
Unleash the Power of Java Stored
Procedures

An Oracle White Paper
June 2002

Unleash the Power of Java Stored Procedures Page 2

Unleash the Power of Java Stored Procedures

Executive Overview...3
Background ...3

Motivations for Stored Procedures...3
PL/SQL or Java-Based Stored Procedures?..3

PL/SQL Stored Procedures ..3
Java Stored Procedures...4
PL/SQL or Java: It Depends! ...4

Enabling Technologies ..5
OracleJVM: Enabling Java Programming Within the Database.............5
Loadjava Now Generates Call Spec..6
JDBC: One of the Most Essential Java APIs ..6
SQLJ ..7

Common Usage patterns of Java Stored Procedures....................................7
Calling Java Stored Procedures from SQL ..7
Calling SQL and Accessing Database Objects from Java........................8

JPublisher ...8
Calling Java Stored Procedures from JDBC..8
Security—Data Access Control...8
Implementation Transparency: 170 Systems, Inc.”9

Using Java Stored Procedures in the J2EE Environment9
JSP, Servlets, and Session Beans Directly Calling Java Stored
Procedures ..9
Sharing Business Logic Between Legacy and J2EE Worlds 10
Autogenerating Primary Keys for BMP Entity Beans 10
Mapping CMP Beans Finders Using Java Stored Procedures 11
Cache Invalidation—Calling-Out to Web Components 11
Calling-Out to EJB Components in J2EE Servers................................ 14

Using Java Stored Procedures in XML and Web Services Environment14
Oracle9i XML Database .. 14
Extend Database Programmability with XML Develop Kit (XDK).. 15

XML Parser for Java.. 15
XML SQL Utility ... 15

Database as Active Web Service Client... 17
Calling-out an XML-RCP Server ... 18
Database as Web Service Provider... 19

CONCLUSIONS.. 19

Unleash the Power of Java Stored Procedures Page 3

Unleash the Power of Java Stored Procedures

EXECUTIVE OVERVIEW

Java stored procedures use procedural logic encapsulating multiple SQL statements
that run within the database and are invoked in one call, thereby avoiding multiple
network round trips. Java support in the database offers an open and portable
alternative to proprietary procedural SQL extensions such as Oracle PL/SQL, for
implementing stored procedures. Java stored procedures extend database
functionality and programmability by bridging J2EE, XML, and non-J2EE worlds,
using the database as an active Web client, EJB client, and Web services client. The
goal of this paper is to present and explain those possibilities.

BACKGROUND

Motivations for Stored Procedures

Stored procedures allow the processing of a set of database operations in one call.
By processing data locally within the database and returning just the results, stored
procedures enhance the performance of data-intensive operations. You invoke
stored procedures through a SQL interface, which hides their implementation from
the requester. Their implementation and deployment can be delegated to database
developers or administrators who are knowledgeable in writing efficient queries and
SQL statements, thereby making efficient use of their skills. This application
modularization makes for easier debugging, tuning, upgrading, and migration.

PL/SQL or Java-Based Stored Procedures?

Whether to use PL/SQL or Java stored procedures is the legitimate $10,000.00
question people ask each time I talk about Java stored procedures—so, without any
delay, let's cut to the chase.

PL/SQL Stored Procedures

PL/SQL is the Oracle procedural extension to SQL. From its inception, PL/SQL
has been designed and optimized for stored procedures and functions. It is well
suited for encapsulating SQL operations with procedural logic and for manipulating
all database object types. PL/SQL procedures and packages have been and will
continue to be extensively used by a large community of Oracle developers and
customers for implementing database operations and packages. Furthermore,

Unleash the Power of Java Stored Procedures Page 4

starting with Oracle9i Database, Release 1, PL/SQL runs natively compiled, and
faster.

Cross-Platform portability: Compiled PL/SQL packages can be moved to different
platforms—for example, from Solaris to Linux or Windows 2000—without re-
compilation.

Java Stored Procedures

Java stored procedures represent an open, database-independent alternative to
PL/SQL. Furthermore, Java stored procedures bring the power, richness, and
object-orientation of the Java language.

Robustness

As opposed to PL/SQL, Java requires declaring exceptions that can be thrown by
methods in any class, thereby making Java stored procedures more robust.

Reuse of Java skills: because Java is one of the dominant programming languages, it is
likely that Java programmers already exist within your company; furthermore, new
hires graduating from colleges have both Java and database skills.

Cross-Vendor and Cross-Platform Portability: all major databases vendors provide Java
support in their database, either through a tight integration with the database
runtime such as Oracle (see the OracleJVM section), or through a loosely coupled
integration. Java stored procedures not only inherit cross-platform portability from
the database but, moreover, cross-vendor portability—in other words, database-
independence.

Application Partitioning: Java support in the database allows, whenever appropriate,
well-scoped Java code to be moved from client-side or middle-tier into the
database, or the opposite.

Complex database logic and powerful usage patterns: as this paper will explain, Java
programming in the database allows implementing more complex database logic
than PL/SQL and extends database functionality.

PL/SQL or Java: It Depends!

So the answer to the $10,000.00 question is, it depends! It depends on skills and
application requirements. Use PL/SQL for SQL operations and access to all
database types and objects; use Java, when you already have the skills, for SQL
operations and for leveraging and interacting with the Java, J2EE, XML and Web
services worlds. Oracle strategy is to enhance both languages and make them inter-
operate; as an example, as of Oracle9i Database, Release 2, OracleJVM supports
standard Java Debugging Wire Protocol, which allows debugging both PL/SQL
and Java within the same JDeveloper or third-party IDE debugging session.

Unleash the Power of Java Stored Procedures Page 5

ENABLING TECHNOLOGIES

Programming the database using Java requires a Java Virtual Machine (JVM) as well
as mechanisms for accessing SQL data from Java.

OracleJVM: Enabling Java Programming Within the Database

Starting with Oracle8i, Release 1 (Oracle 8.1.5), Oracle has offered a tightly
integrated JVM within the database. Each database session may activate a virtually
dedicated JVM during the first Java code invocation; subsequent users benefit from
this already Java-enabled session. In reality, all sessions share the same JVM code
and statics—only private states are kept and garbage collected in individual session
space, providing for Java the same session isolation and data integrity as SQL
operations: there is no need for a separate process for running Java. This session-
based architecture provides a small memory footprint, and gives OracleJVM the
same linear SMP scalability as the Oracle database. OracleJVM works similarly and
consistently with every platform and OS on which the Oracle database runs. Java
classes (and, optionally, the corresponding sources) are loaded in a database
schema—through JDeveloper, third-party IDE, SQL*Plus, and loadjava utility—
before they can be invoked. Java class invocation is secured and controlled through
database authentication and authorization, Java 2 security (exposed to SQL through
Javasyspriv and Javauserpriv roles), and invoker’s or definer’s rights1. OracleJVM provides a
deployment time native compiler, which allows Java code (and, therefore, stored
procedures) to be compiled once, stored in executable form, shared among users,
and invoked more quickly and efficiently.

Oracle is continuously upgrading and improving OracleJVM performance and
usability. Oracle9i Database, Release 2, complies with J2SE 1.3.x; any J2SE 1.3 code
can run in the database and enable sophisticated data-driven computing, as
discussed in the following sections.

For more details, code samples, and a discussion forum, go to the following Web
site:

http://otn.oracle.com/tech/java/jsp/content.html

1 For a full discussion of Oracle JVM security, see
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/java.920/a96656
/security.htm

Unleash the Power of Java Stored Procedures Page 6

Loadjava Now Generates Call Spec
loadjava is a utility for loading Java classes and JAR files into the database. It is
invoked either from the command line or through the loadjava method
contained within the DBMS_JAVA class. In Oracle9i Database, Release 2, it
provides new options for automatically publishing Java classes as stored
procedures. loadjava creates PL/SQL wrappers (Call Specs) for methods contained in
the processed classes, with the following requirements:
§ The method must be a member of a public class.

§ The method must itself be declared public and static.

§ The method’s signature must be “mappable, ” according to mapping rules2.

§ If the return type is void, then a procedure is created.

§ If the return type is arithmetic, char or java.lang.String, then a
function is created and its return type is determined according to mapping
rules.

 Although Call Spec offers great benefits (see “Sharing Business Logic Between Legacy
and J2EE Worlds”), in some situations you might not want to go through the
PL/SQL wrapper. Oracle plans to provide a mechanism for directly invoking Java
methods in the database, from external Java code, bypassing the Call Spec.

 JDBC: One of the Most Essential Java APIs

 JDBC is the most standard and common mechanism for accessing SQL data from
Java3. Oracle furnishes:

§ a type-4, pure Java, client JDBC driver, also referred to as a “thin” driver, for
middle tier servers, client applications, and applets—also useable from within
the database for accessing remote Oracle databases from Java stored
procedures (similarly, a third-party pure JDBC driver can be loaded into
OracleJVM for accessing third-party databases from within Java stored
procedures)

§ a type-2, client JDBC driver, based on OCI libraries for middle tier servers
and client applications

§ a type-2, server JDBC driver, sometimes referred to as a “kprb” driver, based
on internal database libraries for faster, in-session SQL data access from Java
stored procedures (and any Java code running within the OracleJVM)

 Oracle furnishes complete support for JDBC 2.0 as well as significant support for
JDBC 3.0 features and specific extensions.

2http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/java.920/a96656
/newtools.htm#1010615
 3 "JDBC support is one of the most essential and fundamental API's in the world of Java" Rick
Ross - in JavaLobby newsletter, April 2002

Unleash the Power of Java Stored Procedures Page 7

 For more details, code samples, and a discussion forum, go to the following Web
site: http://otn.oracle.com/tech/java/sqlj_jdbc/content.html

 SQLJ

 SQLJ is an ANSI SQL-1999 (SQL3 or SQL-99) multi-parts specification:

§ Part 0 - “Embedded SQL in Java”: specifies the ability to embed SQL statements
in Java, similar to Pro*C. The Oracle implementation of SQL3 Part 0 is called
“SQLJ” and supports dynamic SQL, beyond the standard, which requires
embedding only static SQL. The Oracle strategy is to put SQLJ, functionally,
on a par with JDBC, as a more productive and easier alternative to JDBC for
both client-side and server-side Java. For more details, code samples, and a
discussion forum, go to:http://www.oracle.com/forums/forum.jsp?id=424322

§ Part 1 - “SQL routines using Java”: specifies the ability to invoke static Java
methods from SQL as procedures and functions. The Oracle implementation
is referred to as Java Stored procedures or functions, and is the topic of this
paper. For more details, code samples, and a discussion forum, go to:
http://otn.oracle.com/tech/java/jsp/content.html

§ Part 2 - “SQL Types using Java”: specifies using Java classes as templates for
user-defined data types in SQL. The Oracle implementation of SQLJ-Part-2 is
known as “SQLJ Object types”. For more details, go to:
http://technet.oracle.com/products/oracle9i/daily/jan17.html

 COMMON USAGE PATTERNS OF JAVA STORED PROCEDURES

 Java stored procedures are commonly used to implement the same database
operations as PL/SQL, such as stored procedures, stored functions, and database
triggers.

 Calling Java Stored Procedures from SQL4

 Java stored procedures and functions are callable, through their Call Spec, from:

§ SQL DML statements (INSERT, UPDATE, DELETE, SELECT, CALL ,
EXPLAIN PLAN, LOCK TABLE, and MERGE)

§ PL/SQL blocks, subprograms, and packages

§ Database Triggers: the Java stored procedure is invoked through its Call Spec in
the trigger body

 4
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/java.920/a96656
/invokeap.htm

Unleash the Power of Java Stored Procedures Page 8

 Calling SQL and Accessing Database Objects from Java

 JDBC and SQLJ allow invoking SQL statements accessing database objects such as
Collection types, PL/SQL Index by tables (OCI only), SQLJ Object types,
NCHAR/Unicode data, BLOBs, CLOBs, Object Type Inheritance, and so on.

 JPublisher

 JPublisher is a powerful Java utility that simplifies transferring database object type
instances—such as SQL object types, VARRAY types, nested table types, and
object reference types—between the database and a Java program. For the Java
developer, it eliminates the difficulty of manual mapping and coding. JPublisher
translates database objects as well as PL/SQL package types into Java classes by:

§ inspecting the provided database object type and generating a Java wrapper
class that maps to the corresponding fields and methods

§ encapsulating a PL/SQL package by generating the equivalent Java wrapper
that contains calls to the PL/SQL packages

 The generated Java wrapper can be called directly in your Java modules, as you
would for any other Java methods.

 Calling Java Stored Procedures from JDBC

 Java stored procedures and functions are invoked from Java, either through
PreparedStatement or CallableStatement (OUT and INOUT parameters).

 In the following examples, we have omitted IN, OUT, and INOUT parameters,
declarations, and registrations.

 // SQL92 escape syntax: parameterless stored procedure
 CallableStatement cstmt = conn.prepareCall("{CALL
proc}");
 // SQL92 escape syntax: stored procedure
 CallableStatement cstmt = conn.prepareCall("{CALL
proc(?,?)}");
 // SQL92 escape syntax: stored function
 CallableStatement cstmt = conn.prepareCall("{? = CALL
func(?,?)}");

 Security—Data Access Control

 One common use of Java stored procedures is to control and restrict access to
Oracle data by allowing users to manipulate the data only through stored
procedures that execute under their invoker's5 privileges while denying access to the
table itself. For example, you can disable updates during certain hours or give
managers the ability to query salary data but not update it.

 5 Invoker’s and definer’s rights are SQL concepts that are used to dynamically authorize
 users when executing SQL, PL/SQL, or JDBC.

Unleash the Power of Java Stored Procedures Page 9

 Implementation Transparency: 170 Systems, Inc.”

 Stored procedure implementations can change over time from PL/SQL to Java or
the opposite, transparently to the requesters, as illustrated by the following quote
from one of our major partners, 170 Systems, Inc.

 “When our customers implement the 170 MarkView Document Management and
Imaging System, the solution often incorporates sophisticated business logic. To
date, this logic has been created using 170 MarkView configuration products in the
form of PL/SQL code. We are now moving to Java stored procedures as an
additional method for capturing this logic. The advantage this brings to the 170
MarkView product line is that this enables a new set of users - those who have Java
rather than PL/SQL skills - to create and maintain business logic in the 170
MarkView solution.”6

 USING JAVA STORED PROCEDURES IN THE J2EE ENVIRONMENT

 Typical J2EE Application Architecture

 JSP, Servlets, and Session Beans Directly Calling Java Stored
Procedures

 Query-based JSPs and Servlets can directly invoke Java stored procedures, through
JDBC/SQLJ, bypassing Session and Entity beans. For non-complex domain
objects, Java stored procedures are often an easier and faster alternative to Entity
Beans. In addition, as described in the following sections, BMP and CMP beans can
also leverage Java stored procedures for auto-generating primary keys or
implementing finders methods.

 6 Simon Poulding - 170 Systems, Inc.

JSP

HTML

JavaScript

Awt
Componts

Servlets

Java
Beans

Awt
Panels

Session

EJBs Entity

EJBs

Java

Beans

O/R
Map

Java

Stored

Proc.

Presentation

Application

Service

Persistence

Domain

Unleash the Power of Java Stored Procedures Page 10

 Sharing Business Logic Between Legacy and J2EE Worlds

 As the book Mastering Enterprise JavaBeans7 explains, stored procedures allow sharing
business logic between J2EE and non-J2EE worlds. Independently from their
implementation, stored procedures are declared and known to the database catalog,
through their SQL signature (Call Spec)—a PL/SQL wrapper in the case of Oracle.
J2EE components, as well as legacy applications modules, can invoke the same
stored procedure through the same Call Spec wrapper.

 Autogenerating Primary Keys for BMP Entity Beans8

 A BMP entity bean instance can be uniquely identified by the auto-generated
primary key associated with the newly inserted data as return value for ejbCreate().
Retrieving this value within ejbCreate(), can be performed in one database operation
by using a stored procedure that will insert the corresponding data, then retrieve or
compute the primary key. Alternatively, you can insert the data using a simple
INSERT statement, then retrieve the value of the pseudo-column (ROWID) of the
newly inserted row, using JDBC 3.0 RETURN_GENERATED_KEYS; but the
stored procedure approach is more portable across JDBC drivers and databases.

 The following code snippet is excerpted from EJB Design Pattern; (OUT parameters
registration have been omitted).

 7 Mastering Enterprise JavaBeans, 2nd Edition - Ed Roman, Scott W. Ambler, Tyler Jewell -
Wiley
 8 This pattern is described in EJB Design Patterns - Floyd Marinescu - Wiley
 (the original example uses a PL/SQL stored procedure for retrieving ROWID).

 Legacy or non-
Java
Applications

 J2EE
Application
Module

 Java Stored
procedure

 Call Spec

Unleash the Power of Java Stored Procedures Page 11

 Public AccountPK ejbCreate(String ownerName, int
balance) throws CreateException

 {

 try {

 CallableStatement call = conn.prepareCall{

 "{call insertAccount(?, ?, ?)}"};

 return new AccountPK(accountID);

 }

 --

 CREATE OR REPLACE PROCEDURE insertAccount{owner IN
varchar, bal IN number, newid OUT number)

 AS LANGUAGE JAVA NAME
'GenPK.insertAccount(java.lang.String [])';

 /

 --

 define insertAccount()as a public static Java method, in
public GenPK class:

§ insert data

§ compute unique key (passing out a sequence number out

of a pre-allocated chunk or other mechanism)

§ return primary key

Mapping CMP Beans Finders Using Java Stored Procedures

You can use Java stored procedures in conjunction with OR mapping frameworks
such as TOPlink, and CocoBase, to implement custom finder methods such as
findByStoredProcPK—in contrast to findByPrimaryKey, which is
generated by the EJB container. As an example: TOPLink allows you to define the
EJB finders as REDIRECT or NAMED finders, then implement the query for the
finder as described in the TopLink for Java documentation.

Cache Invalidation—Calling-Out to Web Components

Web Object Cache tags provide increased performance by letting you cache Java
objects within an HTTP session. In order to refresh cached read-mostly data, such
as product catalogs and price-lists, a Java stored procedure attached as a trigger to
the database table will automatically call-out a JSP for invalidating a Web Object
Cache object that maps its state to the database table. Upon firing the trigger, the
very next query will force the state to be refreshed from the database. This pattern

Unleash the Power of Java Stored Procedures Page 12

is similar to “Publish event-driven Web content with JSP custom tags”9; using the
database as sole source of truth, ensures capturing every data modification,
regardless of its origin (other non-Java applications, legacy applications).

HttpCallout.java (excerpt)

public class HttpCallout {

 public static void getURL(String hostname, String portnum,

String url) throws InterruptedException {

 try {

 // process arguments

 String protocol = "http";

 String host = hostname;

 int port = Integer.parseInt(portnum);

 String page = url;

 // Grab HTTPConnection

 HTTPConnection con = new HTTPConnection(protocol, host, port);

 con.setTimeout(20000);

 con.setAllowUserInteraction(false);

 // Issue Get call

 HTTPResponse rsp = con.Get(page);

 // Grab Response

 byte[] data = rsp.getData();

 if (data == null) {

 System.out.println("no data");

 } else {

9 http://www.javaworld.com/javaworld/jw-04-2002/jw-0419-event.html

Insert/Update

 Java Web Cache

 JDBCInv.jsp

Invalidate Cache

Most Queries get

cached state

This Query gets latest

state from DB

Table
Trigger

Unleash the Power of Java Stored Procedures Page 13

 System.out.println("data length " + data.length);

 System.out.println(new String(data));

 }

 }

 catch (Throwable ex) {

 ex.printStackTrace();

 }

 }

}

Callout.sql

spool trigger.log

set echo on

connect scott/tiger

CREATE OR REPLACE PROCEDURE scott.callout_proc (host VARCHAR2,

port VARCHAR2,url VARCHAR2) AS LANGUAGE JAVA

NAME 'HttpCallout.getURL(java.lang.String, java.lang.String,

java.lang.String)'

;

/

show errors

CREATE OR REPLACE TRIGGER scott.callout_trig AFTER DELETE OR

INSERT OR UPDATE ON scott.callout

begin

 scott.callout_proc('dlsun693.us.oracle.com', '8888',

'/ojspdemos/cache/fseg/JDBCInv.jsp');

 end;

/

show errors

spool off

exit

Unleash the Power of Java Stored Procedures Page 14

Calling-Out to EJB Components in J2EE Servers

You can connect to EJB from Java Stored procedures, using either standard RMI
over IIOP (against a J2EE 1.3 compatible server) or RMI over vendor specific
transport protocol, such as ORMI (iAS/OC4J) or T3 (BEA). While providing RMI
over IIOP for interoperability, each vendor has its own optimized protocol for
RMI calls to their EJB container. Oracle9iAS, supports both RMI calls over IIOP
and ORMI protocols. The following steps allow calling-out EJB in OC4J (this
feature is a technology preview in Oracle9i Database, Release 2, and not yet
supported for production). The complete code will be posted on the Oracle OTN
Web site.

1. loadjava -v -u sys/<passwd> -noverify -r -s -g public
 -genmissingjar gen.jar oc4jclient.jar jaas.jar ejb.jar

 (those jars are located under $j2ee_home/)

2. grant ejbclient to <ejb_user_schema> (as sysdba)

3. loadjava -v -r -u <ejb-user>/<passwd>

 cmpapp-client.jar and cmpapp-ejb.jar (ejb stubs)

 (located under $j2ee_home/demo/cmp/client)

4. create or replace procedure myejb(args varchar2) as
language java name

'cmpapp.EmployeeClientTest(java.lang.String)';

 /

5. Call with

 set severoutput on

 call dbms_java.set_ouput(2000);

 call myejb('test');

see the results in your sqlplus environment.

USING JAVA STORED PROCEDURES IN XML AND WEB SERVICES
ENVIRONMENTS

Oracle9i XML Database

Oracle9i Database release 2 provides XMLType for native XML storage and
retrieval, as well as XML Repository for XML resources foldering, access control,
versioning, and so on. Those capabilities are known under the collective name of
Oracle9i XML Database (XDB). Java developers can write XML DB applications
either through JDBC or directly within the database through Java stored
procedures. These Java stored procedures are accessible from SQL and PL/SQL,
through their Call Spec; another illustration of how Java stored procedures can

Unleash the Power of Java Stored Procedures Page 15

bridge SQL, XML and Java worlds. For more details about XDB, please visit the
Oracle OTN Web site, @ http://otn.oracle.com/tech/xml/xmldb/content.html.

Extend Database Programmability with XML Develop Kit (XDK)

Because OracleJVM is J2SE 1.3 compatible, Java classes and JAR files can be
loaded into the database. The XML Developer Kit is written in Java, and exposes
its public methods, as Java stored procedures, extending the database's XML
programmability. PL/SQL and Java code running within the database have access
to the XML parser, the XSLT processor, XPath engine, and XML SQL Utility
(XSU).

XML Parser for Java

The XML parser supports W3C XML1.0 recommendations, DOM 2.0 CORE,
DOM 2.0 Traversal including Treewalker, Node Iterator and Node Filter, SAX20,
SAX2-ext, and JAXP 1.1. PL/SQL and Java code running in the database access
the XML parser through xmlparser and xmldom packages.

XML SQL Utility

XML SQL Utility (XSU) is a Java utility that generates an XML Document from
SQL queries or a JDBC ResultSet, and writes data from an XML document into a
database table or view (XML output can be produced as Text, DOM trees, or
DTDs). This utility is exposed to the PL/SQL world through dbms_xmlquery and
dbms_xmlsave packages.

Unleash the Power of Java Stored Procedures Page 16

DBMS_XMLQuery

This package is based on the XML SQL utility. To use it, create the following SQL
script, xmlq_test.sql:

set echo on

set long 32000

var cb clob

declare

c dbms_xmlquery.ctxtype;

begin

c := dbms_xmlquery.newContext('select dname,
CURSOR(select ename,sal from p where emp.deptno =
dept.deptno and emp.hiredate=:hiredate) as employees

from dept where deptno = :deptno');

 dbms_xmlquery.setTagCase(c,1);

 dbms_xmlquery.setBindValue(c,'deptno',10);

 dbms_xmlquery.setBindValue(c,'hiredate','09-JUN-1981');

 :cb := dbms_xmlquery.getXML(c);

 dbms_xmlquery.closeContext(c);

 end;

/

then use SQLPLUS to connect and run it

SQL> @xmlq_test

SQL> print cb

This will result in:

Unleash the Power of Java Stored Procedures Page 17

CB

--

<?xml version = '1.0'?>

<rowset>

 <row num="1">

 <dname>ACCOUNTING</dname>

 <employees>

 <employees_row num="1">

 <ename>CLARK</ename>

 <sal>2450</sal>

 </employees_row>

 </employees>

 </row>

</rowset>

SQL>

Database as Active Web Service Client

A Java stored procedure can be a Web service requester. Attaching such a stored
procedure as a trigger allows the database to automatically invoke external Web
services upon data-driven events. Non-Java modules such as PL/SQL procedures
and DBMS packages can be encapsulated with a Java wrapper that will invoke
external Web services, on their behalf. Here are the steps for a proof of concept:

§ Load XERCES, SOAP, and JAXP jar files.

§ Grant connect and resolve to the SOAP server/port.

§ Load the SOAP client Java class.

§ Create a PL/SQL package to wrap the SOAP client as

trigger.

The complete code sample and instructions will be posted on the Oracle OTN
Web site.

Unleash the Power of Java Stored Procedures Page 18

Calling-out an XML-RCP Server10

Here is a simple way of calling-out a remote XML-RPC server through SQL:

§ Load RPC-Clients JAR files from http://xml.apache.org/xmlrpc/client.html,
into OracleJVM.

§ Load the following client code, DbClass.java, into the database.

§ Invoke the remote XMl-RPC server through the select DbClass.callOut('some
value') from dual statement.

public class DbClass

{

 public static String callOut(String valueIn) {

 String failReason = "no reason";

 try {

 // Use the Apache Xerces SAX Driver

XmlRpc.setDriver("org.apache.xerces.parsers.SAXParser");

 // Specify the server

 XmlRpcClient client =

 New XmlRpcClient("http://localhost:8585/");

 // Create request

 Vector params = new Vector();

 params.addElement(valueIn);

 // Make a request and print the result

 String result =

(String)client.execute("hello.sayHello", params);

//System.out.println("Response from server: " +result);

 return "the answer " + result;

 } catch (ClassNotFoundException e) { …

 } catch (MalformedURLException e) { …

 } catch (XmlRpcException e) { …

 } catch (IOException e) { …}

 return "failed:" + failReason;

 }

10 Courtesy of Chris Field

Unleash the Power of Java Stored Procedures Page 19

}

This opens the door to complex queries, including federating data from Web
services.

Database as Web Service Provider

Java as well as PL/SQL stored procedures that implement some business services
can be exposed as Web service. Oracle9iAS release 9.0.2 provides J2EE-based Web
services; furthermore, it allows encapsulating stateless database stored procedures
with J2EE artifacts and exposed as regular J2EE Web Services. The stored
procedure, which implements the service, is invoked via JDBC and runs in the
database. Oracle plan to expose more database operations through Web services
mechanisms.

For more details about exposing stored procedures as Web services, visit the
following link at the OTN web site:
http://otn.oracle.com/tech/java/oc4j/pdf/Oracle9iAS-R2-J2EE.pdf

CONCLUSIONS

The integration of the database with a JVM that complies with J2SE, OracleJVM,
allows extending database features and programmability through Java stored
procedures. This paper highlights the simplicity and the power of Java stored
procedures through new, emerging usage patterns, such as bridging and
cooperating with J2EE components, XML applications, and Web services. As
illustrated by the examples and code snippets11, the ability to run Java code in the
database opens the door for unlimited usage patterns. Some of those, such as EJBs
Active Components for J2EE (AC4J) 12, which allow asynchronous, transactional
then recoverable invocation of regular Enterprise JavaBeans in Oracle9iAS/OC4J
through Java stored procedures, calling-out to JMS or in-session JMS/AQ
invocation, and so on, are under work and not exposed in this paper.

11 All code samples will be bundled and posted on the OTN website, @
http://otn.oracle.com/tech/java/jsp/content.html
12 See Active Components for J2EE (AC4J) @
http://otn.oracle.com/tech/java/oc4j/pdf/oc4j_ent_jb_devguide_r2.pdf

Unleash the Power of Java Stored procedures

June 2002

Author: Kuassi Mensah

Contributing Authors: Cheuk Chau,

Ekkehard Rohwedder, Chris Field

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Oracle Corporation provides the software

that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various

product and service names referenced herein may be trademarks

of Oracle Corporation. All other product and service names

mentioned may be trademarks of their respective owners.

Copyright © 2000 Oracle Corporation

All rights reserved.

