
1

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Democritos/ICTP course in “Tools for
computational physics

Stefano Cozzini cozzini@democritos.it
Democritos/INFM + SISSA

 MPI tutorial

2

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Models for parallel computing

• Shared memory (load, store, lock,
unlock)

• Message Passing (send, receive,
broadcast, ...)

• Transparent (compiler works magic)

• Directive-based (compiler needs help)

• Others (BSP, OpenMP, ...)

3

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

 Message passing paradigm

• Parallel programs consist of separate processes,
each with its own address space
– Programmer manages memory by placing data in

a particular process

• Data sent explicitly between processes
– Programmer manages memory motion

• Collective operations
– On arbitrary set of processes

• Data distribution
– Also managed by programmer

4

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Types of parallel programming
• Data Parallel - the same instructions are carried

out simultaneously on multiple data items
(SIMD)

• Task Parallel - different instructions on different
data (MIMD)

• SPMD (single program, multiple data) not
synchronized at individual operation level

• SPMD is equivalent to MIMD since each MIMD
program can be made SPMD (similarly for
SIMD, but not in practical sense.)

• Message passing is for MIMD/SPMD
parallelism. HPF is an example of an SIMD

5

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Distributed memory (shared nothing
approach)

6

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

What is MPI?
• A message-passing library specification

– extended message-passing model
– not a language or compiler specification
– not a specific implementation or product

• For parallel computers, clusters, and
heterogeneous networks

• Full-featured

• Designed to provide access to advanced
parallel hardware for end users, library
writers, and tool developers

7

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

What is MPI?

A STANDARD...

The actual implementation of the standard is demanded to the
software developers of the different systems

In all systems MPI has been implemented as a library of subroutines
over the network drivers and primitives
many different implementations

LAM/MPI (today's TOY) www.lam-mpi.org
MPICH

8

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Goals of the MPI standard
MPI’s prime goals are:
• To provide source-code portability
• To allow efficient implementations

MPI also offers:
• A great deal of functionality
• Support for heterogeneous parallel architectures

9

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI references

• The Standard itself:
– at http://www.mpi-forum.org
– All MPI official releases, in both postscript

and HTML

• Other information on Web:
–at http://www.mcs.anl.gov/mpi
– pointers to lots of stuff, including talks and

tutorials, a FAQ, other MPI pages

10

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

How to program with MPI

• MPI is a library
– All operations are performed with

routine calls
–Basic definitions are in

• mpi.h for C
• mpif.h for Fortran 77 and 90
• MPI module for Fortran 90 (optional)

11

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Basic Features of MPI Programs

Calls may be roughly divided into four classes:

Calls used to initialize, manage, and terminate
communications

Calls used to communicate between pairs of
processors. (Pair communication)

Calls used to communicate among groups of
processors. (Collective communication)

Calls to create data types.

12

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI basic functions (subroutines)

• All you need is to know this 6 calls

MPI_INIT: initialize MPI
MPI_COMM_SIZE: how many PE ?
MPI_COMM_RANK: identify the PE
MPI_SEND :
MPI_RECV:
MPI_FINALIZE: close MPI

13

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

A First Program: Hello World!
Fortran

PROGRAM hello

 INCLUDE ‘mpif.h‘
 INTEGER err
 CALL MPI_INIT(err)
 call MPI_COMM_RANK(MPI_COMM_WORLD,

rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD,

size, ierr)
 print *, 'I am ', rank, ' of ', size
 CALL MPI_FINALIZE(err)
END

C
include <stdio.h>
#include <mpi.h>
void main (int argc, char * argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Comm_size(MPI_COMM_WORLD,&size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

14

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Notes on hello
• All MPI programs begin with MPI_Init and end with

MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h (in C) or mpif.h
(in Fortran) and designates all processes in the MPI “job”

• Each statement executes independently in each process
– including the printf/print statements

• I/O not part of MPI-1
– print and write to standard output or error not part of

either MPI-1 or MPI-2
– output order is undefined (may be interleaved by

character, line, or blocks of characters),
• A consequence of the requirement that non-MPI

statements execute independently

15

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Compiling MPI Programs
NO STANDARD: left to the

implementations:
Generally:
• You should specify the appropriate include directory

(i.e. -I/mpidir/include)
• You should specify the mpi library

(i.e. -L/mpidir/lib -lmpi)
• Usually MPI compiler wrappers do this job for you. (i.e.

Mpif77)
Check on your machine...

16

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Running MPI programs
• The MPI-1 Standard does not specify how to run an MPI program,

just as the Fortran standard does not specify how to run a Fortran
program.

• Many implementations provided mpirun –np 4 a.out to run an
MPI program

• In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require various
scripts, program arguments, and/or environment variables.

• mpiexec <args> is part of MPI-2, as arecommendation, but not
requirement, for implementors.

• Many parallel systems use a batch environment to share resources
among users

• The specific commands to run a program on a parallel system are
defined by the environment installed on the parallel computer

17

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

 Header files

 MPI Communicator

 MPI Function format

 Communicator Size and Process Rank

 Initializing and Exiting MPI

Basic Structures of MPI Programs

18

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Header files

All Subprogram that contains calls to MPI
subroutine must include the MPI header file
C:
#include<mpi.h>

Fortran:
include ‘mpif.h’

The header file contains definitions of MPI constants, MPI
 types and functions

19

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI Communicator
The Communicator is a variable identifying a group of
processes that are allowed to communicate with each
other.

There is a default communicator (automatically defined):

MPI_COMM_WORLD

identify the group of all processes.

 All MPI communication subroutines have a communicator
argument.
 The Programmer could define many communicator at the
same time

20

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Initializing and Exiting MPI
Initializing the MPI environment
C: int MPI_Init(int *argc, char ***argv);
Fortran:

INTEGER IERR
 CALL MPI_INIT(IERR)

Finalizing MPI environment
C:

int MPI_Finalize()
Fortran:

INTEGER IERR
CALL MPI_FINALIZE(IERR)

This two subprograms should be called by all processes, and no
other MPI calls are allowed before mpi_init and after
mpi_finalize

21

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

C and Fortran: a note

• C and Fortran bindings correspond closely
• In C:

– mpi.h must be #included
– MPI functions return error codes or
– MPI_SUCCESS

• In Fortran:
– mpif.h must be included, or use MPI module
– All MPI calls are to subroutines, with a place

for the return error code in the last
argument.

22

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Communicator Size and Process Rank
How many processors are associated with a communicator?
C:

MPI_Comm_size(MPI_Comm comm, int *size)
Fortran:

INTEGER COMM, SIZE, IERR
CALL MPI_COMM_SIZE(COMM, SIZE, IERR)

OUTPUT: SIZE
What is the ID of a processor in a group?
C:

MPI_Comm_rank(MPI_Comm comm, int *rank)
Fortran:

INTEGER COMM, RANK, IERR
CALL MPI_COMM_RANK(COMM, RANK, IERR)

OUTPUT: RANK

23

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Communicator Size and Process Rank, cont.

P0 P1 P2 P3 P4 P5 P6 P7

RANK = 2

SIZE = 8

Size is the number of processors associated to the communicator

rank is the index of the process within a group associated to a
communicator (rank = 0,1,...,N-1). The rank is used to identify
the source and destination process in a communication

24

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI basic send/receive

• questions:
– How will “data” be described?
– How will processes be identified?
– How will the receiver recognize messages?
– What will it mean for these operations to

complete?

25

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Basic concepts

• Processes can be collected into groups

• Each message is sent in a context, and

• must be received in the same context

• A group and context together form a

• communicator

• A process is identified by its rank in the group
associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

26

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI datatypes
• The data in a message to send or receive is

described by a triple (address, count, datatype),
where
– An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from
thelanguage (e.g., MPI_INT, MPI_DOUBLE)

• a contiguous array of MPI datatypes
• a strided block of datatypes
• an indexed array of blocks of datatypes
• an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

27

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Fortran - MPI Basic Datatypes

DOUBLE COMPLEXMPI_DOUBLE_COMPLEX

MPI_PACKED
MPI_BYTE

CHARACTER(1)MPI_CHARACTER
LOGICALMPI_LOGICAL

COMPLEXMPI_COMPLEX
DOUBLE PRECISIONMPI_DOUBLE_PRECISION
REALMPI_REAL
INTEGERMPI_INTEGER
Fortran Data typeMPI Data type

28

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

C - MPI Basic Datatypes

MPI_PACKED
MPI_BYTE

long doubleMPI_LONG_DOUBLE
doubleMPI_DOUBLE
floatMPI_FLOAT
unsigned long intMPI_UNSIGNED_LONG
unsigned intMPI_UNSIGNED
unsigned short intMPI_UNSIGNED_SHORT
unsigned charMPI_UNSIGNED_CHAR
Signed log intMPI_LONG
signed intMPI_INT
signed short intMPI_SHORT
signed charMPI_CHAR
C Data typeMPI Data type

29

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Data tag

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

• Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a receive

• Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

30

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
30

MPI : the call
The simplest call:

MPI_send(buffer, count, data_type, destination,tag, communicator)

where:
BUFFER: data to send
COUNT: number of elements in buffer .
DATA_TYPE : which kind of data types in buffer ?
DESTINATION the receiver
TAG: the label of the message
COMMUNICATOR set of processors involved

31

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
31

MPI: again on send
• MPI_send is blocking

– When the control is returned it is safe to
change data in BUFFER !!

• The user does not know if MPI implementation:
– copies BUFFER in an internal buffer, start

communication, and returns control before
all the data are transferred. (BUFFERING)

– create links between processors, send data
and return control when all the data are
sent (but NOT received)

– uses a combination of the above methods

32

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
4/13/99 32

MPI: receiving message
• The simplest call :

– Call MPI_recv(buffer, count, data_type,
source, tag, communicator, status, error)

• Similar to send with the following differences:
– SOURCE is the sender ; can be set as

MPI_any_source (receive a message from any
processor within the communicator)

– TAG the label of message: can be set as
MPI_any_tag: receive a any kind of message

– STATUS integer array with information on message
in case of error

• MPI_recv is blocking. Return when all the data are in
BUFFER.

33

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
33

MPI: a fortran example..
Program MPI
 Implicit None
!
 Include 'mpif.h'
!
 Integer :: rank
 Integer :: buffer
 Integer, Dimension(1:MPI_status_size) :: status
 Integer :: error
!
 Call MPI_init(error)
 Call MPI_comm_rank(MPI_comm_world, rank, error)
!
 If(rank == 0) Then
 buffer = 33
 Call MPI_send(buffer, 1, MPI_integer, 1, 10, &
 MPI_comm_world, error)
 End If
!
 If(rank == 1) Then
 Call MPI_recv(buffer, 1, MPI_integer, 0, 10, &
 MPI_comm_world, status, error)
 Print*, 'Rank ', rank, ' buffer=', buffer
 If(buffer /= 33) Print*, 'fail'
 End If
 Call MPI_finalize(error)
End Program MPI

34

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Summary: MPI send/receive

• Datatype Basic for heterogeneity
– Derived for non-contiguous

• Contexts
– Message safety for libraries

• Buffering
– Robustness and correctness

35

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Tag and context
• Separation of messages used to be accomplished by

use of tags, but
– this requires libraries to be aware of

tagsused by other libraries.
– this can be defeated by use of “wild card”

tags.

• Contexts are different from tags
– no wild cards allowed
– allocated dynamically by the system when al

ibrary sets up a communicator for its own
use.

• User-defined tags still provided in MPI for user
convenience in organizing

36

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

The status array
• Status is a data structure allocated in the user’s

program.

• In C:
int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)
recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

37

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Definitions (Blocking and non-Blocking)
• “Completion” of the communication means that

memory locations used in the message transfer can
be safely accessed
– Send: variable sent can be reused after completion
– Receive: variable received can now be used

• MPI communication modes differ in what conditions
are needed for completion

• Communication modes can be blocking or non-
blocking
• Blocking: return from routine implies completion
• Non-blocking: routine returns immediately, user

must test for completion

38

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Communication Modes and MPI
Subroutines

MPI_IRSENDMPI_RSEN
D

Always completes,
irrespective of whether the
receive has completed

Ready send

MPI_IBSENDMPI_BSEN
D

Always completes,

irrespective of receiver
Buffered send

MPI_ISSENDMPI_SSEN
D

Only completes when the
receive has completed

Synchronous
send

MPI_IRECVMPI_RECVCompletes when a
message has arrived

receive

MPI_ISENDMPI_SENDMessage sent (receive
state unknown)

Standard send

Non-blocking
subroutine

Blocking
subroutine

Completion ConditionMode

39

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
39

MPI: different ways to communicate

• MPI different “sender mode” :
– MPI_SSEND: synchronous way: return the

control when all the message is received
– MPI_ISEND: non blocking: start the

communication and return control
– MPI_BSEND: buffered send: creates a

buffer,copies the data and returns control
• In the same way different MPI receiving:

– MPI _IRECV etc...

40

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Non-Blocking Send and Receive
Non-Blocking communications allows the separation

between the initiation of the communication and the
completion.

Advantages: between the initiation and completion the
program could do other useful computation (latency
hiding).

Disadvantages: the programmer has to insert code to
check for completion.

41

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Non-Blocking Send and Receive
Fortran:
MPI_ISEND(buf, count, type, dest, tag, comm, req, ierr)
MPI_IRECV(buf, count, type, dest, tag, comm, req, ierr)

buf array of type type see table.

count (INTEGER) number of element of buf to be sent

type (INTEGER) MPI type of buf
dest (INTEGER) rank of the destination process

tag (INTEGER) number identifying the message

comm (INTEGER) communicator of the sender and receiver

req (INTEGER) output, identifier of the communications handle

ierr (INTEGER) output, error code (if ierr=0 no error occurs)

42

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Non-Blocking Send and Receive

C:

int MPI_Isend(void *buf, int count,
MPI_Datatype type, int dest, int tag,
MPI_Comm comm, MPI_Request *req);

int MPI_Irecv (void *buf, int count,
MPI_Datatype type, int dest, int tag,
MPI_Comm comm, MPI_Request *req);

43

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Waiting and Testing for Completion
Fortran:
MPI_WAIT(req, status, ierr)

A call to this subroutine cause the code to wait until the communication
pointed by req is complete.

req (INTEGER) input/output, identifier associated to a communications
event (initiated by MPI_ISEND or MPI_IRECV).

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was
associated to a call to MPI_IRECV, status contains informations on the
received message, otherwise status could contain an error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).
C:
int MPI_Wait(MPI_Request *req, MPI_Status *status);

44

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Waiting and Testing for Completion
Fortran:
MPI_TEST(req, flag, status, ierr)
A call to this subroutine sets flag to .true. if the communication pointed by req

is complete, sets flag to .false. otherwise.

req (INTEGER) input/output, identifier associated to a communications event
(initiated by MPI_ISEND or MPI_IRECV).

Flag (LOGICAL) output, .true. if communication req has completed .
false. otherwise

Status (INTEGER) array of size MPI_STATUS_SIZE, if req was associated to
a call to MPI_IRECV, status contains informations on the received message,
otherwise status could contain an error code.

ierr (INTEGER) output, error code (if ierr=0 no error occours).
C:
int MPI_Wait(MPI_Request *req, int *flag, MPI_Status *status);

45

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
4/13/99 45

MPI: a case study

 If(rank == 0) Then
 Call MPI_send(buffer1, 1, MPI_integer, 1, 10, &
 MPI_comm_world, error)
 Call MPI_recv(buffer2, 1, MPI_integer, 1, 20, &
 MPI_comm_world, status, error)
 Else If(rank == 1) Then
 Call MPI_send(buffer2, 1, MPI_integer, 0, 20, &
 MPI_comm_world, error)
 Call MPI_recv(buffer1, 1, MPI_integer, 0, 10, &
 MPI_comm_world, status, error)
 End If

DEADLOCK

Problem: exchanging data between two processes

46

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
4/13/99 46

Solution A

 If(rank == 0) Then
 Call MPI_Bsend(buffer1, 1, MPI_integer, 1, 10, &
 MPI_comm_world, error)
 Call MPI_recv(buffer2, 1, MPI_integer, 1, 20, &
 MPI_comm_world, status, error)
 Else If(rank == 1) Then
 Call MPI_Bsend(buffer2, 1, MPI_integer, 0, 20, &
 MPI_comm_world, error)
 Call MPI_recv(buffer1, 1, MPI_integer, 0, 10, &
 MPI_comm_world, status, error)
 End If

 USE BUFFERED SEND: bsend
send and go back so the deadlock is avoided

NOTES:
1. Requires a copy therefore is not

efficient
2. For large data set memory problems

47

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
4/13/99 47

Solution B

 If(rank == 0) Then
 Call MPI_Isend(buffer1, 1, MPI_integer, 1, 10, &
 MPI_comm_world, REQUEST, error)
 Call MPI_recv(buffer2, 1, MPI_integer, 1, 20, &
 MPI_comm_world, status, error)
 Else If(rank == 1) Then
 Call MPI_Isend(buffer2, 1, MPI_integer, 0, 20, &
 MPI_comm_world, REQUEST, error)
 Call MPI_recv(buffer1, 1, MPI_integer, 0, 10, &
 MPI_comm_world, status, error)
 End If
 Call MPI_wait(REQUEST, status) ! Wait until send is complete

 Use non blocking SEND : isend
send go back but now is not safe to change the buffer

NOTES:
1 An handle is introduced to test the status

of message.
2. More efficient of the previous solutions

48

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February
4/13/99 48

Solution C

 If(rank == 0) Then
 Call MPI_send(buffer1, 1, MPI_integer, 1, 10, &
 MPI_comm_world, error)
 Call MPI_recv(buffer2, 1, MPI_integer, 1, 20, &
 MPI_comm_world, status, error)
 Else If(rank == 1) Then
 Call MPI_recv(buffer1, 1, MPI_integer, 0, 10, &
 MPI_comm_world, status, error)
 Call MPI_send(buffer2, 1, MPI_integer, 0, 20, &
 MPI_comm_world, error)
 End If

 Exchange send/recv order on one processor

NOTES:
efficient and suggested !

49

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Collective operation (1)

• Collective routines provide a
higher-level way to organize a
parallel program

• Each process executes the same
communication operations

• MPI provides a rich set of collective
operations…

50

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Collective Communications (2)
• Communications involving group of processes

in a communicator.

• Groups and communicators can beconstructed
“by hand” or using topology routines.

• Tags are not used; different communicators
deliver similar functionality.

• No non-blocking collective operations.

• Three classes of operations: synchronization,
data movement, collective computation.

51

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI_Barrier
Stop processes until all processes within a

communicator reach the barrier
Almost never required in a parallel program

Occasionally useful in measuring performance and
load balancing

Fortran:
CALL MPI_BARRIER(comm, ierr)

C:
int MPI_Barrier(MPI_Comm comm)

52

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Barrier

P0 P1 P2 P3 P4

P0 P1 P2 P3 P4

P0

P1

P2

P3

P4

t1 t2 t3

barrier barrier

53

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Broadcast (MPI_BCAST)
One-to-all communication: same data sent from root

process to all others in the communicator

Fortran:
INTEGER count, type, root, comm, ierr
CALL MPI_BCAST(buf, count, type, root, comm, ierr)
Buf array of type type

C:
int MPI_Bcast(void *buf, int count, MPI_Datatype

datatypem int root, MPI_Comm comm)
All processes must specify same root, rank and comm

54

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Broadcast

P0

P1

P2

P3

a1

P0

a1

a1

a1

PROGRAM broad_cast
 INCLUDE 'mpif.h'
 INTEGER ierr, myid, nproc, root
 INTEGER status(MPI_STATUS_SIZE)
 REAL A(2)
 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 root = 0
 IF(myid .EQ. 0) THEN
 a(1) = 2.0
 a(2) = 4.0
 END IF
 CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
 WRITE(6,*) myid, ': a(1)=', a(1), 'a(2)=', a(2)
 CALL MPI_FINALIZE(ierr)
 END

55

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Reduction

The reduction operation allow to:

• Collect data from each process

• Reduce the data to a single value

• Store the result on the root processes

• Store the result on all processes

56

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Reduce, Parallel Sum

P0

P1

P2

P3

P0 a1

a2

a3

a4

Sa=a1+a2+a3+a4

Sa

Reduction function works with arrays

other operation: product, min, max, and, ….

Internally is usually implemented with a
binary tree

b1

b2

b3

b4

Sb=b1+b2+b3+b4

Sb

P2 Sa Sb

P3 Sa Sb

P1 Sa Sb

57

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI_REDUCE and MPI_ALLREDUCE
Fortran:

MPI_REDUCE(snd_buf, rcv_buf, count, type, op, root, comm,
ierr)

snd_buf input array of type type containing local values.

rcv_buf output array of type type containing global results

count (INTEGER) number of element of snd_buf and rcv_buf
type (INTEGER) MPI type of snd_buf and rcv_buf
op (INTEGER) parallel operation to be performed

root (INTEGER) MPI id of the process storing the result

comm (INTEGER) communicator of processes involved in the operation

ierr (INTEGER) output, error code (if ierr=0 no error occours)

MPI_ALLREDUCE(snd_buf, rcv_buf, count, type, op, comm, ierr)
The argument root is missing, the result is stored to all processes.

58

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Predefined Reduction Operations

Minimum and locationMPI_MINLOC
Maximum and locationMPI_MAXLOC
Bitwise exclusive ORMPI_BXOR
Logical exclusive ORMPI_LXOR
Bitwise ORMPI_BOR
Logical ORMPI_LOR
Bitwise ANDMPI_BAND
Logical ANDMPI_LAND
ProductMPI_PROD
SumMPI_SUM
MinimumMPI_MIN
MaximumMPI_MAX

FunctionMPI op

59

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI_Alltoall

P0

P0

P0

P0

P0

P0

P0

P0

a4

b4

c4

d4 a4 b4 c4 d4

a3

b3

c3

d3

a3 b3 c3 d3

a2

b2

c2

d2

a2 b2 c2 d2

a1

b1

c1

d1

a1 b1 c1 d1

Fortran:

CALL MPI_ALLTOALL(sndbuf, sndcount, sndtype, rcvbuf, rcvcount, rcvtype,
comm, ierr)

sender receiver

Very useful to implement data transposition

rc
vb
uf

sn
db
uf

60

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Reduce, cont.

C:
int MPI_Reduce(void * snd_buf, void * rcv_buf, int count,

MPI_Datatype type, MPI_Op op, int root, MPI_Comm comm)

int MPI_Allreduce(void * snd_buf, void * rcv_buf, int count,
MPI_Datatype type, MPI_Op op, MPI_Comm comm)

61

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Reduce, example
 PROGRAM reduce
 INCLUDE 'mpif.h'
 INTEGER ierr, myid, nproc, root
 INTEGER status(MPI_STATUS_SIZE)
 REAL A(2), res(2)
 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 root = 0
 a(1) = 2.0
 a(2) = 4.0
 CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root,
 & MPI_COMM_WORLD, ierr)
 IF(myid .EQ. 0) THEN
 WRITE(6,*) myid, ': res(1)=', res(1), 'res(2)=', res(2)
 END IF
 CALL MPI_FINALIZE(ierr)
 END

62

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI_Scatter
One-to-all communication: different data sent from root

process to all others in the communicator

Fortran:

CALL MPI_SCATTER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,
rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• sndcount is the number of elements sent to each process, not the size of

sndbuf, that should be sndcount times the number of process in the
communicator

• The sender arguments are significant only at root

sender receiver

63

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

MPI_Gather
One-to-all communication: different data collected by the

root process, from all others processes in the
communicator. Is the opposite of Scatter

Fortran:

CALL MPI_GATHER(sndbuf, sndcount, sndtype, rcvbuf, rcvcount,
rcvtype, root, comm, ierr)

• Arguments definition are like other MPI subroutine
• rcvcount is the number of elements collected from each process, not the

size of rcvbuf, that should be rcvcount times the number of process in
the communicator

• The receiver arguments are significant only at root

sender receiver

64

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Scatter/Gather

Scatter

P0

sndbuf

P0 a1

rcvbuf
P1 a2

rcvbuf
P2 a3

rcvbuf
P3 a4

rcvbuf

P1 P2 P3P0 a1 a2 a3 a4

rcvbuf rcvbuf rcvbuf rcvbuf
Gather

P0 a2 a3a1 a4

sndbuf

a4a3a1 a2

65

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Scatter/Gather examples

 PROGRAM scatter
 INCLUDE 'mpif.h'
 INTEGER ierr, myid, nproc, nsnd, I, root
 INTEGER status(MPI_STATUS_SIZE)
 REAL A(16), B(2)
 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 root = 0
 IF(myid .eq. root) THEN
 DO i = 1, 16
 a(i) = REAL(i)
 END DO
 END IF
 nsnd = 2
 CALL MPI_SCATTER(a, nsnd, MPI_REAL, b, nsnd,
& MPI_REAL, root, MPI_COMM_WORLD, ierr)
 WRITE(6,*) myid, ': b(1)=', b(1), 'b(2)=', b(2)
 CALL MPI_FINALIZE(ierr)
 END

 PROGRAM gather
 INCLUDE 'mpif.h'
 INTEGER ierr, myid, nproc, nsnd, I, root
 INTEGER status(MPI_STATUS_SIZE)
 REAL A(16), B(2)
 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 root = 0
 b(1) = REAL(myid)
 b(2) = REAL(myid)
 nsnd = 2
 CALL MPI_GATHER(b, nsnd, MPI_REAL, a, nsnd,
& MPI_REAL, root MPI_COMM_WORLD, ierr)
 IF(myid .eq. root) THEN
 DO i = 1, (nsnd*nproc)
 WRITE(6,*) myid, ': a(i)=', a(i)
 END DO
 END IF
 CALL MPI_FINALIZE(ierr)
 END

scatter gather

66

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

Which MPI routines ?
• For simple applications, these are common:

– Point-to-point communication
• MPI_Irecv, MPI_Isend, MPI_Wait,

MPI_Send, MPI_Recv
– Startup

• MPI_Init, MPI_Finalize
– Information on the processes

• MPI_Comm_rank, MPI_Comm_size,
MPI_Get_processor_name

– Collective communication
• MPI_Allreduce, MPI_Bcast, MPI_Allgather

67

 DEMOCRITOS/ ICTP course in TOOLS FOR COMPUTATIONAL PHYSICS

 2005 February

A very useful site...

• http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/main.htm
– The examples from Using MPI, 2nd Edition are available

here, along with Makefiles and autoconf-style configure
scripts.

