
OOSC - Summer Semester 2004

1

Chair of Software Engineering

Object-Oriented Software Construction

Bertrand Meyer

OOSC - Summer Semester 2004

2

Chair of Software Engineering

Lecture 18:

From design patterns to components

OOSC - Summer Semester 2004

3

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

4

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

5

Chair of Software Engineering

Benefits of design patterns

 Capture the knowledge of experienced developers
 Publicly available “repository”
 Newcomers can learn them and apply them to

their design
 Yield a better structure of the software (modularity,

extendibility)
 Common pattern language
 Facilitate discussions between programmers and

managers

OOSC - Summer Semester 2004

6

Chair of Software Engineering

However: not a reusable solution

 Solution to a particular recurring design issue in a
particular context:

 “Each pattern describes a problem that occurs
over and over again in our environment, and
then describes the core of the solution to this
problem in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.”

Erich Gamma et al., Design Patterns, 1995

NOT REUSABLE

OOSC - Summer Semester 2004

7

Chair of Software Engineering

A step backwards

 A step backwards from reuse:

 No available “pattern libraries”
 Programmers need to implement them each

time anew
 A pedagogical tool, not a reuse tool

“A successful pattern cannot just be a book
description: it must be a software component”

Bertrand Meyer: OOSC2, 1997

OOSC - Summer Semester 2004

8

Chair of Software Engineering

Software reuse vs. design reuse

 “Reuse of architectural and design experience is
probably the single most valuable strategy in the
basket of reuse ideas”

Clemens Szyperski, Component software, 1998

 Software reuse vs. design reuse:
 Not much different with seamless development

 Combining both worlds:
 From patterns to Eiffel components…

OOSC - Summer Semester 2004

9

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

10

Chair of Software Engineering

A successful story: the Observer pattern

OBSERVER SUBJECT* *

MY_OBSERVER MY_SUBJECT

update*

update+

add_observer*
remove_observer*
notify_observers*

add_observer+
remove_observer+
notify_observers+

*

+

Deferred (abstract) class

Effective (concrete) class

f*

f+

Deferred feature

Effective (implemented) feature

inherits

 from

client

(uses)

OOSC - Summer Semester 2004

11

Chair of Software Engineering

Class SUBJECT

deferred class SUBJECT feature -- Observer pattern

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.

require
not_yet_an_observer: not observers.has (an_observer)

do
observers.extend (an_observer)

ensure
observer_added: observers.has (an_observer)
one_more: observers.count = old observers.count + 1

end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.

require
is_an_observer: observers.has (an_observer)

do
observers.search (an_observer)
observers.remove

ensure
observer_removed: not observers.has (an_observer)
one_less: observers.count = old observers.count – 1

end

OOSC - Summer Semester 2004

12

Chair of Software Engineering

Class SUBJECT (cont’d)

notify_observers is
-- Notify all observers.
-- (Call update on each observer.)

do
from

observers.start
until

observers.after
loop

observers.item.update
observers.forth

end
end

observers: LINKED_LIST [OBSERVER]
-- List of observers

invariant

observers_not_void: observers /= Void

end

OOSC - Summer Semester 2004

13

Chair of Software Engineering

Class OBSERVER

deferred class OBSERVER feature -- Observer pattern

update is
-- Update observer according to the state of
-- subject data.

deferred
end

data: SUBJECT
-- Observable data

end

OOSC - Summer Semester 2004

14

Chair of Software Engineering

A typical OBSERVER

class MY_DISPLAY inherit

OBSERVER
redefine

data
end

create

make

feature -- Initialization

make is
-- Initialize GUI and register an observer of data.

do
create add_button.make_with_text_and_action (“Add”, agent on_add)
create remove_button.make_with_text_and_action (“Remove”, agent on_remove)
data.add_observer (Current)

end

feature -- Access

add_button: EV_BUTTON
-- Button with label Add

remove_button: EV_BUTTON
-- Button with label Remove

OOSC - Summer Semester 2004

15

Chair of Software Engineering

A typical OBSERVER (cont’d)

data: MY_DATA
-- Data to be observed

feature -- Event handling

on_add is
-- Action performed when add_button is pressed

do
data.add

end

on_remove is
-- Action performed when remove_button is pressed

do
data.remove

end

feature -- Observer pattern

update is
-- Update GUI.

do
-- Something here

end

end

OOSC - Summer Semester 2004

16

Chair of Software Engineering

A typical SUBJECT

Redundancy:

→ Hardly maintainable

→ Not reusable

class MY_DATA inherit

SUBJECT

feature -- Observer pattern

add is
 -- Add Current to data to be observed.
do
 -- Do something.
 notify_observers
end

remove is
 -- Remove Current from data to be observed.
do
 -- Do something.
 notify_observers
end

end

OOSC - Summer Semester 2004

17

Chair of Software Engineering

The Event library

 Basically:
 One generic class: EVENT_TYPE
 Two features: publish and subscribe

 For example: A button my_button that reacts in a
way defined in my_procedure when clicked (event
mouse_click):

OOSC - Summer Semester 2004

18

Chair of Software Engineering

Example using the Event library

 The publisher (“subject”) creates an event type object:

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]] is
-- Mouse click event type

once
create Result

ensure
mouse_click_not_void: Result /= Void

end

 The publisher triggers the event:

mouse_click.publish ([x_positition, y_position])

 The subscribers (“observers”) subscribe to events:

my_button.mouse_click.subscribe (agent my_procedure)

OOSC - Summer Semester 2004

19

Chair of Software Engineering

An encouraging success

 A book idea: the Observer pattern
 A reusable library: the Event library

 Let’s go further and explore all design patterns…

OOSC - Summer Semester 2004

20

Chair of Software Engineering

Agenda for today

 Design patterns
 A successful story: the Observer pattern
 From patterns to components

OOSC - Summer Semester 2004

21

Chair of Software Engineering

Objectives

 A new classification of the design patterns
described in Gamma et al.:

 Artificial design patterns
 Reusable design patterns
 Remaining design patterns

 A “pattern library” made of the reusable
components obtained from design patterns

 Code templates otherwise

OOSC - Summer Semester 2004

22

Chair of Software Engineering

Creational design patterns

Builder
Singleton

Abstract Factory
Factory Method

Prototype

Remaining
design patterns

Reusable
design patterns

Artificial
design patterns

OOSC - Summer Semester 2004

23

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

24

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

25

Chair of Software Engineering

Prototype: an artificial DP

 Intent:
 “Specify the kinds of objects to create using a

prototypical instance, and create new objects by
copying this prototype.” [Gamma 1995, p 117]

CLIENT PROTOTYPE

cloneprototype

Class

Client relationship
In fact: a feature of ANY

 In Eiffel, every object is a prototype!

OOSC - Summer Semester 2004

26

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

27

Chair of Software Engineering

Abstract Factory: a reusable DP

 Intent:
 “Provide an interface for creating families of related or

dependent objects without specifying their concrete
classes.” [Gamma 1995, p 87]

OOSC - Summer Semester 2004

28

Chair of Software Engineering

Class FACTORY

deferred class FACTORY feature -- Factory methods

new_product_a: PRODUCT_A is
-- New product of type PRODUCT_A

deferred
ensure

product_a_not_void: Result /= Void
end

new_product_b: PRODUCT_B is
-- New product of type PRODUCT_B

deferred
ensure

product_b_not_void: Result /= Void
end

end

OOSC - Summer Semester 2004

29

Chair of Software Engineering

Class FACTORY_1

class FACTORY_1 inherit

FACTORY

feature -- Factory methods

new_product_a: PRODUCT_A1 is
-- New product of type PRODUCT_A1

do
create Result

end

new_product_b: PRODUCT_B1 is
-- New product of type PRODUCT_B1

do
create Result

end

end

OOSC - Summer Semester 2004

30

Chair of Software Engineering

Flaws of the approach

 Code redundancy:
 FACTORY_1 and FACTORY_2 will be similar

 Lack of flexibility:
 FACTORY fixes the set of factory functions

new_product_a and new_product_b

OOSC - Summer Semester 2004

31

Chair of Software Engineering

The Factory library

class FACTORY [G] create

make

feature -- Initialization

make (a_function: like factory_function) is
-- Set factory_function to a_function.

require
a_function_not_void: a_function /= Void

do
factory_function := a_function

ensure
factory_function_set: factory_function = a_function

end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [], G]
-- Factory function creating new instances of type G

OOSC - Summer Semester 2004

32

Chair of Software Engineering

The Factory library (cont’d)

feature – Factory methods

new: G is
-- New instance of type G

do
factory_function.call ([])
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

new_with_args (args: TUPLE): G is
-- New instance of type G initialized with args

do
factory_function.call (args)
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

invariant

factory_function_not_void: factory_function /= Void

end

OOSC - Summer Semester 2004

33

Chair of Software Engineering

Sample application

simulated_traffic: TRAFFIC

simulated_traffic.add_vehicle (…)

VEHICLE*

CAR
+

BUS
+

METRO
+

TRAFFIC
+

SIMULATION
+

OOSC - Summer Semester 2004

34

Chair of Software Engineering

With the Abstract Factory DP

With:

car_factory: CAR_FACTORY is
 -- Factory of cars

 once
 create Result

 ensure
 car_factory_not_void: Result /= Void

 end

VEHICLE_FACTORY*

CAR_FACTORY
+

BUS_FACTORY
+

METRO_FACTORY
+new_car+ new_metro+

new_vehicle*

new_bus+

simulated_traffic.add_vehicle (
car_factory.new_car (a_power,

 a_wheel_diameter,
 a_door_width,
 a_door_height)

)

OOSC - Summer Semester 2004

35

Chair of Software Engineering

With the Factory library

simulated_traffic.add_vehicle (
car_factory.new_with_args ([a_power,

 a_wheel_diameter,
 a_door_width,
 a_door_height]
)

)
With:

car_factory: FACTORY [CAR] is
-- Factory of cars

once
create Result.make (agent new_car)

ensure
car_factory_not_void: Result /= Void

end

OOSC - Summer Semester 2004

36

Chair of Software Engineering

With the Factory library (cont’d)

and:

new_car (a_power,a_diameter,a_width,a_height: INTEGER):CAR is
-- New car with power engine a_power,
-- wheel diameter a_diameter,
-- door width a_width, door height a_height

do
-- Create car engine, wheels, and doors.
create Result.make (engine, wheels, doors)

ensure
car_not_void: Result /= Void

end

OOSC - Summer Semester 2004

37

Chair of Software Engineering

Factory pattern vs. library

 Benefits:
 Get rid of some code duplication
 Fewer classes
 Reusability

 One caveat though:
 Likely to yield a bigger client class (because

similarities cannot be factorized through
inheritance)

OOSC - Summer Semester 2004

38

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

39

Chair of Software Engineering

Factory Method: a reusable DP

 Intent:
 “Define an interface for creating an object, but

let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.” [Gamma 1995, p 107]

A special case of the Abstract Factory

OOSC - Summer Semester 2004

40

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

41

Chair of Software Engineering

Builder: a remaining DP

 Intent:
 “Separate the construction of a complex object

from its representation so that the same
construction process can create different
representations.” [Gamma 1995, p 97]

OOSC - Summer Semester 2004

42

Chair of Software Engineering

Class BUILDER

deferred class BUILDER feature -- Access

last_product: PRODUCT is
-- Product under construction

deferred
end

feature -- Basic operations

build is
-- Create and build last_product.

do
build_product
build_part_a
build_part_b

ensure
last_product_not_void: last_product /= Void

end
...

end

OOSC - Summer Semester 2004

43

Chair of Software Engineering

A reusable builder?

 Issue:
 How to know how many parts the product has?

Not reusable

 Handle some usual cases, e.g. a “two part builder”
by reusing the Factory library:

class TWO_PART_BUILDER [F -> BUILDABLE, G, H]
-- Build a product of type F
-- composed of two parts:
-- the first part of type G,
-- the second part of type H.

OOSC - Summer Semester 2004

44

Chair of Software Engineering

Class BUILDABLE

deferred class BUILDABLE feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART_BUILDER} -- Status setting

-- set_g
-- set_h

end

OOSC - Summer Semester 2004

45

Chair of Software Engineering

Creational design patterns

 Prototype
 Abstract Factory
 Factory Method
 Builder
 Singleton

OOSC - Summer Semester 2004

46

Chair of Software Engineering

Singleton: a remaining DP

 Intent:
 “Ensure a class only has one instance, and

provide a global point of access to it.”
[Gamma 1995, p 127]

SHARED_ SINGLETON SINGLETON

singleton

Harder than it looks…

OOSC - Summer Semester 2004

47

Chair of Software Engineering

A wrong approach

class SINGLETON feature {NONE}

frozen the_singleton: SINGLETON is
-- The unique instance of this class

once
Result := Current

end

invariant

only_one_instance: Current = the_singleton

end

OOSC - Summer Semester 2004

48

Chair of Software Engineering

A wrong approach (cont’d)

deferred class SHARED_SINGLETON feature {NONE}

singleton: SINGLETON is
-- Access to unique instance

deferred
end

is_real_singleton: BOOLEAN is
 -- Do multiple calls to singleton return the same result?
do

Result := singleton = singleton
end

invariant

singleton_is_real_singleton: is_real_singleton

end

OOSC - Summer Semester 2004

49

Chair of Software Engineering

What’s wrong?

 If one inherits from SINGLETON several times:

 The inherited feature the_singleton keeps the
value of the first created instance.

 Violates the invariant of class SINGLETON in all
descendant classes except the one for which the
singleton was created first.

There can only be one singleton per system

OOSC - Summer Semester 2004

50

Chair of Software Engineering

A correct Singleton example

class MY_SHARED_SINGLETON feature -- Access

singleton: MY_SINGLETON is
-- Singleton object

do
Result := singleton_cell.item
if Result = Void then

create Result.make
end

ensure
singleton_created: singleton_created
singleton_not_void: Result /= Void

end

feature -- Status report

singleton_created: BOOLEAN is
-- Has singleton already been created?

do
Result := singleton_cell.item /= Void

end

feature {NONE} -- Implementation

singleton_cell: CELL [MY_SINGLETON] is
-- Cell containing the singleton if already created

once
create Result.put (Void)

ensure
cell_not_void: Result /= Void

end
end

OOSC - Summer Semester 2004

51

Chair of Software Engineering

A correct Singleton example (cont’d)

class MY_SINGLETON inherit

MY_SHARED_SINGLETON

create

make

feature {NONE} -- Initialization

make is
-- Create a singleton object.

require
singleton_not_created: not singleton_created

do
singleton_cell.put (Current)

end

invariant

singleton_created: singleton_created
singleton_pattern: Current = singleton

end

In fact, one can still break it by:

 Cloning a singleton.

 Using persistence.

 Inheriting from
MY_SHARED_SINGLETON and
putting back Void to the cell after
the singleton has been created.

OOSC - Summer Semester 2004

52

Chair of Software Engineering

A Singleton in Eiffel: impossible?

 Having frozen classes (from which one cannot
inherit) would enable writing singletons in Eiffel

 But it would still not be a reusable solution

OOSC - Summer Semester 2004

53

Chair of Software Engineering

Structural design patterns

Proxy
Decorator
Adapter
Bridge
Facade

Composite
Flyweight

Remaining
design patterns

Reusable
design patterns

Artificial
design patterns

OOSC - Summer Semester 2004

54

Chair of Software Engineering

Behavioral design patterns

 Not done yet

 But can expect DP like the Visitor and the Strategy
to be reusable through the Eiffel agent mechanism

OOSC - Summer Semester 2004

55

Chair of Software Engineering

References: Design patterns

 Gamma et al.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995.

 J_z_quel et al.: Design Patterns and Contracts,
Addison-Wesley, 1999.

OOSC - Summer Semester 2004

56

Chair of Software Engineering

References: From patterns to components

 Karine Arnout. Contracts and tests. Ph.D. research plan, December 2002.
Available from http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf

 Karine Arnout, and Bertrand Meyer. “From Design Patterns to Reusable
Components: The Factory Library”. Available from
http://se.inf.ethz.ch/people/arnout/arnout_meyer_factory.pdf

 Karine Arnout, and Éric Bezault. “How to get a Singleton in Eiffel?”. Available
from http://se.inf.ethz.ch/people/arnout/arnout_bezault_singleton.pdf

 Volkan Arslan. Event library (sources). Available from
http://se.inf.ethz.ch/people/arslan/data/software/Event.zip

 Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. “Event library: an
object-oriented library for event-driven design”. JMLC 2003. Available from
http://se.inf.ethz.ch/people/arslan/data/scoop/conferences/Event_Library_J
MLC_2003_Arslan.pdf

 Bertrand Meyer. “The power of abstraction, reuse and simplicity: an object-
oriented library for event-driven design”. Available from
http://www.inf.ethz.ch/~meyer/ongoing/events.pdf

OOSC - Summer Semester 2004

57

Chair of Software Engineering

End of lecture 18

