
Perl Design Patterns
brian d foy

Stonehenge Consulting Services
February 24, 2006

Grand Rapids Perl Mongers

Sponsored by PriorityHealth

Patterns aren’t a ...

code cookbook

module on CPAN

methodology

goal

religion

Patterns are a ...

abstraction for things we need to do

solutions for common problems

name for a design element

common language for design discussions

way to apply a common design to code

relationships

Three parts

Context

System of forces

Solution

Nothing’s Free

Actions have reactions

Complexity turns up somewhere else

Choices have consequences

Who’s responsible?

Our application needs config information

But we have several modules

Who loads the data?

How do the other modules get it?

A pattern

Load the configuration from anywhere

But load it only one time

Anyone else gets a reference to it

The order doesn’t matter

What’s in a name

A couple words instead of sentences

We agree on what the name implies

Others know what we mean

“A rose is a rose is a rose”

The Singleton

There is only one configuration

Let’s call it a singleton

... or a highlander

We don’t have an implementation

Just a name with implied design elements

An implementation
package My::Config;

my $singleton = undef;

sub new {
 my $class = shift;

 return $singleton if defined $singleton;

 $singleton = bless {}, $class;
 }

A use

package My::Database;
use My::Config;

my $config = My::Config->new(...);

package My::Network;
use My::Config;

my $config = My::Config->new(...);

That isn’t the only way

The pattern is not a prescription

It’s an option

Maybe another pattern works better.

A Meta Class

Write a meta class that contains all of
the object parts

Objects talk to the meta class to
communicate with the other parts

use My::Controller;

my $controller = My::Controller->new(...);

my $value = $controller->config->get(...);

Delegates
package My::Controller;

sub new {
 my $class = shift;

 my $self = bless {}, $class;

 # weaken some of these circular refs
 @$self{ qw(_config _database _network) } = (
 My::Config->new(controller => $self),
 DBI->new(...),
 My::Socket->new(controller => $self),
);

 $self;
 }

sub config { $_[0]{_config} }

Some Perl Modules

Apache::DBI

Netscape::Bookmarks

CGI::Prototype

many things in Class::*, almost

Beware

Patterns are not code

No matter what the Gang of Four say

Class::* is code

Ergo, ...

Perl is Better

People like Patterns because they get code

C++, Java suck at some things (Iterators)

Perl doesn’t suck at the same things

Further Reading
The Perl Review (lots of articles (by me))

“Design Patterns Aren’t” by Mark Jason
Dominus

http://perl.plover.com/yak/design/

Design Patterns - Erich Gamma, et al.
(Gang of Four)

Perl Design Patterns Wiki

http://perldesignpatterns.com/

