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Lecture 18:

From design patterns to components
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Agenda for today 3

= Design patterns
= A successful story: the Observer pattern
= From patterns to components
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(¢) Agenda for today 4

= Design patterns
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Benefits of design patterns :

= Capture the knowledge of experienced developers
= Publicly available “repository”

= Newcomers can learn them and apply them to
their design

= Yield a better structure of the software (modularity,
extendibility)

= Common pattern language

= Facilitate discussions between programmers and
managers
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However: not a reusable solution ;

= Solution to a particular recurring design issue in a
particular context:

= “Fach pattern describes a problem that occurs
over and over again in our environment, and
then describes the core of the solution to this
problem in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Erich Gamma et al., Design Patterns, 1995

mm=> NOT REUSABLE
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A step backwards

= A step backwards from reuse:

= No available “pattern libraries”

= Programmers need to implement them each
time anew

= A pedagogical tool, not a reuse tool

“A successful pattern cannot just be a book
description: it must be a software component”

Bertrand Meyer: O0OSC2, 1997
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Software reuse vs. design reuse

8

= “Reuse of architectural and design experience is

probably the single most valuable strategy in the
basket of reuse ideas”

Clemens Szyperski, Component software, 1998

= Software reuse vs. design reuse:
= Not much different with seamless development

= Combining both worlds:
= From patterns to Eiffel components...
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(¢) Agenda for today 9

= A successful story: the Observer pattern
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@ A successful story: the Observer pattern |,

BSERVER * BJECT *
update* OBS < SUBJEC add_observer®
remove_observer*
notify_observers*
MY OBSERVER < MY _SUBJECT

add observer+
update+ remove _observer+
notify _observers+

@ Deferred (abstract) class f* Deferred feature inherits
from
@ Effective (concrete) class f+ Effective (implemented) feature =Jp client
(uses)
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@ Class SUBJECT y

deferred class SUBJECT feature -- Observer pattern

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.

require
not_yet_an_observer: not observers.has (an_observer)
do
observers.extend (an_observer)
ensure
observer_added: observers.has (an_observer)
one_more: observers.count = old observers.count + 1
end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.

require
is_an_observer: observers.has (an_observer)
do
observers.search (an_observer)
observers.remove
ensure
observer_removed: not observers.has (an_observer)
one_less: observers.count = old observers.count — 1
end
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(¢) Class SUBJECT (cont'd)

12

notify_observers is
-- Notify all observers.
-- (Call update on each observer.)

do
from
observers.start
until
observers.after
loop
observers.item.update
observers.forth
end
end

observers: LINKED LIST [OBSERVER]
-- List of observers

invariant
observers _not_void: observers /= Void

end
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(¢) Class OBSERVER )

deferred class OBSERVER feature -- Observer pattern

update is
-- Update observer according to the state of
-- subject data.
deferred
end

data: SUBJECT
-- Observable data
end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO



(®) A typical OBSERVER ’

class MY _DISPLAY inherit

OBSERVER
redefine
data
end

create

make

feature -- Initialization

make is
-- Initialize GUI and register an observer of data.
do
create add_button.make_with_text_and_action (“"Add”, agent on_add)
create remove_button.make_with_text_and_action ("Remove”, agent on_remove)
data.add_observer (Current)
end

feature -- Access

add_button: EV_BUTTON
-- Button with label Add

remove_button: EV_BUTTON
-- Button with label Remove

i i il RS
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(¢) A typical OBSERVER (cont’d) )

data: MY _DATA
-- Data to be observed

feature -- Event handling

on_add is
-- Action performed when add_button is pressed
do
data.add
end

on_remove is
-- Action performed when remove_button is pressed
do
data.remove
end

feature -- Observer pattern

update is
-- Update GUI.
do
-- Something here
end
end

ETH
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(*) A typical SUBJECT )

class MY _DATA inherit
SUBJECT
feature -- Observer pattern

add is

-- Add Current to data to be observed.

do
-- Do something.

notify _observers
end

Redundancy:
— Hardly maintainable

— Not reusable

remove is
-- Remove Current from daga’to be observed.
do
-- Do something.
notify _observers

end

end

ETH
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The Event library .

= Basically:
= One generic class: EVENT _TYPE
= Two features: publish and subscribe

= For example: A button my_button that reacts in a
way defined in my_procedure when clicked (event

mouse_click):

g rbialitlie SEchnihehi HuEhiEil I 20
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(¢) Example using the Event library )

= The publisher (“subject”) creates an event type object:

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]] is
-- Mouse click event type

once

create Result
ensure

mouse_click _not void: Result /= Void
end

= The publisher triggers the event:

mouse_click.publish ([x_positition, y_position])

= The subscribers (Yobservers”) subscribe to events:

my_button.mouse_click.subscribe (agent my_procedure)
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An encouraging success

19

= A book idea: the Observer pattern
= A reusable library: the Event library

Let’s go further and explore all design patterns...
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(¢) Agenda for today s

= From patterns to components
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Objectives

21

= A new classification of the design patterns
described in Gamma et al.:

= Artificial design patterns
= Reusable design patterns
= Remaining design patterns

= A “pattern library” made of the reusable
components obtained from design patterns

= Code templates otherwise
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(¢) Creational design patterns .

Artificial
design patterns

Reusable
design patterns

Remaining
design patterns

=Prototype

=Abstract Factory
=Factory Method

=Builder
=Singleton

Chair of Software Engineering
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(¢) Creational design patterns

23

Prototype
Abstract Factory
Factory Method
Builder
Singleton
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(¢) Creational design patterns y

= Prototype
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Prototype: an artificial DP ,

= Intent:

= “Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.” [Gamma 1995, p 117]

prototype @
CLIENT PROTOTYPE

© Class

h |

— Client relationship

In fact: a feature of ANY

m=>> [n Eiffel, every object is a prototype!
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(¢) Creational design patterns ”

= Abstract Factory
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@ Abstract Factory: a reusable DP .

= Intent:

= “Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.” [Gamma 1995, p 87]

£
PRODUCT A

hew_product 0

+ +
PRODUCT Al PRODUCT A2

*
FACTORY

new_product_a hew_product_a

new_product

+ +
@'TORI’_I FACTORY 2

PRODUCT B

new_product b new product b

PRODUCT B1 PRODUCT B2

ETH
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(®) Class FACTORY

28

deferred class FACTORY feature -- Factory methods

new_product_a: PRODUCT_A is
-- New product of type PRODUCT_A
deferred
ensure
product_a_not_void: Result /= Void
end

new_product_b: PRODUCT_B is
-- New product of type PRODUCT_B
deferred
ensure
product_b_not_void: Result /= Void
end

end
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(®) Class FACTORY 1

29

class FACTORY 1 inherit

FACTORY
feature -- Factory methods

new_product_a: PRODUCT_A1 is
-- New product of type PRODUCT_Al1
do
create Result
end

new_product_b: PRODUCT_B1 is
-- New product of type PRODUCT _B1
do
create Result
end

end
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(¢) Flaws of the approach

30

= Code redundancy:
= FACTORY 1 and FACTORY 2 will be similar

= |Lack of flexibility:

= FACTORY fixes the set of factory functions
new_product_a and new_product_b
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(®) The Factory library .

class FACTORY [(] create
make
feature -- Initialization

make (a_function: like factory_function) is
-- Set factory_function to a_function.

require
a_function_not_void: a function /= Void

do
factory_function := a_function

ensure
factory_function_set: factory_function = a_function

end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [], ]
-- Factory function creating new instances of type G
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(¢) The Factory library (cont’d)

32

feature - Factory methods

new: G is
-- New instance of type G
do
factory_function.call ([])
Result := factory_function.last_result
ensure
new_not void: Result /= Void
end

new_with_args (args: TUPLE): G is
-- New instance of type G initialized with args

do
factory_function.call (args)
Result := factory_function.last_result
ensure
new_not void: Result /= Void
end
invariant

factory_function_not_void: factory_function /= Void

end
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) Sample application

33

simulated traffic: TRAFFIC

simulated _traffic.add _vehicle (...)
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(¢) With the Abstract Factory DP y

*
VEHICLE_FACTORY

new_vehicle*

+ + + +
NeW_Car™ ( CAR FACTORY METRO_FACTORY) "eW-metro
new_bus+
simulated_traffic.add_vehicle ( With:

car_factory.new_car (a_power,
a_wheel_diameter,
a_door_width,

car_factory: CAR_FACTORY is
-- Factory of cars

] once
a_door_height) create Result
) ensure
car_factory_not_void: Result /= Void
end

ETH
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@ With the Factory library .

simulated_traffic.add_vehicle (
car_factory.new_with_args ([a_power,
a_wheel _diameter,
a_door_width,
a_door_height]

)
)
With:
car_factory: FACTORY [CAR] is
-- Factory of cars
once
create Result.make (agent new_car)
ensure
car_factory_not_void: Result /= Void
end
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(¢) With the Factory library (cont’d) .

and:

new_car (a_power,a_diameter,a_width,a_height: INTEGER):CAR is
-- New car with power engine a_power,
-- wheel diameter a_diameter,
-- door width a_width, door height a_height
do
-- Create car engine, wheels, and doors.
create Result.make (engine, wheels, doors)
ensure
car_not_void: Result /= Void
end
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Factory pattern vs. library

= Benefits:
= Get rid of some code duplication
= Fewer classes
= Reusability

= One caveat though:

= Likely to yield a bigger client class (because
similarities cannot be factorized through
inheritance)
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(¢) Creational design patterns .

= Factory Method
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Factory Method: a reusable DP

39
= Intent:
= “Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.” [Gamma 1995, p 107]
APPLICATION H——l20product
MY _APPLICATION H—22product
m>> A special case of the Abstract Factory
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(¢) Creational design patterns o

= Builder
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Builder: a remaining DP )

= Intent:

= “Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations.” [Gamma 1995, p 97]

part_a{ PART A )

last product

*
BUILDER

PRODUCT _

part_b ' PART B )
== last_product — :

| E—
MY BUILDER
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(®) Class BUILDER )

deferred class BUILDER feature -- Access

last_product: PRODUCT is
-- Product under construction

deferred
end

feature -- Basic operations

build is

-- Create and build /ast_product.

do
build_product
build_part_a
build_part_b

ensure
last_product_not_void: last_product /= Void

end

end

ETH
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(®) A reusable builder? )

= Jssue:
g- How to know how many parts the product has?

Not reusable

= Handle some usual cases, e.g. a "two part builder”
by reusing the Factory library:

class TWO_PART _BUILDER [F -> BUILDABLE, &, H]
-- Build a product of type F
-- composed of two parts:
-- the first part of type G,
-- the second part of type H.
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(®) Class BUILDABLE .

deferred class BUILDABLE feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART_BUILDER} -- Status setting

--set g
-- set_h

end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO



(¢) Creational design patterns s

= Singleton
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) Singleton: a remaining DP "

= Intent:

» “Ensure a class only has one instance, and
provide a global point of access to it.”

[Gamma 1995, p 127]

singleton
SHARED_ SINGLETON >

mm=> Harder than it looks...
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(¢) A wrong approach .

class SINGLETON feature {NONE}

frozen the_singleton: SINGLETON is
-- The unique instance of this class
once
Result := Current
end

invariant
only_one_instance: Current = the_singleton

end
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(¢) A wrong approach (cont’d) ;

deferred class SHARED_ SINGLETON feature {NONE}

singleton: SINGLETON is
-- Access to unique instance
deferred
end

is_real_singleton: BOOLEAN is
-- Do multiple calls to singleton return the same result?
do
Result := singleton = singleton
end

invariant
singleton_is_real_singleton: is_real_singleton

end
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What’s wrong? N

» If one inherits from SINGLETON several times:

= The inherited feature the_singleton keeps the
value of the first created instance.

= Violates the invariant of class SINGLETON in all
descendant classes except the one for which the
singleton was created first.

There can only be one singleton per system
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(®) A correct Singleton example ;

class MY_SHARED_SINGLETON feature -- Access

singleton: MY_SINGLETON is
-- Singleton object

do
Result := singleton_cell.item
if Result = Void then
create Result.make
end
ensure
singleton_created: singleton_created
singleton_not_void: Result /= Void
end

feature -- Status report

singleton_created: BOOLEAN is

-- Has singleton already been created?
do

Result := singleton_cell.item /= Void
end

feature {NONE} -- Implementation

singleton_cell: CELL [MY_SINGLETON] is
-- Cell containing the singleton if already created

once
create Result.put (Void)
ensure
cell_not_void: Result /= Void
end
end
ETH
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) Agle{example (cont’d) .

In fact, on n still break it by:
class MY_SINGLETON inherit act, one can still break it by

= Cloning a singleton.
MY_SHARED_SINGLETON

= Using persistence.

create = |nheriting from
make MY _SHARED SINGLETON and
putting back Void to the cell after
feature {NONE?} -- Initialization the singleton has been created.
make is
-- Create a singleton object.
require
singleton_not_created: not singleton_created
do
singleton_cell.put (Current)
end
invariant

singleton_created: singleton_created
singleton_pattern: Current = singleton

end

ETH
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A Singleton in Eiffel: impossible? :

= Having frozen classes (from which one cannot
inherit) would enable writing singletons in Eiffel

= But it would still not be a reusable solution
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(¢) Structural design patterns .

Artificial
design patterns

Reusable
design patterns

Remaining
design patterns

»Composite
=Flyweight

"Proxy

*Decorator
=Adapter
=Bridge
=Facade
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Behavioral design patterns

54

= Not done yet

= But can expect DP like the Visitor and the Strategy
to be reusable through the Eiffel agent mechanism
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References: Design patterns

55
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57

End of lecture 18

Chair of Software Engineering OO0SC - Summer Semester 2004 SR RS



