
Rebol scripting basics

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. Introducing Rebol 4

3. Rebol -- the language 8

4. Rebol words 10

5. Words and expressions 14

6. Blocks 21

7. Resources 24

8. Feedback 25

Rebol scripting basics Page 1

Section 1. Tutorial tips

Should I take this tutorial?
This tutorial will introduce you to a powerful Internet-enabled scripting language called
Rebol. You should take this tutorial if you'd like to add Rebol to your programming
arsenal and have no prior experience with it, or if you've tried to learn Rebol in the past
but found it confusing.

This tutorial provides clear demonstrations of Rebol fundamentals, including detailed
explanations of the parts of Rebol that differ from more conventional programming
languages. It's designed to make learning Rebol really easy.

Once you've mastered Rebol basics, you'll be directed to appropriate online resources
(like the Rebol User's Guide) where you can continue your study of this revolutionary
language.

Navigation
Navigating through the tutorial is easy:

* Use the Next and Previous buttons to move forward and backward through the
tutorial.

* When you're finished with a section, select Next section for the next section.
Within a section, use the Section menu button to see the contents of that section.
You can return to the main menu at any time by clicking the Main menu button.

* If you'd like to tell us what you think, or if you have a question for the author about
the content of the tutorial, use the Feedback button.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 2

mailto:drobbins@gentoo.org
http://www.gentoo.org
http://www.gentoo.org
http://www.gentoo.org

Getting help
For technical questions about the content of this tutorial, contact the author, Daniel
Robbins, at drobbins@gentoo.org .

Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo
Technologies, Inc. , the creator of Gentoo Linux, an advanced Linux for the PC, and
the Portage system, a next-generation ports system for Linux. He has also served as
a contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE
Linux Unleashed and Samba Unleashed. Daniel has been involved with computers in
some fashion since the second grade, when he was first exposed to the Logo
programming language as well as a potentially dangerous dose of Pac Man. This
probably explains why he has since served as a Lead Graphic Artist at SONY
Electronic Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary,
and his new baby daughter, Hadassah.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 3

mailto:drobbins@gentoo.org
http://www.gentoo.org
http://www.gentoo.org
http://www.gentoo.org

Section 2. Introducing Rebol

A description of Rebol
How does one describe the Rebol language? Revolutionary. Powerful. Flexible -- and
different. In fact, Rebol is probably unlike any other language that you've used before.
Designed to tackle real-world programming tasks in a straightforward yet
"unconventional" way, Rebol offers a refreshing new programming toolkit for those who
are looking for something more in a scripting language.

For us developers, learning Rebol can be both refreshing and intimidating. While
promising something completely different, Rebol also uses new programming
paradigms that, while somewhat similar to those found in more traditional languages,
are "different enough" to breed confusion for the seasoned developer.

Rebol features
A lot of things make Rebol different. It uses a natural English-like syntax, and supports
tons of datatypes, including special datatypes designed to store Internet-related data,
like URLs and email addresses. Rebol is an Internet-enabled language; using Rebol,
you can download a Web page or send an email message with a single line of code.
Not only that, but Rebol provides advanced functionality called "dialecting", which
allows you to create your own special-purpose sub-languages that are specifically
tailored to the tasks you use Rebol for.

However, before you can access these killer features, it's important to master the
basics of Rebol. That's what we're going to do in this tutorial. After you're well versed in
the basics, I'll show you some online resources that you can use to learn Rebol's more
advanced features.

Installation
Using Rebol begins with a visit to http://www.rebol.com . In this tutorial, we'll be using
the basic version of Rebol, called Rebol/Core, available for about 40 different
platforms. The Rebol-related parts of this tutorial will apply to every platform, although
we will only be covering Linux installation.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 4

http://www.rebol.com
http://www.rebol.com

Download Rebol/Core
After you arrive at http://www.rebol.com , head over to the developer section, and then
click on "Downloads". Select the most recent version of Rebol/Core that's available for
your platform. Currently, there are versions available for libc5 and libc6 x86 Linux, as
well as Linux/Alpha, Linux/PPC, Linux/Sparc and UltraSparc, and even
Linux/StrongARM, MIPS, and 68K! Obviously, the Rebol developers take their porting
effort seriously.

Downloading Rebol/Core, continued
For libc6 x86 Linux, the Rebol/Core archive will be called "core042.tar.gz". After
downloading the appropriate archive, make a directory called "rebol" in your home
directory, and place the archive inside this directory. After entering the directory, extract
the contents of the archive by typing:

$ tar xzvf core042.tar.gz

About five files, including the rebol executable, will be extracted to your current
directory.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 5

http://www.rebol.com

Starting Rebol
To start Rebol, type:

$./rebol

You'll see something that looks like this:

Configuring Rebol
At this point, you will be prompted to configure networking options for your system,
which will include entering your email address, an SMTP and POP server, and network
proxy settings. Since Rebol is an Internet-enabled language, it needs these settings to
access the Internet.

Configuring Rebol, continued
After you've completed the configuration steps, Rebol will ask for permission to create
a "user.r" file in the current directory. Your settings will be stored in this file. Go ahead
and say "Y". This is an example of Rebol's built-in security support, protecting you
from any unauthorized modifications to your filesystem.

The next time you start Rebol, remember to start it from inside your "rebol" directory.
That way, Rebol will find the user.r file and your network settings will be loaded
automatically.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 6

The first prompt
After configuration finishes, you'll be inside the interactive Rebol interpreter. The Rebol
prompt looks like this:

>>

Go ahead and type "help", and hit Enter to view Rebol's built-in help page. The "help"
command can also accept an argument. Try typing "help print". You'll see a helpful
summary of the print function appear on your screen.

Rebol -- what?
Exactly what Rebol functions are available? To see a complete list, type "what" at the
prompt:

>> what

The "what" command displays a list of all globally defined functions.

Quitting Rebol
That brings us to one of the most essential Rebol commands -- quit. If you ever need
to leave the interpreter, simply type:

>> quit

....and you'll be dropped back at the shell prompt. Now that you know how to get in and
out of the interpreter, it's time to get familiar with the language itself.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 7

Section 3. Rebol -- the language

Introducing datatypes
One of the wonderful things about Rebol is that it has a huge number of built-in
datatypes, designed to represent values that you find in the "real world", like email
addresses, URLs, dates, times, and monetary values. Let's start getting familiar with
some of them.

Introducing datatypes, continued
At the Rebol prompt, go ahead and type:

>> drobbins@gentoo.org
== drobbins@gentoo.org

After typing this email address into the interpreter, Rebol just repeated it back to us.
This is standard fare for Rebol -- when a literal value is typed into the interpreter, it's
repeated back. Now, you may wonder what kind of value drobbins@gentoo.org is.
Most languages would store an email address as a string, so you might guess that
Rebol does too. However, you'll be surprised to find that Rebol does something much
more useful.

Exploring datatypes
To see what kind of datatype drobbins@gentoo.org is, type:

>> type? drobbins@gentoo.org
== email!

The type? word is a function that accepts one argument, returning the datatype of the
argument. As you can see, Rebol actually recognizes drobbins@gentoo.org as an
email address -- quite impressive! We didn't need to use special syntax to specify an
email address; Rebol recognized this value as an email address because it noticed the
embedded "@" character.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 8

Exploring datatypes, continued
Let's continue. Type this in:

>> type? $5.00
== money!

Again, Rebol understands that $5.00 represents a monetary value.

You may be wondering why there are exclamation points at the end of email! and
money!. The answer's simple -- in Rebol, all datatype names end with an exclamation
point. In addition, many functions that query attributes (like the type? function) end with
a question mark. Rebol tries to be more user-friendly by structuring its syntax similarly
to a traditional written language, like English.

Many datatypes
Try typing in the following Rebol expressions and see what datatype Rebol recognizes
each value as:

>> type? 1
>> type? 1.0
>> type? "foo"
>> type? {foo}
>> type? http://www.gentoo.org
>> type? true
>> type? yes
>> type? :print
>> type? money!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 9

Section 4. Rebol words

Introducing words
Just as languages like C have variables that hold data, Rebol has its own kind of
variable, called a word. Here's an example of how to associate a word with a value:

>> myval: $5.00

Introducing words, continued
In this example, myval has been associated with the value $5.00. Using myval in an
expression will cause it to be immediately evaluated:

>> myval
== $5.00
>> myval + 1
== $6.00

In Rebol, it's very common to associate words with values, creating a word/value pair.
Words are also case insensitive, so typing myval is the same as typing MyVal.

Words with no value
Now, try typing any old word into the interpreter. You'll likely receive an error:

>> foo
** Script Error: foo has no value.
** Where: foo

By default, Rebol will automatically evaluate all words. By "evaluate", I mean that Rebol
will automatically replace the word with its associated value. If a word isn't associated
with a value, then Rebol returns an error.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 10

Defining new words
We can also define new words based on the values of existing words. Try this
example:

>> myval: $5.00
== $5.00
>> myval2: myval + 1
== $6.00
>> myval2
== $6.00
>> myval
== $5.00
>> myval: myval + 1
== $6.00
>> myval2
== $6.00

Here, we defined myval2 based on myval. Then, we incremented myval, and printed
the contents of myval2, finding that myval2's value didn't change.

A description of Rebol
As you can see, Rebol words appear to act identically to variables in other languages
like C and C++. You may even be wondering why the Rebol guys decided to call their
versions of variables "words" rather than sticking with the standard terminology. Good
question! As we continue with the tutorial, I'll show you some of the unique qualities of
Rebol words that set them apart from standard C variables.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 11

Word basics -- summary
When the Rebol interpreter encounters a word, its normal response is to evaluate it.
When a word is evaluated, it is replaced with its associated value. So, for example, if
the word myemail were associated with the value drobbins@gentoo.org, typing this
at the Rebol interpreter prompt:

>> myemail

....would cause the interpreter to return:

== drobbins@gentoo.org

This is myemail's value. This shows us that according to Rebol, the word myemail has
a meaning, and represents the drobbins@gentoo.org email address. While this may
seem obvious, Rebol also allows you to do some very unusual things with words, as
we'll see in a bit.

Math operators
When we were playing with dollar amounts a few panels back, we used the standard
math operator +. Of course, Rebol sports a whole bunch of math operators, including
the standard +, -, *, and /. In addition, it also features a // remainder operator.

When you're writing mathematical expressions in Rebol, there are two important things
that you need to know. First, you need to put spaces between values and operators;
1+7 can't be parsed correctly by the interpreter, but 1 + 7 can. Second, Rebol
evaluates mathematical expressions from left to right, period. There's no special
operator precedence like in C. If you want to be explicit about the order of
mathematical evaluation, you can surround parts of your expression with parentheses.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 12

Prefix operators
In addition to the standard "infix" (in between) math operators, Rebol also has built-in
"prefix" math operators. Here's how they work:

>> abs -23
== 23
>> add 23509 230
== 23739
>> divide 4 2
== 2
>> multiply 30 30
== 900
>> remainder 9 4
== 1
>> subtract 4 9
== -5

Dates
Rebol also has excellent built-in support for dates. To get the current date, use the
word "now":

>> print now
30-Sep-2000/22:41:19-6:00

By adding or subtracting an integer from a date, you can offset the date by a certain
amount of days. For example, you can express two weeks from now as:

>> print now + 14
14-Oct-2000/22:43:13-6:00

Many, many datatypes
Rebol has many more datatypes; we simply don't have room to cover all of them here.
Here's a partial list: integer, decimal, time, date, money, logic, char, none, string,
binary, email, file, url, issue, tuple, tag, block, hash, list, paren, path, and word.

Many datatypes have their own special operators and functions, and datatypes can
interact in a myriad of ways. For example, you can extract a time from a date; append
to strings; and open, close, and write to files. All these datatypes and their associated
operators and functions are described in detail in the Rebol User's Guide (see
Resources on page 24for more information).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 13

Section 5. Words and expressions

A description of Rebol
Previously, when we evaluated myemail, the Rebol interpreter wrote "==
drobbins@gentoo.org" to the screen. When you use the interpreter interactively, Rebol
prints the values of any evaluated expressions. However, when Rebol code is executed
from a file (not using the interpreter, but as a shell script), we won't see this output. In
these situations, you should use the print command to generate output. We can also
use print interactively:

>> print myemail
drobbins@gentoo.org

Rebol displayed the value of myemail, but did not print "== drobbins@gentoo.org". This
is because print outputs the value of email to the screen, but does not return any value
itself.

Probing
Sometimes you'll want to print the value of a word to the screen, but you'll also want to
perform additional processing on the word's value. For example, you may type:

>> print myemail
drobbins@gentoo.org
>> type? myemail
== email!

This does the trick, but Rebol provides a much cleaner way to perform these two steps
at once...

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 14

Probing, continued
Simply type:

>> type? probe myemail
drobbins@gentoo.org
== email!

The probe word expects a single word or block (covered later) as an argument. It will
print the value of this word, and also return the value of the word. In this example, this
value can then be evaluated by the type? word, displaying the type of the
drobbins@gentoo.org value. You can think of probe as Rebol's version of the standard
UNIX "tee" command.

Literal words
Most of the time, when we refer to a word in Rebol, Rebol does what we want -- it
evaluates the word, passing its value to a function or displaying the value in the
interactive interpreter. However, sometimes this isn't exactly what we want to do. There
are times when we may want to refer to the word itself, rather than its associated value.
For these instances, Rebol provides a handy literal word syntax. Take a look at this
example:

>> type? myemail
== email!
>> type? 'myemail
== word!

Speakin' it!
To help you grasp this concept of literal words, you're going to actually speak out loud
(with your mouth, in English or your favorite language!) what the code is doing. Yes,
this means that you will be talking to yourself while staring at the monitor. Don't fear --
if you're embarrassed by this kind of thing, just pretend that you're Jean Luc Picard
(Captain of the USS Enterprise) and that you're barking orders to the ship computer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 15

Speakin' it -- the key
Here's the key to this exercise. When you see a word written like this:

foo

....you're supposed to say "foo".

When you see a word written like this:

'foo

....you're supposed to say "the word foo".

First order
Here's a command that you've already typed into the Rebol interpreter:

>> myemail: drobbins@gentoo.org

If you were Jean Luc Picard, you wouldn't use something as horribly antiquated as a
computer keyboard to enter this command. Instead, you'd say this out loud (hint):

"Computer, associate the word myemail with drobbins@gentoo.org."

Second order
And, being Jean Luc Picard, instead of typing this monstrosity into the keyboard,
risking a bad case of carpal tunnel syndrome:

>> myword: 'myemail

....you'd get up from your orthopedically-designed Captain's chair and authoritatively
project:

"Associate the word myword with myemail"

Notice the difference? It's subtle but very important. The ' prefix means you're talking
about the word. Without the ', you're talking about the word's value.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 16

Evaluating words by hand
Now, you have a word called myword that has a value which is itself also a word. OK,
pretty cool, but how can you tell Rebol to evaluate your word? Easy:

>> do myword
== drobbins@gentoo.org

Sha-blamm! Now we can control exactly when Rebol will evaluate a word.

Much ado about nothing
Thanks to the do function, we can also type:

>> do 'myemail
== drobbins@gentoo.org

However, this is a bit pointless since typing the word by itself will accomplish the same
thing:

>> myemail
== drobbins@gentoo.org

Word associations
Here's another way to associate a word with a value. Instead of typing:

>> myvar: $5.00

You can also type:

>> set 'myvar $5.00

Both expressions do the same thing. Read them both out loud as "set the word myvar
to the value $5.00". The set word opens up a lot of powerful possibilities.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 17

More word associations
Consider:

>> myword: 'cost
== cost
>> set myword $5.00
== $5.00

The last expression doesn't actually affect the value of the word myword; instead, it
associates cost with the value $5.00. (Type "print cost" if you don't believe me.) You
can read the last line out loud as "set the value of myword to $5.00" or "set the word
cost to $5.00". Since the value of myword is the word cost, both of these sentences
mean the same thing.

Unset
Words can be set, and they can also be unset:

>> unset 'cost

This will remove any value associated with the word cost ('cost). If you type "print cost"
immediately after this command, you'll get an error, because cost has no value. Try
typing "print cost" just for fun.

Unset, continued
Even though the word cost no longer has any value, the following code will not raise an
error:

>> print 'cost
cost

This is because we executed the command "print the word cost". The print function
goes ahead and prints the name of the word, rather than its value. The ' character
prevents cost from being evaluated.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 18

Helping Rebol out
While Rebol is very good at automatically determining the type of a literal value, there
are times where Rebol simply doesn't have enough information to automatically figure
out what type a particular value should be. For example, imagine a situation where I
want to set the word myemail so that it's associated with the email address "drobbins".
You may be tempted to type:

>> myemail: drobbins

Helping Rebol out, continued
Unfortunately, this doesn't work. There's no way for the interpreter to know what
"drobbins" is. Rebol doesn't see an "@" embedded in the string, so it assumes that
drobbins is a regular word, and tries to evaluate it. Unfortunately, the word drobbins
doesn't have an associated value, so we get this error:

** Script Error: drobbins has no value.
** Where: myemail: drobbins

How to help
Fortunately for us, there's a way around this. Instead of typing:

>> myemail: drobbins

....we can type:

>> myemail: make email! "drobbins"

We don't get an error, and if we query the type of myemail, we see that we got the
desired result:

>> type? myemail
== email!

The make function allows us to create a value of a specific type. We specify the type,
rather than relying on Rebol to try to detect the type of the data for us.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 19

Make it work
The first argument to the make function should be a datatype, like money!, email! or
url!. The second argument should be a string containing the value that you would like to
create. As long as you specify a valid string, make will create exactly the value that you
want. If you specify an invalid string, you'll get an error. You can see that Rebol isn't
able to satisfy this request, and with good reason:

>> mymoney: make money! "drobbins"
** Script Error: Invalid argument: drobbins.
** Where: mymoney: make money! "drobbins"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 20

Section 6. Blocks

Building blocks
Now we're going to look at a Rebol construct called a block. In Rebol, you can use
blocks to organize collections of data. To create a block, surround a bunch of values
with a [and a]:

>> myblock: [this and that]
== [this and that]

One of the neat things about blocks is that they can contain data or code. They can
contain words that don't have any associated value, and the contents of the block are
not immediately evaluated. For example, Rebol accepts the definition of myblock even
though the words this and that have no value.

Code blocks
You can insert code into a block, as follows:

>> mycode: [print "foo"]
== [print "foo"]

To actually execute the code, use the handy do function:

>> do mycode
foo

Block features
Here's a block of code that doesn't actually do anything when executed, but it does
demonstrate a Rebol feature:

>> mydata: [1 2 3]
== [1 2 3]

This looks like a data block, but we can also execute it as code. As code, this block
contains three separate expressions, 1, 2, and 3. Each expression returns a value of 1,
2, and 3 respectively. Now, let's execute the block.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 21

Block features, continued
>> do mydata
== 3

As you can see, Rebol will return the last value encountered in a code block. However,
the entire code block is executed in order, not just the last element.

Nesting blocks
Blocks can be nested:

>> instructions: [
[[remove hard drive from chassis]
[[throw hard drive out window]
[[scream "foo foo foo!"]
[]

The [characters that begin the second through fifth lines are actually the Rebol prompt.
It's Rebol's way of reminding us that we are entering a multi-line block. Try typing this
block into the interpreter and you'll see what I mean.

Accessing blocks
We can access the elements of a block:

>> myblock: [jimmy cracked corn]
== [jimmy cracked corn]
>> first myblock
== jimmy
>> myblock/1
== jimmy
>> last myblock
== corn
>> myblock/3
== corn
>> myblock/2
== cracked

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 22

Block paths
We can also "pair up" words (used as keys) with values, and use the words as indexes
into the block:

>> order: [
[amount 10
[cost $3.50
[email drobbins@gentoo.org
[]
== [

amount 10
cost $3.50
email drobbins@gentoo.org

]
>> order/email
== drobbins@gentoo.org
>> order/cost
== $3.50

Notice that the order block contains six separate words, and that the word amount is
not associated with any value (we didn't type "amount: 10", we typed "amount 10",
which are two separate unrelated words). "order/cost" is called a path.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 23

Section 7. Resources

Getting the User's Guide
We've covered a lot in this tutorial, but we've just scratched the surface of the Rebol
programming language. To dig deeper, I strongly recommend that you download the
Rebol User's Guide. It's well written, quite thorough, and now that you know the basics
of Rebol, quite understandable. To have Rebol automatically download the User's
Guide, type:

>> do do http://www.rebol.com/users-guide.r

Rebol will ask you if it can create files on disk. Just hit A for "All", and the Rebol User's
Guide will be automatically downloaded and created in your current working directory!
Pretty neat, eh?

Additional resources
For additional developer resources, make sure you check the developer section of
http://www.rebol.com on a regular basis. There's a good (very high-volume) mailing list
available, as well as several free Rebol introductory and intermediate articles of various
kinds.

I hope that you've enjoyed this tutorial, and that you'll continue to grow in your Rebol
knowledge!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 24

http://www.rebol.com

Section 8. Feedback

Feedback
Please send us your feedback on this tutorial. Please be advised that we cannot be
held responsible for any malpractice claims filed against you, nor can we offer you legal
assistance or political asylum to protect you from the surviving relatives of your former
patients. With those caveats in mind, we look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics, and
two PDF files. Our ability to generate multiple text and binary formats from a single source file
illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Rebol scripting basics Page 25

