
234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 1

Prolog.1
PrologProlog

Prolog.2
Textbook and SoftwareTextbook and Software� Title� PROLOG programming for artificial intelligence� Author� Ivan Bratko� Get the software – windows� Download PL.zip from the course site� Extract the zip file to c:\prolog (or whatever)� You should be able to do the same in the pc farm (extract to

your personal folder)� Run by c:\prolog\bin\plcon (or plwin)
Welcome to SWI-Prolog version x.y
| ?-� Get the software – csl1� Just run pl

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 2

Prolog.3
IntroductionIntroduction� What is Prolog?� A programming language for symbolic non-numeric

computation� What is programming in Prolog like?� Defining relations and querying about relations� What is SWI-PROLOG?� An interpreter
| ?- main prompt
| secondary prompt

Prolog.4
� Facts:

assert(mammal(rat)).
assert(mammal(bear)).
assert(fish(salmon)).� Comments:
/* This is a comment */

% This is also a comment � mammal(bear).
yes� fish(rat).
no� fish(X).
X = salmon� mammal(X).
X = rat
if we now type a “;” we get the response:
X = bear

The BasicsThe Basics

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 3

Prolog.5
assert(eats(bear,honey)).

assert(eats(bear,salmon)).

assert(eats(rat, salmon)).

assert(eats(salmon, worm)).

Logical AND:
Who eats both honey and salmon:
Which X eats honey and the same X eats salmon?� eats(X,salmon) , eats(X,honey).

X = bear

More ParametersMore Parameters

Prolog.6
RulesRules� For all X and Y

X is in Y’s food chain if
Y eats X

food_chain(X,Y) :- eats(Y,X)

The relation foodchain is defined as follows:
if eats(a,b) then foodchain(b,a)� In the prompt, rules should be declared using assert

?- assert(food_chain(X,Y) :- eats(Y,X)).� We will usually drop the assert and present only the
rule (like it is declared in declaration files)

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 4

Prolog.7
Recursive DefinitionsRecursive Definitions

For all X and Y
X is in Y’s food chain if
Y eats X

or
Y eats some Z and X is in Z’s foodchain:

food_chain(X,Y) :- eats(Y,X).
food_chain(X,Y) :- eats(Y,Z), food_chain(X,Z).

Afterwards we can ask:
?-food_chain(X,rat).

X=salmon

;

X=worm

Or:
?-food_chain(worm,X).

X=rat

;

X=bear

Prolog.8
Writing Prolog ProgramsWriting Prolog Programs� You can use files to declare rules and facts� Create a file named “prog” (for example …)� Enter the prolog interpreter� Type: consult(prog).� As a result all the facts and rules in the program are loaded.� In the declarations program you don’t need assert:� Fact: blue(sea).� Rule: good _grade(Pupil) :- study(Pupil).� At the interpreter prompt you can only type “queries” (or

“goals”, or “questions”)� Question: good_grade(X).� To change the database use the goal assert (which
always succeeds) or retract (which can fail)

assert((good _grade(Pupil) :- study(Pupil))).
retract((good _grade(Pupil) :- study(Pupil))).� To give several queries you can use redirection.

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 5

Prolog.9
Data ObjectsData Objects� Both Atoms & Numbers are defined over the following

characters:� upper-case letters A,B,..,Z� lower-case letters a,b,...,z� digits 0,1,...,9� special characters such as + - * / < > = : . & _ ~� Atoms can be constructed in 3 ways:
1. Strings of letters, digits & the underscore, starting with a

lower-case letter.
anna x_25 nil

2. String of special characters
<----> ::== .:.

3. Strings of characters enclosed in single quotes:
‘Tom’ ‘x_>:’� Reals: 3.14 -0.573� Integers: 23 5753 -42

Prolog.10
� Variables: � strings of letters, digits & “_”. Start with an

UPPER-CASE letter or an “_”.� X_25 _result � A single “_” is an anonymous variable � getsEaten(X) :- eats(_,X).� Facts can have several components, thus looking like
Structures.

assert(course(pl, fall, 99)).
date(pl, fall, Grade).

Grade= 99

Course

Name Semster Grade

Query

Data ObjectsData Objects

Fact Declaration

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 6

Prolog.11
MatchingMatching� An operation on terms. Two terms match if:� they are identical, or� the variables in both terms can be instantiated to objects in

such a way that after the substitution of variables by these
objects the terms become identical.�course(N,S,95) matches course(X,fall,G)�course(N,S,95) doesn’t match course(Y,M,996)�course(X) doesn’t match semester(X)� If matching succeeds it always results in the most

general instantiation possible.� course(N,M,85) = course(N1,fall,G).
N = N1
M=fall
G=85

Prolog.12
(1) If S and T are constants then S and T match only if

they are the same object.
(2) If S is a variable and T is anything, then they match,

and S is instantiated to T. (or the other way around...)
(3) If S and T are structures then they match only if

(a) S and T have the same principal functor and the
same number of components, and
(b) all their corresponding components match.
The resulting instantiation is determined by the
matching of the components.

General rules for matching two terms General rules for matching two terms
S and TS and T

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 7

Prolog.13
Geometric ExampleGeometric Example� Use structures to represent simple geometric shapes.� point - two numbers representing X and Y coordinates.� seg - a line defined by two points� triangle - defined by three points.�point(1,1)�seg(point(1,1), point(2,3))� triangle(point(4,2), point(6,4),

point(7,1))� In the same program we can also use three
dimensional points:

point(1,3,5)

This will result in a different relation with the same name.� We want to match:
triangle(point(1,1), A, point(2,3))

with
triangle(X, point(4,Y), point(2,Z)).

Prolog.14triangle = triangle
point(1,1) = X
A = point(4,Y)
point(2,3) = point(2,Z)

The resulting instantiation is:
X = point(1,1)
A = point(4,Y)
Z = 3

triangle

point pointX

Y Z4 2triangle

point A point1 1 2 3
Geometric ExampleGeometric Example

triangle(point(1,1), A, point(2,3)) = triangle(X, point(4,Y), point(2,Z)).

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 8

Prolog.15
� A program with two facts:� vertical(seg(point(X,Y), point(X, Y1))).

horizontal(seg(point(X,Y), point(X1,Y))).� Conversation:� ?- vertical(seg(point(1,1), point(1,2))).
yes� ?- vertical(seg(point(1,1), point(2,Y))).
no� ?- vertical(seg(point(2,3), P)).
P = point(2,Y)� When prolog has to invent a variable name (like the Y

above) it will be in the form _n where n is an arbitrary
number. So the last line will actually be in Prolog:
P = point(2,_G501)

Matching as means of ComputationMatching as means of Computation

Prolog.16
ArithmeticsArithmetics� Predefined operators for basic arithmetic:� +, -, *, /, mod� If not explicitly requested, the operators are just like any

other relation� Example: � X = 1 + 2.
X=1+2� The predefined operator ‘is’ forces evaluation.� X is 1 + 2.
X=3� A is B (A and B here can be anything) means� Evaluate B to a number and perform matching of the result with A� The comparison operators also force evaluation.� 145 * 34 > 100.
Yes

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 9

Prolog.17
X > Y X is greater than Y.

X < Y X is less than Y.

X >= Y X is greater than or equal to Y.

X =< Y X is less than or equal to Y.

X =:= Y the values of X and Y are equal.

X =\= Y the values of X and Y are not equal.

comparison Operatorscomparison Operators

Prolog.18
= and =:== and =:=� X = Y causes the matching of X and Y and possibly

instantiation of variables.� X =:= Y causes an arithmetic evaluation of X and Y,
and cannot cause any instantiation of variables.

1 + 2 =:= 2 + 1.

> yes
1 + 2 = 2 + 1.

> no
1 + A = B + 2.

> A = 2
> B = 1
1 + A =:= B + 2.

> [WARNING: Unbound variable in arithmetic expression]
> Fail: (6) 1 + _G149 =:= _G151 + 2 ?
> No

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 10

Prolog.19
Example: The Greatest Common DevisorExample: The Greatest Common Devisor� given X and Y, the gcd D can be found by:� (1) If X and Y are equal then D is equal to X.

(2) If X < Y then D is equal to the gcd of X and (Y-X).
(3) If Y < X then do the same as in (2) with X and Y
interchanged.

gcd(X,X,X).

gcd(X,Y,D) :-

X < Y,

Y1 is Y - X,

gcd(X,Y1,D).

gcd(X,Y,D) :-

Y < X,

gcd(Y,X,D).

Prolog.20
Example: The Greatest Common DevisorExample: The Greatest Common Devisor

gcd(X,X,X).

gcd(X,Y,D) :-

X < Y,

Y1 is Y - X,

gcd(X,Y1,D).

gcd(X,Y,D) :-

Y < X,

gcd(Y,X,D).

?-gcd(12,20,D).

gcd(12,20,D):- 12<20, Y1 is 8, gcd(12,8,D)

Rule 2

Rule 1

12 != 20

Rule 1

12 != 8
gcd(12,8,D):-

12<8

Rule 2

gcd(12,8,D):-
8<12,gcd(8,12,D)

Rule 3

gcd(8,12,D):-8<12, Y1 is 4,gcd(8,4,D)

Rule 2

Rule 1

8 != 12

Rule 1

8 != 4
gcd(8,4,D):-8<4

Rule 2

gcd(8,4,D):-4<8, gcd(4,8,D)

Rule 3

gcd(4,8,D):-4<8, Y1 is 4, gcd(4,4,D)

Rule 2
Rule 1

4 != 8

Rule 1

gcd(4,4,4)

D=4!

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 11

Prolog.21
� A sequence of any number of items.� Structure of lists: .(Head, Tail)

.(a, .(b,[])) eq.� Shorthand:� [tom, jerry] is the same as .(tom, .(jerry,
[]))� [a | tail] is the same as .(a, tail)� [a,b,c] = [a | [b,c]] = [a,b | [c]] =

[a,b,c |[]]� Elements can be lists and structures:� [a, [1, 2, 3], tom, 1995, date(1,may,1995)]

ListsLists

a

b []

.

.

Prolog.22
Operations on ListsOperations on Lists� Membership� member(X, L) if X is a member of the list L.

member(X, [X | Tail]).

member(X, [Head | Tail]) :-

member(X, Tail).� Concatenation� conc(L1, L2, L3) if L3 is the concatenation of L1 and L2.
conc([], L, L).

conc([X|L1], L2, [X|L3]) :-

conc(L1, L2, L3).

[X|L1]

[X|L3]

X L1 L2

L3

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 12

Prolog.23
conc([a,b,c], [1,2,3], L).

> L = [a,b,c,1,2,3]
conc(L1, L2, [a,b,c]).

> L1 = []
L2 = [a,b,c];

> L1 = [a]
L2 = [b,c];

> L1 = [a,b]
L2 = [c];

> L1 = [a,b,c]
L2 = [];

> no
conc(Before, [4|After], [1,2,3,4,5,6,7]).

> Before = [1,2,3]
After = [5,6,7]

conc(_, [Pred, 4, Succ |_], [1,2,3,4,5,6,7]).
> Pred = 3

Succ = 5

ExamplesExamples

Prolog.24
� Redefining member using conc:� member1(X, L) :-

conc(_, [X|_], L).� Adding an Item in the front:� add(X, L, [X|L]).� Deleting an item� del(X, [X|Tail], Tail).
del(X, [Y|Tail], [Y|Tail1]) :-

del(X, Tail, Tail1).� If there are several occurrences of X in the list then del will
be able to delete only one of them.� To insert an item at any place in the list:
del(a, L, [1,2,3]).
> L = [a,1,2,3];
> L = [1,a,2,3];
> L = [1,2,a,3];
> L = [1,2,3,a];
> no

ExamplesExamples

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 13

Prolog.25
� We can define insert using del:� insert(X,List,BiggerList) :-

del(X, BiggerList, List).� The sublist relation� sublist(S, L) :-
conc(L1, L2, L),
conc(S, L3, L2).� sublist(S, [a,b,c]).

> S = [];
> S = [a];
...
> S = [b,c];
...

L1 L3S

L

L2

ExamplesExamples

Prolog.26
� permutation([], []).

permutation([X|L], P) :-
permutation(L, L1),
insert(X, L1, P).� permutation([a,b,c], P).

> P = [a,b,c];
> P = [a,c,b];
> P = [b,a,c];
...� permutation2([], []).
permutation2(L, [X|P]) :-

del(X, L, L1),
permutation2(L1, P).

PermutationsPermutations

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 14

Prolog.27
LengthLength� The length of a list can be calculated in the following

way:� if the list is empty then its length is 0.� if the list is not empty then List = [Head | Tail]. In
this case the length is equal to 1 plus the length of the tail
Tail .� length is built in. If you want to try defining it, change

the name...� length([], 0).
length([_|Tail],N) :-

length(Tail, N1),
N is 1 + N1.� length([a,b,[c,d],e], N).

> N = 4
length(L,4).
> [_5, _10, _15, _20] ;
..... ?

what happens if the
order of these clauses

is changed?

Prolog.28
Database QueryDatabase Query� Represent a database about families as a set of facts. Each family will

be a clause.� The structure of a family:� each family has a husband, a wife and children.� children are represented as a list.� each person has a name, surname, date of birth and job.� Example:
family(

person(tom, fox, date(7,may,1950), works(bbc,15200),

person(ann, fox, date(9,jan,1949), works(ibm,20000),

[person(pat, fox, date(1,feb,1973), unemployed),

person(jim, fox, date(4,may,1976), unemployed)]).

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 15

Prolog.29
family

person

person

person

person

person

ann fox date works

9 jan 1949 ibm 20000

[]

Prolog.30
Structure QueriesStructure Queries� All armstrong families:� family(person(_,armstrong,_,_),_,_)� Are there families with 3 children?� family(_,_,[_,_,_])� Names of families with 3 children.� family(person(_,Name,_,_),_,[_,_,_])� All married women that have at least two children:� family(_,person(Name,Surname,_,_),[_,_|_]).

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 16

Prolog.31
Defining useful relations:� husband(X) :- family(X,_,_).� wife(X) :- family(_,X,_).� child(X) :-

family(_,_,Children), member(X, Children).
% the member we
% already defined� exists(Person) :-

husband(Person); wife(Person); child(Person).� dateofbirth(person(_,_,Date,_),Date).� salary(person(_,_,_,works(_,S)), S).
salary(person(_,_,_,unemployed, 0).

Structure QueriesStructure Queries

Or
operator

Prolog.32
� Names of all people in the database:� exists(person(Name,Surname,_,_)).� All employed wives:� wife(person(Name,Surname,_,works(_,_))).� Unemployed people born before 1963:� exists(person(Name,Surname,date(_,_,Year),

unemployed)), Year < 1963.� People born before 1950 whose salary is less than 8000:� exists(Person),
dateofbirth(Person,date(_,_,Year)),
Year < 1950,
salary(Person, Salary),
Salary < 8000

Structure QueriesStructure Queries

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 17

Prolog.33
� Calculating the total income of a family:� total([], 0).

total([Person|List], Sum) :-
salary(Person, S),
total(List, Rest),
Sum is S + Rest.� tot_income(family(Husband,Wife,Children),I)

:-
total([Husband, Wife | Children], I).� All families that have an income per family member of

less than 2000:� tot_income(family(Husband,Wife,Children), I),
I/N < 2000.

Structure QueriesStructure Queries

total(People_list
, Total_salaries)

Prolog.34
Controlling BacktrackingControlling Backtracking� Automatic backtracking can cause inefficiency:

o 1. if X < 3 then Y = 0
2. if 3 <= X and X < 6 then Y = 2
3. if 6 <= X then Y = 4

4

Y

2

3 6 X

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 18

Prolog.35
� The relation f(X,Y) in prolog would be:

f(X,0) :- X<3.
f(X,2) :- 3=<X, X<6.
f(X,4) :- 6=<X.� This procedure assumes that before f(X,Y) is executed
X is already instantiated to a number.� The goal: “f(1,Y), 2<Y.” fails, but before prolog
replies ‘no’, it tries all 3 rules.� The three rules are mutually exclusive so that one of
them at most will succeed. If the goal matches the first
rule and then fails, there is no point in trying the others.� The CUT mechanism will help us prevent this.

Controlling BacktrackingControlling Backtracking

Prolog.36
� A cut prevents backtracking from some point on.� Written as a ‘!’ sub-goal that always succeeds, but

prevents backtracking through it.� Correcting the example:
f(X,0) :- X<3, !.
f(X,2) :- 3=<X, X<6, !.
f(X,4) :- 6=<X.� Whenever the goal f(X,Y) is encountered, only the first
rule that matches will be tried.� If we now ask again “f(2,Y), 2<Y.” we will get the
same answer, ‘no’, but only the first rule of ‘f’ will be
tried,� note : the declarative meaning of the procedure did not
change.

Controlling Controlling Backtracking: CutBacktracking: Cut

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 19

Prolog.37
Another problem:� If we ask:

f(7,Y).
> Y=4� What happened:� 7<3 --> fail� 3=<7, 7<6 --> fail� 6=<7 --> success.� Another improvement: The logical rule� if X<3 then Y=0,

otherwise if X<6 then Y=2,
otherwise Y=4.

Is translated into:� f(X,0) :- X<3, !.
f(X,2) :- X<6, !.
f(X,4).

Controlling Controlling Backtracking: CutBacktracking: Cut

Prolog.38
� The last change improved efficiency. BUT, removing

the cuts now will change the result !!!� f(1,Y).
> Y = 0;
> Y = 2;
> Y = 4;
>no� In this version the cuts do not only effect the

procedural meaning of the program, but also change
the declarative meaning.

Controlling Controlling Backtracking: CutBacktracking: Cut

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 20

Prolog.39
Red and Green cuts:� When a cut has no effect on the declarative meaning of

the program it is called a ‘green cut ’. When reading a
program, green cuts can simply be ignored.� Cuts that do effect the declarative meaning are called
‘red cuts ’. This type of cuts make programs hard to
understand, and they should be used with special care.

Controlling Controlling Backtracking: CutBacktracking: Cut

Prolog.40
The Meaning of CutThe Meaning of Cut� When the cut is encountered as a goal it succeeds

immediately, but it commits the system to all choices
made between the time the parent goal was invoked and
the time the cut was encountered.� H :- B1, B2, ... , Bm, !, ... Bn.

when the ! is encountered:� The solution to B1..Bm is frozen, and all other
possible solutions are discarded.� The parent goal cannot be matched to any other rule.

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 21

Prolog.41
� Consider the program� C :- P, Q, R, !, S, T, U.

C :- V.
A :- B, C, D.

And the goal: A� Backtracking is possible within P,Q,R.� When the cut is reached, the current solution of
P,Q,R is chosen, and all other solutions are dumped.� The alternative clause “C :- V” is also dumped.� Backtracking IS possible in S,T,U.� The parent goal is “C” so the goal A is not effected.
The automatic backtracking in B,C,D is active.

The Meaning of Cut:The Meaning of Cut:

Prolog.42
Examples using CUTExamples using CUT� Adding elements to a list without duplication: add(X,L,L1)� If X is a member of L then L1=L.

Otherwise L1 is equal to L with X inserted:� add(X, L, L) :- member(X, L), !.
add(X, L, [X|L]).� Assume we have the relations ‘big(X)’, ‘medium(X)’ and

‘small(X)’, for example: � big(elephant).
medium(cat).
small(mouse).

We want a relation ‘boe(X,Y)’ for X is bigger or equal to Y � boe(X,Y) :- small(X),!,small(Y).
boe(X,Y) :- big(Y),!, big(X).
boe(X,Y).

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 22

Prolog.43
NegationNegation� The special goal fail always fails. (like 1=0.)� The special goal true always succeeds. (like 1=1.)� “Mary likes all animals but snakes”� likes(mary, X) :- snake(X), !, fail.

likes(mary, X) :- animal(X).� Define the relation “different” by the matching meaning
- two terms are different iff they do not match.� different(X, X) :- !, fail.

different(X, Y).

Prolog.44
� Defining “not”:� if Goal succeeds then not(Goal) fails.

Otherwise not(Goal) succeeds.� not(P) :- P, !, fail.
not(P).� NOT is a built in prolog procedure, defined as a prefix

operator:� not(snake(X)) ==> not snake(X)� Previous examples that use the combination “!, fail”
can now be rewritten:� different(X, Y) :- not (X = Y).

NegationNegation

234319: Programming Languages.
Tutorial Notes: Prolog

Notes

Prolog 23

Prolog.45
� When possible, it is better to use ‘not’ than to use the

‘cut and fail’ combination.� Note that if the goal “not(A)” succeeds it does not
mean that “A is not true” but that
“given the current database, A cannot be proved”.� Can you explain the following results:� assert(r(a)).

assert(q(b)).
assert(p(X) :- not r(X)).� q(X), p(X).
> X = b.� p(X), q(X).
> no

The The ‘‘NotNot ’’ Operator:Operator:

