
 1

Basic Matlab Tutorial

E. Pachepsky∗

This tutorial is an introduction to Matlab (version 6.5) for people without much

programming, mathematical or Unix background. Matlab is an easy software package to

use even without much knowledge. That is what makes it so convenient. In this tutorial,

some basic and very useful functions are described. These should get you started. Having

understood a few basics, it will be pretty easy to expand your knowledge using Help, the

internet and manuals.

What is Matlab?

Matlab is a software program that allows you to do data manipulation and visualization,

calculations, math and programming. It can be used to do very simple as well as very

sophisticated tasks. We will start very simple.

Starting/quitting

To start Matlab, click on the ‘Start’ button on the left bottom of the screen, and then click

on ‘All Programs’, then ‘Math and Stats’, then ‘Matlab’. A window will pop up that will

consist of three smaller windows. On the right there will be a big window entitled

‘Command Window’. On the left there will be two windows, one entitled ‘Workspace’ and

another one ‘Command History’.

In addition, on the top there is a usual bar with ‘File’, ‘Edit’, etc. headings. You can use

these as you would in any other software (Word for example). Click on ‘File’ and look at

the available commands there. Do the same for all the other headings. Note that the last

heading is ‘Help’ (very useful!). Therefore, if you are stuck you know where to look.

∗ pachepsk@lifesci.ucsb.edu; Department of Ecology Evolution and Marine Biology, University of
California Santa Barbara, Santa Barbara 93106.

 2

To use Matlab, you will mostly be typing in the ‘Command window’. Click on the

Command window. Its outline will become dark grey (that’s how you know that you can

type into that window). A cursor will start blinking on a line right after ‘>>’ (this is called

a prompt).

Let’s start using Matlab by quitting it. In the Command window type quit (the letters

should appear after the prompt) and hit enter. Matlab will close. Now you have used

Matlab!

Help!

Start Matlab again. Let’s explore the Help bar. Look at the third option under the Help

heading ‘Using the Desktop’. Click on it. A Help window will come up with a list of topics

describing the Desktop. Click on ‘What Desktop Is’. On the bottom of the page that will

come up you will find explanations of the buttons, windows and options available on the

desktop. Scroll to the bottom. You will see text ‘Drag the separator bar to resize window’.

Let’s try that.

Switch to the Matlab window. (To do this, look at the taskbar on the bottom of the screen

and find an icon with a little orange and green hill on it that says ‘MATLAB’. Click on it.)

Move your mouse to the space between the ‘Command window’ on the right and the

windows on the left. The mouse should take a shape of an arrow with two points. Press

the left mouse button down and move the mouse left and right. This should move the

boundary between the windows.

If you have questions about the desktop in the future, you can go to Help/Using the

Desktop for the answers. However, the most useful help option under the Help heading

for you now is the second option called ‘MATLAB Help’. Click on it. This will take you to

the main page of Matlab help. The categories are on the left, the main text is on the right.

You can always go to this page if you have a question. Two very useful features on this

page are ‘Index’ and ‘Search’. These are bars on top of the left window that contains the

categories. In the ‘Index’ you can search for available functions in Matlab. In fact, the

Index is like an index at the back of a Matlab manual book.

 3

For example, click on the Index bar. In the window under ‘Search index for:’ type

logarithm. The text on the window below will jump to the entry under ‘logarithm’. It

has several subheadings. Double click on the subheading ‘natural’ in that window. On the

right you will get the description of the log function in Matlab, with syntax and example.

The Index bar is very useful to look up the syntax of a function or to see if a particular

Matlab function exists. Another useful Help feature is the Search bar (located to the right

of the Index bar). That allows you to search Matlab documentation more thoroughly.

Therefore, if you cannot find something in the Index, you might want to try using Search.

Close the Help window, and get back to the main Matlab window.

Matlab as a super-calculator

Click on the Command window. Type 2+3 at the prompt and then hit enter. The

following will come up below the prompt:

ans =

 5

As you can see, you can use Matlab as a basic calculator (although that’s not the most

efficient use for it).

Notice that there is a new entry in the top left window entitled ‘Workspace’. There is now

an entry ans there of size 1x1. ans is a variable. This means that it’s a string of text that

has a value (number) assigned to it. To see this, type ans at the prompt and then hit

enter. As you can see Matlab again returns ans = 5, i.e. it remembers that ans holds a

value of 5.

ans is a special name for a variable in Matlab. It is assigned the value of the answer to

the expression that you type at the prompt.

 4

You can create your own variables. For example, type in x=10. Now Matlab has another

entry in the ‘Workspace’ window called x. Now if you type x, Matlab will know that its

value is 10. For example, type x+5. Matlab will give you the correct answer 15.

Matlab has all the math functions that a calculator may have and many more. For

example, you can find x2. Here, we need to learn a bit of notation. To raise x to the power

of 2 in Matlab you type x.^2. You will get, predictably, 100 since you assigned a value of

10 to x.

Among the most familiar functions, Matlab has sin, cos, exp, log functions. For

example, to find e2, you type exp(2). You should get 7.3891. As you can see, to use a

function, you put the argument of the function in the parentheses after the function

name (without a space between them).

Matlab as a mathematical tool

So far we have used common mathematical functions. However, Matlab allows you to

define (and evaluate) your own functions as well. For example, lets define a function

f(x)=x2+1. To do this, simply type in f=x.^2+1. Since x has a value of 10, the answer is

101. You can now change the value of x. For example, type x=5 and enter, then type

f=x.^2+1 again. You should now get 26.

However, you don’t want to type the expression for f(x) every time you want to change

the value of x. You might want to define a function f(x) for a range of values of x. To do

this in Matlab we need to make x be a range of values. For example, suppose we want to

make x to go from 1 to 10. To do this in Matlab, you type x=1:10. You will get

x =

 1 2 3 4 5 6 7 8 9 10

as a result. Now, x is a list of values from 1 to 10. If we now type f=x.^2+1, we will get

10 values of f for each value of x. In other words, we have defined f as a function of x.

 5

Right now the difference between two consecutive values of x is 1. To change this , we put

the step between two consecutive values between the maximum and minimum values,

i.e. type x=1:0.5:10. You will get

x =

 Columns 1 through 8

 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

4.0000 4.5000

 Columns 9 through 16

 5.0000 5.5000 6.0000 6.5000 7.0000 7.5000

8.0000 8.5000

 Columns 17 through 19

 9.0000 9.5000 10.0000

Now x still ranges from 1 to 10, but now it takes on 19 values with a step of 0.5. Since we

redefined x, we now need to redefine f(x) as well. This means that we must again type

f=x.^2+1. f(x) now has 19 values as well.

Plotting basics

One thing we want to do to with functions is plot them. Matlab is a very good tool for

that. For example, to plot f as a function of x, type plot(x,f). A new window will come

up with a plot of f(x) as a function of x. Matlab has many features for plotting. We will

now learn a few of them. First of all we want to define our axes. This is very simple to do.

To define the x-axis, type xlabel(‘x’) in the Command window. Now switch to the

window with the figure. You will see a label on the x-axis. Let’s do the same for the y-

axis. Predictably, to do this you need to type ylabel(‘f(x)’). Now, if we want to put a

title on our graph the command it title(‘Function f’). As you can see, a lot of the

commands are quite intuitive.

 6

Matlab as a tool for data analysis

What about looking at data in Matlab? Usually, data comes in tables. For example, you

could have some observation as a function of time, such as the average temperature as a

function of a month. This data will have two columns, one for the month and another for

the value of a temperature. Or you could have several replicates on an experiment where

the average weight of some organisms was observed in environments with different food

levels. This data can be recorded as a table with the number of rows equal to the number

of replicate experiments and the number of columns equal to the food levels tested.

A mathematical term for a table is a matrix. (From now on you can understand the term

matrix as table.) Matlab deals with matrices very well. Let’s create a matrix of ones in

Matlab. To do this, we need to know how many rows and columns we want in a matrix.

Suppose we want to create a matrix of ones with 2 rows and 3 columns. To do this, type

ones(2,3). The Matlab will return

ans =

 1 1 1

 1 1 1

Suppose we want to store this matrix in a variable. To do this, type M=ones(2,3). Now,

M will appear in the Workspace window (notice that its size, 2 by 3, is also stated). The

size of a matrix is often referred to as its dimensions. For example, M is ‘a matrix of

dimensions 2 by 3’ or simply ‘a 2 by 3 matrix’.

Whenever you want to change a variable or remove a variable, you can use command

clear. If you type clear M, this will remove M from the Workspace. Try it. Anytime

that you have made a mistake defining a variable or a function, or when you reuse the

same variable name, it is a very good practice to use the clear command. If you want to

get rid of all the variables in your Workspace, you can simply type clear.

You can also construct your own matrix by typing it in. For example, if you type

M=[2,5;9,7; 4,3], you will get a 3 by 2 matrix:

 2 5

 7

 9 7

 4 3

As you can see, to define a matrix in Matlab, you surround the entries by square

brackets. Commas separate column entries and semicolons separate row entries. To look

at the whole first row of the matrix M, you type M(1,:). Here, the colon means ‘show me

all the entries in the row(s) indicated’. To look at the whole second column, you type

M(:,2). If you want to see only the second and third rows of M, you type M(2:3,:).

Let’s work on an example. Suppose you have observations of average temperature as a

function of month. Let’s generate the data to represent that. As we do this, we will learn

several more useful function of Matlab. First, we need to generate a column of months.

We already generated a row of numbers from 1 to 10 in the previous section. Now, we

need to make a column. Notice that a row is just a matrix of dimensions 1 by n (where n

is the length of the row). Similarly, a column is a matrix of dimensions n by 1. These are

called vectors. Since we know how to make a row, let’s start with that. Type

month=1:12. You will see

month =

 1 2 3 4 5 6 7 8 9 10

11 12

To make this row into a column, we will transpose it. To transpose a matrix means to

flip the values in the matrix so that the first row becomes the first column, the second

row becomes the second column etc. Therefore, if you transpose a row, you will get a

column. To do this type month=month’. The apostrophe tells Matlab to transpose

month. You will get

month =

 1

 2

 3

 4

 5

 6

 8

 7

 8

 9

 10

 11

 12

This is what we wanted. Now, we need to generate values of average temperature for

each month. For educational purposes, we will do this naively by picking random

numbers between 0 and 80. Matlab provides a convenient function rand to generate

random numbers between 0 and 1. Try it by typing rand at the prompt several times.

You will get a different number from 0 to 1 every time. To generate random values

between 0 and 80, we can multiply a random number between 0 and 1 by 80. To do this

type 80*rand. Now, we need to generate 12 of these numbers. There are several ways of

doing this, we will learn two of them. (In fact, there are several ways of doing almost

everything in Matlab. As long as you can do it any one way, it will suffice for most work

that you will be doing in the course.)

We need to generate 12 random numbers between 0 and 80. We know how to generate

one of them (the command is 80*rand). Now, we need to string them together. To do

this, we will use a new variable called temp (for temperature). temp should be a column.

A column is a matrix of dimensions n by 1. Therefore, the first entry in the variable temp

will be located in the first row and first (and only) column. To express this in Matlab type

temp(1,1)=80*rand. The second entry in the column will be located in the 2nd row

and 1st column, therefore type temp(2,1)=80*rand. You will get the answer giving

two random values stored in temp. However it is tedious to write all the twelve values by

hand. (If you think that twelve values is not that many, imagine having to do it 100

times.) Therefore, we will use a bit of programming, so that we can be lazy.

A bit of programming

for loops

Suppose we want to do something several times. You can do this by using a very

convenient structure called a loop. A loop loops (hence the name) through some

 9

commands several times. Getting back to our example, we want to perform a command

temp(i, 1)=80*rand twelve times, where i is a number between 1 and 12. To do this

in Matlab you can type:

for i=1:12,

temp(i,1)=80*rand;

end

Now type temp. You will get a row of 12 random numbers between 0 and 80.

Now, what has just happened? You made a for loop. A for loop performs an operation

several times. As you can see, it starts with the word for and ends with the word end.

Let’s translate the line of code to English: for i=1:12 means let i be 1, then 2, then 3,

etc. until i=12 and perform the command temp(i,1)=80*rand; for each value of i.

Note that there is a comma after 12 to signify that what follows is the command you

want to perform. End a command with a semicolon. Then you need to let the for loop

know when to end, and you do this by typing end.

Errors

Getting the commas and the parentheses right in Matlab is very important. Matlab (like

any other software) is stupid, and if you make even a small syntax error, it will give you

an error. Let’s try that.

Retype the previous line but omit the semicolon:

for i=1:12, temp(i,1)=80*rand end

You will get an error in red:

??? for i=1:12, temp(i,1)=80*rand end

 |

Error: Missing operator, comma, or semicolon.

Matlab is complaining about your syntax. In fact, whenever you get an error, you should

first check your syntax.

Getting back to our example, we now have a column of temperatures. We are ready to

create our artificial data set by putting the month column and the temperature column

 10

together by typing data=[month,temp]. The outcome will be a neat table of month

and temperature. This is the kind of dataset you might be working with.

Loading files

However, often you will have your data in a file in Excel or text format. The easiest

format to use with Matlab is a text format with extension .txt. (You can save your Excel

data in the text format by using ‘Save as…’ function under the File heading in the main

toolbar and picking the extension on the bottom of the dialog box.) To learn how to work

with files in Matlab, let’s make a text file with the data that we generated. Open Notepad

(to do this click on the Start button on the left bottom of the screen, then click on ‘All

Programs’, then ‘Accessories’, then ‘Notepad’). An empty Notepad window will come up.

Now, return to the Matlab window. Select the data that we generated and copy it (as you

would copy some text in Word). Now, paste it in the Notepad window and save the file as

data1.txt in the directory of your choice.

In order to load a data file into Matlab, we have to open the directory where the file is

located. To do this, look at the toolbar on top of the main Matlab window. There is a

Current directory name there followed by a button with three dots on it. Click that

button, it allows you to open a directory. Open the directory where your data file is

located. To make sure that you are in the right place, type ls a the prompt. This

command allows you to list (hence, ls) the files in the Matlab’s current directory. You

should see you file data1.txt in the list.

To load the file, type load data1.txt. This will create a new variable called data1 in

the Workspace. Notice that Matlab ignores the extension .txt when naming the data

variable (however, you do need to put it when you are loading a file). Type data1 to look

to make sure that your data is there.

More plotting

Now, let’s plot it. We want to plot the first column of data (month) vs. the second column

(temperature). To do this, type plot(data1(:,1), data1(:,2)). Now, you have a

figure that shows you the temperature. Suppose you don’t want the line connecting the

 11

points, you can type plot(data1(:,1), data1(:,2), ‘o’). You will now only see

circles for each month. (There are other features of the plot function that you can find

out about in the Help.) Suppose you want to have the line and the circles both. To do

this, you can keep the plot you already have and superimpose the first plot you did on

top. To keep the plot that is in the figure now, type hold on. Now type

plot(data1(:,1), data1(:,2)) again. On the figure you will now have both circles

and the line. After you are done with the plot, type hold off. This assures that the next

time you make a plot, the current one will be erased.

You can have more than one figure in Matlab. To make a new figure, type figure. An

empty figure window will appear. Now when you plot in Matlab, your plot will appear in

the figure that you looked at most recently. Suppose you want to make a histogram of the

temperatures. To do this, type hist(data1(:,2)). (As with plot, hist has several

features that allow you to change number of bins, etc. To find out about these, see Help.)

Saving workspace and plots

Now that you’ve done all this work, you might want to save it. To save all the variables

that you have created, you need to save your Workspace. To do this, type save

workspace_name (you can pick the name). After you close Matlab, you can open that

file and it will contain all the variables that you have created. You can also save selected

variables. For example to save variable data1 only, type save data_name data1.

This will create another data_name.mat file that will contain only variable data1.

You might also want to save your plots. There are two ways of saving Matlab plots. One

of them saves them in the Matlab format .fig. This allows you to open the figure later

in Matlab and make modifications to it (change axes, add text, etc.). To save a figure like

that, simply click on the File heading on the toolbar on top of the figure window and click

Save.

You can also save files in other graphical formats. To do this, go to the File heading on

the toolbar of the figure window and click Export. This allows you to export your file in

several formats (most familiar would probably be .jpg). This is useful for saving your

completed plots for reports.

 12

Saving commands: writing .m files

You just saved your data and your figure. What about all the commands that you typed

in? You may want to save the commands if you want to perform this analysis on several

data sets. The commands that you have typed in so far are listed in the bottom left

window ‘Command History’. Moreover, Matlab will remember these if you restart it, but

only on this computer. However, if you change computers, or if the computer crashes,

etc., you may loose the list of the commands that you have typed and may have to type

and remember them over again. Matlab offers an easy way to have a more permanent

record of the commands. You can type your commands into a file and save them, and

then execute them within Matlab.

Let’s try that. In the main Matlab window, on the top toolbar click on File/New/M-file.

This will open a new window with Matlab’s own text editor. Let’s make a file that would

load our data file, plot it and calculate the average temperature for the whole year.

To calculate the average temperature for the year, we will use Matlab function mean()

that (predictably) calculates the mean of the list of numbers that you put in the

parentheses. To calculate the average temperature for the year, you would type

mean(data1(:,2)).

Now, type the commands into the file that you typed at the prompt:

load data1.txt

data1

plot(data1(:,1), data1(:,2), ‘o’)

hold on

plot(data1(:,1), data1(:,2))

hold off

year_avg=mean(data1(:,2))

Save the file under name prog1 into the same directory where the file data1.txt is

located (since one of the commands in prog1.m will load data1.txt). The file will be

 13

saved with extension .m. This is the format that Matlab uses for files that contain

commands.

There is another important step. This is to put comments into our file (a comment is a

text that is written for the benefit of the person reading the file only, and Matlab simply

ignores it). Comments are very important! Imagine that you make a file like this for the

class, and then you want to use it three months later when you are writing up your last

project. It is quite likely that you will not remember when, for what reason and how you

wrote this file. It is also likely that you will not remember what data1 represented.

Therefore, you need comments. To make a comment in Matlab, you put % in front of the

text. Your commented file may look something like this.

% created by Leeza Pachepsky, 1/1/04

% loads and plots the data, finds average yearly temperature

load data1.txt %datafile with month vs. average temperature

% view data

data1

% plot data

plot(data1(:,1), data2(:,2), ‘o’)

hold on

plot(data1(:,1), data2(:,2))

hold off

% find average yearly temperature

year_avg=mean(data1(:,2))

It might seem an overkill for you right now to put that many comments into such a small

file. However, when you start working with more complicated files, it might be very

useful to be very diligent about writing comments.

Now, let’s clear the Workspace by typing clear. Also, close all the figure windows you

have opened. For you to be able to run the commands in the file prog1.m, the file has to

be in the Matlab’s current directory. If you saved prog1.m into another directory,

change to that directory. Now, in the main Matlab window type prog1 (without .m at

 14

the end) at the prompt. If everything is well, you will either get the data and the value for

the year_avg printed, and you will get a figure window with the proper plot in it.

Another possibility is that Matlab will give you some errors to sort out. Read the errors.

If they make sense, fix your file. If they don’t make sense, look at the file and make sure

everything is correct. Then type prog1 again. Do this until it works.

Congratulations, you have just written a Matlab program!

SolvLab: a tool for solving differential equations

In this course, you will have to use Matlab to solve difference and differential equations

numerically. To do this, you will use a tool that will make doing this easier. It’s called

SolvLab. It allows you to define and solve systems of differential and difference

equations.

We will learn how to use SolvLab by looking at a problem from your textbook (Nisbet,

Gurney, Ecological Dynamics), Ch. 2 Project 1. (Note that in the textbook, it is suggested

that you use another program called Solver to solve the differential equations. Solver is a

separate software written in Pascal specifically designed for solving differential

equations. In this course we will stick to the more general Matlab. In particular, we will

use a Matlab tool SolvLab.)

The problem involves numerically solving a continuous-time logistic model:

1
dN N

rN
dt K

 
= − 

 

where N is the number of individuals in a population, r is the growth rate of a population

at low densities and K is the carrying capacity of the environment.

To start, you will need to download three files from the class website: logpop.m,

params_logpop.m, and SolvLab_logpop.m. Make sure that you save the files with

extension .m (sometimes when files are saved they get extra/other extensions). Once you

download these files, change your current Matlab directory to the directory with the files.

Now, click on File/Open in the three files. First look at the logpop.m file. There, on

line 16 you will see the definition of the differential equation:

 15

dN = r * N * (1 - N / K0);

(since we are writing math in Matlab, you have to explicitly include all the multiplication

signs, parentheses, etc.). This is the most important line of the file. Above that you see

that the values of r and K come from some vector p. This vector comes from another file

called params_logpop.m where all the parameters are defined. Look at this file. There,

you will see two headings: parameters and initial values. Under the parameters heading,

the parameter values are defined (r=1.0, K=1.0). Under the initial values, the initial

population N0, start and finish time and the time increment are defined (with values 2.0,

0.0, 0.01, and 10.0 respectively). The time increment is the ∆t (that you heard about in

the lectures) that is used in the numerical simulation of the model. It should be small.

How small is a very difficult question to answer, but in general it should be so small that

if you make it any smaller, the results should not change.

The third file SolvLab_logpop.m looks complicated. It collects the information from

the two other files and puts them into a Matlab ODE (ordinary differential equation)

solver. It also plots the output. You will not, generally, have to play around with this file.

Now let’s try to run this example. Go back to the main Matlab window and type

SolvLab_logpop. You should get the following output:

Parameters are:

 r 1.00 Intrinsic growth rate

 K_0 1.00 Carrying Capacity

Initial Values are:

 N_0 2.00 Initial population size

Time Settings are:

 T_0 0.00 Start Time

 Inc 0.01 Time Increment

 T_F 10.00 Finish Time

Edit params_logpop.m to change the above parameters

Plotting N

printing output to logpopOutput1.txt

 16

A figure window with a plot should also come up. In this window the state variable N is

ploted vs. time. You should see that N goes to 1 with time. Now you can play around with

the parameter values. In file params_logpop.m, change the value of K0 to 4. Save the

file (if you don’t, Matlab will not see the changes you made). You will now see that the

plot has changed. Now, the population approaches 4 with time. You can play around with

various values of all the parameters and initial values. Notice that every time you run the

program an output file called logpopOutput#.txt is generated where instead of #

there is a number corresponding to how many times you have run the program. This is

done so that the output is not overwrriten every time. The logpopOutput#.txt

contains two columns: time and the number of individuals at that time.

Let’s come back to the problem. You are required to change a constant carrying capacity

to one that changes with time:

0 1
() cos(2 /)

p
K t K K t tπ= +

To do this, we first need to change the logpop.m file. There we need to introduce a new

variable Kt. In Matlab it would be defined as

Kt=K0+K1*cos(2*pi/tp*t);

Put this line in right after the

%ODEs

line.

Now replace K0 in the next line with Kt:

dN = r * N * (1 - N / Kt);

There are extra parameters in the problem now: K1 and tp. These have to be inserted in

the params_logpop.m file. Open that file and insert these parameters and their values

in the parameter definition. Now under the parameters heading you will have something

like

 17

%Parameters

Ps={% Value Name Description

 1.0, 'r', 'Intrinsic growth rate';

 1.0, 'K0', 'Carrying Capacity';

 0.1, 'K1', 'Amplitude of oscillations';

 0.5, 'tp', 'Frequency of oscillations';

};

You can put in your own values for K1 and tp.

The last change necessary is to load the new parameters in the logpop.m file. In that

file, under section %PARAMETERS, you need to add definitions of K1 and tp:

%PARAMETERS

r = p(1); % Intrinsic growth rate (1.0)

K0 = p(2); % Carrying Capacity (0.1)

K1 = p(3); % Amplitude of oscillations

tp = p(4); % Frequency of oscillations

Now you can run your modified problem (make sure that you saved your modifications).

Type SolvLab_logpop again. You should get a different answer.

You will use SolvLab in the labs when working on the case studies in the class. SolvLab

also allows you to solve difference equations that you will also encounter in one of the

case studies. The setup for the difference equations is very similar, and you will be

introduced to it then.

More

As you do the labs in the course, they will include descriptions of other Matlab

commands that you will use. The basics covered in this tutorial are meant to get you

started and to give you skills that allow you to learn more as you go.

 18

Couple of tips and tricks

Access to previous commands

By hitting up arrow on the keyboard you can scroll through the previous commands that

you have entered.

Hiding the answer

If you want to perform a command but don’t want to see the outcome (suppose you are

generating a very long array), you can type a semicolon after the command and Matlab

will not display the answer but will perform the command. For example, if you type

x=1:100 and hit enter you will get the whole list of numbers 1 through 100. But if you

type y=1:100; the variable y will be created but will not be displayed

Further resources

Besides the Matlab Help, there is a lot of information about Matlab on the web. There are

also numerous books written about Matlab.

Web resources

Here are some useful websites to explore:

The Mathworks (company that release Matlab) documentation website:

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

Matlab Help Desk online:

http://www-ccs.ucsd.edu/matlab/

A summary of Matlab functions:

http://www-math.cc.utexas.edu/math/Matlab/Manual/ReferenceTOC.html

 19

Library resources

There are a couple of book in the library that you may want to check out such as

Introduction to Matlab 6 by D. Etter, D. Kuncicky and D. Hull

and MATLAB Primer by K.Sigmon. Also, Primer of Ecological Theory by J.

Roughgarden is an ecology book all done in Matlab and that has a Matlab intro section in

the back (which is more advanced than this tutorial and readable).

EEMB resources

In Leeza’s office (Noble Hall 1103), there are a couple of useful Matlab manuals. These

can be borrowed for short periods of time (since these are for use by several people in the

lab) if you ask her nicely.

Summary of commands and functions

% - put before comments in the .m files

‘ – transposes a matrix

clear – clear the variables in the Workspace

dims – gives the dimensions of a matrix

figure – makes a new figure window

for … end – for loop, used to perform commands several times in a row

help (function_name) – shows Matlab help in the Command window as overview or

about the function_name if it is included

hold on/off – keeps/does not keep the current plot when the next one is plotted

load – load a file

ls – show the list of the files in the Matlab’s current directory

mean(data) – calculate the mean of data

plot(x_vector, y_vector) – make a plot (has more options, see help for details)

quit – quit Matlab

rand – produces a random number between 0 and 1

 20

randn – produces a random number from a distribution with a mean of 0 and a

standard deviation and variance of 1

save (variable_name) – save Workspace or a variable if the variable_name is

included

