Object-Oriented Software Construction

Bertrand Meyer

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

Lecture 18:

From design patterns to components

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

Agenda for today 3

= Design patterns
= A successful story: the Observer pattern
= From patterns to components

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) Agenda for today 4

= Design patterns

Chair of Software Engineering OO0SC - Summer Semester 2004 Dagea T oML e

Benefits of design patterns :

= Capture the knowledge of experienced developers
= Publicly available “repository”

= Newcomers can learn them and apply them to
their design

= Yield a better structure of the software (modularity,
extendibility)

= Common pattern language

= Facilitate discussions between programmers and
managers

Chair of Software Engineering 00SC - Summer Semester 2004 SR RS

However: not a reusable solution ;

= Solution to a particular recurring design issue in a
particular context:

= “Fach pattern describes a problem that occurs
over and over again in our environment, and
then describes the core of the solution to this
problem in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Erich Gamma et al., Design Patterns, 1995

mm=> NOT REUSABLE

Chair of Software Engineering OO0SC - Summer Semester 2004 Dagea T oML e

A step backwards

= A step backwards from reuse:

= No available “pattern libraries”

= Programmers need to implement them each
time anew

= A pedagogical tool, not a reuse tool

“A successful pattern cannot just be a book
description: it must be a software component”

Bertrand Meyer: O0OSC2, 1997

Chair of Software Engineering 00SC - Summer Semester 2004 Dleenda

& esknlihe Hithicile EfS
Vs ke of Teshnateay Burkch:

Software reuse vs. design reuse

8

= “Reuse of architectural and design experience is

probably the single most valuable strategy in the
basket of reuse ideas”

Clemens Szyperski, Component software, 1998

= Software reuse vs. design reuse:
= Not much different with seamless development

= Combining both worlds:
= From patterns to Eiffel components...

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) Agenda for today 9

= A successful story: the Observer pattern

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

@ A successful story: the Observer pattern |,

BSERVER * BJECT *
update* OBS < SUBJEC add_observer®
remove_observer*
notify_observers*
MY OBSERVER < MY _SUBJECT

add observer+
update+ remove _observer+
notify _observers+

@ Deferred (abstract) class f* Deferred feature inherits
from
@ Effective (concrete) class f+ Effective (implemented) feature =Jp client
(uses)

Chair of Software Engineering 00SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

@ Class SUBJECT y

deferred class SUBJECT feature -- Observer pattern

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.

require
not_yet_an_observer: not observers.has (an_observer)
do
observers.extend (an_observer)
ensure
observer_added: observers.has (an_observer)
one_more: observers.count = old observers.count + 1
end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.

require
is_an_observer: observers.has (an_observer)
do
observers.search (an_observer)
observers.remove
ensure
observer_removed: not observers.has (an_observer)
one_less: observers.count = old observers.count — 1
end

Chair of Software Engineering 00SC - Summer Semester 2004 RS e i

(¢) Class SUBJECT (cont'd)

12

notify_observers is
-- Notify all observers.
-- (Call update on each observer.)

do
from
observers.start
until
observers.after
loop
observers.item.update
observers.forth
end
end

observers: LINKED LIST [OBSERVER]
-- List of observers

invariant
observers _not_void: observers /= Void

end

Chair of Software Engineering 00SC - Summer Semester 2004

ETH

g T LTS
Goetys. Federal Il ub of Teshnolay Birkh:

(¢) Class OBSERVER)

deferred class OBSERVER feature -- Observer pattern

update is
-- Update observer according to the state of
-- subject data.
deferred
end

data: SUBJECT
-- Observable data
end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

(®) A typical OBSERVER ’

class MY _DISPLAY inherit

OBSERVER
redefine
data
end

create

make

feature -- Initialization

make is
-- Initialize GUI and register an observer of data.
do
create add_button.make_with_text_and_action (“"Add”, agent on_add)
create remove_button.make_with_text_and_action ("Remove”, agent on_remove)
data.add_observer (Current)
end

feature -- Access

add_button: EV_BUTTON
-- Button with label Add

remove_button: EV_BUTTON
-- Button with label Remove

i i il RS

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO TS

(¢) A typical OBSERVER (cont’d))

data: MY _DATA
-- Data to be observed

feature -- Event handling

on_add is
-- Action performed when add_button is pressed
do
data.add
end

on_remove is
-- Action performed when remove_button is pressed
do
data.remove
end

feature -- Observer pattern

update is
-- Update GUI.
do
-- Something here
end
end

ETH

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

(*) A typical SUBJECT)

class MY _DATA inherit
SUBJECT
feature -- Observer pattern

add is

-- Add Current to data to be observed.

do
-- Do something.

notify _observers
end

Redundancy:
— Hardly maintainable

— Not reusable

remove is
-- Remove Current from daga’to be observed.
do
-- Do something.
notify _observers

end

end

ETH

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

The Event library .

= Basically:
= One generic class: EVENT _TYPE
= Two features: publish and subscribe

= For example: A button my_button that reacts in a
way defined in my_procedure when clicked (event

mouse_click):

g rbialitlie SEchnihehi HuEhiEil I 20

Chair of Software Engineering 00SC - Summer Semester 2004 Lt Ll

(¢) Example using the Event library)

= The publisher (“subject”) creates an event type object:

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]] is
-- Mouse click event type

once

create Result
ensure

mouse_click _not void: Result /= Void
end

= The publisher triggers the event:

mouse_click.publish ([x_positition, y_position])

= The subscribers (Yobservers”) subscribe to events:

my_button.mouse_click.subscribe (agent my_procedure)

Bdgeafiiiitia Tikinliths HBERICHLIFERRLE
Gt Fedena I f Teshinsles Tivth:

Chair of Software Engineering OO0SC - Summer Semester 2004

An encouraging success

19

= A book idea: the Observer pattern
= A reusable library: the Event library

Let’s go further and explore all design patterns...

Chair of Software Engineering OO0SC - Summer Semester 2004 kbl

(¢) Agenda for today s

= From patterns to components

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

Objectives

21

= A new classification of the design patterns
described in Gamma et al.:

= Artificial design patterns
= Reusable design patterns
= Remaining design patterns

= A “pattern library” made of the reusable
components obtained from design patterns

= Code templates otherwise

Chair of Software Engineering 0O0SC - Summer Semester 2004 oot

(¢) Creational design patterns .

Artificial
design patterns

Reusable
design patterns

Remaining
design patterns

=Prototype

=Abstract Factory
=Factory Method

=Builder
=Singleton

Chair of Software Engineering

00SC - Summer Semester 2004

Bdgeafiiiitia Tikinliths HBERICHLIFERRLE
Gt Fedena I f Teshinsles Tivth:

(¢) Creational design patterns

23

Prototype
Abstract Factory
Factory Method
Builder
Singleton

Chair of Software Engineering OO0SC - Summer Semester 2004

i
g BiilaEhe Seitinlicha HRERLIIF ERLE
e of Teshnetay Bivith:

(¢) Creational design patterns y

= Prototype

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

Prototype: an artificial DP ,

= Intent:

= “Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.” [Gamma 1995, p 117]

prototype @
CLIENT PROTOTYPE

© Class

h |

— Client relationship

In fact: a feature of ANY

m=>> [n Eiffel, every object is a prototype!

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) Creational design patterns ”

= Abstract Factory

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

@ Abstract Factory: a reusable DP .

= Intent:

= “Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.” [Gamma 1995, p 87]

£
PRODUCT A

hew_product 0

+ +
PRODUCT Al PRODUCT A2

*
FACTORY

new_product_a hew_product_a

new_product

+ +
@'TORI’_I FACTORY 2

PRODUCT B

new_product b new product b

PRODUCT B1 PRODUCT B2

ETH

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(®) Class FACTORY

28

deferred class FACTORY feature -- Factory methods

new_product_a: PRODUCT_A is
-- New product of type PRODUCT_A
deferred
ensure
product_a_not_void: Result /= Void
end

new_product_b: PRODUCT_B is
-- New product of type PRODUCT_B
deferred
ensure
product_b_not_void: Result /= Void
end

end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

(®) Class FACTORY 1

29

class FACTORY 1 inherit

FACTORY
feature -- Factory methods

new_product_a: PRODUCT_A1 is
-- New product of type PRODUCT_Al1
do
create Result
end

new_product_b: PRODUCT_B1 is
-- New product of type PRODUCT _B1
do
create Result
end

end

Chair of Software Engineering 00SC - Summer Semester 2004

Edgenbisiithie TEshnliehn Huthithii i T H
Sty Fedenal lllutn ol Teshnetons Birkh:

(¢) Flaws of the approach

30

= Code redundancy:
= FACTORY 1 and FACTORY 2 will be similar

= |Lack of flexibility:

= FACTORY fixes the set of factory functions
new_product_a and new_product_b

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(®) The Factory library .

class FACTORY [(] create
make
feature -- Initialization

make (a_function: like factory_function) is
-- Set factory_function to a_function.

require
a_function_not_void: a function /= Void

do
factory_function := a_function

ensure
factory_function_set: factory_function = a_function

end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [],]
-- Factory function creating new instances of type G

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

(¢) The Factory library (cont’d)

32

feature - Factory methods

new: G is
-- New instance of type G
do
factory_function.call ([])
Result := factory_function.last_result
ensure
new_not void: Result /= Void
end

new_with_args (args: TUPLE): G is
-- New instance of type G initialized with args

do
factory_function.call (args)
Result := factory_function.last_result
ensure
new_not void: Result /= Void
end
invariant

factory_function_not_void: factory_function /= Void

end

Chair of Software Engineering 00SC - Summer Semester 2004

ETH

Bdgeisiiti kit
Syepd Fedena | sl of

& Hithichile E e
Teshnetizs Zirkh:

) Sample application

33

simulated traffic: TRAFFIC

simulated _traffic.add _vehicle (...)

Chair of Software Engineering 00SC - Summer Semester 2004

b lhitie Teshrliahi HBEhiehil i 0
Goetya Federal Il ut of Teshnolazy

Tor]

(¢) With the Abstract Factory DP y

*
VEHICLE_FACTORY

new_vehicle*

+ + + +
NeW_Car™ (CAR FACTORY METRO_FACTORY) "eW-metro
new_bus+
simulated_traffic.add_vehicle (With:

car_factory.new_car (a_power,
a_wheel_diameter,
a_door_width,

car_factory: CAR_FACTORY is
-- Factory of cars

] once
a_door_height) create Result
) ensure
car_factory_not_void: Result /= Void
end

ETH

Chair of Software Engineering 00SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

@ With the Factory library .

simulated_traffic.add_vehicle (
car_factory.new_with_args ([a_power,
a_wheel _diameter,
a_door_width,
a_door_height]

)
)
With:
car_factory: FACTORY [CAR] is
-- Factory of cars
once
create Result.make (agent new_car)
ensure
car_factory_not_void: Result /= Void
end

Chair of Software Engineering 00SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) With the Factory library (cont’d) .

and:

new_car (a_power,a_diameter,a_width,a_height: INTEGER):CAR is
-- New car with power engine a_power,
-- wheel diameter a_diameter,
-- door width a_width, door height a_height
do
-- Create car engine, wheels, and doors.
create Result.make (engine, wheels, doors)
ensure
car_not_void: Result /= Void
end

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

Factory pattern vs. library

= Benefits:
= Get rid of some code duplication
= Fewer classes
= Reusability

= One caveat though:

= Likely to yield a bigger client class (because
similarities cannot be factorized through
inheritance)

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) Creational design patterns .

= Factory Method

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

Factory Method: a reusable DP

39
= Intent:
= “Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.” [Gamma 1995, p 107]
APPLICATION H——l20product
MY _APPLICATION H—22product
m>> A special case of the Abstract Factory
Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) Creational design patterns o

= Builder

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

Builder: a remaining DP)

= Intent:

= “Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations.” [Gamma 1995, p 97]

part_a{ PART A)

last product

*
BUILDER

PRODUCT _

part_b ' PART B)
== last_product — :

| E—
MY BUILDER

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

4
il of Teshpoleay Birkh:

(®) Class BUILDER)

deferred class BUILDER feature -- Access

last_product: PRODUCT is
-- Product under construction

deferred
end

feature -- Basic operations

build is

-- Create and build /ast_product.

do
build_product
build_part_a
build_part_b

ensure
last_product_not_void: last_product /= Void

end

end

ETH

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

(®) A reusable builder?)

= Jssue:
g- How to know how many parts the product has?

Not reusable

= Handle some usual cases, e.g. a "two part builder”
by reusing the Factory library:

class TWO_PART _BUILDER [F -> BUILDABLE, &, H]
-- Build a product of type F
-- composed of two parts:
-- the first part of type G,
-- the second part of type H.

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

thnolegy,

(®) Class BUILDABLE .

deferred class BUILDABLE feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART_BUILDER} -- Status setting

--set g
-- set_h

end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

(¢) Creational design patterns s

= Singleton

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

) Singleton: a remaining DP "

= Intent:

» “Ensure a class only has one instance, and
provide a global point of access to it.”

[Gamma 1995, p 127]

singleton
SHARED_ SINGLETON >

mm=> Harder than it looks...

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

(¢) A wrong approach .

class SINGLETON feature {NONE}

frozen the_singleton: SINGLETON is
-- The unique instance of this class
once
Result := Current
end

invariant
only_one_instance: Current = the_singleton

end

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

(¢) A wrong approach (cont’d) ;

deferred class SHARED_ SINGLETON feature {NONE}

singleton: SINGLETON is
-- Access to unique instance
deferred
end

is_real_singleton: BOOLEAN is
-- Do multiple calls to singleton return the same result?
do
Result := singleton = singleton
end

invariant
singleton_is_real_singleton: is_real_singleton

end

Chair of Software Engineering 00SC - Summer Semester 2004 g T RO

What’s wrong? N

» If one inherits from SINGLETON several times:

= The inherited feature the_singleton keeps the
value of the first created instance.

= Violates the invariant of class SINGLETON in all
descendant classes except the one for which the
singleton was created first.

There can only be one singleton per system

Chair of Software Engineering 00SC - Summer Semester 2004 Lt Ll

(®) A correct Singleton example ;

class MY_SHARED_SINGLETON feature -- Access

singleton: MY_SINGLETON is
-- Singleton object

do
Result := singleton_cell.item
if Result = Void then
create Result.make
end
ensure
singleton_created: singleton_created
singleton_not_void: Result /= Void
end

feature -- Status report

singleton_created: BOOLEAN is

-- Has singleton already been created?
do

Result := singleton_cell.item /= Void
end

feature {NONE} -- Implementation

singleton_cell: CELL [MY_SINGLETON] is
-- Cell containing the singleton if already created

once
create Result.put (Void)
ensure
cell_not_void: Result /= Void
end
end
ETH
Chair of Software Engineering 0O0SC - Summer Semester 2004 TR RS

) Agle{example (cont’d) .

In fact, on n still break it by:
class MY_SINGLETON inherit act, one can still break it by

= Cloning a singleton.
MY_SHARED_SINGLETON

= Using persistence.

create = |nheriting from
make MY _SHARED SINGLETON and
putting back Void to the cell after
feature {NONE?} -- Initialization the singleton has been created.
make is
-- Create a singleton object.
require
singleton_not_created: not singleton_created
do
singleton_cell.put (Current)
end
invariant

singleton_created: singleton_created
singleton_pattern: Current = singleton

end

ETH

Chair of Software Engineering 00SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

A Singleton in Eiffel: impossible? :

= Having frozen classes (from which one cannot
inherit) would enable writing singletons in Eiffel

= But it would still not be a reusable solution

Chair of Software Engineering 0O0SC - Summer Semester 2004 DdgermiahaTakolihe Rathuhuie i

el

(¢) Structural design patterns .

Artificial
design patterns

Reusable
design patterns

Remaining
design patterns

»Composite
=Flyweight

"Proxy

*Decorator
=Adapter
=Bridge
=Facade

Chair of Software Engineering

00SC - Summer Semester 2004

Bl iBiatithie Tecinlhehi HBEHLEl I 20
Gt Fedena I f Teshinsles Tivth:

Behavioral design patterns

54

= Not done yet

= But can expect DP like the Visitor and the Strategy
to be reusable through the Eiffel agent mechanism

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

References: Design patterns

55

= Gamma et al.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995.

= J 7z quel et al.: Design Patterns and Contracts,
Addison-Wesley, 1999.

Chair of Software Engineering OO0SC - Summer Semester 2004

genbisiithie TEsRlEhn HuEhiEhi b T He
ke o Teshnelagy Burkh

@ References: From patterns to components .

= Karine Arnout. Contracts and tests. Ph.D. research plan, December 2002.
Available from http://se.inf.ethz.ch/people/arnout/phd research plan.pdf

= Karine Arnout, and Bertrand Meyer. “"From Design Patterns to Reusable
Components: The Factory Library”. Available from
http://se.inf.ethz.ch/people/arnout/arnout meyer factory.pdf

= Karine Arnout, and Eric Bezault. “How to get a Singleton in Eiffel?”. Available
from http://se.inf.ethz.ch/people/arnout/arnout bezault singleton.pdf

= Volkan Arslan. Event library (sources). Available from
http://se.inf.ethz.ch/people/arslan/data/software/Event.zip

= Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. “"Event library: an
object-oriented library for event-driven design”. JMLC 2003. Available from
http://se.inf.ethz.ch/people/arslan/data/scoop/conferences/Event Library J
MLC 2003 Arslan.pdf

= Bertrand Meyer. “The power of abstraction, reuse and simplicity: an object-
oriented library for event-driven design”. Available from
http://www.inf.ethz.ch/~meyer/ongoing/events. pdf

Chair of Software Engineering OO0SC - Summer Semester 2004 DdgensyluhaToioluhe forhihuieiine:

57

End of lecture 18

Chair of Software Engineering OO0SC - Summer Semester 2004 SR RS

