
OOSC - Summer Semester 2004

1

Chair of Software Engineering

Object-Oriented Software Construction

Bertrand Meyer

OOSC - Summer Semester 2004

2

Chair of Software Engineering

Lecture 18:

From design patterns to components

OOSC - Summer Semester 2004

3

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

4

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

5

Chair of Software Engineering

Benefits of design patterns

 Capture the knowledge of experienced developers
 Publicly available “repository”
 Newcomers can learn them and apply them to

their design
 Yield a better structure of the software (modularity,

extendibility)
 Common pattern language
 Facilitate discussions between programmers and

managers

OOSC - Summer Semester 2004

6

Chair of Software Engineering

However: not a reusable solution

 Solution to a particular recurring design issue in a
particular context:

 “Each pattern describes a problem that occurs
over and over again in our environment, and
then describes the core of the solution to this
problem in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Erich Gamma et al., Design Patterns, 1995

NOT REUSABLE

OOSC - Summer Semester 2004

7

Chair of Software Engineering

A step backwards

 A step backwards from reuse:

 No available “pattern libraries”
 Programmers need to implement them each

time anew
 A pedagogical tool, not a reuse tool

“A successful pattern cannot just be a book
description: it must be a software component”

Bertrand Meyer: OOSC2, 1997

OOSC - Summer Semester 2004

8

Chair of Software Engineering

Software reuse vs. design reuse

 “Reuse of architectural and design experience is
probably the single most valuable strategy in the
basket of reuse ideas”

Clemens Szyperski, Component software, 1998

 Software reuse vs. design reuse:
 Not much different with seamless development

 Combining both worlds:
 From patterns to Eiffel components…

OOSC - Summer Semester 2004

9

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

10

Chair of Software Engineering

A successful story: the Observer pattern

OBSERVER SUBJECT* *

MY_OBSERVER MY_SUBJECT

update*

update+

add_observer*
remove_observer*
notify_observers*

add_observer+
remove_observer+
notify_observers+

*

+

Deferred (abstract) class

Effective (concrete) class

f*

f+

Deferred feature

Effective (implemented) feature

inherits

 from

client

(uses)

OOSC - Summer Semester 2004

11

Chair of Software Engineering

Class SUBJECT

deferred class SUBJECT feature -- Observer pattern

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.

require
not_yet_an_observer: not observers.has (an_observer)

do
observers.extend (an_observer)

ensure
observer_added: observers.has (an_observer)
one_more: observers.count = old observers.count + 1

end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.

require
is_an_observer: observers.has (an_observer)

do
observers.search (an_observer)
observers.remove

ensure
observer_removed: not observers.has (an_observer)
one_less: observers.count = old observers.count – 1

end

OOSC - Summer Semester 2004

12

Chair of Software Engineering

Class SUBJECT (cont’d)

notify_observers is
-- Notify all observers.
-- (Call update on each observer.)

do
from

observers.start
until

observers.after
loop

observers.item.update
observers.forth

end
end

observers: LINKED_LIST [OBSERVER]
-- List of observers

invariant

observers_not_void: observers /= Void

end

OOSC - Summer Semester 2004

13

Chair of Software Engineering

Class OBSERVER

deferred class OBSERVER feature -- Observer pattern

update is
-- Update observer according to the state of
-- subject data.

deferred
end

data: SUBJECT
-- Observable data

end

OOSC - Summer Semester 2004

14

Chair of Software Engineering

A typical OBSERVER

class MY_DISPLAY inherit

OBSERVER
redefine

data
end

create

make

feature -- Initialization

make is
-- Initialize GUI and register an observer of data.

do
create add_button.make_with_text_and_action (“Add”, agent on_add)
create remove_button.make_with_text_and_action (“Remove”, agent on_remove)
data.add_observer (Current)

end

feature -- Access

add_button: EV_BUTTON
-- Button with label Add

remove_button: EV_BUTTON
-- Button with label Remove

OOSC - Summer Semester 2004

15

Chair of Software Engineering

A typical OBSERVER (cont’d)

data: MY_DATA
-- Data to be observed

feature -- Event handling

on_add is
-- Action performed when add_button is pressed

do
data.add

end

on_remove is
-- Action performed when remove_button is pressed

do
data.remove

end

feature -- Observer pattern

update is
-- Update GUI.

do
-- Something here

end

end

OOSC - Summer Semester 2004

16

Chair of Software Engineering

A typical SUBJECT

Redundancy:

→ Hardly maintainable

→ Not reusable

class MY_DATA inherit

SUBJECT

feature -- Observer pattern

add is
 -- Add Current to data to be observed.
do
 -- Do something.
 notify_observers
end

remove is
 -- Remove Current from data to be observed.
do
 -- Do something.
 notify_observers
end

end

OOSC - Summer Semester 2004

17

Chair of Software Engineering

The Event library

 Basically:
 One generic class: EVENT_TYPE
 Two features: publish and subscribe

 For example: A button my_button that reacts in a
way defined in my_procedure when clicked (event
mouse_click):

OOSC - Summer Semester 2004

18

Chair of Software Engineering

Example using the Event library

 The publisher (“subject”) creates an event type object:

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]] is
-- Mouse click event type

once
create Result

ensure
mouse_click_not_void: Result /= Void

end

 The publisher triggers the event:

mouse_click.publish ([x_positition, y_position])

 The subscribers (“observers”) subscribe to events:

my_button.mouse_click.subscribe (agent my_procedure)

OOSC - Summer Semester 2004

19

Chair of Software Engineering

An encouraging success

 A book idea: the Observer pattern
 A reusable library: the Event library

 Let’s go further and explore all design patterns…

OOSC - Summer Semester 2004

20

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

21

Chair of Software Engineering

Objectives

 A new classification of the design patterns
described in Gamma et al.:

 Artificial design patterns
 Reusable design patterns
 Remaining design patterns

 A “pattern library” made of the reusable
components obtained from design patterns

 Code templates otherwise

OOSC - Summer Semester 2004

22

Chair of Software Engineering

Creational design patterns

Builder
Singleton

Abstract Factory
Factory Method

Prototype

Remaining
design patterns

Reusable
design patterns

Artificial
design patterns

OOSC - Summer Semester 2004

23

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

24

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

25

Chair of Software Engineering

Prototype: an artificial DP

 Intent:
 “Specify the kinds of objects to create using a

prototypical instance, and create new objects by
copying this prototype.” [Gamma 1995, p 117]

CLIENT PROTOTYPE

cloneprototype

Class

Client relationship
In fact: a feature of ANY

 In Eiffel, every object is a prototype!

OOSC - Summer Semester 2004

26

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

27

Chair of Software Engineering

Abstract Factory: a reusable DP

 Intent:
 “Provide an interface for creating families of related or

dependent objects without specifying their concrete
classes.” [Gamma 1995, p 87]

OOSC - Summer Semester 2004

28

Chair of Software Engineering

Class FACTORY

deferred class FACTORY feature -- Factory methods

new_product_a: PRODUCT_A is
-- New product of type PRODUCT_A

deferred
ensure

product_a_not_void: Result /= Void
end

new_product_b: PRODUCT_B is
-- New product of type PRODUCT_B

deferred
ensure

product_b_not_void: Result /= Void
end

end

OOSC - Summer Semester 2004

29

Chair of Software Engineering

Class FACTORY_1

class FACTORY_1 inherit

FACTORY

feature -- Factory methods

new_product_a: PRODUCT_A1 is
-- New product of type PRODUCT_A1

do
create Result

end

new_product_b: PRODUCT_B1 is
-- New product of type PRODUCT_B1

do
create Result

end

end

OOSC - Summer Semester 2004

30

Chair of Software Engineering

Flaws of the approach

 Code redundancy:
 FACTORY_1 and FACTORY_2 will be similar

 Lack of flexibility:
 FACTORY fixes the set of factory functions

new_product_a and new_product_b

OOSC - Summer Semester 2004

31

Chair of Software Engineering

The Factory library

class FACTORY [G] create

make

feature -- Initialization

make (a_function: like factory_function) is
-- Set factory_function to a_function.

require
a_function_not_void: a_function /= Void

do
factory_function := a_function

ensure
factory_function_set: factory_function = a_function

end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [], G]
-- Factory function creating new instances of type G

OOSC - Summer Semester 2004

32

Chair of Software Engineering

The Factory library (cont’d)

feature – Factory methods

new: G is
-- New instance of type G

do
factory_function.call ([])
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

new_with_args (args: TUPLE): G is
-- New instance of type G initialized with args

do
factory_function.call (args)
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

invariant

factory_function_not_void: factory_function /= Void

end

OOSC - Summer Semester 2004

33

Chair of Software Engineering

Sample application

simulated_traffic: TRAFFIC

simulated_traffic.add_vehicle (…)

VEHICLE*

CAR
+

BUS
+

METRO
+

TRAFFIC
+

SIMULATION
+

OOSC - Summer Semester 2004

34

Chair of Software Engineering

With the Abstract Factory DP

With:

car_factory: CAR_FACTORY is
 -- Factory of cars

 once
 create Result

 ensure
 car_factory_not_void: Result /= Void

 end

VEHICLE_FACTORY*

CAR_FACTORY
+

BUS_FACTORY
+

METRO_FACTORY
+new_car+ new_metro+

new_vehicle*

new_bus+

simulated_traffic.add_vehicle (
car_factory.new_car (a_power,

 a_wheel_diameter,
 a_door_width,
 a_door_height)

)

OOSC - Summer Semester 2004

35

Chair of Software Engineering

With the Factory library

simulated_traffic.add_vehicle (
car_factory.new_with_args ([a_power,

 a_wheel_diameter,
 a_door_width,
 a_door_height]
)

)
With:

car_factory: FACTORY [CAR] is
-- Factory of cars

once
create Result.make (agent new_car)

ensure
car_factory_not_void: Result /= Void

end

OOSC - Summer Semester 2004

36

Chair of Software Engineering

With the Factory library (cont’d)

and:

new_car (a_power,a_diameter,a_width,a_height: INTEGER):CAR is
-- New car with power engine a_power,
-- wheel diameter a_diameter,
-- door width a_width, door height a_height

do
-- Create car engine, wheels, and doors.
create Result.make (engine, wheels, doors)

ensure
car_not_void: Result /= Void

end

OOSC - Summer Semester 2004

37

Chair of Software Engineering

Factory pattern vs. library

 Benefits:
 Get rid of some code duplication
 Fewer classes
 Reusability

 One caveat though:
 Likely to yield a bigger client class (because

similarities cannot be factorized through
inheritance)

OOSC - Summer Semester 2004

38

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

39

Chair of Software Engineering

Factory Method: a reusable DP

 Intent:
 “Define an interface for creating an object, but

let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.” [Gamma 1995, p 107]

A special case of the Abstract Factory

OOSC - Summer Semester 2004

40

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

41

Chair of Software Engineering

Builder: a remaining DP

 Intent:
 “Separate the construction of a complex object

from its representation so that the same
construction process can create different
representations.” [Gamma 1995, p 97]

OOSC - Summer Semester 2004

42

Chair of Software Engineering

Class BUILDER

deferred class BUILDER feature -- Access

last_product: PRODUCT is
-- Product under construction

deferred
end

feature -- Basic operations

build is
-- Create and build last_product.

do
build_product
build_part_a
build_part_b

ensure
last_product_not_void: last_product /= Void

end
...

end

OOSC - Summer Semester 2004

43

Chair of Software Engineering

A reusable builder?

 Issue:
 How to know how many parts the product has?

Not reusable

 Handle some usual cases, e.g. a “two part builder”
by reusing the Factory library:

class TWO_PART_BUILDER [F -> BUILDABLE, G, H]
-- Build a product of type F
-- composed of two parts:
-- the first part of type G,
-- the second part of type H.

OOSC - Summer Semester 2004

44

Chair of Software Engineering

Class BUILDABLE

deferred class BUILDABLE feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART_BUILDER} -- Status setting

-- set_g
-- set_h

end

OOSC - Summer Semester 2004

45

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

46

Chair of Software Engineering

Singleton: a remaining DP

 Intent:
 “Ensure a class only has one instance, and

provide a global point of access to it.”
[Gamma 1995, p 127]

SHARED_ SINGLETON SINGLETON

singleton

Harder than it looks…

OOSC - Summer Semester 2004

47

Chair of Software Engineering

A wrong approach

class SINGLETON feature {NONE}

frozen the_singleton: SINGLETON is
-- The unique instance of this class

once
Result := Current

end

invariant

only_one_instance: Current = the_singleton

end

OOSC - Summer Semester 2004

48

Chair of Software Engineering

A wrong approach (cont’d)

deferred class SHARED_SINGLETON feature {NONE}

singleton: SINGLETON is
-- Access to unique instance

deferred
end

is_real_singleton: BOOLEAN is
 -- Do multiple calls to singleton return the same result?
do

Result := singleton = singleton
end

invariant

singleton_is_real_singleton: is_real_singleton

end

OOSC - Summer Semester 2004

49

Chair of Software Engineering

What’s wrong?

 If one inherits from SINGLETON several times:

 The inherited feature the_singleton keeps the
value of the first created instance.

 Violates the invariant of class SINGLETON in all
descendant classes except the one for which the
singleton was created first.

There can only be one singleton per system

OOSC - Summer Semester 2004

50

Chair of Software Engineering

A correct Singleton example

class MY_SHARED_SINGLETON feature -- Access

singleton: MY_SINGLETON is
-- Singleton object

do
Result := singleton_cell.item
if Result = Void then

create Result.make
end

ensure
singleton_created: singleton_created
singleton_not_void: Result /= Void

end

feature -- Status report

singleton_created: BOOLEAN is
-- Has singleton already been created?

do
Result := singleton_cell.item /= Void

end

feature {NONE} -- Implementation

singleton_cell: CELL [MY_SINGLETON] is
-- Cell containing the singleton if already created

once
create Result.put (Void)

ensure
cell_not_void: Result /= Void

end
end

OOSC - Summer Semester 2004

51

Chair of Software Engineering

A correct Singleton example (cont’d)

class MY_SINGLETON inherit

MY_SHARED_SINGLETON

create

make

feature {NONE} -- Initialization

make is
-- Create a singleton object.

require
singleton_not_created: not singleton_created

do
singleton_cell.put (Current)

end

invariant

singleton_created: singleton_created
singleton_pattern: Current = singleton

end

In fact, one can still break it by:

 Cloning a singleton.

 Using persistence.

 Inheriting from
MY_SHARED_SINGLETON and
putting back Void to the cell after
the singleton has been created.

OOSC - Summer Semester 2004

52

Chair of Software Engineering

A Singleton in Eiffel: impossible?

 Having frozen classes (from which one cannot
inherit) would enable writing singletons in Eiffel

 But it would still not be a reusable solution

OOSC - Summer Semester 2004

53

Chair of Software Engineering

Structural design patterns

Proxy
Decorator
Adapter
Bridge
Facade

Composite
Flyweight

Remaining
design patterns

Reusable
design patterns

Artificial
design patterns

OOSC - Summer Semester 2004

54

Chair of Software Engineering

Behavioral design patterns

 Not done yet

 But can expect DP like the Visitor and the Strategy
to be reusable through the Eiffel agent mechanism

OOSC - Summer Semester 2004

55

Chair of Software Engineering

References: Design patterns

 Gamma et al.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995.

 J_z_quel et al.: Design Patterns and Contracts,
Addison-Wesley, 1999.

OOSC - Summer Semester 2004

56

Chair of Software Engineering

References: From patterns to components

 Karine Arnout. Contracts and tests. Ph.D. research plan, December 2002.
Available from http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf

 Karine Arnout, and Bertrand Meyer. “From Design Patterns to Reusable
Components: The Factory Library”. Available from
http://se.inf.ethz.ch/people/arnout/arnout_meyer_factory.pdf

 Karine Arnout, and Éric Bezault. “How to get a Singleton in Eiffel?”. Available
from http://se.inf.ethz.ch/people/arnout/arnout_bezault_singleton.pdf

 Volkan Arslan. Event library (sources). Available from
http://se.inf.ethz.ch/people/arslan/data/software/Event.zip

 Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. “Event library: an
object-oriented library for event-driven design”. JMLC 2003. Available from
http://se.inf.ethz.ch/people/arslan/data/scoop/conferences/Event_Library_J
MLC_2003_Arslan.pdf

 Bertrand Meyer. “The power of abstraction, reuse and simplicity: an object-
oriented library for event-driven design”. Available from
http://www.inf.ethz.ch/~meyer/ongoing/events.pdf

OOSC - Summer Semester 2004

57

Chair of Software Engineering

End of lecture 18

