begin
EmtLn(' MOVE DO, -(SP)");
case Look of

oMl tiply;
/' Divide;
end;
end;
end;

{ Recogni ze and Transl ate an Add }
procedure Add;
begi n
Match(' +');
Term
Em tLn(' ADD (SP)+, D0");
end;

{ Recognize and Translate a Subtract }
procedure Subtract;
begi n

24

More Expressions

Match('-');
Term
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }
procedure Expression;
begi n
i f |sAddop(Look) then
EmtLn(' CLR DO')
el se
Term
whi | e |1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)');
case Look of
"+': Add;
'-': Subtract;
end;
end;
end;

{ Parse and Transl ate an Assignnment Statenent }
procedure Assi gnnent;
var Name: string[8];
begi n
Name : = Get Nane;
Match(' =');
Expr essi on;
EmtLn('LEA"' + Nanme + '(PC), AQ');
Em tLn(' MOVE DO, (A0)")
end;

{ Initialize }
procedure Init;
begi n

Get Char ;

Ski pWi t e;
end;

{ Main Program}
begi n

Init;

Assi gnment ;

I f Look <> CR then Expected(' NewLine');
end.

Now the parser is complete. It's got every feature we can put in a one-line “compiler”. Tuck it away in a
safe place. Next time we'll move on to a new subject, but we'll still be talking about expressions for quite
awhile. Next installment, | plan to talk a bit about interpreters as opposed to compilers, and show you
how the structure of the parser changes a bit as we change what sort of action has to be taken. The in-
formation we pick up there will serve usin good stead later on, even if you have no interest in interpret-
ers. See you next time.

25

Chapter 4. Interpreters

Installment published 24th July 1988.

$Header: /home/radek/cvslets build_a compiler/ch-interpretersxml,v 1.3 2004/08/22 09:31:10 radek
Exp $

chapter id="interpreters’

Published on 24 July 1988

$ psselect -p37-45 lets_build_a_compiler.ps| foldprn -s12

presbyopic:remark$ psselect -p44-54 lets build_a compiler.ps| foldprn -s12

Compared to original 2004-08-21.

In the first three chapters of this series, we've looked at parsing and compiling math expressions, and
worked our way gradually and methodically from dealing with very simple one-term, one-character
“expressions’ up through more general ones, finally arriving at a very complete parser that could parse
and translate complete assignment statements, with multi-character tokens, embedded white space, and
function calls. Thistime, I'm going to walk you through the process one more time, only with the goal of
interpreting rather than compiling object code.

Since thisis a series on compilers, why should we bother with interpreters? Simply because | want you
to see how the nature of the parser changes as we change the goals. | also want to unify the concepts of
the two types of trandators, so that you can see not only the differences, but also the similarities.

Consider the assignment statement

X=2*y+3

In a compiler, we want the target CPU to execute this assignment at execution time. The translator itself
doesn't do any arithmetic ... it only issues the object code that will cause the CPU to do it when the code
is executed. For the example above, the compiler would issue code to compute the expression and store
theresultsin variable x.

For an interpreter, on the other hand, no object code is generated. Instead, the arithmetic is computed
immediately, as the parsing is going on. For the example, by the time parsing of the statement is com-
plete, x will have anew value.

The approach we've been taking in this whole series is called “syntax-driven translation”. As you are
aware by now, the structure of the parser is very closely tied to the syntax of the productions we parse.
We have built Pascal procedures that recognize every language construct. Associated with each of these
constructs (and procedures) is a corresponding “action”, which does whatever makes sense to do once a
construct has been recognized. In our compiler so far, every action involves emitting object code, to be
executed later at execution time. In an interpreter, every action involves something to be done immedi-
ately.

What I'd like you to see here is that the layout ... the structure ... of the parser doesn't change. It's only
the actions that change. So if you can write an interpreter for a given language, you can also write a
compiler, and vice versa. Yet, as you will see, there are differences, and significant ones. Because the
actions are different, the procedures that do the recognizing end up being written differently. Specific-
ally, in the interpreter the recognizing procedures end up being coded as functions that return numeric
valuesto their callers. None of the parsing routines for our compiler did that.

Our compiler, in fact, is what we might call a“pure” compiler. Each time a construct is recognized, the
object code is emitted immediately. (That's one reason the code is not very efficient.) The interpreter
well be building here is a pure interpreter, in the sense that there is no translation, such as “tokenizing,”
performed on the source code. These represent the two extremes of trandation. In the real world, trans-
lators are rarely so pure, but tend to have bits of each technique.

26

Interpreters

| can think of several examples. |'ve aready mentioned one: most interpreters, such as Microsoft BA-
SIC, for example, trandate the source code (tokenize it) into an intermediate form so that it'll be easier
to parsereal time.

Another example is an assembler. The purpose of an assembler, of course, isto produce object code, and
it normally does that on a one-to-one basis. one object instruction per line of source code. But almost
every assembler also permits expressions as arguments. In this case, the expressions are always constant
expressions, and so the assembler isn't supposed to issue object code for them. Rather, it “interprets’ the
expressions and computes the corresponding constant result, which is what it actually emits as object
code.

As amatter of fact, we could use a hit of that ourselves. The translator we built in the previous chapter
will dutifully spit out object code for complicated expressions, even though every term in the expression
is a constant. In that case it would be far better if the translator behaved a bit more like an interpreter,
and just computed the equivalent constant result.

There is a concept in compiler theory called “lazy” translation. The idea is that you typically don't just
emit code at every action. In fact, at the extreme you don't emit anything at all, until you absolutely have
to. To accomplish this, the actions associated with the parsing routines typicaly don't just emit code.
Sometimes they do, but often they simply return information back to the caller. Armed with such in-
formation, the caller can then make a better choice of what to do.

For example, given the statement
X=Xx+3-2-(5-4)

our compiler will dutifully spit out a stream of 18 instructions to load each parameter into registers, per-
form the arithmetic, and store the result. A lazier evaluation would recognize that the arithmetic in-
volving constants can be evaluated at compile time, and would reduce the expression to

X=X+0

An even lazier evaluation would then be smart enough to figure out that thisis equivalent to
X =X
which callsfor no action at al. We could reduce 18 instructions to zero!

Note that there is no chance of optimizing this way in our translator as it stands, because every action
takes place immediately.

Lazy expression evaluation can produce significantly better object code than we have been able to so
far. | warn you, though: it complicates the parser code considerably, because each routine now has to
make decisions as to whether to emit object code or not. Lazy evaluation is certainly not named that be-
causeit's easier on the compiler writer!

Since we're operating mainly on the KISS principle here, | won't go into much more depth on this sub-
ject. | just want you to be aware that you can get some code optimization by combining the techniques
of compiling and interpreting. In particular, you should know that the parsing routines in a smarter trans-
lator will generally return things to their caller, and sometimes expect things as well. That's the main
reason for going over interpretation in this installment.

The Interpreter
Compared to original 2004-08-21. OK.

OK, now that you know why we're going into al this, let's do it. Just to give you practice, we're going to
start over with a bare cradle and build up the trandlator al over again. Thistime, of course, we can go a

27

Interpreters

bit faster.

Since we're now going to do arithmetic, the first thing we need to do is to change function Get Num
which up till now has always returned a character (or string). Now, it's better for it to return an integer.
Make a copy of the cradle (for goodness's sake, don't change the version in Cradle itself!!) and modify
Get Numasfollows:

{ Get a Number }

function GetNum integer;

begi n
if not IsDigit(Look) then Expected('lInteger');
Get Num : = Ord(Look) - Od('0");

Get Char ;

end;

Now, write the following version of Expr essi on:

{ Parse and Transl ate an Expression }
function Expression: integer;

begi n

Expression : = Get Num

end;

Finally, insert the statement
Witel n(Expression);
at the end of the main program. Now compile and test.

All this program does is to “parse” and translate a single integer “expression”. As aways, you should
make sure that it does that with the digits 0..9, and gives an error message for anything else. Shouldn't
take you very long!

OK, now let's extend this to include addops. Change Expr essi on to read:

{ Parse and Transl ate an Expression }
function Expression: integer;
var Val ue: integer;
begi n
i f 1sAddop(Look) then
Value := 0
el se
Val ue : = Get Num
whi | e |1 sAddop(Look) do begin
case Look of

"+': begin
Mat ch(' +');
Val ue := Val ue + Get Num
end;
"-': begin
Match('-");
Val ue := Value - Get Num
end;
end;
end;
Expression : = Val ue;
end;

The structure of Expr essi on, of course, parallels what we did before, so we shouldn't have too much
trouble debugging it. There's been a significant development, though, hasn't there? Procedures Add and

28

Interpreters

Subt ract went away! The reason is that the action to be taken requires both arguments of the opera-
tion. | could have chosen to retain the procedures and pass into them the value of the expression to date,
which is Val ue. But it seemed cleaner to me to keep Val ue as dtrictly alocal variable, which meant
that the code for Add and Subt r act had to be moved in line. This result suggests that, while the struc-
ture we had developed was nice and clean for our simple-minded trandation scheme, it probably
wouldn't do for use with lazy evaluation. That's a little tidbit we'll probably want to keep in mind for
later.

OK, did the trandator work? Then let's take the next step. It's not hard to figure out what procedure
Ter mshould now ook like. Change every call to Get Numin function Expr essi on toacall to Ter m
and then enter the following form for Ter m

{ Parse and Translate a Math Term}
function Term integer;
var Val ue: integer;
begi n
Val ue : = Get Num
while Look in ['"*", '"/'] do begin
case Look of

"*': begin
Match('*");
Val ue := Value * Get Num
end;
"/': begin
Match('/"');
Val ue : = Val ue div Get Num
end;
end;
end;
Term : = Val ue;

end;

Now, try it out. Don't forget two things: first, we're dealing with integer division, so, for example, 1/3
should come out zero. Second, even though we can output multi-digit results, our input is still restricted
to single digits.

That seems like a silly restriction at this point, since we have aready seen how easily function Get Num
can be extended. So let's go ahead and fix it right now. The new versionis

{ Get a Number }
function GetNum integer;
var Val ue: integer;

begi n
Val ue : = 0;
if not IsDigit(Look) then Expected('Integer');
whil e 1sDigit(Look) do begin
Value := 10 * Value + Ord(Look) - Ord('0");
Get Char ;
end;

CGet Num : = Val ue;
end;

If you've compiled and tested this version of the interpreter, the next step isto install function Fact or ,
complete with parenthesized expressions. We'll hold off a bit longer on the variable names. First, change
the references to Get Num in function Ter m so that they call Fact or instead. Now code the following
version of Fact or :

{ Parse and Translate a Math Factor }
function Expression: integer; Forward;
function Factor: integer;

begi n

29

Interpreters

if Look ="' (" then begin
Match(' (");
Factor := Expression;
Match(')");
end

el se
Factor := Get Num

end;

That was pretty easy, huh? We're rapidly closing in on a useful interpreter.

A Little Philosophy

Compared to original 2004-08-21. OK.

Before going any further, there's something 1'd like to call to your attention. It's a concept that we've
been making use of in al these sessions, but | haven't explicitly mentioned it up till now. I think it's
time, because it's a concept so useful, and so powerful, that it makes al the difference between a parser
that's trivially easy, and one that's too complex to deal with.

In the early days of compiler technology, people had aterrible time figuring out how to deal with things
like operator precedence ... the way that multiply and divide operators take precedence over add and
subtract, etc. | remember a colleague of some thirty years ago, and how excited he was to find out how
to do it. The technique used involved building two stacks, upon which you pushed each operator or op-
erand. Associated with each operator was a precedence level, and the rules required that you only actu-
ally performed an operation (“reducing” the stack) if the precedence level showing on top of the stack
was correct. To make life more interesting, an operator like) had different precedence levels, depending
upon whether or not it was already on the stack. You had to give it one value before you put it on the
stack, and another to decide when to take it off. Just for the experience, | worked al of this out for my-
self afew years ago, and | cantell you that it's very tricky.

We haven't had to do anything like that. In fact, by now the parsing of an arithmetic statement should
seem like child's play. How did we get so lucky? And where did the precedence stacks go?

A similar thing is going on in our interpreter above. You just know that in order for it to do the computa-
tion of arithmetic statements (as opposed to the parsing of them), there have to be numbers pushed onto
a stack somewhere. But where is the stack?

Finally, in compiler textbooks, there are a number of places where stacks and other structures are dis-
cussed. In the other leading parsing method (LR), an explicit stack is used. In fact, the technique is very
much like the old way of doing arithmetic expressions. Another concept is that of a parse tree. Authors
like to draw diagrams of the tokens in a statement, connected into a tree with operators at the interna
nodes. Again, where are the trees and stacks in our technique? We haven't seen any. The answer in all
cases is that the structures are implicit, not explicit. In any computer language, there is a stack involved
every time you call a subroutine. Whenever a subroutine is called, the return address is pushed onto the
CPU stack. At the end of the subroutine, the address is popped back off and control is transferred there.
In arecursive language such as Pascal, there can aso be local data pushed onto the stack, and it, too, re-
turns when it's needed.

For example, function Expr essi on contains alocal parameter called Val ue, whichit fillsby acall to
Ter m Suppose, in its next call to Ter mfor the second argument, that Ter mcalls Fact or, which re-
cursively calls Expr essi on again. That “instance” of Expr essi on gets another value for its copy of
Val ue. What happens to the first Val ue? Answer: it's still on the stack, and will be there again when
we return from our call sequence.

In other words, the reason things look so simple is that we've been making maximum use of the re-
sources of the language. The hierarchy levels and the parse trees are there, all right, but they're hidden
within the structure of the parser, and they're taken care of by the order with which the various proced-
ures are called. Now that you've seen how we do it, it's probably hard to imagine doing it any other way.

30

Interpreters

But | can tell you that it took a lot of years for compiler writers to get that smart. The early compilers
were too complex too imagine. Funny how things get easier with alittle practice.

The reason I've brought al this up is as both a lesson and a warning. The lesson: things can be easy
when you do them right. The warning: take a look at what you're doing. If, as you branch out on your
own, you begin to find area need for a separate stack or tree structure, it may be time to ask yourself if
you're looking at things the right way. Maybe you just aren't using the facilities of the language as well
asyou could be.

The next step is to add variable names. Now, though, we have a dight problem. For the compiler, we
had no problem in dealing with variable names ... we just issued the names to the assembler and let the
rest of the program take care of allocating storage for them. Here, on the other hand, we need to be able
to fetch the values of the variables and return them as the return values of Factor. We need a storage
mechanism for these variables.

Back in the early days of persona computing, Tiny BASIC lived. It had a grand total of 26 possible
variables: one for each letter of the alphabet. Thisfits nicely with our concept of single-character tokens,
so welll try the same trick. In the beginning of your interpreter, just after the declaration of variable
Look, insert the line:

Table: Array['A ..'Z'] of integer;

We also need to initialize the array, so add this procedure:

{ Initialize the Variable Area }
procedure |nitTabl e;
var i: char;
begi n
for i :="'A to'Z do
Table[i] := O;
end;

You must also insert acall to | ni t Tabl e, in procedure | ni t . Don't forget to do that, or the results
may surprise you!

Now that we have an array of variables, we can modify Fact or to useit. Since we don't have away (so
far) to set the variables, Fact or will always return zero values for them, but let's go ahead and extend
it anyway. Here's the new version:

{ Parse and Translate a Math Factor }
function Expression: integer; Forward;
function Factor: integer
begi n
if Look = ' (' then begin
Match(" (");
Fact or : = Expression;
Match(')");
end
else if |sAl pha(Look) then
Fact or := Tabl e[Get Nane]
el se
Factor := Get Num
end;

As always, compile and test this version of the program. Even though all the variables are now zeros, at
least we can correctly parse the complete expressions, as well as catch any badly formed expressions.

| suppose you realize the next step: we need to do an assignment statement so we can put something into

31

Interpreters

the variables. For now, let's stick to one-liners, though we will soon be handling multiple statements.
The assignment statement parallels what we did before:
{ Parse and Transl ate an Assignnent Statenent }

procedure Assignment;
var Name: char;

begi n

Name : = Cet Nane;

Match(' =");

Tabl e[Name] : = Expression;
end;

To test this, | added a temporary write statement in the main program, to print out the value of A. Then |
tested it with various assignmentsto it.

Of course, an interpretive language that can only accept a single line of program is not of much value.
So we're going to want to handle multiple statements. This merely means putting a loop around the call
to Assi gnnent . So let's do that now. But what should be the loop exit criterion? Glad you asked, be-
cause it brings up a point we've been able to ignore up till now.

One of the most tricky things to handle in any translator is to determine when to bail out of a given con-
struct and go look for something else. This hasn't been a problem for us so far because we've only al-
lowed for asingle kind of construct ... either an expression or an assignment statement. When we start
adding loops and different kinds of statements, you'll find that we have to be very careful that things ter-
minate properly. If we put our interpreter in aloop, we need away to quit. Terminating on anewline is
no good, because that's what sends us back for another line. We could always let an unrecognized char-
acter take us out, but that would cause every run to end in an error message, which certainly seems un-
cool.

What we need is a termination character. | vote for Pascal's ending period (.). A minor complication is
that Turbo ends every normal line with two characters, the carriage return (CR) and line feed (LF). At
the end of each line, we need to eat these characters before processing the next one. A natural way to do
this would be with procedure Mat ch, except that Mat ch's error message prints the character, which of
course for the CR and/or LF won't look so great. What we need is a special procedure for this, which
wel'll no doubt be using over and over. Herelitis:

{ Recognize and Skip Over a Newine }
procedure NewLi ne;
begi n
if Look = CR then begin
Get Char;
if Look = LF then
Get Char ;
end;
end;

Insert this procedure at any convenient spot ... | put mine just after Match. Now, rewrite the main pro-
gram to look like this:

{ Main Program}
begi n
Init;
r epeat
Assi gnment ;
NewLi ne;
until Look =".";
end.

32

Interpreters

Note that the test for a CR is now gone, and that there are also no error tests within NewLi ne itself.
That's OK, though ... whatever is |eft over in terms of bogus characters will be caught at the beginning
of the next assignment statement.

WEell, we now have a functioning interpreter. It doesn't do us a lot of good, however, since we have no
way to read datain or write it out. Sure would help to have some I/0!

Let's wrap this session up, then, by adding the 1/O routines. Since we're sticking to single-character
tokens, I'll use ? to stand for a read statement, and ! for a write, with the character immediately follow-
ing them to be used as a one-token “parameter list”. Here are the routines:

{ I'nput Routine }
procedure | nput;
begi n

Mat ch(' ?");
Read(Tabl e[Get Nane]) ;
end;

{ Qutput Routine }
procedure CQutput;
begi n

Match('!");
WitelLn(Tabl e[Get Nane]) ;
end;

They aren't very fancy, | admit ... no prompt character on input, for example ... but they get the job
done.

The corresponding changes in the main program are shown below. Note that we use the usua trick of a
case statement based upon the current lookahead character, to decide what to do.

{ Main Program}
begi n
Init;
r epeat
case Look of
"?'" 1 Input;
"I Qut put;
el se Assignment;
end;
NewLi ne;
until Look = "'.";
end.

You have now completed a real, working interpreter. It's pretty sparse, but it works just like the “big
boys’. It includes three kinds of program statements (and can tell the differencel), 26 variables, and I/O
statements. The only things that it lacks, really, are control statements, subroutines, and some kind of
program editing function. The program editing part, I'm going to pass on. After all, we're not here to
build a product, but to learn things. The control statements, we'll cover in the next chapter , and the sub-
routines soon after. I'm anxious to get on with that, so we'll leave the interpreter as it stands.

| hope that by now you're convinced that the limitation of single-character names and the processing of
white space are easily taken care of, as we did in the last session. Thistime, if you'd like to play around
with these extensions, be my guest ... they're “left as an exercise for the student”. See you next time.

33

Chapter 5. Control Constructs

Installment published 19th August 1988

$Header: /home/radek/cve/lets build a compiler/ch-control-constructs.xml,v 1.4 2004/08/22 09:31:10
radek Exp $

chapter id="control-constructs’

Published on 19 August 1988

$ psselect -p46-67 lets build_a_compiler.ps| foldprn -s24

presbyopic:remark$ psselect -p55-79 lets build_a _compiler.ps| foldprn -s28

Compared to original 2004-08-21.

In the first four chapters of this series, we've been concentrating on the parsing of math expressions and
assignment statements. In this chapter , we'll take off on a new and exciting tangent: that of parsing and
translating control constructs such as IF statements.

This subject is dear to my heart, because it represents a turning point for me. | had been playing with the
parsing of expressions, just as we have done in this series, but | till felt that | was along way from be-
ing able to handle a complete language. After al, real languages have branches and loops and sub-
routines and all that. Perhaps you've shared some of the same thoughts. Awhile back, though, | had to
produce control constructs for a structured assembler preprocessor | was writing. Imagine my surprise to
discover that it was far easier than the expression parsing | had already been through. | remember think-
ing, “Hey! Thisiseasy!” After we've finished this session, I'll bet you'll be thinking so, too.

The Plan

Compared to original 2004-08-21. OK.

In what follows, we'll be starting over again with a bare cradle, and as we've done twice before now,
well build things up one at atime. Welll also be retaining the concept of single-character tokens that has
served us so well to date. This means that the “code” will look a little funny, with i for IF, w for
WHILE, etc. But it helps us get the concepts down pat without fussing over lexical scanning. Fear not
... eventually we'll see something looking like real code.

| aso don't want to have us get bogged down in dealing with statements other than branches, such as the
assignment statements we've been working on. We've already demonstrated that we can handle them, so
there's no point carrying them around as excess baggage during this exercise. So what I'll do instead isto
use an anonymous statement, “other”, to take the place of the non-control statements and serve as a
place-holder for them. We have to generate some kind of object code for them (we're back into compil-
ing, not interpretation), so for want of anything else I'll just echo the character input.

OK, then, starting with yet another copy of the cradle, |et's define the procedure:

{ Recogni ze and Translate an "Qther" }
procedure O her;

begi n

Emi t Ln(Get Nane) ;

end;

Now include a call to it in the main program, thus:

{ Main Program}
begi n

Init;

O her;
end.

Control Constructs

Run the program and see what you get. Not very exciting, isit? But hang in there, it's a start, and things
will get better.

The first thing we need is the ability to deal with more than one statement, since a single-line branch is
pretty limited. We did that in the last session on interpreting, but this time let's get a little more formal.
Consider the following BNF:

<progran® ::= <bl ock> END
<block> ::= [<statenent>]*

This says that, for our purposes here, a program is defined as a block, followed by an END statement. A
block, in turn, consists of zero or more statements. We only have one kind of statement, so far.

What signals the end of a block? It's simply any construct that isn't an “other” statement. For now, that
means only the END statement.

Armed with these ideas, we can proceed to build up our parser. The code for a program (we have to call
it DoPr ogr am or Pascal will complain, is:

{ Parse and Translate a Program}
procedur e DoProgram
begi n

Bl ock;

if Look <> 'e' then Expected('End');
EmitLn(' END)
end;

Notice that I've arranged to emit an END command to the assembler, which sort of punctuates the output
code, and makes sense considering that we're parsing a complete program here.

The code for Bl ock is:

{ Recognize and Translate a Statement Bl ock }
procedure Bl ock;
begi n

while not(Look in ['"e']) do begin
O her;
end;
end;

Note

From the form of the procedure, you just know we're going to be adding to it in a bit!

OK, enter these routines into your program. Replace the call to Bl ock in the main program, by acall to
DoPr ogr am Now try it and see how it works. Well, it's still not much, but we're getting closer.

Some Groundwork

Compared to original 2004-08-22. OK.

Before we begin to define the various control constructs, we need to lay a bit more groundwork. First, a
word of warning: | won't be using the same syntax for these constructs as you're familiar with from Pas-
cal or C. For example, the Pascal syntax for an IFis:

IF <condition> THEN <statement>

35

Control Constructs

Note

where the statement, of course, may be compound.
The C versionis similar:

if (<condition>) <statement>

Instead, I'll be using something that looks more like Ada

IF <condition> <block> ENDIF

In other words, the IF construct has a specific termination symbol. This avoids the dangling-else of Pas-
cal and C and also precludes the need for the brackets {} or begin-end. The syntax I'm showing you
here, in fact, isthat of the language KISS that I'll be detailing in later chapters . The other constructs will
also be dightly different. That shouldn't be a real problem for you. Once you see how it's done, you'll
realize that it really doesn't matter so much which specific syntax is involved. Once the syntax is
defined, turning it into code is straightforward.

Now, all of the constructs we'll be dealing with here involve transfer of control, which at the assembler-
language level means conditional and/or unconditional branches. For example, the smple |F statement

IF <condition> A ENDIFB
must get translated into

Branch if NOT condition to L
A
L: B

It's clear, then, that we're going to need some more procedures to help us deal with these branches. I've
defined two of them below. Procedure Newlabel generates unique labels. This is done via the simple
expedient of caling every label 'Lnn', where nn is a label number starting from zero. Procedure
Post Label just outputsthe labels at the proper place.

Here are the two routines:
{ Generate a Uni que Label }

function NewLabel: string;
var S string;

begi n
Str(LCount, S);
NewLabel :="'L" + S
I nc(LCount);

end;

{ Post a Label To CQutput }
procedure PostLabel (L: string);
begi n

WiteLn(L, ':');

end;

Notice that we've added a new global variable, LCount , so you need to change the VAR declarations at
the top of the program to look like this:

var Look : char; { Lookahead Character }

36

Control Constructs

LCount: integer; { Label Counter }

Also, add the following extrainitializationto | ni t :

LCount := O;

Note

Don't forget that, or your labels can look realy strange!

At this point I'd also like to show you a new kind of notation. If you compare the form of the IF state-
ment above with the assembler code that must be produced, you can see that there are certain actions as-
sociated with each of the keywords in the statement:

IF: First, get the condition and issue the code for it. Then, create a unique label and emit a
branch if false.
ENDIF: | Emit the label.

These actions can be shown very concisely if we write the syntax this way:

I F
<condi ti on> { Condition;
L = NewLabel ;
Em t (Branch False to L); }
<bl ock>
ENDI F { PostLabel (L) }

Thisis an example of syntax-directed trand ation. We've been doing it al along ... we've just never writ-
ten it down this way before. The stuff in curly brackets represents the actions to be taken. The nice part
about this representation is that it not only shows what we have to recognize, but also the actions we
have to perform, and in which order. Once we have this syntax, the code almost writes itself.

About the only thing left to do is to be a bit more specific about what we mean by “Branch if false”.

I'm assuming that there will be code executed for <condi ti on> that will perform Boolean algebra
and compute some result. It should also set the condition flags corresponding to that result. Now, the
usua convention for a Boolean variable is to let 0000 represent “false,” and anything else (some use
FFFF, some 0001) represent “true.”

On the 68000 the condition flags are set whenever any datais moved or calculated. If the dataisa 0000
(corresponding to a false condition, remember), the zero flag will be set. The code for “Branch on zero”
isBEQ. So for our purposes here,

BEQ <=> Branch if false
BNE <=> Branch if true

It's the nature of the beast that most of the branches we see will be BEQs ... we'll be branching around
the code that's supposed to be executed when the condition istrue.

The IF Statement
Compared to original 2004-08-22. OK.

With that bit of explanation out of the way, we're finally ready to begin coding the |F-statement parser.
In fact, we've almost aready doneit! Asusual, I'll be using our single-character approach, with the char-

37

Control Constructs

acter i for IF, and e for ENDIF (as well as END ... that dual nature causes no confusion). I'll also, for
now, skip completely the character for the branch condition, which we till have to define.

The codefor Dol f is:

{ Recogni ze and Translate an I F Construct }
procedure Bl ock; Forward;
procedure Dol f;
var L: string;
begi n
Match('i');
L := NewLabel ;
Condi ti on;
EmtLn('BEQ "' + L);
Bl ock;
Match('e');
Post Label (L) ;
end;

Add this routine to your program, and change Bl ock to referenceit as follows:

{ Recognize and Translate a Statement Bl ock }
procedure Bl ock;
begi n
while not(Look in ['"e']) do begin
case Look of
"i': Dolf;
"o': Oher;
end;
end;
end;

Notice the reference to procedure Condi ti on. Eventualy, well write a routine that can parse and
trandlate any Boolean condition we care to give it. But that's a whole installment by itself (the next one,
in fact). For now, let's just make it a dummy that emits some text. Write the following routine:

{ Parse and Transl ate a Bool ean Condition }
{ This version is a dunmy }

Procedure Conditi on;

begi n

Em tLn(' <condition>');

end;

Insert this procedure in your program just before Dol f . Now run the program. Try a string like
ai bece
As you can see, the parser seems to recognize the construct and inserts the object code at the right

places. Now try a set of nested IF's, like

ai bi cedef e

It's starting to look real, eh?

Now that we have the general idea (and the tools such as the notation and the procedures Newlabel
and Post Label), it's a piece of cake to extend the parser to include other constructs. The first (and
also one of the trickiest) isto add the EL SE clauseto IF. The BNF is

38

Control Constructs

| F <condition> <block> [ELSE <bl ock>] ENDI F

The tricky part arises ssimply because there is an optional part, which doesn't occur in the other con-
structs.

The corresponding output code should be

<condi ti on>
BEQ L1
<bl ock>
BRA L2

L1: <bl ock>

L2: .

Thisleads us to the following syntax-directed translation:

I F

<condi ti on> { L1 = NewlLabel
L2 = NewlLabel
Em t (BEQ L1) }

<bl ock>

ELSE { Emt(BRA L2);
Post Label (L1) }

<bl ock>

ENDI F { PostLabel (L2) }

Comparing this with the case for an ELSE-less IF gives us a clue as to how to handle both situations.
The code below does it. (Note that | use an | for the EL SE, since e is otherwise occupied):

{ Recogni ze and Translate an | F Construct }
procedure Dol f;
var L1, L2: string;
begi n
Match('i');
Condi ti on;
L1 : = NewlLabel;
L2 := L1,
EmtLn('BEQ "' + L1);
Bl ock;
if Look = '1' then begin
Match('1");
L2 : = NewlLabel;
EmitLn('BRA ' + L2);
Post Label (L1);
Bl ock;
end;
Match('e');
Post Label (L2);
end;

Thereyou haveit. A complete | F parser/trandator, in 19 lines of code.
Giveit atry now. Try something like

ai bl cede

Did it work? Now, just to be sure we haven't broken the EL SE-less case, try

39

Control Constructs

ai bece

Now try some nested IF's. Try anything you like, including some badly formed statements. Just remem-
ber that eisnot alegal “other” statement.

The WHILE Statement

Compared to original 2004-08-22. OK.

The next type of statement should be easy, since we aready have the process down pat. The syntax I've
chosen for the WHILE statement is

WHI LE <condition> <bl ock> ENDWHI LE

I know, | know, we don't really need separate kinds of terminators for each construct ... you can see that
by the fact that in our one-character version, eis used for all of them. But | also remember many debug-
ging sessions in Pascal, trying to track down a wayward END that the compiler obviously thought |
meant to put somewhere else. It's been my experience that specific and unique keywords, although they
add to the vocabulary of the language, give a bit of error-checking that is worth the extra work for the
compiler writer.

Now, consider what the WHILE should be translated into. It should be:

L1: <condi ti on>
BEQ L2
<bl ock>
BRA L1

L2:

As before, comparing the two representations gives us the actions needed at each point.

VWH LE { L1 = NewLabel;
Post Label (L1)

<condi ti on> { Emt(BEQ L2) }

<bl ock>

ENDWHI LE { Emit(BRA L1);

Post Label (L2) }

The code follows immediately from the syntax:

{ Parse and Translate a WH LE Statenent }
procedure DoWil e;
var L1, L2: string;
begi n
Match('w);
L1 : = NewlLabel;
L2 : = NewlLabel ;
Post Label (L1);
Condi ti on;
EmtLn('BEQ ' + L2);
Bl ock;
Match('e');
EmtLn('BRA ' + L1);
Post Label (L2);
end;

Since we've got a new statement, we have to add acall to it within procedure Bl ock:

40

Control Constructs

{ Recognize and Translate a Statement Bl ock }
procedure Bl ock;
begi n
while not(Look in['e', "I']) do begin
case Look of
"i': Dolf;
"W : DoWhile;
el se Ot her;
end;
end;
end;

No other changes are necessary.

OK, try the new program. Note that this time, the <condition> code is inside the upper label, which is
just where we wanted it. Try some nested loops. Try some loops within IF's, and some IF's within loops.
If you get a bit confused as to what you should type, don't be discouraged: you write bugs in other lan-
guages, too, don't you? It'll look alot more meaningful when we get full keywords.

| hope by now that you're beginning to get the idea that this really is easy. All we have to do to acco-
modate a new construct is to work out the syntax-directed trandlation of it. The code almost falls out
from there, and it doesn't affect any of the other routines. Once you've gotten the feel of the thing, you'll
see that you can add new constructs about as fast as you can dream them up.

The LOOP Statement

Compared to original 2004-08-22. OK.

We could stop right here, and have a language that works. It's been shown many times that a high-order
language with only two constructs, the IF and the WHILE, is sufficient to write structured code. But
were on aroll now, so let's richen up the repertoire a bit.

This construct is even easier, since it has no condition test at al ... it's an infinite loop. What's the point
of such aloop? Not much, by itself, but later on we're going to add a BREAK command, that will give
us a way out. This makes the language considerably richer than Pascal, which has no break, and also
avoidsthe funny whi | e(1) or WHI LE TRUE of C and Pascal.

The syntax is simply

LOOP <bl ock> ENDLOOP

and the syntax-directed trandation is:

LOOP { L = NewLabel;
Post Label (L) }

<bl ock>

ENDL OOP { Emt(BRA L }

The corresponding code is shown below. Since I've aready used | for the ELSE, I've used the last | etter,
p, as the “keyword” thistime.

{ Parse and Translate a LOOP Statenent }
procedure DolLoop;
var L: string;
begi n
Match(' p');
L : = NewLabel;
Post Label (L);

41

Control Constructs

Bl ock;

Match('e');
EmtLn('BRA ' + L);
end;

When you insert thisroutine, don't forget to add alinein Bl ock to call it.

Repeat - Until
Compared to original 2004-08-22. OK.
Here's one construct that | lifted right from Pascal. The syntax is

REPEAT <bl ock> UNTIL <condition>

and the syntax-directed trandation is:

REPEAT { L = NewLabel;
Post Label (L) }

<bl ock>

UNTI L

<condi ti on> { EmMt(BEQL) }

Asusual, the code falls out pretty easily:

{ Parse and Transl ate a REPEAT Statenent }
procedur e DoRepeat;
var L: string;
begi n
Match('r');
L : = NewlLabel ;
Post Label (L) ;
Bl ock;
Mat ch('u');
Condi ti on;
EmtLn('BEQ "' + L);
end;

As before, we have to add the call to DoRepeat within Bl ock. Thistime, there's a difference, though.
| decided to use r for REPEAT (naturally), but | also decided to use u for UNTIL. This means that the u
must be added to the set of characters in the while-test. These are the characters that signal an exit from
the current block ... the “follow” characters, in compiler jargon.

{ Recognize and Translate a Statenent Bl ock }
procedure Bl ock;

begi n
while not(Look in['e'", '"I', "u']) do begin
case Look of
"i': Dolf;
"W DoWil e;
"p': DoLoop;
"r': DoRepeat;
el se O her;
end;
end;
end;

42

Control Constructs

The FOR Loop

Compared to original 2004-08-22. OK.

The FOR loop is a very handy one to have around, but it's a bear to translate. That's not so much because
the construct itself ishard ... it'sonly aloop after al ... but simply because it's hard to implement in as-
sembler language. Once the code is figured out, the translation is straightforward enough.

C fans love the FOR-loop of that language (and, in fact, it's easier to code), but I've chosen instead a
syntax very much like the one from good ol' BASIC:

FOR <i dent> = <expr1> TO <expr 2> <bl ock> ENDFOR

The trandation of a FOR loop can be just about as difficult as you choose to make it, depending upon
the way you decide to define the rules as to how to handle the limits. Does <expr 2> get evaluated
every time through the loop, for example, or is it treated as a constant limit? Do you aways go through
the loop at least once, as in FORTRAN, or not? It gets simpler if you adopt the point of view that the
construct is equivalent to:

<i dent> = <exprl>
TEMP = <expr 2>

VWH LE <ident> <= TEMP
<bl ock>

ENDVWHI LE

Notice that with this definition of the loop, <bl ock> will not be executed at all if <expr 1> isinitially
larger than <expr 2>.

The 68000 code needed to do thisis trickier than anything we've done so far. | had a couple of tries at it,
putting both the counter and the upper limit on the stack, both in registers, etc. | finally arrived at a hy-
brid arrangement, in which the loop counter is in memory (so that it can be accessed within the loop),
and the upper limit is on the stack. The translated code came out like this:

<i dent > get nanme of |oop counter
<expr 1> get initial value
LEA <i dent>(PC), A0 address the | oop counter
SUBQ #1, DO predecrenent it
MOVE DO, (AO0) save it
<expr 1> get upper limt
MOVE DO, - (SP) save it on stack
L1: LEA <i dent >(PC), A0 address | oop counter
MOVE (AO), DO fetch it to DO
ADDQ #1, DO bunp the counter
MOVE DO, (AO) save new val ue
CwWP (SP), DO check for range
BLE L2 skip out if DO > (SP)
<bl ock>
BRA L1 | oop for next pass
L2: ADDQ #2, SP cl ean up the stack

Wow! That seems like alot of code ... the line containing <bl ock> seemsto almost get lost. But that's
the best | could do with it. | guessit helpsto keep in mind that it's really only sixteen words, after al. If
anyone else can optimize this better, please let me know.

Still, the parser routine is pretty easy now that we have the code:

{ Parse and Translate a FOR Statement }
pr ocedur e DoFor;

43

Control Constructs

var L1, L2: string;

Name: char;
begi n
Match(' f');

L1 : = NewlLabel;

L2 : = NewLabel;

Name : = Cet Nane;

Mat ch(' =");

Expr essi on;

EmtLn(' SUBQ #1, D0');

EmtLn('LEA " + Name + ' (PC), A0');
EmtLn(' MOVE DO, (A0)"');

Expr essi on;

EmtLn(' MOVE DO,-(SP)");

Post Label (L1);

EmtLn('LEA ' + Nane + ' (PC),A0");
Em tLn(' MOVE (AO), DO");

Em tLn(' ADDQ #1, D0');

Em tLn(' MOVE DO, (AO)');
EmtLn(' CVMP (SP), D0");
EmitLn('BGT ' + L2);

Bl ock;

Match('e');

EmtLn('BRA ' + L1);

Post Label (L2);

dEm’ tLn(' ADDQ #2, SP');

end;

Since we don't have expressions in this parser, | used the same trick as for Condi t i on, and wrote the
routine

{ Parse and Transl ate an Expression }
{ This version is a dunmy }

Procedur e Expression;

begi n

Em tLn(' <expr>');

end;

Give it atry. Once again, don't forget to add the cal in Bl ock. Since we don't have any input for the
dummy version of Expr essi on, atypica input line would look something like

af i =bece

Well, it does generate alot of code, doesn't it? But at least it's the right code.

The DO statement

Compared to original 2004-08-22. OK.

All this made me wish for a simpler version of the FOR loop. The reason for all the code above is the
need to have the loop counter accessible as a variable within the loop. If all we need is a counting loop
to make us go through something a specified number of times, but don't need access to the counter itself,
there is a much easier solution. The 68000 has a decrement and branch nonzero instruction built in
which isideal for counting. For good measure, let's add this construct, too. This will be the last of our
loop structures.

The syntax and itstrandation is:

DO
<expr > { Emit(SUBQ #1, D0);

44

Control Constructs

L = NewLabel ;
Post Label (L) ;
Emi t (MOVE DO, - (SP) }
<bl ock>
ENDDO { Emt(MOVE (SP)+, DO;
Emi t (DBRA DO, L) }

That's quite abit simpler! The loop will execute <expr > times. Here's the code:

{ Parse and Translate a DO Statenent }
procedur e Dodo;
var L: string;
begi n
Match('d');
L : = NewlLabel ;
Expr essi on;
EmtLn(' SUBQ #1, D0');
Post Label (L);
EmtLn(' MOVE DO, -(SP)');
Bl ock;
Em tLn(' MOVE (SP)+, D0');
EmtLn(' DBRA DO,' + L);
end;

| think you'll have to agree, that's a whole lot simpler than the classical FOR. Still, each construct has its
place.

The BREAK Statement

Compared to original 2004-08-22. OK.

Earlier | promised you a BREAK statement to accompany LOOP. Thisis one I'm sort of proud of. On
the face of it a BREAK seems really tricky. My first approach was to just use it as an extra terminator to
Bl ock, and split all the loops into two parts, just as| did with the EL SE half of an |IF. That turns out not
to work, though, because the BREAK statement is almost certainly not going to show up at the same
level asthe loop itself. The most likely place for a BREAK isright after an IF, which would cause it to
exit to the IF construct, not the enclosing loop. Wrong. The BREAK has to exit the inner LOOP, even if
it's nested down into severa levels of IFs.

My next thought was that | would just store away, in some global variable, the ending label of the inner-
most loop. That doesn't work either, because there may be a break from an inner loop followed by a
break from an outer one. Storing the label for the inner loop would clobber the label for the outer one.
So the global variable turned into a stack. Things were starting to get messy.

Then | decided to take my own advice. Remember in the last session when | pointed out how well the
implicit stack of a recursive descent parser was serving our needs? | said that if you begin to see the
need for an external stack you might be doing something wrong. Well, | was. It isindeed possible to let
the recursion built into our parser take care of everything, and the solution is so simple that it's surpris-

ing.

The secret isto note that every BREAK statement has to occur within ablock ... there's no place else for
it to be. So all we have to do isto pass into Bl ock the exit address of the innermaost loop. Then it can
pass the address to the routine that transates the break instruction. Since an IF statement doesn't change
the loop level, procedure Dol f doesn't need to do anything except pass the labdl into its blocks (both of
them). Since loops do change the level, each loop construct simply ignores whatever label is above it
and passes its own exit label along.

All this is easier to show you than it is to describe. I'll demonstrate with the easiest loop, which is

45

Control Constructs

LOOP:

{ Parse and Translate a LOOP Statement }
procedure DolLoop;
var L1, L2: string;
begi n
Match(' p');
L1 : = NewlLabel;
L2 : = NewlLabel ;
Post Label (L1);
Bl ock(L2);
Match('e');
EmtLn('BRA ' + L1);
Post Label (L2);
end;

Notice that DoLoop now has two labels, not just one. The second is to give the BREAK instruction a
target to jump to. If there is no BREAK within the loop, we've wasted a label and cluttered up things a
bit, but there's no harm done.

Note also that Bl ock now has a parameter, which for loops will always be the exit address. The new
version of Bl ock is:

{ Recognize and Translate a Statenment Bl ock }
procedure Bl ock(L: string);

begi n
while not(Look in['e', "I', "u']) do begin
case Look of
"i': Dolf(L);
"W : DoWil e;
'"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se O her;
end;
end;
end;

Again, notice that all Bl ock does with the label isto passit into Dol f and DoBr eak. The loop con-
structs don't need it, because they are going to pass their own label anyway.

The new version of Dolf is:

{ Recogni ze and Translate an I F Construct }
procedure Bl ock(L: string); Forward,;
procedure Dol f(L: string);
var L1, L2: string;
begi n
Match('i');
Condi ti on;
L1 : = NewlLabel;
L2 := L1,
EmtLn('BEQ "' + L1);
Bl ock(L);
if Look = '1' then begin
Match('1");
L2 : = NewlLabel;
EmitLn('BRA ' + L2);
Post Label (L1);

46

Control Constructs

Bl ock(L);
end;
Match('e');
Post Label (L2);
end;

Here, the only thing that changes is the addition of the parameter to procedure Bl ock. An |F statement
doesn't change the loop nesting level, so Dol f just passes the label along. No matter how many levels
of IF nesting we have, the same label will be used.

Now, remember that DoPr ogr amalso calls Bl ock, so it now needs to pass it a label. An attempt to
exit the outermost block is an error, so DoPr ogr ampasses a null 1abel which is caught by DoBr eak:

{ Recogni ze and Transl ate a BREAK }
procedure DoBreak(L: string);
begi n

Match('b');

if L <>"'" then

EmtLn('BRA " + L)
OIelse Abort('No loop to break from);
end;

{ Parse and Translate a Program }
procedur e DoProgram
begi n

Bl ock('"');

if Look <> 'e' then Expected('End');
Em tLn(' END)
end;

That almost takes care of everything. Giveit atry, seeif you can “break” it <pun>. Careful, though. By
this time we've used so many letters, it's hard to think of characters that aren't now representing reserved
words. Remember: before you try the program, you're going to have to edit every occurence of Bl ock
in the other loop constructs to include the new parameter. Do it just like | did for LOOP.

| said almost above. There is one dight problem: if you take a hard look at the code generated for DO,
you'll see that if you break out of this loop, the value of the loop counter is till left on the stack. We're
going to have to fix that! A shame ... that was one of our smaller routines, but it can't be helped. Here's
aversion that doesn't have the problem:

{ Parse and Translate a DO Statenent }
procedur e Dodo;
var L1, L2: string;
begi n
Match('d');
L1 : = NewlLabel;
L2 : = NewLabel;
Expr essi on;
Em tLn(' SUBQ #1, D0');
Post Label (L1);
EmtLn(' MOVE DO, -(SP)');
Bl ock(L2);
Em tLn(' MOVE (SP)+, DO");
EmitLn(' DBRA DO,' + L1);
Em tLn(' SUBQ #2, SP');
Post Label (L2);
dEm’ tLn(' ADDQ #2, SP');
end;

The two extrainstructions, the SUBQand ADDQ, take care of leaving the stack in the right shape.

47

Control Constructs

Conclusion

Compared to original 2004-08-22. OK.

At this point we have created a number of control constructs ... aricher set, really, than that provided by
almost any other programming language. And, except for the FOR loop, it was pretty easy to do. Even
that one was tricky only because it's tricky in assembler language.

I'll conclude this session here. To wrap the thing up with a red ribbon, we really should have a go at hav-
ing real keywords instead of these mickey-mouse single-character things. You've aready seen that the
extension to multi-character words is not difficult, but in this case it will make a big difference in the ap-
pearance of our input code. I'll save that little bit for the next chapter . In that chapter we'll also address
Boolean expressions, so we can get rid of the dummy version of Condi t i on that we've used here. See
you then.

For reference purposes, here is the completed parser for this session:
pr ogr am Br anch;

{ Constant Declarations }

const TAB = ~I;
CR ="M
{ Variable Declarations }
var Look : char; { Lookahead Character }
Lcount: integer; { Label Counter }

{ Read New Character From|nput Stream}
procedure GCet Char;

begi n

Read(Look) ;

end;

{ Report an Error
procedure Error(s: string);
begi n
WiteLn;
WiteLn("G 'FError: ', s, '.');
end;

{ Report Error and Halt }
procedure Abort(s: string);
begi n

Error(s);

Hal t;
end;

{ Report What WAs Expected }
procedure Expected(s: string);
begi n

Abort(s + ' Expected');
end;

{ Match a Specific Input Character }
procedure Match(x: char);
begi n

if Look = x then GetChar
el se Expected(''"" + x + """");
end;

{ Recogni ze an Al pha Character }
function IsAl pha(c: char): bool ean;
begi n

48

Control Constructs

| sAl pha := UpCase(c) in['"A.."Z'];
end;

{ Recognize a Decimal Digit
function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Addop }

function IsAddop(c: char): bool ean;
begi n

IsAddop :=cin ["+, "-'];

end;

{ Recogni ze Wiite Space }

function IsWiite(c: char): bool ean;
begi n

Is\White :=cin [" ', TAB];

end;

{ Skip Over Leading Wite Space }
procedure SkipWite;
begi n
whil e 1 sWite(Look) do
Get Char;
end;

{ Get an ldentifier }

function Get Nane: char;

begi n
if not IsAl pha(Look) then Expected(' Nanme');
Get Name : = UpCase(Look);

Get Char ;

end;

{ Get a Nunber }

function Get Num char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;

Cet Char ;

end;

{ CGenerate a Uni que Label }
function NewLabel : string;
var S: string;

begi n
Str(LCount, S);
NewLabel :="'L'" + S
I nc(LCount);

end;

{ Post a Label To Cut put
procedure PostlLabel (L: string);
begi n

WitelLn(L, ':');

end;

{ Qutput a String with Tab }
procedure Enmit(s: string);
begi n

Wite(TAB, s);

end;

49

Control Constructs

{ Qutput a String with Tab and CRLF }
procedure EmitLn(s: string);
begi n
Emt(s);
WiteLn;
end;

{ Parse and Transl ate a Bool ean Condition }
procedure Conditi on;

begi n

Em tLn(' <condition>");

end;

{ Parse and Translate a Math Expression }
procedure Expression;

begi n

Em tLn(' <expr>');

end;

{ Recogni ze and Translate an I F Construct }
procedure Bl ock(L: string); Forward,;
procedure Dol f(L: string);
var L1, L2: string;
begi n
Match('i');
Condi ti on;
L1 : = NewlLabel;
L2 := L1,
EmtLn('BEQ "' + L1);
Bl ock(L);
if Look = '1' then begin
Match('1");
L2 : = NewlLabel;
EmitLn('BRA ' + L2);
Post Label (L1);
Bl ock(L);
end;
Match('e');
Post Label (L2);
end;

{ Parse and Translate a WH LE St at enent }
procedure DoWhil e;
var L1, L2: string;
begi n
Match('w);
L1 : = NewlLabel;
L2 := NewlLabel ;
Post Label (L1);
Condi ti on;
EmtLn('BEQ "' + L2);
Bl ock(L2);
Match('e');
EmtLn('BRA " + L1);
Post Label (L2);
end;

{ Parse and Translate a LOOP Statenent }
procedure DolLoop;
var L1, L2: string;
begi n
Match(' p');
L1 : = NewlLabel;
L2 : = NewlLabel;
Post Label (L1);

50

Control Constructs

Bl ock(L2);
Match('e');
EmtLn('BRA ' + L1);
Post Label (L2);

end;

{ Parse and Transl ate a REPEAT Statemnent }
procedur e DoRepeat;
var L1, L2: string;
begi n
Match('r');
L1 : = NewlLabel;
L2 := NewlLabel ;
Post Label (L1);
Bl ock(L2);
Match('u');
Condi ti on;
EmtLn('BEQ "' + L1);
Post Label (L2);
end;

{ Parse and Translate a FOR Statenent }
procedur e DoFor;
var L1, L2: string;
Name: char;
begi n
Match('f');
L1 : = NewlLabel;
L2 : = NewlLabel ;
Name : = Cet Nane;
Match(' =');
Expr essi on;
Em tLn(' SUBQ #1, D0');
EmtLn('LEA " + Name + ' (PC), A0");
Em tLn(' MOVE DO, (A0)"');
Expr essi on;
EmtLn(' MOVE DO, -(SP)");
Post Label (L1);
EmtLn('LEA ' + Nane + ' (PC),A0");
Em tLn(' MOVE (AO), DO");
Em tLn(' ADDQ #1, D0');
Em tLn(' MOVE DO, (AO)');
EmtLn(' CVWP (SP), D0");
EmitLn(' BGT ' + L2);
Bl ock(L2);
Match('e');
EmitLn('BRA ' + L1);
Post Label (L2);
Enmit Ln(' ADDQ #2, SP');
end;

{ Parse and Translate a DO Statenent }
procedur e Dodo;
var L1, L2: string;
begi n
Mat ch('d");
L1 : = NewlLabel ;
L2 := NewlLabel ;
Expr essi on;
Em tLn(' SUBQ #1,D0");
Post Label (L1);
Em tLn(' MOVE DO, -(SP)");
Bl ock(L2);
Em tLn(' MOVE (SP)+, D0');
Em tLn(' DBRA DO,"' + L1);

51

Control Constructs

Em tLn(' SUBQ #2, SP');
Post Label (L2);

Em tLn(' ADDQ #2, SP');
end;

{ Recogni ze and Transl ate a BREAK }
procedure DoBreak(L: string);
begi n
Mat ch(' b");
EmtLn('BRA ' + L);
end;

{ Recognize and Translate an "Qther" }
procedure O her;

begi n

Em t Ln(Get Nane) ;

end;

{ Recognize and Translate a Statement Bl ock }
procedure Bl ock(L: string);

begi n
while not(Look in['e", '"I', "u']) do begin
case Look of
"i': Dolf(L);
"w: DoWwhil e;
"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se Ot her;
end;
end;
end;

{ Parse and Translate a Program }
procedur e DoProgram
begi n

Bl ock('"');

if Look <> 'e' then Expected('End');
Em tLn(' END)
end;

{ Initialize }
procedure Init;
begi n

LCount := O;
Get Char;
end;

{ Main Program}
begi n

Init;

DoPr ogr am
end.

52

Chapter 6. Boolean Expressions

Installment published 31st August 1988.

$Header: /home/radek/cvs/lets build a compiler/ch-boolean-expressionsxml,y 1.2 2004/08/21
09:57:04 radek Exp $

chapter id="boolean-expressions’

Published on 31 August 1988

$ psselect -p68-82 lets build_a_compiler.ps| foldprn -s16

presbyopic:remark$ psselect -p80-96 lets build_a _compiler.ps| foldprn -s20

Compared to original 2004-08-23.

In Chapter 5, Control Constructs of this series, we took alook at control constructs, and developed pars-
ing routines to translate them into object code. We ended up with anice, relatively rich set of constructs.

As we |eft the parser, though, there was one big hole in our capabilities: we did not address the issue of
the branch condition. To fill the void, | introduced to you a dummy parse routine called Condi t i on,
which only served as a place-keeper for the real thing.

One of the things we'll do in this session isto plug that hole by expanding Condi t i on into atrue pars-
er/trandlator.

The Plan

Compared to original 2004-08-23. OK.

WEe're going to approach this chapter a bit differently than any of the others. In those other chapters, we
started out immediately with experiments using the Pascal compiler, building up the parsers from very
rudimentary beginnings to their final forms, without spending much time in planning beforehand. That's
called coding without specs, and it's usually frowned upon. We could get away with it before because
the rules of arithmetic are pretty well established ... we know what a + sign is supposed to mean without
having to discuss it at length. The same is true for branches and loops. But the ways in which program-
ming languages implement logic vary quite a bit from language to language. So before we begin serious
coding, we'd better first make up our minds what it is we want. And the way to do that is at the level of
the BNF syntax rules (the grammar).

The Grammar

Compared to original 2004-08-23. OK.

For some time now, we've been implementing BNF syntax equations for arithmetic expressions, without
ever actually writing them down all in one place. It's time that we did so. They are:

<expression> ::= <unary op> <ternmpr [<addop> <ternp]*

<terne = <factor> [<nmul op> factor]*
<factor> = <integer> | <variable> | (<expression>)
Note

Remember, the nice thing about this grammar is that it enforces the operator precedence hier-
archy that we normally expect for algebra

Actually, while we're on the subject, 1'd like to amend this grammar a bit right now. The way weve
handled the unary minusis a bit awkward. I've found that it's better to write the grammar this way:

<expr essi on>
<termp

<ternp [<addop> <ternp]*
<signed factor> [<mul op> factor]*

53

Boolean Expressions

<signed factor> ::
<factor> :

[<addop>] <factor>
<integer> | <variable> | (<expression>)

This puts the job of handling the unary minus onto Fact or , which iswhereit really belongs.

This doesn't mean that you have to go back and recode the programs you've aready written, although
you'refreeto do so if you like. But | will be using the new syntax from now on.

Now, it probably won't come as a shock to you to learn that we can define an analogous grammar for
Boolean algebra. A typical set or rulesis:

<b- expressi on>: :
<b-terme -
<not -f act or >
<b-factor>

<b-termr [<orop> <b-ternp]*

<not -factor> [AND <not -factor>]*

[NOT] <b-factor>

<b-literal> | <b-variable> | (<b-expression>)

Notice that in this grammar, the operator AND is analogous to *, and OR (and exclusive OR) to +. The
NOT operator is analogous to a unary minus. This hierarchy is not absolutely standard ... some lan-
guages, notably Ada, treat al logical operators as having the same precedence level ... but it seems nat-
ural.

Notice also the slight difference between the way the NOT and the unary minus are handled. In algebra,
the unary minus is considered to go with the whole term, and so never appears but once in a given term.
So an expression like

a*-b

or worse yet,

a--b

is not allowed. In Boolean algebra, though, the expression
aAND NOT b

makes perfect sense, and the syntax shown alows for that.

Relops

Compared to original 2004-08-23. OK.

OK, assuming that you're willing to accept the grammar I've shown here, we now have syntax rules for
both arithmetic and Boolean algebra. The sticky part comes in when we have to combine the two. Why
do we have to do that? Well, the whole subject came up because of the need to process the “predicates”
(conditions) associated with control statements such as the IF. The predicate is required to have a
Boolean value; that is, it must evaluate to either TRUE or FALSE. The branch is then taken or not taken,
depending on that value. What we expect to see going on in procedure Condi t i on, then, is the evalu-
ation of a Boolean expression.

But there's more to it than that. A pure Boolean expression can indeed be the predicate of a control state-
ment ... thingslike

IFaAND NOT b THEN ...

But more often, we see Boolean algebra show up in such things as

IF (x >=0) and (x <= 100) THEN ...

Boolean Expressions

Here, the two terms in parens are Boolean expressions, but the individual terms being compared: x, O,
and 100, are numeric in nature. The relational operators >= and <= are the catalysts by which the
Boolean and the arithmetic ingredients get merged together.

Now, in the example above, the terms being compared are just that: terms. However, in general each
side can be amath expression. So we can define arelation to be:

<rel ation> ::= <expression> <rel op> <expressi on>

where the expressions we're talking about here are the old numeric type, and the relops are any of the
usual symbols

= <> (or !:), <, >, <= and >=

If you think about it a bit, you'll agree that, since this kind of predicate has a single Boolean value, TRUE
or FALSE, as its result, it is really just another kind of factor. So we can expand the definition of a
Boolean factor above to read:

<b-factor> ::= <b-literal >
| <b-variabl e>
| (<b-expression>)
| <relation>

That's the connection! The relops and the relation they define serve to wed the two kinds of algebra. It is
worth noting that thisimplies a hierarchy where the arithmetic expression has a higher precedence that a
Boolean factor, and therefore than al the Boolean operators. If you write out the precedence levels for
all the operators, you arrive at the following list:

Level |Syntax Element Operator

0 factor literal, variable

1 signed factor unary minus

2 term *

3 expression +, -

4 b-factor literal, variable, relop
5 not-factor NOT

6 b-term AND

7 b-expression OR, XOR

If we're willing to accept that many precedence levels, this grammar seems reasonable. Unfortunately, it
won't work! The grammar may be great in theory, but it's no good at al in the practice of a top-down
parser. To see the problem, consider the code fragment:

IF ((((((A+B+C <0) AND ..

When the parser is parsing this code, it knows after it seesthe IF token that a Boolean expression is sup-
posed to be next. So it can set up to begin evaluating such an expression. But the first expression in the
example is an arithmetic expression, A + B + C. What's worse, at the point that the parser has read
this much of the input line:

IE (CCCCCA

it still has no way of knowing which kind of expression it's dealing with. That won't do, because we

55

Boolean Expressions

must have different recognizers for the two cases. The situation can be handled without changing any of
our definitions, but only if we're willing to accept an arbitrary amount of backtracking to work our way
out of bad guesses. No compiler writer in his right mind would agree to that.

What's going on hereis that the beauty and elegance of BNF grammar has met face to face with the real-
ities of compiler technology.

To deal with this situation, compiler writers have had to make compromises so that a single parser can
handle the grammar without backtracking.

Fixing The Grammar

Compared to original 2004-08-23. OK.

The problem that we've encountered comes up because our definitions of both arithmetic and Boolean
factors permit the use of parenthesized expressions. Since the definitions are recursive, we can end up
with any number of levels of parentheses, and the parser can't know which kind of expression it's deal-
ing with.

The solution is simple, although it ends up causing profound changes to our grammar. We can only al-
low parentheses in one kind of factor. The way to do that varies considerably from language to lan-
guage. Thisis one place where there is no agreement or convention to help us.

When Niklaus Wirth designed Pascal, the desire was to limit the number of levels of precedence (fewer
parse routines, after al). So the OR and exclusive OR operators are treated just like an Addop and pro-
cessed at the level of amath expression. Similarly, the AND istreated like a Mul op and processed with
Ter m The precedence levels are

Level |Syntax Element Operator

0 factor literal, variable

1 signed factor unary minus, NOT
2 term * [, AND

3 expression +, -, OR

Notice that there is only one set of syntax rules, applying to both kinds of operators. According to this
grammar, then, expressions like

x + (y AND NOT z) DIV 3

are perfectly legal. And, in fact, they are ... as far as the parser is concerned. Pascal doesn't allow the
mixing of arithmetic and Boolean variables, and things like this are caught at the semantic level, when it
comes time to generate code for them, rather than at the syntax level.

The authors of C took a diametrically opposite approach: they treat the operators as different, and have
something much more akin to our seven levels of precedence. In fact, in C there are no fewer than 17
levels! That's because C also has the operators =, += and its kin, <<, >>, ++, --, etc. Ironically, athough
in C the arithmetic and Boolean operators are treated separately, the variables are not ... there are no
Boolean or logical variablesin C, so a Boolean test can be made on any integer value.

WEe'll do something that's sort of in-between. I'm tempted to stick mostly with the Pascal approach, since
that seems the simplest from an implementation point of view, but it results in some funnies that | never
liked very much, such as the fact that, in the expression

IF(c>="A) and (c<="Z") then ...

the parens above are required. | never understood why before, and neither my compiler nor any human
ever explained it very well, either. But now, we can al see that the and operator, having the precedence

56

Boolean Expressions

of amultiply, has a higher one than the relational operators, so without the parens the expression is equi-
vaenttol F ¢ >= (" A and c) <= 'Z' then whichdoesn't make sense.

In any case, I've elected to separate the operators into different levels, although not as many asin C.

<b-terns [<orop> <b-ternp]*
<not -factor> [AND <not - factor>]*

<b- fact or >
<b-literal> | <b-variable> | <relation>
| <expression> [<rel op> <expression]
<ternt [<addop> <ternp]*

<b- expressi on> ::
<b-ternp :
<not - f act or >
<b-f act or >
<rel ati on>
<expressi on>

<terne .. = <signed factor> [<nmul op> factor]*
<si gned factor>::= [<addop>] <factor>
<factor> : <integer> | <variable> | (<b-expression>)

This grammar results in the same set of seven levels that | showed earlier. Redly, it's aimost the same
grammar ... | just removed the option of parenthesized b-expressions as a possible b-factor, and added
therelation as alegal form of b-factor.

There is one subtle but crucia difference, which is what makes the whole thing work. Notice the square
brackets in the definition of arelation. This means that the relop and the second expression are optional.

A strange consequence of this grammar (and one shared by C) is that every expression is potentially a
Boolean expression. The parser will always be looking for a Boolean expression, but will “settle” for an
arithmetic one. To be honest, that's going to slow down the parser, because it has to wade through more
layers of procedure calls. That's one reason why Pascal compilers tend to compile faster than C com-
pilers. If it's raw speed you want, stick with the Pascal syntax.

The Parser

Compared to original 2004-08-23. OK.

Now that we've gotten through the decision-making process, we can press on with development of a
parser. You've done this with me several times now, so you know the drill: we begin with a fresh copy
of the cradle, and begin adding procedures one by one. So let'sdo it.

We begin, as we did in the arithmetic case, by dealing only with Boolean literals rather than variables.
This gives us a new kind of input token, so we're also going to need a new recognizer, and a new pro-
cedure to read instances of that token type. Let's start by defining the two new procedures:

{ Recogni ze a Bool ean Literal }
function IsBool ean(c: char): Bool ean;
begi n

| sBool ean : = UpCase(c) in ['T, '"F];
end;

{ Get a Boolean Literal }

function GetBool ean: Bool ean;

var c: char;

begi n
i f not IsBool ean(Look) then Expected('Boolean Literal');
Get Bool ean : = UpCase(Look) ="'T';

Get Char ;

end;

Type these routines into your program. You can test them by adding into the main program the print
Statement

Wit eLn(Get Bool ean);

57

Boolean Expressions

OK, compile the program and test it. As usual, it's not very impressive so far, but it soon will be.

Now, when we were dealing with numeric data we had to arrange to generate code to load the values in-
to DO. We need to do the same for Boolean data. The usual way to encode Boolean variablesisto let O
stand for FALSE, and some other value for TRUE. Many languages, such as C, use an integer 1 to rep-
resent it. But | prefer FFFF hex (or -1), because a bitwise NOT also becomes a Boolean NOT. So now
we need to emit the right assembler code to load those values. The first cut at the Boolean expression
parser (Bool Expr essi on, of course) is:

{ Parse and Transl ate a Bool ean Expression }
procedur e Bool Expressi on;
begi n
i f not |sBool ean(Look) then Expected('Boolean Literal');
i f GetBool ean then
Em tLn(' MOVE #-1, D0")
el se
EmtLn('CLR DO');
end;

Add this procedure to your parser, and call it from the main program (replacing the print statement you
had just put there). Asyou can see, we still don't have much of a parser, but the output code is starting to
look more redlistic.

Next, of course, we have to expand the definition of a Boolean expression. We aready have the BNF
rule:

<b-expression> ::= <b-ternp [<orop> <b-ternp]*

| prefer the Pascal versions of the "orops', OR and XOR. But since we are keeping to single-character
tokens here, I'll encode those with | and ~. The next version of Bool Expr essi on is amost a direct
copy of the arithmetic procedure Expr essi on:

{ Recogni ze and Transl ate a Bool ean OR }
procedure Bool O;
begi n
Match('|');
Bool Term
EmitLn(' OR (SP)+, D0");
end;

{ Recogni ze and Translate an Exclusive O }
pr ocedur e Bool Xor;
begi n
Match(' ~');
Bool Ter m
EmtLn(' EOR (SP) +, DO');
end;

{ Parse and Transl ate a Bool ean Expression }
pr ocedur e Bool Expressi on;
begi n
Bool Term
while 1sOr Op(Look) do begin
Em tLn(' MOVE DO, -(SP)");
case Look of
"|': Bool Or;
'~': Bool Xor;
end;
end;
end;

58

Boolean Expressions

Note the new recognizer | sOr Op, which isaso a copy, thistime of | sAddOp:

{ Recogni ze a Boolean Orop }
function IsOrop(c: char): Bool ean;
begi n

[sGop :=cin["]", "~'];

end;

OK, rename the old version of Bool Expr essi on to Bool Ter m then enter the code above. Compile
and test this version. At this point, the output code is starting to look pretty good. Of course, it doesn't
make much sense to do a lot of Boolean algebra on constant values, but we'll soon be expanding the
types of Booleans we deal with.

Y ou've probably aready guessed what the next step is: The Boolean version of Ter m

Rename the current procedure Bool Ter mto Not Fact or, and enter the following new version of
Bool Ter m Note that isis much simpler than the numeric version, since there is no equivalent of divi-
sion.

{ Parse and Transl ate a Bool ean Term}
procedure Bool Term
begi n
Not Fact or ;
while Look = '& do begin
EmitLn(' MOVE DO, -(SP)');
Match(' &);
Not Fact or ;
EmitLn(' AND (SP)+, D0);
end;
end;

Now, were amost home. We are trandating complex Boolean expressions, although only for constant
values. The next step isto alow for the NOT. Write the following procedure:

{ Parse and Transl ate a Bool ean Factor with NOT }
procedur e Not Factor;

begi n
if Look ='!" then begin
Match('!"');
Bool Fact or;
EmtLn(' EOR #-1,D0');
end
el se
Bool Fact or;
end;

And rename the earlier procedure to Bool Fact or . Now try that. At this point the parser should be able
to handle any Boolean expression you care to throw at it. Does it? Does it trap badly formed expres-
sions?

If you've been following what we did in the parser for math expressions, you know that what we did
next was to expand the definition of a factor to include variables and parens. We don't have to do that for
the Boolean factor, because those little items get taken care of by the next step. It takes just a one line
addition to Bool Fact or to take care of relations:

{ Parse and Transl ate a Bool ean Factor }
procedur e Bool Factor;
begi n

i f 1sBool ean(Look) then

59

Boolean Expressions

i f GetBool ean then
Em tLn(' MOVE #-1, D0")
el se
EmtLn(' CLR DO")
el se Rel ati on;
end;

You might be wondering when I'm going to provide for Boolean variables and parenthesized Boolean
expressions. The answer is, I'm not! Remember, we took those out of the grammar earlier. Right now all
I'm doing is encoding the grammar we've already agreed upon. The compiler itself can't tell the differ-
ence between a Boolean variable or expression and an arithmetic one ... all of those will be handled by
Rel at i on, either way.

Of course, it would help to have some code for Rel at i on. | don't feel comfortable, though, adding any
more code without first checking out what we already have. So for now let's just write a dummy version
of Rel at i on that does nothing except eat the current character, and write alittle message:

{ Parse and Translate a Relation }
procedure Rel ation;
begi n
WitelLn('<Rel ation>');
Get Char ;
end;

OK, key in this code and give it atry. All the old things should still work ... you should be able to gen-
erate the code for ANDs, ORs, and NOTSs. In addition, if you type any alphabetic character you should
get alittle <Rel at i on> place-holder, where a Boolean factor should be. Did you get that? Fine, then
let's move on to the full-blown version of Rel at i on.

To get that, though, thereis a bit of groundwork that we must lay first. Recall that arelation has the form

<rel ati on> ;1= | <expression> [<rel op> <expression]

Since we have a new kind of operator, we're also going to need a new Boolean function to recognize it.
That function is shown below. Because of the single-character limitation, I'm sticking to the four operat-
orsthat can be encoded with such a character (the “not equals’ is encoded by #).

{ Recognize a Relop }

function IsRelop(c: char): Bool ean;

begi n

IsRelop :=cin['=, "#,6 '<, '">];
end;

Now, recall that we're using a zero or a-1 in register DO to represent a Boolean value, and also that the
loop constructs expect the flags to be set to correspond. In implementing all this on the 68000, things get
aalittle bit tricky.

Since the loop constructs operate only on the flags, it would be nice (and also quite efficient) just to set
up those flags, and not load anything into DO at all. This would be fine for the loops and branches, but
remember that the relation can be used anywhere a Boolean factor could be used. We may be storing its
result to a Boolean variable. Since we can't know at this point how the result is going to be used, we
must allow for both cases.

Comparing numeric data is easy enough ... the 68000 has an operation for that ... but it sets the flags,
not a value. What's more, the flags will always be set the same (zero if equal, etc.), while we need the
zero flag set differently for the each of the different relops.

The solution is found in the 68000 instruction Scc, which sets a byte value to 0000 or FFFF (funny

60

Boolean Expressions

how that works!) depending upon the result of the specified condition. If we make the destination byte to
be DO, we get the Boolean value needed.

Unfortunately, there's one final complication: unlike almost every other instruction in the 68000 set,
Scc does not reset the condition flags to match the data being stored. So we have to do one last step,
which is to test DO and set the flags to match it. It must seem to be a trip around the moon to get what
we want: we first perform the test, then test the flags to set data into DO, then test DO to set the flags
again. It is sort of roundabout, but it's the most straightforward way to get the flags right, and after all it's
only a couple of instructions.

I might mention here that this area is, in my opinion, the one that represents the biggest difference
between the efficiency of hand-coded assembler language and compiler-generated code. We have seen
already that we lose efficiency in arithmetic operations, although later | plan to show you how to im-
prove that a bit. We've also seen that the control constructs themselves can be done quite efficiently ...
it's usually very difficult to improve on the code generated for an IF or a WHILE. But virtually every
compiler I've ever seen generates terrible code, compared to assembler, for the computation of a
Boolean function, and particularly for relations. The reason is just what I've hinted at above. When I'm
writing code in assembler, | go ahead and perform the test the most convenient way | can, and then set
up the branch so that it goes the way it should. In effect, | “tailor” every branch to the situation. The
compiler can't do that (practically), and it also can't know that we don't want to store the result of the test
as aBoolean variable. So it must generate the code in avery strict order, and it often ends up loading the
result as a Boolean that never gets used for anything.

In any case, we're now ready to look at the code for Rel at i on. It's shown below with its companion
procedures:

{ Recogni ze and Translate a Rel ati onal "Equal s" }
procedure Equals;
begi n
Match(' =');
Expressi on;
Em tLn(" WP (SP)+ Do');
EmtLn(' SEQ DO');
end;

{ Recognize and Translate a Rel ational "Not Equals" }
procedur e Not Equal s;
begi n
Match(' #');
EXpI’eSSI on;
EmtLn(' WP (SP)+, D0");
EmtLn(' SNE DO');
end;

{ Recognize and Translate a Rel ational "Less Than" }
procedure Less;
begi n
Match(' <');
Expre53| on,
Em tLn(" WP (SP)+, D0");
EmitLn(' SGE DO');
end;

{ Recognize and Translate a Relational "G eater Than" }
procedure G eater;
begi n
Match(' >');
Expressi on;
EmtLn(’ WP (SP)+, D0");
Em tLn(' SLE DO');
end;

61

Boolean Expressions

{ Parse and Translate a Relation }
procedure Rel ation;
begi n
Expr essi on;
i f IsRel op(Look) then begin
EmtLn(' MOVE DO, -(SP)");
case Look of

=': Equal s;
"#': Not Equal s;
'<': Less;
'>': Greater;
end;
EmitLn(' TST DO');

end;
end;

Now, that call to Expr essi on looks familiar! Here is where the editor of your system comesin handy.
We have already generated code for Expr essi on and its buddies in previous sessions. Y ou can copy
them into your file now. Remember to use the single-character versions. Just to be certain, I've duplic-
ated the arithmetic procedures below. If you're observant, you'll also see that I've changed them a little
to make them correspond to the latest version of the syntax. This change is not necessary, so you may
prefer to hold off on that until you're sure everything is working.

{ Parse and Translate an ldentifier }
procedure |dent;
var Nane: char;
begi n
Name: = Get Nane;
if Look ="' (' then begin
Match(' (')
Match(')');
EmitLn('BSR ' + Narme);
end
el se
g EmtLn(' MOVE ' + Name + ' (PC),D0");
end;

{ Parse and Translate a Math Factor }
procedure Expression; Forward;
procedure Factor;

begi n

if Look ="' (" then begin
Match(' (");
Expr essi on;
Match(')");
end

el se if |sAl pha(Look) then
| dent

el se

EmtLn(' MOVE #' + GetNum + ', D0");
end;

{ Parse and Translate the First Math Factor }
procedure Si gnedFactor;

begi n
if Look ="'+ then
Cet Char
if Look = '-' then begin
Cet Char ;

if IsDigit(Look) then

EmtLn(' MOVE #-' + GetNum + ', D0")
el se begin

Fact or;

62

Boolean Expressions

Em tLn(' NEG DO');
end;
end

el se Factor;
end;

{ Recognize and Translate a Miultiply }
procedure Miltiply;
begi n
Match('*');
Fact or;
Em tLn(' MULS (SP)+, D0");
end;

{ Recogni ze and Translate a Divide }
procedure Divide;
begi n
Match('/"');
Fact or;
EmtLn(' MOVE (SP)+,D1");
EmtLn('EXS.L DO');
EmtLn(' D VS D1, D0'");
end;

{ Parse and Translate a Math Term}
procedure Term
begi n
Si gnedFact or;
while Look in ['"*", '"/'] do begin
EmtLn(' MOVE DO, -(SP)");
case Look of

"roo Ml tiply;
/' Divide;
end;
end;
end;

{ Recogni ze and Transl ate an Add }
procedure Add;
begi n
Match(' +');
Term
Em tLn(' ADD (SP)+, D0O');
end;

{ Recogni ze and Translate a Subtract }
procedure Subtract;
begi n
Match('-');
Term
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }
procedur e Expression;
begi n
Term
whi | e 1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)");
case Look of
"+ Add;
'-': Subtract;
end;
end;

63

Boolean Expressions

end;

Thereyou haveit ... aparser that can handle both arithmetic and Boolean algebra, and things that com-
bine the two through the use of relops. | suggest you file away a copy of this parser in a safe place for
future reference, because in our next step we're going to be chopping it up.

Merging With Control Constructs

Compared to original 2004-08-23. OK.

At this paint, let's go back to the file we had previously built that parses control constructs. Remember
those little dummy procedures called Condi ti on and Expr essi on? Now you know what goes in
their places!

| warn you, you're going to have to do some creative editing here, so take your time and get it right.
What you need to do isto copy all of the procedures from the logic parser, from | dent through Bool -
Expressi on, into the parser for control constructs. Insert them at the current location of
Condi t i on. Then delete that procedure, as well asthe dummy Expr essi on. Next, change every call
to Condi ti on to refer to Bool Expressi on instead. Finally, copy the procedures | sMul op,
| sOr Op, | sRel op, | sBool ean, and Get Bool ean into place. That should do it.

Compile the resulting program and give it atry. Since we haven't used this program in awhile, don't for-
get that we used single-character tokens for IF, WHILE, etc. Also don't forget that any letter not a
keyword just gets echoed as a block.

Try
i a=bxl ye
which standsfor “I F a=b X ELSE Y ENDI F”.

What do you think? Did it work? Try some others.

Adding Assignments

Compared to original 2004-08-23. OK.

Aslong as we're this far, and we already have the routines for expressions in place, we might as well re-
place the “blocks” with real assignment statements. We've already done that before, so it won't be too
hard. Before taking that step, though, we need to fix something else.

We're soon going to find that the one-line “programs’ that we're having to write here will really cramp
our style. At the moment we have no cure for that, because our parser doesn't recognize the end-of-line
characters, the carriage return (CR) and the line feed (LF). So before going any further let's plug that
hole.

There are a couple of ways to deal with the CR/LFs. One (the C/UNI X approach) is just to treat them as
additional white space characters and ignore them. That's actually not such a bad approach, but it does
sort of produce funny results for our parser as it stands now. If it were reading its input from a source
file as any self-respecting real compiler does, there would be no problem. But we're reading input from
the keyboard, and we're sort of conditioned to expect something to happen when we hit the return key. It
won't, if we just skip over the CR and LF (try it). So I'm going to use a different method here, which is
not necessarily the best approach in the long run. Consider it a temporary kludge until we're further
along.

Instead of skipping the CR/LF, Well let the parser go ahead and catch them, then introduce a special
procedure, analogous to Ski pWhi t e, that skips them only in specified “legal” spots.

Here's the procedure:

Boolean Expressions

{ Skip a CRLF }
procedure Fin;

begi n
if Look = CR then GetChar;
if Look = LF then GetChar;
end;

Now, add two calsto Fi n in procedure Bl ock, likethis:

{ Recognize and Translate a Statenent Bl ock }
procedure Bl ock(L: string);

begi n
while not(Look in['e'", "I', "u']) do begin

Fin;
case Look of
"i': Dolf(L);
"wW: DoWwil e;
'"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se O her;
end;
Fin;

end;

end;

Now, you'll find that you can use multiple-line “programs.” The only restriction is that you can't separ-
ate an |IF or WHILE token from its predicate.

Now we're ready to include the assignment statements. Simply change that call to Gt her in procedure
Bl ock toacall to Assi gnnent , and add the following procedure, copied from one of our earlier pro-
grams. Note that Assi gnnment now calls Bool Expr essi on, so that we can assign Boolean vari-
ables.

{ Parse and Translate an Assignnent Statenent }
procedure Assignnent;
var Name: char;

begi n
Name : = Cet Nane;
Mat ch(' =");

Bool Expr essi on;

EmtLn('LEA " + Name + ' (PQC), A0");
Em tLn(' MOVE DO, (AO)');

end;

With that change, you should now be able to write reasonably realistic-looking programs, subject only to
our limitation on single-character tokens. My original intention was to get rid of that limitation for you,
too. However, that's going to require a fairly major change to what we've done so far. We need a true
lexical scanner, and that requires some structural changes. They are not big changes that require us to
throw away al of what we've done so far ... with care, it can be done with very minimal changes, in
fact. But it does require that care.

This installment has already gotten pretty long, and it contains some pretty heavy stuff, so I've decided
to leave that step until next time, when you've had a little more time to digest what we've done and are
ready to start fresh.

In the next installment, then, we'll build a lexical scanner and eliminate the single-character barrier once

65

Boolean Expressions

and for all. Well also write our first complete compiler, based on what we've done in this session. See
you then.

66

Chapter 7. Lexical Scanning

Installment published 7 November 1988.

$Header: /home/radek/cvdlets build a compiler/ch-lexical-scanning.xml,v 1.3 2004/08/21 09:57:04
radek Exp $

chapter id="lexical-scanning"

Published on 7 November 1988

$ psselect -p83-115 lets build_a_compiler.pg| foldprn -s36

presbyopic:remark$ psselect -p97-134 lets build_a _compiler.ps| foldprn -s40

Compared to original 2004-08-23.

In the last chapter , | left you with a compiler that would almost work, except that we were still limited
to single-character tokens. The purpose of this session is to get rid of that restriction, once and for al.
This means that we must deal with the concept of the lexical scanner.

Maybe | should mention why we need alexical scanner at all ... after al, we've been able to manage all
right without one, up till now, even when we provided for multi-character tokens.

The only reason, redly, has to do with keywords. It's a fact of computer life that the syntax for a
keyword has the same form as that for any other identifier. We can't tell until we get the complete word
whether or not it is a keyword. For example, the variable | FI LE and the keyword IF look just alike, un-
til you get to the third character. In the examples to date, we were always able to make a decision based
upon the first character of the token, but that's no longer possible when keywords are present. We need
to know that a given string is a keyword before we begin to process it. And that's why we need a scan-
ner.

In the last session, | aso promised that we would be able to provide for normal tokens without making
wholesale changes to what we have already done. | didn't lie ... we can, asyou will see later. But every
time | set out to install these elements of the software into the parser we have aready built, 1 had bad
feelings about it. The whole thing felt entirely too much like a band-aid. | finally figured out what was
causing the problem: | was installing lexical scanning software without first explaining to you what
scanning is all about, and what the aternatives are. Up till now, | have studiously avoided giving you a
lot of theory, and certainly not alternatives. | generally don't respond well to the textbooks that give you
twenty-five different ways to do something, but no clue as to which way best fits your needs. I've tried
to avoid that pitfall by just showing you one method, that works.

But thisis an important area. While the lexical scanner is hardly the most exciting part of a compiler, it
often has the most profound effect on the genera “look & feel” of the language, since after al it's the
part closest to the user. | have a particular structure in mind for the scanner to be used with KISS. It fits
thelook & feel that | want for that language. But it may not work at al for the language you're cooking
up, so inthisone case | fedl that it'simportant for you to know your options.

So I'm going to depart, again, from my usual format. In this session we'll be getting much deeper than
usua into the basic theory of languages and grammars. I'll also be talking about areas other than com-
pilers in which lexical scanning plays an important role. Finaly, | will show you some alternatives for
the structure of the lexical scanner. Then, and only then, will we get back to our parser from the last in-
stallment. Bear with me ... | think you'll find it's worth the wait. In fact, since scanners have many ap-
plications outside of compilers, you may well find this to be the most useful session for you.

Lexical Scanning

Compared to original 2004-08-23. OK.

Lexical scanning is the process of scanning the stream of input characters and separating it into strings
called tokens. Most compiler texts start here, and devote several chapters to discussing various ways to
build scanners. This approach has its place, but as you have aready seen, there is a lot you can do
without ever even addressing the issue, and in fact the scanner we'll end up with here won't look much

67

Lexical Scanning

like what the texts describe. The reason? Compiler theory and, consequently, the programs resulting
from it, must deal with the most general kind of parsing rules. We don't. In the real world, it is possible
to specify the language syntax in such a way that a pretty simple scanner will suffice. And as aways,
KISSis our motto.

Typically, lexical scanning is done in a separate part of the compiler, so that the parser per se seesonly a
stream of input tokens. Now, theoretically it is not necessary to separate this function from the rest of the
parser. There is only one set of syntax equations that define the whole language, so in theory we could
write the whole parser in one module.

Why the separation? The answer has both practical and theoretical bases.

In 1956, Noam Chomsky defined the “ Chomsky Hierarchy” of grammars. They are:
Type O: Unrestricted (e.g., English)

Type 1: Context-Sensitive.

Type 2: Context-Free.
Type 3: Regular.

A few features of the typical programming language (particularly the older ones, such as FORTRAN)
are Type 1, but for the most part all modern languages can be described using only the last two types,
and those are all we'll be dealing with here.

The neat part about these two types is that there are very specific ways to parse them. It has been shown
that any regular grammar can be parsed using a particular form of abstract machine called the state ma-
chine (finite automaton). We have already implemented state machines in some of our recognizers.

Similarly, Type 2 (context-free) grammars can always be parsed using a push-down automaton (a state
machine augmented by a stack). We have also implemented these machines. Instead of implementing a
literal stack, we have relied on the built-in stack associated with recursive coding to do the job, and that
infact isthe preferred approach for top-down parsing.

Now, it happens that in real, practical grammars, the parts that qualify as regular expressions tend to be
the lower-level parts, such asthe definition of an identifier:

<ident> ::= <letter> [<letter>| <digit>]*

Since it takes a different kind of abstract machine to parse the two types of grammars, it makes sense to
separate these lower-level functions into a separate module, the lexical scanner, which is built around
the idea of a state machine. The ideais to use the simplest parsing technique needed for the job.

There is another, more practical reason for separating scanner from parser. We like to think of the input
source file as a stream of characters, which we process right to left without backtracking. In practice that
isn't possible. AlImost every language has certain keywords such as IF, WHILE, and END. As | men-
tioned earlier, we can't really know whether a given character string is a keyword, until we've reached
the end of it, as defined by a space or other delimiter. So in that sense, we must save the string long
enough to find out whether we have a keyword or not. That's alimited form of backtracking.

So the structure of a conventional compiler involves splitting up the functions of the lower-level and
higher-level parsing. The lexical scanner deals with things at the character level, collecting charactersin-
to strings, etc., and passing them along to the parser proper as indivisible tokens. It's also considered
normal to let the scanner have the job of identifying keywords.

State Machines and Alternatives

Compared to original 2004-08-23. OK.

| mentioned that the regular expressions can be parsed using a state machine. In most compiler texts, and

68

Lexical Scanning

indeed in most compilers as well, you will find this taken literally. There is typically area implementa-
tion of the state machine, with integers used to define the current state, and a table of actions to take for
each combination of current state and input character. If you write a compiler front end using the popu-
lar Unix tools LEX and YACC, that's what you'll get. The output of LEX is a state machine implemen-
ted in C, plus atable of actions corresponding to the input grammar given to LEX. The YACC output is
similar ... acanned table-driven parser, plus the table corresponding to the language syntax.

That is not the only choice, though. In our previous installments, you have seen over and over that it is
possible to implement parsers without dealing specifically with tables, stacks, or state variables. In fact,
in Chapter 5, Control Constructs | warned you that if you find yourself needing these things you might
be doing something wrong, and not taking advantage of the power of Pascal. There are basically two
ways to define a state machine's state: explicitly, with a state number or code, and implicitly, smply by
virtue of the fact that I'm at a certain place in the code (if it's Tuesday, this must be Belgium). We've re-
lied heavily on the implicit approaches before, and | think you'll find that they work well here, too.

In practice, it may not even be necessary to have a well-defined lexical scanner. This isn't our first ex-
perience at dealing with multi-character tokens. In Chapter 3, More Expressions, we extended our parser
to provide for them, and we didn't even need alexical scanner. That was because in that narrow context,
we could always tell, just by looking at the single lookahead character, whether we were dealing with a
number, a variable, or an operator. In effect, we built a distributed lexical scanner, using procedures
Get Nane and Get Num

With keywords present, we can't know anymore what we're dealing with, until the entire token is read.

Thisleads usto a more localized scanner; although, as you will see, the idea of a distributed scanner still
has its merits.

Some Experiments In Scanning

Compared to original 2004-08-23. OK.
Before getting back to our compiler, it will be useful to experiment a bit with the general concepts.

Let's begin with the two definitions most often seen in real programming languages:

<ident> ::= <letter> [<letter> | <digit>]*
<numrber = [<digit>]+
Note

Remember, the * indicates zero or more occurences of the terms in brackets, and the +, one or
more.

We have already dealt with similar items in Chapter 3, More Expressions. Let's begin (as usual) with a
bare cradle. Not surprisingly, we are going to need a new recognizer:

{ Recogni ze an Al phanuneric Character }
function IsAl Num(c: char): bool ean;

begi n

dIsAI Num : = I sAl pha(c) or IsDigit(c);
end;

Using thislet's write the following two routines, which are very similar to those we've used before:

{ Get an Identifier }
function GetNane: string;
var Xx: string[8];

begi n

69

Lexical Scanning

X 1= ;
if not IsAl pha(Look) then Expected(' Nanme');
whi | e 1 sAl Num(Look) do begin

X := X + UpCase(Look);

Get Char ;
end;
Cet Nane : = x;
end;

{ Get a Nunber }
function GetNum string;
var x: string[16];
begi n
X 1= ;
if not IsDigit(Look) then Expected('Integer');
whil e IsDigit(Look) do begin
X 1= x + Look;
CGet Char;
end;
Get Num : = x;
end;

Note

Notice that this version of Get Numreturns a string, not an integer as before.
You can easily verify that these routines work by calling them from the main program, asin

Wit elLn(Get Nane);

This program will print any legal name typed in (maximum eight characters, since that's what we told
Get Nane). It will rgject anything else.

Test the other routine similarly.

White Space

Compared to original 2004-08-23. OK.

We also have dealt with embedded white space before, using the two routines | s\Whi t e and Ski p-
Wi t e. Make sure that these routines are in your current version of the cradle, and add the the line

Ski pWhi t e;
at the end of both Get Name and Get Num
Now, let's define the new procedure:

{ Lexical Scanner }
Function Scan: string;
begi n
i f 1sAl pha(Look) then
Scan : = Cet Name
else if IsDigit(Look) then
Scan = Get Num
el se begin
Scan : = Look;
Get Char;
end;
Ski pWi t e;
end;

70

Lexical Scanning

We can call this from the new main program:

{ Main Program}
begi n
Init;
r epeat
Token : = Scan;
writel n(Token);
until Token = CR;
end.

Note

You will have to add the declaration of the string Token at the beginning of the program. Make
it any convenient length, say 16 characters.

Now, run the program. Note how the input string is, indeed, separated into distinct tokens.

State Machines

Compared to original 2004-08-23. OK.

For the record, a parse routine like Get Nane does indeed implement a state machine. The state isimpli-
cit in the current position in the code. A very useful trick for visualizing what's going on is the syntax
diagram, or r ai | road- t r ack diagram. It's a little difficult to draw one in this medium, so I'll use
them very sparingly, but the figure below should give you the idea:

As you can see, this diagram shows how the logic flows as characters are read. Things begin, of course,
in the start state, and end when a character other than an aphanumeric is found. If the first character is
not apha, an error occurs. Otherwise the machine will continue looping until the terminating delimiter is
found.

Note that at any point in the flow, our position is entirely dependent on the past history of the input char-
acters. At that point, the action to be taken depends only on the current state, plus the current input char-
acter. That's what make this a state machine.

Because of the difficulty of drawing railroad-track diagramsin this medium, I'll continue to stick to syn-
tax equations from now on. But | highly recommend the diagrams to you for anything you do that in-
volves parsing. After a little practice you can begin to see how to write a parser directly from the dia-
grams. Parallel paths get coded into guarded actions (guarded by IF's or CASE statements), serial paths
into sequential calls. It'salmost like working from a schematic.

We didn't even discuss Ski pWhi t e, which was introduced earlier, but it also is a simple state machine,
asis Get Num So istheir parent procedure, Scan. Little machines make big machines.

The neat thing that 1'd like you to note is how painlessly this implicit approach creates these state ma-
chines. | personally prefer it alot over the table-driven approach. It also resultsis a small, tight, and fast
scanner.

Newlines

Compared to original 2004-08-23. OK.

Moving right along, let's modify our scanner to handle more than one line. As | mentioned last time, the
most straightforward way to do this is to simply treat the newline characters, carriage return and line
feed, as white space. Thisis, in fact, the way the C standard library routine, i swhi t e, works. We didn't
actually try thisbefore. I'd like to do it now, so you can get afeel for the results.

71

Lexical Scanning

To do this, smply modify the single executable line of | s\Whi t e to read:
IsWhite :=cin['" ', TAB, CR LF];

We need to give the main program a new stop condition, since it will never see a CR. Let's just use:

until Token = "'."';

OK, compile this program and run it. Try a couple of lines, terminated by the period. | used:

nowis the tine
for all good men.

Hey, what happened? When | tried it, | didn't get the last token, the period. The program didn't halt.
What's more, when | pressed the Enter key afew times, | still didn't get the period.

If you're still stuck in your program, you'll find that typing a period on anew line will terminate it.

What's going on here? The answer is that we're hanging up in Ski pWhi t e. A quick look at that routine
will show that as long as we're typing null lines, we're going to just continue to loop. After Ski pWhi t e
encounters an LF, it tries to execute a Get Char . But since the input buffer is now empty, Get Char's
read statement insists on having another line. Procedure Scan gets the terminating period, al right, but
it calls Ski pWhi t e to clean up, and Ski pWhi t e won't return until it gets anon-null line.

This kind of behavior is not quite as bad as it seems. In areal compiler, we'd be reading from an input
file instead of the console, and as long as we have some procedure for dealing with end-of-files,
everything will come out OK. But for reading data from the console, the behavior isjust too bizarre. The
fact of the matter is that the C/UNI X convention is just not compatible with the structure of our parser,
which calls for alookahead character. The code that the Bell wizards have implemented doesn't use that
convention, which iswhy they need “unget c”.

OK, let's fix the problem. To do that, we need to go back to the old definition of | sWhi t e (delete the
CR and LF characters) and make use of the procedure Fi n that | introduced last time. If it's not in your
current version of the cradle, put it there now.

Also, modify the main program to read:

{ Main Program}
begi n
Init;
repeat
Token : = Scan;
writel n(Token);
i f Token CR then Fin;
until Token
end.

Note the “guard” test preceding the call to Fi n. That's what makes the whole thing work, and ensures
that we don't try to read aline ahead.

Try the code now. | think you'll like it better.

If you refer to the code we did in the last installment, you'll find that | quietly sprinkled calls to Fi n
throughout the code, wherever aline break was appropriate. Thisis one of those areas that really affects
the look & feel that | mentioned. At this point | would urge you to experiment with different arrange-
ments and see how you like them. If you want your language to be truly free-field, then newlines should

72

Lexical Scanning

be transparent. In this case, the best approach is to put the following lines at the beginning of Scan:

whil e Look = CR do
Fi n;

If, on the other hand, you want aline-oriented language like Assembler, BASIC, or FORTRAN (or even
Ada ... note that it has comments terminated by newlines), then you'll need for Scan to return CR's as
tokens. It must also eat the trailing LF. The best way to do that isto use this line, again at the beginning
of Scan:

if Look = LF then Fin;

For other conventions, you'll have to use other arrangements. In my example of the last session, | al-
lowed newlines only at specific places, so | was somewhere in the middle ground. In the rest of these
sessions, I'll be picking ways to handle newlines that | happen to like, but | want you to know how to
choose other ways for yourselves.

Operators

Compared to original 2004-08-23. OK.

We could stop now and have a pretty useful scanner for our purposes. In the fragments of KISS that
we've built so far, the only tokens that have multiple characters are the identifiers and numbers. All op-
erators were single characters. The only exception | can think of is the relops <=, >=, and <>, but they
could be dealt with as special cases.

Still, other languages have multi-character operators, such as the := of Pascal or the ++ and >> of C. So
while we may not need multi-character operators, it's nice to know how to get them if necessary.

Needless to say, we can handle operators very much the same way as the other tokens. Let's start with a
recognizer:

{ Recogni ze Any Qperator }

function IsOp(c: char): bool ean;

begi n
Ism::cin[l_'_l'|_|'1*1'|/|'|<|'|>|'|:|'|:|];
end;

It's important to note that we don't have to include every possible operator in this list. For example, the
paretheses aren't included, nor is the terminating period. The current version of Scan handles single-
character operators just fine as it is. The list above includes only those characters that can appear in
multi-character operators. (For specific languages, of course, the list can always be edited.)

par etheses/par entheses

Now, let's modify Scan to read:

{ Lexical Scanner }
Function Scan: string;
begi n
while Look = CR do
Fi n;
i f 1sAl pha(Look) then
Scan : = CGet Name
else if IsDigit(Look) then
Scan : = Get Num
el se if 1sOp(Look) then

Scan = Gt
el se begin
Scan : = Look;

73

Lexical Scanning

Cet Char;
end;
Ski pWi t e;
end;

Try the program now. You will find that any code fragments you care to throw at it will be neatly
broken up into individual tokens.

Lists, Commas And Command Lines

Compared to original 2004-08-23. OK.
Before getting back to the main thrust of our study, I'd like to get on my soapbox for a moment.

How many times have you worked with a program or operating system that had rigid rules about how
you must separate items in a list? (Try, the last time you used MS-DOS™!) Some programs require
spaces as delimiters, and some require commas. Worst of all, some require both, in different places.
Most are pretty unforgiving about violations of their rules.

| think this is inexcusable. It's too easy to write a parser that will handle both spaces and commas in a
flexible way. Consider the following procedure:

{ Skip Over a Comua }
procedur e Ski pConma;
begi n

Ski pWi t e;

if Look = ',' then begin

CGet Char;

Ski pWhi t e;
end;
end;

This eight-line procedure will skip over a delimiter consisting of any number (including zero) of spaces,
with zero or one comma embedded in the string.

Temporarily, change the call to Ski pWhi t e in Scan to acall to Ski pConma, and try inputting some
lists. Works nicely, en? Don't you wish more software authors knew about Ski pConmma?

For the record, | found that adding the equivalent of Ski pCorma to my Z80 assembler-language pro-
grams took all of 6 (six) extra bytes of code. Even in a 64K machine, that's not a very high price to pay
for user-friendliness!

| think you can see where I'm going here. Even if you never write aline of a compiler code in your life,
there are places in every program where you can use the concepts of parsing. Any program that pro-
cesses a command line needs them. In fact, if you think about it for a bit, you'll have to conclude that
any time you write a program that processes user inputs, you're defining a language. People communic-
ate with languages, and the syntax implicit in your program defines that language. The rea question is:
are you going to define it deliberately and explicitly, or just let it turn out to be whatever the program
ends up parsing?

| claim that you'll have a better, more user-friendly program if you'll take the time to define the syntax
explicitly. Write down the syntax equations or draw the railroad-track diagrams, and code the parser us-
ing the techniques I've shown you here. You'll end up with a better program, and it will be easier to
write, to boot.

Getting Fancy

Compared to original 2004-08-23. OK.

74

Lexical Scanning

OK, at this point we have a pretty nice lexical scanner that will break an input stream up into tokens. We
could useit asit stands and have a servicable compiler. But there are some other aspects of lexical scan-
ning that we need to cover.

The main consideration is <shudder > efficiency. Remember when we were dealing with single-
character tokens, every test was a comparison of a single character, Look, with a byte constant. We also
used the Case statement heavily.

With the multi-character tokens being returned by Scan, all those tests now become string comparisons.
Much slower. And not only slower, but more awkward, since there is no string equivalent of the CASE
statement in Pascal. It seems especialy wasteful to test for what used to be single characters ... the =, +,
and other operators ... using string comparisons.

Using string comparison is not impossible ... Ron Cain used just that approach in writing Small C.
Since we're sticking to the KISS principle here, we would be truly justified in settling for this approach.
But then | would have failed to tell you about one of the key approaches used in “real” compilers.

Y ou have to remember: the lexical scanner is going to be called alot! Once for every token in the whole
source program, in fact. Experiments have indicated that the average compiler spends anywhere from
20% to 40% of its time in the scanner routines. If there were ever a place where efficiency deserves real
consideration, thisisit.

For this reason, most compiler writers ask the lexical scanner to do a little more work, by “tokenizing”
the input stream. The idea is to match every token against a list of acceptable keywords and operators,
and return unigque codes for each one recognized. In the case of ordinary variable names or numbers, we
just return a code that says what kind of token they are, and save the actua string somewhere else.

One of the first things we're going to need is away to identify keywords. We can always do it with suc-
cessive |F tests, but it surely would be nice if we had a general-purpose routine that could compare a
given string with a table of keywords. (By the way, we're also going to need such a routine later, for
dealing with symbol tables.) This usually presents a problem in Pascal, because standard Pascal doesn't
allow for arrays of variable lengths. It's a real bother to have to declare a different search routine for
every table. Standard Pascal also doesn't allow for initializing arrays, so you tend to see code like

Table[1l] :="IF;
Tabl e[2] := 'ELSE ;
#

Table[n] :='"END ;

which can get pretty old if there are many keywords.

Fortunately, Turbo Pascal 4.0 has extensions that eliminate both of these problems. Constant arrays can
be declared using TP's “typed constant” facility, and the variable dimensions can be handled with its C-
like extensions for pointers.

First, modify your declarations like this:

{ Type Declarations }

type Synbol = string[8];
Synirab = array[1..1000] of Symnbol;
TabPtr = ~Symrab;
Note

The dimension used in SymTab is not real ... no storage is allocated by the declaration itself,
and the number need only be “big enough.”

Now, just beneath those declarations, add the following:

75

Lexical Scanning

{ Definition of Keywords and Token Types }
const KWist: array [1..4] of Synmbol =
("IF, "ELSE', "ENDIF', 'END);

Next, insert the following new function:

{ Table Lookup }
{ If the input string matches a table entry, return the entry

i ndex. If not, return a zero. }
function Lookup(T: TabPtr; s: string; n: integer): integer;
var i: integer;

found: bool ean;
begi n

found : = fal se;

i =

while (i > 0) and not found do

if s =Tri] then
found : = true
el se
dec(i);
Lookup :=i;

Totest it, you can temporarily change the main program as follows:

{ Main Program}
begi n
ReadLn(Token) ;
dWi teLn(Lookup(Addr (KW.i st), Token, 4));
end.

Notice how Lookup is called: The Addr function sets up a pointer to KW.i st , which gets passed to
Lookup.

OK, give thisatry. Since we're bypassing Scan here, you'll have to type the keywords in upper case to
get any matches.

Now that we can recognize keywords, the next thing isto arrange to return codes for them.

So what kind of code should we return? There are really only two reasonable choices. This seems like an
ideal application for the Pascal enumerated type. For example, you can define something like

Synirype = (1 fSym ElseSym EndifSym EndSym |dent, Nunber,
Qperator);

and arrange to return avariable of thistype. Let's giveit atry. Insert the line above into your type defini-
tions.

Now, add the two variable declarations:

Token: Syntype; { Current Token }
Val ue: String[16]; { String Token of Look }
Modify the scanner to read:

{ Lexical Scanner }
procedure Scan;
var k: integer;

76

Lexical Scanning

begi n
while Look = CR do
Fi n;
i f 1sAl pha(Look) then begin
Val ue : = Get Nane;
k := Lookup(Addr(KWist), Value, 4);

if Kk =0 then

Token : = | dent
el se

Token : = Syniype(k - 1);
end

else if IsDigit(Look) then begin
Val ue := Get Num
Token : = Nunber;

end

else if 1sOp(Look) then begin
Val ue : = Get Op;
Token : = Qperator;
end

el se begin
Val ue : = Look;
Token : = Qperator;
CGet Char

end;

Ski pWi t e;

end;
Note

Notice that Scan is now a procedure, not afunction.
Finally, modify the main program to read:

{ Main Program}
begi n
Init;
r epeat
Scan;
case Token of
Ident: wite('ldent ');
Nurber: Wite(' Nunmber ');
Qperator: Wite(' Operator ');
:ijym El seSym Endi fSym EndSym Wite(' Keyword ');
end;
Witel n(Val ue);
until Token = EndSym
end.

What we've done here is to replace the string Token used earlier with an enumerated type. Scan re-
turnsthe typein variable Token, and returns the string itself in the new variable Val ue.

OK, compile this and give it awhirl. If everything goes right, you should see that we are now recogniz-
ing keywords.

What we have now is working right, and it was easy to generate from what we had earlier. However, it
still seems a little “busy” to me. We can simplify things a bit by letting Get Name, Get Num Get Op,
and Scan be procedures working with the global variables Token and Val ue, thereby eliminating the
local copies. It also seems alittle cleaner to move the table lookup into Get Nane. The new form for the
four proceduresis, then:

{ Get an ldentifier }

77

Lexical Scanning

procedure Get Nane;
var k: integer;
begi n
Value :="'";
i f not IsAl pha(Look) then Expected(' Nane');
whil e I sAl Num Look) do begin
Val ue : = Val ue + UpCase(Look);
CGet Char;
end;
k := Lookup(Addr(KWist), Value, 4);
if k =0 then
Token : = |dent
el se
Token : = SynfType(k-1);
end;

{ Get a Number }

procedure Get Num

begi n
Value :="";
if not IsDigit(Look) then Expected('Integer');
while |1sDigit(Look) do begin

Val ue : = Val ue + Look;
Cet Char;

end;

Token : = Nunber;

end;

{ Get an Operator }
procedure Get Qp;
begi n
Value :="";
if not IsOp(Look) then Expected(' Operator');
whil e 1sOp(Look) do begin
Val ue : = Val ue + Look;
Get Char ;
end;
Token : = QOperator;
end;

{ Lexical Scanner }
procedure Scan;
var k: integer;
begi n
whil e Look = CR do
Fi n;
i f IsAl pha(Look) then
Get Name
else if IsDigit(Look) then
Get Num
else if IsOp(Look) then
Get Op

el se begin

Val ue : = Look;
Token : = Qperator;
Cet Char;;

end;

Ski pWhi t e;

end;

Returning A Character

Compared to original 2004-08-23. OK.

78

Lexical Scanning

Essentially every scanner |'ve ever seen that was written in Pascal used the mechanism of an enumerated
type that I've just described. It is certainly a workable mechanism, but it doesn't seem the simplest ap-
proach to me.

For one thing, the list of possible symbol types can get pretty long. Here, I've used just one symbol, Op-
erator, to stand for all of the operators, but I've seen other designs that actually return different codes for
each one.

Thereis, of course, another simple type that can be returned as a code: the character. Instead of returning
the enumeration value Operator for a + sign, what's wrong with just returning the character itself? A
character is just as good a variable for encoding the different token types, it can be used in case state-
ments easily, and it's sure alot easier to type. What could be simpler?

Besides, we've already had experience with the idea of encoding keywords as single characters. Our pre-
vious programs are aready written that way, so using this approach will minimize the changes to what
we've aready done.

Some of you may feel that this idea of returning character codes is too mickey-mouse. | must admit it
gets a little awkward for multi-character operators like <=. If you choose to stay with the enumerated
type, fine. For the rest, 1'd like to show you how to change what we've done above to support that ap-
proach.

First, you can delete the SymType declaration now ... we won't be needing that. And you can change
the type of Token to char.

Next, to replace SymType, add the following constant string:

const KWode: string[5] = "'xilee';

Note

I'll be encoding all idents with the single character x.
Lastly, modify Scan and its relatives as follows:

{ Get an ldentifier }
procedure Get Nane;
begi n
Value :="";
if not IsAl pha(Look) then Expected(' Nane');
whi | e 1 sAl Num(Look) do begin
Val ue : = Val ue + UpCase(Look);
Get Char ;
end;
dToken : = KWode[Lookup(Addr (KW ist), Value, 4) + 1];
end;

{ Get a Number }
procedure Get Num
begi n
Value :="";
if not IsDigit(Look) then Expected('Integer');
whil e 1sDigit(Look) do begin
Val ue : = Val ue + Look;
CGet Char;
end;
Token := "#';
end;

{ Get an Operator }

79

Lexical Scanning

procedure Get Op;

begi n
Value :="";
if not IsOp(Look) then Expected(' Operator');
whil e 1sOp(Look) do begin
Val ue : = Val ue + Look;
CGet Char;
end;

if Length(Value) = 1 then
Token : = Val ue[1]
el se
Token :='7?";
end;

{ Lexical Scanner }
procedure Scan;
var k: integer;
begi n
whil e Look = CR do
Fi n;
i f 1sAl pha(Look) then
Get Nane
else if IsDigit(Look) then
Get Num
else if 1sOp(Look) then begin
Get Op

el se begin
Val ue : = Look;
Token :="'7?";
Cet Char ;

end;

Ski pWhi t e;

end;

{ Main Program}
begi n
Init;
r epeat
Scan;
case Token of
"X': wite('ldent ");
"# . Wite(' Nunber ');
i, 1Y, et Wite(' Keyword) ;
el se Wite(' Operator ');
end;
Witel n(Val ue);
until Value = "END ;
end.

This program should work the same as the previous version. A minor difference in structure, maybe, but
it seems more straightforward to me.

Distributed vs Centralized Scanners

Compared to original 2004-08-23. OK.

The structure for the lexical scanner that I've just shown you is very conventional, and about 99% of all
compilers use something very close to it. This is not, however, the only possible structure, or even a-
ways the best one.

The problem with the conventional approach is that the scanner has no knowledge of context. For ex-
ample, it can't distinguish between the assignment operator = and the relational operator = (perhaps
that's why both C and Pascal use different strings for the two). All the scanner can do isto pass the oper-

80

Lexical Scanning

ator along to the parser, which can hopefully tell from the context which operator is meant. Similarly, a
keyword like IF has no place in the middle of a math expression, but if one happens to appear there, the
scanner will see no problem with it, and will return it to the parser, properly encoded as an IF.

With this kind of approach, we are not really using all the information at our disposal. In the middle of
an expression, for example, the parser “knows’ that there is no need to look for keywords, but it has no
way of telling the scanner that. So the scanner continues to do so. This, of course, slows down the com-
pilation.

In real-world compilers, the designers often arrange for more information to be passed between parser
and scanner, just to avoid this kind of problem. But that can get awkward, and certainly destroys a lot of
the modularity of the structure.

The dternative is to seek some way to use the contextual information that comes from knowing where
we are in the parser. This leads us back to the notion of a distributed scanner, in which various portions
of the scanner are called depending upon the context.

In KISS, as in most languages, keywords only appear at the beginning of a statement. In places like ex-
pressions, they are not allowed. Also, with one minor exception (the multi-character relops) that is easily
handled, all operators are single characters, which means that we don't need Get Op at all.

So it turns out that even with multi-character tokens, we can still always tell from the current lookahead
character exactly what kind of token is coming, except at the very beginning of a statement.

Even at that point, the only kind of token we can accept is an identifier. We need only to determine if
that identifier is a keyword or the target of an assignment statement.

We end up, then, still needing only Get Name and Get Num which are used very much as we've used
them in earlier chapters.

It may seem at first to you that thisis a step backwards, and a rather primitive approach. In fact, it isan
improvement over the classical scanner, since we're using the scanning routines only where they're
really needed. In places where keywords are not allowed, we don't ow things down by looking for
them.

Merging Scanner And Parser

Compared to original 2004-08-23. OK.

Now that we've covered all of the theory and general aspects of lexical scanning that we'll be needing,
I'm finally ready to back up my claim that we can accomodate multi-character tokens with minimal
change to our previous work. To keep things short and simple | will restrict myself here to a subset of
what we've done before; I'm allowing only one control construct (the IF) and no Boolean expressions.
That's enough to demonstrate the parsing of both keywords and expressions. The extension to the full set
of constructs should be pretty apparent from what we've already done.

All the elements of the program to parse this subset, using single-character tokens, exist already in our
previous programs. | built it by judicious copying of these files, but | wouldn't dare try to lead you
through that process. Instead, to avoid any confusion, the whole program is shown below:

Example7.1. KISSv.0

program KI SS;

{ Constant Declarations }
const TAB = I
CR M

81

Lexical Scanning

LF = "J;
{ Type Declarations }
type Synbol = string[8];
Synirab = array[1..1000] of Synbol;
TabPtr = ~Synilab;
{ Variable Declarations }
var Look : char; { Lookahead Character }
Lcount: integer; { Label Counter }

{ Read New Character From Input Stream}
procedure GCet Char;

begi n

Read(Look) ;

end;

{ Report an Error }
procedure Error(s: string);
begi n
WitelLn;
WiteLn(*"G 'Error: ', s, '.');
end;

{ Report Error and Halt }
procedure Abort(s: string);
begi n

Error(s);

Hal t;
end;

{ Report \What WAs Expected }
procedure Expected(s: string);
begi n

Abort(s + ' Expected');
end;

{ Recogni ze an Al pha Character }
function IsAl pha(c: char): bool ean;
begi n

| sAl pha := UpCase(c) in['A.."Z'];
end;

{ Recognize a Decimal Digit
function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phaNuneric Character }
function IsAl Nunm(c: char): bool ean;

begi n

| sAl Num : = IsAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=cin ["+, "-'];

end;

{ Recognize a Mil op }
function IsMil op(c: char): bool ean;
begi n

IsMulop :=cin ["*, "[I'];

82

Lexical Scanning

end;

{ Recogni ze White Space }

function IsWite(c: char): bool ean;
begi n

[sWhite :=cin [" ', TAB];

end;

{ Skip Over Leading Wite Space }
procedure SkipWite;
begi n
whil e 1 sWite(Look) do
Get Char;
end;

{ Match a Specific Input Character }

procedure Match(x: char);

begi n
if Look <> x then Expected(''"" + x + '"'"");
CGet Char;

Ski pWhi t e;

end;

{ Skip a CRLF }
procedure Fin;

begi n
if Look = CR then GetChar;
if Look = LF then GetChar;
Ski pWi t e;

end;

{ Get an ldentifier }
function Get Nane: char;
begi n
whil e Look = CR do
Fi n;
if not IsAl pha(Look) then Expected(' Nanme');
Get nanme : = UpCase(Look);
Get Char ;
Ski pWi t e;
end;

{ Get a Number }
function Get Num char;
begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
Get Char ;
Ski pWi t e;
end;
{ Generate a Uni que Label }

function NewLabel : string;
var S. string;

begi n
Str(LCount, S);
NewlLabel :="'L' + S
I nc(LCount);

end;

{ Post a Label To CQutput }
procedure PostLabel (L: string);
begi n

WiteLn(L, ':');

end;

83

Lexical Scanning

{ Qutput a String with Tab }
procedure Emit(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }
procedure EmitLn(s: string);
begi n
Emit(s);
WitelLn;
end;

{ Parse and Translate an ldentifier }
procedure |dent;
var Name: char;
begi n
Name : = Cet Nane;
if Look ="' (' then begin
Match(' (')
Match(')');
EmtLn('BSR ' + Name);
end
el se
g EmtLn(' MOVE ' + Name + ' (PC),D0");
end;

{ Parse and Translate a Math Factor }
procedure Expression; Forward;
procedure Factor;

begi n

if Look ="' (' then begin
Match(' (");
Expr essi on;
Match(')");
end

el se if |sAl pha(Look) then
| dent

el se

EmtLn(' MOVE #' + GetNum + ', D0");
end;

{ Parse and Translate the First Math Factor }
procedure Si gnedFactor;
var s: bool ean;
begi n
s := Look ="'-";
i f IsAddop(Look) then begin
Get Char ;
Ski pWi t e;
end;
Fact or;
if s then
Em tLn(' NEG DO');
end;

{ Recognize and Translate a Multiply }
procedure Multiply;
begi n
Match(' *');
Fact or;
EmtLn(' MULS (SP)+, D0");
end;

Lexical Scanning

{ Recogni ze and Translate a Divide }
procedure Divide;
begi n
Match('/');
Fact or;
EmtLn(' MOVE (SP)+,D1");
EmtLn('EXS.L DO');
EmtLn(' D VS D1, D0");
end;

{ Conpletion of Term Processing (called by Termand FirstTerm}
procedure Terni;
begi n
whi | e I sMul op(Look) do begin
EmitLn(' MOVE DO, -(SP)');
case Look of

"xto Ml tiply;
"/': Divide;
end;
end;
end;

{ Parse and Translate a Math Term}
procedure Term
begi n
Fact or;
Ter mi,
end;

{ Parse and Translate a Math Termwi th Possible Leading Sign }
procedure FirstTerm
begi n
Si gnedFact or;
Termil;
end;

{ Recogni ze and Translate an Add }
procedure Add;
begi n
Match(' +');
Term
Em tLn(' ADD (SP)+, D0O");
end;

{ Recogni ze and Translate a Subtract }
procedure Subtract;
begi n
Match('-');
Term
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO') ;
end;

{ Parse and Transl ate an Expression }
procedur e Expression;
begi n
FirstTerm
whi | e |1 sAddop(Look) do begin
EmtLn(' MOVE DO, -(SP)");
case Look of
"+ Add;
'-': Subtract;
end;
end;
end;

85

Lexical Scanning

{ Parse and Transl ate a Bool ean Condition }
{ This version is a dunmy }

Procedure Condition;

begi n

EmtLn(' Condition');

end;

{ Recogni ze and Translate an | F Construct }
procedure Bl ock; Forward;
procedure Dol f;
var L1, L2: string;
begi n
Match('i');
Condi ti on;
L1 : = NewLabel
L2 .= L1,
EmtLn('BEQ ' + L1);
Bl ock;
if Look = '1" then begin
Match('1");
L2 := NewlLabel ;
EmtLn('BRA ' + L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Match('e');
end;

{ Parse and Translate an Assignment Statement }
procedure Assignment;
var Nane: char;

begi n

Name : = Get Nane;

Match(' =");

Expr essi on;
EmtLn('LEA ' + Nane + ' (PC),A0");
dEnith('NCNE DO, (A0) ")
end;

{ Recognize and Translate a Statement Bl ock }
procedure Bl ock;
begi n
while not(Look in['e'", "I']) do begin
case Look of
"i': Dolf;
CR while Look = CR do
Fi n;
el se Assignment;
end;
end;
end;

{ Parse and Translate a Program}
procedur e DoProgram
begi n

Bl ock;

if Look <> 'e' then Expected('END);
EnitLn(' END)
end;

{ Initialize }
procedure Init;
begi n

86

Lexical Scanning

end;

{

LCount := O;
Cet Char;

Mai n Program }

begi n

end

Init;
DoPr ogr am

A couple of comments:

1.

The form for the expression parser, using Fi r st Ter m etc., is a little different from what you've
seen before. It's yet another variation on the same theme. Don't let it throw you ... the change is not
required for what follows.

Note that, as usual, | had to add callsto Fi n at strategic spotsto alow for multiple lines.

Before we proceed to adding the scanner, first copy this file and verify that it does indeed parse things
correctly. Don't forget the “codes’: i for IF, | for ELSE, and e for END or ENDIF.

If the program works, then let's press on. In adding the scanner modules to the program, it helps to have
a systematic plan. In all the parsers we've written to date, we've stuck to a convention that the current
lookahead character should always be a non-blank character. We preload the lookahead character in Init,
and keep the “pump primed” after that. To keep the thing working right at newlines, we had to modify
thisabit and treat the newline as alegal token.

In the multi-character version, the rule is similar: The current lookahead character should always be | eft
at the beginning of the next token, or at a newline.

The multi-character version is shown next. To get it, I've made the following changes:

Added the variables Token and Val ue, and the type definitions needed by Lookup.

Added the definitions of K\Li st and KW ode.

Added Lookup.

Replaced Get Nane and Get Numby their multi-character versions. (Note that the call to Lookup
has been moved out of Get Nane, so that it will not be executed for calls within an expression.)
Created anew, vestigial Scan that calls Get Nane, then scans for keywords.

Created a new procedure, Mat chStri ng, that looks for a specific keyword. Note that, unlike
Mat ch, Mat chSt ri ng does not read the next keyword.

Modified Bl ock to call Scan.

Changed the callsto Fi n abit. Fi n isnow called within Get Narre.

Here isthe program in its entirety:

Example 7.2. KISS

progr am KI SS;

{ Constant Declarations }

const TAB = 7|,
CR ="M
LF = 7J;

{ Type Declarations }
type Symbol = string[8];

87

Lexical Scanning

Synirab
TabPtr

array[1..1000] of Synbol
ASymrab;

{ Variable Declarations }
var Look : char;
Token : char;
Val ue : string[16];
Lcount: integer;

Lookahead Char act er
Encoded Token
Unencoded Token
Label Counter

latn late Yane Yo

{ Definition of Keywords and Token Types }
const KWist: array [1..4] of Synmbol =

("IF, "ELSE', "ENDIF', '"END);
const KWode: string[5] = 'xilee'

{ Read New Character From Il nput Stream}
procedure GCet Char;

begi n

Read(Look) ;

end;

{ Report an Error }
procedure Error(s: string);
begi n
WitelLn
WiteLn("G 'FError: ', s, '.');
end;

{ Report Error and Halt }
procedure Abort(s: string);
begi n

Error(s);
Hal t ;
end;

{ Report What WAs Expected }
procedure Expected(s: string);
begi n

Abort(s + ' Expected');
end;

{ Recogni ze an Al pha Character }
function IsAl pha(c: char): bool ean
begi n

| sAl pha := UpCase(c) in['A.."Z'];
end;

{ Recognize a Decimal Digit
function IsDigit(c: char): bool ean
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phaNuneric Character }
function IsAl Num(c: char): bool ean
begi n

dIsAINun1:: I sAl pha(c) or IsDigit(c);
end;

88

Lexical Scanning

{ Recogni ze an Addop }

function IsAddop(c: char): bool ean
begi n

IsAddop :=c in [+, "-'];

end;

{ Recognize a Ml op }

function IsMil op(c: char): bool ean
begi n

IsMulop :=cin["*, "['];

end;

{ Recogni ze Wiite Space }

function IsWhite(c: char): bool ean
begi n

Is\White :=cin [" ', TAB];

end;

{ Skip Over Leading Wite Space }
procedure SkipWite;
begi n
whil e 1 sWite(Look) do
Get Char ;
end;

{ Match a Specific Input Character }

procedure Match(x: char);

begi n
if Look <> x then Expected('''' + x + '"'"");
Cet Char ;

Ski pWi t e;

end;

{ Skip a CRLF }
procedure Fin;

begi n
if Look = CR then Get Char;
if Look = LF then Get Char;
Ski pWhi t e;

end;

{ Table Lookup }

function Lookup(T: TabPtr; s: string; n: integer):

var i: integer;

f ound: bool ean
begi n

found : = fal se

i > 0) and not found do
= T*i] then
ound : = true

Lookup :=i;

i nteger;

89

Lexical Scanning

{ Get an ldentifier }
procedure Get Nane;

begi n
while Look = CR do
Fi n;
if not IsAl pha(Look) then Expected(' Nane');
Value :="";

whi | e 1 sAl Num(Look) do begin
Val ue : = Val ue + UpCase(Look);
Get Char ;

end;

Ski pWhi t e;

end;

{ Get a Number }
procedure Get Num

begi n
if not IsDigit(Look) then Expected('Integer');
Value :="";
whil e 1sDigit(Look) do begin
Val ue : = Val ue + Look;
Get Char ;
end;
Token := "#';
Ski pWi t e;
end;

{ Get an ldentifier and Scan it for Keywords }
procedure Scan;
begi n

Cet Nane;
OIToken : = KWode[Lookup(Addr (KW ist), Value, 4) + 1];
end;

{ Match a Specific Input String }

procedure MatchString(x: string);

begi n

if Value <> x then Expected('''' + x + "'""'");
end;

{ CGenerate a Uni que Label }
function NewLabel : string;
var S: string;

begi n
Str(LCount, S);
NewLabel :="'L'" + S
I nc(LCount);

end;

{ Post a Label To Cutput }
procedure PostlLabel (L: string);
begi n

WitelLn(L, ':');

end;

{ Qutput a String with Tab }
procedure Emit(s: string);
begi n

Wite(TAB, s);

90

Lexical Scanning

end;

{ Qutput a String with Tab and CRLF }
procedure EmtLn(s: string);
begi n
Emt(s);
Witeln
end;

{ Parse and Translate an Identifier }
procedure |dent;
begi n
Get Nane;
if Look = ' (' then begin
Match(' ("),
Match(')');
EmtLn(' BSR '
end
el se
EmtLn(' MOVE ' + Value + '(PC),D0");

+ Val ue);

end;

{ Parse and Translate a Math Factor }
procedure Expression; Forward;
procedure Factor;

begi n

if Look ="' (' then begin
Mat ch(" (") ;
Expr essi on;
Match(")");
end

else if |sAl pha(Look) then
| dent

el se begin
Get Num

EmtLn(' MOVE #' + Value + ', D0'")
end;
end;

{ Parse and Translate the First Math Factor }
procedure Si gnedFactor;
var s: bool ean;
begi n
s := Look ="'-";
i f IsAddop(Look) then begin
Get Char ;
Ski pWi t e;
end;
Fact or;
if s then
Em tLn(' NEG DO');
end;

{ Recognize and Translate a Multiply }
procedure Multiply;
begi n
Match('*");
Fact or;
EmitLn(' MILS (SP)+,D0");
end;

91

Lexical Scanning

{ Recogni ze and Translate a Divide }
procedure Divide;
begi n
Match('/"');
Fact or;
EmtLn(' MOVE (SP)+,D1");
EmtLn('EXS.L DO');
EmtLn(' D VS D1, D0');
end;

{ Completion of Term Processing (called by Termand FirstTerm}
procedure Terni;
begi n
whi I e I sMul op(Look) do begin
EmtLn(' MOVE DO, -(SP)");
case Look of

"roo o Ml tioply;
/' Divide;
end;
end;
end;

{ Parse and Translate a Math Term}
procedure Term
begi n
Fact or;
Ter mi,
end;

{ Parse and Translate a Math Termwi th Possible Leading Sign }
procedure FirstTerm
begi n
Si gnedFact or;
Ter mi,
end;

{ Recogni ze and Transl ate an Add }
procedure Add;
begi n
Match(' +');
Term
Em tLn(' ADD (SP)+, D0O");
end;

{ Recogni ze and Translate a Subtract }
procedure Subtract;
begi n
Match('-');
Term
EmtLn(' SUB (SP)+, D0');
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }
procedure Expression;
begi n

FirstTerm

92

Lexical Scanning

whi | e |1 sAddop(Look) do begin
EmtLn(' MOVE DO, -(SP)');
case Look of
"+ Add;
'-': Subtract;
end;
end;
end;

{ Parse and Translate a Bool ean Condition }
{ This version is a dunmy }

Procedure Conditi on;

begi n

EmtLn(' Condition');

end;

{ Recogni ze and Translate an I F Construct }
procedure Bl ock; Forward;
procedure Dol f;
var L1, L2: string;
begi n
Condi ti on;
L1 : = NewlLabel;
L2 := L1,
EmtLn('BEQ "' + L1);
Bl ock;
if Token = 'l' then begin
L2 : = NewLabel;
EmtLn('BRA ' + L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Mat chString(' ENDI F') ;
end;

{ Parse and Translate an Assignnent Statenent }
procedure Assignnent;
var Nane: string;

begi n

Nane : = Val ue;

Mat ch(' =");

Expr essi on;
EmtLn('LEA " + Name + ' (PC), A0');
dEm’ tLn(' MOVE DO, (A0)")
end;

{ Recognize and Translate a Statenent Bl ock }
procedure Bl ock;

begi n
Scan;
while not (Token in ['e', '"I']) do begin
case Token of
"i': Dolf;
el se Assignment;
end;
Scan;
end;
end;

93

Lexical Scanning

{ Parse and Translate a Program }
procedur e DoProgram
begi n
Bl ock;
Mat chString(' END) ;
Em tLn(' END)
end;

{ Initialize}
procedure Init;
begi n

LCount := O;
Get Char;
end;

{ Main Program}
begi n

Init;

DoPr ogr am
end.

Compare this program with its single-character counterpart. | think you will agree that the differences
are minor.

Conclusion

Compared to original 2004-08-23. OK.

At this point, you have learned how to parse and generate code for expressions, Boolean expressions,
and control structures. Y ou have now |learned how to develop lexical scanners, and how to incorporate
their elementsinto a trandator. Y ou have still not seen all the elements combined into one program, but
on the basis of what we've done before you should find it a straightforward matter to extend our earlier
programs to include scanners.

We are very close to having all the elements that we need to build areal, functional compiler. There are
till a few things missing, notably procedure calls and type definitions. We will deal with those in the
next few sessions. Before doing so, however, | thought it would be fun to turn the translator aboveinto a
true compiler. That's what we'll be doing in the next installment.

Up till now, we've taken a rather bottom-up approach to parsing, beginning with low-level constructs
and working our way up. In the next installment, I'll also be taking a look from the top down, and well
discuss how the structure of the trandator is atered by changesin the language definition.

See you then.

94

Chapter 8. A Little Philosophy

Installment published 2nd April 1989.

$Header: /home/radek/cvdlets build a compiler/ch-a-little-philosophy.xml,v 1.2 2004/08/21 09:57:03
radek Exp $

chapter id="a-little-philosophy"

Published on 2 April 1989

$ psselect -pl116-122 lets build_a_compiler.ps| foldprn -s8

presbyopic:remark$ psselect -p135-143 lets _build_a_compiler.pg| foldprn -s12

Compared to original 2004-08-23.

This is going to be a different kind of session than the others in our series on parsing and compiler con-
struction. For this session, there won't be any experiments to do or code to write. This once, I'd like to
just talk with you for a while. Mercifully, it will be a short session, and then we can take up where we
left off, hopefully with renewed vigor.

When | wasin college, | found that | could always follow a prof's lecture a lot better if | knew where he
was going with it. I'll bet you were the same.

So | thought maybe it's about time | told you where we're going with this series: what's coming up in
next chapters, and in general what all thisis about. I'll also share some general thoughts concerning the
usefulness of what we've been doing.

The Road Home

Compared to original 2004-08-23. OK.

So far, we've covered the parsing and translation of arithmetic expressions, Boolean expressions, and
combinations connected by relational operators. We've also done the same for control constructs. In all
of this we've leaned heavily on the use of top-down, recursive descent parsing, BNF definitions of the
syntax, and direct generation of assembly-language code. We also learned the value of such tricks as
single-character tokens to help us see the forest through the trees. In the last installment we dealt with
lexical scanning, and | showed you simple but powerful ways to remove the single-character barriers.

Throughout the whole study, I've emphasized the KISS philosophy ... Keep It Simple, Sidney ... and |
hope by now you've realized just how simple this stuff can really be. While there are for sure areas of
compiler theory that are truly intimidating, the ultimate message of this seriesis that in practice you can
just politely sidestep many of these areas. If the language definition cooperates or, as in this series, if
you can define the language as you go, it's possible to write down the language definition in BNF with
reasonable ease. And, as we've seen, you can crank out parse procedures from the BNF just about as fast
asyou can type.

As our compiler has taken form, it's gotten more parts, but each part is quite small and simple, and very
much like al the others.

At this point, we have many of the makings of areal, practical compiler. As a matter of fact, we already
have all we need to build a toy compiler for a language as powerful as, say, Tiny BASIC. In the next
couple of installments, we'll go ahead and define that language.

To round out the series, we still have afew itemsto cover. These include:

Procedure calls, with and without parameters
Local and global variables

Basic types, such as character and integer types
Arrays

Strings

User-defined types and structures

95

A Little Philosophy

e Tree-structured parsers and intermediate languages
e Optimization

These will all be covered in future chapters. When we're finished, you'll have al the tools you need to
design and build your own languages, and the compilers to translate them.

| can't design those languages for you, but | can make some comments and recommendations. I've
already sprinkled some throughout past installments. Y ou've seen, for example, the control constructs |
prefer.

These constructs are going to be part of the languages | build. | have three languages in mind at this
point, two of which you will seein installments to come:

TINY A minimal, but usable language on the order of Tiny BASIC or Tiny C. It won't be very practic-
a, but it will have enough power to let you write and run real programs that do something
worthwhile.

KISS Thelanguage I'm building for my own use. KISS is intended to be a systems programming lan-
guage. It won't have strong typing or fancy data structures, but it will support most of the things
| want to do with a higher-order language (HOL), except perhaps writing compilers.

I've also been toying for years with the idea of a HOL-like assembler, with structured control constructs
and HOL -like assignment statements. That, in fact, was the impetus behind my original foray into the
jungles of compiler theory. This one may never be built, simply because I've learned that it's actually
easier to implement alanguage like KISS, that only uses a subset of the CPU instructions. As you know,
assembly language can be bizarre and irregular in the extreme, and a language that maps one-for-one
onto it can be a real challenge. Still, I've always felt that the syntax used in conventional assemblers is
dumb ... why is

MOVE.L A B
better, or easier to trandate, than

B=A

| think it would be an interesting exercise to develop a*“compiler” that would give the programmer com-
plete access to and control over the full complement of the CPU instruction set, and would allow you to
generate programs as efficient as assembly language, without the pain of learning a set of mnemonics.
Can it be done? | don't know. The real question may be, “Will the resulting language be any easier to
write than assembly?’ If not, there's no point init. | think that it can be done, but I'm not completely sure
yet how the syntax should look.

Perhaps you have some comments or suggestions on this one. I'd love to hear them.

Y ou probably won't be surprised to learn that I've already worked ahead in most of the areas that we will
cover. | have some good news: Things never get much harder than they've been so far. It's possible to
build a complete, working compiler for areal language, using nothing but the same kinds of techniques
you've learned so far. And that brings up some interesting questions.

Why Is It So Simple?

Compared to original 2004-08-23.

Before embarking on this series, | always thought that compilers were just naturally complex computer
programs ... the ultimate challenge. Yet the things we have done here have usually turned out to be
quite simple, sometimes even trivial.

96

A Little Philosophy

For awhile, | thought is was simply because | hadn't yet gotten into the meat of the subject. | had only
covered the simple parts. | will freely admit to you that, even when | began the series, | wasn't sure how
far we would be able to go before things got too complex to deal with in the ways we have so far. But at
this point I've already been down the road far enough to see the end of it. Guess what?

There AreNo Hard Parts!

Then, | thought maybe it was because we were not generating very good object code. Those of you who
have been following the series and trying sample compiles know that, while the code works and is rather
foolproof, its efficiency is pretty awful. | figured that if we were concentrating on turning out tight code,
we would soon find all that missing complexity.

To some extent, that one is true. In particular, my first few efforts at trying to improve efficiency intro-
duced complexity at an alarming rate. But since then I've been tinkering around with some simple op-
timizations and I've found some that result in very respectable code quality, without adding a lot of com-
plexity.

Finally, | thought that perhaps the saving grace was the “toy compiler” nature of the study. | have made
no pretense that we were ever going to be able to build a compiler to compete with Borland and Mi-
crosoft. And yet, again, as| get deeper into this thing the differences are starting to fade away.

Just to make sure you get the message here, let me state it flat out:

USING THE TECHNIQUES WE'VE USED HERE, IT ISPOSSIBLE TO BUILD A
PRODUCTION-QUALITY, WORKING COMPILER WITHOUT ADDING A LOT
OF COMPLEXITY TOWHAT WE'VE ALREADY DONE.

Since the series began I've received some comments from you. Most of them echo my own thoughts:
“Thisis easy! Why do the textbooks make it seem so hard?’ Good question.

Recently, I've gone back and looked at some of those texts again, and even bought and read some new
ones. Each time, | come away with the same feeling: These guys have made it seem too hard.

What's going on here? Why does the whole thing seem difficult in the texts, but easy to us? Are we that
much smarter than Aho, Ullman, Brinch Hansen, and all the rest?

Hardly. But we are doing some things differently, and more and more I'm starting to appreciate the value
of our approach, and the way that it simplifies things. Aside from the obvious shortcuts that | outlined in
Introduction, like single-character tokens and console 1/0O, we have made some implicit assumptions and
done some things differently from those who have designed compilers in the past. As it turns out, our
approach makes life alot easier.

So why didn't al those other guys useit?

You have to remember the context of some of the earlier compiler development. These people were
working with very small computers of limited capacity. Memory was very limited, the CPU instruction
set was minimal, and programs ran in batch mode rather than interactively. Asit turns out, these caused
some key design decisions that have really complicated the designs. Until recently, | hadn't realized how
much of classical compiler design was driven by the available hardware.

Even in cases where these limitations no longer apply, people have tended to structure their programsin
the same way, since that is the way they were taught to do it.

In our case, we have started with a blank sheet of paper. There is a danger there, of course, that you will
end up falling into traps that other people have long since learned to avoid. But it also has alowed usto
take different approaches that, partly by design and partly by pure dumb luck, have allowed us to gain
simplicity.

97

A Little Philosophy

Here are the areas that | think have led to complexity in the past:

Limited RAM Forcing Multiple Passes

| just read “Brinch Hansen on Pascal Compilers’ (an excellent book, BTW). He developed a Pascal
compiler for a PC, but he started the effort in 1981 with a 64K system, and so amost every design
decision he made was aimed at making the compiler fit into RAM. To do this, his compiler has three
passes, one of which is the lexical scanner. There is no way he could, for example, use the distrib-
uted scanner | introduced in the last installment, because the program structure wouldn't alow it. He
also required not one but two intermediate languages, to provide the communication between phases.

All the early compiler writers had to deal with thisissue: Break the compiler up into enough parts so
that it will fit in memory. When you have multiple passes, you need to add data structures to support
the information that each pass leaves behind for the next. That adds complexity, and ends up driving
the design. Lee's book, “The Anatomy of a Compiler,” mentions a FORTRAN compiler developed
for an IBM 1401. It had no fewer than 63 separate passes! Needless to say, in acompiler like thisthe
separation into phases would dominate the design.

Even in situations where RAM s plentiful, people have tended to use the same techniques because
that is what they're familiar with. It wasn't until Turbo Pascal came along that we found how simple
acompiler could beif you started with different assumptions.

Batch Processing

In the early days, batch processing was the only choice ... there was no interactive computing. Even
today, compilers run in essentially batch mode.

In a mainframe compiler as well as many micro compilers, considerable effort is expended on error
recovery ... it can consume as much as 30-40% of the compiler and completely drive the design. The
ideais to avoid halting on the first error, but rather to keep going at all costs, so that you can tell the
programmer about as many errors in the whole program as possible.

All of that harks back to the days of the early mainframes, where turnaround time was measured in
hours or days, and it was important to squeeze every last ounce of information out of each run.

In this series, I've been very careful to avoid the issue of error recovery, and instead our compiler
simply halts with an error message on the first error. | will frankly admit that it was mostly because |
wanted to take the easy way out and keep things simple. But this approach, pioneered by Borland in
Turbo Pascal, aso has alot going for it anyway. Aside from keeping the compiler simple, it also fits
very well with the idea of an interactive system. When compilation is fast, and especially when you
have an editor such as Borland's that will take you right to the point of the error, then it makes a lot
of sense to stop there, and just restart the compilation after the error is fixed.

Large Programs

Early compilers were designed to handle large programs ... essentially infinite ones. In those days
there was little choice; the idea of subroutine libraries and separate compilation were still in the fu-
ture. Again, this assumption led to multi-pass designs and intermediate files to hold the results of
partial processing.

Brinch Hansen's stated goal was that the compiler should be able to compile itself. Again, because of
hislimited RAM, this drove him to a multi-pass design. He needed as little resident compiler code as
possible, so that the necessary tables and other data structures would fit into RAM.

I haven't stated this one yet, because there hasn't been aneed ... we've aways just read and written
the data as streams, anyway. But for the record, my plan has always been that, in a production com-
piler, the source and object data should all coexist in RAM with the compiler, ala the early Turbo
Pascals. That's why |'ve been careful to keep routines like Get Char and Eni t as separate routines,

98

A Little Philosophy

in spite of their small size. It will be easy to change them to read to and write from memory.
Emphasis on Efficiency

John Backus has stated that, when he and his colleagues developed the original FORTRAN com-
piler, they knew that they had to make it produce tight code. In those days, there was a strong senti-
ment against HOL s and in favor of assembly language, and efficiency was the reason. If FORTRAN
didn't produce very good code by assembly standards, the users would simply refuse to use it. For
the record, that FORTRAN compiler turned out to be one of the most efficient ever built, in terms of
code quality. But it was complex!

Today, we have CPU power and RAM size to spare, so code efficiency is not so much of an issue.
By studiously ignoring this issue, we have indeed been able to Keep It Simple. Ironically, though, as
| have said, | have found some optimizations that we can add to the basic compiler structure, without
having to add a lot of complexity. So in this case we get to have our cake and eat it too: we will end
up with reasonable code quality, anyway.

Limited Instruction Sets

The early computers had primitive instruction sets. Things that we take for granted, such as stack op-
erations and indirect addressing, came only with great difficulty.

Example: In most compiler designs, there is a data structure called the literal pool. The compiler typ-
icaly identifies all literals used in the program, and collects them into a single data structure. All ref-
erences to the literals are done indirectly to this pool. At the end of the compilation, the compiler is-
sues commands to set aside storage and initialize the literal pool.

We haven't had to address that issue at all. When we want to load aliteral, we just doiit, inline, asin

MOVE #3, DO

There is something to be said for the use of a literal pool, particularly on a machine like the 8086
where data and code can be separated. Still, the whole thing adds a fairly large amount of complexity
with little in return.

Of course, without the stack we would be lost. In a micro, both subroutine calls and temporary stor-
age depend heavily on the stack, and we have used it even more than necessary to ease expression
parsing.

Desire for Generality

Much of the content of the typical compiler text is taken up with issues we haven't addressed here at
all ... things like automated translation of grammars, or generation of LALR parse tables. Thisis not
simply because the authors want to impress you. There are good, practical reasons why the subjects
arethere.

We have been concentrating on the use of a recursive-descent parser to parse a deterministic gram-
mar, i.e., agrammar that is not ambiguous and, therefore, can be parsed with one level of lookahead.
I haven't made much of this limitation, but the fact is that this represents a small subset of possible
grammars. In fact, there is an infinite number of grammars that we can't parse using our techniques.
The LR technique is a more powerful one, and can deal with grammars that we can't.

In compiler theory, it's important to know how to deal with these other grammars, and how to trans-
form them into grammars that are easier to deal with. For example, many (but not all) ambiguous
grammars can be transformed into unambiguous ones. The way to do this is not always obvious,
though, and so many people have devoted years to develop ways to transform them automatically.

In practice, these issues turn out to be considerably less important. Modern languages tend to be de-

99

A Little Philosophy

signed to be easy to parse, anyway. That was a key motivation in the design of Pascal. Sure, there
are pathological grammars that you would be hard pressed to write unambiguous BNF for, but in the
real world the best answer is probably to avoid those grammars!

In our case, of course, we have sneakily let the language evolve as we go, so we haven't painted
ourselves into any corners here. You may not always have that luxury. Still, with a little care you
should be able to keep the parser simple without having to resort to automatic translation of the
grammar.

We have taken a vastly different approach in this series. We started with a clean sheet of paper, and de-
veloped techniques that work in the context that we are in; that is, a single-user PC with rather ample
CPU power and RAM space. We have limited ourselves to reasonable grammars that are easy to parse,
we have used the instruction set of the CPU to advantage, and we have not concerned ourselves with ef-
ficiency. That's why it's been easy.

Does this mean that we are forever doomed to be able to build only toy compilers? No, | don't think so.
As I've said, we can add certain optimizations without changing the compiler structure. If we want to
process large files, we can aways add file buffering to do that. These things do not affect the overall
program design.

And | think that's a key factor. By starting with small and limited cases, we have been able to concen-
trate on a structure for the compiler that is natural for the job. Since the structure naturally fits the job, it
is almost bound to be simple and transparent. Adding capability doesn't have to change that basic struc-
ture. We can simply expand things like the file structure or add an optimization layer. | guess my feeling
is that, back when resources were tight, the structures people ended up with were artificially warped to
make them work under those conditions, and weren't optimum structures for the problem at hand.

Conclusion

Anyway, that's my arm-waving guess as to how we've been able to keep things simple. We started with
something simple and let it evolve naturally, without trying to force it into some traditional mold.

WEe're going to press on with this. I've given you a list of the areas we'll be covering in future install-
ments. With those installments, you should be able to build complete, working compilers for just about
any occasion, and build them simply. If you really want to build production-quality compilers, you'll be
able to do that, too.

For those of you who are chafing at the bit for more parser code, | apologize for this digression. | just
thought you'd like to have things put into perspective a bit. Next time, we'll get back to the mainstream
of the tutorial.

So far, we've only looked at pieces of compilers, and while we have many of the makings of a complete
language, we haven't talked about how to put it al together. That will be the subject of our next two in-
stallments. Then wel'll press on into the new subjects | listed at the beginning of this installment.

See you then.

100

Chapter 9. A Top View

Installment published 16 April 1989.

$Header: /home/radek/cvdlets build_a compiler/ch-a-top-view.xml,v 1.2 2004/08/21 09:57:03 radek
Exp $

chapter id="a-top-view"

Published on 16 April 1989

$ psselect -p123-132 lets_build_a_compiler.ps| foldprn -s12

presbyopic:remark$ psselect -p144-155 lets build_a_compiler.pg| foldprn -s12

In the previous installments, we have learned many of the techniques required to build a full-blown
compiler. We've done both assignment statements (with Boolean and arithmetic expressions), relational
operators, and control constructs. We still haven't addressed procedure or function calls, but even so we
could conceivably construct a mini-language without them. I've always thought it would be fun to see
just how small alanguage one could build that would still be useful. We're almost in a position to do that
now. The problem is: though we know how to parse and translate the constructs, we still don't know
quite how to put them all together into alanguage.

In those earlier installments, the development of our programs had a decidedly bottom-up flavor. In the
case of expression parsing, for example, we began with the very lowest level constructs, the individua
constants and variables, and worked our way up to more complex expressions.

Most people regard the top-down design approach as being better than the bottom-up one. | do too, but
the way we did it certainly seemed natural enough for the kinds of things we were parsing.

Y ou mustn't get the idea, though, that the incremental approach that we've been using in all these tutori-
as is inherently bottom-up. In this installment I'd like to show you that the approach can work just as
well when applied from the top down ... maybe better. We'll consider languages such as C and Pascal,
and see how complete compilers can be built starting from the top.

In the next installment, we'll apply the same technique to build a complete translator for a subset of the
KISS language, which I'll be calling TINY. But one of my goals for this series is that you will not only
be able to see how a compiler for TINY or KISS works, but that you will also be able to design and
build compilers for your own languages. The C and Pascal examples will help. One thing I'd like you to
see is that the natural structure of the compiler depends very much on the language being translated, so
the simplicity and ease of construction of the compiler depends very much on letting the language set
the program structure.

It's a bit much to produce afull C or Pascal compiler here, and we won't try. But we can flesh out the top
levels far enough so that you can see how it goes.

Let's get started.

The Top Level

One of the biggest mistakes people make in a top-down design is failing to start at the true top. They
think they know what the overall structure of the design should be, so they go ahead and write it down.

Whenever | start a new design, | always like to do it at the absolute beginning. In program design lan-
guage (PDL), thistop level looks something like:

begi n
sol ve the problem
end

101

A Top View

OK, | grant you that this doesn't give much of a hint as to what the next level is, but | like to write it
down anyway, just to give me that warm feeling that | am indeed starting at the top.

For our problem, the overall function of a compiler isto compile a complete program. Any definition of

the language, written in BNF, begins here. What does the top level BNF look like? Well, that depends
quite abit on the language to be translated. Let's take alook at Pascal.

The Structure Of Pascal

Most texts for Pascal include a BNF or “railroad-track” definition of the language. Here are the first few

lines of one:
<progran® ::= <program header> <bl ock> '
<pr ogr am header > :: = PROGRAM <i dent >
<bl ock> ::= <decl arati ons> <st at enent s>

We can write recognizers to deal with each of these elements, just as we've done before. For each one,
well use our familiar single-character tokens to represent the input, then flesh things out a little at a
time. Let's begin with the first recognizer: the program itself.

To trandate this, we'll start with a fresh copy of the Cradle. Since we're back to single-character names,
well just use a'p' to stand for 'PROGRAM.'

To afresh copy of the cradle, add the following code, and insert a call to it from the main program:

{ Parse and Translate A Program }
procedure Prog;
var Nanme: char;
begi n
Match('p'); { Handl es program header part }
Name : = Cet Nane;
Pr ol og(Nare) ;
Match('."');
Epi | og(Nare) ;
end;

The procedures Pr ol og and Epi | og perform whatever is required to let the program interface with
the operating system, so that it can execute as a program. Needless to say, this part will be very OS-
dependent. Remember, I've been emitting code for a 68000 running under the OS | use, which is
SK*DOS. | realize most of you are using PC's and would rather see something else, but I'm in this thing
too deep to change now!

Anyhow, SK*DOS is a particularly easy OSto interface to. Here isthe code for Pr ol og and Epi | og:

{ Wite the Prolog }
procedure Prol og;

begi n

Em tLn(' WARMST EQU $A01E');
end;

{ Wite the Epilog }
procedure Epil og(Nane: char);
begi n

Em tLn(' DC WARMST') ;
dEm’ tLn(' END ' + Nane);
end;

102

A Top View

Asusual, add this code and try out the “compiler.” At this point, thereis only one lega input:

pX.

Note

where x is any single letter, the program name

Well, as usua our first effort is rather unimpressive, but by now I'm sure you know that things will get
more interesting. There is one important thing to note: THE OUTPUT IS A WORKING, COMPLETE,
AND EXECUTABLE PROGRAM (at least after it's assembled).

Thisis very important. The nice feature of the top-down approach is that at any stage you can compile a
subset of the complete language and get a program that will run on the target machine. From here on,
then, we need only add features by fleshing out the language constructs. It's all very similar to what
we've been doing all along, except that we're approaching it from the other end.

Fleshing It Out

To flesh out the compiler, we only have to deal with language features one by one. | like to start with a
stub procedure that does nothing, then add detail in incremental fashion. Let's begin by processing a
block, in accordance with its PDL above. We can do thisin two stages. First, add the null procedure:

{ Parse and Translate a Pascal Bl ock }
procedure DoBl ock(Nane: char);

begi n

end;

and modify Pr og to read:
{ Parse and Translate A Program}

procedure Prog;
var Nanme: char;

begi n
Match(' p');
Name : = Cet Nane;
Pr ol og;
DoBIl ock(Nane) ;
Match('."');
Epi | og(Nane) ;
end;

That certainly shouldn't change the behavior of the program, and it doesn't. But now the definition of
Pr og is complete, and we can proceed to flesh out DoBl ock. That's done right from its BNF defini-
tion:

{ Parse and Transl ate a Pascal Bl ock }
procedur e DoBl ock(Nane: char);
begi n
Decl ar ati ons;
Post Label (Narne) ;
St at ement s;
end;

The procedure Post Label wasdefined in the installment on branches. Copy it into your cradle.

103

A Top View

| probably need to explain the reason for inserting the label where | have. It has to do with the operation
of SK*DOS. Unlike some OS's, SK*DOS allows the entry point to the main program to be anywhere in
the program. All you have to do is to give that point a name. The call to Post Label puts that name
just before the first executable statement in the main program. How does SK*DOS know which of the
many labels is the entry point, you ask? It's the one that matches the END statement at the end of the
program.

OK, now we need stubs for the procedures Decl ar at i ons and St at erent s. Make them null pro-
cedures as we did before.

Doesthe program still run the same? Then we can move on to the next stage.

Declarations

The BNF for Pascal declarationsis:

<decl arations> ::= (<label list> |
<constant |ist> |
<type list> |
<variable list> |
<pr ocedur e> |
<function>) *

Note

Note that I'm using the more liberal definition used by Turbo Pascal. In the standard Pascal
definition, each of these parts must be in a specific order relative to the rest.

Asusual, let's let a single character represent each of these declaration types. The new form of Declara-
tionsis:

{ Parse and Transl ate the Decl aration Part }
procedure Decl arati ons;

begi n
while Look in["I", "¢, "t', '"v', '"p', '"f'] do
case Look of
"I': Labels;
'c': Constants;
"t': Types;
'v': Vari abl es;
"p': DoProcedure;
"f': DoFunction;
end;
end;

Of course, we need stub procedures for each of these declaration types. This time, they can't quite be
null procedures, since otherwise we'll end up with an infinite While loop. At the very least, each recog-
nizer must eat the character that invokesit. Insert the following procedures:

{ Process Label Statement }
procedure Labels;

begi n

Match('1");

end;
{ Process Const Statenent }

procedure Constants;
begi n

104

A Top View

Match('c');
end;

{ Process Type Statenent }
procedure Types;

begi n

Match('t');

end;

{ Process Var Statenent }
procedure Vari abl es;

begi n

Match('v');

end;

{ Process Procedure Definition }
procedur e DoProcedure;

begi n

Match(' p');

end;

{ Process Function Definition }
procedure DoFunction;

begi n

Match(' f');

end;

Now try out the compiler with a few representative inputs. Y ou can mix the declarations any way you
like, aslong as the last character in the program is.' to indicate the end of the program. Of course, none
of the declarations actually declare anything, so you don't need (and can't use) any characters other than
those standing for the keywords.

We can flesh out the statement part in asimilar way. The BNF for itis:

<statenents> ::= <conmpound statenment>
<compound statenment> ::= BEA N <st at enment >
(';" <statenment>) END

Note that statements can begin with any identifier except END. So the first stub form of procedure State-
mentsis:

{ Parse and Translate the Statement Part }
procedure Statenents;
begi n
Match('b");
while Look <> 'e' do
Get Char ;
Match('e');
end;

At this point the compiler will accept any number of declarations, followed by the BEGIN block of the
main program. This block itself can contain any characters at al (except an END), but it must be
present.

The simplest form of input is now

' pxbe."’

Try it. Also try some combinations of this. Make some deliberate errors and see what happens.

105

A Top View

At this point you should be beginning to see the drill. We begin with a stub trandator to process a pro-
gram, then we flesh out each procedure in turn, based upon its BNF definition. Just as the lower-level
BNF definitions add detail and elaborate upon the higher-level ones, the lower-level recognizers will
parse more detail of the input program. When the last stub has been expanded, the compiler will be com-
plete. That's top-down design/implementation in its purest form.

You might note that even though we've been adding procedures, the output of the program hasn't
changed. That's asit should be. At these top levels there is no emitted code required. The recognizers are
functioning as just that: recognizers. They are accepting input sentences, catching bad ones, and chan-
neling good input to the right places, so they are doing their job. If we were to pursue this a bit longer,
code would start to appear.

The next step in our expansion should probably be procedure Statements. The Pascal definition is:

<statement> ::= <sinple statenment> | <structured statenent>
<sinple statenment> ::= <assignnent> | <procedure call> | null
<structured statement> ::= <conpound st atenent >

|
<if statenent> |
<case statenent> |
<whi | e statement> |
<repeat statenent> |
<for statement> |
<wi t h st atenent>

These are starting to look familiar. As a matter of fact, you have aready gone through the process of
parsing and generating code for both assignment statements and control structures. This is where the top
level meets our bottom-up approach of previous sessions. The constructs will be a little different from
those we've been using for KISS, but the differences are nothing you can't handle.

| think you can get the picture now as to the procedure. We begin with a complete BNF description of
the language. Starting at the top level, we code up the recognizer for that BNF statement, using stubs for
the next-level recognizers. Then we flesh those lower-level statements out one by one.

As it happens, the definition of Pascal is very compatible with the use of BNF, and BNF descriptions of
the language abound. Armed with such a description, you will find it fairly straightforward to continue
the process we've begun.

You might have a go at fleshing a few of these constructs out, just to get afeel for it. | don't expect you
to be able to complete a Pascal compiler here ... there are too many things such as procedures and types
that we haven't addressed yet ... but it might be helpful to try some of the more familiar ones. It will do
you good to see executable programs coming out the other end.

If I'm going to address those issues that we haven't covered yet, I'd rather do it in the context of KISS.
WEe're not trying to build a complete Pascal compiler just yet, so I'm going to stop the expansion of Pas-
cal here. Let'stake alook at avery different language.

The Structure of C

The C language is quite another matter, as you'll see. Texts on C rarely include a BNF definition of the
language. Probably that's because the language is quite hard to write BNF for. One reason I'm showing
you these structures now is so that | can impress upon you these two facts:

1. The definition of the language drives the structure of the compiler. What works for one language
may be a disaster for another. It's a very bad idea to try to force a given structure upon the com-
piler. Rather, you should let the BNF drive the structure, as we have done here.

2. A language that is hard to write BNF for will probably be hard to write a compiler for, aswell. Cis
a popular language, and it has a reputation for letting you do virtually anything that is possible to

106

A Top View

do. Despite the success of Small C, Cisnot an easy language to parse.

A C program has less structure than its Pascal counterpart. At the top level, everything in C is a static
declaration, either of data or of afunction. We can capture this thought like this;

<progranet ::= (<gl obal declaration>)*
<gl obal declaration> ::= <data declaration> |
<function>

In Small C, functions can only have the default type int, which is not declared. This makes the input
easy to parse: the first token is either “int,” “char,” or the name of a function. In Small C, the prepro-
cessor commands are a so processed by the compiler proper, so the syntax becomes:

<gl obal declaration> ::="'#" <preprocessor comand> |
"int' <data |list> |
‘char' <data list> |
<i dent > <functi on body> |

Although we're really more interested in full C here, I'll show you the code corresponding to this top-
level structure for Small C.

{ Parse and Translate A Program}
procedure Prog;
begi n
whil e Look <> ~Z do begin
case Look of

"#': PreProc;
"i': IntDecl;
'c¢': CharDecl;
el se DoFunction(lnt);
end;
end;
end;

Note that I've had to use a”*Z to indicate the end of the source. C has no keyword such as END or the "'
to otherwise indicate the end.

With full C, things aren't even this easy. The problem comes about because in full C, functions can also
have types. So when the compiler sees a keyword like "int," it still doesn't know whether to expect a
data declaration or a function definition. Things get more complicated since the next token may not be a
name ... it may start with an *** or '(', or combinations of the two.

More specificaly, the BNF for full C beginswith:

<progrant ::= (<top-level decl>)*

<top-level decl> ::= <function def> | <data decl>
<data decl > ::= [<class>] <type> <decl-list>
<function def> ::= [<class>] [<type>] <function decl>

You can now see the problem: The first two parts of the declarations for data and functions can be the
same. Because of the ambiguity in the grammar as written above, it's not a suitable grammar for a re-
cursive-descent parser. Can we transform it into one that is suitable? Y es, with alittle work. Suppose we
writeit thisway:

<top-level decl> ::= [<class>] <decl>
<decl > ::= <type> <typed decl> | <function decl >
<typed decl> ::= <data list> | <function decl>

107

A Top View

We can build a parsing routine for the class and type definitions, and have them store away their find-
ings and go on, without their ever having to “know” whether a function or a data declaration is being
processed.

To begin, key in the following version of the main program:

{ Main Program}
begi n
Init;
whil e Look <> ~Z do begin
Cet d ass;
Cet Type;
TopDecl ;
end;

For the first round, just make the three procedures stubs that do nothing but call Get Char .

Does this program work? Well, it would be hard put not to, since we're not really asking it to do any-
thing. It's been said that a C compiler will accept virtually any input without choking. It's certainly true
of this compiler, sincein effect all it doesisto eat input characters until it findsa”Z.

Next, let's make Get Cl ass do something worthwhile. Declare the global variable

var C ass: char;

and change Get Cl ass to do the following:

{ GCet a Storage Cl ass Specifier }
Procedure Cetd ass;

begi n
if Look in['a, '"x', "s'] then begin
Cl ass := Look;
Cet Char;
end
else Class := '"a';
end;

" ou

Here, I've used three single characters to represent the three storage classes “auto,” “extern,” and
“static.” These are not the only three possible classes ... there are also “register” and “typedef,” but this
should give you the picture. Note that the default classis “auto.”

We can do asimilar thing for types. Enter the following procedure next:

{ Get a Type Specifier }
procedure Get Type;
begi n
Typ :=" ", .
if Look = 'u" then begin
Sign :="u";
Typ :="i";
Get Char ;
end
else Sign :="s";
if Look in['"i'", "I'', "c'] then begin
Typ : = Look;
Get Char ;
end;
end;

108

A Top View

Note that you must add two more global variables, Sign and Typ.

With these two procedures in place, the compiler will process the class and type definitions and store
away their findings. We can now process the rest of the declaration.

We are by no means out of the woods yet, because there are still many complexities just in the definition
of the type, before we even get to the actual data or function names. Let's pretend for the moment that
we have passed all those gates, and that the next thing in the input stream is a name. If the name is fol-
lowed by aleft paren, we have a function declaration. If not, we have at least one data item, and possibly
alist, each element of which can have an initializer.

Insert the following version of TopDecl :

{ Process a Top-Level Declaration }
procedure TopDecl;
var Nane: char;
begi n
Name : = GCetnane;
if Look = ' (' then
DoFunc(Nare)
el se
DoDat a(Nare) ;
end;

Note

Note that, since we have aready read the name, we must pass it aong to the appropriate
routine.

Finally, add the two procedures DoFunc and DoDat a:

{ Process a Function Definition }

begi n
Match(' ("),
Match(')");
Match(' {");
Match("}");
if Typ =" "' then Typ :="i";
Witeln(dass, Sign, Typ, ' function ', n);
end;
{ Process a Data Declaration }
procedure DoData(n: char);
begi n
if Typ ="' ' then Expected(' Type declaration');
Witeln(dass, Sign, Typ, ' data ', n);
while Look = "',' do begin
Match(',');

n : = Cet Nane;

WiteLn(d ass, Sign, Typ, ' data ', n);
end;
Match(';");
end;

Since we're still a long way from producing executable code, | decided to just have these two routines
tell us what they found.

OK, give this program a try. For data declarations, it's OK to give alist separated by commas. We can't
process initializers as yet. We also can't process argument lists for the functions, but the “(){}” charac-

109

A Top View

ters should be there.

We're still avery long way from having a C compiler, but what we have is starting to process the right
kinds of inputs, and is recognizing both good and bad inputs. In the process, the natural structure of the
compiler is starting to take form.

Can we continue this until we have something that acts more like a compiler. Of course we can. Should
we? That's another matter. | don't know about you, but I'm beginning to get dizzy, and we've still got a
long way to go to even get past the data declarations.

At this point, | think you can see how the structure of the compiler evolves from the language definition.
The structures we've seen for our two examples, Pascal and C, are as different as night and day. Pascal
was designed at least partly to be easy to parse, and that's reflected in the compiler. In general, in Pascal
there is more structure and we have a better idea of what kinds of constructs to expect at any point. In C,
on the other hand, the program is essentially alist of declarations, terminated only by the end of file.

We could pursue both of these structures much farther, but remember that our purpose here is not to
build a Pascal or a C compiler, but rather to study compilers in general. For those of you who DO want
to deal with Pascal or C, | hope I've given you enough of a start so that you can take it from here
(although you'll soon need some of the stuff we still haven't covered yet, such as typing and procedure
cals). For the rest of you, stay with me through the next installment. There, I'll be leading you through
the development of a complete compiler for TINY, a subset of KISS.

See you then.

110

Chapter 10. Introducing "TINY"

Installment published 21st May 1989

$Header: /home/radek/cvs/lets build a compiler/ch-introducing-tiny.xml,v 1.3 2004/08/21 09:57:04
radek Exp $

chapter id="introducing-tiny"

Published on 21 May 1989

$ psselect -p133-180 lets_build_a_compiler.ps| foldprn -s48

presbyopic:remark$ psselect -p156-209 lets build_a compiler.pg| foldprn -s56

In the last installment, | showed you the general idea for the top-down development of a compiler. |
gave you the first few steps of the process for compilers for Pascal and C, but | stopped far short of
pushing it through to completion. The reason was simple: if we're going to produce a real, functional
compiler for any language, I'd rather do it for KISS, the language that I've been defining in this tutorial
series.

In thisinstallment, we're going to do just that, for a subset of KISS which I've chosen to call TINY.

The process will be essentially that outlined in Installment Chapter 9, A Top View, except for one not-
able difference. In that installment, | suggested that you begin with a full BNF description of the lan-
guage. That's fine for something like Pascal or C, for which the language definition is firm. In the case
of TINY, however, we don't yet have a full description ... we seem to be defining the language as we
go. That's OK. In fact, it's preferable, since we can tailor the language dightly as we go, to keep the

parsing easy.

So in the development that follows, well actually be doing a top-down development of both the lan-
guage and its compiler. The BNF description will grow along with the compiler.

In this process, there will be a number of decisions to be made, each of which will influence the BNF
and therefore the nature of the language. At each decision point I'll try to remember to explain the de-
cision and the rationale behind my choice. That way, if you happen to hold a different opinion and
would prefer a different option, you can choose it instead. You now have the background to do that. |
guess the important thing to note is that nothing we do here is cast in concrete. When you're designing
your language, you should feel freeto do it your way.

Many of you may be asking at this point: Why bother starting over from scratch? We had a working
subset of KISS as the outcome of Installment Chapter 7, Lexical Scanning. Why not just extend it as
needed? The answer is threefold. First of all, | have been making a number of changes to further simpli-
fy the program ... changes like encapsulating the code generation procedures, so that we can convert to
a different target machine more easily. Second, | want you to see how the development can indeed be
done from the top down as outlined in the last installment. Finally, we both need the practice. Each time
| go through this exercise, | get alittle better at it, and you will, aso.

Many years ago there were languages called Tiny BASIC, Tiny Pascal, and Tiny C, each of whichwasa
subset of its parent full language. Tiny BASIC, for example, had only single-character variable names
and global variables. It supported only a single data type. Sound familiar? At this point we have almost
all the tools we need to build a compiler like that.

Getting Started

Yet alanguage called Tiny-anything still carries some baggage inherited from its parent language. I've
often wondered if thisis a good idea. Granted, a language based upon some parent language will have
the advantage of familiarity, but there may also be some peculiar syntax carried over from the parent
that may tend to add unnecessary complexity to the compiler. (Nowhere is this more true than in Small
C)

111

Introducing "TINY"

I've wondered just how small and simple a compiler could be made and still be useful, if it were de-
signed from the outset to be both easy to use and to parse. Let's find out. This language will just be
caled “TINY,” period. It's a subset of KISS, which | also haven't fully defined, so that at least makes us
consistent (!). | suppose you could call it TINY KISS. But that opens up a whole can of worms in-
volving cuter and cuter (and perhaps more risque) names, so let'sjust stick with TINY..

The main limitations of TINY will be because of the things we haven't yet covered, such as data types.
Like its cousins Tiny C and Tiny BASIC, TINY will have only one data type, the 16-bit integer. The
first version we develop will aso have no procedure calls and will use single-character variable names,
although as you will see we can remove these restrictions without much effort.

The language | have in mind will share some of the good features of Pascal, C, and Ada. Taking alesson
from the comparison of the Pascal and C compilers in the previous installment, though, TINY will have
a decided Pascal flavor. Wherever feasible, a language structure will be bracketed by keywords or sym-
bols, so that the parser will know where it's going without having to guess.

One other ground rule: As we go, I'd like to keep the compiler producing real, executable code. Even
though it may not do much at the beginning, it will at least do it correctly.

Finally, I'll use a couple of Pascal restrictions that make sense: All data and procedures must be declared
before they are used. That makes good sense, even though for now the only data type we'll useis aword.
This rule in turn means that the only reasonable place to put the executable code for the main program is
at the end of the listing.

The top-level definition will be similar to Pascal:

<prograne ::= PROGRAM <t op-|evel decl> <main>"'."'

Already, we've reached a decision point. My first thought was to make the main block optional. It
doesn't seem to make sense to write a "program” with no main program, but it does make sense if we're
allowing for multiple modules, linked together. As a matter of fact, | intend to allow for thisin KISS.
But then we begin to open up a can of worms that I'd rather leave closed for now. For example, the term
"PROGRAM" redly becomes a misnomer. The MODULE of Modula-2 or the Unit of Turbo Pascal
would be more appropriate. Second, what about scope rules? We'd need a convention for dealing with
name visibility across modules. Better for now to just keep it ssmple and ignore the idea atogether.

There's also a decision in choosing to require the main program to be last. | toyed with the idea of mak-
ing its position optional, asin C. The nature of SK*DOS, the OS I'm compiling for, make this very easy
to do. But this doesn't really make much sense in view of the Pascal-like requirement that all data and
procedures be declared before they're referenced. Since the main program can only call procedures that
have already been declared, the only position that makes senseis at the end, ala Pascal.

Given the BNF above, let's write a parser that just recognizes the brackets:

{ Parse and Translate a Program}
procedure Prog;
begi n
Mat ch(" p");
Header ;
Pr ol og;
Match('.");
Epi | og;
end;

The procedure Header just emits the startup code required by the assembler:

{ Wite Header Info }
procedur e Header;

112

Introducing "TINY"

begi n
Witeln(' WARMST', TAB, ' EQU $A01E');
end;

The procedures Prolog and Epilog emit the code for identifying the main program, and for returning to
the OS:

{ Wite the Prolog }
procedure Prol og;
begi n

Post Label (' MAI N) ;
end;

{ Wite the Epilog }
procedure Epil og;
begi n

Em tLn(' DC WARMST') ;
EmtLn(' END MAIN);
end;

The main program just calls Prog, and then looks for a clean ending:

{ Main Program}
begi n

Init;

Pr og;

dif Look <> CR then Abort (' Unexpected data after ''.''");
end.

At this point, TINY will accept only one input “program,” the null program:

PROGRAM . (or '"p.' in our shorthand.)

Note, though, that the compiler does generate correct code for this program. It will run, and do what
you'd expect the null program to do, that is, nothing but return gracefully to the OS.

As amatter of interest, one of my favorite compiler benchmarks is to compile, link, and execute the null
program in whatever language is involved. You can learn alot about the implementation by measuring
the overhead in time required to compile what should be atrivial case. It's also interesting to measure the
amount of code produced. In many compilers, the code can be fairly large, because they always include
the whole run- time library whether they need it or not. Early versions of Turbo Pascal produced a 12K
object file for this case. VAX C generates 50K!

The smallest null programs I've seen are those produced by Modula-2 compilers, and they run about
200-800 bytes.

In the case of TINY, we have no run-time library as yet, so the object code is indeed tiny: two bytes.
That's got to be arecord, and it's likely to remain one since it is the minimum size required by the OS.

The next step is to process the code for the main program. I'll use the Pascal BEGIN-block:
<mai n> ::= BEG N <bl ock> END

Here, again, we have made a decision. We could have chosen to require a “PROCEDURE MAIN" sort
of declaration, similar to C. | must admit that thisis not abad idea at al ... | don't particularly like the
Pascal approach since | tend to have trouble locating the main program in a Pascal listing. But the altern-
ative is a little awkward, too, since you have to deal with the error condition where the user omits the

113

Introducing "TINY"

main program or misspellsits name. Here I'm taking the easy way out.

Another solution to the “where is the main program” problem might be to require a name for the pro-
gram, and then bracket the main by

BEG N <nanme>

END <nane>
similar to the convention of Modula 2. This adds a bit of “syntactic sugar” to the language. Things like
this are easy to add or change to your liking, if the language is your own design.

To parse this definition of amain block, change procedure Pr og to read:

{ Parse and Translate a Program}
procedure Prog;

begi n
Mat ch(' p');
Header ;
Mai n;
Match('.");
end;

and add the new procedure:

{ Parse and Translate a Main Program}
procedure Main;
begi n
Mat ch(' b");
Pr ol og;
Match('e');
Epi | og;
end;

Now, the only legal program is:
PROGRAM BEG N END . (or 'pbe.")
Aren't we making progress??? Well, as usual it gets better. You might try some deliberate errors here,

like omitting the 'b' or the '€, and see what happens. As aways, the compiler should flag all illegal in-
puts.

Declarations

The obvious next step is to decide what we mean by a declaration. My intent hereis to have two kinds of
declarations; variables and procedures/functions. At the top level, only global declarations are allowed,
justasin C.

For now, there can only be variable declarations, identified by the keyword VAR (abbreviated 'v'):
<top-level decls> ::= (<data declaration>)*
<data declaration> ::= VAR <var-list>

Note that since there is only one variable type, there is no need to declare the type. Later on, for full
KISS, we can easily add a type description.

114

Introducing "TINY"

The procedure Pr og becomes:

{ Parse and Translate a Program}
procedure Prog;
begi n
Mat ch(' p*);
Header ;
TopDecl s;
Mai n;
Match('."');
end;

Now, add the two new procedures:

{ Process a Data Declaration }
procedure Decl;
begi n
Match('v');
Get Char;
end;

{ Parse and Transl ate d obal Declarations }
procedure TopDecls;
begi n
while Look <> 'b' do
case Look of
"v': Decl
elae Abort (' Unrecogni zed Keyword ''' + Look + '"''"');
end;
end;

Note that at this point, Decl isjust a stub. It generates no code, and it doesn't process a list ... every
variable must occur in a separate VAR statement.

OK, now we can have any number of data declarations, each starting with a'v' for VAR, before the BE-
GIN-block. Try afew cases and see what happens.

Declarations And Symbols

That looks pretty good, but we're still only generating the null program for output. A real compiler
would issue assembler directives to alocate storage for the variables. It's about time we actually pro-
duced some code.

With alittle extra code, that's an easy thing to do from procedure Decl . Modify it asfollows:

{ Parse and Translate a Data Decl aration }
procedure Decl;
var Nane: char;
begi n
Match('v');
Al | oc(Get Nan®e) ;
end;

The procedure Alloc just issues a command to the assembler to all ocate storage:
{ Allocate Storage for a Variable }

procedure Alloc(N char);
begi n

115

Introducing "TINY"

WiteLn(N, ':', TAB, 'DC 0');
end;

Givethis one awhirl. Try an input that declares some variables, such as:

pvxvyvzbe.

See how the storage is allocated? Simple, huh? Note also that the entry point, “MAIN,” comes out in the
right place.

For the record, a“real” compiler would aso have a symbol table to record the variables being used. Nor-
mally, the symbol table is necessary to record the type of each variable. But since in this case al vari-
ables have the same type, we don't need a symbol table for that reason. As it turns out, we're going to
find a symbol necessary even without different types, but let's postpone that need until it arises.

Of course, we haven't really parsed the correct syntax for a data declaration, since it involves a variable
list. Our version only permits asingle variable. That's easy to fix, too.

The BNF for <var-list> is

<var-list> ::= <ident> (, <ident>)*

Adding this syntax to Dec| givesthis new version:

{ Parse and Translate a Data Decl aration }
procedure Decl;
var Nane: char;
begi n

Match('v');

Al |l oc(Get Nan®e) ;

while Look ="',' do begin

Get Char ;

Al | oc(Get Nan®e) ;
end;
end;

OK, now compile this code and give it atry. Try anumber of lines of VAR declarations, try alist of sev-
era variables on one line, and try combinations of the two. Does it work?

Initializers

Aslong as we're dealing with data declarations, one thing that's always bothered me about Pascal is that
it doesn't allow initializing data items in the declaration. That feature is admittedly sort of a frill, and it
may be out of place in alanguage that purports to be aminimal language. But it's also so easy to add that
it seems a shame not to do so. The BNF becomes:

<var-list> ::= <var> (<var>)*
<var> ::= <ident> [= <integer>]
Change Alloc asfollows:

{ Allocate Storage for a Variable }
procedure Alloc(N char);

begi n
Wite(N ':', TAB, 'DC"');
if Look = '='" then begin

116

Introducing "TINY"

Mat ch(' =
Wi teLn(Get Nunj ;
end
el se
WitelLn('0");
end;

Thereyou are: an initializer with six added lines of Pascal.
OK, try thisversion of TINY and verify that you can, indeed, give the variablesinitial values.

By golly, this thing is starting to look real! Of course, it still doesn't do anything, but it looks good,
doesn't it?

Before leaving this section, | should point out that we've used two versions of function GetNum. One,
the earlier one, returns a character value, a single digit. The other accepts a multi-digit integer and re-
turns an integer value. Either one will work here, since WriteLn will handle either type. But there's no
reason to limit ourselves to single-digit values here, so the correct version to use is the one that returns
an integer. Hereit is:

{ Get a Nunber
function GetNum integer;

var Val: integer;
begi n
Val := 0;

i f not IsD|g t (Look) then Expected('lnteger');
whil e 1sDigit(Look) do begin

Val := 10 * Val + Od(Look) - Od('0");
Cet Char;

end;

Get Num : = Val ;

end;

As amatter of fact, strictly speaking we should allow for expressions in the data field of the initializer,
or at the very least for negative values. For now, let's just allow for negative values by changing the code
for Alloc asfollows:

{ Allocate Storage for a Variable }
procedure Alloc(N char);

begi n
if[:\l] Tabl e(N) then Abort('Duplicate Variable Name ' + N);
ST = v
Wite(N, ':', TAB, 'DC"');
if Look = '=' then begi n

Mat ch(' ='

I'f Look = '-' then begi n
W|te(Look)
Match('-');

end;

WiteLn(GetNurT);

end

el se

WiteLn('0");

end;

Now you should be able to initialize variables with negative and/or multi-digit values.

The Symbol Table

117

Introducing "TINY"

There's one problem with the compiler as it stands so far: it doesn't do anything to record a variable
when we declare it. So the compiler is perfectly content to allocate storage for severa variables with the
same name. Y ou can easily verify thiswith an input like

pvavavabe.

Here we've declared the variable A three times. As you can see, the compiler will cheerfully accept that,
and generate three identical 1abels. Not good.

Later on, when we start referencing variables, the compiler will also let us reference variables that don't
exist. The assembler will catch both of these error conditions, but it doesn't seem friendly at all to pass
such errors along to the assembler. The compiler should catch such things at the source language level.

So even though we don't need a symbol table to record data types, we ought to install one just to check
for these two conditions. Since at this point we are still restricted to single-character variable names, the
symbol table can be trivial. To provide for it, first add the following declaration at the beginning of your
program:

var ST: array['A ..'Z'] of char;

and insert the following function;

{ Look for Symbol in Table }
function InTable(n: char): Bool ean;
begi n

InTable := ST[n] <> "' ";

end;

We also need to initialize the table to al blanks. The following linesin Init will do the job:
var i: char;
begi n

for i :="'"A to'Z do
ST[i] :=" ",

Finally, insert the following two lines at the beginning of Al | oc:
if InTabl e(N) then Abort('Duplicate Variable Nane ' + N);
ST[N| :="Vv',

That should do it. The compiler will now catch duplicate declarations. Later, we can also use InTable
when generating references to the variables.

Executable Statements

At this point, we can generate a null program that has some data variables decl