Per| Design Patterns

brian d foy
Stonehenge Consulting Services

Febrvary 24 2006
Grand Rapids Per| Mongers

Sponsored by PriorityHealth

Patterns arenta...

* code cookbhook
* wodule on CPAN
* methodology
* goal

* religion

Patterns area...

* abstraction for things we need to do

* solutions for common problems

* name for a design element

* common language for design discussions
* way to apply a common design to code
* relationships

* GContext

Three parts

* System of forces

* Solution

Nothing’s Free

* Actions have reactions
* Complexity turns up somewhere else
* Choices have consequences

Who's responsible?

* Qur application needs config information
* But we have several modules

* Who loads the data?

* How do the other modules get it?

A pattern

* Load the configuration from anywhere
* But load it only one time

* Anyone else gets a reference to it

* The order doesnt matter

What’s in a name

* A couple words instead of sentences
* We agree on what the name implies
% Others know what we mean

* “Aroseisaroseisarose”

The Singleton

* There is only one configuration

* Let’s call it a singleton

* ... or a highlander

* We don't have an implementation

* Just a name with implied design elements

An implementation

package My: :Config;
my S$singleton = undef;

sub new {
my Sclass = shift;

return S$singleton if defined $singleton;

$singleton = bless {}, $class;

}

A use

package My: :Database;
use My: :Config;

my Sconfig = My: :Config->new (

package My: :Network;
use My: :Config;

my Sconfig = My: :Config->new (

That isn't the only way

% The patternis not a prescription
* |t’s an option
* Maybe another pattern works better.

A Meta Class

* Write a meta class that contains all of
the object parts

* Qbjects talk to the meta class to
communicate with the other parts

use My: :Controller;

my Scontroller = My::Controller->new(...);

my $value = S$controller->config->get(...

) ;

Pelegates

package My: :Controller;

sub new {
my Sclass = shift;

my $self = bless {}, S$class;

weaken some of these circular refs
@Sself{ qw(_config database network) } = (

My: :Config->new(controller => $self),
DBI->new(...),

My: :Socket->new(controller => $self),
) ;

$Sself;
}

sub config { $ [0]{ config} }

Some Perl Modules

* Apache:: DBl

* Netscape::Bookwmarks

* 0Gl:Prototype

* many things in Class::*, almost

Beware

* Patterns are not code

* No matter what the Gang of Four say
* Class:™ is code

* Erqo, ...

Perl is Better

* People like Patterns because they get code
* (++ Java suck at sowme things (lterators)
* Perl doesn't suck at the sawme things

Further Reading

* The Perl Review (lots of articles (by me))

* “Design Patterns Arent” by Mark Jason
Pominus

* http:#/perl.plover.com/yak/design/

* Pesign Patterns - Erich Gamma, et al.
(Gang of Four)

* Perl Design Patterns Wiki
* htip:/perldesignpatterns.com/

